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ABSTRACT

In many prediction problems researchers have found that combinations of prediction methods 
(“ensembles”) perform better than individual methods. A simple example is random forests, 
which combines predictions from many regression trees.

A striking, and substantially more complex, example is the Netflix Prize competition where the 
winning entry combined predictions using a wide variety of conceptually very different models. 
In macro-economic forecasting researchers have often found that averaging predictions from 
different models leads to more accurate forecasts.

In this paper we apply these ideas to synthetic control type problems in panel data setting. In this 
setting a number of conceptually quite different methods have been developed, with some 
assuming correlations between units that are stable over time, others assuming stable time series 
patterns common to all units, and others using factor models. With data on state level GDP for 
270 quarters, we focus on three basic approaches to predicting missing values, one from each of 
these strands of the literature. Rather than try to test the different models against each other and 
find a true model, we focus on combining predictions based on each of the separate models using 
ensemble methods. For the ensemble predictor we focus on a weighted average of the three 
individual methods, with non-negative weights determined through out-of-sample cross-
validation.
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1 Introduction

In many prediction problems researchers have found that combinations of
prediction methods (“ensembles”) perform better than individual methods
(Hal Varian, 2014; James Surowiecki, 2005; Zhi-Hua Zhou, 1983). A simple
example is random forests, which combines predictions from many regression
trees. A striking, and substantially more complex, example is the Netflix
Prize competion (e.g., Robert Bell, Yehuda Koren and Chris Volinsky (2010))
where the winning entry combined predictions using a wide variety of con-
ceptually very different models. In macro-economic forecasting researchers
have often found that averaging predictions from different models leads to
more accurate forecasts (e.g., James Stock and Mark Watson, 2006).

In this paper we apply these ideas to synthetic control type problems in
panel data settings (Alberto Abadie, Alexis Diamond and Jens Hainmueller,
2010,2015). In this setting a number of conceptually quite different methods
have been developed, with some assuming correlations between units that
are stable over time, others assuming stable time series patterns common
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to all units, and others using factor models. With data on state level GDP
for 270 quarters, we focus on three basic approaches to predicting missing
values, one from each of these strands of the literature. Rather than try to
test the different models against each other and find a true model (Quang
Vuong, 1989), we focus on combining predictions based on each of the sep-
arate models using ensemble methods. For the ensemble predictor we focus
on a weighted average of the three individual methods, with non-negative
weights determined through out-of-sample cross-validation. Alternatives to
this stacked regression method (Leo Breiman, 1996) include ridge regression
(Mark van der Laan, Eric Polley, and Alan Hubbard, 2007), and Bayesian
model averaging (Jennifer Hoeting, David Madigan, Adrian Raftery, and
Chris Volinsky, 1999).

Using a range of outcomes, GDP, log GDP, and GDP growth rates, and a
range of values for the number of time periods, from T = 10 to T = 270, we
find that no individual method dominates. Using the ensemble method with a
convex combination of the individual methods we do substantially better, and
typically as well as or better than the best individual method, in line with the
general ensemble literature. These results show that ensemble methods are
a practical and effective method for the type of data configurations typically
encountered in empirical work in economics, and that these methods deserve
more use in practice then they have received.

Many questions remain concerning their use in practice. Instead of linear
regression to determine the weights of the individual predictors one can use
more sophisticated methods, e.g., random forests, or neural nets. Choices
regarding the cross-validation also matter. Finally, there are questions re-
garding inference for the ensemble methods.

2 A Simple Example

Here we briefly discuss a very simple example to set the stage for the subse-
quent discussions. Suppose we have N observations on an outcome and two
covariates, (Yi, Xi1, Xi2), for i = 1, . . . , N . Let us consider two simple mod-
els, one that relates Yi to Xi1 through a linear model, and one that relates
Yi to Xi2 through a linear model. Let the estimated regression functions be
Ŷ1i = β̂1,0 + β̂1,1Xi1 and Ŷ2i = β̂2,0 + β̂2,2Xi2.

We can combine these two models in different ways. One traditional
approach would be to choose between the two models using statistical tests,
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as in Vuong (1989). A second possibility would be to build a more general
model that nests both individual models, e.g., E[Yi|Xi1, Xi2] = β0 + β1Xi1 +
β2Xi2. A third approach would be to assume that the true data generating
process is a mixture of the two models, Yi = Di(β1,0 + β1,1Xi1 + ε1,i) + (1 −
Di)(β2,0 + β2,2Xi2 + ε2,i), with Di having a binomial distribution. Such a
mixture model nests both individual models, but in a different way. As a
fourth approach, an implementation of an ensemble method is to predict
future values for the outcome as a linear combination of the two individual
predictors, Ŷi = θ0 + θ1Ŷ1i + θ2Ŷ2i, with the weights θ0, θ1, and θ2 chosen to
optimize the fit, possibly under the restriction that θ0 = 0 and θ1 + θ2 = 1.

There are some insights that are present even in this simple case. Choos-
ing between the models, based on statistical tests or out-of-sample fit, is not
necessarily the optimal thing to do. Suppose that Xi1 and Xi2 are indepen-
dent, and both contribute to the explanation of Yi. In that case a model that
uses both will generally outperform one that chooses one model or the other.
Similarly a mixture model will not necessarily lead to the best predictions
if the true data generating process is Yi ∼ N (β0 + β1Xi1 + β2Xi2, σ

2), with
β1, β2 6= 0. In this simple case either estimating the more general model with
E[Yi|Xi1, Xi2] = β0 +β1Xi1 +β2Xi2, or using an ensemble method that looks
for the optimal linear combination of Ŷi1 and Ŷi2 will find the optimal linear
combination of the two predictors in large samples.

Why might ensemble methods be an attractive way to go, compared to,
say building a more general model that nests those that underly the individ-
ual predictorss or to using a mixture model? One important one is computa-
tional, with ensemble methods computationally feasible and attractive even
in settings with many individual predictors and with many observations, pos-
sibly on a large number of variables, and mixture methods relying in the EM
algorithm can be slow. Second, building general models that nest simpler
ones can be challenging, as will be clear in the setting in this paper. It is
useful to note that a mixture model would ultimately estimate the individ-
ual models only on the data that appear to arise from those models, whereas
ensemble models are estimated on al the data. From that perspective an im-
portant aspect of the choice between mixture models and ensemble models
is the implicit regularization.
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3 Methods for Synthetic Control Problems

Suppose we are interested in estimating the causal effect of an intervention
in a setting with panel data. We observe outcomes for N units over T time
periods. Suppose that only a single unit is ever exposed to the treatment, and
this unit is only exposed in the last period. (Although the ideas discussed
in this paper extend to more general settings, e.g., staggered adoption as in
Susan Athey and Guido Imbens (2018), we focus on this simple setting for
expository reasons.) So, for unit N in period T we observe YNT = YNT (1),
and for all other unit/time pairs (i, t) we observe Yit = Yit(0). To estimate
the causal effect τ = YNT (1)−YNT (0) we wish to impute the missing YNT (0)
based on the NT − 1 observations on Yit(0). See Equation (3.1) for the data
configuration.
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. (3.1)

Many conceptually quite distinct methods have been proposed in the liter-
ature for imputing YNT (0). Leading methods include (i) methods based on
unconfoundedness, (ii) synthetic control methods (Alberto Abadie, Alexis
Diamond and Jens Hainmueller, 2010,2015), and (iii) matrix completion
methods that fit factor models to Y (e.g., Jushan Bai and Serena Ng, 2007;
Athey, Mohsen Bayati, Nikolay Doudchenko, Imbens, and Khashayar Khos-
ravi, 2018). Choosing between the different approaches is not always straight-
forward.The relative magnitude of N and T , and the correlation patterns
matter substantially. In this paper we show that the relative performace of
the three methods varies substantially by the magnitude of T (for a fixed N),
and by the nature of the variable. It may therefore be unappealling to choose
a priori one of the different approaches. However, this is not necessary. One
alternative is to use ensemble or model averaging methods that combine the
different approaches. Here we describe concretely how such model averag-
ing would work in settings with conceptually quite different models, and we
see that the ensemble methods systematically perform well relative to the
individual methods. Next we briefly describe the three individual methods.
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3.1 Synthetic Control Methods or Vertical Regression

(VR)

First we describe synthetic control methods or vertical regression, where the
unit of observation is a column in Y. See Abadie, Diamond and Hainmueller
(2010, 2015) for more details. Here we focus on the regularized unconstrained
weights, defined as

arg min
ω0,ω

{

T−1
∑

t=1

(

YNt − ω0 −
N−1
∑

i=1

ωiYit

)2

+λ

(

α||ω‖1 +
1 − α

2
‖ω‖2

2

)

}

.

The imputed value is then Y vt
NT = ω0 +

∑N−1
i=1 ωiYiT . The standard SC es-

timator imposes the additional restriction that ω0 = 0,
∑N−1

i=1 ωi = 1, and
ωi ≥ 0, and does not use the elastic net penalty term which we include to
deal with settings where N is large relative to T . The penalty parameters λ

and α are chosen through crossvalidation using different time periods.

3.2 Unconfoundedness or Horizontal Regression (HZ)

The second method we consider is a regression based on an unconfounded-
ness assumption (e.g., Imbens and Donald Rubin, 2015), that the treatment
assignment is independent of the potential outcomes. The estimator we con-
sider is based on a regression of the final period outcome on the lagged
outcomes:

arg min
β0,β

{

N−1
∑

i=1

(

YiT − β0 −
T−1
∑

t=1

βtYit

)2

+λ

(

α||β‖1 +
1 − α

2
‖β‖2

2

)

}

.

The penalty parameters here are again chosen by crossvalidation, this time
using different units. The imputed value is then Y hz

NT = β0 +
∑T−1

t=1 βtYNt.
Note that this estimator is based on the same algorithm as the vertical re-
gression estimator after we transpose the matrix Y.
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3.3 Matrix Completion (MC) Methods

The third method we consider is based on matrix completion methods. See
Athey, Bayati, Doudchenko, Imbens, and Khosravi (2018) for details. We
solve

min
L,α,β

∑

(i,t) 6=(N,T )

(Yit − αi − βt − Lit)
2

+λ‖L‖∗,
where ‖L‖∗ is the nuclear norm, equal to the sum of the singular values in
the singular value decomposition of L. This leads to a factor model where
Lit =

∑R

r=1 AirBtr with the rank R determined through the nuclear norm

penalization. The imputed value is then Ŷ mc
NT = LNT +αN +βT . The penalty

parameter is choosen again through crossvalidation. Note that we include
time and unit fixed effects in the model. These could be subsumed in the
matrix L, but in practice including them without penalization leads to supe-
rior out of sample fit, the same way the intercept in LASSO is not penalized.

4 Ensemble Methods

Here we discuss two method for combining the three individual methods for
predicting the counterfactual values for unit N in period T that differ in how
the weights are chosen. In both cases we focus on stacked regression (Leo
Breiman, 1996).

4.1 Vertical Crossvalidation (VC)

For the VC method we first go through all the control units i = 1, . . . , N .
Putting aside their final period outcome YiT as well as the observations on
the N -th unit, we use the three methods, VR, HZ, and MC to obtain three
estimates, Ŷ vt

iT , Ŷ hz
iT , and Ŷ mc

iT . Next we estimate the weights as

min
θ≥0

N−1
∑

i=1

(

YiT − θvtŶ
vt
iT − θhzŶ

hz
iT − θmcŶ

mc
iT

)2

,

with the restriction θvt + θhz + θmc = 1. Then the ensemble estimator for the
counterfactual value YNT (0) is

Ŷ
ens,vc
NT = θvtŶ

vt
NT + θhzŶ

hz
NT + θmcŶ

mc
NT .
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4.2 Horizontal Crossvalidation (HC)

For the HC method, we first go through the last S pre-treatment periods,
s = 1, . . . , S. Putting aside outcome YNT−s, we use the three methods, VR,
HZ, and MC to obtain three estimates, Ŷ vt

NT−s, Ŷ hz
NT−s, and Ŷ mc

NT−s. Now we
estimate the weights as

min
θ≥0

S
∑

s=1

(

YNT−s − θvtŶ
vt
NT−s − θhzŶ

hz
NT−s

−θmcŶ
mc
NT−s

)2

,

again with the restriction θvt + θhz + θmc = 1. Note that this method is not
symmetric with the vertical crossvalidation - we only use the last S periods
for the crossvalidation to avoid predicting the past with the future.

5 An Application

Here we evaluate the three individual methods and the ensemble method
in a realistic setting where we know the truth so we can obtain a realistic
assessment of the relative merits.

5.1 Set Up

We take as our outcomes state GDP, log GDP and GDP growth rates. This
gives us a wide range of correlation patterns across time and states. We then
carry out the following exercise. Fixing N = 51 (for the fifty states plus DC),
and for four different values of T , T ∈ {10, 25, 100, 270}, we take the last T

periods in our sample. The variation in the number of time periods puts
varying degrees of emphasis on the quality of the penalization methods. For
example, for the horizontal regression methods we estimate a linear regression
with 50 observations and 270 regressors. With a large number of time periods
we also expect that methods that treat all time periods as equally informative
may perform poorly.

We then take one state at a time, and pretend state i was first exposed
to an intervention for in period t ∈ {T0 + 1, . . . , T}. If the first intervention
was in period t, we estimate Yit(0) using one of the four methods using all
the observations Yjs for s ≤ t, other than Yit. We then compare the imputed
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Table I:

Average Root-Mean-Squared-Error Weight in VC
Ensemble

# Periods VR HR MC Ens-VC Ens-HC VR HR MC
GDP
10 0.48 1.37 0.75 0.44 0.48 0.47 0.17 0.36
25 0.12 0.37 0.13 0.12 0.10 0.19 0.02 0.79
100 0.16 0.15 0.04 0.04 0.05 0.00 0.00 1.00
270 0.15 0.11 0.04 0.07 0.04 0.00 0.46 0.54

Log GDP
10 0.44 1.64 0.37 0.35 0.43 0.05 0.00 0.95
25 0.09 0.38 0.09 0.09 0.10 0.02 0.00 0.98
100 0.05 0.07 0.02 0.02 0.03 0.00 0.00 1.00
270 0.03 0.01 0.01 0.01 0.01 0.00 0.00 1.00

Growth Rate
10 0.81 0.64 0.68 0.66 0.68 0.01 0.99 0.00
25 0.38 0.38 0.37 0.35 0.36 0.00 0.57 0.43
100 0.48 0.47 0.47 0.46 0.47 0.32 0.18 0.50
270 0.38 0.40 0.38 0.38 0.37 0.16 0.05 0.78
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Table II: Complexity of Models

Number of Non-zero coefficients and Ranks

T = 10 T = 25 T = 100 T = 270
VT HZ MC VT HZ MC VT HZ MC VT HZ MC

GDP 3.8 7.5 1.0 3.8 9.2 2.0 4.1 10.1 3.1 3.9 10.6 3.6
Log GDP 16.3 7.5 1.0 14.9 12.0 1.0 13.5 15.5 1.0 19.0 21.2 2.0
Growth R 11.8 3.8 6.9 20.4 6.4 12.3 21.4 23.3 19.7 23.7 21.8 32.7

value for Yit to the actual value, and square the difference. We average this
over the T − T0 periods where we pretend the intervention first happened.
We then average this over the N units to get the overall average squared
error, and report the square root of this, for the four different values for T ,
and for the three different outcomes, GDP, log GDP, and the GDP growth
rate, and based on horizontal or vertical cross-validation. For the vertical
crossvalidation we also report the average weights for the three individual
methods.

5.2 Discussion

We find that the performance of the three individual methods varies widely
over the settings considered here, both by the choice of outcome and by
the number of time periods. Compared to the other methods the vertical
/ synthetic control regression does well with few periods for GDP and log
GDP, but with growth rates it does relatively better with many periods.
The horizontal / unconfoundedness regression does well with many periods
for GDP and log GDP, but with growth rates does better for fewer periods.
The factor model does poorly with the highly correlated outcomes GDP and
log GDP, but does better with growth rates.

Compare to the individual methods the ensemble methods do well. It
generally does as well or better than any of the individual methods, perform-
ing only slightly worse than the best of the individual methods in a couple
of cases. If one of the individual methods does very poorly, the ensemble
method takes that into account and puts little weight on that method. There
is some variation by the choice of cross-validation for getting the weights, in
a somewhat predictable way. With many time periods one can use the time
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series observations for a particular unit to choose the weights (the horizon-
tal crossvalidation), but with few time periods one needs the cross-section
variation and the vertical crossvalidation performs better.

In Table II we report the average complexity of the individual models.
For the VT and HZ we report the average number of non-zero coefficients,
and for the MC we report the average rank. For GDP the vertical regres-
sion selects few states, the horizontal regression selects relatively few lags,
and the factor model selects few factors. The log GDP regression selects a
substantially larger number of states in the vertical regression and more lags
in the horizontal regression., and more factors. With the growth rates the
horizontal model selects few lags, but the vertical model selects a substantial
number of states, and the factor model is quite rich.

6 General Discussion

The panel settting is an interesting one to assess model averaging and en-
semble methods. There is a substantial number of conceptually very distinct
methods, and no natural model that nests them. We find that the relative
performance of these individual methods varies widely by the relative mag-
nitude of the number of units and time periods, as well as by the correlation
patterns in the data. None of the individual methods dominates, although
the matrix completion methods typically have the advantage relative to the
other methods. However, we find that a simple linear regression approach
combining the predictions based on the different methods outperforms the
individual methods systematically.
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