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1 Introduction

A vast literature in psychology shows that individuals’ probabilistic judgments are vul-

nerable to a range of systematic errors (see Benjamin 2018 for a review). Kahneman

and Tversky (KT 1972) argue that these intuitive judgments reflect the differential ac-

cessibility of information in the mind: events or instances that are more accessible are

perceived as being more likely. “To understand intuition, then, we must understand why

some thoughts are accessible and others are not” (Kahneman 2003).

A central body of evidence focuses on the representativeness heuristic, the tendency

to judge as likely events that are merely representative. As KT define it when discussing

base-rate neglect and the conjunction fallacy, representativeness captures “the degree

to which [an event] is similar in essential characteristics to its parent population” (KT

1972). In a well-known example, subjects are given a short description of an introverted

man and are asked to rank, in order of likelihood, several different occupations (KT

1974). Most subjects state that the introverted man is more likely to be a librarian than

a farmer, even though there are vastly more male farmers than librarians. The thought

that an introverted man is a librarian is highly accessible because the trait “introvert”

makes him more similar to a typical librarian than to a typical farmer. In this view,

representative events are highly accessible and thus play an outsized role in probability

judgments. In fact the ranking of items in terms of probability is often aligned with that

in terms of similarity in such experiments.

This account does not explain why features that are perceived as representative, or

similar, are often so unlikely that they cause judgments to be incorrect. Why, among

introverted men, do we think about the very unlikely librarian instead of the more likely

farmer? In a different example, why do we think it is more representative of Hollywood

actresses to be “more than 4-times divorced” rather than to “vote Democrat”, which is

much more likely (KT 1984)? One possibility is that stereotypes of introverted male

librarians and oft-divorced Hollywood actresses are spread through the media and per-

sonal interactions. This semantic association and repetition of unlikely traits becomes

a source of similarity and accessibility in memory. Bhatia (2017) presents evidence on

natural language consistent with this mechanism. While this mechanism certainly con-

tributes to biases in social contexts, it does not explain the source of these biases (why

does natural language focus on these specific traits), and why biases are widespread

even in more abstract judgments.

In this paper we propose that the accessibility of unlikely instances reflects how

we represent statistical associations among multiple features, and especially how we re-

trieve them from memory when making judgments. In our view, even if one’s personal

experience is unbiased, selective retrieval can lead to systematic overweighting of cer-
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tain features. Our approach builds on a large literature on memory stressing that recall

is selective (see Kahana 2012 for a review). First, a cue such as “an introverted man” or

“a Hollywood actress” triggers the recall of memory traces that are similar to it, in the

specific sense of frequently co-occurring with the cue. Second, and crucially, the effect

of frequent co-occurrence is dampened by interference: if a feature co-occurs with mul-

tiple cues, it is less likely to be retrieved by any one of these cues. We suggest that this

mechanism, illustrated in word-pair recall tasks (Kahana 2012) and by the fan effect

(Anderson 1974), plays a key role in generating judgment by representativeness.

Our model seeks to capture the effect of memory and interference in probability judg-

ments. In this model, when judging the probability of an event, say that an introverted

man is a librarian, we retrieve memories of introverted men from different occupations

and perform our assessment based on the set of instances that come to mind. We as-

sume that this retrieval process is subject to two specific forms of interference. First,

interference across types within a group: when thinking of introverted men, the pres-

ence of a common occupation, say farmer, interferes with the recall of less frequent

ones, say librarian, reducing the latter’s assessed probability. Second, and crucially, in-

terference across groups: if an occupation, say farmer, is common across groups then it

becomes harder to recall it for a specific cued group, say introverted men. The numer-

ous instances of extroverted farmers interfere with the retrieval of introverted ones. In

contrast, because there are fewer librarians among extroverts, then it becomes easier to

recall introverted librarians. This boosts the probability attached to the latter.

We show that these two forms of interference yield the view of representativeness in

Tversky and Kahneman (1983):“an attribute is more representative of a class if it is very

diagnostic; that is, if the relative frequency of this attribute is much higher in that class

than in the relevant reference class”. Thus, the cue “introverted man” triggers recall of

librarians and not farmers, despite the fact that the latter may be more likely, because

thinking about farmers brings to mind many instances of non-introverted people. These

memories interfere with the recall of introverted farmers. Likewise, “Hollywood actress”

cues recall of multiple divorces because other features, such as being a Democrat, are

common in many occupations, which interferes with the recall of Democratic actresses.

More broadly, the model is in line with, and provides a formal approach for, the

intuition that probabilistic assessments reflect similarity judgments (KT 1972). In fact,

our model provides a statistical measure of similarity between two events – a cue and

a type – that is shaped by interference across cues and thus depends on the full set of

events in memory. Evidence for this non-euclidean nature of similarity judgments has

already been provided by Tversky (1977). We return to it in Section 5.

A model built on this idea yields several testable predictions on how biases depend

on the statistical associations observable in the data. To test these predictions, spelled
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out below, we run a series of experiments. In the baseline study, participants observe

a sequence of 25 target images and 25 decoy images. Target images consist of 15 blue

numbers and 10 orange numbers. In one treatment, denoted gra y , decoy images are

gray shapes. In the other treatment, denoted blue, decoy images are blue words. In each

treatment, the 50 images are presented one at a time and in a random order. Participants

are then told that a number is drawn at random from the images they saw, and are asked

to guess what the likely color of that number is. The key goal is to understand how

interference, as generated by the decoy distribution, impacts answers to this and other

questions about the target distribution. This setup enables us to abstract from semantic

associations or pre-existing associations, and to test directly for the role of interference.

Our model predicts that participants’ probabilistic judgments about the target dis-

tribution – the likely color of a randomly drawn number – will be interfered with by

the color distribution of the decoys. Specifically, when a color, say blue, becomes more

common in the decoy distribution, it interferes more with the recall of instances of blue

numbers. In contrast, there is no interference for orange, which is absent in the decoy

distribution. As a consequence, as the frequency of blue objects increases in the decoy

distribution, the frequency of blue numbers estimated by the subjects goes down and

that of orange numbers goes up.

We find robust evidence in support of this prediction. In the baseline experiment,

when asked to predict the likely color of a randomly drawn number from the images

they saw, participants are much more likely to give the correct answer blue when the

decoy distribution is gray shapes (65% of the time) than when the decoy distribution

is blue words (45%), suggesting that indeed the blue words of the decoy distribution

interfere with the recall of the blue numbers from the target distribution. In follow-up

experiments, we incorporate orange words into the decoy distribution. As our model

predicts, as the number of orange words in the decoy distribution increases and the

number of blue words decreases (so that interference for orange numbers intensifies),

the likelihood of participants believing that orange is the likely color of a randomly

drawn number falls. Across all our experiments, interference generated by the decoy

distribution consistently impacts probabilistic judgments about the target distribution.

We next address several potential confounds. First, adding distraction tasks between

the observation of images and the assessment of distributions does not change the re-

sults, suggesting that our findings reflect recall and not mere access to working memory.

Second, differential attention to a particular color of numbers is unlikely to explain the

evidence: results do not change if we use other dimensions such as font size. Third,

because judgments are based on recall of directly observed distributions, our results

cannot be attributed to the tendency to confound conditional probabilities with inverse

conditional probabilities (e.g. the cab problem, Kahneman and Tversky 1984).
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One important implication of our model is that biases depend on the way an assess-

ment is elicited, because different formulations can cue recall of different items and thus

influence interference. To assess this implication, we develop a variation of the baseline

experiment in which images differ along three dimensions: content (either word or num-

ber), color (either blue or orange) and font size (either small or large). Again, we gen-

erate a target distribution: 25 numbers, 15 of which are blue and small in font size and

10 of which are orange and large in font size. Our decoy distribution is 25 blue words in

a large font size. In this experiment, color and font size are perfectly correlated among

the numbers: all orange numbers are also large in font size, while all blue numbers are

also small in font size. This ensures that asking participants about the likelihood of a

given color or of a given font size among the numbers is objectively equivalent.

Rather than vary the decoy distribution across participants, in this experiment we

simply vary the cue. Some participants are cued to think in terms of color, and asked to

guess the likely color of a randomly drawn number. Other participants are cued to think

in terms of font size, and asked to guess the likely font size of a randomly drawn number.

With our construction, the answer is identical for both cues: a number is equally likely to

be blue and small in font size. However, we hypothesize that the pattern of interference

in recall is different. When cued to think in terms of color, the blue words in the decoy

distribution will interfere with the recall of blue (small) numbers. This should depress

the extent to which participants state blue as the most likely color of a randomly drawn

number. When asked to think in terms of font size, we hypothesize that the large words

in the decoy distribution will interfere with the recall of (orange) large numbers. This

should increase the extent to which participants say small font size is most likely for a

randomly drawn number.

We find robust and significant differences in probabilistic assessment between these

two cue conditions: the share of participants identifying orange, large numbers as the

most likely numbers rises from 17% when asked for size judgments to 40% when asked

for color judgments. This evidence supports two important predictions. First, memory

cues provided by the question affect recall and probability judgments. Second, biases

change as predicted by interference: types occurring frequently in both the target and

comparison groups are underestimated. This experiment also suggests that our results

are driven by selective recall, not differences in encoding across treatments, as all sub-

jects observe the same set of images under identical conditions.

We see our paper as making two contributions. Relative to the literature on the link

between memory and probability judgments, we emphasize the importance of interfer-

ence in recall. To paraphrase Kahneman, understanding why some thoughts become

accessible requires us to understand why others are not. Interference in recall provides

a natural mechanism for the key feature of the representativeness heuristic, namely that
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beliefs about a group are tilted towards its features that are distinctive relative to other

groups. In particular, our model predicts when beliefs exaggerate unlikely features, as

illustrated in the examples on introverted librarians and oft-divorced Hollywood stars.

Several other studies have linked biases in probabilistic judgments to the properties

of memory. Dougherty, Gettys and Ogden (1999) develop the Minerva DMmodel, build-

ing on Hintzman (1984). In this model, the conditional probability P(t|g) is computed

by retrieving memory traces that are similar to the cue g, identifying the subset of those

that are similar to the target type t, and normalizing. The driving force for biases here

is noisy recall, in particular the possibility of false positives driven by partial similarity

between cue and items. Types that are more frequent in the broad population may be

overestimated for group g because they trigger false positives in this computation. Buse-

meyer et al. (2011) offer a quantum probability model that also relies on similarity to

generate biases. A number of papers develop models of limited sampling from memory

which bias the process of searching in memory in various ways, including by anchoring

search to an initial cue (Sanborn and Chater 2016) or by focusing on instances associ-

ated with salient payoffs (Shi and Griffiths 2009). Crucially, because these models do

not allow for interference across groups g, they do not explain why judgments about

a target group depend systematically on a comparison group, nor why certain unlikely

traits are so often recalled to the detriment of the more common ones.¹

Other models of memory are motivated specifically by the fan effect (Anderson

1974), and a large body of evidence on interference going back to the early 20th century

(Jenkins and Dallenbach 1924, Whitely 1927, McGeoch 1932, Underwood 1957, Kep-

pel 1968). Anderson (1974) shows that concepts associated with more items are more

difficult to remember, as evidenced by slower response times and a larger error rate in a

recognition task. Similarly, in word-pair recall tasks, associating the same cue word with

different target words in different lists reduces recall of both the pair learned first and

the pair learned later (see Kahana 2012 for a review). Two broad approaches to this

evidence have been proposed: associative activation based models such as the Adaptive

Control of Thought - Rational (ACT-R, Anderson and Reder 1999), and inhibition based

models such as inhibitory control in retrieval (Anderson and Spellman 1995). As in most

existing models within the similarity framework, interference here occurs across types

associated with a cue, either through spreading activation or direct inhibition. Instead,

the dominant feature of our data is interference, or contrast, across groups: if a type

becomes more common for other groups, it is less representative of, or less similar to,

the target group and it is thus estimated to be less likely.

¹Dougherty, Gettys and Ogden (1999) propose that base rate neglect reflects an substitution of the
question P(t|g) for the questions P(g|t) (see also Frederick and Kahneman 2003). As we discuss in Section
4, this mechanism cannot explain our evidence.
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The second contribution is our experimental strategy, which offers some advantages

over the classical word-pair paradigm. Using multidimensional objects allows us to cre-

ate associations in memory, and to study how interference shapes probabilitstic judg-

ments. Specifically, it allows us to naturally represent groups with different distributions

of traits. By varying independently the frequency of a type in different groups, we can

test how the representativeness of a type in a group depends on its frequency in the

other group. In particular, we can recreate the classical patterns of representativeness –

overestimation of an unlikely event – with purely abstract groups recalled from memory.

Finally, our results shed new light on the representativeness heuristic. Griffiths and

Tenenbaum (2001) offer a formalization of representativeness close to the one we build

on, but they do not link it to recall and interference, as we do here. In recent work, we

have shown that the statistical notion of representativeness introduced in Gennaioli and

Shleifer (GS 2010) and Bordalo, Coffman, Gennaioli and Shleifer (BCGS, 2016) helps

account for beliefs in several domains. These range from social stereotypes to the for-

mation of expectations in financial markets settings. In these papers, stereotypes and

expectations distort beliefs towards relatively more frequent traits of the target distri-

bution. As such, they display a kernel of truth property (Hilton and Von Hippel 1996).

The kernel of truth helps account both qualitatively and quantitatively for field data on

the belief of individuals about ability across genders (BCGS 2019) and on the expecta-

tions of market participants (Bordalo, Gennaioli, Shleifer 2018, Bordalo, Gennaioli, Ma,

Shleifer 2018, Bordalo, Gennaioli, La Porta, Shleifer 2018). The results in this paper

provide a foundation for the kernel of truth in terms of interference in recall.

Our approach does not cover an important class of phenomena, namely forecasting

biases, which are traditionally accounted for by the representativeness heuristic. Exam-

ples of such biases include the gambler’s and hot hand fallacies and the law of small

numbers. As described by Kahneman and Tversky, these biases rely on a notion of repre-

sentativeness that is different to the one examined here. Specifically, when forecasting

the behavior of a random variable, the likelihood of an event “is judged by the degree to

which it reflects the salient features of the process by which it is generated” (KT 1972).

Because it depends on a mental representation of a data generating process, this no-

tion seems closer to semantic than episodic memory. Understanding the accessibility of

thoughts as mediated by semantic memory is an important avenue for future research.

The paper is organized as follows. Section 2 describes the model and the experimen-

tal framework. Section 3 describes our first set of experiments in which representative-

ness is controlled by varying the comparison group. Section 4 presents the experiment

in which the database is the same for all participants but recall is cued along different

dimensions. Section 5 discusses our findings and Section 6 concludes.
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2 Model and Experimental Framework

2.1 The Model

Our model captures the idea that probability judgments are formed using recall of sta-

tistical associations, in the sense that a hypothesis is evaluated by selectively retrieving

from memory experienced instances of it. Crucially, the retrieval process is subject to

interference in ways that we describe below.

The memory database is described by a probability space with event space Ω and

probability measure P, which summarizes the entirety of a person’s experiences, includ-

ing their frequencies. Two random variables are defined on this probability space: T ,

which we think of as types, and G, which we think of as groups. The task of the decision

maker is to assess the probability of different types t in T in a certain group g in G.

To give an example, the probability space can contain the distribution of the world

population according to a variety of features. The task could be to guess the occupation

of an introverted person, in which case the group is g = int rover t and subjects assess

the probability of different types T = {l i brarian, f armer, . . .} in g. Alternatively, the

group could be a nationality, say g = I r ish, and the task is to assess the probability of

different hair colors, T = {dark, l i ght, red}, in this group.

A Bayesian retrieves all possible realizations t of T that are consistent with G = g

and computes the true conditional probability P(t|g) using the measure P.² Relative to

this benchmark, in our model specific types t are more easily recalled for group g, and

thus their probability is inflated. Formally, we assume that the decision maker assesses

the probability of t according to the distorted measure:

P̃(t|g) = P(t|g)
M (P(t|g), P(t| − g))

E (M)
(1)

The true measure P(t|g) is modified by a factor M which captures the ease with which

each type t comes to mind when thinking about group g. Intuitively, Equation (1) says

that the easier it is to retrieve t – that is, the higher is M – the more this type is deemed

likely. As in Tversky and Kahneman (1972), types that more easily come to mind are

judged to be more likely. The ease of retrieval is normalized, so that probabilities add

up to one.

Our key assumption is that M increases in the true conditional probability of t in g,

²Formally, the agent computes the conditional probability by retrieving all elementary events ω
consistent with each realization t and with g and by using the probability measure P to compute:

P(T = t|G = g) =
∫

ω∈Ω:T (ω)=t,G(ω)=g dP(ω)
∫

ω∈Ω:G(ω)=g dP(ω)
.

7



but decreases in the probability of t in the comparison group −g.

∂M
∂ P(t|g)

> 0,
∂M

∂ P(t| − g)
< 0,

This specification captures two important features of memory. First, it captures the law

of frequency, the idea that all else equal more likely types more easily come to mind. This

is accounted for in the assumption that M increases in its first argument. When thinking

about occupations, t = teacher comes easily to mind because they are so frequent,

unconditionally, in the memory database. This relative accessibility implies that, all else

equal, judgments overestimate frequent types and neglect infrequent ones.

Second, our model embodies two forms of interference: across groups and across

types. Interference across groups means that a type that is common across many groups

is less likely to be recalled for each one of them. To continue our example, when cueing

the specific group g = int rover t the type t = teacher is interfered with because so

many instances of teachers are not in the introvert group. This is the key mechanism

in our model, formally captured by the assumption that M decreases in its second ar-

gument. Often the laws of frequency and interference go against each other, which is

precisely when an unlikely type is judged representative. However, they can also rein-

force each other, as when a type common in group g is uncommon in other groups.

The other form of interference present in our model is interference across types. This

is captured by the normalization factor E (M), which ensures that probabilities sum to

one. The fact that some types are highly accessible, namely they have high M , interferes

with recall of other types that are less accessible (Kahana 2012). For instance strong

recall of teachers blocks recall of other, less accessible occupations, say librarians.

This memory-based model of probability assessments exhibits three main differences

from existing models of recall. First, interference works across groups, not only across

types as in the leading models of interference (Anderson and Reder 1999, Dougherty,

Gettys, Ogden 1999, Kahana 2012). As we will see, interference across groups is key

to understanding why we often overestimate the probability of infrequent outcomes. In

fact, the key results of our experiment arise because M decreases in its second argument.

Second, in our model encoding is perfect, which is in contrast to some models allowing

for noisy retrieval (e.g. the Minerva-DM of Dougherty, Gettys, Ogden 1999). Noisy en-

coding could be added to our model, but we stress that interference across groups relies

on fairly accurate memories, in the sense that the co-occurrence of types and groups

is correctly recorded. If instances of teachers are not stored together with the person’s

character, the high frequency of the teacher occupation would create strong recall for

any group, with little interference from competing groups.

The phenomenon of interference acros s groups can be explained by similarity-based
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recall (Kahana 2012). Thinking about the probability of an event (t, g) prompts retrieval

of past encounters with identical events (t, g), but of fairly similar events (t,−g) that
share the type but not the group. The higher the likelihood of the latter, the more they

are likely to be recalled, and thus the greater the interference in the recall of (t, g) it-
self.³ In fact, while the model is formally described in terms of probabilistic assessments

(Equation 1), the underlying mechanism is one of selective recall from episodic memory.

Assessments of probability of a given type should therefore be consistent with assess-

ments of numerosity across types.

To illustrate, take for example the estimation of the frequency of red hair among

the Irish. Suppose that P(red|I r ish) = 0.1 and P(l i ght brown|I r ish) = 0.4 while

P(red|rest o f world) = 0.01 and P(l i ght brown|rest o f world) = 0.2, with the oth-

ers being dark haired. Even though it is rare in absolute terms, red hair is very easy to

recall for the Irish because it has virtually no interference from other national groups,

while instances of brown haired Irish are strongly interfered with by the muchmore com-

mon brown haired non-Irish. As this example shows, representativeness amplifies true

differences between the distributions, a property called the kernel of truth (BCGS 2016,

Judd and Park 1993), which may shed light on perceptions about “essential properties”

of groups.

The main predictions of our model rely on the general specification in Equation (1)

(see Appendix A). In particular, Equation (1) is closely related to KT’s definition of the

representativeness heuristic, which implies that a type t is more representative for g the

higher P(t|g) is relative to P(t| − g). That is, when making judgments about statistical

associations, what KT call representative types are those that are easy to recall either

because they are frequent (P(t|g) is high) or because they face weak interference from

a comparison group (P(t| − g) is low) or both. To establish an even tighter connection

between memory and representativeness, we can specify that ease of recall is increasing

in the likelihood ratio of t in g versus in −g:

M(P(t|g), P(t| − g)) =
�

P(t|g)
P(t| − g)

�θ

(2)

where θ ≥ 0 captures the extent to which ease of recall distorts judgments. This spec-

ification of the recall distortion has been used in BCGS (2016) and BGS (2018) as a

shortcut for the impact of representativeness on judgments. The model presented here

³The formalism of similarity-based recall postulates a similarity relation S between items in memory,
so that the likelihood that cue g retrieves type t i is given by P(t i |g) = S(t i , g)/

∑

j S(t j , g). The normaliza-
tion factor, which sums over all t j in memory, captures interference across types, as in the denominator
of Equation (1). Interference across groups can instead be captured by the similarity function itself: a
type is more similar to a cue g if it is less commonly associated with other groups, as in the function M
in Equation (1).
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lays out a more general and explicit connection between probability judgments and

memory, particularly interference.

2.2 Experimental Design

The Baseline Experiment We now describe our main experiment and the model’s

predictions. In the next Section, we describe the implementation in detail and present

the results.

Participants are shown a sequence of 50 abstract images that vary along two dimen-

sions, content and color. In our baseline experiment, participants are randomly assigned

to one of two treatments: a condition in which they see 10 orange numbers, 15 blue num-

bers and 25 gray shapes (gra y treatment); or a condition in which they see the same

10 orange numbers and 15 blue numbers, but also 25 blue words (the blue treatment).

The memory databases are described below.

Table 1: Databases of baseline experiment

Image database in the gra y treatment
Types:

orange blue gray

Groups:
numbers 10 15 0
words 0 0 25

Image database in the blue treatment
Types:

orange blue gray

Groups:
numbers 10 15 0
words 0 25 0

After observing the sequence of 50 images, participants are asked several questions.

On the first screen, they are asked:

Q1. An image was randomly drawn from the images that were just shown to you. The

chosen image showed a number. What is the likely color of the chosen image?

On the following screen, participants are asked:

Q2. How many orange numbers were shown to you?

Q3. How many blue numbers were shown to you?
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In both treatments, the target distribution is the distribution of colors of the numbers.

Because the numbers presented are the same in both cases, the target distribution is also

the same in both cases. But we vary the “decoy” distribution, which consists of either 25

gray shapes or of 25 blue words. This tests the hypothesis that retrieval and probability

judgments are swayed, at least in part, by interference. There is more interference along

the color dimension when numbers are compared to blue words than to gray shapes. All

the experiments presented here build on this basic design, which extends the preliminary

experiments in BCGS (2016).

Before moving to the model’s predictions, we highlight a few features of our design.

First, our design makes use of abstract images to ensure that participants do not have

pre-existing associations between features of these images that may distort their assess-

ments, as in Bhatia’s (2017) model of semantic associations. Instead, the use of abstract

images gives us full control over which associations participants can store and allows

us to exogenously vary these associations in the experiment through treatment manip-

ulations, so we can study their causal impact. This enables us to test how participants

generate new associations and to explore how these associations are shaped by the sta-

tistical properties of the co-occurrence of attributes across groups.

Second, we consider two types of assessments about the target distribution: esti-

mating the likely color and estimating the amount of numbers of each color. In later

variations of the experiment, participants also estimate the probability of each color

for a randomly drawn number. This provides a within-subject consistency check, and

both types of questions are informative about the role of retrieval in the assessment of

probabilities.

Third, the flexibility of the experimental design lends itself to extensions and ro-

bustness checks. For instance, one might worry that the results are driven by our use

of certain types – like colors. We can easily re-craft the abstract images, swapping the

colors (see Section 3.3 and, in particular, Figure 3 (a)), or use different image attributes,

such as font size (see Section 4 and Appendix C.1).

The Model’s Predictions. Participants’ memory database consists of 50 images that

are characterized by random variables G (content) and T (color). G takes values in

{N , W, S}, for numbers, words, and shapes, while T takes values in {o, b, g} for orange,
blue and gray. In each treatment, G takes two values {g,−g}, where g = N and −g =W

or S. After having seen the images, participants make a probabilistic assessment about

the color distribution of numbers. In the context of the model, they are given the cue

g = N and are asked to assess P(t|N). The key outcome of interest is how this assessment

depends on the properties of the comparison cue −g.

Under the null of perfect retrieval, there would be no treatment effects. A decision
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maker with perfect memory asked to assess P(t|N) would retrieve all 50 images from

his memory database, compute the relative frequency of orange numbers, and report

P(o|N) = 10/25. This absence of treatment effects is shared by the much larger class of

models of probabilistic judgments in which interference does not play a role. Consider a

model of imperfect memory in which decisionmakers make judgments by sampling from

the memory database (Sanborn and Chater 2016). A decision maker who samples ran-

domly sometimes over-samples and sometimes under-samples orange numbers, but on

average would produce a correct assessment. Some models assume sampling is guided

by payoffs (Lieder, Hsu, Griffiths 2018). While such models may generate predictable

biases in probabilistic assessments (e.g., by oversampling states with large payoffs), the

biases they generate are driven by the target distribution itself and would be constant

across treatments.

If instead retrieval is shaped by interference, then according to Equation (1) partic-

ipants should overestimate the frequency of colors t that are relatively more likely for

numbers than for−g. To see this, start with the gra y treatment. In this case, orange and

blue numbers are both infinitely representative because P(o|N)
P(o|S) =

10/25
0/25 and P(b|N)

P(b|S) =
15/25
0/25 .

Because representativeness distortions are bounded, it follows from Equation (1) that

probabilities are not distorted. Intuitively, this is because the target distribution and the

decoy distribution do not overlap in the color dimension, so that both colors that occur

among the numbers are free from interference and equally likely to come to mind. On

average, this yields a correct prediction of P̃(o|N) = 10/25.⁴

Consider now the blue treatment. The key difference relative to the gra y treatment

is that the decoy distribution now overlaps with the target distribution, because blue

words have the same color as blue numbers. With interference in recall, this overlap has

a drastic effect. Compared to the gra y treatment, orange numbers are still infinitely

representative, P(o|N)
P(o|W ) =

10/25
0/25 , but the representativeness of blue numbers drops dramat-

ically, P(b|N)
P(b|W ) =

15/25
25/25 . Because blue is strongly associated with words, the latter interfere

with the recall of blue numbers and reduces their recalled frequency. Equation (1) then

yields our main predictions:

Prediction 1. Assessments of the probability that a random number is orange are greater

in the blue treatment than in the gra y treatment, formally P̃(o|N)blue ≥ P̃(o|N)gra y . In

particular, participants are more likely to say that orange is the likely color of a randomly

drawn number in the blue treatment.

To further test the role of interference as captured by the likelihood ratio of the

⁴If in the representativeness expression (2) we take c > 0, then the fact that blue numbers are more
likely makes them somewhat more representative, which induces-decision makers to inflate their proba-
bility. Generally speaking, the BCGS model predicts that in the control group representativeness should
distort the assessment in the direction of P̃(o|N)< P(o|N).
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type across the target and decoy distributions, we run additional treatments in which

the decoy distribution changes more continuously, by gradually moving from the blue

treatment with 25 blue words to treatments that replace some blue words with orange

words (for instance, 22 blue words and three orange words). Suppose in treatment bluek

the share of orange words is given by P(o|W )bluek
= k

25 . Our model predicts that adding

orange words increases interference with the recall of orange numbers relative to that

of blue numbers. As a consequence:

Prediction 2. Assessments of the probability that a random number is orange decrease with

the number of orange words in the decoy distribution, formally P̃(o|N)bluek
< P̃(o|N)bluek′

for k > k′. In particular, participants are less likely to say that orange is the likely color of

a randomly drawn number as k increases.

The model’s predictions apply to question Q1 about the likely color, which is based

on a global assessment of the color distribution of numbers. But as described in Section 2,

the model also speaks to how participants estimate the number of images of a given type.

Thus, the model predicts that responses to Q1 should be consistent with the responses to

Q2 and Q3 (the estimated number of different colors), in the sense that the color with

higher estimated number should also be the estimated likely color in Q1. We return to

these issues in Section 5.

3 Representativeness and Selective Recall

In this Section we present the results of three sets of experiments: the baseline exper-

iment described in Section 2 (Study 1), a variation in which we add a distraction task

before the elicitation of beliefs (Study 1b), and a variation in which we gradually vary

the representativeness of colors for numbers (Study 2).

We start by describing in detail the baseline experimental setup. We chose 25 unique

numbers between 50 and 70 with precision of one decimal place (for instance, “63.6").

This ensured that each number was distinct, yet likely to be perceived as part of a single

group, and not individually memorable. We chose 25 words related to a common theme

(time, for instance, “October"), so that no word individually stood out. Finally, we chose

25 shapes from Microsoft PowerPoint (geometric shapes, arrows, etc), whose size we

normalized. We used the same numbers, words and shapes in all experiments, and these

can be found in Appendix B.1.

At the beginning of the experiment, participants are instructed that they will be

shown a sequence of 50 abstract images. They are told they will subsequently be asked
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questions about these images and that accurate answers will be compensated.⁵ Partici-

pants are randomly assigned to treatments. The images are ordered randomly for each

participant, each appearing on the screen in isolation for approximately one second. We

conjecture that this is enough time for subjects to see each image’s t, g type (content

and color), but not enough time for them to make detailed notes, take screenshots, or

become disengaged. Participants can form a holistic impression of the full distribution

they see, as well as memory traces of individual images, but are unlikely to be able to

keep a precise tally of each type. After viewing the sequence of images, participants see

questions about the images they saw. Appendix B.1 provides details on the materials

participants see (including a link to an online version of the blue and gray treatments),

as well as on incentives and experimental setup.

3.1 Study 1: Baseline Experiment

In Study 1 we compare probabilistic assessments in the blue treatment (10 orange num-

bers, 15 blue numbers, 25 blue words) and the gra y treatment (10 orange numbers,

15 blue numbers, 25 gray shapes), as in Table 1. Study 1 was conducted on MTurk and

in the laboratory with N = 1,013 in Spring of 2018. Instructions, word images and

questions were translated into the appropriate national language. Here we present the

aggregated results. We report the disaggregated results as well as procedural details in

Appendix B.1.

Predictions and Results The null hypothesis for questions Q1, Q2 and Q3 is that

participants have on average the same probabilistic assessment in both the blue and

gra y treatments. As discussed above, this prediction is shared by several models of

limited recall.

In stark contrast, our model (Prediction 1) implies that participants inflate the fre-

quency of orange relative to blue numbers in the blue treatment, P̃(o|N)blue > P̃(o|N)gra y ,

because recall of blue numbers is interfered with by the presence of blue words in mem-

ory. Mapping Prediction 1 to our output measures, we test whether participants in the

blue treatment: i) are more likely to choose orange as the likely color, and ii) report a

higher share of orange numbers compared to participants in the gra y treatment, com-

puted from answers to Q2 and Q3.

The results are summarized in Figure 1 and Table 2 and show strong support for

Prediction 1. Column (1) in Table 2 reports an OLS regression of a response dummy (1

⁵Unlike in other memory experiments, such as recall of word pair associations (Kahana 2012), subjects
are not told they should memorize the images they see. In lab experiments, participants receive €0.50
per correct answer for those parts of the experiment that are randomly determined to be compensated.
In Mturk, most participants receive $0.20 per correct answer. See Appendix B.1 for details.
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if “orange is likely”) on a treatment dummy (1 if blue), that amounts to comparing the

average share of participants who said orange is likely in the gra y treatment versus

the blue treatment. As shown in Figure 1, that share increases 20.8pp from the gra y

treatment to the blue treatment (35.3% to 56%, significant at 1% level).⁶

Column (2) reports the results of an OLS regression of a response dummy that takes

value 1 if the participant reported more orange numbers in Q2 than blue numbers in

Q3, which is an alternative measure of each participants’ belief about the likely color.

Consistent with Column (1), there is a 13.8pp increase in the share of participants who

recalled more orange than blue numbers in the blue treatment (30.4% to 44.2%, signif-

icant at 1% level). Across Columns (1) and (2), the treatment dummy coefficients are

close. In fact, answers in Q1, Q2 and Q3 are consistent for roughly 90% of participants.

Columns (3) and (4) show how the median quantity of recalled orange and blue num-

bers depends on the treatment.⁷ Responses in the gra y treatment are quite accurate, as

indicated by the constant term. In the blue treatment, participants retrieve fewer blue

numbers, consistent with interference from blue words.

Finally, again based on answers to Q2 and Q3, we can compute the ratio of orange

numbers to total numbers recalled. Column (5) shows that, as predicted by the model,

participants recalled on average a significantly higher share of orange numbers in the

blue treatment (50% versus 44.5%). Given that the recalled share of orange numbers

is high at baseline, this average increase can have a large effect on the number of partic-

ipants who say orange is the likely color.

The results point to systematic distortions in the retrieval of information, leading to

distorted beliefs in the direction predicted by the model of representativeness in Equa-

tion (1). The treatment effect represents a jump of over 50% in the frequency of mistakes

(Columns 1 and 2), and a 12.5% increase in the estimate of the probability of orange

(Column 5), so it is large both in absolute and in relative terms. This suggests that inter-

ference can account for why unlikely traits are accessible after specific cues, offering an

explanation for some effects attributed to the representativeness heuristic (KT 1972). In

particular, such distortions predictably arise in an environment of purely abstract objects

⁶Nonlinear Logit and Probit regressions yield similar results. In the Appendix we present a variety of
robustness checks. The treatment effect is present in all waves and across MTurk as well as the laboratory
(see Figure 7 and Tables 5, 6, 7, and 8 in Appendix B.1).

⁷We report median, rather than mean, responses to the amount of numbers recalled because they are
by construction less noisy. However, similar results hold for means, see Appendix B.1.
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Study 1
All waves pooled

(N=1,013)

blue treatment gray treatment

95% Conf Int

Figure 1: Share of participants who believe that the likely color of a randomly-drawn number is orange
for the blue and gra y treatments of Study 1.

Table 2: Regression estimates of treatment effects in Study 1

OLS: OLS: 0.5-Q-Reg 0.5-Q-Reg 0.5-Q-Reg:
Y=1 Y= 1 Y= Y= Y=

if “orange if more Orange Blue Share of orange
is likely” orange numbers numbers numbers to total numbers

recalled recalled recalled recalled

(1) (2) (3) (4) (5)

1 if blue .2060*** .1379*** 0 − 2*** .0556***
(.0307) (.0302) (.4187) (.6427) (.0124)

MTurk dummy yes yes yes yes yes

Wave dummies yes yes yes yes yes

Constant .3305*** .3043*** 10*** 14*** .4444***
(.0302) (.0259) (.3598) (.5524) (.0107)

Observations 1,013 1,013 1,013 1,013 1,013
Adj./Ps. R2 0.04 0.02 0.01 0.01 0.02

with no pre-existing associations in memory.⁸,⁹

⁸One may ask whether the particular colors chosen impact our results. For instance, a body of work
in psychology starting with Goldstein (1942) and Stone and English (1998) proposes that warmer colors,
such as red and yellow, may induce outward focusing, while cooler colors may induce inward focusing
(reservation), in part due to their different wavelengths. Elliot et al (2007) propose a more general frame-
work in which the impact of specific colors varies by context and is a function of learned associations. It
is unlikely that any pre-existing association between orange and numbers drives our results, particularly
the across-treatment differences in the experiments where orange is not representative of numbers (see
Study 2 and 3). We also ran a separate experiment, reported in Appendix C.1, that replaced color with
font size as the types (i.e. the random variable T), and the results go through (see Table 15).

⁹A clear feature of the data is that the frequency of the “orange is likely” mistake is significant, around
35%, even in the gra y treatments where our model predicts low distortions from representativeness. This
likely reflects the difficulty of the task and imperfect memory.
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3.2 Study 1b: Recall vs. Working Memory

We interpret Study 1 as suggestive of an important role for selective recall in driving

biased assessments. But one might ask whether there is a role for working memory in

driving our results. As Baddeley (1992) lays out, working memory is the brain system

that allows for temporary storage and manipulation of information necessary for reason-

ing. This system is believed to operate separately from the longer-term memory systems

that include recall. Could it be the case that the distortions we observe are connected to

the working memory systems, rather than recall?

To separate the two, we replicate Study 1 but introduce a distraction task between

the viewing of the sequence of images and the answering of the questions about them.

The goal of the distraction task is to fully engage participants’ working memory in a task

orthogonal to the key task at hand (recall of the images). By presenting this distraction

task, we likely impose a heavy extraneous cognitive load (see Paas, Renkl, and Sweller

2003), swamping participants’ working memories with new information. If our results

persist after the distraction, it must be recall rather than working memory.

We used two distraction tasks which varied in content and length. In one version, par-

ticipants assess the emotional expression in 10 pictures of human faces.¹⁰ Participants

needed on average 90 seconds to go through this task. In the other version, participants

solve 5 easy raven matrices. Participants needed on average 170 seconds to go through

this task. Neither distraction task was incentivized. Study 1b was conducted in the lab-

oratory with N = 790 in Spring of 2018. Here we present the aggregated results. We

report the disaggregated results as well as procedural details in Appendix B.2.

Predictions and Results. The null hypothesis is that the information participants re-

trieve during the question stage draws on their long-term memory as opposed to their

working memory, and so the introduction of this distraction stage should have no impact

on the results of Study 1. Figure 2 shows that Study 1b replicates, both qualitatively and

quantitatively, the treatment effect of Study 1 on the share of participants who say “or-

ange is likely”.

A regression analysis of the pooled data of Studies 1 and 1b shows that adding the

distraction task has no effect on the treatment effect on any of the output variables

explored in Table 2 (see Table 10 in Appendix B.2).

Taking stock Studies 1 and 1b sought to maximize the variation in interference across

treatments, by minimizing interference in the gra y treatment and maximizing it in the

¹⁰The Emotion Recognition questions are adapted from a quiz created by The Greater Good Science
Center at UC Berkeley (https://greatergood.berkeley.edu/quizzes/take_quiz/ei_quiz), as used in Bordalo
et al 2018.
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Figure 2: Main treatments w/out and w/ distraction

blue treatment. This was reflected both in the choice of decoy content (words may be

more similar to numbers than are shapes) and in the choice of color distributions (blue

words maximize interference with blue numbers, while gray shapes minimize it). In the

next study, we refine our design to explore in more detail the role that relative likelihood

plays in shaping distorted recall, as formalized in Equation (2).

3.3 Study 2: Varying Relative Likelihood

Study 2 differs from Study 1 only in terms of the composition of decoys. As before, the tar-

get group is 25 Numbers (10 orange and 15 blue). For the decoy group, we create six vari-

ants of the words distribution in the blue treatment, denoted bluek, which are character-

ized by replacing k blue words with orange words, P(o|W )bluek
= k ∈ {0, 1,3, 6,10, 22}.

The six variants range from our original treatment blue (k = 0) where orange numbers

are infinitely representative, to word distributions that are mostly orange, making blue

numbers more representative (k = 22). Across the variants, the representativeness of

orange numbers is decreasing in k. We conducted Study 2 on MTurk with N = 1,738

and k = 0, 1,3, 6,10, 22 and in the laboratory with N = 254 and k = 1, 6. Here we

present the disaggregated results and discuss procedural details in Appendix B.3.

Predictions and Results The null hypothesis is again that participants’ recall of the

distribution of numbers is on average identical across treatments. Compared to this null,

Prediction 2 implies that, as k increases and orange numbers become less representative,

fewer participants state orange to be likely and the assessed share of orange numbers

decreases. The results are summarized in Figure 3. Here, we separate the MTurk and
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laboratory experiments as each explore different values of k.
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(b) Conducted in Laboratory

Figure 3: Share of participants who believe that the color of a randomly-drawn number is most likely
orange for the blue treatments with k = 0,1, 3,6, 10,22.

As Figure 3 shows, the results are consistent with our predictions. For MTurk exper-

iments (top panel), the share of participants who answered “orange is likely” decreases

from 54.1% from the baseline treatment with k = 0 to 31% in the variant with most

orange words, k = 22. The figure suggests a decline between k = 0 and k > 0 that be-

comes particularly strong from k = 10 to k = 22. The decline is statistically significant

at the 5% level between k = 0 and k ≥ 6 and at the 1% level between k ≤ 10 and

k = 22.¹¹

¹¹Increasing the number of orange words from 0 to 1, 3, 6, 10, and 22 reduces the share of MTurk
participants stating that “orange is likely” by 5.3pp, 7.4pp, 7.0pp, 8.4pp, and 23.1pp, respectively. While
the difference between 0 orange words and 1 orange words is not statistically significant, the remaining
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Similar results hold for laboratory experiments, shown on the lower panel. Increasing

the number of orange words from 1 to 6 reduces the share of participants stating that

“orange is likely” by 21.2pp (significant at the 5% level). This again points to a general

trend, as can be seen by comparing with the results from Study 1.¹²

Table 3 summarizes the pattern described above. Column (1) reports an OLS regres-

sion of a response dummy (1 if “orange is likely”) on the actual amount of orange words

participants are exposed to. The significant negative coefficient implies that the share

of participants who believed that “orange is likely” decreases in the amount of orange

words they saw. Equivalently, the share of participants who recalled seeing more orange

numbers as well as the share of orange to total numbers recalled declines in the amount

of orange words, Column (2) and Column(5), respectively.¹³ While the former effect is

weakly significant, the latter is significant at the 1% level.

Table 3: Regression estimates of treatment effects in Study 2

OLS: OLS: 0.5-Q-Reg: 0.5-Q-Reg: 0.5-Q-Reg:
Y=1 Y= 1 Y= Y= Y=

if “orange if more Orange Blue Share of orange
is likely” orange numbers numbers numbers to total numbers

recalled recalled recalled recalled

(1) (2) (3) (4) (5)

k (number of −.0093*** −.0032** 0 .0625* −.0008
orange words) (.0015) (.0015) (.0468) (.0334) (.0006)

Mturk dummy yes yes yes yes yes

Constant .4708*** .3685*** 10*** 14.625*** .4383***
(.0314) (.0309) (.9692) (.6913) (.0124)

Observations 2,903 2,903 2,903 2,903 2,903
Adj./Ps. R2 0.02 0.00 0.00 0.00 0.00

Study 2 provides evidence that the relative frequency of types shapes the magnitude

of belief distortions. As we decrease the representativeness of orange numbers by increas-

ing the number of orange words, participants are less likely to recall a randomly-drawn

ones are at least marginally significant when compared to the bluek=0 treatment, with respective OLS
p-values of 0.070, 0.085, 0.037, and < 0.001. Pair-wise differences in the assessed probability that a
randomly selected number is more likely to be orange comparing across only those treatments with 1, 3,
6, and 10 orange words are not large and not statistically significant from zero. However, the assessed
probability that a random number is more likely to be orange is greater in the treatments with 1, 3, 6, or
10 orange words than in the treatment with 22 orange words. Pair-wise tests yield OLS p-values below
0.001 in each of those cases.

¹²Study 1’s blue treatment is equivalent to k = 0. The gra y treatment is not directly comparable, but
to the extent that no number color is particularly representative in that treatment it is similar to k = 10.

¹³Table 3 shows that, as predicted, the number of recalled blue numbers increases as blue words are
replaced with orange words (Column 4). The model similarly predicts that the number of orange numbers
should increase. Table 3 shows no effect on the median, but there is a negative effect on the mean, see
Appendix B.3.
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number as orange, despite the fact that the number of orange numbers is held constant

across these variants. The studies above include 8 experiments and a total of 4706 par-

ticipants, each of whom answered three questions about the distribution of colors of

numbers. The picture that emerges is that distortions are supportive of our predictions

and that they are large in magnitude, consistently across experiments.

4 Modulating Recall through Cues

In our final experiment, we attempt to better isolate the role for selective recall in driving

our results. If probabilistic assessments are based on retrieval, then the cue that triggers

retrieval matters. Cues triggering different comparisons should, because of interference,

generate different probabilistic assessments.

In the previous experiments, images were characterized by two attributes, G (con-

tent) and T (color). The cue g = numbers thus immediately entails a comparison be-

tween g and −g along the color dimension. Here we introduce a third dimension T ′

along which images can vary, which is size. In this setting, a cue consists of a pair (g, t)
or (g, t ′), which is a group to be assessed along a specific dimension, in this case color

or size.

To isolate the effect of cues on assessments, we generate a single set of images such

that the two dimensions, color and size, are perfectly correlated within the group of

numbers. This ensures that cueing participants about color or size is objectively equiva-

lent, and that in an unbiased benchmark both cues should yield the same assessments.

In contrast, changing the cue has significant implications for retrieval if it entails differ-

ential interference.

Moreover, because in this experiment the distribution of images seen during the view-

ing stage is identical across treatments, there is no reason for a participant in one treat-

ment to attend to or encode images differently from a participant in another treatment.

This helps rule out the possibility that differential attention during encoding is driving

our results.¹⁴

Methods and Predictions This experiment includes numbers and words that vary

both in color and in size. This extension adds a new random variable T ′ ∈ {s, l}, where l

stands for large and s stands for small. The distribution of colors is, as before, P(o|N) =

¹⁴A precise distinction between selective encoding and selective recall is beyond the scope of this
paper. However, it is useful to distinguish a process in which the instability of probabilistic assessments
arise from the selectivity of retrieval from the memory database, rather than from a permanent distortion
of the memory database itself, because of inattention at the encoding stage. The current study supports
the former hypothesis.
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10
15 and P(b|W ) = 1, but now blue numbers are small, while orange numbers and words

are large. The database is:

10 orange, large numbers
15 blue, small numbers

25 blue, large words

Because orange numbers exactly coincide with large numbers, this setup allows us

to examine probabilistic assessments about large orange numbers in two different ways.

To do so, we run two treatments. In the Color Cue treatment, we exogenously cue par-

ticipants to think of the images in terms of colors, asking in our main question “What

is the likely color of a randomly drawn number?". In terms of the model, “given G = n

what is the likelihood of T = o” cues participants to recall the color dimension T . Par-

ticipants then recall the color distribution of numbers, in light of the color distribution

of non-numbers. This is shown in the Table below. In this case, the problem becomes

T = color
blue orange

numbers 15 10
words 25 0

similar to the Study 1 task, in which orange numbers are very representative while blue

numbers are interfered with by blue words.

In the Size Cue treatment, we instead cue participants to think in terms of the font

size of the images, asking as our main question “What is the likely font size of a ran-

domly drawn number?" That is, “given G = n what is the likelihood of T ′ = l”, cuing

participants to recall the marginal distributions along the size dimension T ′. In this case,

it is the small numbers that are representative because all words are large and interfere

with the recall of large numbers, that is P(s|N)
P(s|W ) =

15/25
0/25 while P(l|N)

P(l|W ) =
10/25
25/25 . In this case,

T ′ = size
large small

numbers 10 15
words 25 0

the framing of the question reverses Prediction 1. We have:

Prediction 3. Assessment of the probability that a random number is orange/large is

higher when cued in terms of color than in terms of size, formally P̃(o|N)> P̃(l|N).
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As before, neither the decoy distribution nor the framing of the question should im-

pact the assessments of a decision maker whose recall reflects a fixed, even if biased,

representation of the images observed. In this case, probabilistic assessments should not

depend on the cue (color or size) adopted. Instead, Prediction 3 holds that overestima-

tion of orange numbers is greater in the color treatment than in the size treatment for

the initial two questions.

Methods mirror Study 1, except that the distribution of images is as described above.

In addition to the outcome variables that we elicited in Studies 1 and 2, we now include

a direct probability measure, as follows:

Q4. [Color Cue] What is the probability that a randomly-drawn number is orange?

Q4. [Size Cue] What is the probability that a randomly-drawn number is large?

These questions allow us to further explore probabilistic judgments andwithin-subject

consistency. We conducted Study 3 in the laboratory with N = 647 in Spring and Au-

tumn of 2018. Here we present aggregated results. We report disaggregated results and

procedural details in Appendix B.4.

Results Our results provide support for Prediction 3. Participants assess “orange is

likely” in the Color Cue treatment significantly more often than “large is likely” in the

Size Cue treatment (40% versus 17%, significant at the 1% level). Column (1) of Table

4 shows the result of regressing a question-response dummy (equal 1 if “orange is likely”

in Color Cue or “large is likely” in Size Cue) on a treatment dummy (equal 1 if Color

Cue, equal 0 if Size Cue), while controlling for when the treatments were conducted.

Table 4: Regression estimates of treatment effects in Study 3

OLS: OLS: 0.5-Q-Reg: 0.5-Q-Reg:
Y=1 Y= 1 Y= Y=

if “orange if more Share of orange Probability that a
OR large orange OR large OR large randomly-drawn
is likely” numbers to total numbers number is orange

recalled recalled OR large

(1) (2) (3) (4)

1 if color cue .2296*** .1168*** .04** .05**
(.0343) (.0341) (.0178) (.0218)

Wave dummy yes yes yes yes

Constant .1808*** .1953*** .41*** .35***
(.0293) (.0291) (.0152) (.0186)

Observations 647 647 647 647
Adj./Ps. R2 0.06 0.02 0.01 0.01
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As in Tables 2 and 3, we use participants’ estimates of how many images of each

type they saw to address more directly their retrieval of numbers. First, we compare the

share of participants who recalled seeing more orange than blue numbers in Color Cue

with the share of participants who recalled seeing more large than small numbers in Size

Cue. We find, analogously to our main result, that a significantly greater share recalled

more orange than blue numbers than more large than small numbers, see Column (2)

of Table 4. Second, we look at the average share of recalled large orange numbers and

find, consistent with the account of interference-based distorted recall, that on average

participants recalled a significantly higher share of large orange numbers under the color

cue, see Column (3) of Table 4.

Finally, we examine the results from direct probability estimates in Q4. When asked

to predict the probability that a randomly-drawn number is orange/large, participants

state a significantly higher probability on average that a random number is orange in

the Color Cue treatment than that a random number is large in the Size Cue treatment,

see Column (2) of Table 4. These findings suggest that participants’ retrieval of blue and

orange numbers from their image database was differentially distorted depending on

whether color or font size was cued in the question stage.

These results are inconsistent with an alternative account that in estimating the

conditional probability P(o|N) subjects instead report the inverse conditional P(N |o)
(Gigerenzer and Hoffrage 1995, Koehler 1996), which would predict a recalled share of

orange numbers of 1. This mechanism implicitly assumes that the inverse conditional

P(N |o) is more accessible to decision makers than the target one P(o|N). This might

be the case when experimental subjects are given P(N |o) and are asked to estimate

P(o|N).¹⁵ But it is less likely to be the case here, where participants are first shown

the set of numbers and then cued with g = numbers alone. This account is also not

consistent with the observation that subjects generate a full probability distribution for

numbers in questions Q2 and Q3, nor with the fact that P(o|N) is consistent with the

recalled quantity of orange and blue numbers.¹⁶

¹⁵The inversion of conditional probabilities may be a valid intuition when subjects are faced with a
difficult inference problem and are cued with a quantity – the inverse conditional – that seems a plausible
proxy for the result. This intuition may help explain evidence such as the Cab Problem (Kahneman and
Tversky 1984), in which subjects say the likelihood that the cab is green given that the witness said it was
green equals the unconditional likelihood that the witness is correct.

¹⁶A related formulation to the inverse conditional that solves the latter problem is a mechanical ne-
glect of base rates, whereby the odds ratio P(o|N)

P(b|N) is assessed as P(N |o)
P(N |b)

�

P(o)
P(b)

�γ
, with γ < 1 (Bayes’ rule

corresponds to γ = 1). This formulation predicts that if a prior is sufficiently strong, say P(o|N) is high,
then a signal that supports the prior (i.e. that the number is in fact orange) reduces the posterior proba-
bility assigned to that type. While our experiments do not cover this particular point, existing evidence
generally indicates that individuals update their beliefs in the direction of their signals.

24



5 Discussion

This paper explores the link between intuitive thinking, as described by the representa-

tiveness heuristic, and memory. The evidence takes the form of systematic instability of

probabilistic assessments: numbers are recalled as being more likely to be orange than

blue when presented together with blue words than with gray shapes. This evidence is

consistent with the hypothesis that probabilistic assessments about a group stored in

memory involve interference from other groups. The role of interference is most clearly

illustrated by the fact that, keeping experience constant, probabilistic judgments about

a given group are dramatically altered depending on what comparisons are triggered by

the cue (Study 3).

Our experiments help put structure on the statement that the probability of an event

“is judged by the degree to which it is similar in essential properties to its parent popu-

lation” (Kahneman and Tversky 1972). Here, similarity between a trait and a group is

captured by the lack of interference with that trait from other groups. This seems con-

sistent with the notion that intuitive judgments of similarity are not merely geometric

but rather depend on context. Consider Tversky’s (1977) famous finding that Austria is

perceived as being more similar to Sweden than to Hungary when Poland is also consid-

ered, but is instead perceived as more similar to Hungary than to Sweden when Norway

is also considered. Austria shares political traits with Sweden (it is a Western country)

and geographic traits with Hungary (it is in Central Europe). The mechanism of interfer-

ence suggests that when compared to mostly Central European and Socialist countries,

Austria’s geography is interfered with and its distinctive trait becomes "Western". This

raises the perceived similarity with Sweden. In contrast, when Austria is compared with

other Nordic countries, its geography is less interfered with (while its Western trait is

more interfered with), which pushes similarity judgments to Sweden.

Our experiments suggest that selective retrieval and interference may offer a founda-

tion for the representativeness heuristic, but also more generally for understanding the

formation of probability judgments and similarity assessments from experienced statis-

tical associations. In fact, similarity judgments between a type and a cue are captured

in our model by the ease-of-recall function M . In our interpretation, both probability

and similarity judgments reflect accessibility of information in memory, and are shaped

by interference. This approach not only accounts for the close alignment between these

two types of judgments observed in the literature (Kahneman and Tversky 1983) but

also predicts how such judgments depend on objective properties of the targets being

assessed.¹⁷

¹⁷In our model, the ranking of types in terms of probability in a group and in terms of representative-
ness or similarity to a group coincide when the recall distortion is strong, θ >> 1. The two rankings may
diverge when the overestimation of representative types is not sufficient to overcome the base rates. For
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Another set of important issues concerns the external validity of our experiments. As

described in the Introduction, the patterns of interference uncovered by our experiment

seem to be at the heart of many examples of base-rate neglect. Interference is also consis-

tent with the Cognitive Psychology approach to stereotypes, as described by Hilton and

Hippel (1996): “stereotypes are selective [...] in that they are localized around group

features that are the most distinctive, that provide the greatest differentiation between

groups.” Here again, interference across groups seems essential.

Some stereotypical beliefs can be amplified by exposure to biased sources of informa-

tion that confirm intuitive beliefs, such as natural language (Bhatia 2017). Such seman-

tic associations may be unavoidable in driving beliefs about groups that are particularly

salient in real world situations. In these cases, we view the two approaches as com-

plementary. Interference in retrieval may help predict which specific features of groups

will form a stereotype. Natural language and rehearsal may disproportionately sample

a group’s representative types, reinforcing the belief originating in selective recall. In

this way, selective recall and semantic similarity are likely to be complementary forces

in creating real world judgments.

Interference can also account for the conjunction fallacy, which is in fact captured

by Gennaioli and Shleifer’s (2010) model of probability judgments. Consider the Linda

problem: given Linda’s background, a variety of professional outcomes are possible. Re-

trieval of the bank teller outcome is dampened because the average bank teller is more

strongly associated with people of different, perhaps less rebellious, backgrounds. Sub-

jects thus underestimate the probability that Linda is a bank teller for the same reason

they may overestimate the probability that she is a social worker. In comparison to the

generic bank teller, the more specific feminist bank teller outcome is much more repre-

sentative of Linda, so (between subjects) a higher likelihood is assigned to it.

6 Conclusion

Our results show that selective retrieval and interference are key mechanisms in the for-

mation of probability judgments from experienced statistical associations. This suggests

that memory is a promising setting in which to explore the accessibility of thoughts that

drive intuitive thinking (Kahneman 2003). While here we have focused on interference

in episodic memory, there are at least two other important features of memory that

stand out as being clearly relevant. One is attribute-based similarity: a long literature

shows that similarity between cues and items along both intrinsic and contextual dimen-

sions is an important determinant of recall from episodic memory (Kahana 2012). This

example, while subjects say the representative Hollywood actress has divorced several times, they also
understand that they are more likely to be Democrat (Kahneman and Tversky 1983).
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raises the question of how attribute similarity interacts with interference to shape prob-

abilistic judgments. This question could be addressed in our experimental paradigm by

exploiting for instance similarity across colors. Second, in many cases judgments involve

a broader representation of the problem. An important class of such problems are fore-

casting biases, where likelihood of an event “is judged by the degree to which it reflects

the salient features of the process by which it is generated” (KT 1972). Pinning down

the representation of a problem may be better captured by semantic memory. Extending

the framework to incorporate these features may help provide a unified explanation of

judgment biases and intuitive thinking.
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A Derivation of the Predictions

To map the model to our experimental setting, we focus on the case where there are two

types, T = {t,−t}, and two groups, G = {g,−g}. Denote the probability distributions

as P(t|G) = Pt,g . Similarly, we use the notation Mt = M(Pt,g , Pt,−g) for the ease-of-recall
function M . We first derive the conditions under which judged probability P̃t,g increases

with actual probability Pt,g , namely:

d P̃t,g

dPt,g
=

d
dPt,g

Pt g
Mt

E(M)
> 0

We have:

P̃ ′t,g ∝
�

Mt g + Pt g M ′
t g

�

E(M)− Pt g Mt g

�

Mt g −M−t g + Pt g M ′
t g +M ′

−t g(1− Pt g)
�

where we used E(M) = Pt g(Mt −M−t) +M−t . The expression above is equal to

Mt g M−t g + Pt g(1− Pt g)
�

M ′
t g M−t g −Mt g M ′

−t g

�

which is positive, because by assumption M > 0, M ′
t g > 0 and M ′

−t g < 0.

We next derive conditions under which the judged probability P̃t,g decreases with

interference, that is, with the probability of this type in the comparison group:

d P̃t,g

dPt,−g
< 0

Using primes to denote derivatives with respect to Pt,−g , we have

P̃ ′t,g ∝ M ′
t gE(M)−Mt g

�

Pt g M ′
t g +M ′

−t g(1− Pt g)
�

= (1− Pt g)
�

M ′
t g M−t g −Mt g M ′

−t g

�

which is negative, because by assumption M > 0, M ′
t g < 0 and also M ′

−t g > 0 (because

M−t g decreases in P−t,−g , which in turn decreases in Pt,−g).

Prediction 1. The frequency of blue objects in the comparison group−g is larger in the

blue treatment than in the gra y treatment, Pb,−g=W > Pb,−g=S. It then follows from the

fact that
d P̃b,N

dPb,−g
< 0 that

�

P̃b,N

�

blue
<
�

P̃b,N

�

gra y
and conversely that

�

P̃o,N

�

blue
>
�

P̃o,N

�

gra y
.
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Prediction 2. As before,
�

P̃o,N

�

blue
decreases with the frequency Po,W of orange words.

Prediction 3. In experiment 3, the type space is two dimensional, T = {o, b} × {s, l},
with four possible types. However, we hypothesize that the cues color or size restrict

attention to a single dimension of the type space. In this case, the effective state space

again has two possible states, and the analysis reduces to the case above.
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B Methods, Procedures, and Further Results

B.1 Study 1

Link to an online version of the two treatments of Study 1:

https://unikoelnwiso.eu.qualtrics.com/jfe/form/SV_6PaEfC4u67hWp1P

Images

Screenshots for each type of image used in Study 1 are displayed in Figure 4. Figures 5

and 6 list the target images (orange and blue numbers) and decoy images (blue words

or gray shapes, depending on treatment).

(a) Orange Number (b) Blue Number

(c) Gray Shapes (d) Blue Word

Figure 4: Examples of image screenshots

Questions

• Q1: The computer randomly chose 1 image from all images that were just shown

to you. The chosen image showed a number. What is the likely color of the chosen

image? Blue or Orange.

• Q2: How many orange numbers were shown to you?

• Q3: How many blue numbers were shown to you?

• Blue treatment only:

AddQ1: How many blue words were shown to you?

3
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Orange Numbers:

67.8, 68.9, 72.6, 73.0, 54.0,
57.1, 65.2, 52.4, 56.2, 61.3,

Blue Numbers:

66.4, 51.3, 58.5, 71.5, 69.5,
56.7, 62.7, 50.8, 70.8, 59.6,
74.3, 53.9, 63.6, 60.0, 64.1

Figure 5: Target images shown to participants

AddQ2: How many orange numbers were shown to you?

• Gray treatment only:

AddQ1: How many gray shapes were shown to you?

Procedural details and data collection

We conducted Study 1 in three waves. Wave 1 was conducted in February of 2018 with

MTurk and a sample of 337 participants. Our blue and gray treatments were accompa-

nied by an unrelated intertemporal choice. The entire experiment lasted for around 10

minutes. Participants received a $1.00 show-up fee. A computer-based coin toss deter-

mined randomly whether subjects would receive additional payments based on the blue

and gray treatments or on the unrelated intertemporal choice. In case subjects received

additional payments based on the former, one of all participants was randomly chosen

to receive $20.00 for each correct answer to Q1-Q3 and AddQ1-2, while all remaining

participants received $0.20 for each correct answer.

We then successfully replicated our findings in two more waves, one in the labora-

tory of the University of Cologne in March of 2018 (N=483) and another with MTurk in

March 2018 (N=193). In our first replication, we tested whether our results are robust

to moving from MTurk to the laboratory. The laboratory offered us more control on the

image display, because we could ensure equally stable internet connection and comput-

ing power for each participant. Like in the first wave, the blue and gray treatments were

accompanied by an unrelated intertemporal choice. The entire lab experiment also took

10 minutes. Subjects received a show-up fee of€4.00. One participant per experimental

session (consisting of 26 to 32 participants) was randomly selected to receive additional

payments based on the intertemporal choice task. All remaining participants received

€0.50 for each correct answer to Q1-Q3 and AddQ1-2 of the blue and gray treatments.
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Blue Words:

August, May, June, July, Millenium
Hour, Month, November, Year, March

Tuesday, December, Second, Saturday, Decade
January, Week, Minute, October, Monday
Sunday, Century, Day, Wednesday, April

Gray Shapes:

Figure 6: Decoy images shown to participants depending on treatment

In our final replication, we tested whether our results are robust to conducting the

blue and gray treatments without being accompanied by unrelated intertemporal choice

tests. The experiment of the third wave took below 7 minutes. Subjects received a $0.50

show-up fee and $0.20 for each correct answer to Q1-Q3 and AddQ1-2.

Further results

Result per wave Figure 1 and Table 2 (see Section 3.1) presented the main findings

of Study 1 on the outcomes Q1, Q2, and Q3 which provided support for the predictions

of our model.

Figure 7 shows that the share of participants who recalled more orange than blue

numbers is larger in the blue treatment than in the gray treatment for each wave. These

differences of 12.71pp, 28.32pp, and 15.03pp for waves 1, 2, and 3, respectively, are sig-

nificant in OLS regressions (p-values of 0.020, <0.001, and 0.037, respectively). Note

that the treatment effect for wave 2—which was conducted in the laboratory—is signifi-

cantly larger than the pooled treatment effect of waves 1 and 3—which were conducted

with MTurk—in a OLS difference-in-differences regression (p-value of 0.018 for the

difference-in-differences estimate). Thus, in the laboratory we find a greater treatment
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95% Conf Int

Figure 7: Share of participants who believe that the likely color of a randomly-drawn number is orange
for the blue and gra y treatments for each wave of Study 1.

effect

Tables 5, 6, and 7 show that the results of Table 2 also hold when focusing only

on wave 1, wave 2, and wave 3, respectively. Only the treatment effects on the median

orange numbers recalled and median blue numbers recalled do not replicate for wave

3, which has the smallest sample of the three waves.

Table 5: Regression estimates of treatment effects in Study 1 for wave 1

OLS: OLS: 0.5-Q-Reg 0.5-Q-Reg 0.5-Q-Reg
Y=1 Y= 1 Y= Y= Y=

if “orange if more Orange Blue Share of orange
is likely” orange numbers numbers numbers to total numbers

recalled recalled recalled recalled

(1) (2) (3) (4) (5)

1 if blue .1271** .0758 0 − 2** .0556***
(.0542) (.0527) (.3916) (.9791) (.0100)

Constant .3989*** .3333*** 10*** 14*** .4444***
(.0366) (.0356) (.2647) (.6618) (.0144)

Observations 337 337 337 337 337
Adj./Ps. R2 0.02 0.01 0.00 0.01 0.02

Different tests We show in Table 8 that our results presented in Table 2 are robust

to using different statistical tests (Logit regressions instead of OLS regressions for out-

come measures of Columns 1 and 2 as well as OLS regressions instead of 0.5 quantile

regressions for Columns 3, 4, and 5). Participants are significantly more likely to believe
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Table 6: Regression estimates of treatment effects in Study 1 for wave 2

OLS: OLS: 0.5-Q-Reg 0.5-Q-Reg 0.5-Q-Reg
Y=1 Y= 1 Y= Y= Y=

if “orange if more Orange Blue Share of orange
is likely” orange numbers numbers numbers to total numbers

recalled recalled recalled recalled

(1) (2) (3) (4) (5)

1 if blue .2832*** .1754 0 − 2*** .0556***
(.0433) (.0434) (.4541) (.7241) (.0175)

Constant .2946*** .2868*** 10*** 14*** .4444***
(.0366) (.0296) (.3099) (.4942) (.0119)

Observations 483 483 483 483 483
Adj./Ps. R2 0.08 0.01 0.00 0.02 0.02

Table 7: Regression estimates of treatment effects in Study 1 for wave 3

OLS: OLS: 0.5-Q-Reg 0.5-Q-Reg 0.5-Q-Reg
Y=1 Y= 1 Y= Y= Y=

if “orange if more Orange Blue Share of orange
is likely” orange numbers numbers numbers to total numbers

recalled recalled recalled recalled

(1) (2) (3) (4) (5)

1 if blue .1503** .1521** 2 3** .0556**
(.0716) (.0692) (1.612) (1.408) (.0100)

Constant .4239*** .2935*** 10*** 12*** .4444***
(.0518) (.0501) (1.166) (1.019) (.0190)

Observations 193 193 193 193 193
Adj./Ps. R2 0.02 0.02 0.00 0.01 0.03

that a randomly-drawn image is likely to be orange (Column 1). Participants are signif-

icantly more likely to recall more orange than blue numbers in the blue treatment than

in the gray treatment (Column 2). Additionally, participants state a significantly greater

average share of orange numbers recalled to total amount of images recalled in the blue

treatment than in the gray treatment (Column 5). Columns 3 and 4 show that subjects

recall on average more orange numbers and less blue numbers in the the blue treatment

than in the gray treatment, however these differences are not significant.
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Table 8: Robustness of regression estimates of treatment effects in Study 1

Logit: Logit: OLS OLS OLS
Y=1 Y= 1 Y= Y= Y=

if “orange if more Orange Blue Share of orange
is likely” orange numbers numbers numbers to total numbers

recalled recalled recalled recalled

(1) (2) (3) (4) (5)

1 if blue .8450*** .5948*** .4667 − .1399 .0341***
(.0307) (.0302) (.4130) (.5190) (.0100)

MTurk dummy yes yes yes yes yes

Wave dummies yes yes yes yes yes

Constant −.7022*** −.8270*** 11.56*** 14.06*** .4517***
(.1137) (.1162) (.3549) (.4461) (.0144)

Observations 1,013 1,013 1,013 1,013 1,013
Adj./Ps. R2 0.03 0.02 0.01 0.00 0.01

B.2 Study 1b

Distraction tasks

Emotion expression Figure 8 shows an example of the emotion expression task.

Figure 8: One of the tasks of the emotion recognition questionnaire used to distract participants in wave
1 of Study 1b.

Raven matrices Figure 9 shows an example of the raven matrices task.
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Figure 9: One of the tasks of the raven riddles used to distract participants in wave 2 of Study 1b.

Questions

In order of exposure to participants:

• Q1: The computer randomly chose 1 image from all images that were just shown

to you. The chosen image showed a number. What is the likely color of the chosen

image? Blue or Orange.

• Q4: The computer randomly chose 1 image from all images that were just shown to

you. The chosen image showed a number. What is the probability that this number

is orange?

• Q2: How many orange numbers were shown to you?

• Q3: How many blue numbers were shown to you?

• Blue treatment only:

AddQ1: How many blue words were shown to you?

AddQ2: How many orange numbers were shown to you?

• Gray treatment only:

AddQ1: How many gray shapes were shown to you?

• Q5: The computer randomly chose 1 image from all images that were just shown to

you. The chosen image showed a number. What is the probability that this number

is blue?

9



– The question was used only in the second wave of Study 1b. Because of a

computer error, we have responses to this question only for roughly half of

the 2nd wave’s sample.

Procedural details and data collection

We conducted two waves of the blue and gray treatments with distraction. They were

conducted in May of 2018 in the laboratories of the University of Cologne (N=427)

and at Bocconi University (N=363). The memory treatments were accompanied by an

unrelated intertemporal choice—like in wave 2 of Study 1 that was also conducted in

the lab. The entire lab experiment took 10 minutes. Subjects received a show-up fee of

€4.00. In case they were randomly selected to receive additional payments based on

our main treatments on memory and representativeness, subjects received €0.50 for

each correct answer to the questions on the 50 images. The distraction task on human

faces was used in the wave conducted at the University of Cologne and took 90 seconds

on average. The distraction task on raven riddles was used in the wave conducted at

Bocconi University and took 170 seconds on average. We find no treatment differences

between the two waves and hence present the results of the treatments with distraction

by pooling both waves. In the following we also show the non-pooled results.

Further results

Results on all outcomes measures of Study 1b: Columns 1, 2, 3, 4, and 5 of Ta-

bles 9 show that Study 1b replicates the treatment effects of Study 1 (as presented in

Columns 1-5 of Table 2). Additionally, Columns 6 and 7 of Tables 9 show that subjects’

direct probabilistic assessment of the likelihood that a random number is orange (Q4)

and blue (Q5) differ between the blue and gra y treatments as predicted. Participants

believe at a random number is more likely to be orange in the blue treatment that in

the gra y treatment and believe that a random numbers is less likely to be blue in the

blue treatment that in the gra y treatment.

Differences between blue & gray w/ and w/out distraction: Tables 10 shows OLS

difference-in-difference regressions that test whether the treatment effects of Study

1 and Study 1b differ significantly from each other. The highlighted row shows the

difference-in-differences estimates, which are zero or close to zero for all dependent

variables in size and do not differ from zero significantly for any of the dependent vari-

ables.
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Table 9: Regression estimates of treatment effects in Study 1b

OLS: OLS: 0.5-Q-Reg 0.5-Q-Reg 0.5-Q-Reg: 0.5-Q-Reg: 0.5-Q-Reg:
Y=1 Y= 1 Y= Y= Y= Y= Y=

if “orange if more Orange Blue Share of orange Probability that a Probability that a
is more orange numbers numbers numbers to total numbers randomly-drawn randomly-drawn
likely” recalled recalled recalled recalled number is orange number is blue

(1) (2) (3) (4) (5) (6) (7)

1 if blue .2111*** .1667*** 0 − 2*** .0556*** .07*** −.1***
(.0342) (.0329) (.6078) (.5878) (.0124) (.0137) (.0373)

Wave dummy yes yes yes yes yes yes no

Constant .3113*** .2576*** 12*** 15*** .4444*** .43*** .6**
(.0284) (.0273) (.5046) (.4880) (.0114) (.0144) (.0285)

Observations 790 790 790 790 790 790 117
Adj./Ps. R2 0.04 0.03 0.02 0.01 0.02 0.03 0.02

Table 10: Comparing regression estimates of treatment effects between Studies 1 & 1b

OLS: OLS: 0.5-Q-Reg 0.5-Q-Reg 0.5-Q-Reg:
Y=1 Y= 1 Y= Y= Y=

if “orange if more Orange Blue Share of orange
is more orange numbers numbers numbers to total numbers
likely” recalled recalled recalled recalled

(1) (2) (3) (4) (5)

1 if blue .2060*** .1379*** 0 − 2*** .0556***
(.0307) (.0302) (.4187) (.6427) (.0124)

1 if distraction − .0549 − .0821** 0 0 −.0159
(.0409) (.0398) (.6253) (.8114) (.0164)

1 if blue .0051 .0288 0 0 0
& distraction (.0460) (.0448) (.7041) (.9134) (.0185)

MTurk dummy yes yes yes yes yes

Wave dummies yes yes yes yes yes

Constant .3305*** .3043*** 10*** 14*** .4444***
(.0302) (.0259) (.3598) (.5524) (.0107)

Observations 1,803 1,803 1,803 1,803 1,803
Adj./Ps. R2 0.05 0.02 0.01 0.01 0.02

Table 11: Regression estimates of treatment effects in Study 1b for wave 1

OLS: OLS: 0.5-Q-Reg 0.5-Q-Reg 0.5-Q-Reg: 0.5-Q-Reg:
Y=1 Y= 1 Y= Y= Y= Y=

if “orange if more Orange Blue Share of orange Probability that a
is more orange numbers numbers numbers to total numbers randomly-drawn
likely” recalled recalled recalled recalled number is orange

(1) (2) (3) (4) (5) (6)

1 if blue .2445*** .1615*** 0 0 .0455** .05*
(.0465) (.0452) (.9386) (.7426) (.0217) (.0277)

Constant .3049*** .2601*** 12*** 15*** .4545*** .45***
(.0322) (.0313) (.6488) (.5132) (.0150) (.0192)

Observations 427 427 427 427 427 427
(Ps.) R2 0.05 0.03 0.00 0.00 0.01 0.01
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Table 12: Regression estimates of treatment effects in Study 1b for wave 2

OLS: OLS: 0.5-Q-Reg 0.5-Q-Reg 0.5-Q-Reg: 0.5-Q-Reg: 0.5-Q-Reg:
Y=1 Y= 1 Y= Y= Y= Y= Y=

if “orange if more Orange Blue Share of orange Probability that a Probability that a
is more orange numbers numbers numbers to total numbers randomly-drawn randomly-drawn
likely” recalled recalled recalled recalled number is orange number is blue

(1) (2) (3) (4) (5) (6) (7)

1 if blue .1954*** .1728*** 0 − 2** .0806*** .1*** −.1***
(.0504) (.0480) (.6960) (.7859) (.0192) (.0251) (.0373)

Constant .2840*** .2189*** 10*** 14*** .4194*** .4*** .6***
(.0368) (.0351) (.5088) (.5745) (.0141) (.0184) (.0285)

Observations 363 363 363 363 363 363 117
(Ps.) R2 0.04 0.03 0.00 0.01 0.02 0.03 0.02

Differences between the distraction tasks Tables 11 and 12 show treatment effects

for both waves in isolation for all outcome measures elicited in that wave, except for the

median blue numbers recalled, which only differs between blue and gra y treatments

for wave 2 and not for wave 1.
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B.3 Study 2

Orange words

In Study 2, participants were exposed to orange words as well as blue words. Some of

the words shown in the upper panel of Figure 6 were shown in blue and the remaining

were shown in orange.

Procedural details and data collection
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Figure 10: Participants’ belief that a random number is orange for the blue treatments with k = 1,6.
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Figure 11: Participants’ belief that a random number is blue for the blue treatments with k = 1,6.

We conducted three waves of Study 2’s treatments. The first two waves were con-

ducted in March and May of 2018 with MTurk, N = 307 and N = 1, 431, respectively.
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In both of these waves, the experiment only consisted of the blue treatment variation

with orange words. The experiment lasted for 7 minutes for both waves. Participants

received a $1.00 show-up fee as well as $0.20 for each correct answer. In the first wave

we conducted the treatments with k = 0, 1,3, 6. In the second wave we replicated the

first wave and included in addition treatments with k = 10, 22.

Table 13: Robustness of regression estimates of treatment effects in Study 2

Logit: Logit: OLS: OLS: OLS:
Y=1 Y= 1 Y= Y= Y=

if “orange if more Orange Blue Share of orange
is likely” orange numbers numbers numbers to total numbers

recalled recalled recalled recalled

(1) (2) (3) (4) (5)

k (number of −.0386*** −.0137** −.0288 .0540* −.0023***
orange words) (.0064) (.0064) (.0258) (.0289) (.0006)

Mturk dummy yes yes yes yes yes

Constant − .1141 −.5393*** 12.711*** 14.945*** .4660***
(.1282) (.1324) (.5337) (.5985) (.0120)

Observations 2,903 2,903 2,903 2,903 2,903
Adj./Ps. R2 0.02 0.00 0.00 0.00 0.01

The third wave was conducted in May of 2018 in the laboratory of Bocconi Univer-

sity with k = 1,6. These treatments were accompanied by an unrelated intertemporal

choice—like in the laboratory experiments of Studies 1 and 1b. The entire lab exper-

iment took 10 minutes. Subjects received a show-up fee of €4.00. In case they were

randomly selected to receive additional payments based on the blue treatments with

k = 1,6, subjects received €0.50 for each correct answer to the 50 images. We are us-

ing the blue treatment of the lab experiment of Study 1 and Study 1b as a comparison

standard.

Further results

Figures 10 and 11 show that participants’ average belief that a random number is orange

is greater for fewer orange words and that a random number is blue is lower for fewer

orange words. Both findings are consistent with our predictions as discussed in Section

3.3.

We show in Table 13 that our results presented in Table 3 are robust to using differ-

ent statistical tests (Logit regressions instead of OLS regressions for outcome measures

of Columns 1 and 2 as well as OLS regressions instead of 0.5 quantile regressions for

Columns 3, 4, and 5). As the number of orange words increases, participants are signifi-

cantly less likely to believe that a randomly-drawn image is likely to be orange (Column
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1); participants are significantly less likely to recall more orange than blue numbers;

Additionally, participants state a significantly smaller average share of orange numbers

recalled to total amount of images recalled (Column 5). Columns 3 and 4 show that

subjects recall on average less orange numbers and more blue numbers as the number

of orange words increases, however, only the latter difference is weakly significant.
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B.4 Study 3

Questions

Color Cue Treatment (per screen in order of display)

• Screen 1

– Q1: The computer randomly chose 1 image from all images that were just

shown to you. The chosen image showed a number. What is the likely color

of the chosen image? Blue or Orange.

• Screen 2

– Q4: The computer randomly chose 1 image from all images that were just

shown to you. The chosen image showed a number. What is the probability

that this number is orange?

• Screen 3

– Q2a: How many blue numbers in small font size were shown to you?

– Q2b: How many blue numbers in large font size were shown to you?

– Q3a: How many orange numbers in small font size were shown to you?

– Q3b: How many orange numbers in large font size were shown to you?

Size Cue Treatment (per screen in order of display)

• Screen 1

– Q1: The computer randomly chose 1 image from all images that were just

shown to you. The chosen image showed a number. What is the likely font

size of the chosen image? Small or Large.

• Screen 2

– Q4: The computer randomly chose 1 image from all images that were just

shown to you. The chosen image showed a number. What is the probability

that this number is large?

• Screen 3

– Q2a: How many blue numbers in small font size were shown to you?

– Q2b: How many blue numbers in large font size were shown to you?

– Q3a: How many orange numbers in small font size were shown to you?

– Q3b: How many orange numbers in large font size were shown to you?
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Procedural details and data collection

We conducted two waves of Study 3. Wave 1 was conducted in May of 2018 in the labora-

tory of the Bocconi University (N = 326). Wave 2 replicated Wave 1 in October of 2018

in the laboratory of the University of Cologne (N = 321). The memory treatments were

accompanied by an unrelated intertemporal choice—like in the laboratory experiment

of Studies 1 and 1b. The entire lab experiment took 10 minutes. Participants received

a show-up fee of €4.00. In case they were randomly selected to receive additional pay-

ments based on the treatments of Study 3, participants received €0.50 for each correct

answer to the questions Q1-Q4.

Further results

We find evidence for our prediction for both Q1 and Q4 in both waves of the Study 3,

see Figures 12 and 13.
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Figure 12: Share of participants who believe that the color OR size of a randomly-drawn number is most
likely orange OR large for the treatments of Study 3.

C Further Experiments

In the following, we discuss 4 further experiments that we conducted. The first two, pilot

and ProbNumber, provide evidence that the results of Study 1 do not rely on particular

design features. In the pilot, for instance, we show that interference-based recall leads

to distortions of probabilistic statements when types are constructed around differences

in font size (large versus small) rather than color (orange versus blue). The latter two,

Studies 2b and 2c, investigates further variations of experimental parameters in order
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Figure 13: Participants’ belief that a random number is orange OR large for the treatments of Study 3.

Table 14: Pilot’s small treatment and large treatment

Small (Font Size) Treatment
Large Small

Target 10 Large 15 Small
Group Numbers Numbers
Decoy 25 Small
Group Words

Large (Font Size) Treatment
Large Small

Target 10 Large 15 Small
Group Numbers Numbers
Decoy 25 Large
Group Numbers

to seek out the boundaries of our treatments effects and potentially highlight avenues

for future research.

C.1 Pilot

The findings of our pilot experiment corroborate the evidence for interference-based

distortions of probabilistic judgement from Study 1. Rather than having orange and blue

numbers as our target images, we displayed numbers in large and small font size. When

large and small numbers are shown to participants along small words, participants think

that a random number is more likely to be large than when the numbers appear along

large words. Small words seem to interfere with the recall of small numbers, urging
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participants to judge that a random number’s font size is more likely to be large rather

than small. The results of the pilot hence provide further evidence for interference-based

probabilistic judgements.

Design

The two between-subjects treatments of our pilot follow the same structure as our base-

line treatments of Study 1:

First, participants anticipate to receive questions that are incentivized for accuracy

on a sequence of 50 abstract images displayed to them during the experiment.

Second, participants see the 50 images that appear on separate screens for short

moments of time and in random order. The 50 images vary along two features. The first

feature, denoted by G, is the category of the object displayed in the image, which can

be a number or word, ie G ∈ {n, w}. We will refer to numbers as targets and words as

decoys. The second feature, denoted by T , is the font size of the object, which can be

large or small, ie T ∈ {l, s}. Table 14 shows which types of images participants were

exposed for each of the two treatments. Example screenshots for each kind of image are

displayed in Figure 14.

Third, participants face questions on the targets which require them to recall the

observed sequence of images as well as on the decoys images. The questions—presented

here in the same order as show to participants in the experiment—were:

• Q1: The computer randomly chose 1 image from all images that were just shown

to you. The chosen image showed a number. What is the likely size of the chosen

image? Large or Small.

• Q2: How many large numbers were shown to you?

• Q3: How many small numbers were shown to you?

• Q4: How many small words were shown to you?

• Q5: How many large numbers were shown to you?

Predictions

Our prediction is that as we change the decoy images from being large words to small

words, the degree of participants who believe that a randomly-chosen number was

shown in large font size should be greater. Because large numbers are representative

only in the small treatment, interference-based recall inhibits recall of small numbers
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(a) Large Number (b) Small Number

(c) Large Word (d) Small Word

Figure 14: Examples of images shown to participants

more in the small treatment than in the the lar ge treatment. Thus, we expect more

participants to state that the likely font size is large in the small treatment than in the

lar ge treatment.

Procedural details and data collection

We conducted the pilot in December of 2017 with MTurk and a sample of 374 partic-

ipants. Our large and small treatments were accompanied by unrelated intertemporal

choices. The entire experiment lasted for around 13 minutes. Participants received a

$1.00 show-up fee. A computer-based coin toss determined randomly whether subjects

would receive additional payments based on the blue and gray treatments or on the un-

related intertemporal choice. In case subjects received additional payments based on the

former, one of every 100 participants was randomly chosen to receive $20.00 for each

correct answer to Q1-Q5, while all remaining participants received $1 for each correct

answer.

Results

22.4% of participants believe that the likely font size of a randomly-drawn number is

large when small and large numbers are shown to participants along large words in

the large treatment. However, when all words are small in the small treatment, 32% of

participants believe that the likely font size of a randomly-drawn number is large. This
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difference is consistent with our model’s prediction and is significantly great than zero

in an OLS regression, see Table 15 Column 1.

Mirroring our results from Study 1, we also find that a greater share of participants

recalls more large than small numbers in the small treatment than in the large treatment,

Column 2 of Table 15. Additionally, participants recalled a weakly significantly greater

median share of large numbers to the total amount of numbers in the small treatment

than in the large treatment, Column 3 of Table 15. However, we also find that the median

amount of recalled large numbers as well as the medial of recalled smaller numbers do

not differ across treatments.

Table 15: Regression estimates of treatment effects in the pilot

OLS: OLS: 0.5-Q-Reg 0.5-Q-Reg 0.5-Q-Reg
Y=1 Y= 1 Y= Y= Y=

if “orange if more Orange Blue Share of orange
is likely” orange numbers numbers numbers to total numbers

recalled recalled recalled recalled

(1) (2) (3) (4) (5)

1 if blue .1006** .0883** 0 0 .0274*
(.0460) (.0402) (.8609) (.9589) (.0157)

Constant .2240*** .1421*** 8*** 15*** .3571***
(.0329) (.0287) (.6152) (.6852) (.0112)

Observations 374 374 374 374 373
Adj./Ps. R2 0.01 0.01 0.00 0.00 0.00

C.2 Study ProbNumber

Design

The two between-subjects treatments of our Study ProbNumber follow the same struc-

ture as our baseline treatments of Study 1:

First, participants anticipate to receive questions that are incentivized for accuracy

on a sequence of 50 abstract images displayed to them during the experiment.

Second, participants see the 50 images that appear on separate screens for short

moments of time and in random order. The 50 images vary along two features. The first

feature, denoted by G, is the category of the object displayed in the image, which can be

a number, word or shape, ie G ∈ {n, w, s}. The second feature, denoted by T , is the color

of the object, which can be blue or orange, ie T ∈ {b, s}. Table 16 shows which types of

images participants were exposed for each of the two treatments. Example screenshots
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Table 16: Study ProbNumber’s numbers treatment and shapes treatment

Numbers Treatment
Decoy Group Target Group

Numbers 10 Orange 15 Blue
Numbers Numbers

Non-numbers 25 Blue
Words

Shapes Treatment
Decoy Group Large Group

Numbers 15 Blue
Numbers

Non-numbers 10 Orange 25 Blue
Shapes Words

for each kind of image are displayed in Figure 15. In the ProbNumber study, blue objects

are the target images and the orange objects are the decoys.

Third, participants face one question on the targets which require them to recall the

observed sequence of images:

• Q1: The computer randomly chose 1 image from all images that were just shown

to you. The chosen image showed a blue object. What is the probability that the

chosen image is a number?

Prediction

Our prediction is that as we change the decoy images from being orange shapes to

orange numbers, the likelihood that participants recall a randomly-chosen blue object

as begin a number should be lower. Because orange numbers are representative only in

the numbers treatment, interference-based recall inhibits recall of blue numbers more in

the numbers treatment than in the the shapes treatment. Thus, we expect participants to

state lower probabilities that a randomly-chosen blue object is a number in the numbers

treatment than in the shapes treatment.

Procedural details and data collection

We conducted the ProbNumber Study in March of 2018 with MTurk and a sample of

304 participants. The experiment consisted only of the numbers and shapes treatments.

The entire experiment lasted for around 7 minutes. Participants received a $1.00 show-

up fee and $1.00 for a correct answer to Q1. Because of a computer error, we had to
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(a) Orange Number (b) Blue Number

(c) Orange Shape (d) Blue Word

Figure 15: Examples of images shown to participants in Study ProbNumbers

drop one observation. Including an observation with any type of response to Q1 does

not alter our results.

Results

Consistent with our prediction, we find that participants believe that a randomly-drawn

blue object is a number to a greater extend in the shapes treatment—where orange

shapes are unlikely to interfere with the recall of blue numbers—than in the numbers

treatment—where orange numbers are predicted to interfere with the recall of blue

numbers.

The median probability that a blue object is a number is 50% in the shapes treatment

and 40% in the numbers treatment. This difference is significant at the 1% level in a

0.5 quantile regression. We find a similar treatment effect when looking at the mean

instead of the median. The mean probability that a blue object is a number is 48% in

the shapes treatment and 42% in the numbers treatment. This difference is significant

at the 5% level in an OLS regression.

The results of ProbNumber provide further evidence for how interference-based re-

call drives distortions of probabilistic judgements.
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C.3 Study 2b

In Study 2b, we build on Study 1 and Study 2 by further varying the composition of

images in order to explore the role of relative likelihoods in driving distorted retrieval

more directly.

Design

In Study 2b, we vary likelihood ratios by changing the composition of images within

our target group, the Numbers. Consider first our baseline paradigm of Study 1, which

consists of two treatments: the blue treatment group, which pairs the Numbers with

the decoy group of 25 Blue Words, and the gray control group, which pairs the same

Numbers group with instead a decoy group of 25 Gray Shapes. Study 2b parallels that

design, pairing a target group with one of two decoy groups: either 25 Blue Words or 25

Gray Shapes. But, in Study 2b, we vary the target group of Numbers, essentially creating

a 3 x 2 design. Table 17 presents the full 3 x 2 treatments. In the first case, we use a

target group of 12 orange numbers and 13 blue numbers, pairing it either with the 25

Blue Words (to create blue i = 13) or the 25 Gray Shapes (to create gra y i = 13). The

second case uses a target group of 5 orange numbers and 20 blue numbers, again paired

with either the blue words (blue i = 20) or the gray shapes (gra y i = 20). Finally, in

the last set of treatments, we use 2 orange numbers and 23 blue numbers, paired with

either blue words (blue i = 25) or gray shapes (gra y i = 25).

Questions in order of display

• Q1: The computer randomly chose 1 image from all images that were just shown

to you. The chosen image showed a number. What is the likely color of the chosen

image? Blue or Orange.

• Q2: How many orange numbers were shown to you?

• Q3: How many blue numbers were shown to you?

• Blue treatments only:

AddQ1: How many blue words were shown to you?

AddQ2: How many orange numbers were shown to you?

• Gray treatments only:

AddQ1: How many gray shapes were shown to you?
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Table 17: Study 2b’s Blue i Treatment and Gra y i Treatment

Blue i Treatments
(with i ∈ {13,20, 25})
Orange Blue Gray

Target 25−i Orange i Blue
Group Numbers Numbers
Decoy 25 Blue
Group Words

Gray i Treatments
(with i ∈ {13,20, 25})
Orange Blue Gray

Target 25−i Orange i Blue
Group Numbers Numbers
Decoy 25 Gray
Group Shapes

Predictions

Our prediction is that as we increase the share of blue numbers, the likelihood that par-

ticipants recall a randomly-chosen number as orange should decrease in the blue treat-

ment. Thus, we expect a smaller treatment effect (difference between blue and gra y) as

the share of blue numbers increases. Denote the number of blue numbers as i, so that the

number of orange numbers is 25-i and assume c > 0. Then, representativeness-based

recall yields the following prediction:

As the share of blue to orange numbers increases, the share of participants who

believe that the likely color of a random number is orange should decrease in the blue

treatment, because the assessed probability that a random number is blue increases,

formally P̃(b|n)blue i ≥ P̃(b|n)blue i′ for i > i′.

Procedural details and data collection

We conducted two waves of Study 2b. The first wave was conducted in March of 2018

via MTurk with 601 participants. The experiment consisted only of our memory treat-

ments. The experiment lasted for 7 minutes. Participants received a $1.00 show-up fee

as well as $0.20 for each correct answer. We then replicated these results in the labora-

tory of the University of Cologne with 516 participants. The memory treatments were

accompanied by an unrelated intertemporal choice—like in the laboratory experiment

of Study 1. The entire lab experiment took 10 minutes. Participants received a show-up

fee of€4.00. In case they were randomly selected to receive additional payments based

on our treatments on memory and representativeness, participants received €0.50 for
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each correct answer to the questions on the 50 images.

Results

Our findings provide evidence for our prediction. When the share of blue to orange num-

bers is increased, participants’ blue to gray treatment difference in their assessed proba-

bility that a random number is orange decreases. The treatment effect on the share of

participants believing that “orange is more likely” is 15.3pp for 13 blue numbers and 12

orange numbers. The treatment effect reduces to 10pp for 20 blue and 5 orange num-

bers and to 6pp for 23 blue and 2 orange numbers. While all three treatment effects are

(at least weakly) significantly different from zero, the former one is larger than the lat-

ter two. OLS regressions show that this difference in treatment effects is at most weakly

significantly different from zero when comparing the 13 blue numbers and 12 orange

numbers case with the 23 blue numbers and 2 orange numbers case as well as when

comparing the 13 blue numbers and 12 orange numbers case with the pooled cases of

23 blue numbers and 2 orange numbers as well as 20 blue numbers and 5 orange num-

bers. Column (1) of Table 18 shows the results of an OLS regression of the latter result.

The weakly significant interaction term (Row (3)) implies the discussed difference in

treatment effects. Column (2) of Table 18 shows that the difference in treatment effects

increases in size and significance when the main treatments of Study 1 are included:

The treatment effect for treatments with 20 or 23 blue numbers is significantly smaller

than for treatments with 13 or 15 blue numbers.

Studies 2b provide further evidence that likelihood ratios are directly linked to the

extent of distortion in recall. As we increase the representativeness of blue numbers in

the blue treatment, the size of the treatment effect when comparing across blue words

and gray shapes is directionally decreased. Thus, it seems clear that likelihood ratios

have a large role to play in predicting the accuracy of recall.

C.4 Study 2c

In Study 2c, we build on Study 1 by further varying the composition of images in or-

der to explore the boundaries of how many decoy images are needed to bring about

interferference-based recall. While this test lays outside of our mode, we take it as an

instructive direction for future research on improved models of interferference-based

recall.
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Table 18: Regression estimates of treatment effects in Study 2b

Including only Study 2b Including Study 1 & 2b
OLS: OLS:

Y=1 if “Orange is more likely” Y=1 if “Orange is more likely”

(1) (2)

1 if blue .1669*** .1957***
(.0411) (.0237)

1 if i (Blue −.3044*** −.2897***
Numbers) ≥20 (.0354) (.0397)

1 if blue & −.0904* −.1192***
i ≥ 20 (.0499) (.0656)

MTurk dummy yes yes

wave dummies – yes

Constant .3302*** .3153***
(.0325) (.0300)

Observations 1,117 2,130
Adj. R2 0.18 0.15

Notes: For Study 2b, wave dummy and MTurk dummy are collinear

Design

In Study 2c, we vary the amount of decoy images. Consider first our baseline paradigm

of Study 1, which consists of two treatments: the blue treatment group, which pairs the

Numbers with the decoy group of 25 Blue Words, and the gray control group, which

pairs the same Numbers group with instead a decoy group of 25 Gray Shapes. Study

2c parallels that design, pairing a target group with one of two decoy groups: either

Blue Words or Gray Shapes. But, in Study 2c, we vary the amount of decoys, essentially

creating a 4 x 2 design. Table 19 presents the full 4 x 2 treatments. In the first case, we

show the target group of 10 orange numbers and 25 blue numbers, pairing it either with

the 5 Blue Words (to create blue j = 5) or the 25 Gray Shapes (to create gra y j = 5).

The second case uses the same target group of 10 orange numbers and 15 blue numbers,

paired with either 50 Blue Words (blue j = 50) or 50 Gray Shapes (gra y j = 50). In

the latter two cases, the target group is paired with 75 Blue Words (blue j = 75) or 75

Gray Shapes (gra y j = 75) or alternatively with 125 Blue Words (blue j = 125) or 125

Gray Shapes (gra y j = 125).

Questions in order of display
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Table 19: Study 2b’s Blue j Treatment and Gra y j Treatment

Blue j Treatments
(with j ∈ {5,50, 75,125})

Orange Blue Gray
Target 10 Orange 15 Blue
Group Numbers Numbers
Decoy j Blue
Group Words

Gray j Treatments
(with j ∈ {5,50, 75,125})

Orange Blue Gray
Target 10 Orange 15 Blue
Group Numbers Numbers
Decoy j Gray
Group Shapes

• Q1: The computer randomly chose 1 image from all images that were just shown

to you. The chosen image showed a number. What is the likely color of the chosen

image? Blue or Orange.

• Q2: How many orange numbers were shown to you?

• Q3: How many blue numbers were shown to you?

• Blue treatments only:

AddQ1: How many blue words were shown to you?

AddQ2: How many orange numbers were shown to you?

• Gray treatments only:

AddQ1: How many gray shapes were shown to you?

Procedural details and data collection

We conducted two waves of Study 2c. The first wave was conducted in March of 2018

with MTurk and a sample of 800 participants featuring all treatment cells of the 4 ×
2 design. We then replicated the blue treatments with 5, 50, and 75 decoys in May of

2018 with MTurk and a sample of 592 participants. In both waves, the experiment con-

sisted only of our memory treatments. The experiment lasted for 7 minutes. Participants

received a $1.00 show-up fee as well as $0.20 for each correct answer to the questions

on the 50 images.
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Figure 16: Vary the amount of decoy images

Results

Figure 16 shows that we find no treatment effect when the blue and orange numbers

are displayed along 5 decoys (in the blue and the gra y treatments). For 50, 75, and

125 decoys, however, we do find significant treatment effects that resemble our findings

of Study 1. These findings suggest a lower bound for decoys to be able to interfere with

target images.
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