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This paper examines the impact of temperature changes on rural-urban migration using a 
56km×56km grid cell level dataset covering the whole world at 10-year frequency during the 
period 1970-2000. We find that rising temperatures reduce rural-urban migration in poor 
countries and increase such migration in middle-income countries. These asymmetric migration 
responses are consistent with a simple model where rural-urban earnings differentials and 
liquidity constraints interact to determine rural-to-urban migration flows. We also confirm these 
temperature effects using country-level observations constructed by aggregating the grid cell 
level data. We project that expected warming in the next century will encourage further 
urbanization in middle-income countries such as Argentina, but it will slow down urban transition 
in poor countries like Malawi and Niger.
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1 Introduction

Internal and international migrations are crucial ways for individuals to pursue better economic op-
portunities. In aggregate, rural-urban mobility is an important channel through which structural trans-
formation occurs. Internal migration leads to urbanization, which in turn induces economic growth (e.g.,
Au and Henderson, 2006). Within this industrialization process some migrants move to other countries,
but it is much more common to observe internal migration due to limits and regulations on international
migration. Economic development that has deeply transformed countries in recent decades is often asso-
ciated with heavy internal migration, especially movements from rural areas to urban areas of a country.
Examples include the massive rural-to-urban migrations in China (see Chen et al., 2010 and Baum-Snow
et al., 2017) and the urbanization of Africa (see Cobbinah et al., 2015).1

Within the context of economically driven internal migration, we analyze the effect of temperature
changes on this process. Temperature increases (predicted for the future decades) may affect agricultural
productivity and income potential, especially in the poor rural areas of developing countries (see, for
example, Dell et al., 2012).2 While productivity in urban areas is not immune to the effects of warming,
it is likely to be less vulnerable than rural productivity because rural areas are more dependent on resource
extraction and agriculture. Hence global warming may have important consequences on migration flows
from rural to urban areas. On the one hand, global warming may increase incentives to leave rural areas
by making them less productive, which may speed up internal migration flows toward urban areas. On
the other hand, if a country is still in poverty and rural populations have limited migration opportunities
due to a lack of resources, deteriorating agricultural productivity may lower their income, which works to
make it harder for them to pay migration costs. As a result, migration flows from rural to urban areas
decrease, perpetuating a poverty trap.

This paper is the first to assess the impact of temperatures on countries’ internal migration patterns
using data on net migration rates from an extremely fine and comprehensive grid of cells covering the
whole world. Each cell constituting an observation in our data is a 0.5×0.5 square degrees (approximately
56km×56km at the equator) and their aggregate covers the total surface area of Earth. The data are
available for the period between 1970 and 2000 at 10 year intervals. We combine these migration data
with data on population, temperatures and precipitation at the same level of geographical detail and
with national GDP level data to study the impact of temperature on net migration at this very detailed
geographical level.

We first document some general patterns of net migration, showing that individuals in a country
move, on average, out of rural into urban areas. Importantly, we find that the intensity of rural-to-
urban migration differs across country groups. We group countries by GDP per capita into a “bin” of

1Chen et al. (2010) describe that 34.1 million, 67 million, and 140 million individuals migrated to urban China in 1990,
1999, and 2008, respectively, by referencing prior studies (Cai, 1996; Huang and Pieke, 2003; and China’s National Bureau
of Statistics Reports). Baum-Snow et al. (2017) report that China’s urban population was 29% of the total population in
1990, and the figure rose to 50% by 2010. Cobbinah et al. (2015) document that the urban population in Africa was 14% in
1950, increasing to 40% by 2010.

2According to IPCC (2014), observed global warming from 1850-1990 to 1986-2005 was 0.62◦C. Estimated average annual
temperatures in 2050 are higher than the 1990 level by about 4◦C under a pessimistic scenario (World Bank, 2018). Herring
(2012) also note that results from many climate models suggest that global mean temperature could be between 1.1 to 5.4◦C
higher in 2100 than the current level. Lastly, according to IPCC (2013), the mean global mean temperature is expected to
rise by 2.6 to 4.8◦C under the most extreme scenario for 2081-2100, relative to 1986-2005.
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poor countries (the bottom 25% of the world income per capita distribution), a “bin” of middle-income
countries (between the 25th and 75th income per capita percentiles), and one of rich countries (above the
75th percentile). The data show that the middle-income group has the greatest rate of rural-to-urban
migration.

This empirical observation is consistent with a simple model of economic incentives and costs of
migration. Middle-income countries are those where the process of industrialization and economic growth
has started. Therefore, individuals’ income levels in rural areas are high enough to pay migration costs. In
addition, large rural-urban income differentials induce them to move to urban areas. On the other hand,
in poor countries, a fewer people have high enough income to pay migration due to rural poverty. Rich
countries, finally, have smaller rural-to-urban migration as rural-urban income differentials are smaller
and rural populations, which constitute a small group, have little incentive to move to urban areas.

We employ this model to predict the effects of higher temperatures on migration rates from rural to
urban areas, assuming that global warming mainly hurts rural areas, which rely on agriculture produc-
tivity. In such a context, an increase in temperatures reduces out-migration from rural areas in poor
countries because it deteriorates rural productivity, worsening the liquidity constraint and making mi-
gration infeasible. On the other hand, rising temperatures increase out-migration from rural areas in
middle-income countries because temperature shocks widen the rural-urban income gaps, which work to
strengthen individuals’ incentives to migrate, once they can pay for migration costs.

These simple predictions of asymmetric responses to weather shocks across countries are also consistent
with a collection of previous empirical findings. A large number of studies document that adverse weather
shocks increase out-migration from affected areas (e.g., Kleemans and Magruder, 2018, Bohra-Mishra et
al., 2014, for Indonesia). On the other hand, studies on extremely poor countries such as Malawi (e.g.
Suckall et al., 2017), find that negative climate shocks represented by droughts and sudden flooding
reduce internal migration because these decrease individuals’ capabilities and livelihood to move to other
areas. Kubik and Maurel (2016) show that, using the data from Tanzania, negative weather shocks work
to increase or decrease internal migration depending upon the households’ initial income because people
decide to migrate only if they have high enough income to pay migration costs.

While these results from prior studies are suggestive of heterogeneous migration responses to weather
shocks, possibly depending upon income levels of countries, this paper is the first to test a general theory
using a grid cell level dataset covering the whole world. We find robust evidence that higher temperatures
reduce out-migration from rural areas in poor countries, and increase out-migration from rural areas
in middle-income countries. The temperature effects on migration are insignificant in rich countries, as
these countries tend to be less agriculture-based and employ advanced technologies that are less sensitively
affected by climate.

The results of our grid cell level analysis are then confirmed using country-level observations con-
structed by aggregating the grid cell level data. Our results are robust to a wide range of different sample
selection criteria and specifications. They suggest that global warming will increase the speed of transition
to urban economies in countries where structural transformation has already started, but will slow down
such transformation in countries where the transition has not yet started. As a result, global warming
may accentuate polarization (and reduce convergence) of countries in the world in terms of the level of
economic development.
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This paper contributes to the literature on the impact of weather shocks on migration patterns.3

Previous studies find that an increase in temperatures in a location induces out-migration from the
location (e.g., Zhou, 2011, for China; Joseph and Wodon, 2013, for Yemen; Marchiori et al., 2012, for
Sub-Saharan Africa; and Bohra-Mishra et al., 2014, for Indonesia) and rainfall shortages also have similar
effects (e.g., Kleemans and Magruder, 2018, for Indonesia; Nawrotzki et al., 2013, for Mexico; Barrios
et al., 2006, and Au and Henderson, 2006, for Sub-Saharan Africa; Strobl and Valfort, 2015, for Uganda;
and Viswanathan and Kumar, 2015, for India). Catastrophic weather shocks such as Typhoons are also
shown to induce internal migrations in Vietnam (Gröger and Zylberberg, 2016). While these studies show
that negative weather shocks increase internal migration, other studies (e.g. Suckall et al., 2017) show
that negative climate shocks in Malawi, a very poor country, reduced internal migration because those
shocks reduced individuals’ capacity to migrate.

While country-specific evidence exists, there are only a few studies analyzing data from many countries
to find a systematic relationship between the level of economic development and the economic or demo-
graphic responses to weather shocks.4 Existing articles investigate the impact of weather shocks on the
GDP growth rate (Dell et al., 2012), agricultural productivity (Garcia-Verdu et al., 2019), local conflicts
(Bosetti et al., 2018), urbanization (Henderson et al., 2017), and international migrations (Cattaneo and
Peri, 2016). These last two studies are those most closely related with our paper. Henderson et al. (2017)
show that, in Sub-Saharan Africa, drier conditions induced urbanization as they worked as an ‘escape’
from negative shocks in agriculture-based regions but there are smaller migration responses in industrial-
ized regions. Cattaneo and Peri (2016) find that a higher temperature increases international emigration
from middle-income countries and reduces emigration from poor countries. Using much finer geographical
units and much more highly detailed data on net migration, our paper shows there are significant internal
migration responses to weather shocks that depend on the income level of the country.

The remainder of the paper is organized as follows. The next section presents data sources and
descriptive statistics. Section 3 proposes a simple model explaining the asymmetric temperature impacts
on internal migrations across countries. Sections 4 and 5 test empirically the relation between temperature
and net migration using the grid cell level data and the country-level data, respectively. Section 6 offers
some concluding remarks.

2 Data and Descriptive Statistics

2.1 Definition and Sources for the Net Migration Variables

Our dataset is constructed using data from several sources. The data on net migration come from the
Global Estimated Net Migration Grids By Decade, v1 (1970-2000) (de Sherbinin et al., 2015). These data

3The effects of weather changes, especially in the long-run, are channelled through their impact on agriculture-based
economies. Some studies directly test the linkages between climate change and agricultural output or income per capita
(e.g., Kleemans and Magruder, 2018; Strobl and Valfort, 2015; and Viswanathan and Kumar, 2015). Burgess et al. (2014)
find that, using the district-level data from India between 1957 and 2000, a greater number of high temperature days in
a year decreases agricultural yields and wages by 12.6% and 9.8%, respectively, and increases annual mortality by 7.3% in
rural areas. Jayachandran (2006) finds that rainfall increases agricultural wages in India.

4Other related studies employing data on a large number of countries include Beine and Parsons (2015). By working with
the data on 137 origin countries and 166 destination countries, Beine and Parsons (2015) find that international migrations are
induced by natural disasters. However, these studies not focus on asymmetric reactions to weather shocks across countries.
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provide estimates of net migration (in-migration minus out-migration) per 1km2 grid cell for the 1970s,
1980s and 1990s. While we provide a detailed description of how the data are produced in the Appendix
A, the main procedure is as follows. The data start with a very fine, census-based grid distribution of
population in year 2000, from the Global Rural-Urban Mapping Project, Version 1. Data on population
growth during the previous decades for the same cross-sectional units, from the History Database of the
Global Environment, Version 3.1, are then used to calculate population totals in 1970, 1980, 1990. In
the next step, nativity and mortality rates from national/ethnicity/decades specific tables are applied to
each grid cell to estimate decennial births and deaths. Lastly, the fact that “births minus deaths plus net
migration equals net population growth”, is used to find net migrations in each grid cell.5 We aggregate
this highly detailed data to a 0.5× 0.5 degree resolution. One grid cell used in the analysis in the current
paper contains 56× 56 = 3, 136 of original grid cells. This aggregation reduces data volatility from small
cells and leads to geographical units whose size is roughly comparable with the size of cities and labor
markets.

We match the data on net migrations with the population data obtained from Yamagata and Murakami
(2015) at the same level of aggregation. Using these data, we construct net migration rates for grid cell
(location) l of country c during the decade ending in year t as follows:

NetMigRatel,c,t = 100× NetMigl,c,t

Popl,c,t −NetMigl,c,t
(1)

whereNetMigl,c,t denotes net migration (a positive or negative number of people) at location l of country c
during the period between year t−10 and year t. As we do not have population data in 1970 but do observe
net migration in the 1970-80 period, the initial population in year t−10 is inferred as Popl,c,t−NetMigl,c,t

and this is inserted in the denominator. By dividing by the initial population, equation (1) provides a
standardized measure of net migration. This migration rate is a percentage change in population due to
mobility.6

We also construct country-level measures of internal migration by aggregating grid cell level observa-
tions. The first measure of aggregate internal migration is constructed as follows:

AggMigTotal
c,t = 1

2
∑
l∈Lc

|NetMigl,c,t|, (2)

where Lc is a set of all locations in country c. It shows that absolute values of net migration rates from
all grid cells in country c are aggregated, and the sum is divided by two. If one individual migrates from a
grid cell to another in the same country, net migration in the source location is −1 and in the destination
location is +1. As a result, the sum of absolute values of these is two. However, since there is only one
individual who internally moved in this example, the sum is divided by two to find the total number of
internal migrations in a country. This variable is indicated with superscript “Total” because it captures
total internal migrations in a country.

We are particularly interested in emigration from rural areas of a country because rural areas are
5Appendix A describes the procedure in detail
6In the initial computation we include all cells in the world. Some of them may have zero population in some decades.

When calculating the net migration rates in percent, we trim the values at or above 100% and at or below −100%. They are
fewer than 0.1% of all cells and include those areas that go from zero to positive values and vice-versa
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expected to be more sensitive to climate change. We therefore also construct different variables capturing
this type of emigration. First, a set of grid cells in a country is divided into four groups–rural, middle-
rural, middle-urban, and urban–based on the levels of population density in the (0-25th], (25th-50th],
(50th-75th] and (75th-100th] percentiles within each country.7 Then, net out-migration from these grid
cells is aggregated as follows:

AggMigRural Middle-rural
c,t =

∑
l∈LRural Mid-Rural

c

|NetMigl,c,t| × 1(NetMigl,c,t<0), (3)

AggMigRural
c,t =

∑
l∈LRural

c

|NetMigl,c,t| × 1(NetMigl,c,t<0). (4)

where in the first measure we aggregate grid cells in the rural and middle-rural areas in country c, and in
the second measure we only aggregate grid cells in rural areas. 1(NetMigl,c,t<0) denotes an indicator variable
taking unity if the net migration rate NetMigl,c,t is negative, and zero otherwise. Because these variables
collect only negative net migration rates, these are a good approximation of out-migration from rural
areas. Measure (3) captures out-migration from the rural and middle-rural and measure (4) quantifies
that from rural areas only.8

Using each of these measures of total internal and rural out-migration, we construct the corresponding
migration rates by dividing each by the country’s population at the beginning of the decade as follows:

AggMigRates
c,t = 100×

AggMigs
c,t

Popc,t−10
, (5)

for s = ‘Total’, ‘Rural Mid-Rural’, and ‘Rural’. Popc,t−10 denotes the total population in country c

in year t − 10. Because country-level total population data are available from 1970, we can use the
initial population level for the country-level internal migration measures in (5) unlike the grid cell level
counterpart (1).

2.2 Definition and Sources for Climate Data and Country-level Data

We obtain data on temperatures and precipitation from the Terrestrial Air Temperature and Pre-
cipitation: 1900-2006 Gridded Monthly Time Series, Version 1.01 (Matsuura and Willmott, 2007), and
construct variables which capture their decennial change:

∆Templ,c,t = Templ,c,t − Templ,c,t−10, (6)

∆Precl,c,t = Precl,c,t − Precl,c,t−10. (7)
7It is conventional to use population density to define rural/urban areas. According to Ratcliffe et al. (2016), for example,

in the case of the U.S., it order to be classified as “urban”, a location must have a density of 1,000 people per square
mile. Although there are several other classification rules such as land use, we simply employ population density to define
rural/urban areas within a country. Alternatively, we use grid cell level GDP to define rural/urban areas to test robustness
of our results. See Appendix F.1 for the robustness checks.

8An alternative would be to sum all net migration from rural and semi-rural cells, including positive values. That variable
is similar to the one constructed here, as rural and mid-rural cells have a large majority of negative net migration
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The average terms, Templ,c,t and Precl,c,t, are defined as follows:

Templ,c,t = 1
3

3∑
k=1

Templ,c,t+1−k and Precl,c,t = 1
3

3∑
k=1

Precl,c,t+1−k,

where Templ,c,t and Precl,c,t indicate the annual average temperature and the annual average precipitation
at location l of country c in year t. These are three-year averages of annual average temperatures and
precipitations. As a result, equations (6) and (7) measure changes in average temperatures and average
precipitations over a decade as these are differences between year t and t − 10. These variables capture
long-run changes in climate, attenuating year-to-year fluctuations and only isolating a decennial trend.

This grid cell level dataset is matched with country-level data using grid cell level country identifiers
obtained from the Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): National Identifier Grid
(van Donkelaar et al., 2015). The country-level variables are obtained from the World Development
Indicators (World Bank, 2018, hereafter WDI).

2.3 Descriptive Statistics

This section discusses descriptive statistics from grid cell data shown in Table 1.9 We report mean,
standard deviation, minimum, and maximum for net migration rates for the full sample, and separately
for each of four country groups: poor, lower-middle income, upper-middle income, and rich, based on the
25th, 50th, and 75th percentile of the income per capita distribution in the world.10 The first row of the
table shows that the average net migration rate is −6.52%. This negative value implies that net emigration
rates are, on average, greater than net immigration rates, which is explained by the fact that people tend
to emigrate from low-population-density cells (hence larger negative values of the net migration rate) and
immigrate to high density cells (hence lower positive value of the net migration rate).

The table also shows that lower-middle income countries have the largest (in absolute value) negative
average net migration rate among all groups. The level of rural-to-urban migrations is highest for these
countries at intermediate level of development. A similar relationship between economic development and
international emigration is documented by several studies such as Dao et al. (2018) and Clemens (2014).
The table also shows average temperatures and their average decennial changes, revealing an average
warming of almost half a degree over three decades for most country groups. Precipitations are more
stable and their decennial variations are small.11

We present some interesting empirical facts using the grid cell level data. First, the four scatter plots
in Figure 2 show the relationship between net migration rates for rural locations and temperature changes
during the more recent 1990-2000 decade. The red line in each chart is the regression line, and each chart
includes countries from one income-level group. We observe that, for poor (and to some extent for lower-
middle income) countries, an increase in temperatures is associated with greater but still negative net
migration rates in rural areas, suggesting that a higher temperature reduces out-migration from rural
areas of poor countries. In contrast, in upper-middle income countries, rural out-migration rates increase
in absolute value (and are negative) with increasing temperatures, implying that rising temperatures

9See Appendix A.2 for summary statistics of country-level variables.
10See Appendix B for a list of countries in each of the four groups.
11It also shows population growth rates. These are not at the grid cell level, but rather at the country-level.
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induce out-migration from rural areas. In rich countries, a rather flat slope implies only minor effects.
Figure 3 shows the migration rates calculated using equation (5) for the three different definitions of
aggregate internal migration in a country, by country group and decade. All of the three measures (each
represented in a different panel) show that the level of internal migration was largest for lower-middle
income countries. This pattern was particularly strong in the ’70s and ’80s.

Lastly, Figure 4 shows similar correlations to Figure 2, using country-level data. In particular
we show the correlation between temperature changes and out-migration from rural areas, defined as
AggMigRateRural Mid-Rural

c,t shown in equation (4). In this case, as the vertical axis measures out-migration
(negative net migration), the slopes of the lines are opposite to those in 2 but the finding is the same.
Specifically, there is a negative correlation between temperature change and rural out-migration in poor
countries, while the relationship turns positive in lower-middle income countries, and even more posi-
tive in upper-middle income countries. These results suggest that a higher temperature reduces rural
out-migration in poor countries while it increases such migration in middle-income countries.

3 A Simple Model

We consider a simple theoretical framework with agents who have costs and incentives to migrate
within a country. The goal is to explain some of the above stylized facts and to offer a prediction of the
impact of temperature on rural to urban migration. Once we have shown the qualitative implications
of the model, we choose particular parameter values based on empirical observations. We then conduct
numerical simulations to understand the effect of economic development and temperature shocks on rural-
to-urban migration.

3.1 The model

The model includes a country with two regions, “urban” and “rural”, indicated by superscripts U and
R, respectively, each of which differs in productivity. Urban productivity realizations follow a stochastic
process. Specifically, the productivity level in the urban region in period t, AU

t , is as follows:

ln(AU
t ) = α0 + α1 ln(AU

t−1) + εt, (8)

where α0 is the average productivity growth rate and α1 is the degree of persistence of productivity
over time. The term εt denotes a random innovation and is distributed with zero mean and positive
variance. On the other hand, rural productivity is determined by the initial rural productivity and urban
productivity. Specifically, as in Desmet and Rossi-Hansberg (2009), rural productivity is given by:

AR
t = ρAU

t + (1− ρ)AR
t−1, (9)

which shows that rural productivity is a weighted average of urban productivity and past rural produc-
tivity. The parameter ρ < 1 captures the speed of technology diffusion from the urban to the rural region.
A greater ρ leads to a higher speed of technology diffusion and therefore a faster convergence of rural pro-
ductivity to urban productivity. The initial productivity in the two regions, AU

1 and AR
1 , is endogenously

given and the urban area is more productive than the rural area in the initial period, AU
1 > AR

1 .
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The wage rate for an individual i in region J , wJ
i,t, is equivalent to labor productivity of the individual

in that region and is given by:
wJ

i,t = AJ
i,tδ

J(Tt) + βJεi, (10)

where AJ
t is the productivity of the region, δJ(Tt) is a term capturing the potential productivity effect of

temperature, and βJ indicates the location-specific return to skills. The term εi indicates human capital
that is specific to individual i and transferable to other regions. It follows a normal distribution with a
zero mean and a standard deviation of unity. We assume that βU > βR, meaning that returns to skills
are greater in the urban region than in the rural region for all workers.12 Given productivity in the two
regions, AR

t and AU
t , the urban region offers a higher wage than the rural region. This income differential

generate incentives for rural-to-urban migration. Given the same price levels across regions for simplicity,
income differentials are the only source of incentive to migrate.

An increase in temperature reduces GDP and especially stunts agricultural productivity in poor coun-
tries as shown in Dell et al. (2012) and Garcia-Verdu et al. (2019). We use the term δJ(Tt) to capture the
negative effects of an increase in temperatures. In particular, rural productivity decreases if temperatures
rise above a certain threshold. On the other hand, urban productivity is not affected by an increase in
temperatures.13 Specifically, the productivity terms δJ(Tt) are:

δU (Tt) = 1 for all Tt,

and

δR(Tt) =

1 if Tt ≤ T ∗

γt otherwise

where Tt denotes temperature at time t; T ∗ is a threshold above which an increase in temperature reduces
productivity; and γt ∈ (0, 1) is a parameter capturing the reduced productivity due to high temperatures
in the rural economy.

Consider an individual living for two periods. In the first period, she is in the rural region and works
to earn income. At the end of the first period, she makes a decision to either migrate to the urban region
or remain in the rural region. If she decides to move, she uses a part of her income to pay migration costs.
Migration costs are denoted by C > 0, which includes costs for relocating, traveling, and searching for a
job. In the second period, she works and earns in the location she chose. She needs to pay these costs in
the first period in order to work in the urban region in the second period.

Therefore, an individual makes a migration decision based on the wage she will receive in the second
period at the current location–the expected wage in the urban region (i.e., post-migration)–and the costs
of migration C. Individual i migrates from the rural region to the urban region at the beginning of period

12The assumption is supported by a number of studies estimating the spatial difference in the return to observable skills.
See, for example, Moretti (2013) and Diamond (2016) for the evidence from the U.S and see Lucas (1997) and Lagakos et al.
(2016) for the evidence from developing countries.

13Dell et al. (2012) and Garcia-Verdu et al. (2019) find significant impacts of weather shocks in poorer countries only.
Mendelsohn et al. (2001) and Mendelsohn et al. (2006) argue that economic development makes countries less sensitive
to weather shocks because more developed countries use technologies that are less sensitive to climate as they are more
capital-intensive and sophisticated.
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t if
AU

t + βU εi − C > AR
t δ

R(Tt) + βRεi, (11)

or simply

εi >
AR

t δ
R(Tt)−AU

t + C

βU − βR
. (12)

This condition is similar to what would arise in a Roy-Borjas model as the “selection equation”. A
parameter restriction βU > βR implies that only individuals with high enough value of εi (proxy for skills)
have an incentive to migrate. One can interpret this equation as an incentive-compatibility condition,
which identifies individuals for which migration is compatible with their economic incentives.

The second condition identifies individuals who are able to migrate; thus we call this condition the
feasibility constraint. An individual i needs enough income to pay the costs of migration at the end of
the first period. Individual i migrates only if the cost of migration is not greater than savings at the end
of the first period, which are wR

i = AR
t−1δ

R(Tt−1) + βRεi. The “feasibility constraint” is therefore written
as

AR
t−1δ

R(Tt−1) + βRεi > C,

or
εi >

C −AR
t−1δ

R(Tt−1)
βR

. (13)

Individual i migrates from the rural region to the urban region if both of the two conditions, (12) and
(13), are satisfied.

Given the distribution of εi and using equation (12), the fraction of people who have an incentive to
migrate from the rural to the urban region is

SR
Selection,t = 1− Φ

(
AR

t δ
R(Tt)−AU

t + C

βU − βR

)
, (14)

where Φ denotes the cumulative distribution function of the standard normal distribution. The fraction
of people whose feasibility constraint is not binding is, using equation (13),

SR
Feasibility,t = 1− Φ

(
C −AR

t−1δ
R(Tt−1)

βR

)
. (15)

While the selection equation depends on the current temperature Tt, the “feasibility constraint” depends
on temperature from the previous period Tt−1.14

The share of individuals who migrate from the rural region to the urban region is

SR
Migration,t =

S
R
Feasibility,t if SR

Selection,t > SR
Feasibility,t

SR
Selection,t otherwise.

14Even though there is a time lag between the two conditions, we consider a case of slow and permanent changes–long-run
decennial changes in the average temperatures are used in our empirical analysis. Such decennial change in temperatures will
affect subsequent generations’ migration through both effects. Both conditions have to be satisfied in order for individual i
to be willing and able to migrate.
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In the first case where SR
Selection,t > SR

Feasibility,t, there are some individuals who have incentives to migrate
but whose feasibility constraints are binding. Thus the share of individuals who migrate is given by
SR

Feasibility,t. If SR
Selection,t < SR

Feasibility,t, instead, the overall income level is high enough that the feasibility
constraint is not binding anymore. As a result, the share of individuals who migrate is given by SR

Selection,t.

3.2 Numerical Exercise: The Evolution of Rural-Urban Migration

In order to illustrate how the model works, we simulate a number of hypothetical transition paths of a
country from poor to middle-income. Alternatively we can interpret the graph as representing an ordered
set of identical countries at different levels of economic development.

3.2.1 Parameterization

We choose key parameter values to match the summary statistics from a representative poor economy
that has grown significantly in the considered decades, namely Vietnam. We use industrial and agricultural
value-added per worker as a rural and an urban productivity, respectively, taken from the WDI (World
Bank, 2018). Vietnam’s industry-to-agriculture productivity ratio equals 6 in the earliest available year
in the dataset, 1991. We therefore set our initial urban-to-rural productivity gap to 6. The process of
productivity growth is specified as ln(AU

t ) = 0.17+0.90 ln(AU
t−1)+εt where εt follows a normal distribution

with zero mean and a standard deviation of 0.028. The initial log productivity is ln(AU
1 ) = 1.5, therefore

AU
1 ≈ 4.48. The parameter determining the speed of technology diffusion is ρ = 0.025. A temperature

rise is assumed to generate a 10% decline in rural productivity (i.e. assuming δR = γ = 0.9), and we
analyze the new growth path with lower rural productivity.

The total costs of rural-to-urban migration is set to be 0.6 times the value of urban income, which
is a reasonable assumption given that international migration costs are 1-6 times greater than urban
income according to Grogger and Hanson (2011). We set returns from skills in the rural region to be
βR = 1.6. Herrendorf and Schoellman (2018) estimate returns to schooling in agriculture and industry
using data from poor countries and find that returns to schooling are about 1.5 times greater in industry
than agriculture. Therefore returns from skills in the urban region is set to βU = 1.6 × 1.5 = 2.4. See
Appendix C for more justification for these assumptions.

3.2.2 Description of Numerical Simulation

Equipped with the model and with the parameter values, we simulate 1,000 hypothetical paths of
urban productivity. Given realized urban productivity in each period, all other endogenous variables
are obtained from the model. The stochastic component of a simulation only comes from the error
term in equation (8). Figure 5 shows the average path of urban and rural productivity–indicated by
dashed and solid lines, respectively–and their one standard deviation bands obtained from the 1,000
simulations. In earlier periods, the rural region has lower productivity but it grows faster than the urban
region. As middle-income countries have lower urban-rural productivity gaps, this productivity evolution
is considered a transition from a poor country to a middle-income country.15 Alternatively, the horizontal

15The fact that the rural-urban productivity gap declines with development (average GDP per person) is shown in Figure
A1 in Appendix D. Furthermore, a number of studies document a time-series declining trend in regional income differentials,
so-called convergence (see Sala-i-Martin, 1996, for evidence from the U.S. and Japan).
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axis can be interpreted as a set of otherwise identical countries ranked from left to right in ascending level
of development–or equivalently, descending order of urban-rural productivity gaps.

Figure 6 shows the averages of the selection equation and of the feasibility condition from the 1,000
simulations. The thinner solid line, representing the selection condition, shows that incentives for rural-
urban migration is the greatest at earlier periods because the urban-rural productivity gap is the highest.
These incentives decline as the country grows. On the other hand, the thicker solid line, indicating the
feasibility constraint, shows that the share of individuals who can afford to migrate is lowest at earlier
stages of development and becomes larger at later stages. Lower rural income in earlier periods makes it
difficult to migrate. However, as rural productivity rises, a greater share of people have enough income to
pay migration costs. Interactions between these two conditions determine the share of individuals who are
able and willing to migrate. The share of such individuals first increases, as determined by the feasibility
constraint, and then decreases, as determined by the selection equation. The thick solid line in Panel A
of Figure 7 shows that the net migration rate has a hump-shaped curve, reaching its maximum around
period t = 22 of our simulation.

Given these results, we now describe the effect of negative temperature shocks on migration. Figure
6 shows the incentive and feasibility conditions when higher temperatures led to a 10% loss of rural
productivity. Such negative shocks shift the feasibility constraint down and move the selection equation
up. These shifts imply that the share of individuals who are able to migrate declines while the share
of individuals who are willing to migrate increases. A dashed line in Panel A of Figure 7 shows new
net migration rates with negative temperature shocks. Panel B describes differences between the net
migration rates with temperature shocks and the ones without such shocks. It summarizes the model’s
main predictions and provides the main hypothesis for our empirical results. An increase in temperatures
reduces rural-to-urban migration in countries at lower levels of development. This effect is explained by
the fact that the feasibility constraint prevails in these countries and negative temperature effects reduce
individuals’ income levels and therefore the capacity to migrate. However, for countries at intermediate
levels of development a negative temperature shock increases rural-to-urban migrations because it widens
the urban-rural productivity gaps, providing stronger incentives to move to the urban region.

Numerical results are summarized as follows:

1 The highest level of rural-to-urban migration is observed when a country is at an intermediate level
of economic development.

2 An increase in temperatures decreases rural-to-urban migrations in poor countries while increasing
such migration in middle-income countries.

In Figure 8 we represent these results in a space with the vertical axis measuring the net migration rate
and the horizontal axis measuring the level of population density (rural areas in the left and urban areas
in the right). Plotting average net migration rates in this space should lead to an upward-sloping net
migration line crossing the zero horizontal line, because the net migration rates are negative in rural
regions and positive in urban regions. We call this upward-sloping line the ‘net migration line’.

The first result of our model implies that the net migration line is flatter for poor and rich countries
and steeper for middle-income countries, as shown in Figure 8. The second result is also described in
the figure. The dashed lines in the graph represent net migration rates before the temperature increase,
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while the solid line represents the migration line after the temperature increase. The temperature increase
reduces, in absolute value, the net migration rates in poor countries because fewer people emigrate from
rural areas due to the negative productivity shock. This causes a clockwise rotation of the red line in
Figure 8 from the dashed to the solid one. To the contrary, the temperature increase would steepen the
net migration line of middle-income countries, producing a rotation of the blue line, from the dashed to
the solid one, because it leads to larger emigration (negative net migration) from rural areas and larger
positive net migration in urban areas.

4 Empirical Analysis using Grid Cell Level Observations

Guided by the theoretical predictions in the previous section, we first estimate the slope of the net
migration line for each of the four country groups. We then examine whether an increase in temperature
affects net migration rates, and if temperature effects differ depending upon the income levels of countries.

4.1 Estimating the Slope of the Net Migration Lines

The first set of regressions address the following two questions. (1) What is the direction of internal
migration? (2) Do we observe different levels of internal migration across countries? To answer these
questions, we calculate average net migration rates over the period 1970-2000 in rural, middle-rural,
middle-urban, and urban areas of each country, where these are defined by population density in the
earliest available year, 1980, as described in section 2.1. Countries are divided into four groups: poor,
lower-middle, upper-middle, and rich, as described in section 2.3.

Panel A of Figure 9 shows the estimated simple average net migration relative to the world average in
each of the four areas and for each of the four groups of countries. The horizontal axis measures relative
population density. The 95% confidence intervals associated with those averages are also shown. Panel B
of Figure 9 shows average net migration rates, controlling for country and grid cell specific characteristics,
obtained by estimating the following regression:

NetMigRatec,l,t = α1∆Templ,c,t + α2∆Precl,c,t +
∑
g∈G

αg
3D

g
l,c + Xl,c,tα4 + ul,c,t. (16)

The dependent variable NetMigRatec,l,t denotes the net migration rate in location (grid cell) l of country
c during the decade from year t−10 to year t. ∆Templ,c,t and ∆Precl,c,t are decennial changes in average
temperatures and precipitation, respectively. The variables Dg

l,c are three dummy variables taking value
one if location l is in area g for g = rural, middle-rural, middle-urban, and urban in country c, and G

is the set of the four areas. We drop an intercept from the regression so that we can include all of the
four dummies. The Xl,c,t is a vector of control variables including grid cell level population growth rate,
and country fixed effects. ul,c,t denotes an error term. We estimate equation (16) separately for the four
groups of countries.

Panels A and B of Figure 9 show similar net migration averages with or without controls, and with a
different standardization. We observe an upward-sloping relation of net migration rates in each country
group with relative density. Cells in urban and middle-urban areas have positive net migration rates
(i.e., receiving people on net). On the other hand, cells in rural and middle-rural areas have negative
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net migration rates on average (i.e., sending people on net). These suggest that internal migrations are
directed from rural areas to urban areas.

The figure also shows a clear across-group difference in net internal migration. Poor and rich countries
exhibit a flatter net migration line, and middle-income countries have the steepest net migration rate.16

These patterns of internal migration are consistent with our model’s prediction that rural-to-urban mi-
gration is highest at intermediate levels of development. We note that this relationship between internal
migration and economic development is similar to that between international migration and economic
development documented in Dao et al. (2018) and Clemens (2014). Those studies show that emigration
from a country increases as the country becomes richer, but after a certain development level further
development reduces emigration from the same country. Our data show that economic development has
a similar effect on internal migration.

4.2 Effects of a Temperature Increase

4.2.1 Regression Model to Estimate the Temperature Effect with Grid Cell Level Data

We now investigate temperature affects on the net migration rates. Guided by the theoretical predic-
tion, we allow for different migration responses to temperature shocks across areas of different population
density and across income groups of countries. Specifically, our regression equation introduces interaction
terms between the three dummies capturing relative population density within a country and temperature
changes. It is specified as follows:17

NetMigRatec,l,t = α0 + α1∆Templ,c,t +
∑

g∈G\{Urban}
αg

1D
g
l,c∆Templ,c,t + α2∆Precl,c,t

+
∑

g∈G\{Urban}
αg

2D
g
l,c∆Precl,c,t +

∑
g∈G\{Urban}

αg
3D

g
l,cDt + Xl,c,tα4 + el,c,t, (17)

where Dg
l,c are the dummies taking unity for area g = rural, middle-rural, and middle-urban within

country c. Dt denotes a time (decade) dummy. The ‘urban area’ dummy DUrban
l,c is excluded from the

interaction terms, as indicated in the expression. As a result, the main coefficient of temperature changes
α1 measures the impact of temperature shocks in the urban area. The coefficients for the interaction
terms capture differences in temperature effects on the net migration rates relative to the effect for urban
regions. For example, αRural

1 captures the difference between the temperature effects in the urban area
and that in the rural area. A linear combination of coefficients, α1 + αRural

1 , measures the temperature
effects in the poor area. We estimate regression (17) separately for countries in the poor, lower-middle
income, upper-middle income , and rich groups of the world distribution of GDP per capita.

16The parameter estimates imply that rural and middle-rural areas of lower-middle income countries experience emigration
that reduces their population by 15-20% every decade. Emigration from rural and mid-rural areas of poor countries is, instead,
5-15% of the population in each decade. That same rate is down to 0-5% of the population in rich and middle-rich countries.
The urban regions of each country, considering the simple average chart, receive immigration in the order of 5-7% of their
population in each decade.

17In the baseline estimation, standard errors are clustered at the grid cell level. We consider possible spatial correlation of
the error term because one grid cell is fairly small (about 50km × 50km) and climatic conditions are correlated across space,
which may lead to standard errors which are smaller than they are supposed to be. In order to correct for possible spatial
error correlations, in Appendix F.3, we show three other sets of standard errors clustered at more aggregated grid cells. We
find that our baseline results remain qualitatively unchanged.
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Estimating equation (17) makes it possible to test the implications described in Figure 8. One of them
is that, in poor countries, higher temperatures reduce the slope of the net migration line. In other words,
rising temperatures reduce out-migration from rural areas and have little effect on urban areas. Therefore
we expect the following:

Temperature effects in poor countries: αRural
1 > αMiddle-rural

1 > αMiddle-urban
1 >≈ 0.

The coefficient αRural
1 is positive because rising temperatures induce a fewer people to emigrate from the

rural area, increasing the net migration rate (e.g., if the number of individuals who emigrate decreases
by 50%, keeping population constant, the net migration rate changes from −6% to −3%). Because the
temperature effects are expected to be greatest in rural areas, the coefficient is largest for rural areas and
the ones for urban areas are smaller.

On the other hand, in middle-income countries an increase in temperatures would increase the slope
of the net migration line. Hence, we expect the following results:

Temp. effects in middle-income countries: αRural
1 < αMiddle-rural

1 < αMiddle-urban
1 < 0.

Contrary to the case of poor countries, the coefficient αRural
1 is negative because increasing temperatures

induce more people to emigrate, reducing the net migration rate (e.g., if the number of individuals who
emigrate increases by 50%, keeping population constant, the net migration rate changes from −6% to
−12%). The absolute value of the coefficient declines as moving towards urban areas as these areas are
less affected by temperature shocks. Lastly, if rich countries exhibit limited rural-urban migration as
income differentials are small and once economic and urbanization transition has fully taken place, we
expect the following:

Temp. effects in rich countries: αg
1 ≈ 0 for g = Rural, Middle-rural and Middle-urban.

Armed with these conjectures, we show the temperature effects implied from equation (17), estimated
separately for each income group of countries.

4.2.2 Baseline Results on the Temperature Effect with Grid Cell Level Data

Table 2 summarizes our baseline results and Figure 10 plots the linear combinations of the estimated
coefficients that gives the effect of temperature on net migration in each density area. The four graphs in
Panel A show the effect of a 1◦C rise in temperatures on the net migration rate, in percentage points, with
95% confidence intervals, for rural, middle-rural, middle-urban and urban areas.18 It shows two important
results. First, rural areas of a country are more affected by temperatures than urban areas. Second, there
are clear cross-country differences in line with the prediction of the model–higher temperatures have a
positive effect on the net rural migration rate in poor countries, and have a negative effect on rural

18We only show the coefficients on temperature change. While we also include in every regression the precipitation changes
interacted with the same dummies, those coefficients turn out to be small and usually not significant, so we do not show them.
Table 2 shows results separating country groups between poor, lower-middle income, and upper-middle income countries–
leaving out rich countries–for which effects are always very small. Figure 10 plots temperature effects from rich countries as
reference.
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migration in upper-middle income countries.
In order to see more clearly how the effect of temperature works to change net migration rates, Panel

B of Figure 10 shows average net migration rates with and without the estimated temperature effects.
The dashed lines show the average net migration rates before the increase in temperature, while the solid
lines indicates those which include the effect of increasing temperature, shown in Panel A. The solid lines
are obtained by calculating the effect of a significant rise in temperatures—defined as the 90th percentile
of historical changes in the average temperature over the period 1970-2000—on net migration rates.

Several interesting patterns emerge. First, rising temperatures work to reduce rural out-migration
in poor countries. The positive temperature effects are particularly significant in the rural regions of
poor countries–a 1◦C rise in temperatures increases the net migration rate by 4.7 percentage points. The
temperature effects are positive in middle-rural areas although these are insignificant. In contrast, tem-
perature effects turn to be negative in urban areas. These results imply that a rise in temperature flattens
(or attenuates) the net migration line of poor countries because it reduces rural-to-urban migration. On
the other hand, a rise in temperature increases rural-to-urban migration in upper-middle income coun-
tries. The temperature effects on net migration rates are negative and most significant in rural areas,
while they are close to zero in urban areas. This implies that a higher temperature works to steepen the
slope of the net migration line in the upper-middle income countries, especially by increasing emigration
from rural areas.

Third, for rich countries, temperature effects are small in magnitude and generally non-significant. In
rich countries, rural productivity may be less affected by temperature, as documented in prior studies (e.g.,
Dell et al., 2012). Moreover income inequality is smaller, and the scope for rural-to-urban migration more
limited, as most of the population is in urban areas. Thus these insignificant results are not surprising.
Lastly, in lower-middle income countries, a higher temperature reduces the net migration rate in the
urban regions and it has an insignificant effect in the rural regions. These effects are somewhat different
from the theoretical predictions. This is presumably due to the fact that this group includes countries in
the middle of a transition from being a poor country to being a middle-income country, making it difficult
to observe a clear-cut temperature effect. In the next section, we show that the temperature effects on
this group turn to be consistent with the theory once non-linearity of temperature effects are taken into
consideration.

4.2.3 Robustness Checks on the Temperature Effect with Grid Cell Level Data

This section addresses a number of potential critiques to our baseline results. First, prior studies
show that temperatures have non-linear effects, meaning that rising temperatures have a negative impact
on economic variables above a certain threshold (e.g., Burke et al., 2015; Schlenker and Roberts, 2009;
Bohra-Mishra et al., 2014).19 In order to respond to this potential critique, we interact temperature
changes with a dummy variable taking unity if average temperatures are above the 75th percentile of the

19Burke et al. (2015) show that global productivity is maximized when the annual average temperature is at 13◦C and a
further increase in temperatures reduces world production. Schlenker and Roberts (2009) focuses on the effect of temperatures
on crop yield and finds that crop production increases up to 29-30◦C before declining once temperatures pass the threshold.
Bohra-Mishra et al. (2014) show that the migration likelihood is also a non-linear function of temperature using the household-
level data from Indonesia. Therefore, some previous studies include the level of temperatures, its square term, and even
higher order polynomials to allow non-linearity (e.g., Burke et al., 2015; Bohra-Mishra et al., 2014) or introduce a step
damage function of temperatures by introducing dummies (e.g., Schlenker and Roberts, 2009; Garcia-Verdu et al., 2019).
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world temperature distribution. This makes it possible to examine whether there is an additional effect
of temperature changes in grid cells that are already hotter than most.

Figure 11 presents estimated temperature effects, separately in hot grid cells and other grid cells. The
temperature effects in poor countries are not very different between hot and less hot areas. On the other
hand, temperature effects are different across hot and less hot areas in lower-middle income countries.
Interestingly, less hot areas react to a higher temperature in the same way as poor countries, while hot
areas respond to it as in upper-middle income countries. Our explanation for these results are as follows.
First, in less hot areas, rising temperatures probably work to increase agricultural productivity because
temperatures have a non-linear effect on agricultural production. As a result, a higher temperature
improves economic conditions, inducing fewer people to emigrate from those areas. Therefore negative
net migration rates increase. Second, in hot areas, rising temperatures reduce agricultural productivity,
which induces emigration from those areas as in upper-middle income countries. The third panel shows
that, in upper-middle income countries, rising temperatures have greater effects in hot areas, which
increases emigration from rural areas more significantly than in less hot areas.

Results from a series of other robustness checks are summarized in Figure 12. Panels A, B, and C show
results from poor, lower-middle income, and upper-middle income countries, respectively. Each of of these
panels includes four charts for rural, middle-rural, middle-urban, and urban, from left to right. Each chart
shows point estimates and associated 95% confidence intervals for six different specifications as indicated in
the chart for the rural area. Specification (1) drops observations with extreme temperature changes where
these are defined as ∆Templ,c,t above the 95th percentile and below the 5th percentile of the distribution in
the data used in the regression. Specification (2) omits observations with extreme precipitation, ∆Precl,c,t,
greater than the 95th or less than the 5th percentiles. Specification (3) excludes both extreme temperature
changes and precipitation changes. Specification (4) drops extreme net migration observation changes,
defined as the top 1% and bottom 1% of the net migration rates in the baseline sample. Specification
(5) excludes observations from Sub-Saharan Africa, as previous studies argue that countries in the region
are different in terms of the impact of weather shocks.20 If so, our results may be driven by countries in
the region. Lastly, in specification (6), we drop highly urbanized countries (with urban population above
the 75th percentile of the distribution) as they may have small impacts from agricultural productivity.
Overall, the results show that these additional considerations do not change much the baseline results.
Estimates from the cell-level analysis are quite robust and stable.

5 Analysis using Country-level Data

We examine the impact of temperatures on rural-to-urban migration using aggregate data at the
country-level. We first discuss our regression model and then present estimation results. The estimated
coefficients from these regressions and the anticipated temperature changes in the next 80 years are then
used to predict current and future internal migration rates.

20For example, Barrios et al. (2010) show that rainfall shortages in Sub-Saharan Africa during 1960-2000 are responsible
for lower income levels in the region today. They also argue that the significant rainfall impacts are observed in poor Sub-
Saharan African countries but not in other countries. Barrios et al. (2006) find that rainfall shortages induced urbanization
in Sub-Saharan African countries and argue that the climate-induced urbanization is not observed elsewhere.
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5.1 Empirical Framework for Country-level Analysis

To analyze the impact of temperatures on rural-urban migration with country-level data, we estimate
the following equation:

AggMigRates
c,t = γ0 + γ1∆Tempc,t +

∑
h∈H\{Rich, Up-mid}

γh
1D

h
c ∆Tempc,t + Xc,tγ3 + εc,t, (18)

for s = “Total” and “Rural Mid-rural”, and these dependent variables are defined in section 2.1. We
use a sample excluding rich countries because these countries exhibit little rural-to-urban migration, and
temperature effects are mostly insignificant in those countries. ∆Tempc,t denotes changes in country-
level long-run average temperatures. H is a set of groups of countries including poor, lower-middle,
upper-middle, and rich. Dh

c indicates a dummy variable taking unity if country c is in group h and zero
otherwise.

Because we exclude observations from rich countries from the sample and the regression equation
introduces interaction terms with a poor country dummy DPoor

c and a lower-middle country dummy
DLower-middle

c , the coefficient for ∆Tempc,t γ1 quantifies temperature effects in upper-middle countries. A
linear combination of two coefficients produces the effect on lower middle-income and poor countries. For
instance, γ1 + γPoor

1 , measures temperature effects on poor countries. The term Xc,t denotes a vector of
country-level controls. Our baseline model includes the GDP population growth rates where these are
long-run rates of change from the beginning of the decade to the end of the decade. Then we introduce
precipitation, the log of initial population, the log of initial GDP, the initial agricultural and manufacturing
value-added as a share of GDP, and their decennial changes as controls. εc,t is the error term.

Because we construct these measures from grid cell level observations, our sample includes more
than 160 countries. However, we omit several small countries and islands where measurement errors in
aggregation can be large, and we include countries for which we have some basic control variables (such
as GDP) going back to 1970. These reduce the sample size substantially.21 We also exclude rich countries
from the regressions. As a result, the total number of countries in the sample is 77.

5.2 Country-level Results

Baseline results are summarized in Table 3. Panel A shows the effects of a 1◦C rise in temperatures
on the total internal migration rate constructed using formula (2). Panel B shows the effect of the same
rise in temperature on the rural out-migration rates defined in formula (3). Each panel shows estimated
coefficients for the dummies and linear combinations of the coefficients indicating temperature effects on
the country-level migration rates. Column (1) includes only temperature changes without introducing
any interaction term with income-level dummies. The two panels show a small insignificant temperature
effect. However, it does not allow different responses to temperatures across income groups of countries,
which is an important distinction as suggested by the grid cell level analysis.

Column (2) adds interaction terms between temperatures and income-level dummies, making it pos-
sible to estimate heterogeneous migration responses to temperatures depending on the income-level of
countries. This specification shows that, in upper-middle income countries, higher temperatures increase

21See Appendix B for the list of the countries.
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total internal migration rates by around 2 percentage points and rural out-migration rates by 0.6 per-
centage points. On the other hand, in poor countries the same increase in temperatures reduces these
two measures of internal migration rates by about 3 and about 2 percentage points, respectively.

Columns (3), (4) and (5) introduce additional controls. Column (3) adds precipitation. The levels of
population and GDP are controlled for in column (4). Industrial structures of the countries are controlled
for in column (5). In columns (4) and (5) of Panel A, the negative temperature effects in poor countries
lose statistical significance, presumably due to the fact that total internal migration rates employed in
the regressions include all internal migrations in addition to rural out-migrations. However, as shown
in Panel B, the temperature effects on the rural out-migration rates are significant in all columns. The
fact that only the effects on rural out-migration rates remain significant in all columns is consistent with
the model’s theoretical explanation. Coefficients from lower-middle income countries are insignificant.
These insignificant effects in lower-middle income countries are consistent with the grid cell level results
that, in this group of countries, rising temperatures have limited effects in less hot areas and we observe
poor-country-like effects in hot areas only. Overall, the results from the country-level data confirm our
grid cell level evidence.

5.3 Robustness Checks for Country-level Results

We conduct a set of robustness and present results in Figure 13. Panels A and B show estimated
temperature effects on the total internal migration rates and the rural out-migration rates, respectively.
Each of the two panels shows point estimates for poor, lower-middle, and upper-middle countries, from
the left to the right. Vertical bars indicate 95% confidence intervals. The first four plotted bars describe
the results from columns (2)-(5) in Table 3. Subsequent bars show results from additional robustness
checks. The fifth bar in the chart drops observations with extreme temperature changes, which is defined
as temperature changes above the 95th percentile of the distribution. The sixth bar includes a dummy
to control for countries whose average temperature is above the 75th percentile. The seventh bar omits
observations with extreme precipitation changes, defined using the 95th percentile of the distribution of
precipitation changes. The eighth bar omits observations with extreme internal migration rates, defined
as top 1% and bottom 1% of the migration rate observations for each measure. All of these are to check
weather outliers are drivers of our results. Results from these robustness checks are similar to our baseline
results.

The ninth bar omits urban countries defined as those with urban populations greater than the 75th
percentile of the observations in 1970. The tenth bar excludes less agriculture-based countries, defined as
those with agricultural value-added as a share of GDP less than the 25th percentile in 1990.22 Prior studies
show that agricultural sectors are more sensitively affected by weather shocks (e.g., Mendelsohn et al.,
2001; Mendelsohn et al., 2006; and Schlenker and Roberts, 2009). Therefore, these excluded countries are
less suited to the model’s underlying mechanisms leading to migratory responses to rising temperatures.
Therefore these are expected to magnify the temperature effects on the internal migration rates. Indeed,
in Panel B the temperature effects on poor countries become about 0.2 percentage points greater and the

22The data on urban population come from 1970 while the data on agricultural value-added share come from 1990. This
inconsistency in the year that data were retrieved is due to a difference in availability of a large enough sample. The data
are obtained from the WDI (World Bank, 2018).
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effects on upper-middle income countries also become about 0.35 points greater in absolute values due
to exclusions of less suited countries. Overall, Figure 13 shows that our results are robust to dropping
outliers and excluding some sub-sets of the baseline sample.

Lastly, we acknowledge that the temperature effects on the total migration rates are not robust as
shown in Panel A. While these are significant in all columns except for the one considering extreme
precipitation changes for upper-middle income countries, those on poor countries are insignificant in
all specifications for robustness checks. As we discussed already, this is probably due to the fact that
temperatures affect rural-to-urban migrations only. The dependent variable employed in Panel A includes
all internal migrations. Therefore, insignificant temperature effects are not surprising as this measure does
not accurately capture rural-to-urban migration.

5.4 Projecting Internal Migration Rates for 2020-2100

This section predicts the expected migration responses to temperature changes for the period 2020-
2080 using the estimated coefficients in regression (18) and projected temperature changes in the decades
spanning 2020-2100 obtained from the Climate Change Knowledge Portal (World Bank, 2018). It provides
projections under a pessimistic scenario called A2, based on a forecast of higher carbon emissions and
therefore higher increase in average temperatures, and an optimistic scenario called B1, based on a
lower emission forecast. Projected average temperatures are shown in Figure 14 where the lines in the
middle are the median projection and an associated band indicates a range of 10th and 90th percentiles
of projections. The left and right panels show projections under A2 and B1 scenarios, respectively.
All groups of countries–poor, lower-middle, and upper-middle–are expected to experience an increase in
temperatures of about 4◦C and of 2.3◦C by the year 2100 under the A2 and B1 scenarios, respectively.

Expected internal migration rates are obtained by using the estimated coefficients from the country-
level regression (18), with all variables kept constant at the level in 2000, and only the temperature
changing to its projected values in the coming decades t = 2020-40, 2040-60, 2060-80, and 2080-2100, as
follows:

̂AggMigRates
c,2000,t = γ̂0 + γ̂1∆TempProjection

c,t +
∑
g∈G

γ̂g
1D

g
c ∆TempProjection

c,t + Xc,2000γ̂γγ3 + ε̂c,2000,

where ̂AggMigRates
c,2000,t denotes the predicted internal migration rates in country c during the decade

between year t−10 and year t, including all internal migration if s = ‘Total’ and only rural out-migration
if s = ‘Rural Mid-Rural’. It includes subscript 2000 because it uses control variables, other than the
temperature, taken from the period 1990-2000. γ̂0, γ̂1, γ̂g

1 , and γ̂γγ3 denote estimated coefficients and ε̂c,t are
the estimated residuals. We use estimated coefficients from column (3) of Table 3 to perform this exercise.
∆TempProjection

c,t are projected temperature changes in every two decades, 2020-2040, 2040-2060, 2060-
2080, and 2080-2100, compared with a control period of 1961-1999. In order to match with our regression
specifications exploiting historical decennial changes in the average temperatures, we divide these projected
changes by two to find the decennial migration relative to the average temperature level during the period
1961-1999. As a result, computed migration rates are the ones expected when temperature levels rise to
the projected levels relative to the average temperatures during 1961-1999. Variations in these predicted
variables come from cross-sectional and time-series variations in ∆TempProjection

c,t as predicted for future
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decades.
Figure 15 summarizes results from this exercise.23 Panel A shows the expected total internal migration

rates while Panel B presents the rural out-migration rates. Both panels show poor countries are expected
to experience a decline of internal migrations. Panel A shows that the average total internal migration
rate in poor countries was 7.10% in 2000. This figure is expected to decline to 5.03% and 5.48% by
2080-2100 under A2 and B1 scenarios, respectively. Panel B shows that the average rural out-migration
rate was 1.92% in 2000. This number is expected to decline to 1.37% and 1.89% by 2080-2100 under the
two scenarios, respectively.

In contrast with poor countries, upper-middle income countries are expected to see an increase in
internal migration rates. Panel A indicates that the average total internal migration rate was 6.99% in
2000, and this figure is expected to increase to 7.80% and 7.05% under scenarios A2 and B1, respectively.
The rural out-migration rate in this group was 1.22% in 2000, and would increase to 1.44% and 1.24%
under the two scenarios, respectively. The temperature effects on lower-middle income countries are
between those on the poor and upper-middle countries. Therefore, the internal migration rate for this
group is expected to remain rather stable or decline slightly. The wide confidence intervals for lower-middle
countries are due to greater standard errors in the regressions.

This exercise produces the expected internal migrations for individual countries. We discuss results
for a couple of representative countries. First, in Malawi, a country squarely in the group of “poor
economies", the total internal migration rate was 4.63% per decade as of 2000. This figure is expected to
decline to 1.9% or 2.4% by 2080-2100 under A2 and B1 scenarios, respectively. This is a drastic reduction
in internal migration by almost half. Using this rate and the population in the country in 2000, 11.3
million, we obtain that the total number of internal migrants was 527 thousand in 2000. This number, in
our predictions, is expected to decline to 216 or 271 thousand under the more or less pessimistic scenario,
respectively. This would imply that 255-310 thousand people per decade, who would have migrated, would
instead remain in rural poverty as a consequence of lower agricultural income. On the other hand, in
Argentina, an upper-middle income country, the total internal migration rate was 8.8% per decade in 2000.
According to our calculations this number is expected to increase to 10.1% or 9.4% by 2080-2100 under A2
and B1 scenarios, respectively. By using Argentina’s population in 2000, 37 million, the total number of
internal migrants in 2000 was 3.2 million, and this will grow to to 3.7 million or 3.5 million under the two
scenarios, respectively. This calculation suggests that rising temperatures would drive 300,000-500,000
more people per decade to move from sparsely populated areas to more urban environments in Argentina.
These examples show that climate changes may affect the mobility of a large number of people in each
country.

There are two reasons for taking the simulations above with caution. First, we employ a linear model
to project the effect of temperatures, but migration responses may not be linear, especially as adaptation
may imply different effects in the long-run. Second, predicted temperature are subject to error and these
predictions are beyond the historical experience and their increase is outside the range analyzed for the
1970-2000 period, so out of sample prediction may be inaccurate.24 Nonetheless, this exercise gives us a

23See Tables A11 and A12 in Appendix E for data associated with this figure. The average internal migration rates in
2000 shown in Figure 15 are slightly different from the ones in Figure G and Table A2 because some countries are dropped
from the analysis in this section because of missing control variables for these countries. See Appendix G for more details.

24The predicted temperature increases–4◦C rise and 2.5◦C rise under A2 and B1 scenarios, respectively–are greater than
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good sense of how severe the temperature effects could be in the coming decades.
To summarize, the results from this section establish two facts regarding the most important effects

likely to generate consequential changes in the next decades. First, rising temperatures will significantly
reduce rural-to-urban migrations in poor countries. Second, for countries on their way to industrialization,
in the upper-middle part of world income, an increase in temperatures may work to increase rural-to-
urban migration. As a result, global warming may increase polarization of countries in the world in terms
of the levels of economic development by further hurting development in countries at the lower tail of
income per person distribution and encouraging it in the upper-middle part.

6 Conclusions

In this study we have examined the impact of rising temperatures on internal migration using a
56km×56km grid cell level dataset on net migration rates at the 10-year frequency during the period
1970-2000. The results show that, within poor countries, rising temperatures reduced emigrations out of
rural areas. This is consistent with the well-established observation that increases in temperatures reduce
rural income and exacerbate the poverty of rural residents, making costs of migration prohibitive. On
the other hand, in middle-income countries, higher temperatures increased migrations out of rural areas
into cities because they increased urban-rural income differentials and hence the incentive to migrate
for a population that could afford to do so. The results also show that temperature effects on internal
migration are insignificant in rich countries.

These asymmetric migration responses are confirmed by regressions with country-level data con-
structed by aggregating the grid cell level data. The results imply that a 1◦C increase in long-run
average temperatures reduces the net migration rate by about 2 percentage points in poor countries. On
the other hand, the same rise in temperatures increases the internal migration rate by 0.5-1 percentage
points in upper-middle income countries. We find particularly significant results when we employ rural
out-migration rates as the dependent variable, suggesting that out-migration from rural areas responds
most strongly to temperatures. These results on internal migration reinforce the country-level evidence
on international migration documented in Cattaneo and Peri (2016). Our results suggest that rising
temperatures help urbanization in middle-income countries. On the other hand, a higher temperature
works to exacerbate economic conditions worsening the rural poverty trap in poor countries.

We project future temperature increases to show that poor countries will suffer a consequent significant
decline in emigration from their rural areas, which implies an increase of people stuck in rural poverty.
We should interpret these results with caution. First, our analysis is based on the data for 10-year
long-run migrations and decennial changes in average temperatures and precipitation. The estimated
coefficients measure long-run effects and they differ from the ones estimated using year-to-year short-
run variations in weather. Second, we employ estimated coefficients to predict out-of-sample internal
migration rates. The expected rise in temperatures in the next decades is beyond what it has been in the
sample period in the regressions, hence the predictive ability of our simple linear model may be limited.
These considerations suggest that our predicted internal migration rates maybe be over-estimated because

temperature changes during the sample period. According to Table 1, the average decennial rise in average temperatures
during 1970-2000 was 0.15◦C and its three standard deviation range was [−0.96, 1.26]. Clearly, the predicted increase in
temperatures is outside this range.
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of possible adaptation and non-linearity of response. Nevertheless, given the very limited evidence on the
relation between climate change and internal migration, the present paper opens up a line of inquiry based
on a simple model and very detailed and large amount of data, which we think can be pursued further.
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Figure 1: Net Migrations, Europe, 1990-2000
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Table 1: Summary Statistics of the Data for Grid Cell Level Regressions

Obs. Mean St. dev. Min Max
Net migration rates

Full sample 96,792 -6.52 19.54 -98.51 88.85
Poor countries 24,236 -8.25 20.02 -98.51 87.93

Lower-middle income countries 12,703 -14.38 27.27 -98.19 88.31
Upper-middle income countries 33,695 -5.34 18.32 -97.63 88.85

Rich countries 26,158 -2.62 14.06 -96.39 88.74

Net migration rates (relative to the world average)
Full sample 96,792 0.00 19.51 -92.38 95.74

Poor countries 24,236 -1.73 20.00 -92.38 94.89
Lower-middle income countries 12,703 -7.87 27.26 -91.62 93.78
Upper-middle income countries 33,695 1.18 18.27 -92.04 95.74

Rich countries 26,158 3.90 14.04 -90.19 94.21

Long-run average temperatures (degree Celsius)
Full sample 88,855 14.61 9.88 -19.86 35.21

Poor countries 23,191 18.62 9.33 -12.48 31.97
Lower-middle income countries 10,984 19.32 9.54 -13.26 30.52
Upper-middle income countries 31,787 13.63 9.80 -13.85 35.21

Rich countries 22,893 9.63 7.77 -19.86 31.36

Changes in the long-run average temperatures
Full sample 88,855 0.15 0.37 -4.94 4.79

Poor countries 23,191 0.14 0.27 -1.96 1.77
Lower-middle income countries 10,984 0.13 0.38 -2.77 2.06
Upper-middle income countries 31,787 0.16 0.41 -4.94 4.79

Rich countries 22,893 0.15 0.40 -3.77 3.62

Long-run average precipitation (mm, at monthly scale)
Full sample 88,855 73.86 58.47 0.02 979.00

Poor countries 23,191 77.73 53.86 0.10 457.20
Lower-middle income countries 10,984 98.56 76.07 0.02 666.97
Upper-middle income countries 31,787 70.10 63.18 0.07 979.00

Rich countries 22,893 63.33 39.67 2.13 426.02

Changes in the long-run average precipitation (mm, at monthly scale)
Full sample 88,855 -0.43 9.78 -194.89 261.21

Poor countries 23,191 -0.80 10.04 -110.04 88.26
Lower-middle income countries 10,984 -2.88 15.03 -128.14 115.59
Upper-middle income countries 31,787 0.07 9.10 -194.89 261.21

Rich countries 22,893 0.43 6.44 -59.77 62.86

Population growth rates
Full sample 96,704 1.68 1.00 -1.83 5.17

Poor countries 24,236 2.17 0.76 -1.83 5.14
Lower-middle income countries 12,615 2.35 0.74 -1.70 4.59
Upper-middle income countries 33,695 1.52 1.03 -1.18 4.67

Rich countries 26,158 1.11 0.84 0.02 5.17

Notes: The table shows summary statistics of variables used for regressions using grid cell level observations. Summary
statistics for the full sample as well as for each of the four groups of countries are shown. The country groups are based on
the 25th, 50th, 75th percentiles of the world distribution of GDP per capita. Observations vary across grid cells except the
population growth rate, which is the country-level data.
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Figure 2: Net Migration Rates from Rural Locations and Changes in Temperatures, 1990-
2000
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Notes: The figure shows the relationship between the net migration rates from rural locations only in the decade 1990-2000
and changes in temperatures in the same period. Each panel includes a different set of countries. The size of bubbles
measures population size of grid cells.

Figure 3: Country-level Aggregate Internal Migration Rates, 1970-2000
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middle-rural, the left panel shows the out-migration from rural areas only
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Figure 4: Rural Out-Migration Rates and Changes in Temperatures, 1990-2000
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Notes: The figure shows the relationship between the net migration rates in the decade 1990-2000 and changes in temperatures
in the same period.

Figure 5: Urban and Rural Productivities
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Figure 6: The Impact of Temperature Shocks on Internal Migrations
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Notes: The figure describes urban and rural productivities. The solid lines indicate the mean of 1,000 growth paths from
1,000 simulations. The dashed lines indicate the ones with temperature shocks reducing rural productivity. See Table A3 for
parameter values.

Figure 7: The Impact of Temperature Shocks on Internal Migrations
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Notes: The solid lines indicate the mean of the variables from 1,000 simulations. See Table A3 for parameter values.
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Figure 8: The Theoretical Impact of Temperature Shocks on Internal Migrations in Poor
and Middle-Income Countries
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Notes: The figure shows theoretical impacts of rising temperatures on the internal migration rates in poor and middle-income
countries.

Figure 9: Mean Grid Cell Level Net Migration Rates
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Notes: The vertical axis of the figure measures average net migration rates, for three decades during 1970-2000, in percent,
with 95% confidence intervals. Top 1% and bottom 1% of net migration observations are dropped as outliers. In Panel A, the
net migration rates are normalized so as to make the mean value to be zero for observations in each decade. Panel B shows
the net migration rates (raw data, not relative to the world average) with control variables. See Table A4 for a regression
table associated with this figure.
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Table 2: Grid Cell Level Regressions, Rural-Urban Dummies based on Population

Dependent variable = Net migration rates
Definition of rural-urban areas is based on Population at the grid cell level

Poor Lower-middle Upper-middle
(1) (2) (3) (4) (5) (6)

∆Temp 1.484*** -0.312 -0.674** -2.344*** -0.874*** -0.441***
(0.219) (0.192) (0.292) (0.386) (0.111) (0.0800)

DMiddle-urban ×∆Temp -0.330 0.509 -0.517***
(0.249) (0.664) (0.139)

DMiddle-rural ×∆Temp 0.908** 3.200*** -0.405
(0.450) (0.764) (0.268)

DRural ×∆Temp 5.054*** 2.853*** -0.905***
(0.619) (0.768) (0.291)

Observations 23,191 23,191 10,898 10,898 31,787 31,787
Grid cells 7,851 7,851 3,734 3,734 10,770 10,770
R-squared 0.263 0.272 0.248 0.256 0.135 0.146

Temperature effects (Linear combination of coefficients)
Middle-urban areas -0.642*** -1.834*** -0.958***

(0.199) (0.563) (0.140)
Middle-rural areas 0.597 0.857 -0.845***

(0.414) (0.683) (0.268)
Rural areas 4.742*** 0.510 -1.346***

(0.592) (0.660) (0.286)
DRural-urban×Year fixed effects Yes Yes Yes
DRural-urban ×∆Precipitation Yes Yes Yes

Notes: Robust standard errors clustered at the grid cell level are in parentheses. All regressions include DRegion×Year fixed
effects, DRural-urban×Population growth rates, and country fixed effects, where DRural-urban indicate dummy variables for
rural areas, middle-rural areas, middle-urban areas, and urban areas and DRegion denote dummy variables for regions in the
world including Asia, Europe, North America, Oceania, South America, Middle East and North Africa, and Sub-Saharan
Africa. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.
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Figure 11: Grid Cell Level Regressions, Robustness Checks, Addressing Non-Linearity of
Temperature Effects
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Notes: The figure shows point estimates of the impact of temperatures on the internal migration rates with hot location
dummies to address non-linear effects of temperatures. Dots in the middle of bars denote point estimates and the bands
indicate the 95% confidence intervals. See Table A5 in Appendix E for a regression table associated with this figure. Results
from odd number columns in the table are plotted.
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Figure 12: Grid Cell Level Regressions, Robustness Checks
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Panel B: Lower-middle income countries
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Panel C: Upper-middle income countries

Omit extreme temp.

Omit extreme prec.

Omit extreme int’l migration rates

Omit Sub−Saharan Africa

Omit urban countries

Omit less ag. countries

−
3

−
2

−
1

0
1

2

T
h
e
 e

ff
e
c
t 
o
f 
te

m
p
e
ra

tu
re

s
 f
ro

m
 o

w
n
 l
o
c
a
ti
o
n
s

Rural

−
3

−
2

−
1

0
1

2

Middle−rural

−
3

−
2

−
1

0
1

2

Middle−urban

−
3

−
2

−
1

0
1

2

Urban

Notes: The figure shows point estimates of the impact of temperatures on the internal migration rates. Dots in the middle
of bars denote point estimates and the bands indicate the 95% confidence intervals. See Table A6 in Appendix E for a
regression table associated with this figure.
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Table 3: Country-level Regressions, Baseline Results

Panel A: Total internal migration rates
(1) (2) (3) (4) (5)

∆Temp 0.605 2.192** 2.107* 2.643** 3.076**
(0.957) (1.054) (1.058) (1.090) (1.334)

DLower-middle ×∆Temp -1.527 -1.417 -1.822 -2.054
(1.923) (1.930) (2.745) (3.124)

DPoor ×∆Temp -5.006*** -4.939*** -4.309* -5.240*
(1.711) (1.736) (2.491) (3.070)

Observations 202 202 202 144 140
Countries 77 77 77 66 63
R-squared 0.065 0.074 0.084 0.238 0.246

Temperature effects (Linear combination of coefficients)
Lower-middle countries 0.665 0.690 0.821 1.022

(1.664) (1.671) (2.489) (2.653)
Poor countries -2.813* -2.832* -1.666 -2.164

(1.434) (1.466) (2.374) (2.579)
Panel B: Out-migration rates, Rural and Middle-rural
(1) (2) (3) (4) (5)

∆Temp 0.137 0.638** 0.588* 0.904** 1.117***
(0.307) (0.313) (0.314) (0.363) (0.348)

DLower-middle ×∆Temp -0.177 -0.116 -0.204 -0.345
(0.560) (0.552) (0.778) (0.829)

DPoor ×∆Temp -2.638*** -2.516*** -3.025*** -3.276***
(0.530) (0.522) (0.809) (0.865)

Observations 200 200 200 144 140
Countries 77 77 77 66 63
R-squared 0.067 0.092 0.111 0.250 0.285

Temperature effects (Linear combination of coefficients)
Lower-middle countries 0.461 0.471 0.699 0.773

(0.500) (0.490) (0.686) (0.741)
Poor countries -2.000*** -1.928*** -2.121*** -2.158***

(0.475) (0.474) (0.768) (0.775)
Controls

∆Precipitation Yes Yes Yes
ln(Pop) Yes Yes

ln(GDP ) Yes Yes
Ag. value-added share Yes Yes

Manu. value-added share Yes Yes
∆Ag. value-added share Yes

∆Manu. value-added share Yes

Notes: All regressions include the population growth rates and the GDP growth rates during each decade as controls. Robust
standard errors clustered at the country-level are in parentheses. ***, **, and * indicate statistical significance at the 1%,
5%, and 10% level, respectively.
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Figure 13: Results from Country-level Regressions
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Panel B: Temperature effects out-migration rates, rural & middle-rural
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Notes: The figure shows plots point estimates and their 95% confidence intervals of the impact of temperatures on the internal
migration rates. Plotted point estimates labeled as Baselines (2)-(5) are based on regression results reported in Table 3,
columns (2)-(5). See Table A7 in Appendix E for other plotted point estimates.
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Figure 14: Projected Temperature Change
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Figure 15: Projected Temperature Change and Precipitation Change

Panel A: Predicted internal migration rates
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Panel B: Predicted out-migration rates, Rural and middle-rural
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Notes: The figure shows anticipated net migration rates based on temperature projections from the Climate Change Knowl-
edge Portal (World Bank, 2018). The bands are 90% confidence intervals. See Tables A11 and A12 in Appendix G for data
associated with this figure.
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Appendix (Not for Publication)

A Dataset

A.1 Data Sources

A.1.1 Net Migration Data

The net migration measure comes from the Global Estimated Net Migration Grids By Decade, v1
(1970-2000) (de Sherbinin et al., 2015).25 This dataset provides estimates of net migration (in-migration
minus out-migration) per one-kilometer grid cell for three decades, 1970s, 1980s and 1990s. We present
their method of imputing the net migration measure. The explanation below is based on de Sherbinin
et al. (2015).

Step 1 They use the History Database of the Global Environment, Version 3.1 (HYDE)26 population grids
for the years 1970, 1980, 1990 and 2000 to find one degree grids representing the rates of change in
population in each decade.

Step 2 They applied those rates to the Global Rural-Urban Mapping Project, Version 1 (GRUMP)27 popu-
lation grids for 2000, producing grids to 1970, 1975, 1980, 1985, 1990, and 1995, and forecast grids
for 2005 and 2010. This ensured that the global population data set with the greatest number of
census inputs was utilized to spatially allocate population in one time slice, and also enabled the
analysis to be conducted at the higher resolution of the GRUMP product.

Step 3 They adjust the global grids to match country totals from the UN population estimates for the
given year.

Step 4 In order to estimate that portion of population growth that is due to natural increase (birth minus
deaths) for each grid cell in each decennial period, they applied subnational observed and imputed
rates of natural increase (crude birth rates minus crude death rates) to the population grid at the
beginning of each time to find decennial estimated natural increase. Similar to Step 3, they adjust
the natural increase grids to match the UN estimates of natural increase at the country level.

Step 5 For each decade, they subtract the population in time 1 (e.g., 1970) from the population in time 2
(e.g., 1980) in order to find the change in population in the grid cell, and then subtract the natural
increase in the grid cell (from Step 4) in order to find an estimate of net migration for the grid cell
in the decade. This is based on population balancing equation:

Population growth = (Births−Deaths) + Net migration,

which can be solved as

Net migration = Population growth− (Births−Deaths).

The unit of the net migration measure in the original dataset is the net change of the number of
people (due to migration) per 1km2. We collapse the highly disaggregated observations to a 0.5 × 0.5
degree resolution. The original observations are aggregated by taking means. As a result, the unit of

25The same dataset on net migration is employed by de Sherbinin et al. (2012) in the context of environmental research.
They investigate the association between the net migration and environmental factors such as risk of climate hazard. They
find that, from 1970 to 2000, people tend to migrate from dryland and mountain areas toward coastal areas. Also, they find
an opposite pattern for North America, i.e., there is a large influx of people in dry and high-latitude areas.

26Available at http://themasites.pbl.nl/tridion/en/themasites/hyde/
27Available at http://sedac.ciesin.columbia.edu/data/collection/grump-v1
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our net migration measure after aggregation is the number of people (due to migration) per 1km2 in
a 56km × 56km grid cell (at the equator). de Sherbinin et al. (2015) acknowledge that there could be
measurement errors at a local-level such as counties and municipals. We assume that these measurement
errors are somehow mitigated by aggregating the observations into the 0.5 × 0.5 degree resolution. One
grid cell after aggregation contains 56× 56 = 3, 136 of original grid cells.

A.1.2 Climate Data

We take the data on temperatures and precipitation from the Terrestrial Air Temperature and Pre-
cipitation: 1900-2006 Gridded Monthly Time Series, Version 1.01 (Matsuura and Willmott, 2007). The
dataset includes temperatures and precipitation at the 0.5 × 0.5 degree grid cell level (approximately
56km× 56km at the equator) and it covers the global land surface. It provides monthly average temper-
atures and precipitation for each grid cell.

A.1.3 Other Grid Cell Level and Country-level Data

The data on GDP and population come from the Global Dataset of Gridded Population and GDP
Scenarios (Yamagata and Murakami, 2015). This dataset gives global GDP and population in 0.5× 0.5
degree grids between 1980 and 2010 by 10 years. The data in 1980–2010 are estimated by downscaling
actual populations and GDP by country and we use the data from 1980, 1990, and 2000. They map the
country-level population and GDP data into 0.5 × 0.5 degree grid cells by using spatial and economic
interactions between cities, and by utilizing road network and land cover. See Murakami and Yamagata
(2017) for further details.

The country identifiers come from the Global Rural-Urban Mapping Project, Version 1 (GRUMPv1):
National Identifier Grid (van Donkelaar et al., 2015). We aggregate the grid cell level dataset to a country-
level and run country-level regressions. The data on country-level GDP, GDP growth rates, population,
population growth rates, urban population, agricultural value-added, and manufacturing value-added are
retrieved from the World Development Indicators (World Bank, 2018).

A.2 Summary Statistics

This section presents summary statistics of variables used in the country-level regressions in section
5. Table A1 shows the summary statics where observations come from poor, lower-middle income, and
upper-middle income countries for three periods, ’70s, ’80s, and ’90s. It shows summary statistics for
the three internal migration measures, (1) total internal migration rates, (2) out-migration rates (from
rural and middle-rural areas), and (3) out-migration rates (from rural areas). The population growth
rate and the GDP growth rate are the annualized average growth rate during each decade. ln(GDP ) and
ln(Population) are natural log of GDP and population at the initial year of each decade. Agricultural
and manufacturing value-added shares also come from the initial year of each decade. Changes in agri-
cultural (and manufacturing) value-added shares are percentage point differences in the agricultural (and
manufacturing) value-added shares between the initial year of the decade and the last year of the same
decade. Table A2 shows more detailed summary statistics for the three internal migration variables.
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Table A1: Summary Statistics of the Data for Country-level Regressions

Obs. Mean St. dev. Min Max
Total internal migration rates 349 7.09 5.41 0.09 63.27
Out-migration rates (from rural and middle-rural areas) 349 1.82 2.03 0.00 21.26
Out-migration rates (from rural areas) 349 0.80 1.55 0.00 21.20
Population growth rate (%) 349 2.04 1.13 -1.83 4.67
GDP growth rate (%) 242 3.28 2.45 -9.81 1.45
ln(GDP ) 264 23.10 1.95 18.62 27.98
ln(Population) 349 15.64 1.68 10.99 20.85
Agricultural value-added share (% of GDP) 239 24.33 13.57 2.54 71.76
Manufacturing value-added share (% of GDP) 203 13.28 6.95 0.19 31.54
∆ Agricultural value-added share (% points) 238 -2.76 6.89 -21.82 21.70
∆ Manufacturing value-added share (% points) 195 0.12 4.76 -22.57 14.91

Notes: The table shows summary statistics of variables used for regressions using country-level observa-
tions.

Table A2: Summary Statistics of the Net Migration Rates by Income-level of Countries

Obs. Mean St. dev. Min Max
Total internal migration rates

Full sample 448 6.98 5.30 0.09 63.27
Poor countries 115 6.83 3.92 0.09 25.70

Lower-middle income countries 105 8.50 7.87 0.98 63.27
Upper-middle income countries 129 6.17 3.61 0.75 15.92

Rich countries 99 6.58 4.89 0.22 32.27

Out-migration rates from rural and middle-rural areas
Full sample 448 1.69 1.94 0.00 21.26

Poor countries 115 2.11 1.62 0.10 8.56
Lower-middle income countries 105 2.26 2.94 0.04 21.26
Upper-middle income countries 129 1.21 1.09 0.00 5.13

Rich countries 99 1.24 1.53 0.01 10.70

Out-migration rates from rural areas
Full sample 448 0.70 1.40 0.00 21.20

Poor countries 115 0.86 0.73 0.00 3.97
Lower-middle income countries 105 1.23 2.62 0.00 21.20
Upper-middle income countries 129 0.39 0.43 0.00 1.86

Rich countries 99 0.37 0.56 0.00 4.70

Notes: The table shows summary statistics of the total internal migration rates for each decade. The country groups are
based on the 25th, 50th, 75th percentiles of the distribution of GDP per capita. See Section 2.1 for the definition of the
variables.
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B List of Countries
Countries are classified into four groups based on the income level of countries.28 Astarik * indicates

that the country is also included regression using the country-level aggregated observations. Poor countries
(GDP per capita is less than 25th percentile) are:

Bangladesh* (BGD), Benin* (BEN), Bhutan* (BTN), Burkina Faso* (BFA), Burundi (BDI), Cabo
Verde* (CPV), Cambodia (KHM), Central African Republic* (CAF), Chad* (TCD), China* (CHN),
Comoros* (COM), Democratic Republic of the Congo (COD), Equatorial Guinea* (GNQ), Eritrea
(ERI), Ethiopia* (ETH), Gambia* (GMB), Ghana* (GHA), Guinea (GIN), Guinea-Bissau* (GNB),
Haiti (HTI), India* (IND), Kenya* (KEN), Lesotho* (LSO), Madagascar* (MDG), Malawi* (MWI),
Mali* (MLI), Mauritania (MRT), Mozambique (MOZ), Myanmar* (MMR), Nepal* (NPL), Niger*
(NER), Pakistan* (PAK), Rwanda (RWA), Senegal* (SEN), Sierra Leone* (SLE), Sri Lanka (LKA),
Sudan (SDN), Tanzania* (TZA), Togo* (TGO), Uganda (UGA), Uzbekistan (UZB), Vietnam (VNM),
and Yemen (YEM).

Lower-middle-income countries (GDP per capita is between 25th and 50th percentile) are:
Albania* (ALB), Angola* (AGO), Armenia (ARM), Belize* (BLZ), Bolivia* (BOL), Bosnia and Herze-
govina (BIH), Botswana* (BWA), Cote d’Ivoire (CIV), Cameroon* (CMR), Rep. of Congo* (COG),
Dominican Republic (DOM), Egypt* (EGY), El Salvador* (SLV), Guatemala* (GTM), Guyana*
(GUY), Honduras* (HND), Indonesia* (IDN), Kiribati (KIR), Kyrgyzstan (KGZ), Liberia (LBR),
Mauritius* (MUS), Mongolia* (MNG), Morocco (MAR), Nicaragua* (NIC), Nigeria* (NGA), Papua
New Guinea (PNG), Paraguay (PRY), Philippines* (PHL), Saint Vincent and the Grenadines (VCT),
Serbia and Montenegro (SRB), Solomon Islands* (SLB), Swaziland* (SWZ), Tajikistan (TJK), Thai-
land (THA), Timor-Leste (TLS), Tunisia* (TUN), Tuvalu (TUV), Vanuatu* (VUT), Zambia* (ZMB),
and Zimbabwe* (ZWE).

Upper-middle-income countries (GDP per capita is between 50th and 75th percentile) are:
Algeria* (DZA), Argentina* (ARG), Azerbaijan (AZE), Belarus (BLR), Brazil* (BRA), Bulgaria*
(BGR), Chile* (CHL), China (Hong Kong SAR) (HKG), Colombia* (COL), Costa Rica* (CRI),
Cuba* (CUB), Ecuador* (ECU), Estonia (EST), Fiji* (FJI), Gabon* (GAB), Georgia (GEO), Hun-
gary (HUN), Iran* (IRN), Iraq* (IRQ), Jamaica* (JAM), Jordan* (JOR), Kazakhstan (KAZ), Rep. of
Korea* (KOR), Latvia (LVA), Lebanon (LBN), Libya* (LBY), Lithuania (LTU), Macedonia (MKD),
Malaysia* (MYS), Maldives (MDV), Mexico* (MEX), Namibia (NAM), Oman* (OMN), Panama*
(PAN), Peru* (PER), Poland (POL), Portugal (PRT), Romania (ROU), Russian Federation (RUS),
Slovakia (SVK), South Africa (ZAF), Suriname* (SUR), Trinidad and Tobago (TTO), Turkey* (TUR),
Turkmenistan (TKM), Ukraine (UKR), and Uruguay* (URY).

Rich countries (GDP per capita is more than 75th percentile) are:
Andorra (AND), Australia (AUS), Austria (AUT), Bahamas (BHS), Belgium (BEL), Canada (CAN),
Denmark (DNK), Finland (FIN), France (FRA), Germany (DEU), Greece (GRC), Ireland (IRL), Israel
(ISR), Italy (ITA), Japan (JPN), Luxembourg (LUX), Netherlands (NLD), New Zealand (NZL), Nor-
way NOR), Puerto Rico (PRI), Saudi Arabia (SAU), Spain (ESP), Sweden (SWE), United Kingdom
(GBR), United States of America (USA), and Venezuela (VEN).

28We use the data on GDP per capita from 1980 to define the four groups of countries. Poor countries are those with GDP
per capita less than the 25th percentile of the distribution. Those between the 25th and the 50th are lower-middle income
countries. Those between the 50th and the 75th percentile are upper-middle income countries. Lastly, those above the 75th
percentile are rich countries. The 1980 data on GDP per capita are not available for some countries. Therefore, in order to
include as many countries as possible, we also compute the 25th, 50th, 75th percentiles of GDP per capita for all available
countries in 1990 and 2000. If GDP per capita is not available from 1980 but available from 1990, then the income level
group in 1990 is used to define the country’s income level. Similarly, if GDP per capita is not available from 1980 and 1990
but available from 2000, then the income level group in 2000 is used to define the country’s income level. The data on GDP
per capita come from the WDI (World Bank, 2018)
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C Parameter Values for the Numerical Exercise
This section discusses empirical backgrounds of our choice of parameter values for the numerical

exercise in section 3.2, which are summarized in Table A3. We choose key parameter values to match a
representative poor country, Vietnam.

Productivity in the urban and rural regions: We use industrial and agricultural value-added
per worker as a measure of rural and urban productivity, respectively. The data on industrial and
agricultural value-added per worker (USD, 2010 constant prices) are taken from the WDI (World Bank,
2018). Vietnam’s industry-to-agriculture productivity ratio equal 6 in the earliest available year in the
dataset, 1991. Therefore, we set our initial urban-to-rural productivity gap to 6.

Table A3: Parameter values

Parameters References
Productivity in the urban region

ln(AU
t ) = 0.17 + 0.90 ln(AU

t−1) + εt Assumed
with ln(AU

1 ) = 1.5 (i.e., AU
1 = 4.48) Assumed

εt follows a normal distribution with
mean zero and standard deviation 0.028 Assumed

Productivity in the rural region
AR

t = ρAU
t−1 + (1− ρ)AR

t−1 with AR
0 = AU

0 /Gap
where the initial productivity gap is Gap = 6 Based on the data from the WDI
and the speed of technology diffusion is ρ = 0.025 Assumed

Temperature shocks
Constant 10% productivity decline throughout the periods Assumed

Other parameters
Costs of migration C = 0.6×AU

1 = 2.69 Grogger and Hanson (2011)
Return from skills in rural βR = 1.6 Assumed
Return from skills in urban βU = 1.5× βR = 2.4 Herrendorf and Schoellman (2018)

The average annual growth rate of agricultural and industrial productivity were 1.85% and 3.89%,
respectively for Vietnam, during the period 1991-2016. Parameters governing the urban (industry)
productivity evolution are chosen to match these average annual growth rates. As a result, we have:
ln(AU

t ) = 0.17 + 0.90 ln(AU
t−1) + εt where εt follows a normal distribution with zero mean and standard

deviation of 0.028. We set the initial log productivity to be ln(AU
1 ) = 1.5 therefore AU

1 ≈ 4.48. Using the
assumed initial productivity and parameters and the distribution of the error term, urban productivity
paths are simulated for 1,000 times. The parameter determining the speed of technology diffusion ρ is
chosen in order to match the annual average rural (agricultural) productivity growth rate, 3.89%. As a
result, ρ = 0.025. We first simulate a path without any disruptive effect from excessively high tempera-
ture, so that δR = 1 in each period. Then our exercise introduces deterministic temperature shocks along
the growth path. We consider that a temperature increase above the threshold T generates a 10% decline
in rural productivity (i.e. assuming δR = γ = 0.9), and we analyze the new growth path with lower rural
productivity.

Costs of migration: The existing literature does not provide much guidance about the costs of
rural-urban migration within a country. We therefore adapt estimates of international migration costs
to provide a rough approximation for these costs. Grogger and Hanson (2011) estimate international
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migration costs using bilateral migration flows across countries in 2000. They find that, for individuals in
Vietnam, migration costs to relocate to the U.S. is the lowest among six destination countries presented
in the paper and the costs are 26 thousand USD at the 2010 price. The international migration costs from
Vietnam to the U.S. are about 6.2 times greater than Vietnam’s industrial value-added per worker (our
measure of urban productivity) in the same year, 4.2 thousand USD. The international migration costs
to the U.S. from Guatemala and Dominican Republic are about 1.1 times and 0.64 times its industrial
value-added per worker, respectively. Internal migration costs should be lower than these values, as they
do not entail the same loss of human capital and search costs. Therefore, we assume, as reference, that
the total costs of rural-to-urban migration costs in a poor country are equal to 0.6 times the value of one
year of urban income.

Returns from skills: In the model, the relative value of returns from skills between rural and urban
matters in determining individuals’ incentive to migrate. However, note that the absolute value of returns
from skills is not exactly the same as returns to schooling in the labor literature. In the model, skills are
a random variable distributed following the standard normal distribution while the concept of returns to
education applies to years of education. Re-scaling the units of this measure of skills one can also obtain
different returns on one additional unit of skills. Therefore, an arbitrary value of returns from skills, βR,
suffices for an illustration of the model and we assume that the one for the rural region is βR = 1.6.

We choose a value of βU based on the relative returns from schooling in agriculture (which we assume
rural) and industry (which we assume urban) as estimated in a poor country. Herrendorf and Schoellman
(2018) estimate returns to schooling in agriculture and industry using the data from poor countries such
as India and Indonesia. Panel A of Figure 2 in that paper suggests that returns to schooling is about
1.5 times greater in industry than agriculture. Therefore, returns from skills in the urban region is
βU = 1.6× 1.5 = 2.4.
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D Urban-Rural Productivity Gap
Figure A1 shows the relationship between the industry-to-agriculture productivity gap and GDP per

capita where the data come from the year 2000. The figure excludes countries where their industry-to-
agriculture productivity gaps are greater than 12 as outliers. It shows that the industry-to-agriculture
productivity gap declines as GDP per capita increases. Restuccia et al. (2008) also find such cross-cross
sectional relationship between the level of development and productivity gap across sectors. In particular,
they show, using the data from 1985, that the overall labor productivity in the richest five percent of the
countries is 34 times greater than the poorest five percent countries, on the other hand, agricultural labor
productivity of the richest is 78 times that of the poorest.

Figure A1: Industry-to-Agriculture Productivity Gap and GDP per capita
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Notes: The data come from the WDI (World Bank, 2018).

These empirical observations are rational for agricultural productivity gap between urban (mostly
industry-based economies) and rural regions (mostly agriculture-based economies). Our theoretical model
presented in section 3 predicts that there are asymmetric migration responses to rising temperatures across
poor and middle-income countries. The primary driver of this different migration reactions are rural-urban
productivity gaps. In earlier periods of time in the simulation exercise in the main text, there are greater
rural-urban productivity gaps. Due to this large productivity gap, there are some workers who are willing
to migrate but unable to migrate because their feasibility constraint is binding. Therefore, a further
decline of rural productivity level due to a temperature shock reduces the share of workers who migrate
from rural to urban. On the other hand, when the rural-urban productivity gap is smaller, a greater
share of people have non-binding feasibility constraints. Therefore, a decline of rural productivity due to
a temperature shock widens a rural-urban productivity gap, which works to increase incentives to migrate
from rural to urban areas.

Therefore, the cross-sectional relationship between the industry-to-agricultural productivity gap — a
proxy of urban-to-rural productivity gap — and GDP per capita implies that the simulated time-series
evolution of rural-urban productivity gaps (in section 3.2) can be mapped to a cross-section of countries.
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E Regression Tables associated with Figures in the Main Text
Our theoretical model predicts different patterns of rural-urban migrations depending upon the in-

come level of countries and rural-urban status within each country. Therefore, we have a number of point
estimates of the impact of temperatures on the net migration rates. In order to facilitate readers’ under-
standing on our results, we relied on graphical presentation of our results by plotting point estimates and
associated confidence intervals on figures. Because some readers might be interested in more details on
our results — such as the number of observations, exact values of point estimates, and other statistics,
this section presents regression tables that are plotted in figures in the main text. Specifically, regression
results in Tables A4, A5, A6, and A7 are associated with Figures 9, 11, 12, and 13 in the main text,
respectively.

Table A4: Grid Cell Level Regressions, Average Net Migration Rates by Area, 1970-2000

Dependent variable = Net migration rates
Definition of rural-urban areas is based on Population at the grid cell level

Panel A: Average relative to the world average
Poor Lower-middle Upper-middle Rich
(1) (2) (3) (4)

Urban 6.388*** 5.321*** 5.434*** 7.213***
(0.078) (0.204) (0.082) (0.138)

Middle-urban 4.357*** -2.709*** 1.900*** 5.385***
(0.108) (0.542) (0.195) (0.170)

Middle-rural -4.508*** -14.56*** -1.644*** 3.614***
(0.403) (0.876) (0.377) (0.234)

Rural -14.05*** -20.65*** -1.213*** -0.770*
(0.566) (0.950) (0.393) (0.400)

Observations 24,236 12,703 33,695 26,158
Grid cells 8,219 4,345 11,439 8,772

Panel B: Average with controls
Poor Lower-middle Upper-middle Rich
(1) (2) (3) (4)

Urban 2.062*** -1.142 0.743*** -0.593***
(0.456) (0.700) (0.205) (0.188)

Middle-urban 0.229 -7.820*** -2.541*** -1.981***
(0.459) (0.850) (0.267) (0.187)

Middle-rural -8.255*** -18.45*** -5.597*** -2.776***
(0.560) (1.099) (0.378) (0.219)

Rural -17.29*** -20.95*** -4.722*** -4.284***
(0.708) (1.141) (0.406) (0.316)

Observations 23,191 10,898 31,787 22,893
Grid cells 7,851 3,734 10,770 7,654

Notes: Regressions do not include a constant term. Panel B include ∆T emp, ∆P rec, and the population growth rate as
controls. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively. Robust standard errors
clustered at the grid cell level are in parentheses. Point estimates shown in Panels A and B are plotted in Panels A and B
in Figure 9, respectively.
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Table A5: Grid Cell Level Regressions, Rural-Urban Dummies based on Population, Ad-
dressing Non-Linearity of Temperature Effects

Dependent variable = Net migration rates
Definition of rural-urban areas is based on Population at the grid cell level

Poor Lower-middle Upper-middle
Uniform Group- Uniform Group- Uniform Group-
cutoff based cutoff based cutoff based

cutoffs cutoffs cutoffs
(1) (2) (3) (4) (5) (6)

∆Temp 0.122 -0.0945 -1.403*** -2.019*** -0.241** -0.121
(0.259) (0.223) (0.412) (0.394) (0.116) (0.129)

DHot ×∆Temp -1.536*** -1.525*** -4.314*** -1.344 -1.772*** -2.215***
(0.467) (0.528) (0.816) (1.069) (0.445) (0.408)

DMiddle-urban ×∆Temp -0.431* -0.398* 0.793 0.503 -0.578*** -0.538***
(0.248) (0.242) (0.652) (0.659) (0.183) (0.200)

DMiddle-rural ×∆Temp 0.686 0.793* 3.995*** 3.313*** -0.350 -0.315
(0.454) (0.449) (0.761) (0.769) (0.285) (0.297)

DRural ×∆Temp 4.779*** 4.884*** 3.491*** 2.828*** -0.792** -0.756**
(0.626) (0.620) (0.741) (0.768) (0.312) (0.321)

Observations 23,191 23,191 10,898 10,898 31,787 31,787
Grid cells 7,851 7,851 3,734 3,734 10,770 10,770
R-squared 0.261 0.261 0.267 0.257 0.144 0.142

Temperature effects (Linear combination of coefficients)
Middle-urban areas -0.309 -0.493** -0.610 -1.516** -0.818*** -0.659***

(0.247) (0.217) (0.611) (0.593) (0.164) (0.167)
Middle-rural areas 0.808* 0.698 2.592*** 1.294* -0.591** -0.436

(0.446) (0.433) (0.677) (0.677) (0.265) (0.272)
Rural areas 4.901*** 4.790*** 2.088*** 0.809 -1.032*** -0.877***

(0.607) (0.602) (0.644) (0.669) (0.296) (0.294)

Notes: All regressions include DHot×Year fixed effects, DRural-urban×Year fixed effects, DRural-urban × ∆Precipitation,
DRegion×Year fixed effects, DRural-urban×Population growth rates, and country fixed effects as controls. The hot coun-
try dummy DHot in columns (1), (3), and (5) takes unity if the mean temperatures during 1970-2000 are above the 75th
percentile of the distribution in all locations. The hot country dummy DHot in columns (2), (4), and (6) takes unity if the
mean temperatures during 1970-2000 are above the 75th percentile of the distribution in locations in each group of countries.
Robust standard errors clustered at the grid cell level are in parentheses. ***, **, and * indicate statistical significance at
the 1%, 5%, and 10% level, respectively. Figure 11 plots point estimates shown in odd number columns.
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Table A6: Grid Cell Level Regressions, Rural-Urban Dummies based on Population, Ro-
bustness Checks

Temperature effects (Linear combination of coefficients)
Dependent variable = Net migration rates

Definition of rural-urban areas is based on Population at the grid cell level
Omit Omit Omit Omit Omit Omit

extreme extreme extreme Sub- urban less ag.
temp. prec. internal Saharan count- count-

migration Africa ries ries
Panel A: Poor countries

(1) (2) (3) (4) (5) (6)
Urban areas -0.043 -0.254 -0.322* -0.451 -0.312 -0.312

(0.208) (0.197) (0.173) (0.274) (0.192) (0.192)
Middle-urban areas -0.547*** -0.720*** -0.599*** -0.395* -0.642*** -0.642***

(0.204) (0.209) (0.185) (0.217) (0.199) (0.199)
Middle-rural areas 0.098 0.449 0.759** 1.155** 0.597 0.597

(0.461) (0.419) (0.372) (0.506) (0.414) (0.414)
Rural areas 4.882*** 4.707*** 4.072*** 4.003*** 4.742*** 4.742***

(0.657) (0.597) (0.537) (0.652) (0.592) (0.592)
Observations 23,055 22,724 22,875 23,191 14,078 23,191

Grid cells 7,851 7,838 7,821 7,851 4,759 7,851

Panel B: Lower-middle income countries
(1) (2) (3) (4) (5) (6)

Urban areas -2.646*** -2.350*** -2.038*** -2.951*** -2.344*** -2.681***
(0.364) (0.394) (0.354) (0.492) (0.386) (0.411)

Middle-urban areas -1.926*** -1.926*** -0.947** -0.952 -1.834*** -1.662***
(0.594) (0.566) (0.469) (0.720) (0.563) (0.598)

Middle-rural areas 0.705 0.466 0.469 1.986 0.857 0.790
(0.682) (0.677) (0.615) (0.852) (0.683) (0.729)

Rural areas 0.554 0.382 1.178** -0.902 0.510 0.453
(0.740) (0.672) (0.579) (0.720) (0.660) (0.705)

Observations 10,821 10,508 10,577 10,898 7,011 10,532
Grid cells 3,734 3,722 3,700 3,734 2,408 3,609

Panel C: Upper-middle income countries
(1) (2) (3) (4) (5) (6)

Urban areas -0.500*** -0.436*** -0.376*** -0.348*** -0.629*** -0.406***
(0.119) (0.082) (0.073) (0.078) (0.092) (0.081)

Middle-urban areas -1.000*** -0.876*** -0.682*** -0.777*** -0.877*** -0.863***
(0.183) (0.140) (0.128) (0.140) (0.146) (0.145)

Middle-rural areas -0.629*** -0.752*** -0.556*** -0.907*** -0.544*** -0.859***
(0.326) (0.274) (0.221) (0.277) (0.283) (0.287)

Rural areas -1.796*** -1.414*** -1.622*** -1.433*** -1.358*** -1.705***
(0.361) (0.293) (0.240) (0.295) (0.302) (0.296)

Observations 30,769 31,078 31,305 28,007 30,074 29,462
Grid cells 10,763 10,755 10,717 9,505 10,185 9,981

Notes: All regressions include DRural-urban×Year fixed effects, DRural-urban × ∆Precipitation, DRegion×Year fixed effects,
DRural-urban×Population growth rates, and country fixed effects as controls. Robust standard errors clustered at the grid cell
level are in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively. Figure 12
plots point estimates presented in the table.
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Table A7: Country-level Regressions, Robustness Checks

Add Omit Omit Omit Omit Omit
hot extreme extreme extreme urban less ag.

country temp. prec. internal count- count-
dummy migration ries ries

Panel A: Total internal migration rates
(1) (2) (3) (4) (5) (6)

∆Temp 3.133** 2.794* 3.183** 3.012** 3.722** 2.856**
(1.458) (1.569) (1.369) (1.347) (1.601) (1.402)

DLower-middle ×∆Temp -1.980 -1.728 -2.392 -2.209 -2.966 -3.952
(3.123) (3.492) (3.205) (3.149) (3.342) (2.686)

DPoor ×∆Temp -5.594 -5.603* -5.666* -5.684* -6.486* -5.627*
(3.758) (3.143) (2.977) (3.052) (3.449) (2.952)

Observations 140 137 136 140 130 134
Countries 63 63 61 63 59 61
R-squared 0.287 0.268 0.268 0.269 0.268 0.245

Temperature effects (Linear combination of coefficients)
Lower-middle countries 1.153 1.066 0.791 0.802 0.756 -1.096

(2.865) (2.907) (2.746) (2.700) (2.712) (2.231)
Poor countries -2.461 -2.808 -2.483 -2.672 -2.764 -2.770

(3.215) (2.606) (2.422) (2.554) (2.634) (2.439)
Panel B: Out-migration rates, Rural and Middle-rural

(1) (2) (3) (4) (5) (6)
∆Temp 1.327*** 1.127*** 1.079*** 1.023*** 1.221*** 1.266***

(0.374) (0.399) (0.364) (0.371) (0.440) (0.351)
DLower-middle ×∆Temp -0.404 -0.664 -0.349 -0.162 -0.482 -0.802

(0.845) (0.913) (0.870) (0.693) (0.933) (0.947)
DPoor ×∆Temp -3.312*** -3.364*** -3.264*** -2.915*** -3.486*** -3.538***

(0.960) (0.886) (0.863) (0.747) (1.026) (0.904)
Observations 140 137 136 138 130 134

Countries 63 63 61 62 59 61
R-squared 0.308 0.304 0.296 0.319 0.284 0.306

Temperature effects (Linear combination of coefficients)
Lower-middle countries 0.923 0.462 0.731 0.861 0.740 0.464

(0.815) (0.778) (0.770) (0.557) (0.785) (0.860)
Poor countries -1.986** -2.238*** -2.184*** -1.892*** -2.264*** -2.272***

(0.831) (0.808) (0.755) (0.667) (0.854) (0.820)

Notes: All regressions include population growth rates, GDP growth rates, and ∆Precipitation as controls. Robust standard
errors clustered at the country-level are in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and
10% level, respectively. Figure 13 plots point estimates shown in the table.
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F Further Robustness Checks

F.1 Different Definitions of Rural-Urban Grid Cells

In the regressions using the grid cell level observations in the main text, we define rural/urban areas
based on population density following a conventional definition (e.g., Ratcliffe et al., 2016). This section
provides robustness checks concerning this baseline definition of rural/urban areas. Our dataset contains
grid cell level GDP data and we can use within-country thresholds, the 25th, 50th, and 75th percentiles
of GDP to define rural, middle-rural, middle-urban, and urban areas in each country. GDP may measure
geographical distribution of economic activities more accurately than population density. For example,
as described in Ratcliffe et al. (2016), containing an airport in a grid cell would reduce population density
due to a lack of population who actually live there. However, that location should be classified as “urban”
due to a large scale of economic activities by passengers and workers. If there is such special case, it
might be better to employ GDP to define rural/urban areas within a country.

Therefore, we estimate regressions with grid cell level observations by defining rural, middle-rural,
middle-urban, and urban based on grid cell level GDP, in order to show robustness of our results. Table
A8 reports results from baseline specifications, which are summarized in the same manner as Table 2.
It shows that employing rural-urban dummies based on GDP makes a little difference from our baseline
results. The point estimates shown in columns (2), (4), and (6) are plotted in Panel A of Figure A2.
Panel B in the same figure shows how the average net migration rates in each location change due to
rising temperatures. The figure also includes estimates from rich countries that are not reported in
the regression table as a reference. Comparing with our baseline results based on rural-urban dummies
constructed based on population dummies shown in Figure 10, Figure A2 presents similar results.

Table A8: Grid Cell Level Regressions, Rural-Urban Dummies based on GDP

Dependent variable = Net migration rates
Definition of rural-urban areas is based on GDP at the grid cell level

Poor Lower-middle Upper-middle
(1) (2) (3) (4) (5) (6)

∆T emp 1.488*** -0.508** -0.642** -2.298*** -0.869*** -0.468***
(0.220) (0.213) (0.291) (0.392) (0.111) (0.0820)

DMiddle-urban × ∆T emp -0.0294 0.634 -0.434***
(0.268) (0.651) (0.141)

DMiddle-rural × ∆T emp 1.347*** 3.046*** -0.383
(0.471) (0.792) (0.272)

DRural × ∆T emp 5.218*** 2.804*** -0.960***
(0.625) (0.771) (0.292)

Observations 23,191 23,191 10,898 10,898 31,787 31,787
Grid cells 7,851 7,851 3,734 3,734 10,770 10,770

R-squared 0.259 0.268 0.247 0.255 0.135 0.145
Temperature effects (Linear combination of coefficients)

Middle-urban areas -0.537*** -1.664*** -0.902***
(0.202) (0.541) (0.141)

Middle-rural areas 0.839 0.749 -0.851***
(0.425) (0.714) (0.272)

Rural areas 4.710*** 0.507 -1.428***
(0.590) (0.660) (0.288)

Controls
DRural-urban×Year fixed effects Yes Yes Yes
DRural-urban × ∆Precipitation Yes Yes Yes

Notes: All regressions include DRegion×Year fixed effects, DRural-urban×population growth rates, and country fixed effects
as controls. Robust standard errors clustered at the country-level are in parentheses. ***, **, and * indicate statistical
significance at the 1%, 5%, and 10% level, respectively.
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F.2 Is China Special?

This section considers the case of China because a number of studies document that China is special in
terms of its patterns of internal migrations in some ways. For example, Au and Henderson (2006) considers
an effect of immigration restrictions in China called the Hukou system. They show that restricted internal
migrations led to insufficient agglomeration of economic activities, resulted in a GDP loss. On the other
hand, Chen et al. (2010) describe that, despite the fact that there were migration restrictions, 34.1 million,
67 million, and 140 million rural population migrated to urban China in 1990, 1999, and 2008, respectively,
by referencing to prior studies.29 These suggest that China might be special in terms of internal migration
patterns in some ways. Therefore, we estimate grid cell level regressions without China.

Table A9: Grid Cell Level Regressions, Poor Countries, Excluding China

Dependent variable = Net migration rates
Definition of rural-urban areas is based on Population at the grid cell level

Baseline Excluding China Only China
(1) (2) (3) (4) (5) (6)

∆Temp 1.484*** -0.312 0.641* 0.307 2.283*** 0.233**
(0.219) (0.192) (0.340) (0.238) (0.307) (0.099)

DMiddle-urban ×∆Temp -0.330 -0.925** 0.271*
(0.249) (0.394) (0.153)

DMiddle-rural ×∆Temp 0.908** -1.072 1.552**
(0.450) (0.749) (0.664)

DRural ×∆Temp 5.054*** 4.095*** 2.664***
(0.619) (1.224) (0.745)

Observations 23,191 23,191 14,900 14,900 8,291 8,291
Grid cells 7,851 7,851 5,068 5,068 2,783 2,783
R-squared 0.263 0.272 0.302 0.311 0.124 0.161

Temperature effects (Linear combination of coefficients)
Middle-urban -0.642*** -0.618* 0.504***

(0.199) (0.332) (0.116)
Middle-rural 0.597 -0.765 1.785***

(0.414) (0.710) (0.657)
Rural 4.742*** 4.402*** 2.897***

(0.592) (1.206) (0.739)
Controls
DRural-urban×Year fixed effects Yes Yes Yes
DRural-urban ×∆Precipitation Yes Yes Yes

Notes: All regressions include DRegion×Year fixed effects, DRural-urban×Population growth rates, and country fixed effects,
where DRural-urban indicate dummy variables for rural areas, middle-rural areas, middle-urban areas, and urban areas and
DRegion denote dummy variables for regions in the world including Asia, Europe, North America, Oceania, South America,
Middle East and North Africa, and Sub-Saharan Africa. Rural-urban locations are defined by population at the grid cell
level. Robust standard errors clustered at the grid cell level are in parentheses. ***, **, and * indicate statistical significance
at the 1%, 5%, and 10% level, respectively.

In our sample China is included as a poor country due to its low income level in 1980. Therefore,
we re-estimate regressions with grid cell level data from poor countries without China. The first two
columns of Table A9 show baseline results with grid cells from China as a reference. These come from

29The articles they reference are Cai (1996), Huang and Pieke (2003), and China’s National Bureau of Statistics reports.
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columns (1) and (2) in Table 2. Columns (3) and (4) show results from excluding grid cells from China.
The results qualitatively stay the same — the temperature effects are positive in rural areas and basically
there is essentially no effect in urban area. Columns (5) and (6) present results from grid cells from China
only. Column (6) shows that temperature effects on the net migration rates are positive in all areas —
0.23 (urban), 0.50 (middle-urban), 1.79 (middle-rural), and 2.90 (rural) — and these are all statistically
significant. However, the magnitude of the temperature is greater for rural areas, which is consistent with
our hypothesis that rural areas are more sensitively affected by rising temperatures. These results suggest
that internal migration patterns in China still fit to our theoretical framework.

F.3 Spatial Correlation of the Error Term

We consider possible spatial correlation of the error term because the size of one grid cell is fairly
small — 50km × 50km around the equator — and there may be correlation of climatic conditions across
space. In order to address this, we cluster standard errors at more aggregated grid cells.

Table A10: Different Standard Errors

Panel A: Poor countries
Clustering robust standard errors

Coefficients I (Baseline) II III IV
Urban -0.312 (0.268) (0.255) (0.600) (0.772)

Middle-urban -0.642 (0.279)** (0.242)*** (0.610) (0.686)
Middle-rural 0.597 (0.476) (0.453) (0.872) (0.957)

Rural 4.742 (0.810)*** (0.785)*** (1.408)*** (2.000)**
# of grid cells in one cluster 1 3 85 253

# of clusters 7,851 2,553 92 31

Panel B: Lower-middle income countries
Clustering robust standard errors

Coefficients I (Baseline) II III IV
Urban -2.344 (0.576)*** (0.464)*** (1.172)** (1.780)

Middle-urban -1.834 (0.778)** (0.675)*** (1.185) (1.327)
Middle-rural 0.857 (0.916) (0.772) (1.796) (2.333)

Rural 0.510 (0.982) (0.790) (1.865) (2.787)
# of grid cells in one cluster 1 3 37 98

# of clusters 3,734 1,411 102 38

Panel C: Upper-middle income countries
Clustering robust standard errors

Coefficients I (Baseline) II III IV
Urban -0.441 (0.099)*** (0.101)*** (0.223)*** (0.309)

Middle-urban -0.958 (0.188)*** (0.172)*** (0.371)** (0.310)***
Middle-rural -0.845 (0.367)** (0.341)** (0.711) (0.773)

Rural -1.346 (0.377)*** (0.350)*** (0.640)** (0.630)**
# of grid cells in one cluster 1 3 67 207

# of clusters 10,770 3,683 160 52

Notes: The table reports different clustering robust standard errors corresponding to point estimates shown in even number
columns in Table 2. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.

Table A10 shows point estimates of temperature effects on the internal migration rates in even number
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columns in Table 2. Panels A, B, and C summarize results from poor countries, lower-middle income
countries, and upper-middle income countries, respectively. For each point estimates for Urban, Middle-
urban, Middle-rural, and Rural areas, it shows robust standard errors clustered at four different cross
sectional units.

We construct more aggregated grid cells by using longitude and latitude of original grid cells. As a
result, aggregated grid cells include original grid cells that are geographically close. Because we do not
take countries’ borders into consideration, two grid cells from different countries may be included in one
aggregated grid cells (e.g., a grid cell from Belgium and a grid cell in Luxembourg may be included in
one aggregated grid cell). Also, two grid cells from one country can be in different aggregated grid cells
(e.g., a grid cell from California and a grid cell from Florida are in different aggregated grid cells because
these two locations are away from each other even though these are in the same country).

Column I shows our baseline standard errors clustered at 0.5 × 0.5 grid cells. Column II reports
standard errors clustered at more aggregated grid cells — cross-sectional unit II includes three original
grid cells on average and the number of clusters is 2,553, 1,411, and 3,683 for poor countries, lower-
middle income countries, and upper-middle income countries, respectively. It shows that standard errors
in column B are similar to those in column I. Therefore, statistical significance is also similar as column
I. Because clustering-robust standard errors in column II are slightly smaller than those in column I, the
statistical significance increased in some rows.

Column III reports standard errors even more aggregated grid cells — the average number of grid
cells contained in one cluster is 85, 37, and 67 for poor countries, lower-middle income countries, and
upper-middle income countries, respectively. As a result, the number of clusters is 92, 102, and 160 for
these groups of countries, respectively. Clustering at these even more aggregated grid cells blows up
standard errors. As a result, coefficients from Middle-urban areas in poor countries, Middle-rural areas
in lower-middle countries, and Middle-rural areas in upper-middle countries become insignificant (both
are significant at the 5 percent level in column I).

Lastly, column IV resents clustering robust standard errors based on the largest aggregation — the
average number of grid cells included in one cluster is 253, 98, and 207 for poor countries, lower-middle
income countries, and upper-middle income countries, respectively. This increases standard errors sub-
stantially. As a result, the coefficient from Middle-urban areas in poor countries lost its significance. It
also makes all coefficients from lower-middle income countries insignificant. The coefficient for Urban
areas in upper-middle income countries turns to be insignificant as well. However, the most important
sets of results remain hold true — a higher temperature increases the net migration rate in Rural areas
in poor countries and reduces it in Rural areas in upper-middle income countries. Overall, our baseline
results remain the same even clustering at more aggregated geographical units.
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G Expected Internal Migration Rates
This section describes procedures to find expected internal migration rates for 2010-2080 in detail and

discusses results. As described in section 5.4, we find expected internal migration rates using estimated
coefficients and projected temperature changes provided by the World Bank. Tables A11 and A12 sum-
marize estimated expected internal migration rates shown in Figure 15 with some additional information.
Panels A, B, and C show results for poor, lower-middle, and upper-middle countries, respectively. Panel
D summarizes overall impact for the three groups of countries.

G.1 Procedures and details

In the first three panels, column (1) shows the actual average internal migration rates during 1990-2000
and implied number of migrants. These average internal migration rates are slightly different from the
ones shown in Table 3 because we restrict our focus on countries actually used in country-level regressions
only. We use the average internal migration rates and the total population in the three groups of countries
in the year 2000 — 3,218 million, 758 million, 1,093 million for poor, lower-middle, and upper-middle,
respectively — to find the total number of migrants shown in column (1).30 In the regression, we use
AMRs

c,t = 100 × AggMigs
c,t/Popc,t−10 as the dependent variable where AggMigs

c,t denotes country c’s
aggregate internal migrations during the decade from year t = 10 to year t and Popc,t−10 indicates
population in year t− 10 for s = ‘Total’ and ‘Rural Mid-Rural’.31 It shows that we use initial population
in the denominator. However, in Tables A11 and A12, we use population data from the year 2000 to infer
how many people would migrate during the decade 2000-2010 given the level of population in 2000 under
the condition where the internal migration rates and economic conditions were the same as the previous
decade 1990-2000. The calculation implies that 228 million, 53 million, and 76 million of people would
internally migrate during 2000-2010 in poor, lower-middle, and upper-middle countries, respectively.

The expected internal migration rates presented in columns (3)-(6) are estimated using the method
explained in section 5.4 in the main text. We have two different estimates based on A2 and B1 sce-
narios for each group of countries. Temperature changes used for column (3) are (Tempc,2020−2040 −
Tempc,1961−1999)/4 where Tempc,2020−2040 denotes projected country c’s average temperature during 2020-
2040 and Tempc,1961−1999 is the average temperature during 1961-1999 in the same country. It is divided
by four to make it decennial change. Temperature changes used for column (4) are (Tempc,2040−2060 −
Tempc,2020−2040)/2 where it is divided by two to make it decennial change. Temperature changes used in
Columns (5) and (6) are found by using the same equation for column (4). Because we use the tempera-
ture change from the previous column for columns (4)-(6), the expected internal migration rates in those
columns are based on decennial change in temperatures from the previous decade rather than cumulative
changes from the level 1961-1999. We use these expected internal migration rates and the population
data from the year 2000 to find the total number of people who are expected to migrate due to projected
temperature changes when the population level were the 2000 level and economic conditions are the same
as the decade 1990-2000.

Column (2) shows the expected migration rates during the period from 2000 to 2015. We use actual
temperature changes (from the level 1961-1999 to the level 2015) to find the expected migration rates.32

We take different calculation steps to find expected internal migration rates for the period because cross-
country variations in actual temperature changes for 2015 are different from the World Banks’ projections

30We obtain data on population on individual countries in 2000 from the WDI (World Bank, 2018) then we calculate the
total population for each country group. All available countries’ populations are included (not just countries used in the
country-level regression analysis).

31The notation AggMigRate is employed in the main text but we use a notation AMR to simplify equations in this section.
32The average temperature level for 2015 is calculated as follows. First, we find the average temperatures during the

period 2010-2015 for each country using the data from the Climate Change Knowledge Portal (World Bank, 2018). We use
the average of the six years 2010-2015 to reduce the impact of weather anomalies in certain years. Second, we compute
the group average of these country-level average temperatures during 2010-2015. Third, we find the change in the average
temperatures from the 1961-1999 level, which is denoted as ∆T emp2015

h,1961−1999 for country group h.
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for 2020-2100 probably due to the fact that some countries experienced weather anomalies. The differences
in cross-country variations across time lead to an estimate for 2000-2015 that is different from other periods
in the sense that the estimate for 2000-2015 does not fall in the range between the one from 1990-2000
and 2020-40. For this reason, we use the average temperature change four each country group rather than
individual countries’ temperature changes.

Specifically, the internal migration rates for 2000-2015 are found by taking the following steps. First,
we find the average temperature change between the 1961-1999 level and the 2015 level. For example, this
figure is 0.356◦C for poor countries. Second, we find the average projected temperature change between
the 1961-1999 level and the 2020-40 level. Third, we use the expected internal migration rates in 2020-40
in country group h, AMRs

h,2020−40, the actual internal migration rates in 1990-2000 AMRs
h,1990−2000, and

the temperature changes in the previous steps as follows:

AMRs
h,2000−15 = AMRs

g,2020−40 − (AMRs
h,2020−40 −AMRs

h,1990−2000)×
∆Temp2015

h,1961−1999

∆Temp2020−40
h,1961−1999

= 5.38%− (5.38%− 7.10%)× 0.356◦C
1◦C

= 6.49%

for h = Poor under A2 scenario. This is AMRs
h,2000−15 = 5.40% − (5.40% − 7.10%) × 0.356◦C/1◦C =

6.50% under B1 scenario. The expected internal migration rates for 2000-2015 are different between two
scenarios because we use the expected net migration rates in 2020-40, AMRs

h,2020−40, which depends on
the scenarios.

G.2 Results

G.2.1 Poor countries

We discuss projection results, starting from poor countries. Panel A of Table A11 shows the expected
total internal migration rates for this group. The regression results in the main text suggest insignificant
temperature effects on poor countries when we employ the total internal migration rate as the dependent
variable. Therefore, we should take these results with caution. Nonetheless, it gives a good understanding
of what the estimated coefficients imply. Column (1) shows that the actual internal migration rate during
1990-2000, AMRT otal

h,1990−2000 = 100 × AggMigT otal
h,1990−2000/Poph,1990 = 7.1%. By multiplying the total

population in the year 2000 in this group of countries, we find that 228.5 million people would have
internally migrated during 2000-2010. This can be interpreted as hypothetical number of migrants during
2000-2010, given the level of population in 2000, when temperature changes and economic conditions were
kept as the 1990-2000 level.

Column (2) uses actual temperature changes during 2000-2015 to find the internal migration rates
and the number of migrants. The only difference between columns (1) and (2) are temperature changes.
Therefore, temperature rises during 2000-2015 alone imply a 8.6% decline of internal migrations under
A2 scenario and a 8.5% decline under B1 scenario. Subsequent columns, (3)-(4), show expected internal
migration rates for the period 2020-2100. These show that rising temperature reduce total internal
migrations by 29% and 23% by 2080-2100 under A2 and B1 scenarios, respectively. Equivalently, the
number of people migrate declines by 66.6 millions and 52.2 millions from 2000 to 2080-2100.

Panel A of Table A12 present expected rural out-migration rates computed using the same procedure.
Because the country-level regressions in the main text find statistically significant temperature effects
on the rural out-migration rates, results from Table A12 are more reliable for poor countries. It shows
that the number of rural out-migrations is expected decline from 61.6 millions to 44.2 millions by 2080-
2100, a decline of 17.4 millions, under A2 scenario. On the other hand, the expected decline of rural
out-migrations is 0.7 millions under B2 scenario.
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G.2.2 Lower-middle income countries

Panel B of Table A11 shows that, the total number of migrations was 53.2 millions in the beginning of
the century and it is expected to increase to 54.6 millions, an 1.4 million increase, which is equivalent to a
2.7% increase, under A2 scenario. B1 scenario implies even mode moderate increase of 1.7%. Panel B of
Table A12 indicates that, under A2 scenario, the number of rural out-migrations is expected to increase
from 11.28 millions to 11.93 millions by 2080-2100, a 0.6 million increase, which is equal to a 5.7% rise.
This figure remains at 3.5% under B1 scenario. We acknowledge that the country-level regressions find
insignificant temperature effects on lower-middle income countries. Therefore, we should see these results
with caution.

G.2.3 Upper-middle income countries

Panel C of Table A11 describes the expected total internal migrations for upper-middle income coun-
tries. The number of internal migrations was 76.4 millions in the beginning of this century. Under A2
scenario, This figure is expected to increase to 85.2 millions by 2080-2100, which is an increase of 8.9
millions or a 11.7% rise from the earlier century. On the other hand, under B1 scenario, it remains at a
0.9% rise by 2080-2100. This scenario predicts the largest response of 8.5% rise during 2040-60 because
changes in temperatures are expected to be greatest during this period. Panel C of Table A12 indicates
the expected rural out-migrations. It shows that, under A1 scenario, the number of rural out-migrations is
expected to change to 15.8 millions by 2080-2100, which was 13.3 millions in the beginning of the century.
These numbers suggest a 2.5 million increase or a 18.7% increase from the earlier century. On the other
hand, these figures are merely 0.3 million increase or a 2.2% increase under B1 scenario, respectively.

G.2.4 Overall expected impacts of the projected temperature rise

Lastly, Panel D of the two tables show the total number of people affected by temperature rises. We
compute this figure by summing a change in the number of migrants — the number of migrants in each
of the columns (2)-(6) minus the one shown in column (1). The total number of people migrated due to
a rise in temperatures is 21.0-21.4 millions during 2000-2015. By 2080-2100, this figure is expected to
increase to 76.9 millions and 53.8 millions under A2 and B1 scenarios, respectively. These numbers of
migrants are 1.53% and 1.06% of the total population in the three groups of countries, respectively.

The total numbers of rural out-migrations induced to migrate by temperature rises are also shown
in Panel D of Table A12. It is 1.8-2.1 millions during 2000-2015. This number is expected to change to
20.5 millions and 1.4 millions under A2 and B1 scenarios, respectively, which are equivalent to 0.4% and
0.03% of the total population, respectively, under the two scenarios.

A19



Table A11: Expected Total Internal Migration Rates

Panel A: Poor countries
(1) (2) (3) (4) (5) (6)

1990-2000* 2000-2015** 2020-40 2040-60 2060-80 2080-2100
A2 Scenario
Total internal migration rates 7.10% 6.49% 5.38% 5.25% 5.13% 5.03%
# of migrants (million) 228.5 208.8 173.1 169.1 164.9 161.9
Rate of change from 2000 -8.6% -24.2% -26.0% -27.8% -29.1%
B1 Scenario
Total internal migration rates 7.10% 6.50% 5.40% 5.19% 5.40% 5.48%
# of migrants (million) 228.5 209.0 173.8 167.0 173.8 176.3
Rate of change from 2000 -8.5% -24.0% -26.9% -23.9% -22.8%

Panel B: Lower-middle income countries
1990-2000* 2000-2015** 2020-40 2040-60 2060-80 2080-2100

A2 Scenario
Total internal migration rates 7.02% 7.04% 7.15% 7.17% 7.19% 7.20%
# of migrants (million) 53.2 53.4 54.2 54.3 54.5 54.6
Rate of change from 2000 0.3% 1.9% 2.1% 2.4% 2.7%
B1 Scenario
Total internal migration rates 7.02% 7.04% 7.14% 7.18% 7.15% 7.13%
# of migrants (million) 53.2 53.4 54.1 54.5 54.2 54.1
Rate of change from 2000 0.3% 1.8% 2.3% 1.9% 1.7%

Panel C: Upper-middle income countries
1990-2000* 2000-2015** 2020-40 2040-60 2060-80 2080-2100

A2 Scenario
Total internal migration rates 6.99% 7.13% 7.24% 7.45% 7.65% 7.80%
# of migrants (million) 76.4 77.9 79.1 81.5 83.7 85.2
Rate of change from 2000 2.0% 3.6% 6.7% 9.6% 11.7%
B1 Scenario
Total internal migration rates 6.99% 7.11% 7.21% 7.58% 7.20% 7.05%
# of migrants (million) 76.4 77.7 78.8 82.9 78.7 77.1
Rate of change from 2000 1.8% 3.2% 8.5% 3.1% 0.9%

Panel D: Number of people affected by rising temperatures
1990-2000* 2000-2015** 2020-40 2040-60 2060-80 2080-2100

A2 Scenario
# of affected people (million) 21.4 59.1 65.7 72.2 76.9
As a share of population 0.42% 1.17% 1.30% 1.42% 1.52%
B1 Scenario

# of affected people (million) 21.0 58.2 69.3 58.1 53.8
As a share of population 0.42% 1.15% 1.37% 1.15% 1.06%

Notes: The table shows the average expected total internal migration rates. *Column (1) shows expected internal migration
rates during 1990-2000 and implied number of migrations during 2000-2010 given the level of population in the year 2000.
**Column (2) reports expected internal migration rates and implied number of migrations during 2000-2015 given the actual
change in temperatures during the period 2000-2015. Columns (3)-(6) are those based on projected temperature changes
given by the World Bank. The total number of migrants is computed based on the expected migration rates and the total
population in each country group in 2000 obtained from the WDI. See the text for details.
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Table A12: Expected Rural Out-Migration Rates

Panel A: Poor countries
(1) (2) (3) (4) (5) (6)

1990-2000* 2000-2015** 2020-40 2040-60 2060-80 2080-2100
A2 Scenario
Total internal migration rates 1.92% 1.87% 1.78% 1.63% 1.48% 1.37%
# of migrants (million) 61.6 60.1 57.3 52.6 47.7 44.2
Rate of change from 2000 -2.5% -7.1% -14.7% -22.6% -28.2%
B1 Scenario
Total internal migration rates 1.92% 1.88% 1.80% 1.56% 1.80% 1.89%
# of migrants (million) 61.6 60.3 58.0 50.3 58.1 60.9
Rate of change from 2000 -2.1% -5.8% -18.4% -5.8% -1.1%

Panel B: Lower-middle income countries
1990-2000* 2000-2015** 2020-40 2040-60 2060-80 2080-2100

A2 Scenario
Total internal migration rates 1.49% 1.50% 1.55% 1.56% 1.57% 1.57%
# of migrants (million) 11.28 11.36 11.72 11.80 11.88 11.93
Rate of change from 2000 0.7% 3.9% 4.6% 5.3% 5.7%
B1 Scenario
Total internal migration rates 1.49% 1.50% 1.54% 1.56% 1.55% 1.54%
# of migrants (million) 11.28 11.36 11.71 11.84 11.72 11.67
Rate of change from 2000 0.7% 3.7% 5.0% 3.9% 3.5%

Panel C: Upper-middle income countries
1990-2000* 2000-2015** 2020-40 2040-60 2060-80 2080-2100

A2 Scenario
Total internal migration rates 1.22% 1.26% 1.29% 1.35% 1.41% 1.44%
# of migrants (million) 13.3 13.8 14.1 14.8 15.4 15.8
Rate of change from 2000 3.6% 6.4% 11.1% 15.6% 18.7%
B1 Scenario
Total internal migration rates 1.22% 1.26% 1.29% 1.39% 1.29% 1.24%
# of migrants (million) 13.3 13.7 14.1 15.2 14.1 13.6
Rate of change from 2000 3.3% 5.7% 14.1% 5.7% 2.2%

Panel D: Number of people affected by rising temperatures
1990-2000* 2000-2015** 2020-40 2040-60 2060-80 2080-2100

A2 Scenario
# of affected people (million) 2.1 5.7 11.0 16.6 20.5
As a share of population 0.04% 0.11% 0.22% 0.33% 0.40%
B1 Scenario

# of affected people (million) 1.8 4.8 13.8 4.8 1.4
As a share of population 0.04% 0.09% 0.27% 0.09% 0.03%

Notes: The table shows the average expected rural out-migration rates. *Column (1) shows expected internal migration
rates during 1990-2000 and implied number of migrations during 2000-2010 given the level of population in the year 2000.
**Column (2) reports expected internal migration rates and implied number of migrations during 2000-2015 given the actual
change in temperatures during the period 2000-2015. Columns (3)-(6) are those based on projected temperature changes
given by the World Bank. The total number of migrants is computed based on the expected migration rates and the total
population in each country group in 2000 obtained from the WDI. See the text for details.
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