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1 Introduction

Why do stocks rise and fall? Surprisingly little academic research has focused directly on this

question.1 While much of the literature has concentrated on explaining expected quarterly

or annual returns, this paper takes a longer view and considers the economic forces that have

driven the total value of the market over the post-war era. According to textbook economic

theories, the stock market and the broader economy should share a common trend, implying

that the same factors that boost economic growth are also the key to rising equity values

over longer periods of time.2 In this paper, we directly test this paradigm.

Some basic empirical facts serve to motivate the investigation. While the U.S. equity

market has done exceptionally well in the post-war period, this performance has been highly

uneven over time, even at long horizons. For example, real market equity of the U.S. corpo-

rate sector grew at an average rate of 7.5% per annum over the last 29 years of our sample

(1989 to 2017), compared to an average of merely 1.6% over the previous 29 years (1966

to 1988). At the same time, growth in the value of what was actually produced by the

corporate sector has displayed a strikingly different temporal pattern. While real corporate

net value added grew at a robust average rate of 3.9% per annum from 1966 to 1988 amid

anemic stock returns, it averaged much lower growth of only 2.6% from 1989 to 2017 even

as the stock market was booming. This multi-decade disconnect between growth in market

equity and output presents a difficult challenge to theories in which economic growth is the

key long-run determinant of market returns.

One potential resolution of this puzzle is to posit that economic fundamentals such as

cash flows may be relatively unimportant for the value of market equity, with discount rates

driving the bulk of growth even at long horizons. In this paper we entertain an alternative

hypothesis motivated by an additional set of empirical facts. Within the total pool of net

value added produced by the corporate sector, only a relatively small share — averaging

12.3% in our sample — accrues to the shareholder in the form of after-tax profits. Impor-

tantly, however, this share varies widely and persistently over time, fluctuating from less

than 8% to nearly 20% over our sample. This suggests that swings in the profit share are

strong enough to cause large and long-lasting deviations between cash flows and output. If

so, growth in market equity could diverge from economic growth for an extended period of

time, even when valuations are largely driven by fundamental cash flows. Indeed, while the

1989-2017 period lagged the 1966-1988 period in economic growth, it exhibited growth in

1See the literature review below.
2This tenet goes back to at least Klein and Kosobud (1961), followed by a vast literature in macroeconomic

theory that presumes balanced growth among economic aggregates over long periods of time. For a more
recent variant, see Farhi and Gourio (2018).
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corporate earnings of 5.1% per annum that far outpaced the average 1.8% earnings growth

of the previous period. Behind these trends are movements in the after-tax profit share of

output, which fell from 15.3% in 1966 to 8.9% in 1988, before rising again to 17.4% by the

end of 2017. These shifts are in turn made possible by a reverse pattern in labor’s share of

corporate output, which rises from 67.0% in 1966:Q1 to 72.4% in 1988:Q4, before reverting

to 67.7% by 2017:Q4.

The upshot of these trends is a widening chasm between the stock market and the broader

economy. This phenomenon is displayed in Figure 1, which plots the ratio of market equity

for the corporate sector to three different measures of aggregate economic activity: gross

domestic product, personal consumption expenditures, and net value added of the corporate

sector. (To make the units comparable, each series has been normalized to unity in 1989:Q1.)

Despite substantial volatility in these ratios, each is at or near a post-war high by the end

of 2017. Notably, however, the ratio of market equity to after-tax profits (earnings) for the

corporate sector is far below its post-war high.

Figure 1: Stock Market Ratios
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What role, if any, might these trends have played in the evolution of the post-war stock

market? To translate these empirical facts into a quantitative decomposition of the post-war

growth in market equity, we construct and estimate a model of the U.S. equity market.
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Although the specification of a model necessarily imposes some structure, our approach is

intended to let the data speak as much as possible. We do this by estimating a flexible

parametric model of how equities are priced that allows for influence from a number of

mutually uncorrelated latent factors, including not only factors driving productivity and

profit shares, but also independent factors driving risk premia and risk-free interest rates.

Equity in our model is priced, not by a representative household, but by a representative

shareholder, akin in the data to a wealthy household or large institutional investor. The

remaining agents supply labor, but play no role in asset pricing. Shareholder preferences

are subject to shocks that alter their patience and appetite for risk, driving variation in

both the equity risk premium and in risk-free interest rates. Our representative shareholder

consumes cash flows from firms, the variation of which is driven by shocks to the total rewards

generated by productive activity, but also by shocks to how those rewards are divided between

shareholders and other claimants. Our model is able to account for operating leverage effects

due to capital investment, implying that the cash flow share of output moves more than one-

for-one with the earnings share (the leverage effect), and that cash flow growth is more

volatile when the earnings share is low (the leverage risk effect).

We estimate the full dynamic model using state space methods, allowing us to precisely

decompose the market’s observed growth into these distinct component sources. The model

is flexible enough to explain the entirety of the change in equity values over our sample and

at each point in time. To capture the influence of our primitive shocks at different horizons,

we model each as a mixture of multiple stochastic processes driven by low and high frequency

variation. Because our log-linear model is computationally tractable, we are able to account

for uncertainty in both latent states and parameters using millions of Markov Chain Monte

Carlo draws. We apply and estimate our model using data on the U.S. corporate sector over

the period 1952:Q1-2017:Q4.

Our main results may be summarized as follows. First, we find that neither economic

growth, risk premia, nor risk-free interest rates has been the foremost driving force behind

the market’s sharp gains over the last several decades. Instead, the single most important

contributor has been a string of factor share shocks that reallocated the rewards of production

without affecting the size of those rewards. Our estimates imply that the realizations of

these shocks persistently reallocated rewards to shareholders, to such an extent that they

account for 44% of the market increase since 1989. Decomposing the components of corporate

earnings reveals that virtually all of the increases in the profit share came at the expense of

labor compensation.

Second, while equity values were also boosted since 1989 by persistent declines in the

equity risk premium attributable to an orthogonal component of the market price of risk, and
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in the risk-free rate of interest, these factors played smaller roles quantitatively, contributing

18% and 14%, respectively, to the increase in the stock market over this period.

Third, growth in the real value of corporate sector output contributed just 25% to the

increase in equity values since 1989 and 54% over the full sample. By contrast, while economic

growth accounted for more than 100% of the rise in equity values from 1952 to 1988, this 37

year period created less than a third of the growth in equity wealth generated over the 29

years from 1989 to the end of 2017.

An implication of these findings is that the considerable gains to holding equity over the

post-war period can be in large part attributed to an unpredictable sequence of factor share

shocks that reallocated rewards to shareholders. We estimate that roughly 2.1 percentage

points of the post-war average annual log return on equity in excess of a short-term interest

rate is attributable to this string of favorable shocks, rather than to genuine ex-ante compen-

sation for bearing risk. These results imply that the common practice of averaging return,

dividend, or payout data over the post-war sample to estimate an equity risk premium is

likely to overstate the true risk premium by 43%.

As a by-product of our empirical implementation, we obtain an estimate of the conditional

equity risk premium over time, a variable that should be of independent interest given the

importance of this latent factor for theories of intangible capital and other determinants of

macro-finance trends (e.g., Crouzet and Eberly (2020); Farhi and Gourio (2018)). By flexibly

specifying the equity premium to be a mixture of processes with different components, our

estimate is capable of simultaneously accounting for both the high frequency variation in

the equity premium implied by options data (Martin (2017)), as well as the low frequency

variation suggested by fluctuations in stock market valuation ratios. With the exception of

an extreme spike upward during the financial crisis, we find that the equity premium has

been declining for decades. By the end of 2017, our estimates imply that the equity premium

had reached the record low levels attained previously only two times: at the culminations of

the tech boom in 2000 and the twin housing/equity booms in 2006.

The rest of this paper is organized as follows. Section 2 discusses related literature.

Section 3 describes the theoretical model. Section 4 presents the data. Section 5 describes

our estimation procedure. Section 6 presents our findings. Section 7 considers robustness

and extensions. Section 8 concludes.
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2 Related Literature

The empirical asset pricing literature has traditionally focused on explaining stock market

expected returns, typically measured over monthly, quarterly or annual horizons.3 But as

noted in Summers (1985), and still true today, surprisingly little attention has been given to

understanding what drives the real level of the stock market over time. Previous studies have

noted an apparent disconnect between economic growth and the rate of return on stocks over

long periods of time, both domestically and internationally (see e.g., Estrada (2012); Ritter

(2012); Siegel (2014)). But they have not provided a model and evidence on the economic

foundations of this disconnect or on the alternative forces that have driven the market in

post-war U.S. data, a gap our study is intended to fill.

In this regard, the two papers closest to this one are Lettau and Ludvigson (2013) and

our previous work entitled “Origins of Stock Market Fluctuations,” (Greenwald, Lettau, and

Ludvigson (2014), GLL), which this paper supplants. These papers emphasized the relevance

of factor share shocks in the data for explaining stock market values, but they differ in a

number of substantive ways from the present study. Lettau and Ludvigson (2013) was a

purely empirical exercise that investigated three shocks from a VAR, while GLL presented

a model of the stochastic discount factor (SDF) to interpret these VAR shocks. At the

same time, neither paper undertook a complete estimation of an equity pricing model, and

the theoretical framework in GLL was less general and less flexible than that of this paper.

In further contrast to GLL, which used a calibrated model to match simulated and data

moments, we use state space methods to directly estimate the model on the time series

data, allowing us to obtain estimates of the model parameters, as well as recover the latent

state variables that have driven the actual equity prices over our sample, allowing us to

exactly decompose the contribution of various structural factors at different points in time.

The model of the SDF in this paper also adds additional state variables not present in the

model of GLL that allow for time variation in risk free interest rates, as well as separate

low and high frequency components driving equity premia and the share of rewards accruing

to shareholders. Finally, the model in this paper also does away with a commonplace but

implausible assumption that cash payments to shareholders are equal to earnings, by allowing

for reinvestment.

Like GLL and Lettau, Ludvigson, and Ma (2018), the model of this paper adopts a hetero-

geneous agent perspective characterized by two types of agents and imperfect risk sharing

3A body of research has addressed the question of whether expected returns or expected dividend growth
drive valuation ratios, e.g., the price-dividend ratio, but this analysis is silent on the the primitive economic
shocks that drive expected returns or dividend growth. For reviews of empirical asset pricing literature, see
Campbell, Lo, and MacKinlay (1997), Cochrane (2005), and Ludvigson (2012).
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between them: wealth is concentrated in the hands of a few investors, or “shareholders,”

while most households are “workers” who finance consumption primarily out of wages and

salaries. This aspect adds an important element of realism to the model, since only about

half of households report owning stocks either directly or indirectly in 2016. More impor-

tantly, even among those households that own equity, most own very little: the top 5% of the

stock wealth distribution owns 76% of the stock market value and earns a relatively small

fraction of income as labor compensation.4 In this sense our model relates to a classic older

literature emphasizing the importance for stock pricing of limited stock market participation

and heterogeneity (Mankiw (1986), Mankiw and Zeldes (1991), Constantinides and Duffie

(1996), Vissing-Jorgensen (2002), Ait-Sahalia, Parker, and Yogo (2004), Guvenen (2009),

and Malloy, Moskowitz, and Vissing-Jorgensen (2009)). In contrast to this literature, our

results suggest the relevance of frameworks in which investors are concerned about shocks

that have opposite effects on labor and capital. Such redistributive shocks play no role in

the traditional limited participation literature.

Besides Lettau and Ludvigson (2013), GLL, and Lettau et al. (2018), a growing body of

literature considers the role of redistributive shocks in asset pricing or macro models, most

in representative agent settings (Danthine and Donaldson (2002); Favilukis and Lin (2013a,

2013b, 2015), Gomez (2016), Marfe (2016), Farhi and Gourio (2018)). In this literature, labor

compensation is a charge to claimants on the firm and therefore a source of cash-flow variation

in stock and bond markets. In contrast to the limited participation/heterogeneous agent

paradigm pursued here, representative agent models imply that a variant of the consumption

CAPM using aggregate consumption still prices equity returns, so those frameworks cannot

not account for the evidence in Lettau et al. (2018) that the capital (i.e., nonlabor) share of

aggregate income exhibits significant explanatory power for expected returns across a range

of equity characteristic portfolios and non-equity asset classes.

The factors share element of our paper is related to a separate macroeconomic literature

that examines the long-run variation in the labor share (e.g., Karabarbounis and Neiman

(2013), and the theoretical study of Lansing (2014)). The factors share findings in this

paper also echo those from previous studies that use very different methodologies but find

that returns to human capital are negatively correlated with those to stock market wealth

4Source: 2016 Survey of Consumer Finances (SCF). In the 2016 SCF, 52% of households report owning
stock either directly or indirectly. Stockowners in the top 5% of the net worth distribution had a median
wage-to-capital income ratio of 27%, where capital income is defined as the sum of income from dividends,
capital gains, pensions, net rents, trusts, royalties, and/or sole proprietorship or farm. Even this low number
likely overstates traditional worker income for this group, since the SCF and the IRS count income paid in
the form of restricted stock and stock options as “wages and salaries.” Executives who receive substantial
sums of this form would be better categorized as “shareholders” in the model below, rather than as “workers”
who own no (or very few) assets.
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(Lustig and Van Nieuwerburgh (2008); Lettau and Ludvigson (2009); Chen, Favilukis, and

Ludvigson (2014))).

Farhi and Gourio (2018) extend a representative agent neoclassical growth model to allow

for time varying risk premia and study the sources of macro-finance trends in recent data.

They find a large role for rising market power in the high returns to equity, similar to our

findings regarding the importance of the factor share shock for driving equity values over

the post-war period. An appealing feature of their approach is that it specifies a structural

model of production that takes a firm stand on the sources of variation in the earnings share.

Corhay, Kung, and Schmid (2018) find a similar result that they likewise attribute to rising

market power in a rich model of the firm investment margin. But it is fair to say that the

literature has not yet reached a consensus on the key structural features of the economy that

drive variation over time in the earnings/labor share (e.g., see the differing explanations in

Autor, Dorn, Katz, Patterson, and Van Reenen (2017), Hartman-Glaser, Lustig, and Xiaolan

(2016), and Kehrig and Vincent (2018)). By contrast, our modeling and estimation approach

is designed to quantify what role the earnings share has played in stock market fluctuations,

without requiring us to take a stand on the structural model that may have produced those

equilibrium observations. We do this with estimates that match the observed earnings share

exactly (i.e., without error) over the sample and at each point in time, and by estimating full

transition dynamics for each factor that drives asset returns. This approach contrasts with

that of Farhi and Gourio (2018) and Corhay et al. (2018), who make inferences by estimating

the time-invariant deep parameters of their structural model on different subsamples of the

data and then making comparisons across subsamples. We discuss the implications of these

differing methodological approaches further below.

Last, our work relates to the literature estimating log-affine SDFs in reduced form, such

as Ang and Piazzesi (2003) and Lustig, Van Nieuwerburgh, and Verdelhan (2013), among

many others. These works describe the evolution of the state variables and the SDF in purely

statistical terms, for example using a freely estimated vector autoregression (VAR) for state

dynamics. While less statistically flexible, our work features more economic structure, using

separate and mutually uncorrelated fundamental components, as well as parametric restric-

tions on the SDF exposures obtained from theory, such as the leverage risk effect. This

structure allows a much clearer interpretation of the drivers of asset prices. For example,

unlike VAR-based models, which face the difficult task of transforming reduced-form residu-

als into identified structural shocks, our model allows us to directly read off the contribution

of each latent state. We thus complement this literature by providing economic insight on

the economic sources of market fluctuations, particularly the role of factor shares.
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3 The Model

This section presents our structural model of the equity market. Throughout this exposition,

lowercase letters denote variables in logs, while bolded symbols represent vectors or matrices,

in contrast to unbolded scalars.

Demographics The economy is populated by a representative firm that produces aggre-

gate output, and two types of households. The first type are investors who typify those that

own the majority of equity wealth in the U.S. These could be wealthy households or large

institutional investors. They may borrow and lend amongst themselves in the risk-free bond

market. We refer to these investors simply as “shareholders.” The second type are hand-to-

mouth “workers” who finance consumption out of wages and salaries. The model is stylized,

as we suppose that workers own no assets and consume their labor earnings. Taken literally,

these coarsely different groups are an obvious abstraction from the real world. But we argue

that they are a reasonable first approximation of the data given the high concentration of

wealth at the top, the evidence that the wealthiest earn the overwhelming majority of their

income from ownership of assets or firms, and that households outside of the top 5% of the

stock wealth distribution own far less financial wealth of any kind.5

Productive Technology Aggregate output is governed by a constant returns to scale

process:

Yt = AtN
α
t K

1−α
t , (1)

where At is a mean zero factor neutral total factor productivity (TFP) shock, Nt is the

aggregate labor endowment (hours times a productivity factor) and Kt is input of capital,

respectively. Workers inelastically supply labor to produce output. We seek a solution in

which capital grows deterministically at a gross rate G = exp(g), while labor productivity

grows deterministically at the same rate. Hours of labor supplied are fixed and normalized

to unity, so Nt = Gt. Taken together, these assumptions imply that

Yt = At(G
tK0)α(Gt)1−α = AtG

tKα
0 (2)

where K0 is the fixed initial value of the capital stock.

5See discussion above. In the 2016 SCF, the median household in the top 5% of the stock wealth
distribution had $2.97 million in nonstock financial wealth. By comparison, households with no equity
holdings had median nonstock financial wealth of $1,800, while all households (including equity owners) in
the bottom 95% of the stock wealth distribution had median nonstock financial wealth of $17,480. Additional
evidence is presented in Lettau, Ludvigson, and Ma (2019).
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Factor Shares Once output is produced, it is paid out to the various factors of production

and other entities. We define earnings (after-tax profits) as Et ≡ StYt, where the earnings

share St represents the fraction of total output that accrues to shareholders in the form of

earnings, which arises from both foreign and domestic operations. The remaining fraction

1 − St of output accrues to workers in the form of labor compensation, to the government

in the form of tax payments, and to debtholders in the form of interest payments. In

our estimation, we assume an exogenous process for St that does not directly distinguish

between shifts in these components, but return to analyze their separate roles in Section 6.5,

and provide more details on our data sources in Section 4. For now, we note that most of the

variation in this series is driven by movements in the labor share of domestic value added.

Investment and Payout Technology. The firm makes cash payments to shareholders,

equal to earnings net of new investment. Specifically, we assume that attaining balanced

growth in capital requires the firm to invest a fixed fraction ω of its output above and

beyond replacing depreciated capital. We view this as a parsimonious approximation to a

richer model with time-varying investment, one that allows us to solve the model in closed

form without tracking the capital stock or solving the optimal investment problem. Cash

flows to shareholders consist of the remaining portion of earnings net of this reinvestment:

Ct = Et − ωYt = (St − ω)Yt. (3)

The variable Ct is net payout, defined as net dividend payments minus net equity issuance.

It encompasses any cash distribution to shareholders including share repurchases, which have

become the dominant means of returning cash to shareholders in the U.S. For brevity, we

shall refer to these payments simply as “cash flows.”

Importantly, (3) implies that, since the cash flow share of output is equal to the earnings

share minus a constant reinvestment share, the volatility of cash flow growth is amplified

relative to earnings share growth — a form of operating leverage. For a numerical example,

if ω = 6%, then an increase in the earnings share St from 12% to 18% increases the cash flow

share from 6% to 12%. As a result, proportional growth in the cash flow share is twice as

high as proportional growth in the earnings share. We note that this mechanism, which we

call the leverage effect, should hold on average even if the reinvestment share is not exactly

constant, under the natural assumption that in the long run investment is proportional to

output rather than earnings. We present further support for this mechanism in Section 6.7.
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Preferences. Let Cs
it denote the consumption of an individual stockholder indexed by i at

time t. Identical shareholders maximize the function

U0 = E
∞∑
t=0

t∏
k=0

βku (Cs
it) , (4)

where E denotes the expectation operator, with

u (Cs
it) =

(Cs
it)

1−xt−1

1− xt−1

, (5)

which effectively corresponds to power utility preferences with a time-varying price of risk xt,

and a time-varying time discount factor βt. Since shareholders perfectly insure idiosyncratic

risk, shareholder consumption Cit is identically equal to aggregate cash flows Ct.
6 At the

same time, because firm cash flows are only a subset of total economy-wide consumption,

redistributive shocks to st that shift the share of income between labor and capital shift

shareholder consumption are a source of systematic risk for asset owners. This implication

has been explored by Lettau et al. (2019) who study risk pricing in a large number of cross-

sections of return premia.

Aggregating over shareholders, equities are priced by the stochastic discount factor of a

representative shareholder, taking the form

Mt+1 = βt

(
Ct+1

Ct

)−xt
(6)

This specification is a generalization of the SDFs considered in previous work, (e.g., Campbell

and Cochrane (1999) and Lettau and Wachter (2007)). As in these models, the preference

shifters (xt, βt) are taken as exogenous processes (akin to an external habit) that are the

same for each shareholder. We now discuss each of these items in turn.

Beginning with the risk price xt, we allow this variable to fluctuate stochastically over

time. Since an SDF always reflects both preferences and beliefs, an increase in xt may be

thought of as either an increase in effective risk aversion or an increase in pessimism about

shareholder consumption. Thus, xt may occasionally go negative, reflecting the possibility

that investors sometimes behave in a confident or risk tolerant manner.7

6This need not imply that individual shareholders are hand-to-mouth households. They may trade an
arbitrary set of assets with each other, including a complete set of state contingent contracts. Because
they perfectly share any identical idiosyncratic risk with other shareholders they each consume per capita
aggregate shareholder cash flows Ct at equilibrium. See the Appendix for a stylized model.

7This does not imply a negative unconditional equity risk premium. Investors in the model occasionally
behave in a risk tolerant manner while still being averse to risk on average. Indeed, our estimates reported
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Shareholder preferences are also subject to an exogenous shifts in the subjective discount

factor βt. A time-varying specification for the subjective time discount factor is essential for

obtaining a stable risk-free rate. If instead the subjective time discount factor were itself a

constant, shocks to xt and cash flow growth needed to explain the equity data would generate

counterfactual volatility in the risk-free rate. As in Ang and Piazzesi (2003), we specify the

time discount factor as

βt =
exp(−δt)

Et exp (−xt∆ct+1)
.

where ∆ct+1 represents log cash flow growth. This specification implies

EtMt+1 = exp(−δt) (7)

ensuring that the log risk-free rate exactly follows an exogenous stochastic process δt, re-

gardless of the values for the other state variables of the economy.

3.1 Model Solution and Parameterization

Exogenous Processes. Our model has four sets of exogenous processes that drive at, st, xt,

and δt, respectively. We specify TFP as a random walk in logs

∆at+1 = εa,t+1, εa,t+1
iid∼ N(0, σ2

a).

Substituting into (2), we obtain

∆yt+1 = g + εa,t+1.

For the remaining latent states, we specify each as the sum of two components, each of which

are in turn specified as an independent AR(1) process:

st = s̄+ 1′s̃t, s̃t+1 = Φss̃t + εs,t+1, εs,t+1
iid∼ N(0,Σs),

xt = x̄+ 1′x̃t, x̃t+1 = Φxx̃t + εx,t+1, εx,t+1
iid∼ N(0,Σx),

δt = δ̄ + 1′δ̃t, δ̃t+1 = Φδδ̃t + εδ,t+1, εδ,t+1
iid∼ N(0,Σδ)

where s̃t, x̃t, and δ̃t are 2× 1 vectors, Φs,Φx, and Φδ are 2× 2 diagonal matrices, and tildes

indicate that the latent state vectors are demeaned.

We choose this two-component mixture specification for each process to allow the model

below imply a substantial positive mean equity premium.
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to flexibly capture both high and low frequency variation in the latent states. Since equity

gives its owners access to profits for the lifetime of the firm, it is a heavily forward looking

asset that is much more influenced by persistent rather than transitory fluctuations. As a

result, our specification allows the model to accurately capture both low frequency move-

ments that have greater impact on equity prices, as well as higher frequency movements

that have a smaller impact on equity prices but may nonetheless drive much of the variation

in the observable series. Correspondingly, we refer to the components of each latent state

vector as the high or low frequency component, so that e.g., diag(Φs) = (φs,LF , φs,HF ) with

φs,LF > φs,HF .

Stacking this system yields the transition equation

zt+1 = Φzt + εt+1, ε
iid∼ N(0,Σ) (8)

for

zt =


s̃t

x̃t

δ̃t

∆at

 , Φ =


Φs 0 0 0

0 Φx 0 0

0 0 Φδ 0

0 0 0 0

 , εt =


εs,t

εx,t

εδ,t

εa,t

 , Σ =


Σs 0 0 0

0 Σx 0 0

0 0 Σδ 0

0 0 0 σ2
a

 , (9)

where zt is the state vector for this economy.8

Log-Linearization. We seek a specification that allows an analytical, log-linear solution

for the price-dividend ratio. This solution requires three approximations: (i) a log-linear

approximation of the equity return, (ii) a log-linear approximation of cash flow growth, and

(iii) a second-order perturbation of the log SDF that allows for linear terms in the states

and shocks, as well as interactions between the states and shocks. We summarize these

approximations below, with full detail relegated to the appendix.

First, we approximate the return on equity

Rt+1 =
Pt+1 + Ct+1

Pt
.

where Pt denotes total market equity, i.e., price per share times shares outstanding. Following

8The i.i.d. shock εa,t is included the “state equation” (8) even though it is exactly pinned down by the
observable series ∆yt so that we can estimate its mean and variance, since these parameters influence our
asset pricing equations.
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Campbell and Shiller (1989), we approximate the log return as

rt+1 = κ0 + κ1pct+1 − pct + ∆ct+1, (10)

where κ1 = exp (pc) / (1 + exp (pc)), and κ0 = ln(exp (pc) + 1)− κ1pc.

Second, we log-linearize the log cash flow to output ratio ct − yt = log(St − ω) to obtain

ct − yt ' cy + ξ(st − s̄)

ξ =
S̄

S̄ − ω
.

where cy = log(S̄ − ω), and S̄ is the average value of St. Differencing this relation and

rearranging yields

∆ct = ξ∆st + ∆yt. (11)

Importantly, for ω > 0 we have ξ > 1, so that changes in profit share map more than

one-for-one into cash flows, capturing the leverage effect discussed in Section 3.

Finally, we perturb our nonlinear SDF (6) around the steady state that includes terms

linear in zt and εt+1, as well as interactions between zt and εt+1. While the solution of this

exact form, as well as its derivation, can be found in the appendix, we present here the more

intuitive form

logMt+1 ' −δt − µt − xt (ξ∆st+1 + ∆yt+1)︸ ︷︷ ︸
baseline cash flow risk

+ x̄ξ(ξ − 1) (Et[st+1]− s̄) ∆st+1︸ ︷︷ ︸
leverage risk effect

(12)

where µt is implicitly set to ensure a log risk-free rate of δt. The “baseline cash flow risk”

term represents the price of risk xt times the change in cash flows under the approximation

(11). The final leverage risk effect term is a second-order interaction, representing the fact

that the same shock to the earnings share εs,t+1 has a larger proportional impact on cash

flows when the current (and thus expected) earnings share is low. For example, if we again

assume ω = 6%, then increasing the earnings share from 8% to 10% would increase the cash

flow share of output by 100% (from 2% to 4%), while the same proportional increase in the

earnings share from 16% to 20% would only increase the cash flow share of output by 40%

(from 10% to 14%). The leverage risk effect captures this phenomenon, causing the SDF to

load more negatively on changes in profit shares when the expected profit share is low. To

connect to the existing literature, the leverage risk effect is very similar to the external habit

mechanism of Campbell and Cochrane (1999), applied to earnings in place of consumption.
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The specification (12) implies that changes in the profit share influence market valuations

by affecting both cash flows and risk premia. We view this second channel as strongly

supported by the data. To show this, Figure 2 displays the time-series variation in the

corporate sector log earnings share of output, et − yt, alongside either the corporate sector

log price earnings ratio pt − et, or the Center for Research in Securities Prices (CRSP) log

price-dividend ratio pt − dt. The plot shows that these variables are positively correlated,

particularly at lower frequencies. For example, the correlation between et− yt and pt− dt is

69% for components of the raw series that retain fluctuations with cycles between 8 and 50

years.

Figure 2: Earnings Share and Valuations

(a) vs. Price-Dividend Ratio (b) vs. Price-Earnings Ratio

Notes: ln(E/Y) denotes the logarithm of the after-tax profit (earnings) share of output for the corporate
sector. ln(ME/E) is the log of the market equity-to-earnings ratio. ln(PD) is the log of the CRSP price-
dividend. Each plot present the correlation between the series (levels) and the correlation of the cycle of
each series obtained using a band pass filter that isolates cycles between 8 and 50 years. The sample spans
the period 1952:Q1-2017:Q4.

A model with no correlation between the the earnings share and the price or quantity

of risk would instead unambiguously predict that pt − ct and pt − et should be negatively

correlated with the profit share. Because shocks to the profit share revert over time, they

influence prices (discounted forward-looking cash flows) less than current cash flows. Prices

in such a model will therefore rise less than proportionally with earnings in anticipation

of their eventual mean reversion, thereby resulting in a negative correlation between the

earnings share and valuation ratios — an intuition we formalize in our discussion of the

equilibrium conditions below. The positive correlation observed in the data instead implies

that persistently high earnings shares must coincide with a decline in expected future returns,
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so that valuation ratios still rise even as earnings and shareholder payouts are rationally

expected to decline in the future.9

Equilibrium Stock Market Values. The first-order-condition for optimal shareholder

consumption implies the following Euler equation:

Pt
Ct

= Et exp

[
mt+1 + ∆ct+1 + ln

(
Pt+1

Ct+1

+ 1

)]
. (13)

The relevant state variables for the equilibrium pricing of equity are the vectors s̃t, x̃t,

δ̃t. We conjecture a solution to (13) taking the form

pct = A0 + A′ss̃t + A′δδ̃t + A′xx̃t. (14)

where pct is the log price to cash-flow ratio pt − ct. The solution, verified in the Appendix,

implies that the coefficients on these state variables take the form

A′s = −ξ
[
1′(I−Φs)− (1′Σs1)Γ′

][
(I− κ1Φs)− κ1ξΣs1Γ′

]−1

A′x = −
[(
ξ2(1′Σs1) + σ2

a + κ1ξ(A
′
sΣs1)

)
1′
]
(I− κ1Φx)

−1

A′δ = −1′(I− κ1Φδ)
−1

where the term

Γ′ = x̄ξ(ξ − 1)1′Φ

captures the influence of the leverage risk effect.

The coefficients Ax, and Aδ are all negative, while the sign of the coefficients for As

depends on the value of Γ. The signs of the coefficients A′δ and A′x imply that an increase

in the risk-free rate or an increase in the price of risk xt originating from either component

reduces the price-cash flow ratio because either event increases the rate at which future

payouts are discounted. The size of these effects depend on the persistence of the movements

in the risk-free rate and the price of risk, as captured by Φδ and Φx. The more persistent

the shocks, the larger the effects.

The sign of the elements of A′s depends on the value of Γ. As discussed above, were Γ = 0,

the elements of As would also be negative, yielding a counterfactual negative correlation

9If shocks to the earnings share improved shareholder fundamentals permanently, the model would imply
that such shocks drive prices up proportionally with earnings, leaving valuation ratios unaffected and the
correlation zero.
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between the earnings share and pct, with the correlation approaching zero as the persistence

of the earnings share components approach unity. In contrast, when the leverage risk effect

is active, we have Γ > 0, reducing this counterfactual negative correlation, or even turning

it positive.

As shown in the Appendix, the model solution implies that the log equity premium is

given by

logEt [Rt+1/Rf,t] =
(
Ψ + σ2

a

)
xt −ΨΓ′s̃t (15)

where

Ψ = ξ(1′Σs1) + κ1ξ(A
′
sΣs1)

is a measure of average earnings share risk, both directly through cash flows, and through

its covariance with the pc ratio. Equation (15) shows that the equity premium is the sum

of two terms: (i) product of the price of risk and the average total cash flow risk, including

both earnings share and output risk, and (ii) time variation in the risk premium due to e.g.,

higher earnings share risk when s̃t is low, through to the leverage risk effect.

4 Data

This section provides a basic description of our data sources, with full details available in

the appendix.

Our data consist of quarterly observations spanning the period 1952:Q1 to 2017:Q4. We

focus on our analysis on the U.S. corporate sector. Previous research has examined joint

trends in financial markets and aggregate economic quantities by combining data on the stock

market with data from the Bureau of Economic Analysis (BEA) on aggregate measures of

output and the labor share.10 A weakness of this approach is that the stock market only

covers publicly traded firms, while the BEA data on output and labor share are not limited

to the publicly traded sector and cover a far broader swath of the economy.11 This creates

the potential for confounding compositional effects over time. For example, if publicly traded

firms have experienced larger shifts over time in their labor shares and/or output compared to

non-public firms, movements in the aggregate quantities for output and labor compensation

would not correctly describe the firms for which market equity is measured. Since it is

important for our study that earnings, output, labor compensation, and the market value of

equity all pertain to the same sector of the economy, we focus on the U.S. corporate sector

10See e.g., GLL, Farhi and Gourio (2018).
11The Flow of Funds separately tracks public and private (“closely held”) equity from 1996:Q4 onward.

Over this subsample, public equity makes up 83% of total corporate equity. The remaining 17% is a mix of
11.5% of private S-corporation equity, and 6.5% of private C-corporation equity.
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(CS), where all of these variables can be consistently measured. These data also have the

advantage of “unambiguously” classifying labor and capital income, using the terminology

of Koh, Santaeulalia-Llopis, and Zheng (2016), a point we return to in Section 6.5.

For our estimation, we use observations on six data series: the log share of domestic

output accruing to earnings (the earnings share), denoted eyt ≡ et− yt; a measure of a short

term real interest rate as a proxy for the log risk-free rate, denoted rf,t; a forecast of average

future real risk-free rates over the next 40Q, denoted r̄40
f,t; growth in output for the corporate

sector as measured by growth in corporate net value added, denoted ∆yt; the log market

equity to output ratio for the corporate sector, denoted pt − yt ≡ pyt; and a proxy for the

market risk premium, denoted rpt.

Our motivation behind this choice of series is as follows. The series eyt, rf,t and ∆yt

pins down the values of st, δt,∆yt in the model at each date. The series r̄40
f,t ensures that the

model correctly allocates between high and low frequency components of the risk free rate

to match the implied persistence of the risk-free rate, in addition to its level. The series pyt

ensures that the model is able to fully explain movements in market equity in each period,

while the risk premium estimate rpt provides additional discipline for the risk price process.

Turning to the data, our earnings share measure eyt is equal to the ratio of total corporate

earnings to domestic net value added. To compute total corporate earnings, we combine cor-

porate domestic after-tax profits from the National Income and Product Accounts (NIPA)

with data on corporate foreign direct investment income from the BEA’s International Trans-

action Accounts. The domestic after-tax profits represent domestic net value added, net of

domestic labor compensation, taxes, and interest payments. Foreign earnings represent eq-

uity income from directly held foreign subsidiaries. Because the foreign income data is only

available from 1982 on, we impute this series over the full sample using NIPA data on total

foreign income (direct and indirect) as a proxy, which provides an extremely close fit over

the overlapping period (see Appendix A.1 for details).

For our other observables, our real risk-free rate measure rf,t is the three-month Treasury

Bill yield net of expected inflation, computed using an ARMA(1, 1) model. Our real risk-

free rate forecast r̄40
f,t is the mean Survey of Professional Forecasters (SPF) expectation of

the annual average 3-Mo T-bill return over the current and next nine years (BILL10) less

the mean SPF expectation of annual CPI inflation over the same period (CPI10).12 Our

equity-output ratio pyt is computed as the ratio of the market value of corporate equity from

the Flow of Funds to corporate net value added from NIPA.

Finally, for our observable measure of the risk premium (rpt), we use the SVIX-based

estimate derived by Martin (2017). This variable is computed from options data and helps the

12We thank our discussant Annette Vissing-Jorgenson for this suggestion.
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model to discipline its estimates of the risk-premium process, especially its higher frequency

variation. Martin (2017) uses option data to compute a lower bound on the equity risk

premium, then argues that this lower bound is in fact tight and is therefore a good measure

of the true risk premium on the stock market. That paper documents that a wide range

of representative agent asset pricing theories fails to explain the high frequency variation

in the risk premium implied by options data, even if they are broadly consistent with the

lower-frequency variation suggested by variables like the price-dividend ratio or cayt (Lettau

and Ludvigson (2001)). Since our model allows for mixture processes, the risk premium we

estimate is capable of accounting for both higher- and lower-frequency components of the

risk premium.

5 Estimation

The model just described consists of a vector of primitive parameters

θ =
(
ω, g, σ2

a, diag (Φs)
′ , diag (Φx)

′ , diag (Φδ)
′ , diag (Σs)

′ , diag (Σx)
′ , diag (Σδ)

′ , s̄, δ̄, x̄,
)′
,

With the exception of a small group of parameters, discussed below, the primitive parameters

are freely estimated. We estimate these parameters using Bayesian methods with flat priors.

Since the model is linear in logs, the latent states are recovered using the Kalman filter and

inferred jointly with the primitive parameters of the model.

The model implies that these observed series are related to the primitive parameters and

latent state variables according to the following system of equations:

eyt = 1′st

rf,t = 1′δt

r̄40
f,t =

1

40

40−1∑
j=0

Etδt+j = δ̄ +
1

40
1′(I −Φδ)

−1(I −Φ40
δ )δ̃t + ν

pyt = pct + cyt

= py + (A′s + ξ′) s̃t + A′δδ̃t + A′xx̃t

∆yt = g + ∆at

rpt =
(
Ψ + σ2

a

)
(x̄+ 1′x̃t)−ΨΓ′s̃t.

where cyt ≡ ct − yt, and py ≡ A0 + c̄ + ξ′s̄. Note that ∆at is exactly pinned down by the

observation equation for ∆yt. For the real risk-free rate forecast (r̄40
f,t), the parameter ν allows
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for an average difference between the model and data forecasts due to the different inflation

series used (CPI for the forecasts vs. the NIPA corporate net value added deflator for the

model), as well as any average bias among the forecasts. Further details on the derivation

of the remaining formula for r̄40
f,t can be found in Appendix A.3.3.

Let K denote the number of latent state variables and let N denote the number of

observation variables. The above equations can be stacked to form an observation equation

Yt = Htzt + bt (16)

for the observation vector Yt ≡
(
eyt, rft, r̄

40
f,t, pyt,∆yt, rpt

)′
. Since our model has more shocks

in ε than observable series in Yt, the model is able to explain all of the variation in our

observable series, allowing us to estimate (16) without measurement error. We note that the

coefficient matrix Ht and vector bt depend on t because the sample for the real rate forecast

r̄40
f,t spans 1992:Q1 - 2017:Q1, with one observation every 4Q, while the SVIX risk premium

rpt spans 1996:Q1 - 2012:Q1 quarterly, both of which are shorter than our full sample period

1952:Q1 - 2017:Q4. As a result, the state-space estimation uses two different measurement

equations depending on whether these data are available (see Appendix A.4 for details).

Combined, (8) and (16) describe the full state space system used for estimation.

We estimate both the parameters and latent states of the model as follows. Given a

vector of primitive parameters θ, we construct our state space system using (8) and (16).

We then use the Kalman filter to compute the log likelihood L(θ), which is equivalent to the

posterior under our flat priors, up to a restriction that ensures the correct ordering of our

low and high frequency processes.13 To sample draws of θ from the parameter space Θ we

use a random walk Metropolis-Hastings (RWMH) algorithm. We use the RWMH algorithm

to generate ten independent chains, each containing 550,000 draws of θ. We discard the first

50,000 draws from each chain as burn-in, leaving 5,000,000 parameter draws. Since these

draws are highly serially correlated, we increase computational efficiency by using every 50th

draw, leaving a total of 100,000 draws over which our margins of parameter uncertainty are

computed.

Given our parameter draws, we employ the simulation smoother of Durbin and Koop-

man (2002) to compute one draw of the latent states {zjt} for t = 1, . . . , T for every tenth

parameter draw {θj}, yielding 10,000 latent state paths that can characterize our model’s un-

certainty over its latent state estimates. Given our lack of measurement error, each of these

13The latent state space includes components that differ according to their degree of persistence. With
flat priors, a penalty to the likelihood is required to ensure that the low frequency component has greater
persistence than the higher frequency component. This is accomplished using a prior density that is equal
to zero if φ(·),LF ≤ φ(·),HF for any relevant component of the state vector, and is constant elsewhere.
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latent state paths, as well as our smoothed point estimates, are able to perfectly match the

growth in market equity ∆pt over time and at each point in time, a property we exploit

when calculating the growth decompositions discussed below.

Calibrated Parameters There are four parameters that are calibrated rather than esti-

mated. The first three are the average growth rate of net value added g, the average log

profit share s̄, and the average real risk-free rate δ̄. Since these represent the means of our

observable series, we take the conservative approach of fixing them equal to their sample

means. We do this to avoid a potential estimation concern: because some of our series are

very persistent, the estimation might otherwise have a wide degree of freedom in setting

steady state values that are far from the observed sample means. At quarterly frequency,

we obtain the values g = 0.552%, s̄ = −2.120 (corresponding to a share in levels of 12.01%),

and δ̄ = 0.281%.

The final calibrated parameter is ξ = S
S−ω , which relates payout growth to earnings growth

according to (11). This parameter can be calibrated directly from data. Since Ct = (St−ω)Yt,

we can rearrange and take sample averages of both sides to obtain ω = S̄ − C
Y

. Computing

S as the mean of the total profit to domestic output ratio and C
Y

as the mean of the payout

to output ratio observed in the National Income and Product Account (NIPA) data yields

the value ξ = 2.002. Appendix Figure A.2 plots the resulting series for Ct, and shows that it

tracks the data well at low frequencies, particularly over the 1989 - 2017 sample of interest.

We further confirm in Section 6.7 that the calibrated value for ξ yields average growth and

volatility of payouts that are close to, but do not exaggerate, those observed in the data.

A final comment on the data used for estimation is in order. Other than indirectly in the

above calibration, we do not use NIPA payout data in estimation, for two reasons. First,

payouts are a function of current and future earnings as well as transitory factors that affect

the timing with which they are paid out, subject to an intertemporal budget constraint.

These two sources of variation have very different implications for future payouts, and hence

the value of market equity. Variation that is driven purely by the timing of payouts adds

noise, rather than signal, for forecasting future payouts. This problem can be severe when

estimating a model of equity pricing, since observed variation in the timing of payouts is

large and subject to extreme swings due to temporary factors such as changes in tax law that

are likely unrelated to economic fundamentals.14 As a result, any serious use of these data

14For a recent example, see NIPA Table 4.1, which shows an unusually large increase in 2018:Q1 in net
dividends received from the rest of the world by domestic businesses, which generated a very large decline
in net payout. BEA has indicated that these unusual transactions reflect the effect of changes in the U.S.
tax law attributable to the Tax Cut and Jobs Act of 2017 that eliminated taxes for U.S. multinationals on
repatriated profits from their affiliates abroad.
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Table 1: Parameter Estimates

Variable Symbol Mode 5% Median 95%

Risk Price Mean x̄ 5.8676 4.7683 6.0466 7.6212
Risk Price (HF) Pers. φx,HF 0.6781 0.5451 0.6943 0.7986
Risk Price (HF) Vol. σx,HF 2.1724 1.6106 2.1854 2.9669
Risk Price (LF) Pers. φx,LF 0.9886 0.9809 0.9882 0.9946
Risk Price (LF) Vol. σx,LF 0.6295 0.3736 0.6232 0.9823
Risk-Free (HF) Pers. φδ,HF 0.8413 0.7704 0.8473 0.8938
Risk-Free (HF) Vol. σδ,HF 0.0017 0.0015 0.0017 0.0019
Risk-Free (LF) Pers. φδ,LF 0.9630 0.9514 0.9639 0.9790
Risk-Free (LF) Vol. σδ,LF 0.0010 0.0007 0.0010 0.0013
Factor Share (HF) Pers. φs,HF 0.9035 0.8334 0.8846 0.9194
Factor Share (HF) Vol. σs,HF 0.0527 0.0472 0.0530 0.0577
Factor Share (LF) Pers. φs,LF 0.9873 0.9780 0.9930 0.9988
Factor Share (LF) Vol. σs,LF 0.0168 0.0084 0.0152 0.0264
Productivity Vol. σa 0.0154 0.0142 0.0152 0.0164
Forecast Mean Adjustment ν 0.0020 -0.0006 0.0018 0.0042

Notes: The table reports parameter estimates from the posterior distribution. All parameters are reported
at quarterly frequency. The sample spans the period 1952:Q1-2017:Q4.

would require an extensive investigation to align what is being measured with the desired

theoretical input. For these reasons, we consider earnings to be a better indicator of future

payouts and the fundamental value of the firm than current payouts.

Second, a principle objective of our analysis is to investigate the role of trends in the U.S.

corporate profit share and aggregate economic activity on the value of the stock market.

This requires that we use data on the corporate profit share rather than the payout share,

specifying a model of investment to stipulate how the two are linked. It is unclear how to

use the payout data directly in estimation without breaking the theoretical linkage between

the two and, along with it, our ability to study the role of the corporate earnings share in

driving the stock market.

6 Results

6.1 Parameter Estimates

We begin with a discussion of the estimated parameter values and latent states. Table

1 presents the estimates of our primitive parameters based on the posterior distribution

obtained with flat priors. A number of results are worth highlighting.

First, the persistence parameters of the low frequency components of the state variables
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are of immediate interest, since they determine the role of each latent variable on market

equity values over longer periods of time. Our model estimates that the factor share and

Consider the risk-free rate processes. The mode estimate of the autoregressive coefficient

of the high frequency component is φ̂δ,HF = 0.841, whereas that of the low frequency com-

ponent is φ̂δ,LF = 0.963. While the latter is clearly persistent, it is far from permanent. This

explains why the large declines in real interest rates observed over the last several decades

need not play a large role in explaining the boom in equity values over the same time period.

Although rates have declined, it is not today’s rate but the expected path of future rates

that matters for equity values. This evidence implies that the low rates of recent years are

unlikely to persist for a time period extensive enough to warrent a large equity valuation

boom. We return to this point in Section 6.8.

Second, the estimates for the factor share and risk price autoregressive parameters suggest

much more persistence, with modal values of φ̂s,HF = 0.904 and φ̂s,LF = 0.987, and φ̂x,HF =

0.678 and φ̂x,LF = 0.989, respectively. These estimates indicate that the low frequency

components of the factor share and risk premium state variables are substantially more

persistent than those of interest rate changes, though still not permanent, foreshadowing

their larger role in the longer-term swings of the market that we document below.

As a further indication that these estimates are plausible, Figure 3 compares the au-

tocorrelations of the latent states in the model and data.15 To properly account for small

sample bias in these measurements, the model autocorrelations are obtained from 10,000

simulations, each the length of the data sample, with the mean, as well as 67% and 90% con-

fidence bands plotted around it. The figure shows that, at these estimated parameter values,

the model implications for the autocorrelations of model-implied series are a relatively good

match for those of the corresponding observed series, especially at the longer lags that are

more important for asset prices.

In both the model and the data, the autocorrelations of output growth hover around

zero, suggesting a near i.i.d. process, whereas the autocorrelations for the earnings share,

the risk-free rate, and the log ME-to-output ratio start decline gradually as the lag order

increases, suggestive of persistent but stationary processes. Panel (b) shows that the model

underestimates the persistence of the earnings share at long horizons. Since the effect of

the earnings share on valuations is stronger for a more persistent change, this implies that

our results on the earnings share are, if anything, conservative. We return to this issue in

Section 7.2 below.

15We include all four observable series that are available over the full sample. We omit the SPF real rate
forecast and the SVIX risk premium, both of which are available only on a much shorter sample, and are
therefore unsuitable for computing longer autocorrelations.
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Panel (c) shows clearly that the autocorrelations of the risk-free rate converge to zero by

quarterly lag 40 in both model and data, while Panel (d) shows that the autocorrelations for

the log ME-to-output ratio remain substantially above zero. The shows that the risk-free

rate process is not persistent enough to explain much of the considerably more persistent

variation in the ME-to-output ratio observed in Figure 1.

Figure 3: Observable Autocorrelations
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(b) Earnings Share
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(c) Risk-Free Rate
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(d) Equity-Output Ratio
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Notes: The figure compares the data autocorrelations for the observable variables available over the full
sample, compared to the same statistics from the model. For the model equivalents, we use 10,000 evenly
spaced parameter draws from our MCMC chain, and for each compute the autocorrelations from a simulation
the same length as the data. The center line corresponds to the mean of these autocorrelations, while the
dark and light gray bands represent 66.7% and 90% credible sets, respectively. The sample spans the period
1952:Q1-2017:Q4.

Next, Table 1 shows that the mode estimate of the mean risk price parameter x is 5.868,

a modest value that reflects the volatility in cash payments to shareholders that are the

source of systematic risk to shareholders in the model. Because of this, outsized aversion to
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risk or ambiguity is not needed to explain the high average equity return premium in the

data.

Finally, returning to the discussion in Section 3.1, the correlation between the pc ratio and

the earnings share components depends on the strength of the leverage risk effect, which is

in turn determined by our model parameters. Our median estimate is A′s = (−0.07,−1.80),

with the entries corresponding to the low and high frequency components, respectively.

These values imply that while the high frequency component of the earnings share is still

negatively correlated with the pc ratio, the correlation becomes effectively zero for the low

frequency component. This correlation is closer to the data pattern displayed in Figure 2,

but if anything implies a conservative estimate of the influence of the earnings share on risk

premia.

6.2 Latent State Estimates

Turning to the latent states, Figure 4 displays our model’s decomposition of the earnings

share st and real risk-free rate δt into their low and high frequency components. Each

panel plots the observable series, alongside the variation attributable to a single frequency

component in isolation. The shaded areas around each estimated component source are 90%

credible sets that take into account both parameter and latent state uncertainty.16

Panels (a) and (b) show the time-variation in the log earnings share eyt over our sample,

along with the portion of this variation attributable to each estimated factors share compo-

nent sLF,t and sHF,t. Beginning with the data, we observe that the earnings share undergoes

major variation over the sample period. From a starting point in levels of 11.5% in 1952:Q1,

the earning share rises to 15.3% in 1966:Q1, before falling to a low of 8.0% in 1974:Q3. After

remaining low for nearly 15 years, the earnings share undergoes a dramatic rise from in the

last three decades in the sample, from 8.9% in 1989:Q1 to a high of 19.6% in 2011:Q4, before

ending at 17.4% in 2017:Q4.

Our model decomposes this overall series into a low and high frequency component. This

decomposition is central to our asset pricing results, since forward looking equity prices in

our model respond strongly to movements in the low frequency component, while movements

in the high frequency component are too transitory to have a large effect. As a result, it

is critical that this series accurately tracks the true data series, and is not distorted by the

model’s need to match asset prices. Reassuringly, Figure (a) shows that the estimated low

frequency component accurately tracks the slow-moving trend in the earnings share series.

16While credible sets are known to be wide in estimations with flat priors, as here, we note that the sum of
the high- and low frequency components add up to the observed series exactly, without error, both over the
sample and at each point in time, since measurement error is effectively zero in the observation equations.
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Figure 4: Latent State Components
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(c) LF Risk-Free Rate
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(d) HF Risk-Free Rate
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Notes: The figure exhibits the observed earnings share and real risk-free rate series along with the model-
implied variation in the series attributable to their low and high frequency components. The red center line
corresponds to the median of the distribution of outcomes, accounting for both parameter and latent state
uncertainty, while the dark and light blue bands correspond to 66.7% and 90% credible sets, respectively.
The sample spans the period 1952:Q1-2017:Q4.

Panels (c) and (d) similarly show the evolution of the risk-free rate over time, along

with the portion of this variation attributable to the estimated low and high frequency

components. From the data series, it is clear that, although real rates are low today, they

are not unusually so by historical standards. Real rates were very low at several points in

the 1950s and late 1970s, then rose under the Volcker disinflation around 1979 and remained

elevated for over a decade before declining to their current low values. At the same time,

the series appears far from a unit root, with even these swings reverting relatively quickly.

This stands in sharp contrast to the time series for nominal interest rates, due to a very
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persistent trend in inflation, demonstrating the importance of using real rates. The low

frequency component δLF,t in panel (c) faithfully captures the underlying trend, as well as

driving most of the variation in 10-year risk-free rate forecasts to match our SPF data. The

high frequency component δHF,t shown in panel (d) largely captures transitory fluctuations,

as well as some sharp movements in the early 1980s and 2000s.

6.3 Dynamics of Equity Values

With the estimation of the latent states complete, we next present their contribution to the

evolution of market equity over our sample, displayed in Figure 5. Each panel displays the

log equity-to-output ratio pyt, alongside the variation attributable to an individual latent

component, holding the others fixed at their initial value in 1952:Q1. In all figures, the

red (solid) line shows the model point estimate, based on the posterior mode parameter

values and the estimated latent states produced by the Kalman smoother. Confidence bands

accounting for both parameter and latent state uncertainty at the 67% and 90% levels are

displayed in blue. We note that this decomposition is additive, so that the contributions in

the four panels, if demeaned by the average value of the data, would add exactly to the true

demeaned data series.

Beginning with the top row, Panel (a) shows that the low frequency factor shares compo-

nent sLF,t explains much of the low frequency trend in the py ratio, particularly so over the

last three decades of the sample. In contrast, the high frequency component sHF,t produces

some short-lived movements, but contributes nothing to the slow-moving trend. Importantly,

this weak effect is not due to a lack of variability of the sHF,t series, which Figure 4 Panel (b)

shows is highly volatile, and explains a large portion of earnings share dynamics. Instead, it

is due to the weaker effect that transitory movements in profits have on forward-looking as-

set prices, demonstrating the importance of estimating our latent state processes at multiple

frequencies.

Moving to the bottom row, Panel (c) displays the combined contribution of the risk price

components xLF,t and xHF,t. These secular variations in the risk price drive most variation in

valuations at at high and medium frequencies, as well as much of the lower-frequency trend in

the first half of the sample. In particular, this component explains nearly all of the transitory

booms and busts in equity values relative to output over our sample, including the technology

boom/bust, and the crash following financial crisis. At the same time, movements in the

risk price fail to explain much of the rise in equity valuations over the last three decades,

with little upward trend in this series between the late 1980s and the end of the sample.

Next, Panel (d) shows the combined contribution of the risk-free rate components δLF,t
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Figure 5: Market Equity-Output Ratio Decomposition
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Notes: This figure exhibits the observed market equity-to-output series along with the model-implied vari-
ation in the series attributable to certain latent components. The top row displays the contribution of the
low and high frequency components of the earnings share sLF,t and sHF,t, while the bottom row displays
the total contribution of the orthogonal risk price xt and the real risk-free rate δt. The red center line
corresponds to the median of the distribution of outcomes, accounting for both parameter and latent state
uncertainty, while the dark and light blue bands correspond to 66.7% and 90% credible sets, respectively.
The sample spans the period 1952:Q1-2017:Q4.

and δHF,t. Our estimates attribute a minimal role to risk-free rate variation in explaining

equity valuations over our sample. This finding, which stands in sharp contrast to alternative

works in the literature, is due to our relatively low estimated persistence for the risk-free

rate processes. We return to this discussion in Section 6.8.

To clarify the contributions since 1989 — the portion of the sample with extremely high

growth in both equity valuations and earnings shares — Figure 6 plots the contributions of

factor shares and the risk price, respectively, over this period. This figure shows that the
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prime driver of valuations over this period is the factor shares process. Movements in the

risk price explain much of the cyclical variation, but fail to capture the overall upward trend.

Figure 6: Market Equity-Output Ratio Decomposition: 1989 - 2017 Subsample

(a) Factor Shares
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Notes: This figure exhibits the observed market equity-to-output series along with the model-implied vari-
ation in the series attributable to certain latent components over the subsample 1989:Q1 - 2017:Q4. The
left panel displays the combined contribution of the earnings share s̃t while the right panel displays the
combined contribution of the risk price components x̃. The red center line corresponds to the median of the
distribution of outcomes, accounting for both parameter and latent state uncertainty, while the dark and
light blue bands correspond to 66.7% and 90% credible sets, respectively.

6.4 Growth Decompositions

In this section we quantify the importance of differing drivers of equity values over the post-

war period by calculating a set of growth decompositions that decompose the total growth in

equity values into distinct sources attributable to each latent state variable in the model. The

contributions are computed by taking the total growth in the target variable and dividing it

into parts attributable to only a single component (fixing all other components at their values

at the beginning of the sample). By construction, these components sum to 100% of the

observed variation in equity values, since the model along with the fitted latent components

perfectly matches at each point in time the observed log market equity-to-output ratio, pyt,

as well as output growth ∆yt. Table 2 presents the decompositions for the total change in

the log of real market equity pt, either over the whole sample or over the period since 1989.17

17The growth decompositions for the log level of real market equity pt are computed by adding back the
growth ∆yt in real output (net value added) to the growth ∆pyt. Since ∆yt is deflated by the implicit price
deflator for net value added, the decomposition for pt pertains to the value of market equity deflated by the
implicit NVA price deflator.
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Table 2: Growth Decomposition

Contribution 1952-2017 1952-1988 1989-2017

Total 1405.81% 151.23% 477.34%
Factor Share st 20.50% -21.09% 43.96%
Orth. Risk Price xt 22.72% 25.33% 17.68%
Risk-Free Rate δt 3.24% -15.65% 13.80%
Real PC Output Growth 53.54% 111.41% 24.57%

Notes: The table presents the growth decompositions for the real per-capita value of market equity. The row
“Total” displays the total growth in market equity over this period, in levels. The remaining rows report the
share of this overall growth explained by each component, obtained by measuring the difference in implied
growth between the data and a counterfactual path in which that variable is held fixed at its initial value for
the relevant subsample. To ensure an additive decomposition, we measure the share of total growth explained
in logs. The reported statistics are means over shares computed from 10,000 equally spaced parameter draws
from our MCMC chain. The sample spans the period 1952:Q1-2017:Q4.

The estimates indicate that about 44% of the market increase since 1989 and 21% over

the full sample is attributable to the sum of the two factors share components sLF,t and

sHF,t, with the vast majority of this coming from the low frequency component. Over the

period since 1989, the roles of the other components are smaller. For example, persistently

declining interest rates contributed 14%, while the decline in the equity risk premium driven

by orthogonal movements in the price of risk contributed 18%. Over the full sample, real

interest rates contributed a much smaller 3%, while the declining risk price contributed 23%.

In contrast to factor share movements, growth in the real value of what was actually

produced by the sector is a far less important driver of equity values since 1989, explaining

just 25% of the increase in equity values since 1989. This may be contrasted with the previous

subsample, from 1952 to 1988, where economic growth account for 111% of the rise in the

stock market, while factor share movements contributed negatively to the market’s rise. In

contrast, the 37 year subperiod from 1952 to the end of 1988 created less than a third of the

growth in wealth generated in the 29 years 1989:Q1-2017:Q4. These findings underscore a

striking aspect of post-war equity markets: in the longer 37 year subsample for which equity

values grew comparatively slowly, economic growth propelled the market, while factor shares

played a negative role. But the market made far greater gains in much shorter time from

1989 to present day, when factor share shocks reallocated rewards to shareholders even as

economic growth slowed. Combining these periods, we find that output growth explains only

54% of total log growth in market equity, despite being the only non-stationary variable in

our model, demonstrating the importance of non-output factors even over a horizon as long

as sixty five years.
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6.5 Sources of Earnings Share Variation

Since the corporate earnings share has been the most important driver of the price-output

ratio in recent decades, we now investigate what has been driving the corporate earnings

share.

We first briefly present the accounting breakdown of corporate output. Beginning with

gross value added, the BEA removes depreciation to yield net value added, which we use as

our measure of output Yt. Next, a fraction τt of Yt is devoted to taxes and interest (and a

catchall of “other” charges against earnings). We refer to τt simply as the “tax and interest”

share for brevity. The remaining 1− τt is divided between labor compensation and domestic

after-tax profits (domestic earnings, ED
t ).18 We denote labor’s share of domestic value added

net of taxes and interest as LDt , so that ED
t = (1− τt)(1−LDt )Yt. Finally, firms receive some

earnings from their foreign subsidiaries EF
t ≡ FtYt, where Ft is the ratio of foreign earnings

to domestic output, yielding the total earnings decomposition.

Et = ED
t + EF

t =
(

(1− τt)(1− LDt ) + Ft

)
︸ ︷︷ ︸

St

Yt.

Before separately analyzing these series, it is important to connect our work to an existing

controversy over measures of the labor share. In an influential recent paper, Koh et al. (2016)

note that the measured decline in the labor share over recent decades depends heavily on the

assumptions made. In particular, beyond clearly defined “unambiguous” sources of labor or

capital income, lie various “ambiguous” components of the national accounts, particularly

those related to intellectual property products. Koh et al. (2016) show that trends in the

labor share largely hinge on whether these ambiguous components are classified as labor

income or capital income. While we view this as a valuable line of research, we note that

our earnings share uses only series classified by Koh et al. (2016) as “unambiguous” labor

or capital income, and therefore sidesteps this interesting debate.

Returning to our measure of the earnings share, to decompose the contributions of the

various components described above we once again compute counterfactual series allowing a

18We use the BEA corporate sector labor compensation data to measure LDt (1− τt)Yt. Some researchers
have questioned whether the BEA adequately accounts for all of employee compensation in the form of
restricted stock or stock options (e.g., Koh et al. (2016), Eisfeldt, Falato, and Xiaolan (2018)). If no
equity-based compensation were actually captured by the BEA labor compensation data, then SDt should be
interpreted as the as the traditional cash compensation share, and fluctuations in St potentially influenced
by any factor that drives the traditional cash compensation share. The precise interpretation of why SDt or
St varies, although important and interesting in its own right, is not central to our investigation. Whatever
the reason for a changing St, our empirical methodology can investigate the extent to such fluctuations have
added to the rapid growth in the market value of corporate equity over the post-war period.

31



single component (τt, L
D
t , or Ft) to vary, while holding the others fixed at their initial values.

The resulting series are displayed in Figure 7. Panel (a) shows that, overall, movements in

the domestic labor share LDt explain the vast majority of variation in the earnings share. At

lower frequencies, an upward trend in the foreign earnings share has also driven the earnings

share upward substantially. The tax and interest share play close to zero role.19 Panel (b)

repeats this decomposition on the 1989 - 2017 subsample featuring rapid increases in equity

valuations. This panel shows clearly that the dominant driver of the earnings share over this

period has been movements in the domestic labor share, with the foreign share playing a

much smaller role, and the tax and interest share again playing effectively zero role.

Taken together, these results imply that the declining domestic labor share has played

the largest role in the sustained rise in the corporate earnings share. Combined with our

results earlier in the section showing that the earnings share has been the main driver of

valuations since 1989, this implies that much of stock market gains over this period have

come at the expense of US labor compensation.

Figure 7: Role of Components in Earnings Share
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Notes: The figure decomposes the corporate earnings share St into contributions from changes in the domestic
labor share SD, the tax and interest share Z, and the foreign share F . Each series shows the result of allowing
a single component to vary, while the others are held fixed at their initial values for that period (1952 or
1989). The sample spans the period 1952:Q1-2017:Q4.

6.6 Dynamics of the Equity Premium

In addition to decomposing the growth in market equity, our model also estimates a time

series for the equity risk premium, shown in Figure 8. Panel (a) plots our overall estimated

19This result is partially due to the separate impacts of the tax and interest shares, which are negatively
correlated, largely canceling out.
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risk premium, which is affected by both the orthogonal risk price component xt and by st

through the leverage risk effect. Panel (b) shows our estimate of the equity premium variation

that is attributable to only the high frequency component of the of the orthogonal risk price

component, xHF,t. Both panels superimpose the equity premium implied by the three-month

SVIX over the subperiod for which the latter is available, from 1996:Q1-2012:Q1. Two points

are worth noting. First, with the exception of the spike upward during the financial crisis of

2008-2009, panel (a) shows that the estimated equity premium has been declining steadily

over the past several decades and is quite low by historical standards at the end of the

sample. Specifically, by 2017:Q4, the estimates imply that the equity premium reached the

record low values it had attained previously only in two episodes: at the end of the tech

boom in 1999-2000, and at the end of the twin housing/equity booms in 2006. Second, Panel

(b) shows that the estimation assigns to the high frequency orthogonal risk price component,

xHF,t, virtually all of the variation in the risk premium implied by the options data, while the

remaining variation is ascribed to the lower frequency component of the risk price, and to the

earnings share via the leverage risk effect. The overall risk premium is therefore influenced

by a trending low frequency component and a volatile high frequency component.

Figure 8: Estimated Risk Premium and Risk Price Component
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Notes: Panel (a) plots the estimated risk premium over the sample along with the risk premium implied by
the SVIX, available for the subperiod 1996:Q1-2012Q1. Panel (b) plots the component of the risk-premium
driven only by the high frequency orthogonal risk price along with the risk preimium implied by the 3-month
SVIX. The label “Only Since” followed by a date describes a counterfactual path where a single component
is allowed to vary, while all other components of the risk premium were held fixed from that date on. The
red center line corresponds to the median of the distribution of outcomes, accounting for both parameter
and latent state uncertainty, while the dark and light blue bands correspond to 66.7% and 90% credible sets,
respectively. The period 1996:Q1-2012:Q1 lacks bands because by construction the risk premium matches
the data exactly for each quarter of this subsample. The sample spans the period 1952:Q1-2017:Q4.
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Table 3: Asset Pricing Moments

Model Fitted Data

Variable Mean StD Mean StD Mean StD

Log Equity Return 5.920 17.866 7.994 16.906 8.856 15.844
Log Risk-Free Rate 1.130 1.729 1.124 1.946 1.124 1.946
Log Excess Return 4.791 17.969 6.871 16.893 7.389 16.562
Log Price-Payout Ratio 3.488 0.424 3.317 0.364 3.437 0.465
Log Earnings Growth 2.216 8.704 2.819 11.911 2.819 11.911
Log Payout Growth 2.205 16.867 3.444 22.017 4.115 33.459
Log Earnings Share Growth -0.011 8.323 0.624 10.459 0.624 10.459
Log Payout Share Growth -0.022 16.669 1.249 20.814 1.920 32.186

Notes: All statistics are computed for annual (continuously compounded) data and reported in units of
percent. For annualization, returns, earnings, and payouts are summed over the year in levels. Log growth
of earnings, payouts, the earnings share, the payout share, and the price-payout ratio are computed using
these annual sums of earnings and payouts, as well as Q4 equity prices from each year. “Model” numbers
are averages across 10,000 simulations of the model of the same size as our data sample. “Fitted” numbers
use the estimated latent states fitted to observed data in our historical sample. The sample spans the period
1952:Q1-2017:Q4.

6.7 Asset Pricing Moments

Until this point, our model estimates have decomposed the contributions of various forces

over our data sample. At the same time, the observed sample is only a single realization of

many possible paths for the data. In this section, we use the model to compare the observed

asset pricing moments over our sample to the unconditional distributions of these moments

implied by the model.

To this end, Table 3 presents the model’s implications for asset pricing moments and

compares them to data for the corporate sector. The columns labeled “Model” report results

from simulating the model 10,000 times using a sample length equal to that of our historical

sample, evaluated using the parameters at our posterior mode. The asset pricing moments

in the “Model” columns are averages across the simulations. The columns labeled “Fitted,”

compute moments using the estimated latent states obtained by fitting the model to the

observed historical sample using the Kalman smoother, again using the mode parameters.

These fitted values therefore represent the model’s implications for the asset pricing moments

conditional on the observed sequence of shocks that actually generated the historical data,

and are therefore directly comparable to the sample “Data” moments that are also reported

in the table. Note that the “Fitted” and “Data” moments are identical by construction for

the risk-free rate, earnings growth, and earnings share growth, because we use these series

as observables and fit their behavior exactly over the sample with no measurement error.
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For series not matched by construction, Table 3 shows that the fitted moments are close

to the data. Importantly, the model’s operating leverage effect allows it to match the fact

that both the mean and volatility of growth in the log payout share ct− yt are both roughly

doubled compared to the same moments for growth in the log earnings share (et − yt).
20

Since no data on payout were used in our estimation, these results increase our confidence

that the model is able to realistically account for the dynamics of payouts over the sample.

At the same time, the fact that our payout growth slightly understates the data suggests

that our calibration for ξ is conservative, and that our model is not overstating the impact

of the leverage effect. This slight understatement of cash flow growth leads the fitted log

excess return (6.9%) to slightly understate its data counterpart (7.4%).

Turning to returns, these estimates imply that much of the reward from holding equity

in the post-war era has been attributable to a long sequence of distributional shocks that

redistributed rewards to shareholders. Table 3 shows that the model’s unconditional average

log excess equity return is 4.8% per annum. This number is an estimate of the mean risk

premium implied by the parameter estimates, and reflects only compensation for bearing

risk in the stock market, i.e., covariance with the SDF. By contrast, the estimated fitted

equity premium, or mean excess stock market return, is 6.9%. This number is affected by

covariance with the SDF but also reflects unexpected realizations of movements in earnings

and payout over the sample.

This difference in our estimates of realized returns and the model’s unconditional expected

return reflects that high returns to holding equity in the post-war period have been driven

in large part by a highly unusual sample, one characterized by a long string of factors

share shocks that redistributed rewards from productive activity toward shareholders. Taken

together, the estimates imply that roughly 2.1 percentage points per annum of the post-war

mean log return on stocks in excess of a T-bill rate is attributable to this string of factors

share shocks, rather than to genuine compensation for bearing risk. The results here suggest

that such sample averages for the excess return overstate the true equity risk premium by

43%. These findings are a cautionary tale for the common practice of using the sample mean

excess return, or components of the sample mean return such as the dividend-price ratio or

dividend-earnings ratio, to infer an equity risk premium, even over samples as long as that

of the post-war period.

20These are scaled upward by exactly ξ = 2.00 in the quarterly data, but differ from this precise ratio in
Table 3 due to annualization.
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6.8 Interest Rate Persistence

Our results differ in important ways from contemporaneous papers such as Farhi and Gourio

(2018) and Corhay et al. (2018). While these papers find a crucial role for falling interest

rates in driving the increase in asset prices over recent decades, we find that interest rates

account for only 14% of stock market growth since 1989. Moreover, while these papers both

conclude that risk premia have risen over this period, Panel (a) of Figure 8 shows that we

estimate risk premia to have fallen to historically low levels by the end of our sample.

We believe these opposing results are mostly due to the different estimation approaches

behind them. Importantly, while we estimate our model directly on the time series, allowing

for shocks to enter with a variety of estimated persistences, Farhi and Gourio (2018) and

Corhay et al. (2018) measure changes across steady states, in which parameters can change

only permanently. As a result, these papers interpret the observed drop in risk-free rates as

a permanent shift, causing major changes in how long-term cash flows are discounted, and

leading to a huge increase in market value. Since the implied increase in market value from

falling risk-free rates is even larger than the actual increase observed, these models infer that

risk premia must have risen at the same time to match the realized growth in asset prices.

In contrast, our model views changes in interest rates as far from permanent, since we

estimate the quarterly persistence of the low frequency component of interest rates to be

0.963. As a result, investors in our model did not believe that interest rates would remain

permanently high in the 1980s, nor do they expect them to remain permanently low today,

strongly dampening the effect of the fall in rates on the value of market equity. This smaller

direct effect from interest rates allows us to match the observed rise in asset prices in an

environment with falling risk premia.

We view our approach, and therefore our findings, as strongly preferred by the data. To

support this claim, we appeal to Figure 3, which compares the observed autocorrelations of

our observable series to the implied autocorrelations generated from a long simulation of the

model. Panel (c) shows that the autocorrelation of the real risk-free rate decreases rapidly

with the lag order, falling by half within the first 12 quarters, and falling close to zero at the

10-year horizon — a pattern inconsistent with a process dominated by permanent changes.

Our model is able to match this pattern well, and does not understate the autocorrelation

at long horizons.21

While our model directly targets the forecasted path of future real short rates, we do

21These findings are not directly comparable to those in Bianchi, Lettau, and Ludvigson (2016), who find
evidence of a low frequency component in interest rates driven by monetary policy, since the monetary policy
component they uncover is correlated with risk-premium variation, whereas we identify only the mutually
uncorrelated components of risk-free rate and equity premium variation.
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not target long bond yields. To check how closely the estimated model nonetheless fits data

on long bonds, we compare long real bond rates in the model and data. Figure 9 displays

10-year real bond yields in the model alongside 10-year TIPS yields in the data (details on

this computation can be found in Appendix A.3.4). To allow for the fact that TIPS are

computed using CPI inflation while our real rates are computed using the GDP deflator,

as well as for the possibility that 10-year TIPS may include term or liquidity premia on

average, we add a constant to our model-implied TIPS rate, equal to 0.61%, so that our

model-implied and actual TIPS rates have the same mean over the subsample 2003:Q1 -

2017:Q4 when TIPS data are available. Panel (a) displays the full sample, while Panel (b)

zooms in on the 2003:Q1 - 2017:Q4 TIPS subsample.

Figure 9: 10-Year TIPS Yields, Model vs. Data

(a) Full Sample
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Notes: These plots compare the yields on ten-year real bonds in model and data. The data measure is
obtained from the Federal Reserve Board of Governors (FRED code: FII10). The model value is obtained
using the bond pricing formulas in Appendix A.3.4. The red line displays the mean estimate taken over 10,000
equally spaced parameter draws, while the light and dark blue bands represent 67% and 90% confidence
intervals, respectively. The left panel displays the full sample period 1952:Q1-2017:Q4, while the right panel
displays the 2003:Q1-2017:Q4 subsample on which the TIPS data is available.

Comparing the series in Figure 9 shows that the general trajectory of the model-implied

TIPS yields closely matches the data, with model and data displaying similar overall declines

over the sample, equal to 1.22% and 1.55% from 2003:Q1 (the start of the TIPS sample)

to 2017:Q3, respectively. Similarly, the model and data exhibit falls of 1.65% and 1.85%

from the 2006:Q3 (the TIPS peak, outside of a brief spike during the financial crisis) to

2017:Q4, respectively. Although Panel (b) shows some deviations between model and data

— in particular a failure of the model to capture a dip in rates between 2012 and 2013 —

these results show that the model explains most movements in real long-term bonds at the
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Figure 10: Model Comparison, Contributions to pt − yt.
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Notes: These figures plot the growth decompositions for the real value of market equity under alternative
model specifications, with each panel corresponding to a different fundamental component, and the different
lines in each panel corresponding to alternative models. Growth decompositions are obtained by measuring
the difference in implied growth between the data and a counterfactual path in which that variable is held
fixed at its initial value for the relevant subsample. To ensure that these shares add up to 100%, these rows
measure the share of total growth explained in logs. Each model reports the mean and median in red, while
the red error bars span from the 5th to 95th percentiles.

10-year horizon, despite the fact that these data are not a target of the estimation.

To close, we note that while we are confident in our evidence supporting a smaller role

for risk-free rates in driving the market since 1989, this debate is largely orthogonal to our

other core results. In particular, the risk-free rate considerations outlined above determine

the relative contributions of the risk-free rate as opposed to the risk price, and are largely

irrelevant to the estimated contribution of the earnings share.

7 Robustness

To close our results, we examine the robustness of our findings to our key modeling and

calibration assumptions.

7.1 Leverage Risk Effect

For our first set of robustness checks, we consider an alternative to our specification that

estimates the role of factor shares fluctuations on risk premia rather than imposing the

structure of the model that delivers the leverage risk effect endogenously. To do so, we solve

an “Estimated Risk” model in which we set Γ = 0, but allow the price of risk to load on the

earnings share:

xt = x̄+ 1′x̃t + λ1′s̃t.
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We view this as a parsimonious way of capturing the effects of the earnings share on risk

premia. The parameter λ controls the strength of the link between the earnings share and

the risk premium, with λ < 0 delivering the negative correlation obtained in the model from

the leverage risk effect.

The results are displayed graphically in Figure 10, which compares the Benchmark and

Estimated Risk models for our main results: the contributions to the rise in market equity

valuations since 1989. The figure shows that this more flexible specification delivers a decom-

position deeply similar to the Benchmark model. Although the error bars on the Estimated

Risk model are slightly wider, likely due to the inclusion of an additional free parameter, the

point estimates and general ranges are highly similar. To be more precise, the Estimated

Risk model delivers average contributions of (41%, 20%, 14%) for the earnings share, risk

price, and risk-free rate, respectively, compared to equivalent values of (44%, 18%, 14%) for

the Benchmark model. In particular, our result that the decline in risk-free rates played a

limited role is unchanged in the Estimated Risk specification.

7.2 Earnings Share Persistence and Cash Flow vs. Risk Premium

Effects

For our final set of results, we consider robustness to a bias-corrected estimated persistence of

our factor share process. This persistence should have the largest influence on the estimated

role of direct cash flow effects versus risk premium effects. Thus in this section we decompose

our earnings share effects into components driven by cash flows and by the leverage risk

effect, and consider the role of our estimated earnings share persistence — which appear

biased downward given the evidence in Figure 3 — in driving these results.

We begin with the workhorse decomposition of Campbell and Shiller (1989) for the price-

payout ratio:

pct = const + Et
∞∑
j=0

κj1∆ct+j+1 − Et
∞∑
j=0

κj1rt+j+1.

Since the log ME/Y ratio pyt is equal to the sum pct + cyt, we can apply a single restriction

— our loglinear approximation for the cash flow share of output (11) — to obtain22

pyt = const + ξst + ξEt
∞∑
j=0

κj1∆st+j+1︸ ︷︷ ︸
direct cash flow component≡pyCF

t

+Et
∞∑
j=0

κj1∆yt+j+1 − Et
∞∑
j=0

κj1rt+j+1. (17)

22We thank our discussant, Valentin Haddad, for this helpful suggestion.
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Table 4: Comparison, Share of ME/Y Explained (1989 - 2017)

AR(1) Models (by φs)

Bench. 0.980 0.990 0.995 1.000

Cash Flow Contribution 26.38% 28.71% 45.08% 62.68% 102.15%

Notes: This table displays the share of the growth in the log market equity to output ratio explained by
the implied contributions of the earnings share via cash flows, defined as (pyCF2017:Q4−pyCF1989:Q1)/(py2017:Q4−
py1989:Q1), where py is the log ratio of market equity to output, and pyCF is the direct cash-flow component.

The term in braces represents the contribution of the earnings share process st to the log

ratio of market equity to output, directly through cash flows, while ignoring any influence

on risk premia. In our structural model, this component, which we denote pyCFt is given by

pyCFt = ξ
{
s̄+ 1′

[
I− 1′(I− Φs)(I− κ1Φs)

−1
]
s̃t

}
. (18)

We can therefore compare growth of pyCFt and pyt to compute the contribution of growth in

the log ME/Y explained by the direct cash flow effect.23

The results are displayed in Table 4. Under our Benchmark model estimates, the direct

change in cash flows explains 26.38% of the rise in the py ratio since 1989. Since the total

contribution of earnings share changes is estimated at 67.75%, these results imply that

around 39% of our overall earnings share contribution in the Benchmark model are due to

the direct influence on cash flows, with the remaining share due to the influence on risk

premia through the leverage risk effect.

While these results already imply that the direct cash flow component is an important

driver of market equity over this period, with a magnitude similar to total economic growth,

we believe these results understate the true cash flow contribution. This is due to the fact

that the Benchmark model appears to understate the autocorrelation process in the data,

as can be seen in Figure 3 Panel b. Although the autocorrelations of st in both the model

and the data converge toward zero as the lag order increases, it is clear that the probability

mass from the MCMC draws of the model’s autocorrelations understates the observed log

earnings share autocorrelations at all lag orders, including the longest.

This downward bias in persistence estimates is common in estimations, and is not straight-

23These numbers differ from those in Table 4 because they decompose growth in the ratio of market equity
to output (py) instead of the growth in real per-capita market equity (p) that is used in Table 4.
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forward to correct with our mixture specification of low- and high-frequency components.24

Instead, we provide results from a simpler parametric specification to demonstrate the

strength of the cash flow effect at plausible levels of bias-corrected persistence. In place

of our full structural model, we approximate st by a simpler AR(1) process

st+1 = (1− φs)s̄+ φsst + εs,t+1

which implies Et∆st+j+1 = −(1 − φs)φ
jst. Substituting, solving for the geometric sum,

and omitting all terms not entering our “direct cash flow component” above, we obtain the

following expression for pyCFt under the AR(1) specification:

pyCFt = ξ

[
1 +

(
1− φs

1− κ1φs

)]
st.

For given parameter choices of φs, ξ, and κ1, we can thus directly evaluate the contribution

of the earnings share over time. For ξ and κ1, we obtain these directly from the data,

using ξ = 2.002, as explained above, and calibrating κ1 = exp(pc)/ exp(pc + 1), where we

obtain pc = 4.823 as the average of our log price-to-payout ratio from our sample. The

implied contributions since 1989:Q1 are reported in Panel (b) of Table 4 for a range of

possible persistences: φs ∈ {0.98, 0.99, 0.995, 1.000}. Appendix Figure A.3 shows that the

implied pyCFt series are reasonable, and track the true pyt series well over time, even at the

high persistence values, providing support for the specification. As can be seen from Table

4, the direct cash flow contribution is nontrivial even for a persistence of 0.980, while the

assumption of a unit root would explain more than 100% of the rise in the log ME/Y ratio

over this period.

The question then becomes which of these persistence values is most appropriate. A

bootstrap bias corrected AR(1) estimate yields φs = 0.990 (see Appendix Section A.5.1 for

details), which corresponds to nearly half of the rise in the log ME/Y ratio being explained

through the direct influence of the earnings share on cash flows. For equity values, however,

the autocorrelation at the first lag is not as important as the autocorrelation at longer

lags. Appendix Figure A.4 reproduces the simulated autocorrelation plots from Figure 3 for

these AR(1) models, showing that even more persistent processes, such as φ = 0.995, or

even a unit root, provide a better fit of the observed longer autocorrelation pattern for st.

Although the empirical autocorrelations in the data decay substantially with the lag order,

24Because the model has freedom to allocate between the low and high frequency components, manually
increasing the persistence of the low frequency component, or even both components, results in the model
assigning more of the underlying variation to the high frequency component, leaving the overall results
unchanged.
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our simulation results indicate that this is an endemic feature of sample autocorrelations

given our sample size, even for extremely persistent processes. For more formal evidence,

an augmented Dickey-Fuller test also fails to reject the presence of a unit root with p-value

0.164. From our results in Table 4, these values would imply direct cash flow contributions

of 60% or more over the 1989 - 2017 period.

Overall, this analysis implies that under minimal assumptions — that investment is

proportional to output, not earnings, and that the earnings share follows a simple AR(1)

process — the data are consistent with a strong direct effect of the earnings share on the

value of market equity over the last three decades. By contrast, the same bias correction

would have little influence on the estimated contribution of the risk-free rate, since–as shown

in Figure 3–there is no downward bias in those autocorrelations at long lag orders, which

evidently converge to zero by quarterly lag 40 in both the model and the data. We believe

these findings imply that our estimates are if anything a lower bound on the true contribution

of the earnings share to the growth in market equity since 1989.

8 Conclusion

In this paper, we investigate the reasons for rising equity values over the post-war period.

We do this by estimating a flexible parametric model of how equities are priced that allows

for influence from a number of mutually uncorrelated latent components, while at the same

time inferring what values those components must have taken over our sample to explain

the data. The identification of mutually uncorrelated components and the specification of a

log linear model allow us to precisely decompose the observed market growth into distinct

component sources. The model is flexible enough to explain 100% of the variation in equity

values over our sample and at each point in time.

We confront our model with data on equity values, output, the earnings share of output,

interest rates, and a measure of the conditional equity premium implied by options data.

We find that the high returns to holding equity over the post-war era have been attributable

in large part to an unpredictable string of factor share shocks that reallocated rewards away

from labor compensation and toward shareholders. Indeed, our estimates suggest that at

least 2.1 percentage points of the post-war average annual log equity return in excess of

a short-term interest rate is attributable to this string of reallocative shocks, rather than

to genuine compensation for bearing risk. This estimate implies that the sample mean log

excess equity return overstates the true risk premium by 43%.

Factors share shocks alone would have driven a 116% increase in the value of real per-

capita market equity since 1989, explaining 44% of actual log growth over this period. Equity
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values were modestly boosted since 1989 by persistently declining interest rates and a decline

in the price of risk, which contributed 14% and 18%, respectively, to the rise in log equity

values over this period. But growth in the real value of aggregate output contributed just

25% since 1989 and just 54% over the full sample. By contrast, economic growth was

overwhelmingly important for rising equity values from 1952 to 1988, where it explained

over 100% of the market’s rise. Still, this 37 year period generated less than half the growth

in equity wealth created in the 29 years since 1989. In this sense, factor shares, far more

than economic growth, have been the preponderant measure of fundamental value in the

stock market over 60 years.
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Appendix: For Online Publication

A.1 Data Description

Corporate Equity. Corporate equity is obtained from the Flow of Funds Table B103, se-

ries code LM103164103, nonfinancial corporate business; corporate equities; liability. Unad-

justed transactions estimated by Federal Reserve Board (Capital Markets and Flow of Funds

Sections), using data from the following commercial sources: cash mergers and acquisitions

data from Thompson Financial Services SDC database; public issuance and share repurchase

data from Standard and Poor’s Compustat database; and private equity issuance data from

Dow Jones Private Equity Analyst and PriceWaterhouseCoopers Money tree report. Level

at market value is obtained separately as the sum of the market value of the nonfinancial

corporate business (FOF series LM103164103) and the financial corporate business (FOF

series LM793164105). Source: Federal Reserve Board.

Foreign Earnings. Total earnings is the sum of domestic after-tax profits from NIPA

and earnings of U.S. multinational enterprises on their overseas operations. Total earnings

are defined as as share of domestic net-value-added for the corporate sector. (See the next

subsection for the sources of domestic data.)

Et ≡ StYt

=
(
SDt Zt + Ft

)
Yt.

In the above, Ft is the foreign profit share of domestic output. The measure of foreign

profits in the numerator of Ft is based on data from Table 4.2 of the U.S. International

Transactions in Primary Income on Direct Investment, obtained from BEA’s International

Data section. We refer to this simply as corporate “direct investment.” Specifically, these

data are from the “income on equity” row 2 of Direct investment income on assets, as-

set/liability basis. Note that U.S. direct investment abroad is ownership by a U.S. investor

of at least 10 percent of a foreign business, and so excludes household portfolio investment.

This series is available from 1982:Q1 to the present. To extend this series backward, we first

take data on net foreign receipts from abroad (Corporate profits with IVA and CCAdj from

BEA NIPA Table 1.12. (A051RC) or from Flow of Funds (FOF) Table F.3 (FA096060035.Q

less corporate profits with IVA and CCAdj, domestic industries from BEA NIPA Table 1.14

(A445RC)), which is available from the post-war period onward. This series includes port-

folio investment income of households as well as direct investment, but its share of domestic



net-value-added for the corporate sector is highly correlated with the foreign direct invest-

ment share of net-value-added. We regress the direct investment share of net-value-added on

the foreign receipts share of domestic net-value-added and then use the fitted value from this

regression as the measure of Ft in data pre-1982. Because the portfolio income component

is relatively small, the fit of this regression is high, as seen in Figure A.1, which compares

the fitted series with the actual series over the post-1982 period.

Figure A.1: Net Foreign Income Share: Data vs. Fitted value
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Notes: The sample spans the period 1952:Q1-2018:Q2.

Domestic Variables: Corp. Net Value Added, Corp. Labor Compensation, Corp.

After-Tax Profits, Taxes, and Interest. Define domestic corporate earnings ED
t as

ED
t ≡ SDt (1− τt)NV At,

which is equivalent to

ED
t =

1− LCt
ATPt + LCt︸ ︷︷ ︸

Labor share of labor+profit

 (1− τt)NV At.

Data for the net value added (NV A) comes from NIPA Table 1.14 (corporate sector series

codes A457RC1 and A438RC1). We use per capita real net value added, deflated by the

implicit price deflator for net value added. After tax profits (ATP) for the domestic sector

come from NIPA Table 1.14 (corporate sector series code: W273RC1). Corporate sector



labor compensation (LC) for the domestic sector is from Table 1.14 (series code A442RC).

The doestic after-tax profit share (ATPS) of NV A is identically equal to

ATPS =
ATP

ATP + LC

ATP + LC

NV A
=

ATP

ATP + LC︸ ︷︷ ︸
≡SD

t

NV A− (taxes and interest)

NV A

= SDt

1−
(

taxes and interest

NV A

)
︸ ︷︷ ︸

≡τt


= SDt Zt,

where SDt is the domestic after-tax profit share of combined profit plus labor compensation,

“taxes and interest” is the sum of taxes on production and imports less subsidies (W325RC1),

net interest and miscellaneous payments (B471RC1), business current transfer payments

(Net) (W327RC1), and taxes on corporate income (B465RC1). Source: Bureau of Economic

Analysis.

Net Dividends Plus Net Repurchases (Equity Payout). Net dividends minus net

equity issuance is computed using flow of funds data. Net dividends (“netdiv”) is the se-

ries named for corporate business; net dividends paid (FA096121073.Q). Net repurchases

are repurchases net of share issuance, so net repurchases is the negative of net equity is-

suance. Net equity issuance (“netequi”) is the sum of Equity Issuance for Nonfinancial

corporate business; corporate equities; liability (Table F.103, series FA103164103) and Eq-

uity Issuance for domestic financial sectors; corporate equities; liability (Table F.108, series

FA793164105). Since netdiv and netequi are annualized, the quarterly payout is computed

as payout=(netdiv-netequi)/4. The units are in millions of dollars. Source: Federal Reserve

Board.

Price Deflators. Implicit price deflator and GDP deflator. A chain-type price deflator

for the nonfinancial corporate sector (NFCS) is obtained implicitly by dividing the net value

added of nonfinancial corporate business by the chained real dollar net value added of non-

financial corporate business from NIPA Table 1.14. This index is used to deflate net value

added of the corporate sector. There is no implicit price deflator available for the whole

corporate sector, so we use deflator for the non-financial corporate sector instead. The GDP

deflator is used to construct a real returns and a real interest (see below). GDPDEF is

retrieved from FRED. Our source is the Bureau of Economic Analysis.



Interest Rate. The nominal risk-free rate is measured by the 3-Month Treasury Bill rate,

secondary market rate. We take the (average) quarterly 3-Month Treasury bill from FRED

(code: TB3MS). A real rate is constructed by subtracting the fitted value from a regression

of GDP deflator inflation onto lags of inflation from the nominal rate. Our source is the

board of governors of the Federal Reserve System and the Bureau of Economic Analysis.

Risk Premium Measure. Our measure of the risk premium comes from Martin (2017).

This paper uses option data to compute a lower bound on the equity risk premium, then

argues that this lower bound is in fact tight, and a good measure of the true risk premium on

the stock market. We obtain this series from the spreadsheet epbound.xls on Ian Martin’s

website, which corresponds to the value

EPBoundt→T = 100×
(
Rf,tSV IX

2
t→T − 1

)
which is equivalent to the bound on the annualized net risk premium, in percent. To trans-

late these measures to our model’s quarterly frequency, we use the risk premium measure

computed over the next three months. We then convert this variable into a log return,

average it over the quarter, and label it rpt.

Survey Data on Expected Average Risk-Free Rate For the average short-term ex-

pected nominal interest rate, we use the mean forecast from the Survey of Professional

Forecasters for variable BILL10, which is the 10-year annual-average forecast for returns on

3-month Treasury bills. We subtract from this the mean forecast for variable CPI10, the

10-year annual-average forecast of inflation, to obtain a survey forecast for the average real

rate over the next ten years.

A.2 A Stylized Model of Workers and Shareholders

We consider a stylized limited participation endowment economy in which wealth is con-

centrated in the hands of a few asset owners, or “shareholders,” while most households are

“workers” who finance consumption out of wages and salaries. The economy is closed. Work-

ers own no risky asset shares and consume their labor earnings. There is no risk-sharing

between workers and shareholders. A representative firm issues no new shares and buys back

no shares. Cash flows are equal to output minus a wage bill,

Ct = Yt − wtNt,



where wt equals the wage and Nt is aggregate labor supply. The wage bill is equal to Yt

times a time-varying labor share αt,

wtNt = αtYt =⇒ Ct = (1− αt)Yt. (A.1)

We rule out short sales in the risky asset:

θit ≥ 0.

Asset owners not only purchase shares in the risky security, but also trade with one another in

a one-period bond with price at time t denoted by qt. The real quantity of bonds is denoted

Bt+1, where Bt+1 < 0 represents a borrowing position. The bond is in zero net supply

among asset owners. Asset owners could have idiosyncratic investment income ζ it , which is

idependently and identically distributed across investors and time. The gross financial assets

of investor i at time t are given by

Ait ≡ θit (Vt + Ct) +Bi
t.

The budget constraint for the ith investor is

Ci
t +Bi

t+1qt + θit+1Vt = Ait + ζ it (A.2)

= θit (Vt + Ct) +Bi
t + ζ it ,

where Ci
t denotes the consumption of investor i.

A large number of identical nonrich workers, denoted by w, receive labor income and

do not participate in asset markets. The budget constraint for the representative worker is

therefore

Cw = αtYt. (A.3)

Equity market clearing requires ∑
i

θit = 1.

Bond market clearing requires ∑
i

Bi
t = 0.

Aggregating (A.2) and (A.3) and imposing both market clearing and (A.1) implies that

aggregate (worker plus shareholder) consumption CAgg
t is equal to total output Yt. Aggre-

gating over the budget constraint of shareholders shows that their consumption is equal to



the capital share times aggregate consumption CAgg
t :

CS
t = Ct = (1− αt)︸ ︷︷ ︸

KSt

CAGG
t .

A representative shareholder who owns the entire corporate sector will therefore have con-

sumption equal to CAgg
t ·KSt. This reasoning goes through as an approximation if workers

own a small fraction of the corporate sector even if there is some risk-sharing in the form of

risk-free borrowing and lending between workers and shareholders, as long as any risk-sharing

across these groups is imperfect. While individual shareholders can smooth out transitory

fluctuations in income by buying and selling assets, shareholders as a whole are less able to

do so since purchases and sales of any asset must net to zero across all asset owners.

A.3 Model Solution

Perturbation Details. The derivation of the perturbed stochastic discount factor (12)

follows here. We seek a perturbation of the terms determining the risk exposure of the SDF,

the nonlinear expression m̃t+1 ≡ −xt∆ct+1. Our perturbation includes terms linear in both

the state vector zt, the shock vector εt+1, and interactions between the two, while omitting

all other higher-order terms. While our solution could handle terms quadratic in zt, they

would be irrelevant since the term µt would implicitly offset them in all states. On the other

hand, terms quadratic in εt+1 would influence the solution, but would break our solution

methodology.

To derive the perturbed stochastic discount factor, we first express m̂t in terms of the

current period’s states and next period’s shocks:

m̂t+1 = −xt
{

log
[
exp
(
s̄+ 1′ (Φss̃t + εs,t+1)

)
− ω

]
− log

[
exp
(
s̄+ 1′s̃t

)
− ω

]
+ g + εy,t+1

}
.



Evaluating the derivatives of this expression with respect to shocks and states, we obtain

∂m̂t+1

∂x̃t
= −∆ct+11

′

∂m̂t+1

∂s̃t
= −xt

{(
St+1

St+1 − ω

)
1′Φ−

(
St

St − ω

)
1′
}

∂m̂t+1

∂εs,t+1

= −xt
(

St+1

St+1 − ω

)
1′

∂m̂t+1

∂εy,t+1

= −xt

∂2m̂t+1

∂εs,t+1∂x̃t
= −1

(
St+1

St+1 − ω

)
1′

∂2m̂t+1

∂εs,t+1∂s̃t
= xt1

(
St+1

St+1 − ω

)(
ω

St+1 − ω

)
1′Φs

We therefore approximate

m̂t+1 ' −x̄g − g1′x̃t − x̄ξ1′(Φs − I)s̃t − x̄ξ1′εs,t+1 − x̄εy,t+1

− x̃′t1ξ1
′εs,t+1 + s̃′tΦ

′
sx̄ξ(ξ − 1)1′εs,t+1 − x̃′t1εy,t+1

= · · · −
(
xtξ − x̄ξ(ξ − 1)(1′Φss̃t)

)
1′εs,t+1 − xtεy,t+1

where the omitted terms are known at time t, and whose exact values are thus irrelevant

to our solution as they will be directly offset by the implicitly defined µt. Combining this

result with the identity

Et[st+1] = s̄+ 1′Φss̃t

and rearranging yields (12).

Price-Payout Ratio This section derives the coefficients of the main asset pricing equa-

tion (14). To begin, define for convenience the variables

ut+1 = log(PCt+1 + 1)− pct
qt+1 = mt+1 + ∆ct+1



so that mt+1 + rt+1 = ut+1 + qt+1. Applying the log linear approximation to log(PCt+1 + 1)

and substituting in our guessed functional form (14) yields

ut+1 ≡ log(PCt+1 + 1)− pdt

= κ0 + κ1

(
A0 + A′ss̃t+1 + A′xx̃t+1 + A′δδ̃t

)
−
(
A0 + A′ss̃t + A′xx̃t + A′δδ̃t

)
= κ0 + (κ1 − 1)A0 + A′s (κ1Φs − I) s̃t + A′x(κ1Φx − I)x̃t + A′δ(κ1Φδ − I)δ̃t

+ κ1A
′
sεs,t+1 + κ1A

′
xεx,t+1 + κ1A

′
δεδ,t+1.

Now turning to qt+1, we can expand the expression to yield

qt+1 = −δt − µt + g + ξEt∆st+1 + (1− γs,t)ξ1′εs,t+1 + (1− xt)εy,t+1

where

γs,t = xt − x̄(1− ξ)(Et[st+1]− s̄)

= x̄+ 1′x̃t − x̄(1− ξ)1′Φs̃t

= x̄+ 1′x̃t + Γ′s̃t.

for

Γ′ = −x̄(1− ξ)1′Φs.

Next, we apply our fundamental asset pricing equation 0 = logEt [qt+1 + ut+1], which under

lognormality implies

0 = Et[qt+1] + Et[ut+1] +
1

2
Vart(qt+1) +

1

2
Vart(ut+1) + Cov(qt+1, ut+1).

These moments can be calculated as

Et[qt+1] = −δt − µt + g − ξ1′(I−Φs)s̃t

Et[zt+1] = κ0 + (κ1 − 1)A0 + A′s (κ1Φs − I) s̃t + A′x(κ1Φx − I)x̃t + A′δ(κ1Φδ − I)δ̃t

Vart(qt+1) = (1− γs,t)2ξ2(1′Σs1) + (1− xt)2σ2
a

Vart(zt+1) = κ2
1

(
A′sΣsA

′
s + A′xΣxAx + A′δΣrAδ

)
Covt(qt+1, zt+1) = κ1ξ(1− γs,t)A′sΣs1



Substituting, we obtain

0 = −δ̄ + g + κ0 + (κ1 − 1)A0 +
1

2

(
(1− 2x̄)ξ2(1′Σs1) + (1− 2x̄)σ2

a

)
+

1

2
κ2

1

(
A′sΣsA

′
s + A′xΣxAx + A′δΣrAδ

)
+ κ1ξ(1− x̄)A′sΣs1

+
[
−ξ1′(I−Φs) + A′s (κ1Φs − I)− ξ2(1′Σs1)Γ′s − κ1ξΓ

′
sA
′
sΣs1

]
s̃t

+
[
A′x(κ1Φx − I)− ξ2(1′Σs1)1′ − 1′σ2

a − κ1ξ1
′A′sΣs1

]
x̃t

+
[
A′δ(κ1Φδ − I)− 1

]
δ̃t.

Applying the method of undetermined coefficients now yields the solutions

A′s =
[
ξ1′(I−Φs)− ξ2(1′Σs1)Γ′s

][
(κ1Φs − I) + κ1ξΣs1Γ′s

]−1

A′x =
[(
ξ2(1′Σs1) + σ2

a + κ1ξ(A
′
sΣs1)

)
1′
]
(κ1Φx − I)−1

A′δ = 1(κ1Φδ − I)−1

while the constant term must solve

0 = −δ̄ + g + κ0 + (κ1 − 1)A0 +
1

2

(
(1− 2x̄)ξ2(1′Σs1) + (1− 2x̄)σ2

a

)
+

1

2
κ2

1

(
A′sΣsA

′
s + A′xΣxAx + A′δΣrAδ

)
+ κ1ξ(1− x̄)A′sΣs1.

(A.4)

A.3.1 Equilibrium Selection

The parameters κ0 and κ1 determine the steady state pc (price-payout ratio), which depends

on A0. But since κ0 and κ1 are both themselves nonlinear functions of A0, the equilibrium

condition (A.4) is also nonlinear, leading to the possibility that multiple solutions, or no

solution, exists. In fact, we confirm that both of these outcomes can occur in our numerical

solutions. However, our numerical results indicate that, when there is more than one solution

there are at most two, and one can be discarded because it is economically implausible. To

see this, rewrite (A.4) as

0 = E[m] + E[r] +
1

2
Var(m) +

1

2
Var(r) + Cov(m, r)

where m and r are the log SDF and equity return. We are interested in the relationship

between the steady state pc and the other terms that depend on it in equilibrium. The terms

E[m] and Var(m) do not depend on the pc ratio, so we can ignore these and focus on the



remaining terms. Alternatively, consider the log risk premium, given in equilibrium by

E[rt+1]− rf,t = −1

2
Var(rt+1)− Cov(mt+1, rt+1).

In the case where there are two solutions, one solution typically has a plausible level for the

steady state pc, and implies that higher pc ratios (which take different values depending on

where in the posterior distribution of model parameters we evaluate the function) coincide

with lower risk premia E[rt+1] − rf,t and a lower absolute covariance with the SDF (i.e., a

less negative Cov(mt+1, rt+1)). This solution is economically reasonable. By contrast, when

there is a second solution, it is always characterized by values for pc that are higher than the

economically reasonable solution, and for typical parameter values delivers a value for pc that

are extremely implausible (e.g., a value for exp (pc) of almost 3,000 at the posterior mode).

In addition, this solution has the property that the higher pc ratios coincide with lower

risk premia vis-a-vis the plausible solution, but also higher absolute covariances with the

SDF (i.e., a more negative Cov(mt+1, rt+1)). Thus the higher pc ratios in this solution must

be explained by a lower absolute covariance with the SDF and a Jensen’s term 1
2
Var(rt+1)

that in some cases converges to infinity. In summary, since the higher pc solution typically

implies extreme values and unreasonable behavior of pc, we select between these solutions

by enforcing that the equilibrium chosen always chooses the lower pc solution.

A.3.2 Expected Returns

Combining the relations

0 = logEt[Mt+1Rt+1]

= Et[mt+1] + Et[rt+1] +
1

2
Vart(mt+1) +

1

2
Vart(rt+1) + Covt(mt+1, rt+1)

−rf,t = logEt[Mt+1]

= Et[mt+1] +
1

2
Vart(mt+1)

and rearranging, we obtain

logEt[Rt+1/Rf,t] = Et[rt+1] +
1

2
Vart(rt+1)− rf,t

= −Covt(mt+1, rt+1).



Since

rt+1 = constt + κ1

(
A′sεs,t+1 + A′xεx,t+1 + Aδεδ,t+1

)
︸ ︷︷ ︸

pc growth

+ ξ1′εs,t+1 + εa,t+1︸ ︷︷ ︸
cash flow growth

mt+1 = constt − γs,t1′εs,t+1 − xtεa,t+1

we obtain

Covt(mt+1, rt+1) = −γs,t
(
κ1A

′
s + ξ1′

)
Σs1− xtσ2

a

Substituting for γs,t and rearranging yields (15).

A.3.3 Forecasting Real Rates

This section derives our 40Q average real rate forecast in the model. As an intermediate

step, note that for a given matrix A, the geometric sum, assuming it converges, is equal to

∞∑
j=0

Aj = I + A
∞∑
j=0

Aj

which implies
∞∑
j=0

Aj = (I − A)−1.

Similarly the partial sum can be obtained as

N−1∑
j=0

Aj =
∞∑
j=0

Aj −
∞∑
j=N

Aj =
∞∑
j=0

Aj − AN
(
∞∑
j=0

Aj

)
= (I − A)−1 − (I − A)−1AN

= (I − A)−1(I − AN).

Applying this to our interest rate forecast, we have

r̄Nf,t =
1

N

N−1∑
j=0

Etδt+j = δ̄ +
1

N
1′

N−1∑
j=0

Etδ̃t+j.



Since our law of motion for δ implies Etδ̃t+j = Φj
δδ̃t, we can substitute to obtain

r̄Nf,t = δ̄ +
1

N
1′

(
N−1∑
j=0

Φj
δ

)
δ̃t

= δ̄ +
1

N
1′(I −Φδ)

−1(I −ΦN
δ )δ̃t

where the last line follows from our partial geometric sum formula above.

A.3.4 Bond Pricing

We can represent our model in the form

logMt+1 = −δt −
1

2
Λ′tΣΛt − Λ′tεt+1

where

Λt = Λ0 + Λ1zt

=


ξx̄

0

0

x̄


︸ ︷︷ ︸

Λ0

+


−x̄ξ(ξ − 1)1′Φs ξ1′ 0 0

0 0 0 0

0 0 0 0

0 1′ 0 0


︸ ︷︷ ︸

Λ1


s̃t

x̃t

δ̃t

∆at


︸ ︷︷ ︸

zt

.

To price a zero-coupon bond of maturity n, we guess that the log bond price pn,t takes the

functional form

pn,t = An +B′nzt.



This guess is trivially verified for n = 0, with p0,t = 0 implying the initialization A0 = 0,

B′0 = 0. To prove by induction, assume the claim holds for n. Then we have

pn+1,t = logEt exp

{
−δt −

1

2
Λ′tΣΛt − Λ′tεt+1 + An +B′nΦzzt +B′nεt+1

}
= logEt exp

{
−δt −

1

2
Λ′tΣΛt + (B′n − Λ′t)εt+1 + An +B′nΦzzt

}
= logEt exp

{
−δ0 − δ′1zt −

1

2
Λ′tΣΛt + (B′n − Λ′t)εt+1 + An +B′nΦzzt

}
= −δ0 − δ′1zt −

1

2
Λ′tΣΛt +

1

2
B′nΣBn −B′nΣΛt +

1

2
Λ′tΣΛt + An +B′nΦzzt

= −δ0 − δ′1zt +
1

2
B′nΣBn −B′nΣΛ0 −B′nΣΛ1zt + An +B′nΦzzt

=

(
−δ0 +

1

2
B′nΣBn −B′nΣΛ0 + An

)
+ (−δ′1 −B′nΣΛ1 +B′nΦz) zt

which implies

An+1 = −δ0 +
1

2
B′nΣBn −B′nΣΛ0 + An

B′n+1 = −δ′1 −B′nΣΛ1 +B′nΦz.

This both completes the proof and provides the recursion used to compute long-term real

bond prices in our model.

A.4 Estimation Details

This section provides additional details on our state space specification and estimation pro-

cedure.

Time Variation in State Space. To begin, we provide additional details on time varia-

tion in our state space measurement equation (16). Because our risk premium measure rpt

is not available over the full sample, we use a time varying measurement equation to accom-

modate the missing values. In periods when our measure of the risk premium is available



(1996:Q1 to 2012:Q1), equation (16) takes the form

eyt

rft

r̄40
f,t

pyt

∆yt

rpt


=

[
H1

H2

]
zt +

[
b1

b2

]

where H2 and b2 are the rows of the measurement matrix and constant vector that compute

the implied value for rpt, and H1 and b1 are the respective values for the other observables.

In periods when data on rpt is not available, equation (16) instead takes the form
eyt

rft

r̄40
f,t

pyt

∆yt

 = H1zt + b1.

A completely analogous procedure is used for the SPF forecast variable r̄40
f,t, since these

forecasts are also not available over the entire sample. During periods when the forecast

data are available, we expand the measurement equation (16) to include an additional row,

while for periods when the data are not available, we omit this row.

MCMC Details. We next describe the procedure used to obtain the parameter draws.

First, because some of our variables are bounded by definition (e.g., volatilities cannot be

negative), we define a set of parameter vectors satisfying these bounds denoted Θ. We

exclude parameters outside of this set, which formally means that we apply a Bayesian prior

p(θ) =

const for θ ∈ Θ

0 for θ /∈ Θ

Our restrictions on Θ are as follows: all volatilities (σ) and the average risk price x̄ are

bounded below at zero. All persistence parameters (φ) are bounded between zero and unity.

With these bounds set, we can evaluate the posterior by

π(θ) = L(y|θ)p(θ).



so that the posterior is simply proportional to the likelihood over Θ and is equal to zero

outside of Θ.

To draw from this posterior, we use a Random Walk Metropolis Hastings algorithm. We

initialize the first draw θ0 at the mode, and then iterate on the following algorithm:

1. Given θj, draw a proposal θ∗ from the distribution N (θj, cΣθ) for some scalar c and

matrix Σθ defined below.

2. Compute the ratio

α =
π(θ∗)

π(θj)
.

3. Draw u from a Uniform [0, 1] distribution.

4. If u < α, we accept the proposed draw and set θj+1 = θ∗. Otherwise, we reject the

draw and set θj+1 = θj.

For the covariance term, we initialize Σθ to be the inverse Hessian of the log likelihood

function at the mode. Once we have saved 10,000 draws, we begin updating Σθ to be the

sample covariance of the draws to date, following Haario, Saksman, Tamminen et al. (2001),

with the matrix re-computed after every 1,000 saved draws. For the scaling parameter c,

we initialize it at 2.4/length(θ) as recommended in Gelman, Stern, Carlin, Dunson, Vehtari,

and Rubin (2013). To target an acceptance rate for our algorithm of 25%, we adapt the

approach of Herbst and Schorfheide (2014) in updating

cnew = cold ·
(

0.95 + 0.1
exp(16(x− 0.25))

1 + exp(16(x− 0.25))

)
after every 1,000 saved draws, where cold is the pre-update value of c.



A.5 Additional Details

A.5.1 Bootstrap Bias Correction

The bootstrap bias corrected estimate for the AR(1) model of the log earnings share is

computed as follows. First, we run the regression

st = a+ φst−1 + εs,t (A.5)

to obtain the estimates âOLS, φ̂OLS. We then bootstrapping many samples from the data

generating process

sjt = âOLS + φ̂OLS + ε̃js,t

where residuals ε̃js,t are drawn with replacement from {εs,t}. For each j in 100,000 simulations,

we repeat the regression (A.5) to obtain estimates âj, φ̂j, which we average to obtain the

estimates âboot, φ̂boot. The approximate bias is computed as φ̂OLS − φ̂boot, implying that the

corrected persistence estimator is obtained as

φ̂∗ = φ̂OLS +
(
φ̂OLS − φ̂boot

)
.



A.6 Additional Figures

Figure A.2: Cash Flow Share, Implied vs. Data
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Notes: This figure compares the implied cash flow series used by our model Ct = (St − ω)Et, compared to
the true corporate payout series in the data. The implied series takes St and Et directly from the data, and
uses the calibrated value ω = 0.0601 consistent without our calibration of ξ.



Figure A.3: Implied Contributions, AR(1) Models

(a) Full Sample
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(b) Since 1989
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Notes: This figure superimposes the implied contributions of the earnings share to the log market equity
to output ratio via cash flows measured as in equation (17), over the earnings share data. Each implied
contribution is computed by adding the difference in the right hand side of (17) to the initial value of pyt at
the start of the relevant subsample.



Figure A.4: Simulated Autocorrelations, AR(1) Models

(a) φs = 0.98
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(b) φs = 0.99
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(c) φs = 0.995
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(d) φs = 1
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Notes: The figure compares the data autocorrelations for the observable variables available over the full
sample, compared to the same statistics from the simplified AR(1) models described in Section 7. For the
model equivalents, we compute autocorrelations from each of 10,000 simulations the same length as the
data, drawn with the persistence parameter found in that panel’s title. The center line corresponds to the
mean of these autocorrelations, while the dark and light gray bands represent 66.7% and 90% credible sets,
respectively. The sample spans the period 1952:Q1-2017:Q4.
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