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ABSTRACT
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deforestation by 40 percent and cut emissions by 39.5 million tons of carbon.  Second, we 
develop a novel framework for computing targeted ex-post optimal blacklists. This involves a 
procedure for assigning municipalities to a counterfactual list that minimizes total deforestation 
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resulted in carbon emissions over 7.4 percent lower than the actual list, amounting to savings of 
more than $900 million, and emissions over 25 percent lower (on average) than a randomly 
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1 Introduction

In many developing countries, weak institutions undercut the effective implementation of environ-

mental policies, as recent research has documented clearly.1 The unregulated, often illegal activities

that prevail can cause severe duress to fragile ecosystems, producing outcomes that are both damag-

ing and inefficient. As a prominent instance of this phenomenon, several studies (notably by Burgess

et al., 2012) have highlighted the role of illegal logging and land clearing as a driving force behind

tropical deforestation, widely understood to be a critical contributor to global carbon emissions

(see IPCC, 2013). In settings such as these where existing institutions are over-stretched, targeted

monitoring and enforcement policies may be advantageous, helping to focus limited resources where

they can have higher-than-average impacts.

This paper measures the causal effects of blacklist-type government regulations – a widespread

form of targeting – and then explores how such targeted regulations can be optimized. It does so

in the context of deforestation, focusing on the Amazon, the world’s most extensive rainforest and

a vitally important ecosystem, whose fundamental roles in storing carbon, conserving biodiversity,

maintaining water quality and even modulating the Earth’s climate are well established (Foley

et al., 2005; Stern, 2007; Bonan, 2008; Davidson et al., 2012). Deforestation in the Amazon has

been a source of international concern for at least the past 30 years, spurring increased regulatory

activity, especially on the part of Brazil’s federal government. The regulations introduced in Brazil

coincided with a marked slowdown in deforestation, the annual deforested area falling by 75 percent

between 2004 and 2017. As other factors may be responsible for this decline (changing commodity

prices among them), policy makers in Brazil and elsewhere are keenly interested in knowing how

effective actual regulations have been in reducing deforestation, and how such regulations might be

further refined. Yet the literature has not supplied a means to assess, in a systematic quantitative

way, which policy configurations would be likely to have most impact in limiting future deforestation

given relevant constraints: filling that gap is the central task of this paper.

Our analysis is built around an important regulatory change that occurred in 2008, when Brazil’s

federal government issued a blacklist of 36 municipalities (out of a total of 526) with especially high

levels of deforestation – the so-called ‘Priority List.’ The listed municipalities were to be subject to

more rigorous monitoring and stricter penalties, with the list being renewed every year subsequently.

The paper’s first goal is to estimate the causal treatment effect of the Priority List on defor-

estation levels in the Brazilian Amazon. Given the official criteria did not specify exactly how the

list was chosen, we start by investigating the effective selection rule that assigned municipalities to

the Priority List. The patterns we find in the data indicate that the federal government adhered

1See Greenstone and Jack (2015) for a thorough review of the issues involved.
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closely to a threshold rule, essentially separating municipalities based on their deforestation levels

but not on their trends.2 Indeed, we cannot reject the common trends assumption, comparing

municipalities on the list (versus not) leading up to its introduction in 2008.

In considering the short-run impact of the reform over the period 2006–2010, one could estimate

a standard difference-in-differences (DID) model based on that evidence. Yet in the current context,

heterogeneous treatment effects are likely to be present, with the Priority List being implemented

on the group with potentially higher average benefits when compared to the control group.3 Given

such heterogeneous effects, a DID strategy can only identify treatment effects on the treated (ATT),

which is insufficient when trying to shed light on optimal targeting – the second goal of this paper.

For the targeting exercise, we need to estimate the policy impacts on the untreated.4

To that end, we adopt the changes-in-changes (CIC) model proposed by Athey and Imbens

(2006) (henceforth ‘A&I’), which provides a nonlinear generalization of the DID model to the en-

tire distribution of potential outcomes. In a policy evaluation context with pre- and post-policy

periods, A&I show how the difference in the distribution functions of the untreated group before

and after treatment can be combined with the distribution function of the treated group before

treatment to predict the hypothetical distribution of the treated group in the post-treatment pe-

riod, absent treatment. (In standard DID, the adjustments are to the average, not to the entire

distribution function, and are implemented linearly.) Similarly, the counterfactual distribution

function of the effects of treatment on the untreated can be recovered. As the two counterfactual

distributions can be arbitrarily different, treatment effects are allowed to be heterogeneous across

units (municipalities in our application) and across treatment and control groups.

In terms of the main treatment effect results, we find that the Priority List caused substantial

reductions in the deforestation rate, cutting it by 40 percent in the short term (the period 2009–

2010) relative to the case in which no program was enacted. This reduction led to avoided emissions

of 30 million tons of carbon, with a social benefit of around $2.2 billion, assuming a social cost

of carbon of $20/tCO2 (Greenstone et al., 2013; Nordhaus, 2014).5 Further, there is evidence of

heterogeneous treatment effects, with the average effect on the untreated (ATU) being between 10

2Using only the threshold rule, we are able to replicate the actual 2008 assignments with 97 percent accuracy. The
use of this threshold rule also suggests that econometric strategies commonly employed in the program evaluation
literature – propensity score, matching, regression discontinuity, instrumental variables – to estimate treatment effects
may not be applicable in our setting. See Appendix C.

3The official criteria to enter the Priority List reflect the assumption that deforestation is a persistent process:
highly deforested locations in the past are expected to be more likely to be deforested in the future, so concentrating
regulatory effort in highly deforested areas may result in more substantial reductions in total deforestation.

4We note that extrapolating results from the treated group to the untreated under the assumption of homogeneous
effects would bias the estimated effects on the untreated and make the ex-post policy calculations unreliable.

5This is a conservative lower bound. Using the EPA’s recommended current social cost of carbon estimate would
double the estimated social benefit.
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and 14 percent of the estimated effect on the treated.6

We also investigate the possibility that the Priority List generated spillovers. Farmers in un-

treated municipalities geographically close to a Priority municipality and which experienced sub-

stantial deforestation in the past might think that monitoring could also increase there.Accordingly,

we split the untreated group in two (denoted the ‘spillover’ and ‘control’ groups), depending on

whether untreated municipalities were more or less likely to react to the policy intervention. Es-

timates of the CIC model provide evidence of spillover effects, with the spillover group reducing

deforestation in response to the intervention: the treatment effect for this group is smaller than

the effect on the treated, but greater than the effect on the control group. Once we account for

spillovers, 2,705 km2 of deforestation were avoided in Priority municipalities directly, while the

indirect impact discouraged the clearing of 618 km2 of forested area in the spillover group, totalling

3,323 km2 of forested area preserved in 2009–2010 as a result of the program. The total avoided

emissions amounted to 39.5 million tons of carbon, with a social benefit of approximately $2.9

billion.

The paper’s second goal (referenced above) is to look beyond the actual policy and compare the

Priority List with an ex-post optimal blacklist. To this end, we develop a framework for exploring

the assignment of municipalities to an optimized counterfactual list based on information about

ex-post treatment effects drawn from the first part of the analysis. The framework allows us to

investigate in a systematic way how knowledge of treatment effects – perhaps only partial in nature

– can lead to better-targeted conservation policies.

We suppose the federal policy maker assigns municipalities to a counterfactual list with the

objective of minimizing either total deforestation or total carbon emissions – a variety of other

social objectives can be accommodated by the approach. The policy maker’s decision is analyzed

as a treatment choice problem under ambiguity – appropriate given that some treatment effects

are not point-identified – and we use the minimax criterion, assuming the policy maker chooses

the ex-post list in order to achieve the best of the worst outcomes (Manski, 2005). Further, to

incorporate limited monitoring resources into the minimization problem, we consider two alternative

constraints, one restricting the total area that can be monitored, and the other, the total number

of municipalities on the list.7

Accounting for spillover effects, we show that the Priority List resulted in carbon emissions

6Although data limitations prevent us from point-identifying the treatment on the untreated, the estimated effect
on the untreated is partially identified with informatively narrow identified sets.

7We set the constraints at the same values as those corresponding to the Priority List; we also investigate the
effects of relaxing these constraints. Information about the resources that were effectively allocated to monitoring is
difficult, if not impossible, to obtain. Nevertheless, it is reasonable to presume that the larger the area or the number
of municipalities monitored, the higher the monitoring costs.
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that were at least 8 percent higher than the ex-post optimal lists (under either constraint), while

randomly selected lists of municipalities would result in emissions that were over 34 percent higher

on average. The avoided emissions translate into a lower bound for the social value of the optimal

list of approximately $900 million over the period 2009–2010. As these counterfactual gains derive

from the treatment effect estimates, they imply high social returns to investments in conservation

policy research.

The geographic distributions of the ex-post optimal lists reveal several interesting patterns that

were not imposed during the course of the estimation. First, the overlap between protected areas

and the area-constrained counterfactual list is much lower than the overlap between protected areas

and the original Priority List. This suggests these two policies can be made to work together in

ways that could be further leveraged by the Brazilian government.8 Second, ignoring spillover

effects, the area-constrained counterfactual list is contiguous and forms a protective shield close to

the deforestation frontier, which (together with protected areas) may help impede the deforestation

process from continuing into more pristine areas, with benefits in the longer term. Third, when

accounting for spillovers, the area-constrained optimal list becomes more geographically dispersed

and less contiguous; intuitively, placing all targeted municipalities together does not exploit the

potential reduction in deforestation in adjacent locations due to spillovers.

Beyond the current application, the approach we develop is relevant for assessing counterfactual

targeted policies to reduce deforestation in other contexts, based around actual policy interventions.

Those interventions can be used to recover heterogeneous policy impacts, our approach then al-

lowing researchers to trace out the quantitative implications for forest cover and carbon emissions

when policy makers face realistic resource constraints and only partially identified estimates. It also

provides a coherent framework for assessing the quantitative impacts of policy targeting more gen-

erally, as we discuss below, using credible estimates based on a flexible treatment effects estimation

approach.

The rest of the paper is organized as follows: The next section places our analysis in the

context of the literature. Section 3 sets out relevant institutional background; Section 4 describes

the data, along with descriptive evidence motivating the empirical model, introduced in Section 5;

Section 6 presents the empirical results, including the average treatment effects; Section 7 develops

our counterfactual framework and shows results from the counterfactual targeting exercises, and

Section 8 concludes.9

8A similar implication can be drawn from evidence that compares protected area policies and payments for
ecological services from Mexico (see Alix-Garcia et al., 2015).

9The Appendix supplements the main text with information about the data sources and the construction of
key variables, several robustness excercises, and a detailed explanation of how the counterfactual optimal lists are
calculated in practice.
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2 Relation to the Literature

Our paper contributes first to a growing body of work examining environmental policy implemen-

tation in developing countries (see Greenstone and Jack (2015) for a recent survey) – a complement

to the vast literature studying environmental policies in a developed country context.10 Green-

stone and Hanna (2014) argue that weak institutional arrangements in developing countries pose

obstacles to effective law enforcement, showing that policies targeting improvements in air and

water quality in India had varying degrees of success. In the case of climate issues, linked to the

deforestation process analyzed in this paper, the available evidence is limited (Burke et al., 2016).

Our analysis examines a widespread form of targeting and connects the causal impacts of targeting

policies to the release of carbon into the atmosphere, in these ways contributing to both lines of

research.11

Second, several papers examine the impact of monitoring and the role of institutions in the Ama-

zon itself, notably Hargrave and Kis-Katos (2013), Assunção et al. (2017), and Burgess et al. (2017);

payments for ecological services programs have also been studied as alternatives to command-and-

control policies by Pattanyak et al. (2010), Alix-Garcia et al. (2012, 2015), Jayachandran et al.

(2017), and Simonet et al. (2019). Compared with these papers, our analysis examines the effec-

tiveness of an optimized counterfactual policy-targeting strategy as a way of overcoming institu-

tional and political obstacles. This type of targeted strategy can be applied in other contexts that

encompass a substantial portion of global rainforest cover – in other parts of Amazonia, the Congo

and Southeast Asia.

Within the Amazon context, recent papers have examined the effects of the Priority List,

including Assunção and Rocha (2014), Arima et al. (2014), Cisneros et al. (2015), Andrade and

Chagas (2016), Harding et al. (2018), and Koch et al. (2018). Those studies use difference-in-

differences and matching methods to obtain average treatment effects similar in magnitude to the

corresponding estimates in our study. Our estimation approach also allows us to recover the effects

of treatment on the untreated, which we use in computing optimally targeted blacklists.

A third main strand of literature investigates the underlying causes of land use change, including

tropical deforestation, due to changes in population, infrastructure, agricultural prices, political

economy factors and climate-related phenomena.12 Our results indicate that monitoring policies

10See Gray and Shimshack (2011) for a survey.
11Our approach also complements an earlier theoretical literature in environmental economics studying targeted

regulatory strategies – see Harrington (1988) and Friesen (2003). We show how a regulator can target resources in
an optimal way subject to realistic constraints using credible treatment effect estimates. Our approach allows the
associated benefits to be quantified directly on the basis of econometric evidence.

12See papers by Stavins (1999), Pfaff (1999), Andersen et al. (2002), Lubowski et al. (2006), Brady and Irwin
(2011), Cisneros et al. (2013), Mason and Platinga (2013), Pailler (2018), and Souza-Rodrigues (2019).
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are important drivers of land use change and deforestation, affecting not only the municipalities

that are targeted directly but also generating spillovers for neighboring areas.

Fourth, from an estimation standpoint, the flexible CIC model has not been used widely to

date. It is implemented by Havnes and Mogstad (2015) in their study of child care in Norway

when carrying out robustness checks, by Kottelenberg and Lehrer (2017) to assess targeted versus

universal childcare, and in other supplementary analyses – see Athey and Imbens (2017). Our

analysis based on ex-post treatment effects is (to the best of our knowledge) the first time the

approach has been used in the environmental or regulation literatures. Beyond these existing

studies, the CIC method is applicable in a variety of important settings, especially when providing

policy-relevant estimates that can be used counterfactually, as we show.

Fifth, our counterfactual analysis draws on a burgeoning literature studying statistical treat-

ment rules in econometrics, including Manski (2004, 2005), Stoye (2009), Hirano and Porter (2009),

Bhattacharya and Dupas (2012), Kasy (2016), and Kitagawa and Tetenov (2018), among others.

(We provide a more detailed discussion of this literature in Appendix A.) Few empirical applica-

tions have appeared thus far, aside from empirical illustrations presented in some of the existing

methodological papers.13 In an applied econometric context, our analysis is novel (as explained in

the appendix) in that there is no study in which all the following hold simultaneously: (a) uncon-

foundedness assumptions fail so that the treatment effects and the welfare objective function are

partially identified; (b) the estimation of treatment effects accounts for violations of the ‘Stable

Unit Treatment Value Assumption’ (or SUTVA); (c) the treatment choice is made under ambiguity

(and also allows for spillover effects, again in violation of SUTVA); and (d) the set of admissible

policies must satisfy binding capacity constraints.

3 Institutional Background and Regulations

In this section, we describe relevant background, especially relating to the institutional context –

the legal environment, the introduction of satellite monitoring in 2004, and our main focus: the

Priority List, introduced in 2008.

Our setting is the Brazilian Amazon, which accounts for two-thirds of the Amazon Rainforest

and is itself a vast area, almost ten times the size of California. Prior to the 1960s, the forest was

barely occupied; access was open, and local economic activities were based largely on subsistence

and extraction activities, primarily involving rubber and Brazil nuts.14 During the 1960s and 1970s,

13One important empirical study we are aware of is the analysis by Dehejia (2005), who examines the Greater
Avenues for Independence (GAIN) program that began in California in 1986.

14See Souza-Rodrigues (2019) for more detail.
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the occupation of the Amazon was promoted by the military dictatorship with the explicit goals

of securing national borders and developing the region,15 although government investment was

then cut in the 1980s due to economic recession and hyperinflation. In the late-1980s, ecological

concerns started to shape policies in the Amazon. Notably, IBAMA (the Brazilian Environmental

Protection Agency) was created in 1989, given power to execute environmental policies, and serving

as the national police authority concerned with the investigation and sanctioning of environmental

infractions.

The Legal Environment. Approximately half of the Amazon was under legal protection by

2010 – either indigenous lands or conservation units such as national parks, extractive reserves,

and areas of ecological interest. Deforestation in those areas is subject to strict requirements. The

rest of the Amazon comprises undesignated public land where no deforestation is allowed, or private

land – approximately 20 percent of the total area (according to the Agricultural Census of 2006) –

where deforestation has to follow the rules of the Forest Code. This code states that, among other

requirements, farms in the Amazon must preserve 80 percent of their area in the form of native

vegetation. While deforestation on private land can be legal if it is both authorized and accords

with the Forest Code, empirical evidence suggests that compliance with the Forest Code is limited

(Michalski et al., 2010; Borner et al., 2014; Godar et al., 2014); and although some deforested areas

captured in our data may have been cleared legally, most deforestation in the Amazon is illegal.

In terms of environmental monitoring, IBAMA’s operations in the Amazon up to the mid-2000s

were based largely on information collected and processed by IBAMA’s headquarters and regional

offices. Although land and air patrols were used in the 1990s and early-2000s, they were limited in

their effectiveness given the sheer extent of the area covered and risks posed to law enforcers.

Satellite-Based Monitoring. The adoption of satellite-based monitoring from the mid–2000s

improved patrolling capabilities significantly. The first stage began in 2004, with the launch of the

Action Plan for the Prevention and Control of Deforestation in the Legal Amazon (PPCDAm),

setting out new procedures for monitoring and environmental control.16

Central to PPCDAm law enforcement has been the use of high-frequency remote sensing tech-

nology in the form of a satellite-based system, DETER, developed by the Brazilian Institute for

Space Research (INPE). This increased the capacity to monitor forest-clearing activities in the

Amazon in a significant way, processing land use images on a frequent basis, detecting areas expe-

15Hydroelectric facilities, mines, ports, and around 60,000 km of roads were constructed during this period.
16The PPCDAm also led to the expansion of protected areas, mostly during its first phase (spanning 2004–2007),

before the first municipalities were assigned to the Priority List in 2008.
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riencing a loss of forest cover, and in turn triggering DETER deforestation alerts for the immediate

attention of law enforcers. Since being introduced in the mid-2000s, DETER has served as the

primary tool for IBAMA’s monitoring efforts in the Amazon. As Assunção et al. (2017) show, this

satellite-based system alone has had an important impact: estimated deforestation in the absence

of the system would have been more than 3.6 times greater.

The Priority List. In 2008, the government launched the second phase of the PPCDAm, the

main component of which involved the creation of a blacklist to better target regulatory effort in

order to combat illegal deforestation. Any Amazon municipality could be added to what became

known as the ‘Munićıpios Prioritários’ List (for convenience, the ‘Priority List’). Municipality-level

selection criteria for this list were based on (a) total deforested area, (b) total deforested area over

the past three years, and (c) the increase in the deforestation rate in at least three of the past five

years, although the exact rules followed are not in the public domain and so have to be inferred.17

Municipalities on the Priority List were subjected to more intense environmental monitoring

and law enforcement, with IBAMA devoting a greater share of its resources to them (MMA, 2009).

Fines were also increased in Priority municipalities, which became subject to a series of further

administrative measures that imposed additional costs to being blacklisted.18

The Ministry of the Environment’s Ordinance 28, issued in January 2008, listed 36 municipalities

making up the initial Priority List – 7 percent of the total number of municipalities in the Brazilian

Amazon. The original list was expanded to include an additional seven municipalities in 2009.

A further six were placed on the list in 2011, followed by two more in 2012. By then, just six

municipalities had been removed from the list (one in 2010, another in 2011, and four in 2012).

There were no changes 2013 and 2017 (when eight new municipalities entered the list). In total,

59 municipalities were eventually placed on the Priority List between 2008 and 2017, while 467

municipalities did not enter the list during the same period.

4 Data and Descriptive Evidence

We have assembled a municipality-year panel data set that combines information about Priority

status, land use (including the location of public protected areas), and other possible determinants

17The legal basis for targeting certain municipalities was set out in the Presidential Decree 6,321 in December
2007. Exiting the Priority List depended on reducing deforestation in a significant way and having at least 80 percent
of the municipal private area registered in the Rural Environmental Registry system.

18These included more stringent conditions applying to the approval of subsidized credit contracts, and the re-
quirement to develop local plans for sustainable production (see Brito et al., 2010; Maia et al., 2011; Arima et al.,
2014). Private land titles were also revised in a bid to identify fraudulent documentation and illegal occupancy, and
licensing requirements were made stricter for rural establishments.
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of deforestation.19 Our analysis focuses on the time period 2006–2010, with the pre-treatment

period covering 2006 and 2007, and the post-treatment period, 2009–2010.20 The official list of Pri-

ority municipalities comes from the Ministry of the Environment. The treatment group comprises

municipalities that entered and remained on the list from 2008 to 2010 inclusive (with the exception

of one municipality that exited in 2010). The control group consists of the set of municipalities

that did not enter the list before 2010.21

The main variables of interest are listed in Table 1 – sample statistics in the table (discussed

below) are provided for 2007, the last year prior to the policy’s introduction. Our municipality-

year panel includes annual measures of the forested area remaining, cumulative deforestation, and

incremental deforestation in each municipality, drawn from the Brazilian government’s satellite-

based forest monitoring program, PRODES. Factors affecting deforestation other than the Priority

List include rainfall, temperature, protected areas, prices of beef and crops, and local gross domestic

product. We have also assembled data on crop area, the number of cattle, deforestation alerts and

fines issued, and measures of above-ground carbon stock. We end up with a balanced panel of

490 (out of a possible 526) municipalities within the Amazon Biome, as there are few instances of

missing data.

Aggregate Trends and Geography. Around 20 percent of the Brazilian Amazon has been

deforested to date – an area totalling over 700,000 square kilometres, which is larger than Texas.

Cleared areas are used mainly for agriculture: approximately two thirds of the deforested area

comprises pasture, and around 8 percent is used for crops – see Almeida et al. (2016).22

Figure 1 presents aggregate deforestation trends. This reveals two pronounced downward steps

coinciding the main phases of the PPCDAm, in 2004 and 2008. It is clear that deforestation fell

considerably in 2004 and the years immediately following, and again after 2008, with the rate

stabilizing subsequently. In total, annual deforestation declined by approximately 75 percent over

19Further information about data sources and the construction of key variables is provided in Appendix B.
20Because of a structural break in 2004–2005 associated with the first phase of PPCDAm, comparing deforestation

before the first phase of PPCDAm and after the implementation of the Priority List in the pre-treatment period
would capture the combined effect of both regulatory changes.

21Because there are few municipalities entering and exiting the Priority List from 2009 on, there is not much
that can be said with any accuracy about the impact of the policy in these cases. Given more data, it would be
possible to estimate causal effects that varied depending on the length of exposure to the program and whether
the policy affected municipalities at different times. In the current case, standard DID exploiting variation across
groups of units receiving treatment at different times would estimate a weighted sum of different average treatment
effects (Goodman-Bacon, 2018; de Chaisemartin and D’Haultfoeuille, 2018), which would bias our analysis of the
counterfactual optimal list. See Abbring and Heckman (2007) for a thorough discussion of dynamic treatment effects,
Han (2019) for recent identification results, and Callaway and Sant’Anna (2018) for implications relating to treatment
effect estimation in the context of DID models.

22Almeida et al. (2016) also show that 20 percent of the cleared area currently takes the form of secondary
vegetation. The remaining areas correspond to mining, urban areas, ‘other,’ and ‘unobserved’ (i.e., areas whose land
usage cannot be interpreted due to cloud cover or smoke from recent forest burning).
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the period 2004–2017.23

Figure 2 presents initial evidence relating to contributing factors, showing the evolution of

deforestation levels together with the international prices of soybeans and beef. The figure suggests

a positive correlation between deforestation and prices prior to 2008, consistent with the fact that

most of the deforested area in the Brazilian Amazon is used for pasture (grazing cattle being reared

mainly for beef) and crops (mostly soybeans and corn). After 2008, the correlation appears to be

much weaker, suggesting that the Priority List may have helped preserve the rainforest even when

international prices were rising.

The location of the municipalities on the Priority List within the Amazon is shown in Figure

3, with Priority municipalities being found mostly in the Amazon’s southern and eastern regions –

an area known as the “Arc of Deforestation.” Figure 4 shows where the incremental deforestation

occurred each year between 2006 and 2010, and also presents the cumulated deforestation by 2010

(together with Priority municipalities overlaid). These figures make clear that new deforestation

is a persistent process. In such circumstances, a targeted policy may be effective, concentrating

monitoring and enforcement in locations where deforestation is more likely to occur.

Selection onto the Priority List. The Priority status of a municipality depends on the three

official selection criteria noted above: the total amount of forested land cleared in municipality m

from its inception up to and including year t − 1 (labelled Z1
mt−1); the amount of forested land

cleared in municipality m in the three-year period ending in year t−1 (Z2
mt−1); and an indicator for

whether municipality m experienced year-on-year growth in new deforestation at least three times

in the five-year period ending with year t − 1 (Z3
mt−1). Of these, the first two selection criteria

relate to long-run and more recent deforestation, while the third relates to whether deforestation

accelerated in recent years.

Under the assumption that these variables fully determine Priority status, the selection equation

can be written:

Gmt = g
(
Z1
mt−1, Z

2
mt−1, Z

3
mt−1

)
, (1)

where Gmt ∈ {0, 1} indicates whether municipality m is on the Priority List in year t. Given that

the precise rules determining selection are not stated publicly, we seek to infer them by exploring

whether the vector summarizing the three criteria, Zmt−1 ≡
(
Z1
mt−1, Z

2
mt−1, Z

3
mt−1

)
, determines

Priority status fully. To that end, Figure 5 plots all combinations of Z1
mt−1 and Z2

mt−1 for a given

23Total incremental deforestation by year is shown in Table 13 in Appendix G, together with the number of fines
issued, the expansion of protected areas, and the number of municipalities added to the Priority List. Incremental
deforestation does not incorporate potential forest clearing in unobserved/clouded areas, while the official aggregate
deforestation rates include estimates of deforestation in unobserved areas, based on local extrapolations; see Appendix
B. This distinction reconciles the profiles in Figures 1, 7 and 8 below exactly.
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value Z3
mt−1: the scatterplot in panel (a) holds Z3

mt−1 = 0, and the scatterplot in panel (b) holds

Z3
mt−1 = 1. In both panels, municipality-year observations with Gmt = 0 (not on the list) and

Gmt = 1 (on the list) are marked with crosses and dots, respectively.

From the two panels, it is clear that regulators adhered closely to a threshold rule involving the

first and second criteria: both Z1
m2007 and Z2

m2007 had to cross pre-determined thresholds in order

for municipality m to qualify for the Priority List, while the third criterion (whether deforestation

accelerated in recent years) is not important. It is possible to define threshold values for the

first and second selection criteria (indicated by vertical and horizontal lines in each panel) that

almost completely separate Priority municipalities from non-Priority municipalities. Specifically,

the thresholds drawn in both panels of Figure 5 are 2,700 km2 for Z1
mt−1 and 220 km2 for Z2

mt−1.

Using only these inferred thresholds, we are able to replicate the actual 2008 assignments with

97 percent accuracy. This is highly suggestive that a strict threshold selection rule is followed in

practice.

One important consequence is that factors such as local political influence are unlikely to lead

to manipulation close to the relevant thresholds determining the Priority List’s initial composition.

This is perhaps surprising, given evidence that corruption is an important and widespread problem

in Brazil, with documented consequences for deforestation – see, for example, Cisneros et al. (2013)

who find that mayors caught engaging in corrupt behavior allow more deforestation. A careful study

by Pailler (2018) finds evidence that deforestation rates increase 8–10 percent on average in election

years when an incumbent mayor runs for re-election (noting that, in our setting, 2008 was a mayoral

election year). Yet she does not find significant effects in the years leading up to or following the

election year, suggesting that re-election incentives have not affected deforestation differentially in

Priority and non-Priority municipalities. We find that the fraction of municipalities in which the

mayor is affiliated with the political coalition of the Brazilian president is the same among Priority

and non-Priority municipalities (approximately 40 percent in each group), suggesting the policy

was not used as punishment against political enemies at the local level.24

The empirical form taken by the selection function g(·) has important implications for the

viability of several widely used identification strategies. Because there is very little overlap in

the data among Priority and non-Priority groups given Zmt−1, selection-on-observables techniques

(matching or propensity scores) are problematic in this context. Further, the use of a regression

discontinuity (RD) design is limited by the fact that there are few observations close to the threshold

frontier (in addition to which an RD does not identify the policy treatment effect of interest in

this paper); and while the criteria variables in Zmt−1 might seem to be natural instruments for

24We are grateful to Fernanda Brollo for generously providing the data on political coalitions. This finding contrasts
with evidence on the use of federal transfers documented by Brollo and Nannicini (2012).
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Priority status, they are invalid when the unobservables affecting deforestation decisions are serially

correlated. (We discuss these points in more detail in Appendix C.) These issues motivate the use

of difference-in-differences and changes-in-changes approaches in order to estimate causal impacts

of the policy on deforestation.

Fines and Penalties. The purpose of the Priority List was to focus monitoring and enforcement

efforts on municipalities with high levels of deforestation, and presumably where further defor-

estation was most likely. To get a sense of whether the environmental police were more active in

Priority municipalities, we compare the extent of deforested areas and the number of fines issued

by IBAMA before and after 2008. Figure 6 plots fines as a function of contemporaneous defor-

estation, separately for municipalities in treated and untreated groups.25 The evidence suggests

that the Priority List led to more intense enforcement in Priority municipalities relative to non-

Priority municipalities.26 This is consistent with the results of Assunção and Rocha (2014), who

find evidence suggesting that law enforcement is the main channel through which the policy affected

deforestation. We investigate these channels further in Section 6.

Comparing Treated versus Untreated Municipalities. Next, we compare Priority and

non-Priority municipalities descriptively. First, we consider summary statistics for a ‘baseline’

cross section from 2007, right before the policy’s introduction and considered separately by Prior-

ity status, presented in Table 1. As expected given the graphical evidence relating to the selection

criteria, the two groups differ in important ways. In Priority municipalities, incremental deforesta-

tion and total historical deforestation – the first selection criterion considered by the Ministry of

the Environment when assigning Priority status – are higher. Priority municipalities are also larger

and have higher local agricultural GDP, higher carbon stocks per hectare, and are subject to more

stringent policy measures.

Beyond baseline differences, aggregate trends comparing the two groups are informative. Panel

(a) of Figure 7 compares the evolution of deforestation among treated and untreated municipalities

in levels. Differences in deforestation levels are apparent, but for both groups, new deforestation

fell after 2005, and increased slightly in 2006–2008. There are no signs of any anticipation effects.

25The points are non-parametric predictions from local linear regressions that use a rectangular kernel and a
bandwidth of 25 square kilometres.

26Prior to 2008, the number of fines issued for a given level of deforestation did not differ by Priority status (panels
(a)–(c)). As soon as the Priority List was introduced, a clear upward shift occurs in the number of fines issued for
a given amount of deforestation in Priority municipalities, while no shift is apparent in non-Priority municipalities
(panel (d)). (We note that between 2006 and 2007, the number of fines increased in both treatment and control
groups and deforestation fell, relative to previous years, likely reflecting the first phase of the government’s plan to
control deforestation in the Amazon. There is no discernible targeting of municipalities with historically high rates
of deforestation, however.)
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We also compare the evolution of the log odds ratios among the two groups in panel (b) of

Figure 7, given that the outcome variable in our empirical framework is the log odds ratio of

deforestation shares (which we estimate from a logit model, as explained below in Section 5).

The same pattern emerges, with differences in levels but similar movements before 2008. This

aggregate evidence suggests that the selection rule effectively separated municipalities based on

their deforestation levels, not on their trends (consistent with the evidence that the third selection

criterion, Z3
mt−1, capturing acceleration in deforestation, does not help predict Priority status).

As further corroboration, we cannot reject the common trends assumption based on the log odds

ratio before treatment (shown in Section 6). Further, although deforestation slowed down in both

treatment and control groups after 2008, the aggregate slowdown among Priority municipalities

was more marked, providing initial evidence that deforestation may have responded to the blacklist

policy.

Spillover Effects. Next we consider the possibility that the Priority List generated spillover

effects, working in two distinct ways. First, by concentrating monitoring in areas where a dispro-

portionate amount of deforestation occurred (so-called ‘hot spots’), the intervention might simply

shift, rather than reduce, total deforestation.27 The extent to which deforestation could relocate

geographically (a problem known as ‘leakage’) depends on how costly it is to move and then deforest

in other areas. Such costs make it unlikely that such leakage would be important in the short run

(although it may be important in the longer term). Indeed, supporting this view, Figure 4 shows

no clear evidence that new deforestation was accumulating after 2008 in non-Priority municipalities

that were close by the municipalities placed on the list.28

A second potential spillover effect can work in the opposite direction: farmers in untreated

municipalities may deforest less if they expect the intervention to increase monitoring in non-

targeted locations.29 Indeed, Figures 4 and 7 suggest that deforestation declined in both treated

and untreated municipalities following the treatment.

To investigate whether such deterring spillovers may be present, we split the untreated group

in two, depending on whether untreated municipalities are more or less likely to react to the

policy intervention. Specifically, we consider two plausible conditions for designating ‘spillover’

municipalities: (i) whether a municipality shares a border with a treated municipality (i.e., adjacent

27This relates to the literature on criminal deterrence, and more specifically to the impact of ‘hot-spots’ policing
– see Chalfin and McCrary (2017) for an excellent review of that literature.

28This strongly suggests that leakage is not a first-order issue for the time period covered in the data. The empirical
results presented in Section 6 are also consistent with this view.

29In the ‘hot spots’ policing literature, the majority of studies find no evidence of the displacement of crime to
adjacent neighborhoods, and a substantial number of the studies have found instead a tendency for crimes to fall in
non-treated adjacent locations (Chalfin and McCrary, 2017).
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locations), and (ii) whether a municipality has high levels of deforestation historically. Formally, we

define our second condition for splitting the untreated group (those with ‘high levels of historical

deforestation’) on the basis of the threshold criteria that were (implicitly) adopted by the Brazilian

government, shown in Figure 5.30 We call the group of untreated municipalities satisfying both

conditions – being a neighbor of a Priority municipality and having high levels of past deforestation

– the ‘spillover’ group. The summary statistics in Table 2 confirm that the spillover group falls

between the treated and control groups in virtually all instances. In turn, Figure 8 compares the

evolution of deforestation among the three groups. Panel (a) presents deforestation in levels, while

panel (b) shows the log odds ratio of deforestation shares. The spillover group features deforestation

levels between the other two groups, while its log odds ratios are slightly above those of the treated

group. Again, the evolution profiles are similar, especially after 2005. Of note, while deforestation

slowed down in the three groups after 2008, the slowdown among the spillover municipalities is

not as pronounced as that observed among Priority units, but it is more prominent than among

municipalities in the control group, which suggests the presence of spillover effects in the current

context.31

5 Empirical Framework

In this section, we set out a framework that underlies our approach to studying targeted environmen-

tal regulations in the Amazon. We start, as a benchmark, with standard difference-in-differences

(DID), then describe the more general changes-in-changes (CIC) model proposed by A&I. In the

process, we lay out our empirical strategy and the parameters of interest – the average treatment

effects.

Our empirical approach is shaped by particular data constraints. Given that we do not observe

the land use decisions of individual farmers, but rather have land use panel data at the munici-

pal level, we focus on municipal-level deforestation and treat this as a function of the regulatory

environment, among other factors (commodity prices, local climatic conditions etc.). On the polic-

ing side, we have only limited information about the intensity of monitoring, so we use a binary

measure of treatment – assignment to the Priority List – and follow a treatment effects approach,

30Given the threshold criteria from the figure, we split the untreated group depending on whether Z1
mt−1 and

Z2
mt−1 exceed 70 percent of the thresholds – that is, whether Z1

mt−1 ≥ 0.7× 2, 700 km2 and Z2
mt−1 ≥ 0.7× 220 km2.

The empirical results presented in Section 6 are robust to diffferent definitions of how close past deforestation is to
the threshold criteria. (See Appendix F.)

31It is worth mentioning that municipalities with deforestation levels near the selection threshold criteria and that
do not have a neighbor treated may also react to the Priority List, in anticipation of possibly stricter monitoring in
future. As there are only 13 municipalities satisfying this condition, we cannot split the untreated group further to
investigate this case with any degree of accuracy.
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given that modeling the decisions of individual farmers and regulators directly at the micro-level is

not feasible. These data constraints notwithstanding, our empirical approach allows us to obtain

causal treatment effects based on aggregate data and credible policy variation, described next.

5.1 Difference-in-Differences

We make use of the standard potential outcomes notation in describing the empirical approach, with

capital letters denoting random variables, and lower case letters denoting corresponding realized

values. Each municipality m belongs to a group Gm ∈ {0, 1}, where group 0 is the control group

and group 1 is the treatment group – extensions to more than two groups are straightforward. Let

Amt denote the total forested area in municipality m at the beginning of year t, and let Dmt be the

amount of deforestation that occurred in m during the same year. The share of newly deforested

area Ymt is the ratio of Dmt to Amt. We use superscript j ∈ {0, 1} to indicate the potential outcome

that arises under the policy regime j. The observed share of deforestation for municipality m at

time t can then be written:

Ymt = (1−Gm)× Y 0
mt +Gm × Y 1

mt.

We adopt a logistic regression framework, as is common in the empirical land use literature

(Stavins, 1999; Pfaff, 1999; Souza-Rodrigues, 2019). In the standard DID model, the regression

formulation is given by:

log

(
Ymt

1− Ymt

)
= X ′mtβ + δt + τ1 (Gm × δ2009) + τ2 (Gm × δ2010) + αm + ηmt, (2)

where Xmt is a municipality-level vector of observed factors, including prices and agro-climatic

conditions (see Section 4); δt are time dummies; αm is a municipality-level fixed effect; ηmt is a

time-varying unobservable factor; and (β, τ1, τ2) are the parameters to be estimated. The param-

eters τ1 and τ2 equal the average treatment effect (in terms of the log odds ratio of deforestation

shares) among the treated municipalities during the first and the second year of the program, re-

spectively, thus allowing for time-varying treatment effects. Given that the Priority List should

reduce deforestation, one would expect τ1 ≤ 0 and τ2 ≤ 0. The parameters can be estimated

consistently based on (2) provided that the common trends assumption holds – we provide formal

econometric evidence below.

The logistic model is appealing, both conceptually and given its measurement properties, in

this context. It can be motivated based on a continuum of farmers who make binary choices

(to deforest or not), aggregated up to the municipality level; as such, one can trace the share of
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deforestation back to underlying individual decisions, which is helpful in interpreting the empirical

results.32 From a measurement perspective, in contrast to a standard linear model, it does not

predict negative deforestation. This is particularly important in our setup because the estimated ex-

post optimal list depends crucially on having reasonable predictions for counterfactual deforestation,

yet there are many municipalities with low levels of deforestation in the data (as expected, given

that deforestation is a costly process), and the linear model predicts negative deforestation for over

14 percent of these observations – a non-negligible portion. This may lead to biased ATT estimates

and in turn produce misleading results when constructing the counterfactual optimal list, concerns

that motivate our use of the CIC model that follows.

5.2 Changes-in-Changes

The CIC model developed by A&I is a nonlinear generalization of the DID model to the entire

distribution of potential outcomes. Formally, potential share of deforestation Y j
mt – whether in the

presence or absence of the policy intervention – is given by the nonparametric specification:

Y j
mt = hj (Xmt, Umt, t) ,

for j = 0, 1, where Umt is a municipality-level unobservable term that can incorporate municipality

fixed effects (reflecting permanent differences across m in terms of, say, unmeasured soil quality,

climatic conditions, topography, etc.) in addition to time-varying unobservables; for instance, we

allow for (but are not restricted to) a decomposition of the form Umt = αm + ηmt. The function

hj allows for very flexible time trends. In terms of the impact of the policy, one might expect

h1 (x, u, t) ≤ h0 (x, u, t) for any (x, u, t), given that the Priority List increases monitoring and

enforcement intensity.

We impose four assumptions on the model. Following A&I, we first make

Assumption 1 Strict Monotonicity: The functions hj (x, u, t) – for j = 0, 1 – are strictly increas-

ing in u.

32Specifically, the relevant individual farmer’s land use choice model takes the following form: Consider a parcel of
forested land i located in municipality m at time period t. Let Yimt equal one if the plot is cleared and zero otherwise.
The farmer deforests the plot when Yimt = 1 {X ′mtβ + vmt > εimt}, where vmt incorporates all variables on the right
hand side of (2) except the control vector X, and εimt reflects unobserved heterogeneity within the municipality
capturing the farmer’s idiosyncratic abilities, effort and other influences on farmers’ decisions to deforest. When
εimt follows a logistic distribution, the probability that the plot of land i in municipality m at time t is deforested
conditional on Xmt and vmt is given by the logit formula, eX

′
mtβ+vmt/(1+eX

′
mtβ+vmt), which in turn implies equation

(2). Note that this assumes that the distribution of εimt is not affected by the treatment, which is reasonable given
that selection into treatment does not occur at the level of the farmer and is not part of the farmer’s choice set,
absent moving.
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This assumption is satisfied by the DID model, which assumes u enters the function h0 additively

(having constructed the log odds ratio using the share of deforestation). While imposing strict

monotonicity of hj on the unobservables u involves a loss of generality, it allows for more flexible

functional forms than a purely additive function – interactions between the time trend and the

municipality-level unobservables, for instance. Allowing for such interactions is important because

conversion costs may increase and/or land quality may decrease as deforestation in a municipality

progresses – if, for example, farmers opt to deforest first in locations with lower conversion costs or

higher land quality.

We do not restrict the way in which the functions hj are affected by treatment status j. Mu-

nicipalities at different stages of the deforestation process may respond differently to the policy

intervention, resulting in heterogeneous treatment effects. Further, because h0 and h1 can both

change flexibly over time, the intervention may have dynamic impacts. For example, farmers’

decisions to deforest might differ in municipalities that have been on the Priority List longer: mon-

itoring could change based on the length of time on the list,33 or it may take some time for potential

deforesters to update their beliefs about the probability of being caught and fined.

Assumption 2 Time Invariance Within Groups: Conditional on each group G, (i) the unobserv-

able U is independent of X, and (ii) U has an identical distribution over time.

Assumption 2(i) is the typical extension of the zero correlation assumption from linear to nonlinear

models. Note that because of the conditioning on groups, the assumption allows the distribution

of Xmt to vary by group and with time. Put differently, we do not need the groups to be balanced

(nor to reweight and balance them) in terms of their observable characteristics in order to estimate

treatment effects.

Assumption 2(ii) requires any unobservable differences between Priority and non-Priority mu-

nicipalities to be stable over time. That is, the distribution of Umt among the Priority municipalities

must be the same in different time periods, and the same for non-Priority municipalities. This is

a key condition for the CIC model, playing a role similar to the common trends assumption in

the standard DID model: in order to construct counterfactual predictions based on the observable

distributions, some form of stability over time is necessary.

We note that this assumption is less demanding than it might appear. First, the realizations

of Umt may vary over time, and can be serially correlated (for instance, due to the presence of

fixed effects), although they must come from the same distribution.34 Second, the distribution of

33Differences in the intensity of regulatory effort across municipalities and over time may also result in heteroge-
neous treatment effects.

34This is less restrictive than the parallel trend assumption underlying the DID estimator: while the CIC model
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unobservables does not have to be the same across treatment and control groups; treatment effects

can be heterogeneous across municipalities and across groups G. Recall that the selection rule

discussed in Section 4 is based on the assumption that deforestation is a persistent process: highly

deforested locations in the past are expected to be more likely to deforest more in the future. This

suggests that systematically higher unobservables lead to both higher levels of new deforestation

as well as to a higher probability of being placed on the Priority List (through past deforestation),

consistent with there being systematic unobservable differences across groups. Assumption 2 thus

allows for policy interventions targeted at a group with potentially higher average benefits.

Identification. In discussing identification, we adapt key results in A&I to our context. Denote

by F
Y jgt

the conditional distribution function of potential share of deforestation Y j
mt given G = g

and X = x (to simplify notation, we will omit the conditioning variables X). Let the inverse

distribution be given by F−1

Y jgt
(q) for any quantile q ∈ [0, 1]. (When it is sufficiently clear from the

context, we also use the short-cut notation Y j
gmt to denote the potential outcome variable for a

municipality in group g.)

To simplify exposition, take two consecutive periods t and t + 1, before and after treatment.

Athey and Imbens (2006, Theorem 3.1 and Corollary 3.1) show that under Assumptions 1 and 2,

the counterfactual distribution of Y 0
1mt+1 (i.e., the distribution for the treated group g = 1 in the

absence of the policy intervention, j = 0, at t + 1) is identified on the support of Y0mt+1 (i.e., the

support of the control group at t+ 1) and is given by

FY 0
1t+1

(y) = FY1t

(
F−1
Y0t

(
FY0t+1(y)

))
, (3)

where y ∈ Supp (Y0mt+1). In words, the counterfactual distribution FY 0
1t+1

can be calculated based

on the distribution of three observable variables: the distribution of deforestation shares for the

same group but prior to the treatment (FY1t), and the distributions of the share of deforestation for

the control group both before and after the treatment (FY0t and FY0t+1). Note that the distribution

of Y for the treated group under the treatment at t + 1 (after treatment) is trivially identified:

FY 1
1t+1

= FY1t+1 . By comparing the observed FY1t+1 with the counterfactual FY 0
1t+1

, we can obtain

various treatment effects on the treated (average effects, quantile effects, etc.).

Equation (3) is the nonparametric nonlinear analog of the counterfactual expected deforestation

from the DID model. Intuitively, it uses ‘double-matching’ (as A&I explain clearly – see their Figure

1, page 442) to construct the counterfactual distribution: a treated municipality that deforested

allows group and time effects to differ across individuals with different (observed and unobserved) characteristics, the
DID model implicitly imposes constant group and time effects.
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a fraction y of its forested area during period t is first matched to an untreated municipality that

deforested the same fraction during the same time period. Then the untreated municipality is

matched to its rank counterpart (i.e., in the same quantile) among untreated units in period t+ 1.

Let y′ denote the fraction deforested by this last unit during t + 1, and define ∆ ≡ y′ − y. The

difference between the shares of deforestation of the treated unit during t and during t + 1 in

the absence of treatment is then given by the difference between the deforestation shares of the

untreated units with the same rank before and after treatment. That is, the counterfactual share

of deforestation of the treated unit in the absence of treatment is given by y+ ∆.35 This is similar

to the adjustment in the standard DID model, although in the DID case, the adjustment is linear

and to the mean, given by:

E(Y 0
1mt+1) = E (Y1mt) + [E (Y0mt+1)− E (Y0mt)] .

When the data set covers one time period before treatment, the model is just-identified. With

more than one pre-treatment time period, there is more than one way to identify FY 0
1t+1

: the model

becomes overidentified and the equality in (3) is testable. (Note that FY 0
1t+1

is identified only on

the support of Y0mt+1 for the control group at t+ 1: outside this support, FY 0
1t+1

is not identified.)

A similar expression to (3) holds for the control group under the same assumptions (Athey and

Imbens, 2006, Theorem 3.2):

FY 1
0t+1

(y) = FY0t

(
F−1
Y1t

(
FY1t+1(y)

))
, (4)

where y ∈ Supp (Y1mt+1). Thus equation (4) provides information about treatment effects on the

untreated. (As before, the counterfactual distribution for the untreated FY 1
0t+1

is not identified

outside the support of the treated group Y1mt+1.)

Support Conditions and Partial Identification. When the support conditions are not sat-

isfied, we cannot identify the counterfactual distributions at the lower and upper tails. However,

we can obtain worst-case bounds in a spirit similar to Manski (2003).36 To do so, we need prior

information relating to the counterfactual support for Y 1
0mt+1. Assumption 3 provides such prior

information, and has been implemented previously in the empirical literature (see, e.g., Ginther,

2000; Lee, 2009).

35Note that the ‘double-matching’ here is based on the outcome variable, while selection-on-observables methods
perform matching based on covariates (or on propensity scores).

36For instance, if Supp (Y1mt+1) ⊂ Supp(Y 1
0mt+1), then FY 1

0t+1
is identified on the subset Supp (Y1mt+1), and we

place the remaining probability mass outside Supp (Y1mt+1) at the end points of Supp(Y 1
0mt+1). We assume the

supports of the observed variables are connected, so that only at the tails is there no information about FY 1
0t+1

.
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Assumption 3 Support: Assume Supp(Y j
gmt) = Supp (Ygmt) for j, g = 0, 1, and for any t.

Assumption 3 implies that while the policy intervention may affect the distribution of deforestation

shares, it does not affect the support of the distribution. By putting all mass outside Supp (Y1mt+1)

at the left and right end points of Supp (Y0mt+1), we obtain the lower and upper bounds for FY 1
0t+1

,

denoted by FL
Y 1
0t+1

and FU
Y 1
0t+1

respectively (the same reasoning applies to FY 0
1t+1

).37

Note that under Assumption 3, we cannot point identify the counterfactual distributions of

both treated and untreated groups simultaneously when Supp(Y1mt+1) 6= Supp(Y0mt+1). Further, if

Supp(Y1mt+1) ⊂ Supp(Y0mt+1), we can point identify the counterfactual distribution for the treated

group FY 0
1t+1

, but not the control group, FY 1
0t+1

. In this case, we identify the average treatment on

the treated, but we can only partially identify the average treatment on the untreated.

Semiparametric Specification. Although the CIC model can be estimated completely non-

parametrically (Athey and Imbens, 2006; Melly and Santangelo, 2015), we adopt a semiparametric

specification because of data limitations. The simplest and most parsimonious procedure is to

partial-out the covariates Xmt and apply the CIC model to the residuals, as A&I suggest.

For comparability with DID, we adopt the logit model. In addition to the reasons given in

Subsection 5.1, it is worth adding that the logit specification is useful when estimating the CIC

model because it allows for heterogeneous effects of Xmt on deforestation, helpful when selecting

the ex-post list; if heterogeneous effects were restricted to depend only on unobservables, the

ex-post list would only select all municipalities in the group with the higher average impact of

treatment. Further, the logit model has a convenient functional form that makes it easy to partial-

out the covariates in order to estimate the CIC model. A fully nonparametric model would require

estimating all conditional distribution functions given X in equations (3) and (4) nonparametrically,

which is not practical in our setting.38

We assume the following

Assumption 4 Semiparametric Model: The potential share of newly deforested area, Y j
mt, for

37These are worst-case bounds because they do not incorporate possible additional restrictions such as continuity
or smoothness on counterfactual distributions. In order to minimize the impact of outliers, we follow the literature and
trim observations below the 3rd and above the 97th percentiles (Ginther, 2000; Lee, 2009). The empirical results are
robust to the trimming, for example dropping observations below and above the percentiles [2.5, 97.5] and [3.5, 96.5].
See Appendix F.

38An alternative solution, proposed by Kottelenberg and Lehrer (2017), is to reweight the observations based on
the propensity scores. Although appealing, this solution is of limited use in the current context because of the lack
of common support on propensity scores induced by the selection rule (see Section 4).
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j = 0, 1, in a municipality m at t is given by

Y j
mt =

exp
[
X ′mtβ + V j

mt

]
1 + exp

[
X ′mtβ + V j

mt

] , (5)

where V j
mt are unobservable variables such that (a) V j

mt = vj (Umt, t), where the functions

vj (u, t) satisfy Assumption 1 (i.e., strict monotonicity on u), and (b) V j
mt satisfy the support

condition in Assumption 3.

By regressing the log odds ratio of the share of deforestation on covariates, we can identify and

estimate the coefficients β (by Assumption 2). We can therefore back out the residuals Vmt, and

apply the CIC model to them.39

5.3 Average Treatment Effects

We now discuss how we calculate the average treatment effects. Start with the logistic function

ϕ (x, v) = exp (x′β + v) / (1 + exp (x′β + v)). From (5), the potential share of new deforestation is

given by Y j
mt = ϕ(Xmt, V

j
mt). The expected deforestation under intervention j, Dj

mt, conditional on

observables (Xmt and Amt) and on the group G = g, is given by

E
[
Dj
mt|Xmt, Amt, Gm = g

]
=

∫
[ϕ (Xmt, v)×Amt] dFV jgt (v) , (6)

where the distribution F
V jgt

is either observed (from the residuals of the log odds ratio regression)

or is obtained from the CIC model (i.e., from either (3) or (4) applied to the residuals Vmt). Given

(6), average treatment effects are defined in the standard way. When the support conditions are

violated, the counterfactual distributions are not identified, in which case we bound the conditional

expectations as ∫
[ϕ (Xmt, v)×Amt] dFLV jgt

(v)

≤ E
[
Dj
mt|Xmt, Amt, Gm = g

]
≤

∫
[ϕ (Xmt, v)×Amt] dFUV jgt

(v) . (7)

39More specifically, as A&I note, let Imt be a vector of dummy variables indicating group status (control versus

treatment) interacted with time dummies. In the first stage, we estimate the regression log
(

Ymt
1−Ymt

)
= X ′mtβ +

I ′mtγ + νmt, then construct the residuals with the group-time effects left in: log
(

Ymt
1−Ymt

)
−X ′mtβ̂ = I ′mtγ̂ + ν̂mt.
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Bounds on average treatment effects follow naturally from (7). Given that the evolution of the

remaining forested area depends on deforestation in previous periods, we take dynamics into account

when calculating counterfactual deforestation (see Appendix D).

In turn, to measure the carbon emissions that result from the deforestation process, we consider

the equality Ejmt = Dj
mt × CSmt, where Ejmt are the potential carbon emissions under policy j,

and CSmt is the average difference in carbon stock comparing forested and deforested areas within

municipality m.40

6 Empirical Results

In this section, we present estimates of the Priority List’s effects. We first show difference-in-

differences results, followed by results based on the changes-in-changes model. We then provide

evidence relating to possible mechanisms that might link the Priority List and deforestation.

Difference-in-Differences. Table 3 presents the coefficients from estimating the DID regression

model specified in equation (2). The first column does not include covariates, while the second

column does. In the third and fourth columns, we incorporate potential spillover effects in the esti-

mation strategy, splitting the untreated municipalities into ‘control’ and ‘spillover’ groups; column

(3) does not include covariates while column (4) does.41

In all specifications in the table, the Priority List appears to have reduced deforestation sub-

stantially. First when ignoring spillovers, the coefficients on Priority status after treatment are

statistically significant, and show an average reduction in the odds ratio of the deforestation share

of approximately 45% in 2009 and 90% in 2010. The impacts are robust to the inclusion (or exclu-

sion) of the covariates in the specification, with the greater impact in 2010 possibly due to farmers

updating their beliefs about the new policy regime. Next, when potential spillover effects are taken

into account, the coefficients on Priority status presented in columns (3) and (4) are slightly greater

than the corresponding estimates ignoring potential spillovers. The average impact on the odds

ratio is around 47% in 2009 and 92% in 2010. This greater impact is attributable to the fact that

lower average reductions in deforestation after treatment now arise in the control group, given that

it does not include those municipalities more likely to respond to the policy intervention. Over-

40For simplicity, we ignore carbon decay and assume all carbon stock is immediately released into the atmosphere
once a plot of land is deforested.

41Recall that we split the untreated group according to whether a municipality is likely to be affected by the
intervention or not. We consider two criteria: (a) if a municipality shares a border with a treated municipality,
and (b) if a municipality has high levels of past deforestation (determined by how close Z1

mt−1 and Z2
mt−1 are to

the threshold values that the Brazilian government (implicitly) adopted in the selection rule). The municipalities
satisfying these two criteria are referred to as the ‘spillover’ group.
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all, the estimated impacts of the Priority List on deforestation are economically and statistically

significant, and robust across all specifications.

Columns (3) and (4) of the table also shed light on the estimated spillover effects of the Priority

List following treatment. We find these effects to be negative – small in magnitude and not

statistically significant in 2009, but becoming larger (and significant) in 2010, suggesting that

spillovers may have taken time to emerge. The evidence indicates that untreated municipalities

with a treated neighbor and high levels of past deforestation reduce their deforestation rates in

response to the establishment of the Priority List (perhaps following belief-updating by farmers).

The odds ratio of the share of deforestation declines, on average, by approximately 24% in 2009

and 62% in 2010. Again, the impacts are robust to whether or not the covariates are included in

the specification.42

Testing. As is standard, we test whether the trends in the outcome variables are parallel in the

pre-treatment period. Table 4 presents the results, the first column ignoring potential spillover

effects, the second incorporating them. The table provides no evidence that the common trends

assumption is violated before treatment: the coefficients on the time dummies interacted with

Priority and spillover status are not statistically significant before 2008. This evidence accords

with the discussion in Section 4, where we noted that the government’s criteria for entering the

Priority List indicated a rule that selected municipalities based principally on the level (rather than

the trend) of past deforestation.43

Changes-in-Changes. We now turn to the estimates of the CIC model, first ignoring then

accounting for spillovers. The estimates ignoring spillovers are reported in Table 5. In the top

panel, we present the estimated effects on deforestation, as explained in Section 5. The columns

in the panel give the estimated ATT, ATU, and ATE, respectively, which are provided (in the

rows) separately for 2009 and 2010, and also the total cumulative deforestation in those two years

(summed over all municipalities). Results are provided using 2006 and 2007 as alternative baseline

years, noting that the CIC model is over-identified when more than one time period before the

treatment is available in the data.

The bottom panel of the table reports the estimated total cumulative treatment effects in terms

of carbon emissions. We label these CTT, CTU, and CTE – the cumulative analogs of ATT, ATU,

and ATE. That panel also reports the value of the total emissions avoided, assuming a social cost of

42Table 15 in Appendix G presents the coefficients on all regressors, including the covariates.
43The pre-treatment parallel trend assumption is robust to including more years (2003–2007) in the panel data

regressions, notably the time period covering the PPCDAm structural break in 2004–2005. (See Table 16 in Appendix
G.)
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carbon of $20/tCO2 (Greenstone et al., 2013; Nordhaus, 2014). The numbers in square brackets are

lower and upper bound estimates for the partially identified sets, and the numbers in parentheses

are 95 percent confidence intervals.44

We start with the treated group. All results are statistically significant and are robust to

the choice of the baseline year. The estimated ATT for 2009 is between −22 km2 and −25 km2

(depending on the baseline), and between −51 km2 and −54 km2 for 2010. The pattern of increasing

effects over time is similar to that in the DID regression model.45 According to the CIC estimates

using 2006 as the baseline year (which turns out to provide more conservative estimates), the

treated group would have deforested a total of 6,570 km2 in the period 2009–2010 in the absence

of treatment, which is 63 percent higher than the amount of deforestation observed in the data.

Thus, the estimates indicate that the Priority List led 2,540 km2 of forested area to be preserved,

and emissions of 30 million tons of carbon to be avoided in the same period. The estimated social

benefit of the program in terms of avoided emissions is approximately $2.21 billion. Compared to

the combined budget allocated to IBAMA and INPE – about $600 million – the results suggest the

program was highly beneficial, and that further investments in monitoring and enforcement would

be worthwhile.

Treatment effects on the untreated are not point-identified, but the identified sets are highly

informative, the effects being statistically significant and robust to the choice of the baseline year.46

The estimated effects range from −3.3 km2 to −4.7 km2 for 2009, and increase to between −5 km2

and −7.4 km2 for 2010.

The difference between the estimated ATT and ATU provides evidence of heterogeneous treat-

ment effects, suggesting that the government did indeed select municipalities with potentially higher

average impacts. Such results could not be obtained using a DID strategy given that it only iden-

44For ATT, the 95 percent confidence intervals are computed based on the standard i.i.d. nonparametric bootstrap,
where the i.i.d. resampling occurs in the cross-sectional dimension. The ATU and ATE are both partially identified
(as we discuss below), the confidence intervals being based on the procedure in Imbens and Manski (2004) for the
parameter of interest (not for the identified set), where the bootstrap replications are used to compute standard
errors for the lower and upper bound estimators. (We implemented 500 bootstrap replications.)

45The DID estimator is not scale-invariant, so there is no a priori reason to expect the DID and CIC estimators
will generate similar point estimates. We find estimated effects from using CIC that are somewhat smaller when
computed on a comparable basis. (For instance, applying the CIC estimator to the log odds ratio of deforestation
shares not conditioning on covariates, which is directly comparable to the coefficients on Priority status presented in
column (1) of Table 3, implies a reduction in the odds ratio of 42% in 2009 and 67% in 2010, on average – smaller
than the corresponding DID estimates.)

46As discussed in Section 5, the counterfactual distribution of the control group, FV 1
0t

, is identified on the support
of the treated group. Because the treated group has a substantially smaller number of observations than the control
group in the data, the estimated support of the treated group is strictly contained in the support of the control group
(see Table 14 in Appendix G). This implies that the counterfactual distribution FV 1

0t
is identified only on a subset

of its support, and not at the tails. This means the ATU can only be partially identified. (See Figures 13 and 14 in
Appendix G for the estimated factual and counterfactual distribution functions of the residuals V jgt, for both treated
and control groups in 2009 and in 2010.)
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tifies effects on the treated. Further, extrapolating results from the treated group to the untreated

under the assumption of homogeneous effects would bias up the effects on the untreated.

Table 6 presents the estimated treatment effects based on the CIC model, now incorporating

potential spillovers. Similar to the DID results, we find that the ATTs are now slightly greater than

the ones estimated ignoring potential spillover effects. Using 2006 as the baseline year, the estimates

indicate that the Priority List avoided the clearing of 2,705 km2 of forested area and emissions of

32 million tons of carbon during 2009–2010, which implies a social benefit of the program on the

order of approximately $2.4 billion.

The estimated ATUs are also in line with the estimates obtained when we assumed away any

spillovers effects. The average treatment effects on the spillover group, denoted ATS, are statisti-

cally significant and robust to the choice of baseline year. While the ATSs are partially identified,

the estimated sets are very informative: the effects range from −11 km2 to −16 km2 for 2009,

and increase to between −15 km2 and −25 km2 for 2010. Similar to the other groups, impacts

are greater during the second year of the program. The magnitudes of the ATS fall between the

estimated ATT and ATU, constituting further evidence of heterogeneous effects.47

In sum, according to the CIC estimates that account for spillovers, the direct impact of the

program avoided 2,705 km2 of deforestation in Priority municipalities in 2009–2010, while the

indirect impact in the same period discouraged the clearing of 618 km2 of forested area in spillover

municipalities. This amounts to a total of 3,323 km2 of forested area preserved (treating 2006

as the baseline year). In turn, the program avoided 39.5 million tons of carbon emissions, with

a social benefit of approximately $2.9 billion: these are our preferred summary estimates of the

policy impacts.

Testing. We now discuss the results of three tests applied to the CIC model. First, we assess

whether the actual distribution of deforestation shares equals the counterfactual distribution when

imposing the policy intervention (falsely) in 2007, one year early; this serves as a placebo test – the

CIC analog to the DID pre-treatment common trend test. Second, we test whether the Priority

List affects the entire distribution of outcomes – similar to the placebo test but using the correct

timing of the intervention. Third, we test whether the counterfactual distribution is everywhere

below the actual distribution, as would be the case if the absence of treatment resulted in more

deforestation everywhere – a stochastic dominance test.48

47Note that the ATS presented in Table 6 differs conceptually from the coefficients on spillover status presented in
Table 3. The ATS measures the average effect (on deforestation) of including a spillover municipality on the Priority
List, while the coefficients on spillover status presented in Table 3 estimate how farmers in spillover municipalities
reacted to the existence of the policy intervention itself.

48All three tests were proposed and developed by Melly and Santangelo (2015). We apply them only to the
treated group because the estimated distributions for the spillover and control groups are not point-identified. (To

25



Table 7 presents the results. We apply each test to both the log odds ratio of deforestation

shares not conditioning on covariates and to the residuals (Vmt) after partialling out the covariates,

as explained in Section 5. In all cases, the p-values correspond to both the Kolmogorov-Smirnov

and the Cramer-von Mises statistics. For the two outcomes and associated test statistics, we fail

to reject the null of ‘no impact’ when the policy intervention is wrongly imposed in 2007 – i.e., the

placebo test passes. In contrast, we reject the null of no impact when the policy intervention is

set correctly in 2008, and we find strong evidence in favor of stochastic dominance, as one might

expect given the estimated treatment effects discussed above.

Possible Channels. We now seek to shed light on the channels through which the Priority List

may have affected deforestation. The list consisted of a bundle of provisions, as documented above,

with farmers in Priority municipalities becoming subject to more rigorous monitoring and law

enforcement; they also faced more stringent conditions when seeking to obtain subsidized credit

contracts, along with stricter licensing and geo-referencing requirements. At the same time, the

government might have expanded protected areas strategically, taking into account the location of

Priority municipalities.

Given this bundle of provisions, we are interested in exploring (subject to data limitations)

whether particular elements of the bundle appear to have been especially important in cutting

deforestation. We focus on observables, investigating how the number of alerts given out by INPE

(a proxy for monitoring), the evolution of the number of fines issued by IBAMA (a proxy for

enforcement), the total volume of rural credit concessions, and the share of protected areas all vary

by treatment status – treated, spillover, or control.49

Figure 9 presents the evolution of these variables over time by treatment status. Taking our

enforcement proxy first (see panel (a)), the number of fines increased substantially among treated

municipalities in 2008 and then fell subsequently within this group, likely in response to the lower

deforestation rates observed there following the policy intervention. In contrast, the number re-

mained reasonably stable in spillover and control groups during 2006–2010. In combination, the

enforcement evidence points to an overall increase in enforcement intensity, concentrated on Pri-

ority municipalities, rather than a substitution occurring away from untreated municipalities. In

the best of our knowledge, the corresponding formal testing that would cover partially identified cases has not yet
been developed.) We implemented 500 bootstrap replications and, given that the choice of the baseline years for
comparisons do not affect results substantially, we combine them to increase power.

49While unlikely to be a first-order concern, licensing requirements are harder to pin down because of data limita-
tions; for instance, we cannot establish whether stricter licensing requirements were implemented differentially across
treated and untreated municipalities. Similarly, we do not have information concerning the Soy Moratorium – an
agreement operating since 2006 among global soy traders not purchase soy grown on farmland that does not accord
with the Forest Code – specifically, whether it affected Priority and non-Priority municipalities differently.
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terms of our monitoring proxy (panel (b)), the number of alerts is higher for treated municipalities,

declining markedly after 2008, again likely reflecting the deforestation slowdown among Priority

municipalities, while the average number of alerts issued in untreated municipalities is stable before

and after the establishment of the Priority List. (Unlike fines, there is no clear upward shift in the

number of alerts by 2008 – instead, it oscillates in the pre-treatment period.) Again, the graph-

ical evidence does not suggest any major substitution of monitoring effort away from untreated

municipalities. Beyond monitoring and enforcement, there are no clear distinguishing patterns by

treatment group status in terms of total rural credit (other than differences in levels), and shares

of protected areas by treatment status show almost no variation over time.

Table 8 presents corresponding regression evidence. Specifically, we regress the four observable

measures – fines, alerts, credit, and protected area share – on Priority and spillover status indicators

interacted with time dummies and on covariates, taking 2006 as the baseline year. The regression

estimates paint a similar picture, suggesting an increase in enforcement (fines) among treated

municipalities, and more so than an increase in monitoring effort (alerts), while no clear decrease

in enforcement or monitoring is apparent among the untreated. We find no clear evidence that

more stringent conditions were applied to limit the concession of subsidized rural credit in Priority

municipalities, nor is there any evidence of the strategic placement of new protected areas.50

Together, this suggestive evidence helps clarify whether state capacity increased or instead

whether there was simply a reallocation of fixed resources following the Priority List’s introduc-

tion. The graphical and regression evidence is consistent with more focused targeting being asso-

ciated with an increase in state capacity to implement environmental regulations, in turn altering

municipal-level behavior (as reflected in aggregate deforestation).

7 Optimal Policy Targeting

In this section, we develop a counterfactual framework for targeting regulations optimally based

on the estimated treatment effects just reported, then present the empirical results from various

counterfactual targeting exercises.

7.1 Policy Targeting Framework

Suppose a policy maker wishes to assign municipalities to the Priority List in order to minimize

total deforestation (or total emissions), and that she has information about the conditional average

treatment effects estimated above, along with the covariates. Denote the counterfactual assignment

50This complements (and is consistent with) the analysis presented in Assunção and Rocha (2014).
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rule in time period t by φt = (φ1t, ...φMt), which maps the treatment to municipalities m = 1, ...,M

and which can be either deterministic φmt ∈ {0, 1} or probabilistic φmt ∈ [0, 1]. For a given time

period, the policy maker solves the problem

min
φt∈[0,1]M

M∑
m=1

[
φmtE

[
D1
mt|Xmt, Amt, Gm

]
+ (1− φmt)E

[
D0
mt|Xmt, Amt, Gm

]]
. (8)

The minimum deforestation is achieved (trivially) by a singleton rule that allocates m to the

treatment when E
[
D1
mt|Xmt, Amt, Gm

]
≤ E

[
D0
mt|Xmt, Amt, Gm

]
; when the equality holds, any

random allocation is optimal.

The minimization problem in (8) abstracts from two important considerations. The first involves

constraints. The original Priority List had the intention of directing limited resources where they

were expected to have the greatest impact. Given that data on the resources effectively allocated in

practice to monitoring are difficult (if not impossible) to obtain, we incorporate limited monitoring

resources into the policy maker’s minimization problem by means of two alternative constraints.

One constraint limits the total area S that can be monitored under the Priority List (given the

plausible notion that the costs of monitoring and punishing illegal deforestation increase with the

total area covered by the policy). We write this as:

M∑
m=1

sm × φmt ≤ S, (9)

where sm is the area of municipality m. The alternative constraint applies to the total number of

municipalities M that can be placed on the list:

M∑
m=1

φmt ≤M. (10)

This constraint is reasonable when monitoring costs are primarily a function of the number of

districts that inspectors must visit.51

51Ideally, we would have precise information on the expected monitoring costs for each municipality m in each
time period t, in both the absence and presence of the treatment. Then we could replace the constraints (9) and (10)
with the restriction

M∑
m=1

[
φmtE

[
MC1

mt|Xmt, Gm
]

+ (1− φmt)E
[
MC0

mt|Xmt, Gm
]]
≤ Kt,

where MCjmt are the monitoring and enforcement costs, and Kt is the government’s budget constraint. (We note
that our framework can accommodate other objective functions – e.g., using Rj = P ×Dj +MCj in the social cost
function (8), where P is the social cost of deforesting one parcel of land.) Such an approach is not feasible, however.
Although we do know IBAMA’s and INPE’s total budgets, in practice we do not have information about the true
budget constraint Kt. Further, we do not know how much of the total is allocated to monitoring, nor do we have
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The second aspect concerns partial identification: when the support conditions are violated,

we can only partially identify counterfactual expected deforestation. This means that an ex-post

policy evaluation must be analyzed as a treatment choice problem under ambiguity (Manski, 2005).

We consider the minimax criterion, assuming the policy maker chooses the ex-post list in order to

minimize total deforestation in the worst-case scenario.

Formally, let all the feasible values that E[Dj
mt|Xmt, Amt, Gm] can take be indexed by γ ∈ Γ

(given by the inequality (7)). The policy maker’s problem under the minimax criterion is

min
φt∈[0,1]M

sup
γ∈Γ

M∑
m=1

[
φmtEγ

[
D1
mt|Xmt, Amt, Gm

]
+ (1− φmt)Eγ

[
D0
mt|Xmt, Amt, Gm

]]
, (11)

subject either to the ‘total area’ constraint (9), or to the ‘total number of municipalities’ constraint

(10). The minimization problem (11) subject to either constraint is a linear programming problem

that is straightforward to solve numerically. In the empirical exercise, when using constraint (9),

we set S equal to the total area occupied by the municipalities that were effectively put in the list

in 2008 (i.e., the treated group). Similarly, when using constraint (10), we set M = 35, which is

the number of municipalities in the treated group. We do so because we can then assess how close

the observed Priority List was to the ex-post optimal assignment.52

To provide intuition for the assignment of municipalities to the optimal list, we start from the ob-

servation that in the absence of any constraint, the minimum deforestation is achieved by following a

simple rule: a municipalitym that was originally in the control group (Gm = 0) is assigned to the op-

timal list when the expected deforestation in the absence of treatment, E
[
D0
mt|Xmt, Amt, Gm = 0

]
,

is greater than the maximum possible amount of expected deforestation under the treatment. In

turn, a municipality m that was originally in the treatment group (Gm = 1) should not be on

the list when the expected deforestation under treatment, E
[
D1
mt|Xmt, Amt, Gm = 1

]
, is greater

than the maximum possible amount of deforestation in the absence of treatment. Note that the

assignment rule differs depending on observed priority status because the objects that are partially

identified differ. When the constraints are taken into account, the estimated magnitudes of the

treatment effects for all municipalities matter in the minimization problem.53

Given that the optimal list is based on ex-post knowledge of the treatment effects, the differences

in the amount of deforestation and carbon emissions under the minimax optimal assignment rule and

the observed assignment rule provide lower bounds for the social value of the ex-post information

data indicating how monitoring costs are distributed across municipalities.
52The fact that the constrained minimization problem can be specified as a linear programming problem is conve-

nient: in the data, the number of possible lists under the constraint M = 35 is
(
490
35

)
≈ 4× 1053.

53See Appendix E for details. We do not select a list that changes over time as this complicates the problem
substantially, given the combinatorics involved.
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about the treatment effects. Put another way, the difference measures the minimum amount that

the policy maker (or the society) would be willing to pay to obtain the ex-post information.

In the presence of spillover effects, the objective function is non-linear and non-differentiable in

φ, so that we cannot solve the minimax problem using standard methods. Instead, to find the global

minimum, we use a stochastic search algorithm – more precisely, a genetic algorithm that allows

for integer optimization in high-dimensional constrained minimization problems. (See Appendix E

for detailed description of the way the ex-post optimal list is calculated in this case.)

7.2 Policy Targeting Results

We now present results absent potential spillovers, then show how targeted policies are affected

once spillover effects are taken into account.

‘No Spillovers’ Case. Table 9 compares the original Priority List with the ex-post optimal list

obtained by solving the relevant constrained minimizations: the left panel considers the total area

S that can be monitored as the constraint (see equation (9)), while the right panel fixes the number

of municipalities M (equation (10)).54

Overall, the proportion of municipalities that appear on both lists is high: 83.7 percent when the

constraint involves the total area, and 93.5 percent when the constraint is a maximum number of

municipalities. According to this latter metric, the Priority List is already close to the corresponding

ex-post optimal list. When the policy maker is constrained to ‘police’ a pre-specified overall area,

she can reduce deforestation in the worst-case scenario by replacing seven large municipalities on

the Priority List with 73 municipalities that are smaller in size but that would help reduce total

deforestation (based on the ex post treatment effect estimates). In contrast, when the restriction

applies to the number of municipalities, the policy maker would do better by replacing small

municipalities (comprising almost half of the Priority List) by municipalities that are larger in size.

Indeed, the total area covered by this list is 41 percent larger than the original list.

Figure 10 presents the geographic distribution of municipalities on the various lists. For ref-

erence, the top left panel presents the actual Priority List and the top right shows the Priority

List together with protected areas (composed of conservation units and indigenous reserves). The

bottom left panel then shows the optimal list when the constraint is the total area covered, and in

the bottom right panel, the counterfactual list when the constraint is the number of municipalities.

(The bottom panels also depict protected areas.)

Two interesting patterns emerge – features that were not imposed in the course of the estimation

54We present results using the baseline year 2006. Results treating 2007 as the baseline are similar.
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strategy. First, the overlap between the protected areas and the area-constrained counterfactual list

is much smaller than the overlap between the protected areas and the original Priority List; indeed,

the former comprises an area approximately half the latter. This suggests that, together, these

two policies could be further leveraged by the Brazilian government. Second, more specifically,

the geographic distribution of the area-constrained counterfactual list traces out a protective shield

close to the deforestation frontier; that frontier, the ‘Arc of Deforestation,’ is located along the

southeastern edge of the Amazon Biome. In the current context, the Priority List may therefore

serve to work alongside the protected areas in impeding the deforestation process from continuing

into more pristine regions.

To shed some light on which observable factors might be more important in determining whether

a municipality is placed on the optimal list or not, we estimate simple reduced-form regressions,

regressing the optimal list on the covariates X, the ‘criteria’ variables Z, and the Priority status

indicator G. Based on that exercise, the two most important factors predicting the optimal list

are the share of protected areas (consistent with our analysis of the geographic distribution of the

optimal list – see Figure 10), and Priority status itself (not surprisingly, given the overlap between

the two lists presented in Table 9).55 As an aside, we note that these suggestive reduced-form

regressions ignore the fact that the assignment of a municipality onto the optimal list depends

on the characteristics of all municipalities in the presence of capacity constraints (and spillovers,

discussed below).

Next, we seek to quantify the consequences of optimally targeted policies. We do so by compar-

ing both the maximum possible deforestation and the carbon emissions achieved under the optimal

list with the corresponding outcomes under the Priority List, along with another benchmark: a list

composed of municipalities that are selected randomly.56 Table 10 presents the results. Compared

to the area-constrained optimal list, the Priority List results in around 6 percent more deforestation

and 5 percent higher carbon emissions in 2009–2010. The estimated avoided emissions translate into

a social value of at least $562 million for that two-year span alone. Again, we estimate high social

returns to investments that generate information concerning the effects of conservation policies.

We find that the ex-post optimal list fixing the number of municipalities performs slightly

better than the area-constrained optimal list. But since it covers a much larger area, monitoring

costs are likely to be significantly higher in the former case. In comparison, randomly selecting

35 municipalities onto the list would result, on average, in 23–25 percent more deforestation and

55The criteria variables Z are relevant only when we exclude G from the regressions, which is as one would expect
given the threshold selection rule. (In particular, criterion Z2, capturing more recent deforestation, is the only
‘criteria’ variable that becomes statistically significant in the absence of G.) (Results are available upon request.)

56We simulated 1000 random lists with M = 35 and computed the average resulting counterfactual deforestation
and emissions.
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26–29 percent higher emissions than the number-constrained optimal list.

Overall, although the Priority List results in higher deforestation and emissions compared to

the two alternative ex-post optimal lists, the magnitudes are not substantially greater. While

the ex-post optimal lists were designed to minimize the worst-case scenario, and so should be

expected to result in less deforestation and emissions than those presented in Table 10, the estimated

performance of the Priority List is (perhaps surprisingly) fairly close to the minimax ex-post optimal

lists, especially given that the government made decisions without knowing the potential treatment

effects of this policy. The Priority List also compares favourably to a completely random rule. Still,

our results indicate that there is clear room for improvement.

Next, we are interested to see how much the minimax solution for carbon emissions is affected

by relaxing the constraints we have been imposing. Figure 11 shows the results. The top panel

presents the level of emissions at the optimum for the total area constraint, while the bottom panel

shows the results when we change the number of municipalities that can be included on the optimal

list. In each panel, the vertical lines show the maximum S and M that correspond to the area

covered by, and the number of municipalities on the Priority List respectively. The horizontal lines

correspond to the amount of carbon emissions estimated directly from the data for 2009–2010.

The minimax carbon emissions decrease rapidly when a small area is covered by the optimal list

and level off for large S eventually, indicating that the benefits of including additional municipal-

ities on the list decrease with S. Because monitoring costs should increase with S, concentrating

efforts on a strategically selected subregion of the Amazon rainforest emerges as a suitable policy.

Furthermore, the minimum area needed for the optimal list to generate the same amount of emis-

sions as the original Priority List is 535 km2, which is approximately 70 percent of the area covered

by the original list (763 km2); this corresponds to the point in the top panel figure at which the

minimax carbon emissions curve crosses the horizontal line. This finding is important, drawing

attention to substantial monitoring cost savings that are available, holding the level of observed

emissions fixed.57

‘Spillovers’ Case. We now discuss the ex-post optimal lists when spillovers are incorporated

into both the estimation procedure and the minimization problem.

First, Table 11 compares the Priority List with the ex-post optimal lists based on the two

different constraints discussed above, although now allowing for spillovers. Under the total area

constraint, the optimal list replaces a greater number of large municipalities by small municipalities

57The same type of reasoning applies when we change the number of municipalities, M , allowed on the optimal
list, with the minimum number of municipalities generating the same amount of observed emissions as the Priority
List being 18, which is half of the original list.
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when compared to the optimal list with no spillovers. This leads to a smaller proportion of cases

that appear in both the optimal list and original Priority List – now 79 percent. Intuitively, such

an assignment takes advantage of the fact that a larger number of small municipalities treated can

have wider impacts because of spillover effects.

Figure 12 presents the geographic distribution of the resulting optimal lists. When compared

to the no-spillover case in Figure 10, the area-constrained optimal list is now more geographically

dispersed, with fewer municipalities being contiguous. Such a pattern is also attributable to the

operation of spillover effects: placing all targeted municipalities together does not exploit the

potential reduction in deforestation in adjacent locations that arises when spillovers are operating.

(A similar pattern is observed for the number-constrained optimal list.)

Table 12 compares the levels of deforestation and emissions associated with the alternative

lists. Because the optimal lists now take advantage of potential spillover effects, they can achieve

lower levels of forest loss in the worst-case scenario. The Priority List now results in around 9–14

percent more deforestation and 8–14 percent higher carbon emissions in 2009–2010 than the area-

constrained optimal list (depending on the baseline year). This places a lower bound on the value of

the optimal list of approximately $900 million. Results are similar when we consider the optimal list

constrained by the number of municipalities that can be included. Randomly selected municipalities

now result in 34–44 percent more emissions than the number-of-municipalities constrained optimal

list.

More generally, by relaxing the constraints of the minimization problem, we find that the

minimum area covered that is needed for the optimal list to result in the same amount of carbon

emissions as the Priority List is 326 km2, which is approximately 43 percent of the area covered

by the original list. This suggests even greater monitoring cost savings once spillovers are taken

into account. (Similarly, the minimum number of municipalities generating the same amount of

observed emissions as the Priority List is 17 – less than half of the original blacklist.)

8 Conclusion

In this paper, we have developed a new approach for assessing the efficacy of targeted, blacklist-type

policies for slowing deforestation – itself a primary contributor to global carbon emissions and a

source of considerable concern worldwide. Focusing on the Priority List introduced by the federal

government in the Brazilian Amazon in 2008, we first showed that the policy had a substantial causal

impact, using the flexible changes-in-changes approach of Athey and Imbens (2006): deforestation

was cut by 40 percent in municipalities placed on the list (relative to the case in which no policy
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was introduced), and also generated non-trivial spillover effects in the form of lower deforestation

elsewhere.

We then used the treatment effect estimates in a counterfactual policy framework that allowed

us to compute an ex-post optimal list, reflecting realistic resource constraints faced by the regulatory

agency in its ability to monitor behavior and enforce environmental protections. Comparing ex-

post optimal lists (on two alternative bases) with the actual Priority List, we showed that optimal

targeting can generate significant additional gains. Carbon emissions would be at least 8 percent

higher under the Priority List than under the optimal list, even though emissions under the actual

list are still significantly lower than they would be under a randomly chosen set of municipalities.

From a regulation perspective, our approach provides a means to quantify, based on credible

econometric estimates, the gains to the environment from optimally targeted policies aimed at coun-

tering tropical deforestation. More generally, our counterfactual approach using ex-post treatment

effects is applicable in a variety of other settings where targeted regulations have been introduced,

and can help policy makers to assess which policy configurations (accounting for realistic resource

constraints) are likely to have most environmental impact.
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Table 1: Summary Statistics for 2007 Cross-Section by Priority Status

Total Sample
(N = 490)

Treated Group
(N = 35)

Untreated Group
(N = 455)

Mean SD Mean SD Mean SD

Land Use (km2)
Deforested Area 21 60 148 169 12 20
Cumulative Deforested Area 1,270 1,436 4,413 2,437 1,028 978
Forested Area 6,499 15,507 15,990 27,549 5,769 13,953
Municipal Area 8,726 16,716 21,815 29,409 7,719 14,899
Deforested Share (%) 1.21 1.91 1.72 1.41 1.17 1.94

Policy Measures
Number of Alerts 57 213 509 616 22 60
Fines Issued 9 19 40 44 7 14
Share of Protected Area (%) 28 33 22 22 28 34

Agriculture and Ranching
GDP (million Reais) 179 1,013 180 399 179 1,046
Agricultural GDP (million Reais) 19 24 39 22 18 24
Cattle (thousands) 105 148 363 290 85 108
Crop Area 109 455 289 563 95 443
Total Rural Credit (million Reais) 7 13 19 16 6 12

Other Variables
Rainfall (mm) 2,206 613 1,948 195 2,227 633
Temperature (◦C) 26 1 26 1 26 1
Carbon Stock in Forested Areas (tC/ha) 189 68 212 35 187 69
Carbon Stock in Deforested Areas (tC/ha) 117 48 101 23 118 49

Notes: This table reports municipality-level means and standard deviations (SD) for the variables used in the
empirical analysis, for the year 2007. A unit of observation is a municipality in the Brazilian Amazon. Land
use data are drawn from satellite images (areas are measured in square kilometres). Deforested Area measures
incremental deforestation during the year; Cumulative Deforested Area adds past deforestation up to and including
2007; Forested Area measures the total area covered by forests at the beginning of the year; Deforested Share
divides incremental deforestation in 2007 by the forested area at the beginning of the year. Share of Protected
Area is the proportion of the municipal area that is under legal protection (either indigenous lands or conservation
units). GDP consists of the municipalities’ total GDPs. Agricultural GDP includes crop and livestock production.
All monetary amounts are expressed in December 2011 Reais. Annual rainfall is measured in millimetres (mm),
while annual temperature is measured in degrees Celsius (◦C). Carbon stocks are measured in tons of carbon per
hectare (tC/ha).
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Table 2: Summary Statistics for 2007 Cross-Section by Group

Treated Group
(N = 35)

Spillover Group
(N = 24)

Control Group
(N = 431)

Mean SD Mean SD Mean SD

Land Use (km2)
Deforested Area 148 169 49 36 9 17
Cumulative Deforested Area 4,413 2,437 2,832 941 927 878
Forested Area 15,990 27,549 6,043 11,378 5,754 14,093
Total Area 21,815 29,409 10,408 12,499 7,569 15,020
Deforested Share (%) 1.72 1.41 2.03 2.14 1.12 1.92

Policy Measures
Number of Alerts 509 616 141 144 15 44
Fines Issued 40 44 23 20 6 13
Share of Protected Area (%) 22 22 16 22 29 34

Agriculture and Ranching
GDP (million Reais) 180 399 210 380 177 1,071
Agricultural GDP (million Reais) 39 22 41 46 16 21
Cattle (thousands) 363 290 248 126 76 99
Crop Area 289 563 250 396 87 444
Total Rural Credit (million Reais) 19 16 16 15 6 12

Other Variables
Rainfall (mm) 1,948 195 2,038 293 2,237 645
Temperature (◦C) 26 1 26 2 26 1
Carbon Stock in Forested Areas (tC/ha) 212 35 203 45 187 70
Carbon Stock in Deforested Areas (tC/ha) 101 23 97 24 119 50

Notes: This table breaks the Untreated Group from Table 1 into Spillover and Control Groups. The Spillover
Group consists of the untreated municipalities that (a) share a border with a treated municipality, and (b) have
high levels of past deforestation – specifically, determined by whether the ‘selection criteria’ variables Z1

mt−1

and Z2
mt−1 exceed 70 percent of the thresholds values that the Brazilian government (implicitly) adopted in the

selection rule; that is, whether Z1
mt−1 ≥ 0.7× 2, 700 km2 and Z2

mt−1 ≥ 0.7× 220 km2. The format of the table is
otherwise identical to Table 1.
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Table 3: Difference-in-Differences Results

(1) (2) (3) (4)
Log odds Log odds Log odds Log odds

Treated Group x Year=2009 -0.456∗∗ -0.457∗∗ -0.471∗∗ -0.471∗∗

(0.150) (0.147) (0.152) (0.150)

Treated Group x Year=2010 -0.928∗∗∗ -0.887∗∗∗ -0.964∗∗∗ -0.922∗∗∗

(0.160) (0.156) (0.162) (0.159)

Spillover Group x Year=2009 -0.283 -0.243
(0.149) (0.143)

Spillover Group x Year=2010 -0.682∗∗∗ -0.624∗∗∗

(0.188) (0.186)

Year=2006 -0.370∗∗∗ -0.569∗∗∗ -0.370∗∗∗ -0.575∗∗∗

(0.0661) (0.0994) (0.0661) (0.0997)

Year=2007 -0.467∗∗∗ -0.564∗∗∗ -0.467∗∗∗ -0.565∗∗∗

(0.0659) (0.0729) (0.0660) (0.0729)

Year=2009 -0.948∗∗∗ -0.920∗∗∗ -0.933∗∗∗ -0.909∗∗∗

(0.0769) (0.0763) (0.0801) (0.0794)

Year=2010 -0.672∗∗∗ -0.730∗∗∗ -0.636∗∗∗ -0.698∗∗∗

(0.0806) (0.0830) (0.0839) (0.0865)

Covariates NO YES NO YES
R2 0.098 0.113 0.101 0.115
Observations 2450 2450 2450 2450

Notes: An observation is a municipality in the Brazilian Amazon. The dependent variable is
the log odds ratio of deforestation shares. All regressions include municipality fixed effects.
Robust standard errors in parentheses are clustered at the municipality level.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 4: Pre-Treatment ‘Common Trends’ Test, 2006–2007

(1) (2)
Log odds Log odds

Treated Group x Year=2007 -0.0890 -0.0911
(0.140) (0.143)

Spillover Group x Year=2007 -0.0300
(0.137)

Year=2007 0.305∗ 0.308∗

(0.128) (0.130)

Lagged Rainfall 0.122 0.122
(0.0708) (0.0709)

Lagged Rainfall Squared -0.00399∗∗ -0.00400∗∗

(0.00135) (0.00136)

Lagged Temperature 0.458 0.460
(0.418) (0.418)

Share of Protected Areas 0.811 0.807
(0.608) (0.612)

Price of Beef Lagged -0.00466 -0.00469
(0.0321) (0.0321)

Price of Crops Lagged -3.303∗ -3.303∗

(1.651) (1.651)

Lagged GDP -0.106 -0.106
(0.375) (0.376)

R2 0.050 0.050
Observations 980 980

Notes: An observation is a municipality in the Brazilian Amazon. The dependent variable
is the log odds ratio of deforestation shares. Rainfall is measured in millimetres (mm) and
temperature is measured in degrees Celsius (◦C). The price of beef is a weighted average of
international beef prices weighted by the ratio of head of cattle to municipal area. The price
of crops is the price index based on a principal component analysis applied to individual
weighted prices of the most predominant crops in the Brazilian Amazon (the weights are
given by the share of the municipal area used to cultivate the crop). For all agricultural
products, the weights are fixed in the period 2000–2001. Municipal GDP is measured in
million Reais. All monetary amounts are expressed in December 2011 Reais. The coefficient
on the constant term is omitted. All regressions include municipality fixed effects. Robust
standard errors in parentheses are clustered at the municipality level. (The pre-treatment
‘common trend’ test covering the longer span (2003–2007) is presented in Appendix G.)
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 5: Average and Cumulated Treatment Effects, CIC Model without Spillovers – Deforestation and
Carbon Emissions

Average Treatment Effects: Deforestation

ATT ATU ATE

2009
Baseline 2006 -21.61 [-4.74, -3.30] [-5.94, -4.61]

(-24.35, -18.88) (-4.84, -3.21) (-6.07, -4.50)

Baseline 2007 -24.91 [-4.70, -3.62] [-6.15, -5.14]
(-28.28, -21.55) (-4.81, -3.52) (-6.28, -5.01)

2010
Baseline 2006 -50.94 [-7.40, -5.38] [-10.51, -8.63]

(-55.30, -46.58) (-7.52, -5.28) (-10.67, -8.49)

Baseline 2007 -53.93 [-7.42, -5.89] [-10.74, -9.32]
(-58.58, -49.29) (-7.53, -5.79) (-10.90, -9.17)

Cumulative 2009-2010
Baseline 2006 -2539 [-5524, -3948] [-8064, -6488]

(-2765, -2314) (-5618, -3873) (-8190, -6377)

Baseline 2007 -2760 [-5514, -4327] [-8274, -7086]
(-3019, -2501) (-5608, -4244) (-8408, -6960)

Cumulated Treatment Effects, 2009-2010: Avoided Carbon Emissions

CTT CTU CTE

Emissions
Baseline 2006 -30.17 [-58.45, -41.78] [-88.62, -71.96]

(-33.06, -27.29) (-59.47, -40.98) (-90.06, -70.70)

Baseline 2007 -32.80 [-58.34, -45.79] [-91.14, -78.58]
(-36.09, -29.50) (-59.37, -44.90) (-92.67, -77.15)

Value (U$ 20/tCO2)
Baseline 2006 2.21 [3.06, 4.29] [5.28, 6.50]

(2.00, 2.42) (3.00, 4.36) (5.18, 6.60)

Baseline 2007 2.41 [3.36, 4.28] [5.76, 6.68]
(2.16, 2.65) (3.29, 4.35) (5.66, 6.80)

Notes: 95% confidence intervals are in parentheses. For ATT and CTT, the intervals are com-
puted based on the standard i.i.d. nonparametric bootstrap, where the i.i.d. resampling occurs
in the cross-sectional dimension. For ATU, ATE, CTU, and CTE, they are based on Imbens
and Manski (2004). We implemented 500 bootstrap replications. Deforestation is measured in
square kilometres. Emissions are measured in millions of tons of carbon. Values are measured
in billion US$, assuming a social cost of carbon of US$ 20/tCO2. The calculation uses the fact
that 1 tC = (44/12) tCO2.
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Table 6: Average and Cumulated Treatment Effects, CIC Model with Spillovers – Deforestation and Carbon
Emissions

Average Treatment Effects: Deforestation

ATT ATU ATS ATE

2009
Baseline 2006 -24.65 [-4.46, -2.80] [-11.52, -11.51] [-6.25, -4.78]

(-27.59, -21.71) (-4.56, -2.72) (-13.74, -9.31) (-6.38, -4.67)

Baseline 2007 -29.27 [-4.46, -3.29] [-16.69, -16.69] [-6.83, -5.80]
(-33.02, -25.52) (-4.56, -3.20) (-20.05, -13.35) (-6.98, -5.66)

2010
Baseline 2006 -52.63 [-6.79, -4.97] [-22.42, -15.28] [-10.83, -8.88]

(-57.16, -48.10) (-6.90, -4.88) (-24.97, -12.38) (-10.99, -8.73)

Baseline 2007 -58.57 [-6.85, -5.57] [-25.56, -18.43] [-11.46, -9.98]
(-63.49, -53.65) (-6.96, -5.47) (-28.95, -14.69) (-11.63, -9.82)

Cumulative 2009-2010
Baseline 2006 -2705 [-4849, -3347] [-814, -643] [-8368, -6695]

(-2945, -2464) (-4931, -3282) (-915, -540) (-8499, -6577)

Baseline 2007 -3074 [-4877, -3815] [-1014, -843] [-8965, -7732]
(-3356, -2793) (-4957, -3746) (-1156, -702) (-9107, -7596)

Cumulated Treatment Effects, 2009-2010: Avoided Carbon Emissions

CTT CTU CTS CTE

Emissions
Baseline 2006 -32.19 [-50.10, -34.59] [-9.69, -7.64] [-91.99, -74.42]

(-35.28, -29.11) (-50.99, -33.91) (-11.00, -6.32) (-93.48, -73.08)

Baseline 2007 -36.59 [-50.39, -39.43] [-12.09, -10.04] [-99.08, -86.06]
(-40.21, -32.98) (-51.26, -38.70) (-13.92, -8.24) (-100.73, -84.49)

Value (U$ 20/tCO2)
Baseline 2006 2.36 [2.54, 3.67] [0.56, 0.71] [5.46, 6.75]

(2.13, 2.59) (2.49, 3.74) (0.46, 0.81) (5.36, 6.86)

Baseline 2007 2.68 [2.89, 3.70] [0.74, 0.89] [6.31, 7.27]
(2.42, 2.95) (2.84, 3.76) (0.60, 1.02) (6.20, 7.39)

Notes: 95% confidence intervals are in parentheses. For ATT and CTT, the intervals are computed based on the
standard i.i.d. nonparametric bootstrap, where the i.i.d. resampling occurs in the cross-sectional dimension. For ATU,
ATS, ATE, CTU, CTS, and CTE, they are based on Imbens and Manski (2004). We implemented 500 bootstrap
replications. Deforestation is measured in square kilometres. Emissions are measured in millions of tons of carbon.
Values are measured in billion US$, assuming assuming a social cost of carbon of US$ 20/tCO2. The calculation uses
the fact that 1 tC = (44/12) tCO2.
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Table 7: Tests based on Changes-in-Changes Model

Placebo Test ‘No Effect’ Test
Stochastic

Dominance Test

KS CM KS CM KS CM

Unconditional 0.734 0.498 0.052 0.010 1.000 1.000
Residuals 0.660 0.592 0.002 0.000 1.000 1.000

Notes: The Placebo Test compares the factual and counterfactual distributions when
we wrongly impose that the policy intervention was set in 2007; the null hypothesis
states that the two distributions are equal to each other. The ‘No Effect’ Test is
similar to the Placebo Test, but uses the correct timing of the intervention. The
Stochastic Dominance Test assesses whether the counterfactual distribution is every-
where below the factual distribution. The test statistics are the Kolmogorov-Smirnov
(KS) and the Cramer-von Mises (CM) statistics. We apply each test both on the
log odds ratio of deforestation shares not conditioning on covariates (corresponding
to the Unconditional row), and on the residuals, after partialling the covariates out
(corresponding to the Residuals row). The cells present the p–values based on 500
bootstrap replications. The tests are proposed and developed by Melly and Santan-
gelo (2015).
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Table 8: Priority Status and Spillovers: Other Outcomes

(1) (2) (3) (4)
Fines Alerts Total Credit PA Share

Treated Group x Year=2007 7.738 -405.3∗∗∗ -2039.3 -0.00375
(5.102) (101.2) (1978.3) (0.00511)

Treated Group x Year=2008 28.05∗∗ -95.12 4888.7 0.0121
(8.480) (82.75) (2665.0) (0.0156)

Treated Group x Year=2009 14.55 -398.0∗∗∗ -4215.2 0.00893
(7.791) (111.3) (2188.7) (0.0160)

Treated Group x Year=2010 0.619 -605.1∗∗∗ 484.0 0.00860
(6.216) (101.9) (3069.8) (0.0160)

Spillover Group x Year=2007 -9.996 -83.02 -5113.9 -0.00866∗∗

(6.912) (44.03) (3141.2) (0.00274)

Spillover Group x Year=2008 -1.841 -13.13 492.1 -0.00658∗

(8.940) (45.02) (2333.2) (0.00314)

Spillover Group x Year=2009 -10.65 -81.95 -998.6 -0.0104∗∗

(10.30) (52.45) (3498.2) (0.00374)

Spillover Group x Year=2010 -8.945 -110.7∗ 371.5 -0.0117∗∗

(7.057) (50.00) (2589.5) (0.00385)

Year=2007 0.678 -37.13∗∗∗ -361.8 0.0110∗∗

(1.644) (9.282) (581.6) (0.00356)

Year=2008 4.783∗ -5.210 823.8 0.0190∗∗∗

(2.265) (9.780) (745.9) (0.00493)

Year=2009 2.654 -19.95 -383.4 0.0185∗∗∗

(2.807) (10.65) (690.1) (0.00454)

Year=2010 2.073 -33.18∗∗∗ 1587.2∗ 0.0204∗∗∗

(2.213) (9.808) (693.5) (0.00479)

Lagged Rainfall -0.568 8.346∗∗ -431.7∗ 0.000730
(0.698) (2.989) (185.0) (0.000791)

Lagged Rainfall Squared 0.000198 -0.106∗ 8.530∗∗ -0.0000219
(0.0106) (0.0415) (2.987) (0.0000142)

Lagged Temperature -2.370 29.42∗∗ -274.3 -0.00663
(1.460) (9.251) (369.1) (0.00444)

Price of Beef Lagged -0.142 -0.335 -15.04 -0.000849∗∗∗

(0.0883) (0.395) (33.51) (0.000206)

Price of Crops Lagged 15.91∗ 120.7∗ -17437.6∗∗∗ -0.0233∗

(7.591) (54.76) (2503.8) (0.00932)

Lagged GDP -17.01 -49.47 -410.7 -0.00840
(9.220) (45.18) (3164.6) (0.00716)

R2 0.073 0.297 0.094 0.052
Observations 2450 2450 2325 2450

Notes: This table shows estimates from regressions of the outcome variables listed at the top of each column
on Priority Status and Spillovers indicators, interacted with time dummies, along with other observables.
An observation is a municipality in the Brazilian Amazon. The dependent variables are (1) the number of
fines, (2) the number of alerts, (3) the total rural credit, and (4) the share of protected areas. Rainfall is
measured in millimetres (mm) and temperature is measured in degrees Celsius (◦C). The price of beef is a
weighted average of international beef prices weighted by the ratio of head of cattle to municipal area. The
price of crops is the price index based on a principal component analysis applied to individual weighted
prices of the most predominant crops in the Brazilian Amazon (the weights are given by the share of
the municipal area used to cultivate the crop). For all agricultural products, the weights are fixed in the
period 2000–2001. Municipal GDP is measured in million Reais. All monetary amounts are expressed in
December 2011 Reais. The coefficient on the constant term is omitted. All regressions include municipality
fixed effects. Robust standard errors in parentheses are clustered at the municipality level.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001 49



Table 9: Percent Correctly Predicted, Ex-post Deforestation Optimal Rule without Spillovers

Constraint: Total Area Number of Municipalities

Optimal Optimal

0 1 0 1

Observed Percent Correct Percent Correct
0 382 73 83.9 439 16 96.4
1 7 28 80.0 16 19 54.3

Overall 83.7 Overall 93.5

Notes: The baseline year is 2006.

Table 10: Comparing Ex-Post Optimal, Priority, and Randomly Selected Lists – without Spillovers

Constraint: Total Area Number of Municipalities

Observed vs Optimal Observed vs Optimal Random vs Optimal

Ratio Value Ratio Value Ratio Value

Total Deforestation
Baseline 2006 1.06 - 1.06 - 1.23 -
Baseline 2007 1.06 - 1.06 - 1.25 -

Total Carbon Emissions
Baseline 2006 1.05 562 1.07 870 1.26 2,704
Baseline 2007 1.05 620 1.08 957 1.29 2,951

Notes: ‘Ratio’ divides total deforestation (total emissions) evaluated at the observed list by the ex-post optimal total
deforestation (total emissions). ‘Value’ takes their difference. Values are measured in million US$, assuming a social cost
of carbon of US$ 20/tCO2.
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Table 11: Percent Correctly Predicted, Ex-post Deforestation Optimal Rule with Spillovers

Constraint: Total Area Number of Municipalities

Optimal Optimal

0 1 0 1

Observed Percent Correct Percent Correct
0 365 90 80.2 436 19 95.8
1 12 23 65.7 19 16 45.7

Overall 79.2 Overall 92.2

Notes: The baseline year is 2006.

Table 12: Comparing Ex-Post Optimal, Priority, and Randomly Selected Lists – with Spillovers

Constraint: Total Area Number of Municipalities

Observed vs Optimal Observed vs Optimal Random vs Optimal

Ratio Value Ratio Value Ratio Value

Total Deforestation
Baseline 2006 1.09 - 1.07 - 1.29 -
Baseline 2007 1.14 - 1.10 - 1.39 -

Total Carbon Emissions
Baseline 2006 1.08 897 1.08 934 1.34 2,651
Baseline 2007 1.14 1,445 1.12 1,314 1.44 3,122

Notes: ‘Ratio’ divides total deforestation (total emissions) evaluated at the observed list by the ex-post optimal total
deforestation (total emissions). ‘Value’ takes their difference. Values are measured in million US$, assuming a social cost
of carbon of US$ 20/tCO2.

51



0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

0

5

10

15

20

25

30

35

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

D
ef

o
re

st
at

io
n

 in
cr

e
m

e
n

t 
(k

m
2
)

x 
1

0
0

0

deforestation increment cattle price index soybean price index

2004: 1st phase PPCDAm

2008: 2nd phase PPCDAm

Figure 1: Incremental Deforestation and Key Policy Changes
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Figure 2: Incremental Deforestation and Agricultural Commodity Prices, by year
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Figure 3: Map of Brazil, Amazonia, and the Location of the Priority List
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(a) Deforestation, 2006 (b) Deforestation, 2007

(c) Deforestation, 2008 (d) Deforestation, 2009

(e) Deforestation, 2010 (f) Cumulative Deforestation by 2010

Figure 4: Map of Deforestation between 2006 and 2010 (with Priority Municipalities overlaid)
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Figure 5: Selection onto Priority List in 2008 – Combinations of Criteria Variables (Zmt−1)
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Figure 6: Fines Issued for Environmental Crimes, by Newly Deforested Area
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Figure 7: Evolution of Deforestation by Priority Status: level and log odds ratio of shares
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Figure 8: Evolution of Deforestation by Group: level and log odds ratio of shares
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(a) Priority List (b) Priority List and Protected Areas

(c) Optimal List based on Total Area (d) Optimal List based on Number of Municipalities

Figure 10: Location of Priority List, Protected Areas, and Ex-post Optimal Lists without Spillovers
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(a) Constraint: Total Area

(b) Constraint: Number of Municipalities

Figure 11: Ex-Post Minimax Carbon Emissions, when Varying the Constraints
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(a) No Spillover Optimal List based on Total Area (b) Spillover Optimal List based on Total Area

(c) No Spillover Optimal List based on Number of
Municipalities

(d) Spillover Optimal List based on Number of Mu-
nicipalities

Figure 12: Location of Ex-post Optimal Lists without and with Spillover Effects
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A Appendix: Statistical Treatment Rules

This brief appendix reviews a growing literature that analyzes statistical treatment rules in econo-

metrics, including papers by Manski (2004, 2005), Stoye (2009), Hirano and Porter (2009), Bhat-

tacharya and Dupas (2012), Kasy (2016), and Kitagawa and Tetenov (2018), among others. It

places the counterfactual portion of our study in that context.

In general, statistical assignment rules depend on three factors: the decision maker’s objective

function, the identification and estimation of conditional treatment effects conditioning on covari-

ates, and constraints on the class of allowable policies (such as budget or capacity constraints).

Almost all papers in this area assume a utilitarian objective function, given by the sum of

expected potential outcomes of the individuals in the targeted population. None of them allows for

interactions (or spillovers) among individuals or treated groups in the population (that is, violations

of SUTVA – the ‘Stable Unit Treatment Value Assumption’). In contrast, our analysis does allow

for such interactions.

One of the few empirical applications is the important study by Dehejia (2005), examining the

Greater Avenues for Independence (GAIN) program, which began in California in 1986 and had

the aim of increasing employment and earnings among welfare (AFDC) recipients. He considers a

decision maker choosing whether to assign a welfare recipient into GAIN or AFDC, based on the

individual’s (predictive) distribution of future earnings under GAIN with the distribution of future

earnings under AFDC. In the process, he solves for a Bayes decision rule given a prior distribu-

tion for model parameters of the treatment effects (see also Chamberlain, 2011), and finds that

individualized assignment rules can indeed raise the average impact of the program by exploiting

treatment-impact heterogeneity.

Several studies (including Hirano and Porter, 2009; Bhattacharya and Dupas, 2012; Armstrong

and Shen, 2015) consider the statistical properties of the plug-in approach to empirical treatment

choice. This line of work assumes that treatments in the data were assigned independently of

the potential outcomes, conditional on observables (i.e., they impose the unconfoundedness, or

selection-on-observables, assumption). Treatment effects are then point-identified and estimated

using flexible methods.58

Instead of using plug-in assignment rules, Kitagawa and Tetenov (2018) propose estimating a

treatment policy by maximizing the sample analog of average social welfare over a class of candidate

58Specifically, Hirano and Porter (2009) investigate the local asymptotic minimax optimality of the estimated plug-
in rule. Bhattacharya and Dupas (2012) study the asymptotic properties of the plug-in rule under an aggregate budget
constraint, and develop confidence intervals for the value of the planner’s objective function; they also illustrate the
method using the subsidies for bed nets experiment in Kenya. Armstrong and Shen (2015) make use of the conditional
moment inequalities literature to perform statistical inference on the assignment rule with the objective of quantifying
how strong the evidence is in favor of treating certain individuals.
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policies. They also impose unconfoundedness in the data, so that conditional ATEs are point-

identified, and they allow for budget constraints (although they assume a random allocation among

the individuals selected in the unconstrained first-best case whenever the constraint is binding).

Under a similar set of assumptions, Athey and Wager (2018) derive an improved welfare regret

upper bound, and show how a doubly-robust machine learning approach can attain this bound

asymptotically.

In contrast with studies assuming point-identified treatment effects, the research agenda initi-

ated by Manski (2000) examines policy choices under ambiguity, where ambiguity arises when the

decision maker has partial knowledge of treatment responses and is not willing to place a subjective

distribution on the unknowns. Manski shows that there is no unambiguously correct decision rule

when different policies are not dominated by others in all possible states. In such a scenario, he

proposes making treatment choices under either a maxmin or a minimax-regret objective function.

In the absence of budget constraints, Manski (2004) considers a minimax-regret function, investi-

gating rules assigning individuals to treatments that yield the best (partially identified) outcomes,

conditional on observed covariates. He derives a closed-form bound on the maximum regret of any

such rule. Stoye (2009) then extends this work, deriving exact minimax-regret rules for randomized

experiments.

Kasy (2016) is the only study that examines partial identification of treatment effects with treat-

ment choice under budget constraints. He considers identification (and estimation) of a partially-

ordered welfare ranking over policies with a set-identified welfare criterion. Specifically, Kasy

investigates the conditions under which it is possible to rank two policies given some objective

function – that is, when one can identify the sign of the difference in the objective function under

the two policies. This general identification problem is distinct from the task of deriving the optimal

assignment rule under ambiguity based on a maxmin or minmax-regret social welfare objective.

Overall, there is no paper (either methodological or involving an empirical application) in which

all the following hold simultaneously: (a) the unconfoundedness assumptions fail, so that the

treatment effect and the welfare objective function are partially identified; (b) violations of SUTVA

are allowed; (c) the treatment choice is made under ambiguity; and (d) the set of allowable policies

must satisfy a budget (or capacity) constraint. In these combined respects, our empirical application

is novel.
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B Appendix: Data

In this section, we discuss data sources and the construction of variables used in our study.

Satellite-based measures of land use. Annual measures of forested area remaining, the cumulative

deforested area, and incremental deforested area in each municipality are taken from the Brazilian

government’s satellite-based forest monitoring program known as PRODES. Other land use classifi-

cations in PRODES include ‘non-forest’ (mostly cerrado, which is similar to savanna), hydrography,

clouds, and ‘unobserved.’ The data are publicly available at both pixel and municipality levels.59

Since 1998, Brazil’s National Institute for Space Research (INPE) has been using images from

LANDSAT-class satellites to produce the official statistics used by the government to track de-

forestation and inform public policy (INPE, 2017). The classification of land cover is performed

in several steps. First, because deforestation typically occurs during the dry season, INPE selects

LANDSAT images between July and September with minimal cloud coverage (the spatial resolution

is 60× 60 metres). Then, a linear spectral mixture model for each pixel in the data is estimated to

obtain the pixel’s fraction of different components that help predict land cover.60 INPE then groups

adjacent pixels in larger regions based on their spectral similarities. After image segmentation, it

implements a cluster unsupervised classification algorithm to generate the land cover classifications.

Finally, several photointerpreters verify the results (and reclassify the land cover when necessary,

based on specific contexts, on historical data, and on their judgement). Annual deforestation are

calculated taking August 1st as the reference date. (A PRODES year spans the twelve months

leading up to July 31st of the current calendar year.) Deforestation is considered irreversible, i.e.,

once an area has been deforested, it remains classified as deforested in subsequent years.61

INPE’s classification focuses on detecting deforestation. Yet observed remaining forests have

missing observations in some years and do not always decrease monotonically over time (as it

should, given that deforestation is considered irreversible). For this reason, we opt to measure

59In each year, a small amount of land area is unobserved due to cloud cover. In our data, the average share
of cloud cover over the municipal area is 2.5 percent (and the median is zero). Deforestation that goes undetected
because of cloud cover in one year is attributed to the first subsequent year in which data permit a determination
about land use, as is reasonable.

60The pixel components considered are soil, vegetation, and shade. The image fractions that are shade and soil
help in the process of identifying deforested areas. Image fraction shade is helpful for areas dominated by tropical
forests due to the various strata in the forest structure and the irregularity of the canopy, which contrasts with a low
amount of shade in deforested areas. Image fraction soil helps identify transition/contact areas between forest and
cerrado (Camara et al., 2006).

61There is an important distinction between incremental deforested area and the deforestation rate. Incremental
deforested area measures newly detected primary forest loss, while the deforestation rate adds to the increment esti-
mates of cleared forest area that are under unobserved/clouded areas, based on local extrapolation. The incremental
deforested area is available as spatial data. This is the deforestation measure we use in the empirical analysis. In
contrast, the deforestation rate is available only at the aggregate level (and is presented publicly by INPE as the
official measurement of annual deforestation).
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‘remaining forest’ as the remaining available area in the municipality – that is, the total municipal

area minus the non-forested areas, water bodies, and previous cumulative deforested areas (we

use 2002 as the base year). This guarantees consistency over time (the correlation between our

proxy and the PRODES remaining forested area being 0.99). We drop observations with minimal

remaining available area (less than 6 km2). These are small municipalities mostly located at the

extreme eastern region of the Amazon Biome, which are not especially relevant for policies focused

on preventing deforestation.62 Finally, in order to calculate the log odds ratio of the shares of

deforestation, we assume the minimum amount of deforestation in a municipality in any year is

0.01 km2.63

Priority status. The official list of Priority municipalities (with precise dates for entry and exit)

comes from the Ministry of the Environment. Because there are few municipalities entering and

exiting the blacklist from 2009 on, not much can be said with a high degree of accuracy about

the impact of the policy in these cases. For this reason, we focus on the initial list of Priority

municipalities established in 2008 and consider them as our treatment group. Our control group is

the set of municipalities that did not enter the list before 2010.

Protected areas. We calculate the total amount of protected area – whether managed by federal,

state, or municipal government – using geo-referenced data from the National Register of Conser-

vation Units, maintained by the Ministry of the Environment. Initiatives to create and expand

protected areas were concentrated in the first phase of the PPCDAm (spanning 2004–2007), before

the first municipalities were assigned to the Priority List in 2008.

Prices. Cattle ranching and crop cultivation have been important drivers of deforestation in the

Amazon historically. To help disentangle the effects of changing commodity prices on deforestation

from the effects of policy interventions, we construct beef and crop price indices for each municipality

based on pre-determined cross-sectional variation in the crop mix across municipalities and time-

series variation in commodity prices received by producers in the southern Brazilian state of Paraná;

unlike prices received by producers further north in the Amazon, prices there are exogenous to

the policy interventions we wish to evaluate. Data on prices received by producers of beef, soy,

rice, corn, cassava, and cane sugar in the southern state of Paraná are taken from the State

Secretariat for Agriculture and Food Supply. (The five selected crops account for approximately

70 percent of total crop harvested area in the Brazilian Amazon averaged across the 2000s.) Prices

62Because of the small values used in the denominator in the calculation of deforestation shares, these small
municipalities also exhibit implausibly large oscillations in shares of deforestation over time.

63This is analogous to setting minimum shares in logit models to be greater than or equal to a small strictly
positive number ε > 0, for example, ε = 10−4 or ε = 10−5.
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are deflated to 2011 Brazilian reais. Municipality-level data on the amount and value of each

form of agricultural production, which we use to weight the Paraná prices, come from surveys

administered by the Brazilian Institute of Geography and Statistics (IBGE) – the Municipal Crop

Survey and the Municipal Livestock Survey. Specifically, for beef cattle, the weight is given by

the ratio of head of cattle to municipal area (given that annual pasture area is not observable).

For crops, we first calculate a weighted price for each crop by multiplying the Paraná prices by

the share of the municipal area used to cultivate the crop. For all agricultural products, we fix

the weights in the period 2000–2001 (averaged over these two years), so that they capture the

relative importance of the different products within municipalities’ agricultural production in years

preceding the (available) sample period, and preceding the structural break that occurred in 2004–

2005 with the first phase of the PPCDAm. Finally, we apply principal component analysis to the

individual weighted crop prices to derive a single index, capturing the price variations common to

the five selected crops. The crop index is based on the first principal component; given that the first

component maximizes price variance, it provides a more comprehensive measure of the agricultural

output price scenario for this analysis than the individual prices (see Assunção and Rocha, 2014;

Assunção et al., 2017).

Rainfall and Temperature. Drier forests require less effort to clear and convert to pasture or crop-

land because they can be burnt more easily. A prolonged dry season or otherwise low annual

rainfall can thus contribute to higher rates of deforestation. Our measures of annual precipitation

and temperature in each municipality are taken from Matsuura and Willmott (2012), whose gridded

estimates of total monthly precipitation and average temperature are based on spatial interpola-

tion of climate data from a large number of monitoring stations operating in South America and

elsewhere. We take the accumulated precipitation over the year as our rainfall variable; our annual

temperature is the average across months. (Annual values are constructed based on the PRODES

year.) Municipal data are obtained from the intersection of the municipal area with one or more

data points on the Matsuura and Willmott’s grid (we take the within-municipality average when

appropriate). In cases in which the intersection is empty, we construct a buffer area around the

municipality boundary and then take the intersection of the buffer area with the grid points.

Municipalities’ Gross Domestic Product. Annual data on municipalities’ total and agricultural

GDP come from IBGEs regional account system. Agricultural GDP includes crop and livestock

production.

Number of Cattle and Crop Area. Annual data on the number of cattle and crop area per munic-

ipality come from the IBGE’s surveys: the Municipal Livestock Survey and the Municipal Crop
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Survey.

Carbon Stock. The amount of carbon stock above ground is calculated by Baccini et al. (2012). We

combined their raster data of carbon stock with the PRODES data to calculate the average carbon

stock in forested and deforested areas in each municipality.64

Fines. Data on the number of fines issued for environmental offenses come from IBAMA. We

collapse the information down to a municipality-year panel to match our deforestation data. To

maintain consistency, we consider the PRODES year as the relevant unit of time in our sample

– i.e., the total number of fines in a municiplity in a given year captures all fines applied in that

municipality in the twelve months leading up to August of that year.

Alerts. Forest clearing alert data come from the Real-Time System for the Detection of Deforesta-

tion (DETER), developed and operated by the space agency INPE. DETER makes use of satellite

images from MODIS, which has a spatial resolution of 250m (25 hectares), and generates alerts

biweekly.65 The data are publicly available in vector format and are aggregated up to the monthly

level. Gandour (2018) has rasterized the georeferenced alerts at a 900m spatial resolution, and

constructed panel data in which a cell in the raster data takes on a value of 1 if it contains an alert

and a value of 0 otherwise. Gandour has also added the number of alerts per municipality per year

(consistently with the PRODES year) and has generously shared the aggregated data with us, for

which we are very grateful.

The alert system was implemented in 2004, but remained in experimental mode through mid-

2005. While few months of data are available for 2004 and early-2005, consistent alert data starts

in the second half of 2005 (Gandour, 2018). Consonant with the time period covered in our main

data set, we make use of DETER alert data from 2006 to 2010.

Rural Credit. The Brazilian Central Bank collects detailed information covering all rural loan con-

tracts negotiated by farmers and banks (including private and state-owned banks, as well as credit

cooperatives). The microdata contain information about the amount borrowed, the interest rate,

initial and maturation dates, and the category under which credit was loaned (short-term operating

funds, investment, or commercialization). The values of the contract loans were aggregated up to

the municipality-year level (Assunção and Rocha, 2014).

64There are 18 municipalities with missing carbon stock data, most of them in the Eastern Amazon.
65After 2015, INPE has upgraded the system in order to detect changes in land cover in patches larger than 1

hectare (instead of areas larger than 25 hectares), albeit at a lower temporal frequency (Gandour, 2018).
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C Appendix: Discussion of Alternative Identification Strategies

In this appendix, we offer a brief discussion of other identification strategies commonly employed

in the literature.

Selection-on-Observables. Selection-on-observable techniques require the Conditional Inde-

pendence Assumption (CIA). In the current application, that would require the independence

of Umt and Gm given Wmt, where Wmt can include Xmt and Zmt−1 (recalling Zmt−1 =(
Z1
mt−1, Z

2
mt−1, Z

3
mt−1

)
), and lagged variables. From (1), it is clear that conditioning on the cri-

teria variables Zmt−1 may suffice to satisfy CIA. Recall that Zmt−1 almost completely determines

Priority status, so there is little room left for Gm and Umt to be correlated. However, the common

support assumption required for selection-on-observable techniques fails for the same reason: it is

not satisfied because there is so little overlap in the data between Priority and non-Priority groups

given Zmt−1.

Regression Discontinuity Designs. Given the evidence in the data for the selection rule (1),

a natural candidate for estimating treatment effects is to exploit a regression discontinuity (RD)

design. However, in our case, RD suffers from two important limitations. First, there are few obser-

vations close to the threshold frontier. This severely limits the value of the regression discontinuity

approach. Second, and more importantly, this approach identifies average treatment effects at the

cutoff frontier, but this is not the parameter we are interested in. Instead, we are interested in

estimating policy treatment effects, including treatment effects other than the effects at that cutoff

frontier.

Instrumental Variables Approaches. Given the triangular system of equations (1) and (5),

another possibility would be to exploit instrumental variables. The criteria variables Zmt−1 might

seem to be natural instruments. However, this approach requires Zmt−1 to be independent of

the unobservables Umt, which is not the case when Umt is serially correlated. For instance, if

Umt incorporates a fixed effect term αm, then Zmt−1 is not independent of αm because the criteria

variables involve past deforestation levels, and so are not valid instruments. We expect municipality

fixed effects to be present because time-invariant unmeasured factors that differ systematically

across municipalities, such as soil quality, climate conditions and topography, are likely to affect

farmers’ decisions to deforest. (Furthermore, the persistence in the deforestation process suggests

that time-varying unobservables may be serially correlated even in the absence of fixed effects.)

Finally, note that although the flexible marginal treatment effects framework developed by Heckman

68



and Vytlacil (2005) could be implemented to recover the ATU (as is needed to investigate optimal

targeting), it also requires access to valid instruments.
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D Appendix: Dynamic Treatment Effects

In this appendix, we describe how dynamic treatment effects are incorporated into the analysis.

Doing so when calculating counterfactual deforestation is important because the evolution of the

remaining forested area depends on deforestation in previous periods. For simplicity, consider three

consecutive periods: t, t+ 1, and t+ 2, where t refers to the time period before the treatment, and

t+ 1 and t+ 2 refer to the first and second time periods after the treatment. Here, we focus on the

second period t+ 2.

To condition on the counterfactual deforestation in period t+ 1, first note that, for any level of

deforestation d, there exists a unique v such that d = ϕ (X, v) × A. Then, potential deforestation

Dj at t + 2 conditioning on the potential deforestation Dl at t + 1 at deforestation level d, for

j, l = 0, 1, and for group G = g, is

E
[
Dj
mt+2|D

l
mt+1 = d,Xmt+2, Xmt+1, Amt+1, Gm = g

]
= E

[
Dj
mt+2|D

l
mt+1 = ϕ (Xmt+1, v)×Amt+1, Xmt+2, Xmt+1, Amt+1, Gm = g

]
=

∫ [
ϕ
(
Xmt+2, v

′) (1− ϕ (Xmt+1, v))Amt+1

]
dF

V jgt+2

(
v′
)
.

By the Law of Iterated Expectations,

E
[
Dj
mt+2|Xmt+2, Xmt+1, Amt+1, Gm = g

]
=

∫ [∫ [
ϕ
(
Xmt+2, v

′) (1− ϕ (Xmt+1, v))Amt+1

]
dF

V jgt+2

(
v′
)]
dFV lgt+1

(v) . (12)

When the support condition does not hold, bounds for potential deforestation at t+ 2 become∫ [∫ [
ϕ
(
Xmt+2, v

′) (1− ϕ (Xmt+1, v))Amt+1

]
dFL

V jgt+2

(
v′
)]
dFL

V lgt+1
(v)

≤ E
[
Dj
mt+2|Xmt+2, Xmt+1, Amt+1, Gm = g

]
≤

∫ [∫ [
ϕ
(
Xmt+2, v

′) (1− ϕ (Xmt+1, v))Amt+1

]
dFU

V jgt+2

(
v′
)]
dFU

V lgt+1
(v) . (13)

Based on this reasoning, one can compute (and bound) average treatment effects for any se-

quence of treatments for both treated and untreated groups in time periods t+ 3, t+ 4, etc.
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E Appendix: Minimax Optimal Policy

In this appendix, we explain in more detail how the ex-post optimal lists are calculated in practice.

Denote the counterfactual assignment rule by φ = (φ1, ...φM )′. This assigns the treatment to

municipalities m = 1, ...,M and can be either deterministic φm ∈ {0, 1} or probabilistic φm ∈ [0, 1].

Denote the expected deforestation of municipality m that is in group Gm = g in case it is placed

on the Priority List by

DT
gm ≡ E

[
DT
m|Xm, Am, Gm = g

]
,

where the superscript T denotes ‘treated.’ Similarly, if m is not put on the list, we have

DU
gm ≡ E

[
DU
m|Xm, Am, Gm = g

]
,

where the superscript U denotes ‘untreated.’ (We omit the time dimension t to simplify exposition.)

When Dj
gm is not point-identified, we adopt the minimax criterion to select the optimal list, in which

case we make use of the (estimated) upper bound on Dj
gm. From equation (7) in the main text,

the upper bound is

sup
γ∈Γ

Eγ
[
Dj
m|Xm, Am, Gm = g

]
=

∫
[ϕ (Xm, v)×Am] dFU

V jg
(v) ≡ Dj

gm.

The expected levels of deforestation (and their upper bounds) are estimated in the data using the

CIC model.

As mentioned in the main text, we do not select a list that changes over time as this complicates

the problem substantially, given the combinatorics involved. Instead, the optimal list is based on

the sum of deforestation in the two years after the treatment (2009 and 2010). That is, the amount

of deforestation that enters the social cost function is the sum of the expected deforestation in 2009

(calculated based on equation (6) in the main text), and the expected deforestation in the following

year, taking into account the counterfactual remaining forested area from the previous year, as

explained in Appendix D – see equation (12). (Upper bounds are placed where appropriate.)
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E.1 The Baseline Case

When spillover effects are not considered, the objective function of the policy maker is to select an

assignment to minimize the social cost function SC(φ), given by

SC (φ) =
M∑
m=1

φm

[
{Gm = 1}DT

1m + {Gm = 0}DT
0m

]
+ (1− φm)

[
{Gm = 1}DU

1m + {Gm = 0}DU
0m

]
,

where we use {.} to denote the indicator function. Note that the counterfactual deforestation for the

treated group in the absence of the intervention is point-identified in the data – that is, D
U
1m=DU

1m.

It is convenient to convert this to matrix notation. Let Dj
g be an Mg × 1 vector with elements

Dj
gm, for j = U, T , and g = 0, 1, where Mg is the number of municipalities in group g. Note that

when j = T and g = 0, we need to use the upper bound, i.e., DT
0 is composed of the elements D

T
0m,

for m = 1, ...,M0. For other combinations of j and g, we have point identification in the data. Let

Dj stack the vectors Dj
g for all g, so

DT =

 DT
0

DT
1

 ,DU =

 DU
0

DU
1 .


Then,

SC (φ) = DU ′1 +
(
DT −DU

)′
φ

where 1 is an M × 1 vector of ones. Minimizing SC(φ) under the constraints specified in the main

text is a simple linear programming problem.

E.2 Incorporating Spillovers into the Optimal List

To take spillover effects into account, we consider three groups in the data: Gm ∈ {0, 1, 2}. Group

1 is the treated group; group 0 is the ‘pure’ control; and group 2 is the ‘spillover’ group, which is

composed of the untreated municipalities that satisfy the following two criteria: (a) they have at

least one neighbor treated and (b) their previous deforestation levels were close to the threshold

selection criteria.

Now there are three possibilities: If a municipality m is treated, the expected deforestation is

DT
gm. If it is not treated, and either has no neighbor treated or is ‘far’ from the threshold criteria,

expected deforestation is DU
gm. If it is untreated with at least one neighbor treated and is ‘close’

to the threshold criteria, deforestation is DS
gm (where we use superscript S to denote ‘spillover’).
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To incorporate spillovers, we first consider the geographic component of the criteria. The

adjacency matrix indicating whether municipality m and n are neighbors is given by

W =


0 w12 · · · w1M

w21 0 · · · w2M

...
...

. . .
...

wM1 wM2 · · · 0

 ,

where wmn equals 0 if m and n are not neighbors, and it equals 1 if they are neighbors (setting

wmm = 0). Given W and a deterministic assignment rule to treatment φ ∈ {0, 1}M , the number of

neighbors of m that are treated is given by
∑M

n=1wmnφn. Define the function

Nm (φ) = 1

{
M∑
n=1

wmnφn > 0

}
,

which equals one if there is at least one neighbor of m treated, and zero if m has no neighbor

treated.

The second criterion is whether past deforestation of m is close to the threshold rule or not.

Denote this by the indicator variable Rm ∈ {0, 1}. The two criteria are satisfied only when

RmNm (φ) = 1. Specifically, when m is untreated, we expect deforestation to be DS
gm when

RmNm (φ) = 1, and DU
gm when RmNm (φ) = 0.

The objective function of the policy maker is now

SC (φ) =
M∑
m=1

φm

[
{Gm = 0}DT

0m + {Gm = 1}DT
1m + {Gm = 2}DT

2m

]
+ (1− φm) (1−RmNm (φ))

×
[
{Gm = 0}DU

0m + {Gm = 1}DU
1m + {Gm = 2}DU

2m

]
+ (1− φm) (RmNm (φ))

×
[
{Gm = 0}DS

0m + {Gm = 1}DS
1m + {Gm = 2}DS

2m

]
.

Again, when the counterfactual is point-identified, we have D
j
gm = Dj

gm. As before, let Dj
g be an

Mg × 1 vector with elements Dj
gm, for j = U, T, S, and g = 0, 1, 2 (where upper bounds D

j
gm are
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placed where appropriate). Let Dj stack the vectors Dj
g for all g, giving

DU =


DU

0

DU
1

DU
2

 ,DT =


DT

0

DT
1

DT
2

 ,DS =


DS

0

DS
1

DS
2

 .
Also define the vector satisfying the criteria for the spillovers effects:

NR(φ) = {Wφ > 0} ◦R,

where R is the M×1 vector of municipalities with elements Rm ∈ {0, 1}, and ◦ indicates Hadamard

(i.e., element-by-element) multiplication. Then

SC (φ) =
[
DU +Diag

(
DS −DU

)
NR(φ)

]′
1

+
[
DT −DU −Diag

(
DS −DU

)
NR(φ)

]′
φ.

Given that SC(φ) is non-linear and non-differentiable in φ (because of Nm (φ)), we cannot solve

the minimax problem using standard methods (e.g., linear programming or Newton-Raphson).

Instead, we use genetic algorithm to find the global minimum (Deep et al., 2009).66

The genetic algorithm is a stochastic search algorithm, which is convenient in the current

context because it allows for integer optimization in high-dimensional constrained minimization

problems. The procedure requires an initial population matrix, in which each row represents a

guess for the optimal list, φ – that is, each row is composed of elements taking values that are

either zeros or ones specifying which of the M = 490 municipalities are to be included on the

optimal list, subject to the constraint in question (either total number of municipalities or total

municipality area). In each step, the objective function is evaluated for each ‘individual’ (vector) in

the population matrix, and the most ‘promising’ individuals (in terms of minimizing the criterion

function) are selected stochastically from the population. The selected vectors are then modified –

recombined and possibly randomly mutated – to form a new generation of candidate solutions. The

new generation is then used in the next iteration of the procedure. The algorithm stops when the

value of the criterion function cannot be further reduced (up to a pre-determined tolerance level),

or when a maximum number of generations has been produced.

For each minimization problem considered in the main text, we run the algorithm 20 times.

66We have also implemented the following procedure: for an initial φk, compute NR(φk). Then update the list
φk+1 by solving the linear programming problem holding NR(φk) constant. Then iterate φk until convergence. Using
this procedure, convergence is not guaranteed, however. Indeed, in our experience, the procedure often ends up in
cycles and does not converge to a minimum.
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Each time we run the algorithm, we provide an initial population matrix with 2,000 candidate

solutions. The initial population is composed of (a) the observed list, (b) the optimal list ob-

tained by solving the linear programming problem using the worst-case deforestation for untreated

municipalities, regardless of whether an untreated municipality has a neighbor treated or not, (c)

the list of municipalities in ascending order of municipality area, (d) the list of municipalities in

descending order of municipality area, and (e) 1,995 randomly generated lists that satisfy the con-

straint (and that are independently generated every time we run the algorithm). The fraction of

‘promising’ individuals is set to be 20 percent of the population, and the mutation rate is set at

0.01. The maximum number of generations allowed is 49,000 (which equals 100 times the number

of municipalities M = 490), and the tolerance level for the objective function is 1e − 7. (We note

that the algorithm always stopped before hitting the maximum number of generations.) To check

the reliability of the genetic algorithm in our context, we also implemented it in the no spillover

case (i.e., when the linear programming solution is appropriate), and always obtained very similar

results (up to numerical precision).

We implemented the algorithm in MATLAB using the command “ga,” which is part of MAT-

LAB’s global optimization toolbox. For details about the creation, crossover, and mutation func-

tions used in the integer programming version of the genetic algorithm, see Deep et al. (2009).
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F Appendix: Robustness Analyses

In this appendix, we investigate the robustness of our main results to (a) the way we trimmed ob-

servations to reduce the impact of outliers in the estimated treatment effects, and (b) the definition

of the spillover group.

Trimming. Recall that, by placing all probability mass outside the support Supp (Y1mt+1) at the

left and right end points of Supp (Y0mt+1), we obtain the lower and upper bounds for FY 1
0t+1

(the

same reasoning applies to FY 0
1t+1

). In practice, when calculating the average treatment effects, we

follow the literature and trim observations below the 3rd and above the 97th percentiles to minimize

the influence of outliers (Ginther, 2000; Lee, 2009). We now show that the empirical results are

robust to such trimming – specifically, to trimming observations below and above the percentiles

[2.5, 97.5] and [3.5, 96.5]. Table 17 in Appendix G presents the results for the average treatment

effects. The top panel shows the estimated ATT, ATU, and ATE when we trim the observations

below the 2.5th and above the 97.5th percentiles, while the bottom panel presents the results when

we use the 3.5th and 96.5th percentiles. (Table 17 is comparable to Table 5 in the main text.) The

ATTs are unaffected by the trimming, and the estimated identified sets for the ATU and ATE differ

only slightly across specifications (and all treatment effects are significantly different from zero).

Table 18 in Appendix G presents the implications of the counterfactual optimal lists for defor-

estation and carbon emissions. As before, the top panel presents results for the [2.5, 97.5]–trimming,

and the bottom panel, for the [3.5, 96.5]–trimming (which are comparable to Table 10 in the main

text). Again, the results are robust to these different specifications.

Spillovers. As explained in the main text, one of the criteria used to define whether a municipality

belongs to the Spillover group or not concerns whether it has high levels of past deforestation.

Formally, we opted for the following condition: Z1
mt−1 ≥ 0.7 × 2, 700 km2 and Z2

mt−1 ≥ 0.7 × 220

km2. We now show that the results are robust to different definitions of how close past deforestation

is to these thresholds, considering Z1
mt−1 and Z2

mt−1 greater than 65 percent and 75 percent of the

threshold criteria.

The top panel of Table 19 in Appendix G shows the ATT, ATU, ATS, and ATE when we

consider the 65 percent definition for the spillover group, and the bottom panel presents the results

based on the 75 percent definition. (Table 19 is comparable to Table 6 in the main text.) The

ATTs and the identified sets for the ATU are essentially unaffected. The estimated ATSs increase

as we move from the 65 percent to the 75 percent definitions (though not always monotonically).

This is consistent with the interpretation that the greater the deforestation level in a municipality,
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the closer to the threshold criteria it is, and the more likely it is that farmers there may react

to the policy intervention. So, when the spillover group is composed of municipalities with lower

levels of past deforestation (the 65 percent group definition), we expect the treatment effects to be

smaller than when the group is composed of municipalilties with higher levels of past deforestation.

Still, the estimated magnitudes of the ATSs are similar across the different threshold criteria.

In addition, almost all 95 percent confidence intervals for the ATSs corresponding to the different

group definitions overlap (for each combination of the baseline year, 2006–2007, and post-treatment

year, 2009–2010).67

Table 20 in Appendix G presents the implications for the optimal lists (comparable to Table 12

in the main text). Once more, the baseline year 2006 provides more conservative estimates (as in

most specifications), and the results are robust to alternative definitions of the spillover group.

67The only exception corresponds to the confidence intervals of the 65 percent and 75 percent groups for the
baseline year 2006 and post-treatment year 2009. However, the distance between these confidence intervals is just
0.29 km2.
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G Appendix: Additional Tables and Figures

Table 13: Aggregate Time Series Data

Policies

Total new Municipalities Number of Expansions to

Year deforested area on Priority List fines issued protected area

2002 24,812 0 1,090 –

2003 29,243 0 2,906 6,499

2004 26,283 0 3,903 5,880

2005 22,838 0 4,107 14,985

2006 10,601 0 5,568 19,209

2007 11,142 0 4,696 16,314

2008 12,773 36 (+36/-0) 7,451 6,783

2009 5,568 43 (+7/-0) 5,607 2,729

2010 5,973 42 (+0/-1) 4,737 55

2011 5,547 47 (+6/-1) 5,113 86

2012 4,335 45 (+2/-4) – –

2013 5,185 – – –

Notes: Balanced Panel of 526 municipalities in the Amazon Biome.
Areas are measured in square kilometers.

Table 14: Support of Residuals V, by Group and Time Period

Group/Year Support of Vjt

Untreated Group, 2009 [-6.856, 2.927]
Treated Group, 2009 [-3.263, 0.660]
Untreated Group, 2010 [-7.658, 2.722]
Treated Group, 2010 [-3.205, 0.769]
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Table 15: Difference-in-Differences Results

(1) (2) (3) (4)
Log odds Log odds Log odds Log odds

Treated Group x Year=2009 -0.456∗∗ -0.457∗∗ -0.471∗∗ -0.471∗∗

(0.150) (0.147) (0.152) (0.150)

Treated Group x Year=2010 -0.928∗∗∗ -0.887∗∗∗ -0.964∗∗∗ -0.922∗∗∗

(0.160) (0.156) (0.162) (0.159)

Spillover Group x Year=2009 -0.283 -0.243
(0.149) (0.143)

Spillover Group x Year=2010 -0.682∗∗∗ -0.624∗∗∗

(0.188) (0.186)

Year=2006 -0.370∗∗∗ -0.569∗∗∗ -0.370∗∗∗ -0.575∗∗∗

(0.0661) (0.0994) (0.0661) (0.0997)

Year=2007 -0.467∗∗∗ -0.564∗∗∗ -0.467∗∗∗ -0.565∗∗∗

(0.0659) (0.0729) (0.0660) (0.0729)

Year=2009 -0.948∗∗∗ -0.920∗∗∗ -0.933∗∗∗ -0.909∗∗∗

(0.0769) (0.0763) (0.0801) (0.0794)

Year=2010 -0.672∗∗∗ -0.730∗∗∗ -0.636∗∗∗ -0.698∗∗∗

(0.0806) (0.0830) (0.0839) (0.0865)

Lagged Rainfall 0.142∗∗ 0.138∗∗

(0.0483) (0.0482)

Lagged Rainfall Squared -0.00329∗∗∗ -0.00323∗∗∗

(0.000971) (0.000969)

Lagged Temperature 0.175 0.169
(0.0908) (0.0903)

Share of Protected Areas 0.603 0.562
(0.671) (0.668)

Price of Beef Lagged -0.0231∗∗∗ -0.0230∗∗∗

(0.00653) (0.00652)

Price of Crops Lagged -0.190 -0.248
(0.331) (0.336)

Lagged GDP -0.557 -0.552
(0.511) (0.507)

Covariates NO YES NO YES
R2 0.098 0.113 0.101 0.115
Observations 2450 2450 2450 2450

Notes: An observation is a municipality in the Brazilian Amazon. The dependent variable
is the log odds ratio of deforestation shares. Rainfall is measured in millimetres (mm) and
temperature is measured in degrees Celsius (◦C). The price of beef is a weighted average of
international beef prices weighted by the ratio of head of cattle to municipal area. The price
of crops is the price index based on a principal component analysis applied to individual
weighted prices of the most predominant crops in the Brazilian Amazon (the weights are
given by the share of the municipal area used to cultivate the crop). For all agricultural
products, the weights are fixed in the period 2000–2001. Municipal GDP is measured in
million Reais. All monetary amounts are expressed in December 2011 Reais. The coefficient
on the constant term is omitted. All regressions include municipality fixed effects. Robust
standard errors in parentheses are clustered at the municipality level.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 16: Pre-Treatment ‘Common Trends’ Test, 2003–2007

(1) (2)
Log odds Log odds

Treated Group x Year=2003 -0.286 -0.294
(0.179) (0.181)

Treated Group x Year=2004 0.205 0.220
(0.165) (0.167)

Treated Group x Year=2005 0.288 0.305
(0.157) (0.160)

Treated Group x Year=2006 -0.107 -0.111
(0.137) (0.140)

Spillover Group x Year=2003 -0.121
(0.222)

Spillover Group x Year=2004 0.287
(0.181)

Spillover Group x Year=2005 0.317
(0.181)

Spillover Group x Year=2006 -0.0866
(0.144)

Year=2003 1.127∗∗∗ 1.135∗∗∗

(0.100) (0.105)

Year=2004 0.830∗∗∗ 0.818∗∗∗

(0.0991) (0.102)

Year=2005 0.583∗∗∗ 0.566∗∗∗

(0.0966) (0.101)

Year=2006 0.108 0.116
(0.0955) (0.0995)

Lagged Rainfall 0.0581 0.0605
(0.0414) (0.0416)

Lagged Rainfall Squared -0.00166 -0.00170
(0.000896) (0.000901)

Lagged Temperature -0.376∗ -0.382∗

(0.158) (0.158)

Share of Protected Areas 0.838∗∗ 0.841∗∗

(0.300) (0.299)

Price of Beef Lagged -0.00107 -0.00111
(0.00830) (0.00833)

Price of Crops Lagged 0.886∗∗∗ 0.884∗∗∗

(0.183) (0.180)

Lagged GDP -0.356∗∗ -0.361∗∗

(0.132) (0.131)

R2 0.147 0.148
Observations 2454 2454

Notes: An observation is a municipality in the Brazilian Amazon. The dependent variable
is the log odds ratio of deforestation shares. Rainfall is measured in millimetres (mm) and
temperature is measured in degrees Celsius (◦C). The price of beef is a weighted average of
international beef prices weighted by the ratio of head of cattle to municipal area. The price
of crops is the price index based on a principal component analysis applied to individual
weighted prices of the most predominant crops in the Brazilian Amazon (the weights are
given by the share of the municipal area used to cultivate the crop). For all agricultural
products, the weights are fixed in the period 2000–2001. Municipal GDP is measured in
million Reais. All monetary amounts are expressed in December 2011 Reais. The coefficient
on the constant term is omitted. All regressions include municipality fixed effects. Robust
standard errors in parentheses are clustered at the municipality level.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 17: Robustness: Deforestation Average Treatment Effects, Trimming

Average Treatment Effects, Trimming: 2.5th and 97.5th Percentiles

ATT ATU ATE

2009
Baseline 2006 -21.61 [-4.75, -2.17] [-5.95, -3.56]

(-24.35, -18.88) (-4.85, -2.08) (-6.08, -3.45)

Baseline 2007 -24.91 [-4.71, -2.77] [-6.16, -4.35]
(-28.28, -21.55) (-4.82, -2.67) (-6.29, -4.22)

2010
Baseline 2006 -50.94 [-7.41, -4.69] [-10.52, -7.99]

(-55.30, -46.58) (-7.53, -4.59) (-10.68, -7.85)

Baseline 2007 -53.93 [-7.42, -5.37] [-10.75, -8.84]
(-58.58, -49.29) (-7.54, -5.26) (-10.91, -8.69)

Average Treatment Effects, Trimming: 3.5th and 96.5th Percentiles

ATT ATU ATE

2009
Baseline 2006 -21.61 [-4.73, -3.57] [-5.94, -4.86]

(-24.35, -18.88) (-4.83, -3.49) (-6.06, -4.75)

Baseline 2007 -24.91 [-4.70, -3.82] [-6.14, -5.33]
(-28.28, -21.55) (-4.80, -3.73) (-6.28, -5.20)

2010
Baseline 2006 -50.94 [-7.38, -5.59] [-10.50, -8.83]

(-55.30, -46.58) (-7.50, -5.49) (-10.65, -8.69)

Baseline 2007 -53.93 [-7.40, -6.05] [-10.72, -9.47]
(-58.58, -49.29) (-7.52, -5.95) (-10.89, -9.32)

Notes: 95% confidence intervals are in parentheses. For ATT, the intervals are
computed based on the standard i.i.d. nonparametric bootstrap, where the i.i.d.
resampling occurs in the cross-sectional dimension. For ATU and ATE they are
based on Imbens and Manski (2004). We implemented 500 bootstrap replications.
Deforestation is measured in square kilometres.
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Table 18: Robustness: Ex-Post Optimal, Trimming

Trimming: 2.5th and 97.5th Percentiles

Constraint: Total Area Number of Municipalities

Observed vs Optimal Observed vs Optimal Random vs Optimal

Ratio Value Ratio Value Ratio Value

Total Deforestation
Baseline 2006 1.04 - 1.04 - 1.21 -
Baseline 2007 1.05 - 1.05 - 1.23 -

Total Carbon Emissions
Baseline 2006 1.03 381 1.05 609 1.24 2,496
Baseline 2007 1.04 479 1.06 757 1.27 2,785

Trimming: 3.5th and 96.5th Percentiles

Constraint: Total Area Number of Municipalities

Observed vs Optimal Observed vs Optimal Random vs Optimal

Ratio Value Ratio Value Ratio Value

Total Deforestation
Baseline 2006 1.06 - 1.06 - 1.23 -
Baseline 2007 1.07 - 1.07 - 1.25 -

Total Carbon Emissions
Baseline 2006 1.05 628 1.08 942 1.27 2,770
Baseline 2007 1.06 670 1.09 1,012 1.29 2,996

Notes: ‘Ratio’ divides total deforestation (total emissions) evaluated at the observed list by the ex-post optimal total
deforestation (total emissions). ‘Value’ takes their difference. Values are measured in million US$, assuming a social cost
of carbon of US$ 20/tCO2.
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Table 19: Robustness: Deforestation Average Treatment Effects, Spillovers

Average Treatment Effects, Spillovers: Above 65 Percent of the Threshold

ATT ATU ATS ATE

2009
Baseline 2006 -24.53 [-4.42, -2.82] [-8.79, -8.77] [-6.13, -4.75]

(-27.47, -21.58) (-4.51, -2.75) (-10.48, -7.10) (-6.26, -4.64)

Baseline 2007 -28.20 [-4.34, -3.16] [-12.48, -12.44] [-6.56, -5.54]
(-31.94, -24.46) (-4.44, -3.08) (-14.69, -10.22) (-6.70, -5.40)

2010
Baseline 2006 -52.75 [-6.70, -4.97] [-17.73, -10.19] [-10.69, -8.71]

(-57.28, -48.21) (-6.81, -4.88) (-19.56, -8.07) (-10.85, -8.57)

Baseline 2007 -56.46 [-6.69, -5.41] [-20.34, -15.21] [-11.11, -9.67]
(-61.29, -51.64) (-6.80, -5.31) (-22.55, -12.91) (-11.28, -9.52)

Average Treatment Effects, Spillovers: Above 75 Percent of the Threshold

ATT ATU ATS ATE

2009
Baseline 2006 -23.09 [-4.37, -2.68] [-13.64, -13.61] [-6.05, -4.54]

(-25.91, -20.27) (-4.47, -2.60) (-16.48, -10.77) (-6.17, -4.43)

Baseline 2007 -27.52 [-4.40, -3.18] [-12.98, -12.95] [-6.37, -5.27]
(-31.10, -23.93) (-4.50, -3.09) (-16.23, -9.69) (-6.50, -5.14)

2010
Baseline 2006 -51.56 [-6.74, -4.89] [-23.34, -17.89] [-10.55, -8.70]

(-55.99, -47.13) (-6.85, -4.80) (-26.71, -14.07) (-10.70, -8.56)

Baseline 2007 -57.59 [-6.83, -5.50] [-23.08, -17.64] [-11.06, -9.66]
(-62.38, -52.81) (-6.94, -5.40) (-26.84, -13.19) (-11.22, -9.51)

Notes: 95% confidence intervals are in parentheses. For ATT, the intervals are computed based on the
standard i.i.d. nonparametric bootstrap, where the i.i.d. resampling occurs in the cross-sectional dimen-
sion. For ATU, ATS, and ATE, they are based on Imbens and Manski (2004). We implemented 500
bootstrap replications. Deforestation is measured in square kilometres.
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Table 20: Robustness: Ex-Post Optimal, Spillovers

Spillovers: Above 65 Percent of the Threshold

Constraint: Total Area Number of Municipalities

Observed vs Optimal Observed vs Optimal Random vs Optimal

Ratio Value Ratio Value Ratio Value

Total Deforestation
Baseline 2006 1.08 - 1.07 - 1.29 -
Baseline 2007 1.09 - 1.07 - 1.32 -

Total Carbon Emissions
Baseline 2006 1.07 816 1.08 902 1.33 2,674
Baseline 2007 1.08 892 1.09 982 1.37 2,993

Spillovers: Above 75 Percent of the Threshold

Constraint: Total Area Number of Municipalities

Observed vs Optimal Observed vs Optimal Random vs Optimal

Ratio Value Ratio Value Ratio Value

Total Deforestation
Baseline 2006 1.04 - 1.04 - 1.24 -
Baseline 2007 1.08 - 1.07 - 1.31 -

Total Carbon Emissions
Baseline 2006 1.04 419 1.05 606 1.27 2,926
Baseline 2007 1.08 884 1.09 964 1.35 2,865

Notes: ‘Ratio’ divides total deforestation (total emissions) evaluated at the observed list by the ex-post optimal total
deforestation (total emissions). ‘Value’ takes their difference. Values are measured in million US$, assuming a social cost
of carbon of US$ 20/tCO2.
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(a) 2009 (b) 2010

Figure 13: Factual and Counterfactual Distributions of Residuals V , Treated Group

(a) 2009 (b) 2010

Figure 14: Factual and Counterfactual Distributions of Residuals V , Untreated Group
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