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1 Introduction

In most parliamentary democracies, public policies are not decided in elections, but are instead

the outcome of elaborate bargaining processes in the Parliament. Elections often do not even

determine the identity of the governing coalition, which may indeed be difficult to predict on the

basis of the electoral outcome alone. After the 2017 German election, a coalition of the Christian

Democrats (CDU/CSU) with the Social Democrats (SPD) on the left was formed only after a failed

attempt to form a coalition between the CDU, the Free Democratic Party (FDP) and the Greens;

in Italy, the 5 Star movement contemplated the formation of a coalition with the Democratic

Party (DP) on the left, before converging to the Northern League on the right.1 Predicting the

outcome of legislative bargaining is generally hard because it is not just about dividing surplus

within some minimal winning coalition. For the CDU/CSU, forming a government with the SPD

is more than just the number of ministers that need to be conceded to the SPD compared to the

FDP or the Greens: it is also about what can be achieved in each coalition. Understanding how

these two often conflicting goals interact is clearly central in understanding how parliamentary

democracies work.

In this paper we present a new theory of legislative bargaining in which formateurs need to

reconcile the need to form the most productive coalition with the desire to maximize the share

of output that they capture. The key assumptions underlying our analysis are that coalitions are

heterogeneous in terms of the surplus that they are expected to generate for the legislators; and

that formateurs can search for the optimal coalition, free to change the target coalition if they

can’t reach an agreement. Are there general lessons to learn on which types of coalitions will

form? Will the coalition generating the highest surplus emerge in equilibrium? If this is not the

case, will at least the bargaining process avoid that the worst coalition emerges?

The traditional literature on legislative bargaining a’ la Baron and Ferejohn [1989] has focused

on purely redistributive environments in which all coalitions generate the same surplus, thus de-

emphasizing the issue of efficiency. The theoretical literature on non-cooperative bargaining with

coalitions of heterogeneous values, on the other hand, has followed the tradition in cooperative

games, studying superadditive environments in which the grand coalition including all players is

the most efficient, and focusing on when this grand coalition with all players emerges in equilib-

rium. The environments studied in these papers are best suited to model environmental or peace

negotiations, where inclusive outcomes are desirable; they are less suitable for legislative problems,

where redistributive considerations are important. In the legislative context, the grand coalition

is typically not the most efficient and the more interesting questions are instead how inefficient

1 For more detailed discussions of the feasible coalitions contemplated in Germany and Italy after the 2018

elections see Brauninger [2019] for Germany and Valbruzzi [2018] for Italy.
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the equilibria could be, who is in the majority, and who is out. Besides assuming superadditive

environments and focusing on inclusive equilibria, moreover, these models adopt bargaining pro-

tocols that, while direct extensions of Rubinstein’s iconic approach, are not explicitly designed to

describe legislative work.

The bargaining model that we propose attempts to fill the missing gap between these two

literatures, extending the basic model of legislative bargaining by allowing for coalitions with

heterogeneous values without superadditivity, and with a simple bargaining protocol designed to

model actual legislative processes.

In our model, bargaining starts with the appointment of a formateur in charge of selecting a

majority and allocating within its members the surplus it is expected to generate (for example

by selecting ministerial appointments). Coalitions are heterogeneous because their feasible policy

space, and thus the surplus that they generate, depends on their members. Each possible coalition

 generates a value  () to be distributed; once a coalition is selected the formateur negotiates

with their members on how to allocate it with a process of alternating proposals. A distinctive

feature of this process in our model is that, even after the start of internal negotiations, the

formateur is not bound to a coalition, s/he can always turn to a different coalition if optimal. This

captures the specific role played by the formateur: s/he is not just bargaining on an allocation

within a coalition, but primarily in search of a coalition, thus free to halt negotiations with a

stubborn coalitional partner and turn to another. We assume that protracting negotiation is costly

because at every round there is a probability of bargaining breakdown as in Binmore, Rubinstein

and Wolinsky [1986]. A bargaining breakdown leads to either a new election or to the nomination

of a new formateur (perhaps after a new election). If a new formateur is selected, the process

restart with the new formateur. Bargaining ends when a coalition reaches an agreement or (if

it is a possibility) there is a bargaining breakdown that leads to a new election with exogenous

status quo. The equilibrium of this game naturally depends on the order of formateurs. The goal

is to generate general lessons that hold for all equilibria and all possible orders when the order is

exogenous, and then to endogenize the order of formateurs by explicitly modeling the role of the

head of state.

We first characterize the equilibrium of the bargaining game between formateur and the coali-

tions assuming exogenous continuation values in case of breakdown, as traditionally assumed in

the literature.2 We show that bargaining leads to a unique subgame perfect equilibrium in which

an inefficient coalition is generally selected. The equilibrium choice of coalition depends on the

probability of bargaining breakdowns, the size of the coalition and its associated surplus. The

2 See Binmore, Osborne and Rubinstein [1986] and Osborne and Rubinstein [1990, ch.4] for a survey of models

with the possibility of bargaining breakdown.
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inefficiency is due to a form of the hold-up problem that limits the formateur’s bargaining power,

due to the fact that s/he can not credibly commit to switch to any other coalition. The threat

of being held up does not lead to underinvestment as in the standard hold-up problem, but to an

inefficient choice of coalition (in terms of net total surplus). As the delay between offers goes to

zero, the equilibrium allocation converges to a generalized version of the Nash bargaining solution

in which each coalition member receives its outside option plus an equal share of surplus net of

reservation utilities.3 This is the same allocation as in the classic Nash bargaining solution: the

difference is that in the -person Nash bargaining solution the coalition is assumed to be com-

prised by all players (or some other exogenous coalition), while in our model it is endogenously

(and inefficiently) determined.

To understand the type of coalitions that may emerge in equilibrium (minimal winning or

super majorities, for example) and how surplus is allocated within them, we fully endogenize the

reservation utilities by assuming that a bargaining breakdown by some formateur is followed by

an attempt by some other formateur. We show that equilibria of this fully recursive version of

the game are very different from the equilibria emerging in the existing non cooperative models

a’ la Baron and Ferejohn [1989]. First of all, multiple stationary equilibria with different welfare

properties and different payoff allocations typically exist. This is in conflict with the finding of

Baron and Ferejohn [1989], where multiple stationary equilibria are possible but they all lead to

a unique value for the players. Multiplicity reflects the complexity of the strategic interaction in

the model in which both the identity of the coalition and the allocation are part of the outcome.

Secondly, however, we show that multiplicity does not lead to indeterminate behavior, but to a

characterization that is tight enough for welfare and positive analysis. This allows us to study

the condition under which an efficient equilibrium is feasible. We show that, depending on the

parameters, inefficient equilibria can coexist with efficient equilibria or be the unique outcome.

Under some conditions the inefficiency can be so bad that the least efficient coalition is chosen

in equilibrium: such inefficient equilibria always exist if the value of the feasible coalitions are

sufficiently similar.

Besides providing a new perspective on an old problem, our model may provide a unified

framework to explain empirical evidence that has been seen to conflict with standard models of

legislative bargaining. It also helps study the role of the head of state, a figure generally ignored

in formal models of bargaining, but one who often plays an important role.

3 As we will show, the exact weights in the Nash baragining solution may depend on the exact internal bargaining

protocol. When bargaining within a coalition is done with random recognitions as in Baron and Ferejohn [1989],

the equilibrium allocation coincides with a generalization of the weighted Nash Bargaining solution with weights

that coincide with the recognition probabilities. In this case too the selected coalition is endogenous and generally

inefficient (with the inefficiency depending on the recognition probabilities).
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Three specific positive predictions of the model stand out because they help explain a number

of classic empirical shortcomings of standard non-cooperative models of bargaining. The first has

to do with the size of the share of the pie captured by the formateur (the so called “formateur’s

premium”). Existing models of legislative bargaining a’ la Baron and Ferejohn [1989] predict a

very large formateur’s premium in terms of captured surplus (i.e. ministerial cabinets), in the

order of three quarters of surplus.4 Such large formateur premia are however not observed in the

data, where indeed there is even evidence of negative formateurs’s premia relative to their size.

These findings have been interpreted as major failures of noncooperative models (Laver [1998]).5

Our model provides a new natural explanation of why the formateur may be willing to accept

a negative premium that does not depend on specific assumptions on the order of formateurs or

other details. In our model, while the formateur “calls the shots” by choosing the coalition and

is always free to switch to a different coalition if the equilibrium demands are too high, s/he is

constrained in doing this by the “credibility” of the threat to switch to an inferior coalition. This

significantly limits the formateur’s ability to extract rents from the other parties. As we will

discuss, an important lesson from this analysis is that the real benefit of being a formateur is not

in the share s/he appropriates within a coalition, but in the choice of coalition.

The second prediction has to do with the size of coalitions. One of the earliest and most robust

theoretical prediction of formal models of legislative bargaining is the emergence of strict minimal

winning coalitions.6 It is however the case that since World War II European parliamentary

democracies have formed more supermajorities than minimal winning coalitions.7 Explaining

supermajorities by assuming that they are inherently vastly superior (in terms of total surplus)

would clearly provide a quick explanation to the phenomenon. Such an explanation may even be

plausible in some environments, but it would certainly not contribute to explain their diffusion

in the relative calmness of post World War II Europe. With our model we show that super-

majorities can emerge as equilibrium phenomena even if they are only marginally superior than

4 See, for instance, Morelli [1999] for a discussion of the empirical implications on the formateur’s premium of

standard models of non-cooperative multilateral bargaining.

5 The first paper to study surplus allocation in legislative bargaining and to note the lack of a formateur

advantage is Browne and Franklin [1973]. They highlighted the presence of a “Relative Weakness Effect” according

to which the largest party (who more often than not expresses the formateur) is underrepresented relative to its

electoral size. More recent work is Laver and Schofield [1985], Warwick and Druckman [2001, 2006] among others.

Warwick and Druckman [2006] explicitly show that being a formateur has a negative impact on the marginal effect

of size on the appropriated surplus.

6 The natural emergence of minimal winning coalitions in formal models of bargaining was first noted by Riker

[1962] in the context of a general cooperative model.

7 Looking at parliamentary democracies in post Ward War II Europe, Druckmand and Thies (2002) note that

there have been over 80 cases of supermajorities and only 74 minimum winning coalitions over the postwar period.

See also Laver and Schoffield (1998) and Volden and Carrubba [2004]. Note that we are referring to supermajorities

that are not unanimous (that are extremely rare).
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minimal winning coalitions. This is surprising because for any coalition a party needs unanimity

of participating parties and bargaining leads to a classic hold-up problem in which all coalition

members capture a fixed share of net surplus over their reservation values. We show conditions

under which the hold-up problem is attenuated in equilibrium by endogenous “self regulating”

reservation utilities.

The third prediction concerns whether legislative bargaining is characterized by an immediate

agreement, a prediction that characterizes most noncooperative model but that is also not sup-

ported in the data.8 There are of course many factors that seem important in explaining this

phenomenon, such as incomplete and asymmetric information about the payoffs and behavioral

biases. Our theory shows that even without these additional factors we can have equilibria with

delay. Interestingly, this phenomenon crucially depends on equilibrium expectations: indeed under

some conditions, equilibria with delay coexist with equilibria with no delay.

We use our model to study the role of the head of state in legislative bargaining. Many parlia-

mentary democracies (including Austria, Belgium, Italy, Poland and others) empower their heads

of state with significant discretion in the government formation process, in large part through the

choice of formateurs. Can the head of state influence the selection of the equilibrium coalition?

In practice, we do observe that heads of states’s role differ in quite significant ways even with the

same country over time or between countries with similar constitutional rules.9 What explains

these changes in the role of the head of state? We show that when the order of the formateurs

is chosen by a benevolent head of state, there is always an efficient equilibrium. The role of the

head of state, however, critically depends on the relative values of the coalitions: changes in these

values changes its role independently of the constitutional context. When the relative values of

coalitions are sufficiently large, the head of state is irrelevant: legislative bargaining will achieve

the same equilibrium irrespective of the choice of formateur; a “wrong ” choice of formateur would

be followed by a failed attempt and delayed agreement until the “right” formateur is selected. In-

terestingly, the conditions do not only depend on how good the best coalition is, but also in a

complementary way by how bad the worst coalition is too. When relative coalitional values are

small, the president has partial control: s/he can make sure that the worst equilibrium is not

selected, but s/he cannot induce the most efficient equilibrium (since an inefficient equilibrium

exists for any order of formateurs). The head of state is at the peak of his/her influence for

intermediate levels of relative coalitional values: in this case it can uniquely implement a welfare

8 Using data from European democracies in the post World War II period, Golder [2008] reports that post-

election government take about a month to form, though there is considerable differences in length of negotiations

depending on the countries: it takes less than a week on average in the United Kingdom, France, Norway and

Sweden, for instance. See also Diermeier and van Roozendaal [1998] on this issue.

9 See for example Vassallo [1994] and P. Webb [2005].
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maximizing coalition by selecting the appropriate order of formateurs. This dependence of the

role of heads of state on the relative values of coalitions can explain why their role may change

over time or similar countries.

The organization of the remainder of the paper is as follows. We discuss related literature in

the next subsection. Section 2 outlines the model. Section 3 presents the characterization of the

equilibrium with exogenous outside options, highlighting the connection with the Nash Bargaining

Solution. The characterization in Section 3 is used in Section 4 to endogenize the outside options

in a fully recursive model in which a bargaining breakdown is followed by the appointment of a

new formateur. Section 5 presents the positive analysis of the model: the size of the formateur’s

premium, the emergence of super majorities, and strategic delays. Section 6 extends the normative

analysis by studying the role of the head of state. Section 7 presents three extensions of the basic

analysis. Section 8 concludes.

1.1 Related literature

The literature on legislative bargaining has traditionally focused attention on the study of divide

the dollar games in which all winning coalitions divide a “pie” of fixed size. The standard reference

in this body of work is Baron and Ferejohn [1989], one of the first papers to propose an elegant

extension of Rubinstein’s model of bilateral bargaining to the multilateral case. In this model a

legislator is randomly selected to propose a division of one dollar; if the proposal is approved by a

majority of legislators, it is implemented; if it is not approved, then another legislator is randomly

selected with replacement to propose another division of the dollar and the game repeats.10

Negotiations in which coalitions have heterogeneous values have been studied, in the larger

context of non-cooperative theories of multilateral bargaining, by Chatterjee et al. [1993], Okada

[1996] and Seidmann and Winter [1998] among others.11 These papers follow the tradition in

cooperative games to focus on superadditive values, i.e. environments in which the coalition of all

players is always more productive than smaller coalitions. They moreover focus on the existence

of equilibria in which the coalition including all players is formed. In terms of bargaining protocol,

Chatterjee et al. [1993] and Seidmann and Winter [1996] assume a first rejector-proposes rule,

according to which the first legislator to reject a proposer’s offer becomes the new proposer.

10 The basic structure of the model has been extended to consider alternative bargaining protocols (Morelli [1999],

Baron and Diermeier [2001], Seidman et al. [2007], Ali et al. [2019]) and others; to consider richer policy spaces

(Baron [1991], Baron [1993], Baron and Diermeier [2001]); to allow for imperfect information (Ali [2006], Baliga

and Serrano [1995]); and to endogenize the proposal power (Austen-Smith and Banks [1988], Baron and Diermeier

[2001], Yildirim [2007], Ali [2015]).

11 Gul [1989] and Hart and Mas-Colell [1996] provide microfoundations of the Shapley Value. Ray and Vohra

[2001] and Okada [2010] consider games in which multiple coalitions can simultaneously form and play against each

other in a game.
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This procedure is a straightforward extension of Rubinstein’s approach in a bilateral context, but

less natural in a multilateral context and at odds with the practice to give proposal power to a

formateur who is in charge of testing, potentially, more than one possible coalition. Okada [1996]

instead considers a protocol in which, if the selected coalition does not unanimously approve the

formateur’s proposal, the formateur is automatically removed and a new formateur is randomly

selected with replacement from the floor (even if the subset of the coalition approving the proposal

is a proper majority). This again does not capture the role of the formateur after a rejection, who

may decide to continue negotiations, perhaps with a different coalition.

This literature with heterogeneous coalitions and superadditive environments arrives to the

conclusion that, with patient players, stationary efficient equilibria are egalitarian and exist for

some order of proposers only under conditions that are hard to satisfy in standard environments

of legislative bargaining: that the core of the underlying game is not empty, and the efficient

egalitarian outcome belongs to it. Legislative bargaining models have been introduced precisely to

address the classical problem of an empty core in the presence of pressing redistributive problems.

If the efficient equilibrium is not unique and equal to the grand coalition, this literature does not

provide a characterization of equilibrium coalitions, even for simple environments. With general

values (not necessarily superadditive) and the formateur style bargaining protocol that we consider,

on the other hand, we show that efficient equilibria exist even in the more realistic case in which

the core is empty and, indeed, they always exist if the order is optimally selected by a benevolent

head of state, thus rationalizing existing bargaining procedures in Western democracies. In part,

this is possible because we show that equilibrium allocations generally are not egalitarian and

the formateur can obtain even less than the other coalition members. In terms of equilibrium

characterization, we characterize the unique equilibrium when outside options are exogenous; and

we characterize all equilibria for the important case with three parties for the case when outside

options are endogenous. This allows us to offer a more complete welfare analysis of legislative

bargaining.

To develop our theory with heterogeneous coalitions and endogenous coalition selection, we

build on a model proposed by Osborne and Rubinstein [1990], who consider a simple bargaining

environment with heterogeneous coalitions but without superadditivity.12 These authors consid-

ers an environment with 3 players, one seller and 2 potential buyers with different valuations for

the good sold by the seller. In this case, the only feasible coalitions consist in the seller and one

of the buyers. As in our model, the seller can switch partners after an offer is rejected and before

making a new offer. This game has a unique equilibrium in which the efficient allocation is always

12 See Osborne and Rubinstein [1990, ch. 9.4]. The same bargaining procedure is adopted in an earlier model by

Binmore [1985], who however assumes that surplus is constant across coalitions. Binmore, Osborne and Rubinstein

[1992] also attribute a version of this model to an unpublished work by Robert Wilson (Wilson [1984]).
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reached (i.e. the good is sold to the buyer with the highest valuation). We instead attempt to

model a setting of multilateral bargaining with  players and more general coalition structures.

While it is natural in Osborne and Rubinstein [1990] to assume that the player who can choose

the partner is constant and exogenously given (the seller, in his model), it is more natural in

our model to allow the formateur’s identity to change over the course of the negotiation if an

agreement is not reached. The key differences with their work, therefore, are that we allow for

more general coalitional structure, and for the formateur to be replaced by another formateur if

s/he fails to form a coalition, thus making reservation utilities endogenous. These differences have

important implications for the strategic analysis. For example, while Osborne and Rubinstein’s

[1990] model has a unique equilibrium in which the efficient coalition always forms, in our model

the equilibrium can be inefficient and, with endogenous reservation utilities, multiple equilibria

are possible. Osborne and Rubinstein [1990], moreover, does not study the relationship between

the equilibrium and the Nash Bargaining solution.13

A model of legislative bargaining with heterogeneous coalitions is also presented by Diermeier

et al. [2003]. In this model, a formateur selects a coalition ex ante and then negotiates with its

members in a process a’ la Baron and Ferejohn with unanimity, without the possibility of shifting

coalition. Coalitions generate levels of surplus that depend on their size and on a stochastic state

variable that is assumed to change during the negotiations and is unknown when the formateur

selects the coalition. The equilibrium coalition depends on the legislators’ patience since patient

legislators are more willing to embrace larger coalitions (that are assumed to be more durable)

even if they are harder to form in the bargaining stage. A feature of this model is that distribution

and efficiency considerations are independent of each other. This follows from the fact that in the

bargaining stage unanimity is required and the formateur cannot switch coalition once bargaining

has started, even if the state variable has changed. The authors use data from nine West European

countries over the period 1947-1999 to structurally estimate the legislators discount factor and

the degree to which the size of a coalition increases its durability.

The way we model the bargaining protocol is an important component of our theory, inti-

mately connected with how coalitions are selected and thus with the equilibrium impact of their

heterogeneity in values. With the exception of Osborne and Rubinstein [1990], the selection of

the coalition and the allocation of the rents are collapsed in one step in the legislative protocols

described above: a take it or leave it offer made by a proposer; if the offer is not accepted, then

automatically a new proposer is selected or the first rejector becomes proposer. In our model,

we explicitly model the negotiation within the coalition and we allow the formateur to switch

13 The relationship between the equilibrium and the Nash Bargaining solution is also not studied in Binmore

[1985]. Both Binmore [1985] and Osborne and Rubinstein [1992] assume a regular discount factor  a’ la Rubinstein

[1982], without bargaining breakdowns and an explicit modelling of outside options.
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coalitions in the midst of negotiations. This has important theoretical implications. In a world

in which a take-it-or-leave-it offer is followed by the mechanical selection of another formateur,

reservation utilities depend on the exogenous recognition probabilities, but they do not allow the

formateur to react to a no agreement decision. When negotiations are allowed to continue, reserva-

tion utilities depends on whether a threat to switch coalitions is credible and whether negotiations

are expected to lead to an agreement or not. At every step, the formateur is faced with a dilemma

to keep negotiating with a coalition or to switch to some other coalition, perhaps less “ideal” in

terms of surplus. Understanding the connection between these two elements, the heterogeneity of

coalitions and the formateur’s choice of coalitions, is key to understanding the logic behind our

model and our results.

As we noted, our model contributes in explaining some empirical “anomalies” from the standard

model whose study has characterized the empirical literature on legislative bargaining. A number

of important works have attempted to provide theories to explain them. In the context of a

purely distributive model, Morelli [1999] has provided a demand theory of legislative bargaining

that can explain why the proposer does not receive large premia. Baron and Diermeier [2001],

Seidmann et al. [2007] and Baron [2019] has provided bargaining theories with a formateur in

which supermajorities can emerge in equilibrium.14 Ali [2006], Diermeier et al. [2003], among

others, provide models with strategic delay in multilateral bargaining models.15 While all these

papers contribute to understand different specific aspects of strategic bargaining, an advantage of

our theory is that it provides a coherent and unified potential explanation of all these empirical

“anomalies.”

Previous to our work, a welfare analysis of the role of head of state in a model of legislative

bargaining is provided by Morelli [1999], where the head of state selects the first proposer in his

original “demand bargaining” protocol. In his model, the first proposer selects a one-dimensional

policy for which citizens have single peaked preferences, a coalition, and an order for its members,

who then sequentially make demands. The coalition forms if the coalition members accept the

proposer’s policy and their demands fortrasfers sum to one. Morelli [1999] shows that, in a

version of this model with 3 parties, the head of state selects the party with ideologogy closest to

the median voter.16

14 Supermajorities can also be explained in the Baron and Ferejohn [1989] model under the assumption of

deliberations under an “open rule.” Even in this case however, the size of the coalition converges to the size of a

minimal winning coalitions as the number of legislators is sufficiently large.

15 See Section 5.3 for a more complete description of the literature.

16 Alternative models in which the head of state plays a role in legislative bargaining are presented by Bloch and

Rottier [2002] and Akirav and Cox [2018]. These models, however, assume purely redistributive environments in

which all coalitions generate the same amount of surplus, in which therefore there is no scope for welfare analysis.

9



2 Model

We consider a model in which  parties bargain over the formation of a government. The set of

parties is denoted  = {1  }. A government is formed if a qualified majority approves it. The
set of qualified majorities is denoted C. We say that a coalition  is a minimal winning coalition

if  ∈ C and for any 0 ⊂ , then 0 ∈ C. The set of minimal winning coalitions is denotedM,

its complement in C, S, is the set of supermajorities. The set of qualified majorities and minimal
winning coalitions to which party  belongs are denoted, respectively, C andM.

A government is defined by the supporting winning coalition and an internal allocation of

the surplus generated by the government. Coalitions are not necessarily equivalent in terms of

generated surplus. We assume that the surplus generated by a coalition  is  () ≥ 0 bounded
above by a finite  = max  () and below by nonnegative  = min  (). We assume that

the members of the coalition can share the surplus in any way the want. A feasible allocation in

 is x ∈ (), where:

() :=
n
x ∈ ()

¯̄̄
 ≥ 0,

X
∈

 ≤  ()
o
.

where () is the number of parties in coalition . Parties evaluate the governments according

to the surplus they receive, so {x} º {0x0} if and only if  ≥ 0. The parties that are left

outside the coalition receive zero.

In the baseline model, bargaining is as follows. We assume that there is a set T = {0  } ⊆
 of potential formateurs who are ordered by a priority list. This list may depend on the result of

the election: indeed, typically parties are recognized as formateurs in order of their electoral size.

Since we do not model the electoral stage, we take this order as exogenous. We will endogenize

the order of formateurs in Section 6, where we study the role of the head of state in selecting

them.

At time  = 0 the first formateur 0 is recognized and makes a proposal x ∈ () to a

coalition  ∈ C with 0 ∈ . If the proposal is accepted by all members of , the game stops and

the government is {x}. If the proposal is not unanimously accepted by the parties in , then

bargaining within the coalition continues. To avoid spurious equilibria in which no party is ever

pivotal, we assume that parties in  vote sequentially in some order.17 At period +∆ a different

member  of  is recognized to make an offer to the coalition: again the proposal is accepted by all

members of , the game stops; otherwise the process continues. In the baseline model, we assume

that parties in  are ordered according to some permutation (), so the proposer following at

17 If, for example, all parties are expected to vote no in a simultaneous vote, then voting no is always optimal

since no party is pivotal. An alternative solution to this problem, common in voting games, is to assume the mild

refinement requiring that parties vote as if they were pivotal.
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the th stage for  ≤ ()− 1 is identified as (). The formateur is always the first proposer
((1 ) = ) and the order is periodic ((() +  ) = ( )), so after all members of the

coalition have a chance to make a proposal, proposal power returns to the formateur. Every time

that the formateur is recognized again, s/he can continue with the same coalition as in the previous

rounds or move to a different coalition 0. This reflects the fact that the formateur is not bound

to a specific coalition and thus can strategically choose to change “partners.” The assumptions on

the order of proposals within a coalition are not especially important for our results, we will relax

them in Section 7.1 where we consider random recognitions.18

At any point in time after which a proposal is rejected and before a new proposal is made we

have a negotiation breakdown with probability  = 1−−∆. In case the negotiation is interrupted,
formateur  loses the status of formateur and a new formateur in T is appointed. If bargaining

breaks down when the formateur is  with    , formateur +1 is selected according to an

exogenous acyclical rule +1 = Ψ( ). Allowing for   1 generalizes the assumption in the

existing literature that breakdowns occur with probability one after the formateur’s offer and

allows bargaining within the coalition to go beyond a simple “take-it-or-leave-it” offer.

In Section 3 we first assume that if the last formateur  fails to form a government, new

elections are held, yielding utilities u = (1  ). In Section 4 we endogenize the reservation

utilities assuming that in case  fails to form a government, the process repeats itself restarting

from 0, so that 0 = Ψ( ). The case with exogenous outside options corresponds to a case in

which failure to form the government leads to a new regime: for example a caretaker government or

new elections with uncertain outcome. The case in which the process restarts with 0 corresponds

to a situation in which even if there are new elections, the bargaining positions in congress are

not expected to change in a significant way, thus leading to the same strategic situation at the

government formation stage. When the outside option is exogenous, we assume that reaching an

agreement is better than obtaining u, formally  () ≥P∈  for at least a  with  ∩ T 6= ∅.
An history  is defined in the usual way, as a description of the sequence of formateur and,

for each of them, the sequence of coalition selections, proposals and votes. A (pure) strategy for a

player  assigns a choice of coalition () and a vector of proposals x = {1()  (())()}
in (()) to each history  at which the player is formateur and proposer; a vector of proposals

x = {1()  (())()} ∈ (()) to each history  at which () is the coalition

and  is proposer but not formateur; and an acceptance thresholds (
) to each history  at

which the player is a responder. A (pure) stationary strategy for a player  assigns a choice of

coalition () and proposal x = {1()  ()()} ∈ () when  is formateur and pro-

18 Specifically, in Section 7.1 we assume that each coalition member is randomly recognized as proposer with a

probability  as in Baron and Ferejohn [1989].
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poser; a vector of proposals x = {1(( ))  ()(( ))} ∈ () when the coalition is 

and  is the formateur; and an acceptance threshold ( ) when the coalition is ,  is the

proposer,  is the responder and  is the formateur. A stationary equilibrium is a Subgame Perfect

Equilibrium in stationary strategies. In the following we focus on stationary equilibria and for

simplicity we refer to them simply as equilibria. The exception will be in Section 3, where we will

show that the unique stationary equilibrium is also the unique subgame perfect equilibrium of the

game.

3 Bargaining with exogenous outside options

To study the equilibrium with finite rounds of formateurs and exogenous outside options, we start

from the simple case in which there is only one formateur, i.e. |T | = 1: in this case if bargaining
breaks down, parties receive their outside options u. The characterization of this case will be key

for the characterization of the more complicated cases and it will facilitate understanding of the

logic behind the equilibria.

Assume an equilibrium exists and, in this equilibrium, a coalition  is chosen by formateur

 with payoffs equal to x∗ = {∗1  ∗( )} with x∗ ∈ ( ). We can now characterize the

payoffs that would be achieved if  decides to choose a generic coalition  (that may or may not

coincide with  ).

To this goal let us extend x∗ to comprise all players by defining 
∗
 = 0 for  ∈  . We can

now define the acceptance threshold of a player  in  at stage () of bargaining as:

(())( ) =  + (1− )∗ (1)

where we are using here the notation ( ) to indicate the acceptance threshold of  when

 proposes in coalition  and the expected equilibrium coalition is  to emphasize that the

threshold depends on  . Player  knows that if s/he refuses the offer one of two events occurs:

with probability , there is a bargaining breakdown, in which case the utility is ; with probability

1−, formateur  is recognized after the ()th proposer. At this stage, if  is equal to  , then

the game continues recursively; if instead  is different than  , then the formateur is expected

to return to  . This implies that party  expects to receive 
∗
. At this stage we can also easily

define the proposal by proposer (() ) as follows. If

 ()−
X

∈\(())
(())( )  (())(())( ) (2)

then (() ) can not make a proposal that is acceptable and that guarantees him/her the

reservation utility, so the proposal at the () stage fails and the formateur is recognized again

12



( )(1 ) 1n Cp 

45o

Figure 1: The selection of the equilibrium coalition

as proposer if there is not a bargaining breakdown. In this case the expected payoff at the be-

ginning of stage () is  + (1 − )∗ for all players. If (2) is not satisfied, instead, we have

(())( ) = (())( ) for all  ∈ \(() ) and (())(())( ) =

 ()−P∈\(()) (())( ).

Proceeding in the same way by backward induction, we can uniquely define the acceptance

threshold for all bargaining stages up to the first, when the formateur makes a proposal for

the first time. At this stage,  proposes ( ) to all other  ∈ \ , securing a payoff
 () −P∈\ ( ) if this is larger than  ( ), or a payoff  ( ) otherwise.

The initial coalition  is chosen in equilibrium if and only if it is a fixed-point of the following

correspondence that maps coalitions to coalitions:

 ∈ arg max
∈C

⎧⎨⎩ ()−
X
∈\

( )

⎫⎬⎭  (3)

When  satisfies (3), then it is indeed optimal for  to select it whenever s/he has proposal power.

In this case, therefore, the expectation that after stage () the payoff will be x∗ is correct. The

13



following result tells us that a fixed-point of (3) exists and it is generically unique. Let

∗ = arg max
∈C

(

£
 ()−P∈ 

¤
1− (1− )()

)
 (4)

Naturally, since the set of coalitions is finite, ∗ is well defined and, except for a non-generic

choice of payoffs, unique. We have:

Lemma 1. For a generic choice of payoffs, ∗ is the unique fixed-point of (3).

The idea behind Lemma 1 can be easily illustrated. In the appendix we explicitly solve for the

acceptance thresholds ()(;
 ) for all stages  = 1  () and all  ∈  and show that

the equilibrium payoff obtained by  can be represented in a recursive way as:

∗ = max
∈C

⎧⎪⎪⎨⎪⎪⎩

£
 ()−P∈ 

¤
+
h
1 +

P()−1
=1 (1− )

i
 + (1− )() · ∗

⎫⎪⎪⎬⎪⎪⎭  (5)

From (5) it can be seen that the choice of  has two effects on ∗ . On the one hand, it affects

the efficiency of the allocation, as represented by the first term in the brackets (the intercept of

(5) with the vertical axis in Figure 1). Naturally the formateur would like to choose an efficient

coalition, since this guarantees a larger pie to be divided. On the other hand, the choice of 

affects the fraction of surplus that can be extracted by  : specifically, the larger is the coalition,

the lower is the bargaining power of  . This is the hold-up problem and it is reflected in the slope

of (5), that is decreasing in the size of the coalition (see Figure 1). Naturally the formateur’s

ability to extract surplus depends also on the probability of breakdown. When the probability is

high, the formateur’s offer is basically a take it or leave it offer, and all surplus can be extracted:

in this case the lines are almost flat; and ∗ converges to the surplus maximizing coalition. As

 decreases, however, the formateur’s commitment power and the share of surplus that s/he can

appropriate is reduced.

Note that for all s, the term in the brackets is a contraction. It follows that the upper contour

is a contraction as well, as illustrated by the thick line in Figure 1. We must therefore have a

unique fixed-point ∗ and a unique associated optimal coalition for  that balances efficiency

with bargaining power.

Given Lemma 1 we can now easily show that there is a unique equilibrium and it must be

supported by parties in ∗ . By construction, every time that the formateur has an opportunity

of choosing , s/he will chose ∗ . It follows that in equilibrium ∗ is chosen and we must satisfy
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for all  ∈ ∗

∗ =  + (1− )∗(−1()+1) for all  ∈ ∗

∗ =  (∗ )−
X

∈C∗

\
∗ and ∗ = ∗ for all  ∈ C∗\

In the appendix we show that this system is reduced to a system of (∗ ) × (∗ ) equations in

(∗ )×(∗ ) unknowns that has a unique solution. Using this solution we obtain the equilibrium
payoffs as ∗ for all  ∈ ∗ and  for  ∈ \∗ ; and the equilibrium strategies when ∗ is

chosen. Using these equilibrium values we can also uniquely define the strategies in all out of

equilibrium subgames in which some other coalition  are chosen. We therefore have:19

Proposition 1. The bargaining game has a unique stationary equilibrium in which coalition ∗
is selected and payoffs are uniquely defined as:

∗ =  +

h
 (∗ )−

P
∈∗




i
1− (1− )(

∗

)

(6)

∗ =  +
(1− )

−1(∗ )−1
h
 (∗ )−

P
∈∗




i
1− (1− )(

∗

)

for  6=  (7)

where ∗ is the payoff of the formateur, 
∗
 is the payoff of a party  ∈ ∗ different from the

formateur who is in position −1( ∗ ) in the bargaining queue. All other parties in \∗ receive
zero.

The following results shows that under a very mild condition, the equilibrium of Proposition

1 is unique in the class of subgame perfect equilibria:20

Proposition 2. For a generic choice of parameters so that ∗ is unique, the equilibrium of

Proposition 1 is the unique Subgame Perfect Equilibrium of the game.

To gain insight on the equilibrium allocation, it is useful to consider the case in which the

interaction between the parties is very frequent, that is when ∆ → 0. This is important for

two reasons. First, because it will give us a simple characterization of the payoffs that will

be useful in the generalization studied in the next section. Second, because it highlights an

interesting connection between the model of the previous section and the Nash Bargaining Solution

(henceforth NBS). In the special case in which  = 2, the bargaining game considered in the

19 A complete characterization of the equilibrium strategies is presented in the Proof of Proposition 1 in the

appendix.

20 Herrero [1985] and Rubinstein and Wolinsky [1990] have shown that, respectively, in multilateral bargaining

problems with unanimity and random proposers, and in pairwise random matching processes with multiple agents,

there are typically many Subgame Perfect Equilibria.
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previous section coincides with Rubinstein’s model with the risk of breakdown (see Binmore,

Rubinstein and Wolinsky [1986]). It is well known that in this case the solution of Rubinstein’s

model coincides with the NBS. While the NBS formula can be extended to  players, there are two

basic reasons why a mechanical extension is not advisable. First, because there is not a unique way

to rationalize the -person NBS as the limit of a noncooperative game. Secondly, because even

if one were to accept the specific bargaining protocol that rationalizes the -person bargaining

solution, then the solution would imply that the coalition of all players is formed and all players

share the surplus. In the political context studied in this paper, such a scenario is highly unlikely.

Ideally, a -person generalization of NBS would provide indication of which coalition is selected

and how surplus is divided in that coalition. A simple application of the NBS to a -person

environment gives a solution of how surplus should be divided, but it assumes that a -person

coalition is chosen.

The following result shows that the equilibrium in Proposition 2 provides an alternative gen-

eralization of the Nash solution to the -person case as the bargaining interval converges to zero.

Define the -Nash Bargaining solution as:

N (u) = arg max
x∈()

Y
∈

[ − ]  (8)

where N (u) = {N1(u) N||(u)}. Let, moreover,  be the coalition with the largest

per capita surplus such that  ∈  , i.e. that maximizes
£
 ()−P∈ 

¤
() for  ∈ C .

This is the Nash Bargaining solution when coalition  is chosen. We have:

Proposition 3. As ∆→ 0, the equilibrium of the bargaining problem converges to ∗ = N( u)

for  ∈  and 
∗
 =  for  ∈  .

Proposition 3 can be seen as a generalization of Binmore, Rubinstein and Wolinsky. [1986],

who have provided the first non-cooperative microfoundation of the Nash Bargaining Solution with

2 players. What sets this result apart from the 2-player case and other previous microfoundations

with  players is that in Proposition 3 the equilibrium coalition is endogenous and the equilibrium

is unique in the class of subgame perfect equilibria. Previous microfoundations of the Nash Bar-

gaining Solution focused on superadditive games in which the grand coalition of all players is the

most efficient and achieved in equilibrium; moreover, when considering heterogeneous coalitions

as in Okada [2010], they focused on much more restrictive equilibrium concepts.21

21 For games in which all the coalitions have the same value, specific bargaining protocols achieving the Nash

Bargaining Solution with the grand coalition  are presented by Chae and Yang [1994] and Krishna and Serrano

[1996], among others. The protocols used in these papers are different than that of Baron and Ferejohn [1989]

and the model described above since they rely on the possibility of players to commit to partial agreements. For

games in which coalitions may generate heterogeneous values, specific bargaining protocols achieving the Nash
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A feature of the equilibrium characterized above is that, when ∆ is small, the formateur

does not receive a share of the pie that is much larger than any of the other members of the

winning coalition. Unsurprisingly, payoffs depend on the order of proposal power in the coalition,

since ∗ is decreasing in ’s position in the bargaining queue. When the bargaining process

is fast, however, the difference in payoffs net of reservation utilities converges to zero. Define

the formateur advantage with respect to a legislator  in the equilibrium coalition as the extra

surplus received by the formateur with respect to  net of the respective reservation utilities

A(∆) = ∗ (∆)−∗ (∆)− ( − ), where we have expressed the equilibrium payoffs (
∗
 (∆))∈

as a function of ∆. It follows immediately from Proposition 3 that the formateur advantage with

respect to any other party converges to zero as ∆→ 0: lim∆→0(∆) = 0.

There are two reasons why this result is interesting. First, the presence of a significant ad-

vantage for the formateur is one of the key characteristics of existing non-cooperative models

of legislative bargaining and it has been criticized by the empirical literature, since a formateur

advantage has not been detected in many empirical studies. Second, and most importantly, the

result seems surprising because in the bargaining model described above the proposer has sig-

nificant bargaining power since proposal power always returns to the formateur, who can always

change coalition. The reason this happens is that coalitions are not all equal. As discussed above,

given the continuation equilibrium, there is a unique optimal coalition to select for the formateur:

this ties the hands of the formateur, since it makes deviations to other coalitions non credible.

This allows the other coalition members in ∗ to credibly insist on high reservation values. The

inability of the formateur to capture a larger share of the surplus is the reason for the hold-up

problem in bargaining and it leads to the selection of an inefficient coalition.

4 Endogenizing the outside options

In the previous section we have assumed that if bargaining with the formateur fails, then a

caretaker is appointed or there are new elections and the parties receive exogenously specified

expected utilities ()∈ . It is however common in legislative processes that if there is a bargaining

breakdown, then a new party is selected as formateur and the process restarts. By explicitly

modelling what happens after a bargaining breakdown, we can endogeneize the outside options.

This is important because it allows us to explain commonly observed phenomena such as low

or negative formateurs’ premia, supermajorities and strategic delays, without making ad hoc

assumptions on exogenous outside options.

To extend the theory of the previous section to environments with multiple formateurs, let

Bargaining Solution have been presented by Okada [2010], who focuses on stationary equilibria assuming that the

grand coalition  forms; and Gomes [2019], who focuses on Strong Nash Stationary equilibria, in which players

are assumed to be able to coordinate to the most efficient outcome.
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T = {0  } ⊆  be the set of formateurs and let us assume that after breakdown of bargaining

with formateur  ∈ T , formateur  + 1 is called to the job. In a finite horizon extension after
 =  , the players receive exogenous utilities u+1 = {1  } as in the previous section; in an
infinite horizon extension, after  =  , formateur  = 0 is called again to the job and the process

repeats. This case represents an environment in which, after bargaining with the last formateur

fails, there are new elections that, however, repropose the same strategic interactions between the

parties. For simplicity, in the following we focus on the infinite horizon extension and the case in

which ∆→ 0. A very similar analysis can be done for the case with ∆  0.

Define (u ) as party ’s payoff if coalition  is chosen and the continuation value functions

are u = {1  }. From the previous analysis we have:

(u ) =

⎧⎪⎪⎨⎪⎪⎩
N(u)   ∈  and  ()−P∈   0

 

and  (u ) = {1(u )  (u )}. Define, moreover, C∗ (u) as the family of coalitions in C
with maximal average surplus when the outside option is u:

C∗ (u) =
(
 0 ∈ C s.t.  0 ∈ arg max

∈C

("
 ()−

X
∈



#
()

))


At stage  the coalition either belongs to C∗ (u), or formateur  is unable to form a coalition. We

can now define the following operator. At the last stage when  is formateur:

 ∗ (u) := {v s.t. v =  (u ) for some  ∈ C∗ (u)} 

The operator  ∗ (u) maps the expected reservation utilities u if there is a bargaining breakdown

with the last formateur  , to the equilibrium utilities that are reached with formateur  . For the

previous stages, we define the payoffs recursively as:

 ∗−1(u) :=
©
v s.t. v = (u  ) for some  ∈ C∗−1(u ) and u ∈  ∗ (u)

ª


The operator  ∗−1(u) maps the reservation utilities u to the utilities reached in equilibrium if

formateur  − 1 is reached. For a generic choice of u, C∗−1(u) is a singleton and thus either
bargaining with  − 1 fails to form a government and we move to  , or there is a unique optimal

coalition for  − 1, thus  ∗−1(u) is a function. It is however convenient to allow  ∗−1(u) to be

a correspondence since when u is endogenous, the formateur may be indifferent among different

coalitions.

In this environment it is very natural to focus the analysis on pure strategy equilibria. As

we mentioned, the optimal choice of coalition at stage  , C∗ (u) and the feasible payoffs  ∗ (u)
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are uniquely defined for a generic choice of u. The same is true in a finitely repeated version of

the game (in which the complete loop of formateurs from 0 to  is repeated for a finite number

of times, after which a generic u is assigned to the players if there is no agreement). Any finite

horizon version of the model, therefore has generically a unique pure strategy equilibrium. This

implies that an equilibrium of the infinite horizon game can be seen as the limit of equilibria of

finite horizon games if and only if it is a pure strategy equilibrium. We have:

Definition 1. An equilibrium outcome in the extended bargaining game is a vector of utilities u∗

and a coalition ∗ such that u∗ ∈  ∗0 (u
∗) and ∗ ∈ C∗0(u∗).

To study the equilibria of the extended game, we now specialize the model assuming that there

are three parties and each party has a chance to be formateur in some order, so  = {1 2 3} and
 = T . Without loss of generality we can assume that parties are formateurs in order of their
index and the value of the coalitions are  ({1 2}) = − ,  ({1 3}) = +  and  ({2 3}) = ,

where   0; either  and  are nonnegative, or  and  are non-positive; and, finally, −  ≥ 0
and  +  ≥ 0.22 We also assume here that the coalition of all players  = {1 2 3} does not
find policy agreements easier to implement than the best of the minimal winning coalitions, thus

 ({1 2 3})  max∈M  ().23 Under this condition, as it can be easily verified, {1 2 3} is
never the equilibrium coalition, and we can focus on minimal winning coalitions. We relax this

assumption in Section 5 where we study supermajorities.

The assumption of three parties is an assumption that has been previously adopted by Austen-

Smith and Banks [1988], Baron [1991], Baron and Diermeier [2001] and many others: it allows us

to keep the key strategic feature of the problem, minimizing the analytical complications. It is

also realistic since many political systems have this feature.

Our first result characterizes the strategies that are feasible in a pure strategy equilibrium.

Note first that there is essentially only one way to achieve an efficient allocation: if    0,

coalition {1 3} should form, no matter what is the order of proposals; if    0, coalition {1 2}
should form, no matter what is the order of proposals. This happens if the party who is not

included in the efficient coalition is unable to form a coalition and no other party includes it in a

coalition.

Definition 2. If    0, an equilibrium is efficient if formateur 1 forms a coalition with 3, 3

22 To see that there is no loss of generality in this specification, note that, for example, the game with ( ) =

(−−)  0 and order of proposal is 1 3 2 is equivalent to the game with order 1 2 3 and ( ) = (−−). The
game with, say,   0 and   0 with || ≤ || and order 1 → 2 → 3 is equivalent to a game with the same order

and payoffs:  ({1 3}) = 0 − 0,  ({1 2} = 0 and  ({2 3}) = 0 + 0 with 0 =  − , 0 = − (+ )  0 and

0 =   0. Moreover, since the Markov equilibrium is memoryless, once we have characterized the equilibrium

with some order starting from 1, we have also characterized any game with the same order starting from 2 or 3.

23 The idea is that if a winning coalition can agree on a policy that generates a surplus  (), then additional

member who can veto it in a larger coalition 0 can only reduce the attainable value.
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Figure 2: Classification of the possible equilibria

forms a coalition with 1 and 2 is unable to form a coalition. If    0, an equilibrium is efficient

if formateur 1 forms a coalition with 2, 2 forms a coalition with 1 and 3 is unable to form a

coalition.

On the other hand, inefficient coalition formation strategies come in different types and shapes.

Two forms of inefficient strategies are particularly salient.

Definition 3. A clockwise equilibrium is an equilibrium in which, when given a chance, party 1

selects 3, party 3 selects 2 and party 2 selects 1.

Definition 4. A counter-clockwise equilibrium is an equilibrium in which, when given a chance,

party 1 selects 2, party 2 selects 3 and party 3 selects 1.

The top left panel of Figure 2 illustrates the clockwise equilibrium, where the choice of coalition

is illustrated by a pointed arrow (from the chooser to the chosen). The top right and bottom left

panels illustrate the counter-clockwise and efficient equilibria respectively.24 This classification is

important because, as the following result shows, it exhausts all the possible cases that can occur

in equilibrium. In the appendix we prove that:

Proposition 4. A pure strategy equilibrium is either clockwise, counter-clockwise or efficient.

24 The bottom right panel illustrates a mixed equilibrium that will be discussed below.
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The intuition behind Proposition 4 is simple. Assume, for the sake of the discussion here, that

   0. Suppose that 1 chooses 2 to be in a coalition with her.25 Is it possible that 3 also finds

it optimal to select 2 as her coalition partner if given a chance to be formateur? The problem

with such a scenario is that if this were the case, then 2 would always be in a coalition, thus

making her equilibrium outside option high (and making the equilibrium outside option of 3 very

low); this would reduce the incentive to include 2 in a coalition, and make 3 more appealing. But

then it is natural to expect that 1 will choose 3, since a coalition {1 3} is more valuable and 3
is “cheap.” Proposition 4 shows that indeed 3 will not find it optimal to include 2, thus leaving

only three other scenarios: either offers are “spread out” following the order of the formateurs (the

counter-clockwise equilibrium); or offers are spread out following the opposite order (the clockwise

equilibrium); or only the efficient coalition is feasible in which case 1 would not offer to 2 if    0

and the party that does not belong to the efficient coalition will never be included in the winning

coalition.

We can now turn to the characterization of the equilibria. Note that the game can be seen as

a classic stochastic game in which the only state variable at any point in time is the identity of

the formateur. Proposal strategies are easily represented by functions  , describing the proposal

that  makes to  when  is the formateur.26

Assume we are in a counter-clockwise equilibrium and consider the problem of formateur 1.

She selects party 2 and makes a payment that depends on 2’s expected reservation utility, that is

the utility that 2 expects to achieve if bargaining with 1 breaks down. The reservation utilities

at this stage correspond to 2 , the payment that formateur 2 in equilibrium offers to . From

Proposition 3, 1 must satisfy as ∆→ 0:27

11 = 21 +
− − 21 − 22

2
, 12 = 22 +

− − 21 − 22
2

, 13 = 0. (9)

Compared to the analysis of Section 3, now the parties’ reservation utilities are endogenous

and they themselves depend on what is expected to happen if bargaining with formateur 2 breaks

down. Following the same logic as in (9), we obtain the allocations when 2 and 3 are formateurs:

21 = 0, 22 =


2
− 33
2
, 23 =



2
+

33
2

31 =
+ 

2
+

11
2
, 32 = 0, 

3
3 =

+ 

2
− 11
2
 (10)

25 As we will see, this may occur in equilibrium even if    0.

26 We adopt the simplified notation here since it will not lead to confusion. In terms of the more general notation

of Section 2, we have  = ({ } ).
27 The formulas look analogous, just a little more complicated when ∆  0. For example, we would have: and

11 = 21 +
(1−)

1−(1−)2

− − 21 − 22


, 13 = 0, 12 = 22 +

(1−)
1−(1−)2


− − 21 − 22


. Analogous formula can be

derived for the reservation values in (10) below.
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Figure 3: The equilibrium characterization for  = 1

Equations (9)-(10) define a system of nine equations in nine unknowns that gives us the fol-

lowing unique solution:

11 =
3− 4+ 

9
, 12 =

6− 5− 

9
, 13 = 0 (11)

21 = 0, 22 =
3− − 2

9
, 23 =

6+ + 2

9

31 =
6− 2+ 5

9
, 32 = 0, 

3
3 =

3+ 2+ 4

9


These are the equilibrium allocations under the assumption that we are in a counter-clockwise

equilibrium. To complete the characterization we need to make sure that the coalitions chosen

in this type of equilibrium are the players’ best responses. Let  () be the average surplus in

coalition  when  is the formateur, that is

 () =
1

2

h
 ()− (

X
∈

+1 )
i


For illustration, let us assume here that  and  are negative, so that the most efficient coalition

is {1 2} (the case in which  and  are positive is very similar and presented in the appendix).
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Consider first the case in which 2 is the formateur. From Proposition 3, formateur 2 selects

coalition {2 3} if 2({2 3}) ≥ 2({1 2}). From (11), we have:

2({1 2}) =
1

2

¡
− − 31

¢
=
3− 7− 5

18

2({2 3}) =
1

2

¡
− 33

¢
=
6− 2− 4

18


so 2({2 3}) ≥ 2({1 2}) if  ≥ −35− 1
5
. Proceeding analogously we can verify that formateur

1 and 3 finds it optimal to select, respectively, coalitions {1 2} and {1 3} if and only if  ≤
3 + 7.28 We conclude that a counterclockwise equilibrium exists only if  ≥ −3

5
 − 1

5
 and

 ≤ 3+ 7 (the darkly shaded region in the negative orthant in Figure 3). Using a similar logic
we can characterize all the other feasible equilibria and obtain the following full characterization

of equilibrium bargaining:

Proposition 5. We have that:

• A clock-wise equilibrium exists if and only if  ≤ min ¡ 3
4
+ 

4
 3− 2¢ when    0, and

if  ≥ −3
2
− 2 if    0

• A counter-clockwise equilibrium exists if and only if:  ≤ 3
7
− 5

7
 if    0; and  ≥ −3

5
− 1

5


and  ≤ 3+ 7 if    0.

• An efficient equilibrium exists if an only if  ≥  −  when    0, and if  ≥ − (+ )if

   0

The equilibrium structure is described in Figure 3.29 In the following two sections we will

discuss some important welfare and positive implication of the equilibria. We conclude this section

by commenting on three aspects of the characterization that make the analysis distinctive from

previous work on legislative bargaining: the possibility of inefficient equilibria; multiple equilibria

that depend on the parties expectations of likely coalitions; and relationship of the model with

Baron and Ferejohn [1989] as   → 0. The issue of inefficient equilibria has been studied little

in the previous literature on legislative bargaining because it focused on distributive politics.

Noncooperative models a’ la Baron and Ferejohn [1989] assume that all coalitions generate the

same surplus, thus restricting the analysis to how surplus is allocated and making the choice of

coalition irrelevant; cooperative models of bargaining (such as the Shapley value, for example),

on the contrary, effectively assume that the largest coalition is the most efficient and always

28 Details on these derivations are presented in the proof of Proposition 5.

29 In Figure 3,  is normalized at  = 1
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selected.30 In the model studied above, instead, the focus is on which equilibrium coalition is

chosen and how this choice depends on the associated surplus. Proposition 1 and 3 showed that an

inefficient coalition can be selected, though in that case the equilibrium coalition is always the one

that maximizes the average surplus among the coalitions that are feasible for the formateur (as

∆→ 0, at least). Proposition 5 makes a step further showing that indeed inefficient coalitions can

be selected even if the formateur is a member of the efficient coalition, and the selected coalition

may not even be the one that maximizes average surplus. This happens when the equilibrium

“expectation” of the other member of the efficient coalition is too high, thus making convenient

to choose a less efficient coalition. Surprisingly, this is not just one of the equilibrium outcomes,

but under some condition the unique equilibrium outcome.31

Note that in the game presented above the core is empty whenever  and  are sufficiently small

(i.e. +   ), a natural condition to assume in a legislative bargaining environment. In strictly

superadditive environments with the first rejector-becomes-proposer bargaining protocol (as in

Chatterjee et al. [1993]) or the random proposer protocol (as in Okada [1996]) efficient equilibria

do not exist with an empty core.32 Relaxing the assumption of superadditive values and assuming

the formateur protocol, we instead can have an efficient outcome with pure strategies even with

an empty core, thus in environments that are relevant for legislative bargaining.33 This may

explain why formateur-type of bargaining protocol are common in Western democracies.

The issue of multiplicity of equilibria is also related to how expectations are formed in equilib-

rium. For the sake of the discussion here, assume    0. In the area below the counter-clockwise

equilibrium threshold (the lower solid line) in Figure 3, both the counterclockwise and the clock-

wise equilibria exist (but no efficient equilibrium exists); in the area above the efficient equilibrium

threshold (the dashed line) and below the clockwise equilibrium threshold (the higher solid line),

we have both an efficient and an inefficient equilibrium. Contrary to what happens in Baron and

Ferejohn [1989], this multiplicity of equilibria is payoff relevant.34 For example in the area

in which both the clockwise and the counterclockwise equilibria coexist, the counter-clockwise

30 Welfare in legislative bargaining models has been explicitly studied in models involving public goods (for

instance, Battaglini and Coate [2007], Volden and Wiseman [2007]), endogenous status quo (Dziuda and Loeper

[2016]), and public debt with distortionary taxation (Battaglini and Coate [2008]).

31 For example, with    0 and   −(+ ),   − 3
5
− 1

5
, this is the unique equilibrium when 1 is the first

formateur (who selects 3 instead of the efficient 2); with    0 and   3
7
− 5

7
,   min{(− ) 3

4
+ 

4
}, this is

the unique equilibrium when 3 is the first formateur (who selects 2 instead of the efficient 1).

32 For these results see, respectively, Chatterjee et al. [1993] and Okada [1996].

33 For example, for   ≥ 0, there is an efficient equilibrium for any order of formateurs if  ≤ 3
7
 − 5

7
 when

  ≥ 0, and  ≥ −3
5
 − 1

5
 and  ≤ 3 + 7 if    0 the core is empty, but there is an efficient equilibrium in

which 1 is the first proposer.

34 In Baron and Ferejohn [1989] we typically have multiple stationary equilibria, but they all lead to the same

equilibrium payoffs.
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equilibrium is associated to the payoffs in (11); as we show in the proof of Proposition 5 in the

appendix, the payoffs with a clockwise equilibrium are:

11 =
6+ 5− 2

9
, 12 = 0, 

1
3 =

3+ 4+ 2

9

21 =
3+ − 4

9
, 22 =

6− − 5
9

, 23 = 0 (12)

31 = 0, 32 =
3− 2− 

9
, 33 =

6+ 2+ 

9


The payoff of party 1 when s/he is the formateur, for example, is much higher in the clockwise

equilibrium than in the counterclockwise equilibrium. The multiplicity of equilibria capture the

complexity of the strategic interaction in this model and it is natural in this environment, since it

reflects the fact that reservation utilities depend in a non trivial way on endogenous expectations on

the future. As we will discuss in the following section, this multiplicity has important implications

for understanding the limits of presidential power to control bargaining outcome by just controlling

the order and identity of formateurs. Despite this, the model generates only few equilibria and

thus allows to derive sharp predictions on behavior and welfare.

We should finally highlight that the differences with the models a’ la Baron and Ferejohn do not

only depend on the heterogeneity of the coalitional values, as measured by  : for example, the

clockwise and counterclockwise equilibria both exist even if  → 0; and in the counterclockwise

equilibrium, party 1 does not receive a positive formateur’s premium even if   → 0. As we

discussed in the introduction, in Baron and Ferejohn [1989] the selection of the coalition and the

allocation of the rents are collapsed in one step: a take-it-or-leave-it offer. The assumption that

negotiations break down with probability 1 if the take-it-or-leave-it offer provides commitment

power to the proposer: the other coalition members know that if the proposal fails, s/he will not

be able by assumption to make a new offer; and the next proposer may not go back to them. In

our model, the formateur’s bargaining power depends on whether a threat to switch coalition is

credible, which depends on expectations. This alone is sufficient to induce the hold up problem

and multiplicity.

5 Positive analysis

We now apply the theory developed in the previous sections to discuss three important empirical

facts about legislative majorities. First, we explain the absence of significant formateur’s premia,

and indeed the evidence of negative premia in the data. Second, we explain the fact that grand

coalitions comprising more than 50% of the seats are very common in legislative bargaining. Third,

we explain the fact that legislative bargaining often includes failed attempts before an agreement

is reached. These facts are important because they have often been seen as evidence against
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strategic models of legislative bargaining. We show that they emerge naturally in richer strategic

environment such as the one studied here.

5.1 The formateur’s premium.

As we mentioned in Section 3, a key prediction of standard noncooperative models a’ la Baron

and Ferejohn [1989] is that the party selecting the coalition receives a very significant premium

in terms of surplus allocation. This reflects the fact that in these models the proposer has, at

least temporary, monopoly power on the choice of the allocation and can exploit this advantage.

A surprising but robust finding in the empirical literature is that not only does such a premium

not exist, but that indeed formateurs suffers a proposer’s penalty.35 For instance, Warwick and

Druckman [2001] show that the payoff formateurs receive falls short of their vote contributions to

the coalition by 13.3%.36

The empirical phenomenon in which the proposer receives the same or less than the other

coalition member can be explained in an intuitive way in the equilibrium of Proposition 5. To

address these questions (and the questions in the next subsections), it is useful to express all

payoffs in terms of how similar the values generated by the different coalitions are. Normalize

 = 1 and let  =  ·  and  =  · , where  and  are generic coefficients in (0 1) and  can be

positive or negative with || ∈ (0 1).37 When || is small, we are in an environment in which
all coalitions generate a similar value (as in the Baron and Ferejohn’s [1989] benchmark); as ||
increases the differences between the different coalitions become more prominent.

Assume first that || is small: this corresponds to an environment where the different coalitions
generate similar valuations, so there is not an obviously superior or inferior coalition. In this case,

we always have a counterclock equilibrium (the area in the dark shadow in Figure (3)). Consider

party 1 when it is the proposer: can it extract a formateur’s premium? It is easy to see that

this is not possible and indeed it will be very willing to concede a bonus to the coalition partner.

If negotiation fails 2 becomes proposer: 1 expects 2 to form a coalition with 3, leaving himself

marginalized. This makes it rational for 1 to leave 2 more than 50% of the surplus generated in their

coalition. Naturally, 1 can try with 3, but 3 would require an even higher surplus since he expects

to be in a coalition with 2 in which indeed 2 will be willing to leave him more than 50% of the

35 This literaure, stared by Browne and Franklin [1973] and [1980] typically uses ministerial portfolio allocations

(often weighted by the importance of the cabinets) as a measure of surplus allocation. See, among many others,

Schofield and Laver [1985 ], Warwick and Druckman [2001] and [2006].

36 This finding does not depend on the fact that coalitions split surplus equally but the formaterur is systematically

the largest party. Druckman and Warwick [2001] find that the coefficient of a variable interacting the size of a

political party with a dummy equal to one when the party is formateur has a significantly negative sign.

37 The normalization of  = 1 is without loss of generality. If a is not equal to one, we obtain the same results

defining  =  and  = .
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surplus (again, this because 2 fears that if proposal power movers to 3, then 3 will form a coalition

with 1).38 This is a manifestation of the hold-up problem in multilateral bargaining. Formateur’s

1 can threaten 2 to switch to 3 while bargaining, but the threat would not be credible. Party 2

knows that 1 will either return to the table or fail as formateur. Party 2 then can comfortably

hold 1 up and extract more than 50% of the surplus.

Assume now that || is large: this corresponds to the case in which there is a clearly superior
(and a clearly inferior) coalition. In this case (when  ≤ +  so  ≥ (+ )), only the efficient

coalition can form. In this case too party 1 can not credibly extract a positive proposer’s bonus.

If, for example,   0, then party 3 knows that party 1 really has no choice, since the coalition

{1 2} is so inferior. In this case, 1 and 3 are basically stuck with each other, so 1 can expect to
receive anything in [−  ]; and 3 can expect to receive the reminder + − 1. Positive, zero

or negative proposer’s bonuses are now possible in equilibrium. Again, the hold-up problem is at

work here: this time one in which 1 and 2 can hold each other up.

To formalize these considerations, recall that  =  ·  and  =  · . define the thresholds
∗∗ = 1(+ ) and:

∗ =

⎧⎪⎪⎨⎪⎪⎩
3(7+ 5)   0

3 ·max (1(7− ) 1(5+ ))   0



The threshold ∗ defines the dark shaded area in Fig. 3; the threshold ∗∗, instead, defines the

area above, the dashed efficiency frontier for    0 (below for    0). We can now state:

Proposition 6. A positive formateur’s advantage is the unique equilibrium prediction only if

|| ∈ ¡∗  ∗∗¢. If ||  ∗ or ||  ∗∗ there is an equilibrium in which the formateur receives

either no bonus or even a negative bonus.

Proposition 6 paints a more nuanced picture than other existing models of non cooperative

bargaining. This result does not prove that we should necessary observe a small formateur’s

premium, or that payoffs should be proportional to the parties’ vote shares. It however shows

that both possibilities are consistent and even natural in our noncooperative bargaining model

and that these phenomena are not features to very specific bargaining protocols. The feasible

allocations now depends on the details of the environment in which bargaining takes place. The

strength of Proposition 6 is that the conditions on  only refer to the relative magnitude of the

values generated by the possible coalitions: the result is true no matter what selection procedure

is chosen for the first formateur (who does not need to be the largest party and indeed can

38 The argument is indeed general and true for any party who may be proposer and indeed for any order of

proposer.
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be randomly selected), and no matter what is the sequence of formateurs in case of bargaining

breakdown.39

Far from being a limitation, the multiplicity of equilibria may explain some puzzling empirical

results, such as the fact that even in environments with three relevant political parties we observe

that payoffs are distributed in a way that is seemingly proportional to the parties vote share.40

This is puzzling because with 3 players and a minimal coalition of two, the precise share of votes

of each player is irrelevant in any bargaining model.41 Evidence from countries with three-party

legislatures where only two parties can form a majority government however strongly suggests a

positive and significant correlation between seat shares and portfolio allocations (see Warwick and

Druckman [2001]).42 Political environments in which bargaining is played with 3 relevant parties

are cases in which it is natural to imagine there is a coalition that is significantly superior to the

other. Proposition 5 and 6 predict that in this case the precise distribution of surplus is not fully

determinate, thus making the vote share a natural rational focal point.

Proposition 6, however, suggests a more important point regarding how surplus is distributed

in government formation. Most of the discussion has focused on how surplus is divided between

parties in the realized coalition. Failure of the formateur to capture more than 50% has been

interpreted as evidence that the formateur does not benefit from its proposal power. This is

natural in a world in which all coalition have the same value (as in standard non cooperative

models) and in which the “grand coalition” is the most valuable coalition (as implicitly assumed

in all cooperative models, that have little to say on the choice of coalition). In a model in which

coalitions have heterogeneous values and equilibria may be inefficient, the formateur’s benefit

of proposal power mostly comes from the choice of the coalition, rather than from the share of

surplus that is obtained. For example, party 1 obtains less than 50% of −  when proposer in a

counterclockwise equilibrium leading to a coalition {1 2}, but even less than this if he attempts
to form the more efficient coalition {1 3}, and exactly zero if he loses proposal power (since {2 3}
forms in this case). The real benefit of being formateur for party 1 is in selecting {1 2}.

39 As explained in Footnote 22, by considering    0 and    0, the characterization of Proposition 5 (and

thus of Proposition 7) captures equilibrium behavior of all sequences of formateurs.

40 Another puzzling empirical effect that can be explained by our theory is presented by Fujiwara and Sanz

[2018], who show that in negotiations following municipal elections in Spain, the party with slightly more votes

is substantially more likely to appoint the mayor (thus extracting significantly higher rents from the negotiation).

The social norm that “the most voted party should express the major” can indeed serve as a natural focal point

that helps the parties pin down the appropriate reservation utilities in the presence of multiple equilibria.

41 Standard measures of power in non cooperative game theory (such as the Shapley-Shubik index or the Banzhaf

index) give all parties the same power of 0.33. Morelli [1999]’s demand bargaining model also predicts that surplus

is split in the middle in any minimal winning coalition.

42 Warwick and Druckman [2001] report a correlation between portfolio shares and seat contributions of  = 0850

with   0001 in countries with 3 relevant political parties such as West Germany or Austria.
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Figure 4: The existence of a Grand Coalition Equilibrium

5.2 Grand Coalitions

In Section 4, we assumed that there is no intrinsic benefit in the size of a coalition. If ∗ is the

most efficient policy that can be achieved by some minimal winning coalition, then considering a

supermajority can only add veto players, thus reducing the surplus to be divided.43 Formally,

we assumed  ({1 2 3})  max  (). Under this assumption, a supermajority is never optimal

in equilibrium. It is intuitive that the model presented above may explain the emergence of

supermajorities if we drop this assumption and allow supermajorities to be more valuable than

smaller coalitions. In a supermajority the formateur needs to compromise with more parties, but

if the surplus is sufficiently large this may be worthwhile. It would however not be extremely

surprising if we could only explain supermajorities by assuming a very large surplus advantage

for a large coalition. The interesting question is: can we explain supermajorities even when the

supermajorities are only marginally better than minimal winning coalitions? This would go a long

way in explaining why we observe them so often.

To study these questions, let us focus without loss of generality on the case with    0. We

now assume that any party can choose the unanimous coalition and obtain  ({1 2 3}) = ++.

Coalition  = {1 2 3} is now the most efficient coalition and  ≥ 0 measures the supermajority
premium: the larger is  the more efficient is  , as  converges to zero, this premium disappears.

43 In our formalization we have not specified policies, but they are implicit in the value function  (). The

government chooses a policy  in coalition  that generates a surplus () to party  ∈ . We can link  to

 by letting  () =


(). Assuming transferable utilities as in Austen-Smith and Banks [1988] and Baron

and Diermeier [1999], each party can now achieve () = () + , where naturally we need


 ≤


()

and  ∈ [−()


()].
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When does an equilibrium in which all formateurs choose a supermajority emerge? We should

first note that in such a situation a player  receives a payoff ∗ independent from the identity of

the formateur. To see this, assume  is the proposer who is followed by +1 in case of bargaining

breakdown, then  receives:

 = +1 +
1

3

⎡⎣ ()−X


+1

⎤⎦ = +1 = ∗

where the second equality follows from the fact that
P

 
+1
 =  (). For (∗ )∈ to be an

equilibrium, it must be that no party finds any other coalition more profitable. Party 1 chooses

 if the average surplus 1() =
³
 ()−P 

∗


´
3 in equilibrium is larger than the surplus in

the other two alternatives: 1({1 2}) 1({1 3}). This implies two conditions on payoffs must be
verified: ∗1 +∗2 ≥ −  and ∗1 + ∗3 ≥ + . When considering the constraints implied by 2 and

3 optimal response and the budget
P

 
∗
 = ++ , we obtain that a supermajority equilibrium

emerges if and only if:

∗1 ≤ + , ∗2 ≤ , ∗2 ≥ − − ∗1 (13)

The set of feasible equilibrium payoffs is illustrated by the shaded area in Figure 4. Two facts

should be emphasized. First, while multiple equilibria are possible, the equilibrium restriction limit

the set of payoffs that are feasible. Second and most importantly, a supermajority equilibrium is

not always possible and (13) characterize its feasibility. We have:

Proposition 7. An equilibrium in which all parties choose a grand coalition exists if and only if

 ≥ (− − ) 2.

The most important implication of this result is that the grand coalition can emerge in equi-

librium even if its welfare advantage on the minimal winning coalition is minimal; or indeed even

zero, when − −  is small or negative (see point  in the left panel of Figure 4, for example).

Note that for   (− − ) 2 there is indeed an equilibrium in which all parties strictly prefer

the grand coalition to a minimal winning coalition. This is surprising becasue it implies that, for

example, even when  is arbitrarily small party 1 prefers to propose a grand coalition including

2 and 3 rather than a minimal winning coalition with 2 only, despite the fact that in bargaining

with a grand coalition he will have to leave surplus to two other parties, while in a minimal coali-

tion with 3 he can generate most of the surplus and safely ignore 2’s demands. The general lesson

is that the hold-up problem in legislative bargaining is mitigated when reservation utilities are

endogenous. The intuition of this that in this equilibrium party 2’s value function self regulate

to make it appealing for the other parties to bring it on the bargaining table. It is interesting
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to note that the possibility of supermajority critically depends on the heterogeneous value of the

coalitions. As  and  converges to zero, the lowerbound on the bonus value required by the grand

coalition to sustain a grand coalition equilibrium converges to 50% of the value of the minimal

winning coalitions, a very high threshold.

Finally note that the condition  () | | ≥  () || for  ⊆  is necessary to obtain that

there is an efficient equilibrium for any order of proposers with the first rejector-becomes-proposer

bargaining protocol as the discount factor converges to one (Chatterjee et al. [1993]); and the

condition  () || ≥  (0) |0| for  ⊆ 0 is necessary for a subgame efficient equilibrium

to exists with the random proposer protocol as the discount factor converges to one (Okada

[1996]).44 With the formateur bargaining protocol, however, these strong conditions are not

necessary because an efficient equilibrium is not necessarily egalitarian as in these models. To see

this assume  = (− − + )2 , for     0. By Proposition 7, the efficient grand coalition

 is an equilibrium for any order of proposers, still,  () | |  (12) ({1 3} for  sufficiently
small. This is a subgame efficient equilibrium in which the efficient grand coalition forms for any

order of formateurs.

5.3 Strategic delays

The third difference with previous work is the fact that we may have strategic delay in equilibrium.

An equilibrium with strategic delay occurs when the efficient coalition is possible, say {1 3} with
   0, and 2 has a chance to be formateur; delay is inevitable under the conditions of Proposition

6, when the efficient equilibrium is the unique equilibrium. An interesting observation is that

delays in our model are not due to the fact that there is an opportunity that by assumption is too

large not to be waited for (in terms of expected surplus). In the case with    0, for example,

when  ≤ min ¡3
4
+ 

4
 3− 2¢ and  ≥ − (the area marked “” in Figure 3), both an efficient

equilibrium with delay and an inefficient clockwise equilibrium coexist: party 2 is unable to form

a government because of the players’ (self-fulfilling) equilibrium beliefs. The delays in reaching an

agreement, therefore, is an exquisitely strategic phenomenon.

Our model is not the first to show the possibility of strategic delays in a model of bargaining.

Previous stories about strategic delays extended the basic model to identify important economic

factors that may cause them. Avery and Zemsky [1994] and Diermeier et al. [2003] consider

models in which the size of the pie to divide changes stochastically during the negotiations.45

Yildiz [2004] and Ali [2006] consider environments without common priors in which players may

be optimistic about their recognition probabilities. Jehiel and Molduvanu [1995] and Iaryczower

44 A subgame efficient equilibrium is an equilibrium that is efficient in all subgames.

45 See also Acharia and Ortner [2013], Ortner [2012] for models with a related approach.
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and Oliveros [2019] consider principal agent models in which the principal negotiatiates bilaterally

with each agent. The results presented above contribute to this literature showing that strategic

delays can arise in a model without any of these features and that can also also explain negative

formateur benefits and supermajorities.

6 Welfare and the role of the head of state in legislative

bargaining

The characterization of the bargaining equilibrium presented in the previous section allows us to

study the role of the head of state in affecting legislative bargaining and thus shaping governing

coalitions by exerting his/her prerogatives in selecting the formateurs. Among the prerogative

of a head of state in a parliamentary democracy, that of choosing the government formateur is

one of the most important.46 Many European constitutions empower their heads of state with

significant discretion in the government formation process, including Austria, Croatia, the Czeck

Republic, France, Iceland, Italy, Poland and constitutional monarchies such as Belgium, Denmark,

Luxemburg, Norway, and the United Kingdom (Brunclick [2015]). The role of the head of state in

this process is not generally formally regulated and it may change over time. Italy, for example,

used to have relatively weak heads of state; but this tradition ended with President Scalfaro (1992-

1999) who leveraged his prerogatives in the face of a weakened party system after the corruption

scandals of the 90s. In the United Kingdom the monarch has repeatedly showed its influence in

the presence of a “hung parliament” (Kavanagh et al. [2005]). In some cases the power of the

head of state is so strong that legislatures proceeded to curb it, as in the case of Sweden and the

Netherlands in 1975 and 2012 respectively.

The equilibrium characterization of the previous section suggests 3 questions. As we have seen,

the legislative process does not generally arrive to an efficient equilibrium in which the coalition

that generates the most surplus is chosen (even when the cost of delay is small). Indeed, we have

seen that it is even possible that the worst equilibrium, in which the least efficient of the coalitions

forms in equilibrium, is achieved. First, is there room for a head of state to improve the outcome

of the bargaining process, just by controlling the order of formateurs?47 Second, if this is the

case, what are the limits of this power? Ideally the head of state would want to induce an efficient

equilibrium; under what conditions is this possible?

46 See Amorim Neto and Strom [2006], Tavits [2009], Carroll and Cox [2011] among others for a discussion of

the role of the head of state. Other important prerogatives of the president include the timing of dissolution and

the vetoing of legislation which are less relevant to our discussion.

47 As a starting point, we assume here that the head of state aims at maximizing aggregate surplus. A similar

analysis can be done for the case in which the head of state maximizes any other type of social welfare function.

32



In the online appendix we prove that:48

Proposition 8. If the order of formateurs is chosen by a benevolent head of state, then there is

always an efficient equilibrium.

This result is interesting because it is in sharp contrast with the finding in the literature

assuming superadditive values and the first rejector-proposer protocol (as in Chatterjee et al.

[1993]) or random proposer protocol (as in Okada [1996]) in which, for high discount factors, there

exists no order of proposers that achieves an efficient outcome if the core is empty.

The presence of multiple equilibria, however, creates other challenges to a benevolent head

of state. Does the order selected by the head of state matter at all? When can the head of

state implement the efficient outcome in the unique equilibrium and more generally. Finally, if

full control of the outcome is impossible, can at least the head of state avoid that the worst

equilibrium is achieved?

As done in Section 5, it is useful to normalize  to 1 and use the notation according to which

 =  ·  and  =  · , where  and  are generic coefficients in (0 1) and  can be positive or

negative with ||  1. It is easy to see that when || is sufficiently large (the area in the light
shade in Figure 3), the head of state is irrelevant: no matter what the order of formateur is, the

efficient coalition is so much better than the others, that it will form anyway. Assume for example

that    0. If 1 or 3 are selected, then {1 3} forms; if 2 is selected, then 2’s attempt is destined
to fail and {1 3} forms again. A similar phenomenon is true for    0, in which case {1 2}
always forms if || is sufficiently large. The area in the (lightly) shaded area in which this happens
is easily characterized by ||  


where:49



=

⎧⎪⎪⎨⎪⎪⎩
max (1(+ ) 3 ·min (1(4− ) 1(+ 2))) if  ≥ 0

max (1(+ ) 3(2+ 4)) if   0



As we reduce || below the area defined by  , efficiency is not a forgone conclusion anymore.
Define the threshold that defines the area in which both the cockwise and counter-clockwise

equilibria exist (the darkly shaded area in Figure 3):

 =

⎧⎪⎪⎨⎪⎪⎩
3(7+ 5) if  ≥ 0

3 ·max (1(5+ ) 1(7− )) if   0



48 For the most part, this result follows immediately from Proposition 5. In the region   3
4
+ 

4
and   −,

however, a pure strategy equilibrium does not exist, so we prove that there is a mixed equilibrium in which the

efficient coalition is selected with probability one.

49 The threshold presented below follow directly from Proposition 5. For details see the proof of Proposition 8.
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When ||   , the head of state is faced with multiple inefficient equilibria, no matter the order

of formateurs. Consider point  in Figure 3. Here the head of state can achieve an efficient

equilibrium by choosing an order 3 1 2 and aim at a clockwise equilibrium. If this happens,

then 1 forms a coalition with 3 and an efficient outcome is achieved. If however, the parties play

a counterclockwise equilibrium, the result is the opposite: 1 offers to 2 and the least efficient

coalition forms in equilibrium. The head of state can attempt to achieve an efficient equilibrium

by choosing an order 1 2 3, letting 3 to go first and aim at a counter-clockwise equilibrium: in

this case 3 proposes to 1, and again we have an efficient outcome. If however the players play a

clockwise equilibrium, the outcome is again inefficient, though not the least efficient coalition. The

natural choice for the head of state is to go for this second scenario since it makes sure that the

least efficient equilibrium is not achieved: but it is impossible to guarantee an efficient equilibrium.

In the intermediate case || ∈
³
  


i
, there are two possibilities. Define

∗ =

⎧⎪⎪⎨⎪⎪⎩
min (1(+ ) 3 ·min (1(4− ) 1(+ 3))) if  ≥ 0

min (1(+ ) 3(2+ 4)) if   0

which is in between  and 

. For || ∈

³
  ∗

i
the head of state can make sure that the

efficient outcome will be achieved in all equilibria. Consider point  in Figure 3. Here the

clockwise equilibrium is the unique equilibrium. If the order of formateurs is 1 2 3, an efficient

allocation is formed if 1 is selected as formateur; an inefficient equilibrium is instead obtained if

2 or 3 is selected as formateurs: indeed the worst equilibrium {1 2} is obtained if 2 is selected
as formateur. In point  the head of state is faced with a different scenario. There is indeed an

equilibrium in which the efficient equilibrium always form, the head of state would be irrelevant

in this case; there is however also a clockwise equilibrium in which efficiency is achieved only if

1 is selected as first proposer (when the order is 1 2 3). The equilibrium is not unique, but the

efficient equilibrium can be implemented for sure by the head of state by an appropriate choice of

order of formateurs.

In the area || ∈
³
∗  


i
, instead, a pure strategy equilibrium does not exist: these are the

two triangles below the dashed efficiency line and above the solid clockwise equilibrium frontier

with   0; and above the dashed efficiency line and below the solid clockwise equilibrium frontier

with   0. The lack of existence of a pure equilibrium in this region is problematic for the head

of state. As we will show in Section 7.2 a mixed equilibrium with which an efficient equilibrium

can be achieved exists in this region. Still, mixed equilibria are fragile because they can not be

seen as limits of finite horizon versions of the game: this implies that the outcome with a finite

horizon can not be approximated by them and it is sensitive to details as the exact number of
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periods of the bargaining game in a finite horizon.

To summarize this discussion it is useful to have the following definitions. We say that the

head of state has full control if s/he can select the order of formateurs in such a way that the

efficient outcome is achieved in all possible equilibria. We say that the head of state is irrelevant

if no matter what selection of the order of formateurs is chosen, the outcome is efficient. We say

that the head of state has incomplete control if for any selection of the order of formateurs there

is an inefficient equilibrium or there is no pure strategy equilibrium that achieves efficiency.

Proposition 9. The head of state has full control if and only if || ∈
³
  ∗

i
. S/he has limited

power elsewhere: s/he is irrelevant if ||  

; and s/he has incomplete control if || ≤  and

|| ∈
³
∗  


i
.

The region in which the head of state can induce the efficient outcome as a unique equilibrium

just by selecting the formateurs is actually larger than the region characterized in Proposition 9,

i.e. || ∈
³
  ∗

i
. The reason is that in Proposition 9, we change payoffs, but we keep the order

of formateur constant at 1→ 2→ 3.50 Of course, given payoffs, the head of state can use different

orders, for example 1 → 3 → 2. As we commented in Section 4, Proposition 5 characterizes the

equilibria in these cases as well. For example, assume  ({1 2}) =  −  and  ({1 3}) =  + 

with    0. It is easy to see that if there is a clockwise equilibrium in the game with order

1→ 3→ 2,51 if and only if there is a counterclock equilibrium in the game with order 1→ 2→ 3

and  ({1 2}) = +  and  ({1 3}) = −  (to see this, just switch the labels of 2 and 3 and use

the results of Proposition 5 in the case with negative  ). When we take this into account, the

set in which the head of state can induce an efficient outcome as unique equilibrium is given by

the (lightly and darkly) shaded area between the solid lines in Figure 5.52

An implicit assumption in this analysis, however, is that the head of state can commit to an

order of formateurs. This is however problematic. Consider point A in figure 5, where    0.

If the head of state selects and order 1 → 2 → 3 and this is credible, then 1 forms with 3 and

the efficient equilibrium forms. But what if, out of equilibrium, 1 fails to form and the head of

state needs to select a different formateur? In this case it would not be optimal to select 2, who

would form a coalition {1 2}, the least efficient. The choice of an order 1 → 2 → 3 would not

be credible absent some form of commitment device. It turns out that the head of state can still

induce the efficient equilibrium by inducing a clockwise equilibrium an order 1→ 3→ 2, but in a

50 With the notation →  →  we mean that  is formateur after ,  after , and  either is first or comes after

.

51 With order 1→ 3→ 2, a clockwise equilibrium is still an equilibrium in which 1 forms, {1 3}, 3 forms {1 2}
and 2 forms {1 2}.
52 The analytical characterization of this set is presented in the proof of Proposition 9 in the appendix.
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Figure 5: Dynamically consistent and inconsistent selections of formateurs by the head of state

for  = 1

much smaller region. We have:

Proposition 10. The head of state can induce the efficient outcome without commitment iff:

 ≤ 3 (4+ 2) and either  ≥ 3 (+ 5) or  ≤ 3 (7− ) if   0

 ≤ 3 ·max {1(− 7)−1(2+ 4)} and  ≥ −3 (5+ ) if   0

The region defined by the inequalities in Proposition 10 is the darker section delimited by the

dashed lines in Figure 5.53 Proposition 9 and 10 presents two general lessons. First, the head of

state can affect legislative bargaining, but his/her power is severely limited. This power is even

more limited if the head of state lacks the reputational capital to commit to a course of action.

The second lesson is that the influence of the head of state depends on the relative coalitional

values of the potential coalitions. As said, the relative importance of picking the right coalition

can then be measured by . When  is high there is a big bonus of choosing well (that is {1 3},
when    0) and a big cost of choosing badly ({1 2}, when    0). Proposition 9 says that

when  is sufficiently high, the bargaining process will necessarily gravitate toward the efficient

equilibrium and the head of state role is minimal. When  is sufficiently small, the head of state

is not irrelevant, but s/he plays a limited role: s/he can not pick the best equilibrium, but can

53 In the proof of Proposition 9 we present the formulas also in terms of  and .
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make sure that the worst equilibrium is not selected. It is only for intermediate levels of  that

the head of state is the most powerful in steering the bargaining process, where the selection

of the order of formateur is most important and can lead to an efficient equilibrium when done

properly, or to even the least efficient equilibrium if not. This dependency of the head of state’s

power can explain why heads of states may play dramatically different roles over time in the same

institutional context. We have mentioned the case of President Scalfaro in Italy (1992-1999) who

played a key role in shaping the Italian governments compared to previous presidents (Vassallo

[1994]). Here the change in the environment was the fall of the Berlin wall and the end of the cold

war, that made the traditional coalition formed by the Christian Democrats (CD) less compelling,

and a coalition led by Democratic Party (DP, former Communist party) less of a taboo. The

pre-1992 period corresponded to a period in which a coalition {1 3} (led by the CD) was the most
viable coalition (+   ): with the end of the cold war, the stigma of a leftist coalition led by

the DP decreased (fall in ), moving the equilibrium to the region with presidential full control

(Case 2 in Proposition 9).

7 Extensions

7.1 Alternative bargaining procedures

In the previous analysis we assumed a specific bargaining procedure within a coalition : its

members have a chance of making a proposal in some order given by (). We have also shown

that as the interaction between parties become frequent (∆→ 0), the order is irrelevant and the

allocation within the coalition converges to the C-Nash solution (8). An alternative specification

of the bargaining inside the coalition is to assume that each member of the coalition  ∈  has

a probability () of being recognized and thus make a proposal. As in the previous analysis,

whenever the formateur is recognized, s/he can choose to continue bargaining in  or move to an

alternative coalition. The analysis in this variant is qualitatively similar to the analysis presented

above, but as it adds an additional source of information (the recognition probabilities ()).

In this case a stationary equilibrium in pure strategies is defined as follows. For a non formateur

party  when the formateur is  and  selects coalition  with  ∈ , a strategy is a function

( )→ ()×[0  ()] that maps the identity  of the formateur and the coalition  chosen by
 to a proposal x( ) = {1( )  ()( )} ∈ () when  is selected as proposer in ,

and an acceptance threshold a( ) = {( )} ∈ [0  ()] when  has to vote.54 For formateur

 ∈ T a strategy is similarly defined by an allocation strategy ( )→ ()× [0  ()] defined

54 Proposal ( ) is the surplus allocated to  when  is the proposer in a coalition  chosen by . The

threshold ( ) is the minimal level of surplus acceptable by  in coalition  chosen by .
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as above; and by a government proposal  (), that selects the coalition in C chosen by  whenever
 becomes formateur and when, during coalitional bargaining s/he is recognized as proposer.

As in the analysis of Section 3, the equilibrium coalition must be optimal for the formateur

given the requests of the coalition members, who expect the same coalition to be chosen by the

formateur, thus being a fixed-point in (3). Similarly as in (5), the formateur’s payoff can be

characterized recursively as the fixed-point of a contraction that now takes the form:55

∗ ( ) = max
∈

⎧⎨⎩

⎡⎣ ()− X
∈\



⎤⎦+ (1− )

∙
 ()

∗
 ( ) + (1−  ())

1− (1− )(1−  ())

¸⎫⎬⎭
(14)

where we use the notation ∗ ( ) to indicate the formateur’s payoff when  is selected and

the equilibrium coalition is  , to emphasize how it depends on  . Naturally, now (14) depends

on the recognition probabilities associated to each coalition . In the online appendix, we show

that there is (generically) a unique coalition that the formateur chooses in equilibrium and it is:

∗ = arg max
∈

(
(1− (1− )(1−  ()))

"
 ()−

X
∈



#)


Given this, it is immediate to derive equilibrium payoffs for all players as in Proposition 1. It is

however useful to see what happens as ∆→ 0. Define the -Nash Bargaining solution as:

Q(u) = arg max
x∈()

Y
∈

[ − ]
() (15)

where Q(u) = {Q1(u) Q(u)}. This is the weighted Nash Bargaining solution when
coalition  is chosen and legislators have weights q(C) = {1()  ()}. We have:

Proposition 11. As ∆→ 0, the equilibrium of the bargaining problem in the model with recogni-

tion probabilities q(C) converges to ∗ = Q( ()u) for  ∈  () where

 () = arg max
∈

(
 () ·

"
 ()−

X
∈



#)

and ∗ =   ∈  ().

As Proposition 3, Proposition 11 can be seen as an institutionally based extension of the Nash

Bargaining solution, specifically the weighted Nash Bargaining solution in which the weights are

given by the recognition probabilities in the bargaining protocol.

Given Proposition 10, it is straightforward to extend the analysis of Section 4 with endogenous

reservation values. The analysis of Section 4 remains completely unchanged if we assume that all

55 Details of the derivation of (14) are presented in the proof of Proposition 10 in the appendix.
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parties have the same recognition probabilities, as generally assumed in the analysis of the Baron

and Ferejohn’s [1989] model. If we allow for heterogenous recognition probabilities, however, the

thresholds for the existence of the different types of equilibria become dependent on the weights

q(C), thus providing an additional channel through which the details of the environment may

affect the allocation of resources.

7.2 Externalities

In the previous analysis we considered an abstract environment in which the coalition forming

the government, say , generates a surplus  () that is shared among its members, leaving the

others at their reservation utilities (normalized at zero). This is a straightforward extension of

the environment in Baron and Ferejohn [1989], where the winning coalition shares a pie of size

one among its members, leaving the others at zero. If we think that the surplus generated by 

depends on some policy , it is natural to think that it has externalities on the other parties as

well. In this section we first show that, in our environment with transferable utilities, this more

complex scenario is in line with the model presented above. We then show that the bargaining

model easily extends to the case with externalities even if we assume imperfectly transferable

utilities (or not transferable at all).

Transferable utilities. Consider an environment in which party  ∈  has utility ( ) =

() + , where  is a policy from some space  ,  is a transfer and (·) is a concave function.
For example, the policy space  could be a subspace of  for some integer  (the dimensionality

of the policy) and () could be the usual quadratic distance () =  + 
P

( − )
2 with

  0 and   0,  =
¡

¢
=1

is ’s ideal point and  = ()

=1 is a policy in  .56 To each party

, we associate a subset  ⊆  of policies that are acceptable to its constituency (for example,

abortion is not a policy feasible for Republicans in the U.S.; and a flat tax is not a policy feasible

to Democrats). Let  = ∩∈ . This is the set of policies feasible to a coalition .

A coalition  can select any policy in  and a vector of transfers/taxes  for  = 1  .

A policy  now does not only affect the members of , but all parties in  . Note, however,

that a winning coalition, i.e. a legitimate government, can tax or subsidize all parties, including

those outside the coalition.57 We assume that no party can be left with less then its reservation

utility that we set at zero. This level reflects the fact that there are checks on governmental power.

Formally, we assume that  ≥ −() and
P

 ≤ 0, the latter inequality being a budget balance
condition.

56 For a model with preferences like this see, for example, Baron and Diermeier [2001].

57 The parties in our game represent different social classes, they are not individuals. It is therefore legitimate

to allow the government to target them differentially with tax/subsidies.
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Given this, we have that any coalition  sets  = −() for all  ∈  and allocates a surplus

 () = max∈
P

∈ () to all members of . As in the model described in Section 2, all

parties outside the coalition are left with zero. The allocation in the coalition will be a vector of

utilities  such that  ≥ 0,
P

  ≤  (), exactly as the set () defined in Section 2. In this

context, when the outside options  are exogenous simply corresponds to a policy 
 and feasible

vector or transfers that would be taken by a caretaker:  = (
)+ . When the outside options

are endogenous, they are endogenously defined in the game.

Imperfectly transferable utilities. When utilities are imperfectly transferable, it may be

impossible for the coalition to reduce the utilities of the parties outside the coalition to their

reservation values. In this case an agent  outside a coalition  receive a utility () = (())

if no transfer is possible, or () = (())+ (), where () is the minimal transfer that can

be made to  given  consistent with  being above his/her reservation utility . Assuming here

for simplicity that () = 0 for  ∈ , a coalition  can generate a payoff vector x = (1  ),

where  = () +  for  ∈  and  = () for  ∈ , with  ∈  ,  ≥ −() for  ∈  andP
∈  ≤ ().

We first note that the characterization of Proposition 1 remains unchanged by these modifica-

tions. Assume the formateur deviates to a coalition , when the equilibrium coalition ∗. How

will a player  ∈  evaluate an offer from the formateur? If  ∈ ∗, s/he knows that as soon as

proposal power returns to the formateur, the formateur selects ∗, so what happens in coalitions

in which  is excluded is irrelevant. If the other player  is not in ∗, s/he knows that as soon as

proposal power returns to the formateur, ∗ forms and s/he receives (∗) (instead of zero in

the case without externalities). Player  will use this value to compute his/her reservation utility

(1). This however does not matter for the formateur because, as it can be seen from (5), the

acceptance threshold of  simplifies away from the formula characterizing the formateur’s utility

of selecting , which indeed depends only on the formateur’s expected utility.

What is now affected by the externalities is the analysis of Section 4, where reservation utilities

are endogenous. The reason is that the reservation utility of an agent  when the formateur is  

depends on the utility received if the formateur becomes  +1, who may select a coalition to which

 does not belong. With externalities,  receives (
+1) even if  ∈ +1 (without externalities,

 receives zero in this case). Given this, the analysis remains qualitatively unchanged: the exter-

nalities only add additional variables in the system of equations characterizing the equilibrium).

As an example, consider a simple version of the model of Section 4 in which  =  =  = 0,

so  ({ }) =   0 for all   ∈  with  6= . Now, however, assume that if coalition   is

formed, then the remaining agent  suffers a negative externality . The equilibrium strategies

 in a counter clockwise equilibrium is characterized by a system of nine equations that can be
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written as:

 =
1

2

¡
+ +1 + 

¢
, +1 =

1

2

¡
− +1 − 

¢
, +2 = −

for  = 1 2 3 and + 1 (mod 3). This system is the direct analog of (9)-(10): following the same

steps as in Section 4, we can show that this equilibrium always exist and yields payoffs equal to

 =
2
3
+ 1

3
, +1 = −, +2 = 1

3
(− ), thus functions of . It is however not always the case

that the parameters describing the externalities affect the equilibrium. For instance, if we allow

  0 in the previous example, we can show that an equilibrium in which the coalition {1 2 3}
forms independently from the formateur exists if and only if  ≥ 2 and yields payoffs in a set

that is independent of .58

The model studied above, therefore, presents a convenient framework to study legislative bar-

gaining with externalities. In the model described above, allowing for externalities makes the

analysis more complex because it adds a set of extra parameters and, likely, more cases to con-

sider: but the problem can still be studied with the same techniques developed in Section 4-6. The

analysis is surprisingly manageable because, in a legislature, there is one key coalition that can

generate policy externalities: the government coalition. Previous work focused on more complex

environments in which multiple coalitions can form at the same time (see, among others, Ray and

Vohra [1997, 2001]): in such a context, the payoff for each coalition are not well defined until all

coalitions are formed, thus making the analysis more difficult to analyze and often intractable.

7.3 Mixed strategies

The analysis presented above focused on pure strategy equilibria. As we said, there is a good reason

for this: for a generic choice of payoffs, the limit of a finite horizon version of the bargaining game

must be a pure strategy equilibrium. Any mixed strategy equilibrium can therefore not be seen as

the limit of any finite horizon game, it literally requires an infinite horizon. It is however interesting

to note that Proposition 5 implies that a pure strategy equilibrium does not always exist. When

   0, no pure equilibrium exists if   −(+ ) and   −3
2
− 2, i.e. the triangle defined by

the dashed efficiency frontier and the solid line of the clockwise equilibrium in the negative orthant

of 3. Similarly, when    0, no pure strategy equilibrium exists if   min
¡
3
4
+ 

4
 3− 2¢

and   − , i.e. the triangle defined by the dashed efficiency frontier and the solid line of the

counterclockwise equilibrium in the positive orthant of 3. These are situations in which, if we

believe in a literally infinite horizon, the equilibrium can be searched among the mixed equilibria;

but if we believe the model has a finite but perhaps long horizon, then the exact number of stages

is important, without exact knowledge of this information the outcome is indeterminate.

58 The set of possible equilibrium payoffs (1 2 3) is given by  ≤  1 + 2 ≥ , 1 + 1 + 1 =  + 

independently of the identity of the formateur.
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For completeness in the online appendix, we have characterized a mixed equilibrium in these

regions as well. In this equilibrium, party 1 randomizes between forming a coalition with 2 and

3; party 2 forms a coalition with party 1 with probability one, and party 3 forms a coalition

with party 2 with probability one (see the lower right quadrant in Figure 3). As we show in the

appendix, this equilibrium can be used to show that the head of state can implement the efficient

outcome in an equilibrium in these regions in which no pure strategy equilibrium exists.

An interesting qualitative feature of this equilibrium is that it makes it clear how using the

“formateur premium” as a way of measuring the advantage of being a formateur may lead to

misleading and even puzzling conclusions. Let ∆ =  −  be the premium of formateur 

when forming a government with . In the case in which    0, formateur 1 receives a premium

∆12 = −− 2  0 when {1 2} is chosen (with probability ); and a premium ∆13 = +   0

when {1 3} (with probability ): so the formateur’s premium is simultaneously positive and

negative. Naturally, this is irrelevant, since in both cases the payoff of the formateur is the same,

11 = + .

7.4 Endogenizing elections

In the preceding analysis we have abstracted from the voting stage that elects the parties to

congress, by instead focusing on the bargaining stage for a given set of parties. Clearly the voting

stage may play an important role, since it may affect the bargaining stage in many ways. It may,

for example, tie the hands of the head of state when selecting the identity of the formateurs.

This is the approach followed by Austen-Smith and Banks [1988] and Baron and Diermeier [2001]

who assumed that the largest party is the unique designated formateur and focused on how this

strategically affects voting to influence bargaining outcomes. The outcome of the elections may

also affect bargaining in the proto-coalitioon (selected by the formateur) by affecting the order of

proposal or, more significantly, the probability of proposal as studied in Section 7.1. Finally, the

electoral outcome may affect the internal composition of parties, thus affecting the value  ()

of a given coalition . If we assumed that the options for the head of state are constrained

(for example that the head of state is forced to choose the largest party), then we delegate the

decision to the voters as in Austen-Smith and Banks [1988] and Baron and Diermeier [2001] and

we have a theory that maps voting decisions to parliamentary coalitions. The bargaining model

presented above may however constitute an important building block of an integrated theory of

elections and subsequent coalition formation in congress because it allows us to endogenize the

reservation utilities of the parties in congress. Both Austen-Smith and Banks [1988] and Baron

and Diermeier [2001] assumed take it or leave it bargaining protocols in which if the formateur’s

proposal is refused by the proto-coalition, a default policy is selected. Allowing reservation values
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to be endogenous would drastically limit the ability of the formateur to extract rents from the

other parties and change the voters’ calculus when attempting to affect bargaining in congress.

We leave a comprehensive study of such an integrated model to future research.

8 Conclusions

In this paper we have proposed a new model of multilateral bargaining to study how majorities are

formed in legislatures when coalitions are heterogeneous in terms of the surplus they are expected

to generate. In our model, a formateur picks a coalition and negotiates for the allocation of the

surplus. The formateur is free to change coalition to seek better deals with other coalitions, but

s/he may lose her status if bargaining breaks down, in which case a new formateur is chosen.

In this context, a formateur needs to reconcile the need to form the most productive coalition

with the desire to maximize the share of output that s/he captures. This seems an important

feature that has characterized most legislative negotiations in parliamentary democracies in the

post World War II period.

The model provides a new perspective on legislative bargaining and helps explain a number

of well established empirical facts at odds with existing noncooperative models of multilateral

bargaining. From a theoretical point of view, we have shown that, as the delay between offers

goes to zero, the equilibrium allocation converges to a generalized version of the Nash bargaining

solution in which each coalition member receives its outside option plus a share of surplus net of

reservation utilities. The difference with respect to the Nash’s solution is that in the -person

Nash Bargaining Solution the coalition is assumed to be comprised by all players (or chosen

exogenously), while in our model it is endogenously determined. A form of the hold-up problem

specific to these bargaining games may lead to significant inefficiencies in the selection of the

equilibrium coalition. When reservation utilities are endogeneized in a fully recursive model in

which a bargaining breakdown is followed by the appointment of a new formateur, moreover,

we may have multiple stationary equilibria with different welfare implications. The equilibrium

characterization is however sufficiently tight for positive and normative analysis.

In terms of positive analysis, the model helps explaining three well known empirical facts

that have been hard to reconcile with non-cooperative models of multilateral bargaining: the

absence of significant (or even positive) premia in ministerial allocations for formateurs and their

parties; the occurrence of supermajorities; and delays in reaching agreements. While a number

of important previous works have attempted to explain these facts individually, our theory has

the advantage of providing a unified and intuitive explanation for all them. Finally, in terms of

normative analysis, the model provides a simple framework to study the role of the head of state

in legislative bargaining processes, helping to understands the limits of its prerogatives in selecting
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the formateurs.

There are many directions in which the model presented here can be extended. A direction

discussed in Section 7.3. concerns endogenizing elections as in Austen-Smith and Banks [1988]

and Baron and Diermeier [2001]. As a starting point, we have assumed that the value  ()

associated to a coalition  is exogenous. In a more general model with elections these values can

be made dependent on the campaign platforms and thus endogeneized. The bargaining model

presented here may therefore contribute to the formulation of a more complete theory of how

policies are made in parliamentary democracies that integrates the determination of the platforms,

the determination of the size of the parties and legislative bargaining over governing coalitions.

Another direction, concerns dynamic models of debt and public good choice as in Battaglini and

Coate [2007, 2008], in which models of legislative bargaining are integrated to dynamic models of

accumulation of public goods or debt. We leave these extension for future research.
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9 Appendix

9.1 Proof of Lemma 1

Let ∗ ( ) be the formateur’s payoff when  is proposed, but the equilibrium coalition is

 . We must have that 
∗
 ( ) =  ()−P∈\ ( ) where, as we did in Section 3,

we are using the notation ( ) to indicate the acceptance threshold of  when  proposes in

coalition  and the expected equilibrium coalition is  to emphasize that the threshold depends

on  . It follows that:

∗ ( ) =  ()− 
X
∈\

 − (1− )

⎡⎢⎢⎣
P

∈\{(2)} (2)( )

+ ()−P∈\{(2)} (2)( )

⎤⎥⎥⎦
= 

⎡⎣ ()− X
∈\



⎤⎦+ (1− )
£
(2) ( )

¤
 (16)

Note now that we must have: (2) ( ) =  + (1 − )(3) ( ). Iterating this

formula ()− 2 times we have:

(2) ( ) = 

()−2X
=0

(1− ) + (1− )()−1∗ (   ) (17)

Substituting (17) in (16), we conclude that in equilibrium we must have:

∗ (   ) = max
∈C

⎧⎪⎪⎨⎪⎪⎩

£
 ()−P∈ 

¤
+ 

h
1 +

P()−1
=1 (1− )

i


+(1− )() · ∗ (   )

⎫⎪⎪⎬⎪⎪⎭  (18)

Recalling that  is a coalition that solves (18), from (18) we immediately have that:

∗ (   ) =  +

h
 ( )−

P
∈ 

i
1− (1− )( )

. (19)

Assume now that we have an equilibrium in which a  6= ∗ , as defined in (4). Then can write:

∗ (
∗
   ) = 

⎡⎣ (∗ )−X
∈∗





⎤⎦+ 

⎡⎣(∗ )−1X
=0

(1− )

⎤⎦ + (1− )(
∗
 ) · ∗ (   )

= ∗ (   ) +
h
1− (1− )(

∗
 )
i
·
⎡⎣
h
 (∗ )−

P
∈∗




i
1− (1− )(

∗

)

−

h
 ( )−

P
∈ 

i
1− (1− )( )

⎤⎦
 ∗ (   )

Implying that indeed  does not solve the problem in (18) if it does not solve (3), a contradiction.

Similarly we have that ∗ (  
∗
 ) ≤ ∗ (

∗
  

∗
 ) for any  ∈ C : we conclude that the unique

fixed-point of (3) is ∗ . ¥
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9.2 Proof of Proposition 1

From Lemma 1 we know that one and only one coalition is chosen by the formateur, ∗ that is

the unique fixpoint of (3). We now show that there is a unique distribution of surplus and we

characterize it. Let 
(+∗ )(

∗
 )
(∗ ) be the acceptance threshold of the party who proposes

at stage  when the proposer is the party proposing at stage +. Moreover, 
(+∗ )(

∗
 )
(∗ )

is the payoff of  when  +  is the proposer. Following the same steps as in the derivation of (17)

we have:

∗
(∗ )(

∗
 )
= 

(∗ )
+


h
 (∗ )−

P
∈∗




i
1− (1− )(

∗

)

 (20)

Moreover, we must have:

∗
(+∗ )(

∗
 )
= 

(∗ )
+ (1− )

(++1∗ )(
∗
 )
(∗ ) (21)

Iterating over (21), we can then write:

∗
(+∗ )(

∗
 )
= 

(∗ )−−1X
=0

(1− )
(∗ )

+ (1− )(
∗
 )−∗

(∗ )(
∗
 )

(22)

for all  = 1  (∗ )−  . Similarly we have:

∗
(−∗ )(∗ )

= 

−1X
=0

(1− )
(∗ )

+ (1− )∗
(∗ )(

∗
 )

(23)

for all  = 1  −1. The system of equations (20), (22) and (23) gives a complete characterization
of the optimal strategy for the agent proposing at stage  in ∗ (that is party ( 

∗
 )).

Clearly, we must have ∗
(+∗ )(

∗
 )
(∗ ) = ∗

(+∗ )(
∗
 )
(∗ ). The strategies and

equilibrium payoffs are fully characterized by the system of (∗ )× (∗ ) equations:

∗
(∗ )(

∗
 )

= 
(∗ )

+

h
 (∗ )−

P
∈∗




i
1− (1− )(

∗

)

∗
(+∗ )(

∗
 )

=

⎡⎢⎢⎣ 
P(∗ )−−1

=0 (1− )
(∗ )

+(1− )(
∗
 )−

(∗ )(
∗
 )
(∗ )

⎤⎥⎥⎦ for  = 1  (∗ )−  (24)

∗
(−∗ )(∗ )

= 

−1X
=0

(1− )
(∗ )

+ (1− )
(∗ )(

∗
 )
(∗ ) for  = 1   − 1

for all  ∈ {1  (∗ )}. It is immediate to verify that ∗ and the strategies described in (24)

46



are an equilibrium. To characterize the equilibrium payoffs for the players note that:

∗
(∗ )

= ∗
(∗ )

= 

−2X
=0

(1− )
(∗ )

+ (1− )−1
(∗ )(

∗
 )
(∗ ) (25)

=
£
1− (1− −1)

¤

(∗ )

+ (1− )−1
(∗ )(

∗
 )
(∗ )

= 
(∗ )

+
(1− )−1

1− (1− )(
∗

)

⎡⎣ (∗ )−X
∈∗





⎤⎦
for all  ≥ 2. ¥

9.3 Proof of Proposition 2

Let  and  be the supremum and infimum value of the formateur’s payoff over all subgame

perfect equilibria of the game. Following the same steps as in Lemma 1, we have:

 ≤ max
∈C

⎧⎨⎩

"
 ()−

X
∈



#
+ 

⎡⎣1 + ()−1X
=1

(1− )

⎤⎦ + (1− )() · 

⎫⎬⎭ (26)

Assume now that the solution of the maximization problem in (26) is e ∈ C . Then we have:

 ≤  +

h
 ( e )−

P
∈  

i
1− (1− )(

 ) ≤  + max
∈C


£
 ()−P∈ 

¤
1− (1− )()

=  +

h
 (∗ )−

P
∈∗




i
1− (1− )(

∗

)

(27)

We also have that:

 ≥ max
∈C

⎧⎨⎩

"
 ()−

X
∈



#
+ 

⎡⎣1 + ()−1X
=1

(1− )

⎤⎦ + (1− )() · 

⎫⎬⎭
≥ 

⎡⎣ (∗ )−X
∈∗





⎤⎦+ 

⎡⎣1 + (∗ )−1X
=1

(1− )

⎤⎦ + (1− )(
∗
 ) ·  ,

where the second inequality follows from the fact that ∗ ∈ C . This implies that  ≥  +


h
 (∗ )−

P
∈ 

i

h
1− (1− )(

∗
 )
i
. It follows that in the unique subgame perfect equilib-

rium  =  = ∗ (
∗
  

∗
 ) and the equilibrium coalition is ∗ . Following the same steps as

in Proposition 1, we have that there is a unique subgame perfect equilibrium with payoff as in

(6)-(7). ¥

47



9.4 Proof of Proposition 3

From Proposition 1, the limit of the formateur’s payoff as ∆→ 0 can be written as:

lim
∆→0

∗ = lim
∆→0

⎡⎣ + 
³
 (∗ )−

P
∈∗




´
1− (1− )(

∗

)

⎤⎦ 
Applying l’Hospital rule, we obtain:

lim
∆→0

∗ = lim
∆→0

⎡⎣ + 1− −∆

1− −(
∗

)∆

⎛⎝ (∗ )−
X
∈∗





⎞⎠⎤⎦
=  +

1

(∗ )

⎡⎣ (∗ )−X
∈∗





⎤⎦ 
It follows immediately from (24) and (25) that:

lim
∆→0

Ã
∗ (∆)− 

∗ (∆)− 

!
= lim
∆→0

h
(1− )

−1(∗ )−1
i
= 1

It follows that lim∆→0
³
∗ (

∗
 )− 

´
= lim∆→0

³
∗ (

∗
 )− 

´
, proving the result. ¥

9.5 Proof of Proposition 4

The proofs is presented in the online appendix. ¥

9.6 Proof of Proposition 5

We now characterize the set of equilibria. We start from the efficient equilibrium. Lemma A.5.1.

deals with the case in which  and  are nonnegative.

Lemma A.5.1. Assume    0. If   − , then 2 forms a coalition with 1 or 3, when given

proposal power. If  ≥ −  then there is an efficient equilibrium in which 2 is excluded from any

coalition; and 1 and 3 receive a share 1 3 for any 1 3 such that 1 ≥ −  3 ≥  1+3 ≤
+ .

Proof. We have two cases to consider:

Case 1. We first consider the case   − . Assume that when given proposal power, 2 fails to

form a government. Then we must have:

− − 32 − 31 ≤ 0 (28)

− 32 − 33 ≤ 0
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else two would be able and find it profitable to form a government with either 1 or 3. By Lemma

A.4.1 in Proposition 4 if 2 is unable to form a coalition, then no other party chooses to forms a

government with 2, so 12 = 0 
3
2 = 0. It follows from the first inequality in (28) that 31 ≥ − ,

and from the second that 33 ≥ . Note that 31 + 33 ≤ + . We conclude that an equilibrium in

which 2 is never in a coalition can occur only if  ≥ − .

Case 2. Consider now the case  ≥ − . Let

∗ = {1 3 |1 ≥ −  3 ≥  1 + 3 ≤ + }

It is easy to verify that there is an equilibrium in which 2 is unable to form a coalition and never

included in any coalition by others; 1 proposes to 3 and 3 proposes to 1; 1 = 3 =  for  = 1 3

and 1 3 ∈ ∗; and 

2 = 0  = 1 3. ¥

Lemma A.5.2. deals with the case in which  and  are nonpositive.

Lemma A.5.2. Assume  and  are nonpositive. If   − (+ ), then 3 forms a coalition

with 1 or 2, when given proposal power. If  ≤ − (+ ) then there is an efficient equilibrium in

which 3 is excluded from any coalition; and 1 and 2 receive a share 1 2 for any 1 2 such that

1 ≥ +  2 ≥  1 + 2 ≤ − .

Proof. The proof of this result is analogous to the proof of Lemma A.5.1. It is presented for

completeness in the online appendix. ¥

We now turn to the inefficient equilibria.

Lemma A.5.3 An equilibrium in which 1 forms a coalition with 3, 3 with 2 and 2 with 1 (clockwise

equilibrium) exists if and only if:  ≤ min©3− 2 3
4
+ 1

4

ª
if    0; and  ≥ −3

2
 − 2 if

   0.

Proof. We proceed in three steps. We first characterize the value functions assuming a clockwise

equilibrium exists; we then prove that the strategies are optimal responses of the players first

assuming   ≥ 0, and finally    0.

Step 1. Let  be the equilibrium surplus captured by  if  is the formateur. Starting with

formateur 1, we must have:

11 = 21 +
+ − 21 − 23

2
, 12 = 0, 

1
3 = 23 +

+ − 21 − 23
2

. (29)

These formula follows from (8) using as outside options the equilibrium values received if the

attempt of 1 fails, so formateur 2 is selected (or analogously (6) and (7) as ∆→ 0). Similarly as
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in (29) we have:

21 = 31 +
− − 31 − 32

2
, 22 = 32 +

− − 31 − 32
2

, 23 = 0

31 = 0, 32 = 12 +
− 12 − 13

2
, 33 = 13 +

− 12 − 13
2



Equations (29) and (30) give us a system of 3 equations in 3 unknowns that gives us the following

solutions:

11 =
6+ 5− 2

9
, 12 = 0, 

1
3 =

3+ 4+ 2

9

21 =
3+ − 4

9
, 22 =

6− − 5
9

, 23 = 0 (30)

31 = 0, 32 =
3− 2− 

9
, 33 =

6+ 2+ 

9


Step 2. We now verify that they constitute an equilibrium if    0. When 1 is the formateur,

by Proposition 3, we have that {1 3} is formed if it maximizes the average surplus of the coalition
when 1 is the formateur. Let 1() be the average surplus in coalition  when 1 is the formateur.

We have that:

1({1 3}) =
1

2

³
+ −

X
=13

2

´
=
¡
+ − 21

¢
2

=
6+ 4+ 8

18
 0

1({1 2}) =
1

2

³
− −

X
=12

2

´
=
¡
− − 21 − 22

¢
2

= 1({1 3})− 1
2

¡
+ + 22

¢ ≤ 1({1 3})

Thus we have 1({1 3})  1({1 2}) and 1({1 3})  0, implying that {1 3} is formed in
equilibrium.

When 2 is the formateur, {1 2} is formed if 2({1 2}) ≥ 2({2 3}). Since have:

2({2 3}) =
1

2

³
−

X
=23

3

´
= 0

2({1 2}) =
1

2

³
−

X
=12

3

´
=
6− 8+ 2

18


We therefore have 2({1 2})  2({2 3}) if and only if  ≤ 3
4
+ 

4
.

When 3 is the formateur, {2 3} is formed if 3({2 3}) ≥ 3({1 3}). Since have:

3({2 3}) = −
X

=23
1 =

6− 4− 2
9

3({1 3}) = −
X

=13
1 = 0

It follows that the condition is satisfied if and only if  ≤ 3− 2.
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We conclude that a clockwise equilibrium exists when   ≥ 0 if and only if  ≤ min©3− 2 3
4
+ 1

4

ª
.

Step 3. We now check when the payoffs in (30) describe an equilibrium if    0. Consider first

the case in which 1 is the formateur.

1({1 3}) = 1

2

¡
+ − 21

¢
=
6+ 8+ 4

18

and 1({1 2}) = 0. It follows that 1({1 3}) ≥ 1({1 2}) if and only if  ≥ −32− 2.
Consider now Formateur 2. We have:

2({1 2}) = 1

2

¡
− − 32

¢
=
6− 8+ 2

18

and 2({2 3}) = 0, so 2({1 2})  2({2 3}) if 6− 8 + 2 ≥ 0. Note that if the condition for
formateur 1 is verified, i.e.  ≥ −3

2
− 2, then 2 ≥ −3

2
− , so

6− 8+ 2 ≥ 9
2
− 9  0

implying that formateur 2 always finds it optimal to follow the strategies of the clockwise equilib-

rium. Finally consider formateur 3. We have:

3({2 3}) = 1

2

¡
− 12 − 13

¢
=
6− 4− 2

18
 0

and 3({1 3}) = 0, so 3({2 3})  3({1 3}) is always true. We conclude that a clockwise

equilibrium exists when    0 if and only if and only if  ≥ −3
2
− 2. ¥

We now prove the existence of a counterclockwise equilibrium.

Lemma A.5.4. An equilibrium in which 1 forms a coalition with 2, 2 with 3 and 3 with 1

(counterclockwise equilibrium) exists if and only if:  ≤ 3
7
 − 5

7
 if    0; and  ≥ −3

5
 − 1

5


and  ≤ 3+ 7 if    0.

Proof. The proof of this result is presented in the online appendix. ¥

Lemmata A.5.1-A.5.4 define the thresholds presented in Proposition 5. ¥

9.7 Proof of Proposition 6-10

The proofs of these results are presented in the online appendix. ¥

9.8 Proof of Proposition 11

We must have that ∗ ( ) =  () −P∈\ ( ) where, as in Section 7.1, we use the

notation ∗ ( ) to indicate the formateur’s payoff when  is selected and the equilibrium
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coalition is  , to emphasize how it depends on  . It follows that:

∗ ( ) =  ()− 
X
∈\

 − (1− )
X
∈\

⎡⎢⎢⎢⎢⎢⎢⎣
()

⎡⎢⎢⎣  ()

−P∈\ ( )

⎤⎥⎥⎦
+(1− ())( )

⎤⎥⎥⎥⎥⎥⎥⎦
= 

⎡⎣ ()− X
∈\



⎤⎦+ (1− )
£
 ()

∗
 ( ) + (1−  () ( )

¤


Note that by definition, we must have

 ( ) =  + (1− )
£
 ()

∗
 ( ) + (1−  () ( )

¤


Thus,  ( ) =
+(1−) ()∗ ( )

1−(1−)(1− ())  It follows that:

∗ ( ) = 

⎡⎣ ()− X
∈\



⎤⎦+ (1− )

∙
 ()

∗
 ( ) + (1−  ())

1− (1− )(1−  ())

¸


So,

∗ ( ) =  + 

"
 ()−

X
∈



#
+ (1− )

⎡⎢⎢⎣ (1− ())
1−(1−)(1− ())

+
 ()

1−(1−)(1− ())
∗
 ( )

⎤⎥⎥⎦ 
After some algebra, we have:

∗ ( ) =  + (1− (1− )(1−  ()))
h
 ()−

X
∈



i


As → 0, we obtain: ∗ ( ) =  +  ()
£
 ()−P∈ 

¤
. We now show that the equilib-

rium coalition is:

∗ = arg max
∈

(
(1− (1− )(1−  ()))

"
 ()−

X
∈



#)


Assume by contradiction that we have an equilibrium in which a  6= ∗ . Then we have:

∗ (
∗
  ) =



1− (1− )(1−  (∗ ))
 + 

⎡⎢⎢⎣  (∗ )

−P∈∗ 

⎤⎥⎥⎦+ ∙ (1− ) (
∗
 ) · ∗ ( )

1− (1− )(1−  (∗ ))

¸

= ∗ ( ) +


1− (1− )(1−  (∗ ))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

¡
1− (1− )(1−  (

∗
 ))
¢⎡⎢⎢⎣  (∗ )

−P∈∗ 

⎤⎥⎥⎦
− (1− (1− )(1−  ()))

⎡⎢⎢⎣  ()

−P∈ 

⎤⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦


 ∗ ( )
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Implying that indeed  is not optimal for  , a contradiction. Similarly we have that 
∗
 ( 

∗
 ) ≤

∗ (
∗
  

∗
 ) for any  ∈ C . We conclude that in equilibrium ∗ is chosen. ¥
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