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1 Introduction

Different macroeconomic aggregates go through economic cycles with different timings (see,

among others, Stock and Watson 1989, 2002; and Estrella and Mishkin 1998). Variables

that respond promptly to exogenous shocks are denoted as “leading,” whereas variables that

adjust with delay are called “lagging.”1 Thus far, the empirical macroeconomic literature

has focused mainly on leads and lags of aggregate indicators. Little is yet known about leads

and lags across firms operating in different segments of the economy.

In this paper, we document the existence of a significant lead-lag structure in fundamen-

tal cash flows across industries. This structure is relevant to the explanation of the cross

section of stock returns, as leading industries pay a higher average stock return than lagging

industries, in the order of about 4% per year. After controlling for heterogenous exposure to

a large number of aggregate risk factors, we obtain an estimate of the pure timing premium,

i.e., the premium on advance information (Ai and Bansal, 2018), ranging from 1.5% to 2%

per year.2

Specifically, we construct a risk factor by considering a zero-dollar investment strategy

long in a portfolio of leading industries and short in a portfolio of lagging industries. We

denote the returns of this portfolio as the LL factor. Formal tests show that LL is a relevant

factor both in the time series and in many cross sections of equity returns, including that of

industry portfolio returns (in contrast to the factors considered by, e.g., Fama and French

1997). This result holds after controlling for many other aggregate factors (see, e.g., Gomes

et al. 2009) and suggests that leads and lags in the diffusion of fundamental shocks across

industries are an important dimension of equity pricing. Equivalently, the information timing

premium appears sizeable.

More broadly, our results provide additional and independent empirical evidence in favor

1For example, both bond yields and the stock market index tend to be leading indicators with respect
to domestic output, as they forecast future recessions and booms. Unemployment, in contrast, is a lagging
indicator.

2Consider a risk factor Ft, a leading firm (or sector) with cash flow growth ∆dLeadt = µ + λLeadFt, and

a lagging firm (or industry) with cash flow growth ∆dLagt = µ + λLagFt−LL. The leading premium is a
convolution of heterogeneous timing of exposure, LL, and heterogenous exposure λLag 6= λLead. We control
for heterogenous exposure by considering several cycle-related risk factors and refer to the residual difference
in the cost of equity of the two stocks, or sectors, as the (pure) timing premium.
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of the relevance of advance information in the spirit of Ai and Bansal (2018). Consistent

with this observation, we show that our findings are an anomaly in a model with time-

additive preferences, whereas a model with news shocks and preferences for early resolution

of uncertainty explains our cross-sectional results. This is because leading industries pro-

vide valuable anticipated resolution of uncertainty for industries that go through aggregate

economic fluctuations with delay. As a result, lagging firms bear less conditional cash-flow

uncertainty and, by no arbitrage, ceteris paribus have a higher price (or, equivalently, a lower

yield). Leading firms, in contrast, play the role of early indicators like canaries in a coal

mine and pay a higher equity yield.

More specifically, we compute rolling-window correlations between US output growth and

leads and lags of operating income growth at an industry level. Data are quarterly and span

the period 1972–2012. We consider 17,000 firms, which we aggregate to industries using the

industry classification scheme obtained from Kenneth French’s website.3 In each quarter, we

compute cross-correlagrams and aggregate leads and lags in three different ways as described

below in Section 2. We then assign the corresponding lead/lag indicator to the industry of

interest. Note that this approach uses only past data to compute the cross-correlograms,

and hence it can be used to construct an implementable investment strategy in real-time.

This procedure gives us a panel of quarterly leading-lagging indicators spanning 41 years

of data. In each sample period, we find sizable heterogeneity in these indicators across our

industries. Focusing on individual industries, we also observe considerable fluctuations in

the time series of their lead and lag indicators, i.e., an industry may be leading in a specific

period, but lagging in another. As an example, the firms leading during an IT boom do not

necessarily lead during a financial crisis. We formalize this idea in a multisector economy

in which cash flows are affected by infrequently arriving shocks that slowly diffuse across all

sectors and turn into aggregate cash flow growth shocks.

We then sort our firms according to their industry-level lead-lag indicator and form three

portfolios, which are dynamically updated at a quarterly frequency. In each quarter, we

3See, for example, http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/

det_30_ind_port.html.
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make sure that the extreme portfolios have a market capitalization share of at least 15%,

so that our results are not driven by a subset of small and illiquid firms. According to this

standard procedure, we find a monotonic positive relation between the average returns and

the leading indicators of our portfolios. Our LL factor has an annualized average return

of 4%, which remains sizeable and significant in the time-series after controlling for a large

number of aggregate factors.

Furthermore, we show that our findings are statistically significant after double-sorting on

LL exposure and either the book-to-market ratio or size, implying that the LL premium is a

broad phenomenon in the cross section. We also show that our risk factor is not subsumed

by other cyclical factors such as investment minus consumption (Kogan and Papanikolaou

2014), durability (Gomes et al. 2009), industry-momentum (Moskowitz and Grinblatt 1999),

industry betting-against-beta (Asness et al. 2014), the five factors suggested by Fama and

French 2015, the q-Factors (Hou et al. 2015a, b), and momentum (Carhart 1997).

A simple no arbitrage argument shows that our leading premium should be related to

the forward equity yield on leading industry dividends (Binsbergen et al. 2013). This result

is important because it suggests that models that produce a substantial positive spread

between bond and zero-coupon equity yields may rationalize the portion of the leading

premium driven by the timing premium. Since our empirical evidence shows that lagging

firms tend to have smoother long-run dividend growth, we choose a setting sensitive to

growth news shocks (Bansal and Yaron 2004).

We acknowledge that lagging firms can learn from the fundamentals of leading firms and

adjust their investment decisions to endogenously alter their pay outs (see, among others,

Albuquerque and Miao 2014). For the sake of tractability, however, we abstract away from

investment decisions and consider the endowment economy of Bansal et al. (2005), in which

stocks are allowed to have heterogenous exposure to long-run shocks. Consistent with our

empirical evidence, we allow lagging stocks to be less exposed to growth news shocks. We

use this model to price a cross section of cash flows that differ from each other also in their

lead-lag structure, with the goal of quantifying how much of both our timing and leading
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premiums we can explain.

The relevance of this step is twofold. On the one hand, we identify the lead-lag structure of

cash flows and better characterize the composition of the representative agent’s information

set, that is, we identify how much advance information the agent can obtain from the leading

cash flows. On the other hand, this procedure shows that a substantial part of our measured

timing and leading premiums may be explained by our equilibrium model.

We conclude our analysis with a counterfactual experiment designed to quantify the wel-

fare value of the advance information provided by the leading industries. Specifically, we

look at an economy calibrated as in our benchmark case, where we simply remove future

long-run consumption growth news from the information set of the agent. Put differently,

we retain the same amount of consumption long-run risk, but we pretend that there is no

leading portfolio providing advance information about it. We find that the welfare benefits

of the information stemming from our cross section of industries are worth 6% of life-time

consumption. In order to correctly interpret this result, we run the Lucas (1987) experiment

in our economy and find that the welfare benefits of removing all uncertainty are in the

order of 65%.4 Therefore, the advance information that we identify in the cross section of

industries represents less than 10% of the maximum attainable welfare benefits.

Epstein et al. (2014) point out that in the Bansal and Yaron (2004) model, the Lucas

welfare benefits originate mainly from full resolution of uncertainty, not from the removal

of deterministic fluctuations. Our computations show that early resolution of uncertainty in

the cross section of industries is simultaneously valuable but limited, as it carries a strong

market price of risk but reveals future long-run consumption dynamics over a relatively short

horizon.

Related literature. As mentioned above, prior papers have already documented that

heterogeneous exposure to contemporaneous news shocks can explain many cross sections

of equity returns (see, among others, Bansal et al. 2005). We differ from prior studies by

4This figure is much smaller than that in Ai (2007) and Croce (2013), as our consumption process is
calibrated according to post-1972 data, i.e., its volatility is moderate.
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showing that heterogeneous timing of exposure to news shocks explains a substantial share

of the leading premium.

Kadan and Manela (2016) estimate the value of information using options. We empir-

ically quantify the relevance of heterogeneity in the timing of exposure of cash flows to

aggregate shocks for the cross section of equity returns. Our results are significant beyond

announcement events (Patton and Verado 2012, Savor and Wilson 2013, 2016).

Koijen et al. (2017) show that the Cochrane and Piazzesi (2005) factor is a strong pre-

dictor of economic activity, with a lead of up to 10 quarters relative to GDP growth. They

provide evidence suggesting that book-to-market-sorted stocks contain information about

future growth. Similarly to them, we show that the price-dividend ratio of leading firms

forecasts economic activity, even after controlling for other common predictors.

Hong et al. (2007) investigate whether high-frequency industry returns can forecast excess

returns on the CRSP market index. They find evidence of predictability, but only on very

short horizons of one or two months. In contrast to previous studies, our empirical investi-

gation is based on cash-flow fundamentals and focuses on longer time horizons. As a result,

we are silent about the speed at which prices fully embody available information (Hou 2007,

Cohen and Frazzini 2008). In our model, our endogenous cross section of returns features no

lead-lag structure, that is, all returns move simultaneously, but with different endogenous

sensitivities. On the other side, our attention on leads and lags across industry-level cash

flows is broad and does not hinge on specific network links, like for example customer-to-

supplier (Cohen and Frazzini 2008) or intermediate-to-final-producer (Gofman et al. 2017).

By no-arbitrage, the portion of the leading premium driven by the timing premium de-

pends on the spread between the equity and the risk-free bond yield curve. Richer settings

like those suggested by Lettau and Wachter (2007, 2011), and Belo et al. (2014) are consis-

tent with the empirical evidence in Binsbergen et al. (2012), Binsbergen et al. (2013), and

Binsbergen and Koijen (2017), but they would produce similar insights about the nature of

the leading premium.

In the next section we provide intuition on our way to think of leads and lags across
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sectors. We present the setup and results of our empirical analysis in section 3. In Section

4 we describe our model. Section 5 concludes.

2 Measuring Leads and Lags

In this section, we discuss the measures that we adopt to identify leading and lagging indus-

tries. Since these measures are quite common in the macroeconomic literature, the readers

familiar with cross-correlograms may want to go directly to the next section.

Consider the cash flow growth of industry i, ∆CF i, and allow it to have a possibly time-

varying lead-lag relation with output growth, ∆GDP . One way to identify the lead-lag link

between aggregate output and the cash flow of this industry is to compute the following

cross-correlogram over J periods

[ρit,−J ...ρ
i
t,0 ...ρ

i
t,+J ]

where

ρit,j = corr{t−T→t}(∆GDPt,∆CF
i
t−j)

is computed on a rolling window with T > J observations. Since the cross-correlogram is of

dimension 1 + 2J , we use the following three ways to collapse it to a scalar, so that stocks

can be easily sorted on it.

Maximum cross-correlation. Our first way to define our lead/lag indicator (LL) is

LLit = arg max
−J≤j≤J

|ρit,j|,

i.e., the lead or lag for which the cross-correlation between cash flow and GDP growth peaks

in absolute value. As an example, assume that (i) ∆GDPt follows an AR(1) with persistence

0 < ρ < 1, and (ii) ∆CF i
t−5 = −∆GDPt, so that GDP lags by a fixed delay and with opposite

sign. In this case, ρit,j = −ρ|j−5| and LLit = +5, that is, our indicator detects that the cash
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flow is leading aggregate output by 5 periods. This measure is consistent with the lead/lag

assumptions in our simple asset pricing model in section 4.

Industry-level weighted average of leads and lags. When cash-flows and GDP do not

follow AR(1) processes, the previous measure may not be appropriate as it may disregard

information contained in the the whole cross-correlogram. One way to resolve this problem

is to have an indicator that takes into account all possible leads and lags and gives more

weight to the ones for which the cross-correlation is stronger in absolute value:

LLit =
J∑

j=−J

|ρit,j|∑J
j=−J |ρit,j|

· j.

Cross-industry weighted index of leads and lags. Another possible concern about the

maximum correlation approach is that it does not adjust by the different predictive power

that different industries may have. As an extreme example, one industry may lead GDP by

four periods with a cross-correlation of 0.90 and be a much better predictor of GDP than

an industry leading by four periods with a cross-correlation of 0.40. In order to address this

concern, we also compute

LLit =
J∑

j=−J

|ρit,j|∑N
k=1 |ρkt,j|

· j,

where the weight assigned to lead/lag j of industry i depends on the cross-correlation of all

of the other industries for the same lead/lag.

2.1 Intuition in a Simple Diffusion Model

Before proceeding with our empirical investigation, we introduce a simple diffusion model to

provide intuition about our our way to identify conditionally leading and lagging industries.

This model is stylized in many dimensions and is not meant to perfectly describe the data.

Rather, our goal is to show that our cross-correlations have the potential to identify leading

and lagging sectors when shocks diffuse across sectors connected in a network.

Consider an economy with i = 1, ..., N ≥ 3 industries. In each industry, the cash flow
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growth rate is subject to both economy-wide short-run shocks, εc,t ∼ N(0, σsr), and a per-

sistent industry-specific growth component:

Sit = ρSit−1 + εix,t.

We assume that sectoral growth news shocks are i.i.d. and arrive infrequently with proba-

bility q:

εix,t =


J q/2

−J q/2

0 (1− q),

where J is the magnitude of the shocks, which, when not equal to zero, can be positive or

negative with the same likelihood.

For the sake of symmetry, we let N be an odd integer and locate sectors on a circle in a

clockwise order by means of the following index for locations:

f(i, j) =


i+ j 1 ≤ i+ j ≤ N

i+ j −N i+ j > N

N + (i+ j) i+ j ≤ 0.

Consistent the simple example depicted in Figure 1(a), f(i, j) is the index of a sector which

is j units of distance (positive or negative) away from sector i. The sole purpose of the

structure for f(i, j) shown above is to make sure that the circle is actually closed, i.e., that

sector N is to the immediate left of sector 1. We assume that a shock to sector i propagates

symmetrically to the sectors located to both the right and the left of sector i with a certain

delay. This means that it takes j periods for a shock originated in either location f(i,−j)

or f(i, j) to reach sector i.

Given this notation, we specify the growth rate of the cash-flow of firm i as follows:

∆dit := log(Di
t/D

i
t−1) = µ+ εct + Sit +

(N−1)/2∑
j=1

(
S
f(i,−j)
t−j + S

f(i,j)
t−j

)
,
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Fig. 1: A Simple Diffusion Model

This figure depicts a quarterly simulation from the diffusion model described in Section 2.1. The
lead-lag (LL) indicator indicator is computed in two steps. First, for each sector, in each quarter we
compute the ±5-quarter cross-correlation between industry-level output growth and the domestic
output growth using 40-quarter rolling windows (ρit,t−l, l = −5, ..., 5). Second, we compute the
following weighted average of the leads and lags using the absolute value of the cross-correlations:

+5∑
j=−5

j ·
|ρit,t+j |∑+5

j=−5 |ρit,t+j |
.

A positive (negative) LL indicator denotes an industry whose output growth leads (lags) GDP

growth. Grey bars denote periods following a substantial shock to either sector 1 or 11.

and define aggregate GDP as:

Yt =
N∑
i=1

Di
t.

We choose our parameters in order to replicate key properties of US GDP. Specifically, the

quarterly drift µ is set to 0.50% to have a 2% annual growth. We choose ρ = .90 as in our

equilibrium model. To be consistent with our baseline cross section of industries, we choose

N = 31. We set q = 5% so only a minority of our industries receive long-run shocks in a

given period and lead future GDP expected growth. The parameters σsr and J are jointly

chosen to match an annualized volatility of GDP growth of 2.3% and an autocorrelation of

0.21.

We show a representative quarterly simulation of this model in Figure 1(b). We focus on
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both aggregate output and the cash flows of industry 1 and 11, that is, industries that are

affected by long-run growth shocks with a time difference of 10 periods.

For illustrative purposes only, we assume that industry 1 is affected by a pronounced

positive shock at time 20 and that industry 11 is affected by a pronounced negative shock

at time 80. This allows us to know exactly which industry will leading, even if we are

simulating a wide cross section with a total of 31 sectorial shocks. Equivalently, we think of

these shocks as a way to depict impulse responses away from the regular simulation paths.

In the graphs we use shaded areas to highlight the twenty quarters following the arrival of

these two special shocks.

In the top-left panel of Figure 1(b) we show the path of output growth. Over the quarterly

frequency, it is mainly driven by short-run shocks and it barely simultaneously responds to

individual sectorial shocks. Expected output growth, instead, is quite sensitive to sectorial

long-run growth dynamics as they diffuse across sectors (top-right panel). Since the diffusion

of shocks through the economy is slow, the full response of aggregate expected growth mani-

fests itself with a significant lag. As an example, consider the positive (negative) shock given

to industry 1 (industry 11) at time 20 (time 80). The growth rate of industry 1 (industry

11) leads the peak (trough) of aggregate growth by (N − 1)/2 = 15 quarters. The cash flow

of industry 11 (industry 1) lags that of industry 1 (industry 11) by 10 periods.

As shown in the bottom panels of Figure 1(b), our LL indicator is able to correctly pick up

leading cash flows. Although with some noise due to the small data window that we employ,

the LL indicator of industry 1 starts to increase within a few quarters from the realization

of our positive shocks. For about 20 quarters, industry 1 is correctly identified as strongly

leading GDP growth. The same holds with industry 11, since it is identified as leading the

recession episode occurring after period 80. Simultaneously, during this recession industry 1

is classified as lagging industry because its LL indicator declines.

Summarizing, even though all industries are all ex-ante identical, in our network they are

ex-post either lagging or leading the growth cycle. Our lead-lag indicators can capture this

feature in a very parsimonious and flexible way. We acknowledge that in very long samples
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a vector autoregression with time-varying coefficients may convey all of the relevant network

information dynamics. In relatively short samples with a large cross section, however, esti-

mating such a high-dimensional VAR with sufficient precision appears extremely challenging.

We think of cross-correlograms as a useful non-parametric alternative tool.

3 Empirical Investigation

Data sources. In our empirical analysis, we use monthly stock returns from CRSP as well

as the corresponding quarterly data from COMPUSTAT for the period from from 1972:01

to 2012:12. The quarterly data coverage in COMPUSTAT prior to 1972 is too limited

for our investigation. We group firms into 30 industries following the classification scheme

available on Kenneth French’s website. We start by computing industry-level output by

aggregating firms’ operating income before depreciation and net of interest expenses, income

taxes, and dividends (as in Acharya et al. (2014)). We also employ alternative measures

in our robustness exercises, which we will describe in detail in the next sections. We use

dummy variables to remove seasonality. We gather aggregate US consumption and output

data from the National Income and Product Accounts (NIPA). All variables are seasonally

adjusted and in real units. Inflation is computed using the Consumer Price Index (CPI).

LL indicators. For each industry, in each quarter we compute the ±4-quarter cross-

correlation between industry-level output growth and the domestic output growth using

20-quarter rolling windows. According to the methods described in the previous section,

we then compute conditional quarterly lead-lag measures for each industry. This procedure

generates a panel of industry-level lead-lag (LL) indicators spanning 41 years.

To provide economic guidance about our measure, in Figure 2 we report our industry-level

weighted average LL indicators for the IT, the real estate, and the finance industries starting

from 1995. We focus on these industries because they have been important drivers of the

last two main economic cycles in the US, and hence they represent a natural reference point

for our methodology.
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Fig. 2: Lead-Lag Indicator for Selected Industries

This figure depicts the lead-lag (LL) indicator for three major industries. The LL indicator is

computed in two steps. First, for each industry, in each quarter we compute the ±4-quarter cross-

correlation between industry-level output growth and the domestic output growth using 20-quarter

rolling windows. Second, we compute the industry-level weighted average of leads and lags and

assign it to the corresponding industry as its LL indicator. A positive (negative) LL indicator

denotes an industry whose output growth leads (lags) GDP growth. Quarterly growth rates are

adjusted for inflation and seasonality. Grey bars denote NBER recession periods.

We find it reassuring that our methodology detects several well-known economic patterns.

For example, the IT industry became progressively more leading in the 1995-2000 subsample,

that is, during the IT boom. The boom of the early 2000, instead, was led by real estate,

with finance becoming progressively more leading after 2005 and during the Great Recession.

We provide other interesting facts about our LL indicators in Appendix A and focus next

on our time-series analysis.

3.1 Time-Series Analysis

Portfolio sorting and the LL factor. We start with the Fama-French 30-industry cross

section. In each quarter, we sort firms grouped in our 30 industries according to their

maximum correlation LL indicator value and divide them into three portfolios. Our lead

(lag) portfolio contains the top 20% of leading (lagging) industries. In each quarter, each

of these two portfolios represents at least 15% of total market capitalization, implying that

our results are not driven by a fraction of small and potentially illiquid firms.
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Table 1: Lead-Lag Portfolio Sorting (Max Correlation)

Lead Mid Lag LL LL Strong
Average return 9.43∗∗∗ 6.03∗∗ 5.24∗ 4.20∗∗ 5.24∗∗∗

(2.27) (2.76) (3.04) (1.79) (1.96)
CAPM α 3.17∗∗∗ −0.63 −1.79 4.96∗∗∗ 6.12∗∗∗

(1.05) (0.47) (1.30) (1.89) (1.95)
FF3 α 3.02∗∗∗ −0.71 −1.66 4.68∗∗ 6.23∗∗

(1.16) (0.54) (1.43) (2.08) (2.49)

Notes: This table provides real annualized value-weighted returns of portfolios of firms sorted
according to their industry-level lead-lag (LL) indicator. First, for each industry, in each quarter we
compute the ±4-quarter cross-correlation between industry-level output growth and the domestic
output growth using 20-quarter rolling windows. Second, we identify the lead or lag for which the
maximum absolute cross-correlation is attained and assign it to the corresponding industry as its LL
indicator. A positive (negative) LL indicator denotes an industry whose output growth leads (lags)
GDP growth. Our Lead (Lag) portfolio contains the top (bottom) 20% of our leading industries.
These portfolios represent at least 15% of the total market value in each quarter. All other firms
are assigned to the middle (Mid) portfolio. The LL portfolio reflects a zero-dollar strategy long
in Lead and short in Lag. In each portfolio, we identify the industries with the absolute value
of correlation above the portfolio’s median and group them in a subportfolio denoted as ‘Strong’.
The LL Strong portfolio represents a zero-dollar trading strategy long in Lead Strong and short
in Lag Strong. Return data are monthly over the sample 1972:01–2012:12. Industry definitions
are from Kenneth French’s website. CAPM α (FF3 α) denotes average excess returns unexplained
by the CAPM (Fama-French three-factor model). The numbers in parentheses are standard errors
adjusted according to Newey and West (1987). One, two, and three asterisks denote significance
at the 10%, 5%, and 1% levels, respectively.

For each portfolio, we compute value-weighted monthly returns and highlight the following

relevant facts. First, we construct a lead-lag (LL) factor by considering the returns of a

zero-dollar investment strategy long in the leading and short in the lagging portfolio. This

strategy pays an average annualized excess return of 4.2%, which remains significant and

sizeable even after adjusting the returns for either the CAPM or the FF3 factors (see the

implied alphas in Table 1). In Appendix B, we show that these results continue to hold

also when we consider different quantiles (with respect to the minimum share of market

capitalization) for the formation of the lead and lag portfolios (see Table B1).

Second, within each portfolio we identify the industries whose absolute value of correlation

with output is above the median. We group the above-median industries in subportfolios

denoted as ‘Strong’, given that they feature a stronger and less noisy lead/lag connection

with aggregate output. We then study the return of a zero-dollar investment strategy long
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Table 2: Lead-Lag Portfolio Sorting Across LL-indicators

Max Corr. LL Industry-Weighted Avg. LL Cross-Industr. LL
Volatility 11.52 11.15 12.30
Sharpe Ratio 0.36 0.24 0.32

CAPM α 4.96∗∗∗ 2.94∗ 4.09∗

FF3 α 4.68∗∗ 2.95∗ 4.87∗∗

Portfolio Turnover 0.13 0.08 0.11
Industry migration 1.0 0.7 0.8

This table provides real annualized value-weighted returns for a zero-dollar strategy long in
Lead and short in Lag industries across three different ways to compute the lead-lag indicator.
Turnover measures the percentage of industries entering or exiting from a portfolio. Industry
migration measure the median number of times an industry moves across portfolios in a year.
Return data are monthly over the sample 1972:01–2012:12. Industry definitions are from
Kenneth French’s website. CAPM α (FF3 α) denotes average excess returns unexplained
by the CAPM (Fama-French three-factor model). The numbers in parentheses are standard
errors adjusted according to Newey and West (1987). One, two, and three asterisks denote
significance at the 10%, 5%, and 1% levels, respectively.

in Lead-Strong and short in Lag-Strong. We obtain even stronger results (see Table 1,

right-most column). Untabulated results confirm that these empirical patterns are present

also when we focus on equally weighted returns.

Third, these results are confirmed across our three ways to compute the LL indicator (see

Table 2). The LL factor has a Sharpe ratio ranging from 0.25 to 0.35 and its alpha ranges

from 3% to 4% after adjusting for either the CAPM or the FF3 factors. The average quar-

terly turnover is stable and very moderate at about 10%.5 According to our methodology,

industries move across portfolios at most once a year.

Granularity. We explore the role of granularity and report key results on the leading

premium in Table 3. Specifically, we adopt our sorting procedure after grouping firms into

38 and 49 industries, respectively. We point out the existence of a relevant tension between

number of industries and precision of our ranking. On the one hand, considering more

5In each quarter, we compute the market value of the firms that either exit or enter a given portfolio.
We divide this number by two and report it as a fraction of the total market value. Expressing turnover
in market value terms prevents our measure from being driven by many small industries frequently moving
across portfolios.
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Table 3: Lead-Lag Portfolio Sorting – 38 and 49 Industries

Panel A: 38 industries Panel B: 49 industries
LL LL Strong LL LL Strong

Average return 3.16∗∗ 6.54∗∗ 4.31∗∗ 5.06∗∗

(1.57) (2.93) (2.11) (2.57)
CAPM α 3.84∗∗ 6.94∗∗ 5.10∗∗ 5.99∗∗

(1.64) (2.97) (2.21) (2.68)
FF3 α 3.55∗ 5.41∗ 4.61∗∗ 5.69∗∗

(2.00) (3.17) (2.25) (2.62)
Turnover 0.11 0.07 0.11 0.08

Notes: This table provides real annualized value-weighted returns of portfolios of firms sorted
according to their industry-level lead-lag (LL) indicator. The formation of the portfolios is identical
to that described in the notes to table 1. In contrast to our benchmark specification that uses a
30-industry classification, this table documents results for 38 industries (Panel A) and 49 industries
(Panel B). The LL portfolio reflects a zero-dollar strategy long in Lead and short in Lag. In each
portfolio, we identify the industries with the absolute value of correlation above the portfolio’s
median and group them in a subportfolio denoted as ’Strong’. The LL Strong portfolio represents
a zero-dollar trading strategy long in Lead Strong and short in Lag Strong. Turnover measures
the percentage of industries entering or exiting from a portfolio. Return data are monthly over the
sample 1972:01–2012:12. Industry definitions are from Kenneth French’s website. CAPM α (FF3
α) denotes average excess returns unexplained by the CAPM (Fama-French three-factor model).
The numbers in parentheses are standard errors adjusted according to Newey and West (1987).
One, two, and three asterisks denote significance at the 10%, 5%, and 1% levels, respectively.

industries enables us to gain more power from the cross section. On the other, considering a

more granular definition of industries makes our estimation of industry-level leads and lags

more noisy and hence it makes our sorting less precise. We find it encouraging that our

results on the leading premium are confirmed when working with both 38 and 49 industries.

We present robustness analyses with respect to an alternative way to measure leads and lags

in the appendix in Table B2.

Size and Book-to-Market. We double-sort the firms belonging to our lead and lag port-

folios with respect to either their book-to-market (B/M) ratios, or their market capitalization

(Size). As in Fama and French (2012), we choose the 30th and 70th percentiles of the book-

to-market distribution as cutoff points to obtain low, medium, and high book-to-market

portfolios. We do the same with respect to size and report our main results in Table 4.

Our leading premium is sizeable and statistically significant for both low and medium

B/M firms. Among value firms, the premium is positive but measured with noise. This may
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Table 4: Lead-Lag Portfolio – Double Sort

Panel A: LL and B/M Panel B: LL and Size
Low Mid High Small Mid Large

Average return 3.53∗ 6.07∗∗ 1.88 3.93 3.27 4.40∗∗

(1.89) (2.45) (1.90) (2.48) (2.16) (1.85)
CAPM α 4.37∗∗ 5.92∗∗ 1.99 3.30 3.31 5.21∗∗∗

(2.00) (2.59) (1.95) (2.52) (2.29) (1.96)
FF3 α 4.40∗ 4.91∗∗ 1.90 1.38 1.73 4.92∗∗

(2.41) (2.28) (1.84) (2.91) (2.26) (2.21)

Notes: This table provides two decompositions of the real annualized value-weighted returns of the
LL portfolio constructed as described in table 1. In panel A, we decompose the LL return by double-
sorting firms according to their book-to-market (B/M) ratio within the Lead and Lag portfolios.
Our cutoff points are the 30th and 70th percentiles of the B/M distribution within each portfolio.
Analogously, in panel B we decompose the LL return by double-sorting firms according to their
market capitalization (Size) within the Lead and Lag portfolios. Our cutoff points are the 30th and
70th percentiles of the Size distribution within each portfolio. Return data are monthly over the
sample 1972:01–2012:12. Industry definitions are from Kenneth French’s website. CAPM α (FF3
α) denotes average excess returns unexplained by the CAPM (Fama-French three-factor model).
The numbers in parentheses are standard errors adjusted according to Newey and West (1987).
One, two, and three asterisks denote significance at the 10%, 5%, and 1% levels, respectively.

be due to the fact that value firms in both the lead and lag portfolios count for just 2% of

total market value, a very small fraction. Our leading premium is a broad phenomenon in

the cross section of firms, as it applies to 80% of our firms that, in turn, represent between

28% and 38% of total market value. In a similar spirit, we note that our leading premium

is not driven by small-cap firms, since our lead-lag structure in the cross section of industry

cash-flows is mainly generated by large firms.

All of these results hold regardless of whether we use fixed 30%-70% cutoff levels computed

from the full cross section of B/M and Size, or focus on the distribution of B/M and Size

within each LL-sorted portfolio.

Given these results, it is natural to ask whether there is some fundamental difference across

leading and lagging industries. Table 5 addresses this question by looking at investment

intensity and dividend payouts. From a statistical point of view, firms in leading industries

have an average investment intensity comparable to that of lagging firms. Lagging firms,

however, adjust their investments more (as indicated by a higher standard deviation of

the ratio of investment to total assets, StD(I/A)), and their dividends are less exposed
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Table 5: Investment Activity of Leading/Lagging Industries

Leading Portfolio Lagging Portfolio p-value
Investment intensity

Mean(I/A) 1.37 1.75 0.465
Std(I/A) 2.01 5.36 0.000

Dividends Growth
Total Volatility 0.09 0.12 0.006
βX (long-run risk exposure) 3.00 −1.27 0.030

Notes: This table provides statistics for both dividends growth and investmment intensity leading
and lagging industries identified using our benchmark strategy. We measure investments by capital
expenditures (CAPX) over total assets. Balance sheet data are quarterly over the sample 1972Q1–
2012Q4. Industry definitions are from Kenneth French’s website. The rightmost column ‘p-value’
reports the p-value for the test of difference between statistics for leading and lagging industries
with the null hypothesis being that the statistics across the groups are equal. The long-run exposure
coefficient refers to the following regression:

∆dt+1 = β0 + βXxt + residt,

where xt is the expected component of consumption growth identified as described in section 4.

to consumption long-run risk (we detail the identification of consumption long-run risk in

Section 4). These results are broadly consistent with the idea that lagging firms have time

to process information about future fluctuations and use information to both revise their

investment plans and smooth their dividends for the long-run.6

LL’s additional informativeness. In an economy in which shocks diffuse immediately

across sectors, or, more broadly, the network of industries is not very relevant for the diffusion

of shocks, our lead-lag factor should not provide additional information once we control for

other aggregate factors. In this section, we use standard time-series tests to formalize further

the disconnect between our leading premium and other well-known risk factors. We interpret

these results as suggesting that existing risk factors are not enough to fully capture the role

of the many shocks that affect our granular cross section of industries.

Henceforth, we denote the market, size, and value factors as, MKT, SMB, and HML,

respectively. We consider also other financial factors that may be related to cyclical economic

fluctuations, such as investment minus consumption proposed by Kogan and Papanikolaou

6We thank Laura Veldkamp for this insight. These results hold also when we exclude financial firms.
Dividends growth rates are seasonally adjusted and expressed as year-over-year quarterly rates.
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Table 6: The Disconnect between LL and Other Factors
(1) (2) (3) (4) (5) (6)

αLL 4.96∗∗∗ 4.68∗∗ 4.61∗∗ 4.55∗∗ 3.74∗∗ 4.22∗∗

(1.89) (2.08) (2.00) (1.90) (1.73) (1.94)
MKT −0.13∗ −0.13 −0.07 −0.12∗ −0.11∗ −0.11

(0.08) (0.09) (0.08) (0.07) (0.07) (0.07)
SMB 0.04 0.13 0.05 0.02 0.07

(0.08) (0.10) (0.07) (0.07) (0.09)
HML 0.04 −0.06 0.05 0.06 −0.06

(0.16) (0.13) (0.13) (0.13) (0.14)
IMC −0.26∗∗∗

(0.09)
DUR −0.03

(0.08)
iMOM 0.18∗∗

(0.08)
iBAB 0.28∗∗∗

(0.10)
Adj. R2 0.03 0.03 0.08 0.03 0.08 0.08
# Obs. 492 492 492 492 492 492

Notes: This table reports the results from regressing the LL factor constructed as in table 1 on
other financial factors. Here, we consider market (MKT), size (SMB), value (HML), investment
minus consumption by Kogan and Papanikolaou (2014) (IMC), durability by Gomes et al. (2009)
(DUR), industry momentum by Moskowitz and Grinblatt (1999) (iMOM), and industry betting-
against-beta by Asness et al. (2014) (iBAB) factors. Newey-West adjusted standard errors are
reported in in parentheses. Monthly data start in 1972:01 and end in 2012:12.

(2014) (IMC), durability suggested by Gomes et al. (2009) (DUR), industry momentum

constructed in the spirit of Moskowitz and Grinblatt (1999) (iMOM(6,6)), and industry

betting-against-beta as suggested by Asness et al. (2014) (iBAB).

We show our estimates for the following regression:

LLt = αLL + γFt + εt, (1)

where Ft comprises the factors mentioned above. Across all specifications, the intercept

remains statistically significant and sizable, and the implied adjusted R-squared are smaller

than 10%. All of these results confirm that (i) our leading premium is mostly unrelated to the

FF3 factors and durability; and (ii) our factor goes beyond the role played by investment

shocks, industry momentum, and industry-level betting against the beta.7 Untabulated

7The negative beta assigned to the IMC factor is fully consistent with Figure A1, as industries producing
investment goods tend to lag the cycle.
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Table 7: The Disconnect between LL and Other Factors (II)

FF5 HXZ q-factors Carhart MOM
αLL 4.00∗∗ αLL 3.96∗∗ αLL 4.20∗∗ 5.17∗∗∗ 4.98∗∗

(2.24) (2.40) (2.07) (2.06) (2.35)
MKT −0.08 MKT −0.11∗ MKT −0.14∗∗ −0.10

(0.07) (0.06) (0.07) (0.08)
SMB −0.06 ME −0.04 MOM 0.12 0.10 0.11

(0.10) (0.07) (0.09) (0.09) (0.08)
HML −0.10 I/A 0.03 SMB −0.14∗

(0.18) (0.19) (0.08)
RMW 0.32∗∗∗ ROE 0.28∗∗ HML 0.05

(0.10) (0.13) (0.14)
CMA 0.27

(0.22)
Adj. R2 0.06 Adj. R2 0.06 Adj. R2 0.02 0.04 0.05
# Obs. 492 # Obs. 492 # Obs. 492 492 492

Notes: This table reports the results from regressing the LL Strong factor constructed as detailed
in table 1 on Fama and French 5 factors (FF5), the Hou et al. (2015a, b) q-factors, and the
Carhart momentum factor (MOM). Newey-West adjusted standard errors are reported in paren-
theses. Monthly data start in 1972:01 and end in 2012:12. One, two, and three asterisks denote
significance at the 10%, 5%, and 1% levels, respectively. Here, we perform one-sided test against
the hypothesis H0 : α < 0. For factors loadings the significance corresponds to the two-sided tests.

results confirm that these conclusions can be obtained also when considering more granular

cross sections with either 38 or 49 industries. Our results apply also when using different

holding and formation periods for the construction of iMOM (see Table B3 in the appendix).

Furthermore, our LL factor continues to have relevant information when we run our time-

series tests on principal components that are extracted from all of these factors and explain

up to 93% of their variation (see Tables B4 and B5).

We deepen our analysis by exploring the connection between the leading factor, the q-

factors of Hou et al. (2015a, b), the FF5 factors of Fama and French (2015), and the Carhart

(1997) momentum factor. As shown in Table 7, the alpha associated to our leading factor

remains sizeable and significant across all cases considered. Even though our leading factor

is related to cyclical measures like ROE and RMW, it is mostly unexplained by them.

We also include a dummy for NBER recessions and document that the leading premium

is not a recession-driven phenomenon (see Table B6 in the appendix). Hence our factor

is distinct from that in Lettau et al. (2014). In Table B7, we show that our results are

19



not subsumed by either the announcement risk factor of Savor and Wilson (2016) or the

production network premium identified by Gofman et al. (2017). Our results continue to

hold also when we consider aggregate consumption growth as opposed to GDP growth (see

Table B8).

Predictability of macroeconomic aggregates. In order to test the economic signifi-

cance of our findings, we assess whether the aggregate valuation ratio of our leading firms has

predictive power on industrial production and unemployment in addition to that of classical

predictors. Specifically, we construct the price-dividend ratio for both the aggregate stock

market and our leading portfolio and use these two ratios in standard forecasting regressions.

We report our findings in Table 8 and note two relevant results. First, our leading price-

dividends ratio exhibits significant predictive power for both industrial production and em-

ployment. This result obtains while controlling for other well-known predictive factors, such

as the aggregate price-dividends ratio, a measure for the aggregate credit spread, inflation,

and the federal funds rate. Second, the predictive power of the leading price-dividends ratio

is increasing in the horizon of our regressions in terms of both coefficient magnitude (γh) and

contribution to the adjusted R2. This contribution is measured by the difference between

the adjusted R2 values with and without the leading price-dividend ratio included in the

regression. We note that we do not focus on cumulative growth rates and hence we are

not exposed to the potential problems pointed out by Valkanov (2003). Our estimates are

adjusted for the Stambaugh (1986) bias, and our inference is based on a bootstrap procedure

that mitigates the issues pointed out by Torous et al. (2004).

3.2 Cross-Sectional Tests

The goal of this section is twofold. On the one hand, in the spirit of the empirical asset

pricing literature, we want to confirm that our new factor conveys additional information

for the cross-section of equity returns and is not just a ‘lucky factor’. On the other hand,

our cross-sectional investigation is necessary to better disentangle the portion of our leading

premium that is associated with advance information and cannot be attributed to exposure
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Table 8: Predictive Properties of Leading Price-Dividend Ratio

Industrial production growth
h = 1 h = 2 h = 3 h = 4

Eq. (1)-(3), γh 0.023∗∗∗ 0.032∗∗∗ 0.040∗∗∗ 0.046∗∗∗

(0.005) (0.007) (0.008) (0.008)
Adj. R2 0.467 0.188 0.040 0.020
Adj. R2* 0.461 0.176 0.017 −0.013

Eq. (2), γh 0.022∗∗∗ 0.029∗∗∗ 0.037∗∗∗ 0.043∗∗∗

(0.006) (0.007) (0.007) (0.007)
Adj. R2 0.493 0.265 0.169 0.167
Adj. R2* 0.488 0.255 0.149 0.138

Unemployment growth
h = 1 h = 2 h = 3 h = 4

Eq. (1)-(3), γh −0.080∗∗∗ −0.122∗∗∗ −0.151∗∗∗ −0.162∗∗∗

(0.017) (0.021) (0.024) (0.023)
Adj. R2 0.538 0.279 0.107 0.047
Adj. R2* 0.527 0.255 0.066 −0.001

Eq. (2), γh −0.081∗∗∗ −0.112∗∗∗ −0.139∗∗∗ −0.151∗∗∗

(0.020) (0.023) (0.025) (0.023)
Adj. R2 0.557 0.336 0.208 0.172
Adj. R2* 0.547 0.316 0.174 0.130

Notes: This table reports loadings of industrial production growth and unemployment growth h
quarters ahead on the price-dividend ratio of the leading portfolio. In particular, we estimate
predictive regressions of the form:

∆gt+h = γ0 + γhpd
lead
t + δpdMKT

t + α∆gt−1 + εt+h, h = 1, .., 4 (1)

∆gt+h = γ0 + γhpd
lead
t + δpdMKT

t + α∆gt−1 + controls + εt+h, h = 1, .., 4 (2)

pdleadt = ρ0 + ρ1pd
lead
t−1 + ut (3)

where ∆gt+h is the h-quarter ahead one-period growth rate of industrial production and unemploy-
ment. In the regressions, we control for the (t−1)-growth rate, ∆gt−1. The set of controls includes
the default spread, inflation, and federal fund rate. Estimated coefficients have been adjusted with
the Stambaugh bias correction. Bootstrap standard errors are in parentheses. Adj R2* denotes
adjusted R-squared for an equivalent regression where pdlead is excluded. The quarterly data start
in 1973:Q1 and end in 2012:Q4. One, two, and three asterisks denote significance at the 10%, 5%,
and 1% level, respectively.

to other factors connected to cyclical economic activity.
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Pricing tests. We use GMM to estimate the following linear pricing model

Rex
i,t = ai + βi · Ft + ui,t (2)

E[Rex
i,t ] = βiλ+ vi, (3)

in which Rex denotes excess returns, i indexes the test assets, and the β and λ coefficients

measure the exposure of returns to and the market price of risk of our factors, Ft, respectively.

As in Cochrane (2005), we represent the discount factor as mt = m− bft, so that

b = E(ftf
′
t)
−1λ. (4)

Efficient standard errors are corrected for autocorrelation and heteroskedasticity following

Newey and West (1987).8

We first run a conventional analysis across many different cross sections of test assets

both for robustness and to address the criticism of Lewellen et al. (2010) related to the

strong factor structure of the size and book-to-market cross sections. In the ensuing analysis

individual stocks are sorted with respect to their conditional betas for the LL factor. In both

steps, we highlight the implied time premium.

Conventional test assets. In Table 9, we report our results for both the market prices of

risk and the implied stochastic discount factor loadings associated with our four factors, that

is, FF3 plus the LL factor. Since we take the concerns about spurious inference seriously,

we also report the cross sectional improvement in GLS R2 (GLS R2+, see Lewellen et al.

(2010)) and the mean scaled intercept (SI, see Harvey and Liu (2018)) statistics.9

8We use a two-step procedure. In the first iteration, we set the weighting matrix for the moment conditions
equal to the identity matrix. In the second iteration, we use the optimal weighting matrix from our first
iteration.

9We follow Harvey and Liu (2018) in aggregating the results from 10,000 bootstrap samples of the entire
cross section with replacement.
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Table 9: Prices of Risk and Pricing Kernel Loadings

Cross Section (# portfolios) λMKT λSMB λHML λLL bMKT bSMB bHML bLL GLS R2+ SI
30 industries 0.57∗∗∗ −0.23 −0.02 0.45∗∗ 0.04∗∗∗ −0.04 0.00 0.05∗∗∗ 0.30 −0.084

(0.22) (0.21) (0.23) (0.20) (0.01) (0.02) (0.03) (0.02) [0.03]
38 industries 0.57∗∗∗ −0.16 0.05 0.42∗∗ 0.04∗∗∗ −0.03 0.02 0.05∗∗∗ 0.27 −0.053

(0.22) (0.19) (0.25) (0.20) (0.01) (0.02) (0.03) (0.02) [0.05]
49 industries 0.59∗∗∗ −0.24 −0.07 0.49∗∗ 0.04∗∗∗ −0.04∗ 0.00 0.05∗∗ 0.18 −0.070

(0.21) (0.20) (0.24) (0.24) (0.01) (0.02) (0.03) (0.02) [0.01]
BE/ME and Size (25) 0.44∗∗ 0.17 0.46∗∗∗ 0.37∗∗ 0.04∗∗∗ 0.02 0.07∗∗∗ 0.04∗∗∗ 0.08 −0.032

(0.22) (0.15) (0.17) (0.15) (0.01) (0.02) (0.02) (0.01) [0.07]
BE/ME and OP (25) 0.45∗∗ −0.12 0.52∗∗∗ 0.30∗∗ 0.04∗∗∗ −0.01 0.07∗∗∗ 0.03∗∗ 0.21 −0.026

(0.22) (0.27) (0.19) (0.15) (0.01) (0.03) (0.02) (0.01) [0.10]
BE/ME and INV (25) 0.52∗∗ −0.16 0.31∗ 0.36∗∗ 0.04∗∗∗ −0.02 0.05∗∗ 0.04∗∗∗ 0.20 −0.003

(0.22) (0.25) (0.18) (0.15) (0.01) (0.03) (0.02) (0.01) [0.04]
OP and INV (25) 0.48∗∗ −0.37 0.66∗∗∗ 0.47∗∗∗ 0.05∗∗∗ −0.04 0.08∗∗∗ 0.05∗∗∗ 0.10 −0.076

(0.22) (0.25) (0.22) (0.16) (0.01) (0.03) (0.03) (0.01) [0.08]
Size and OP (25) 0.44∗∗ 0.05 0.86∗∗ 0.42∗∗∗ 0.05∗∗∗ 0.01 0.12∗∗ 0.04∗∗∗ 0.16 −0.079

(0.22) (0.15) (0.40) (0.16) (0.01) (0.02) (0.05) (0.01) [0.17]
Size and INV (25) 0.48∗∗ 0.07 0.77∗∗∗ 0.35∗∗ 0.05∗∗∗ 0.01 0.11∗∗∗ 0.04∗∗∗ 0.06 −0.093

(0.22) (0.15) (0.20) (0.15) (0.01) (0.02) (0.02) (0.01) [0.08]
Size and Beta (25) 0.43∗∗ 0.12 0.76∗∗ 0.36∗∗ 0.04∗∗∗ 0.02 0.11∗∗∗ 0.04∗∗∗ 0.12 −0.168

(0.22) (0.15) (0.33) (0.15) (0.01) (0.02) (0.04) (0.01) [0.09]
Size and LT Reversal (25) 0.50∗∗ 0.12 0.54∗∗∗ 0.36∗∗ 0.04∗∗∗ 0.01 0.08∗∗∗ 0.04∗∗∗ 0.13 −0.114

(0.22) (0.16) (0.20) (0.15) (0.01) (0.02) (0.02) (0.01) [0.01]
Size, BE/ME, INV, OP (40) 0.49∗∗ 0.07 0.34∗∗ 0.43∗∗∗ 0.04∗∗∗ 0.00 0.05∗∗∗ 0.05∗∗∗ 0.10 −0.061

(0.22) (0.15) (0.17) (0.16) (0.01) (0.02) (0.02) (0.01) [0.03]
Size, BE/ME, INV, OP, MOM (50) 0.49∗∗ 0.09 0.23 0.86∗∗∗ 0.04∗∗∗ 0.00 0.04∗ 0.09∗∗∗ 0.07 −0.090

(0.22) (0.15) (0.18) (0.17) (0.01) (0.02) (0.02) (0.02) [0.03]

Notes: This table presents factor risk premia and the exposures of the pricing kernel to FF3 (MKT, SMB, HML) and our lead-lag factor (LL).
We employ the generalized method of moments (GMM) to estimate the linear factor model stated in equations (2)–(4). GLS R2+ denotes
the improvement in GLS R2 achieved by adding the LL factor to the FF3 factors. SI denotes the average scaled intercept of Harvey and Liu
(2018). Associated p−values are in squared brackets. Our set of test assets consists of 30-, 38-, and 48-industry portfolios; portfolios sorted on
book-to-market (BE/ME), market capitalization (Size), operating profits (OP), and investments (INV); double-sorted portfolios sorted on size
and long-term (LT) reversal. Our monthly sample is 1:1972–12:2012. The numbers in parentheses are Newey and West (1987) standard errors.
One, two, and three asterisks denote significance at the 10%, 5%, and 1% levels, respectively.
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We find that both the factor risk premium λLL and the pricing kernel loading bLL are

statistically significant at the 5% and often 1% level. The cross sectional R2 improvement is

sizeable and particularly so for the industry cross section. The p−value of the SI statistics

is always smaller or equal to 10%, implying that we can reject the null hypothesis that the

LL factor is a lucky factor.

Hence, these tests confirm that our LL factor is both relevant and required when it comes

to pricing the cross sections equity returns, including those in which portfolios are sorted

with respect to investment (INV), operating profits (OP), long-term reversal (LT Reversal),

and momentum (MOM).10 In Appendix B, we show that these results are still significant,

albeit at a higher significance level, when we add either momentum or durability to set of

risk factors to study the cross section of industries (see Table B9).

In Table 10, we report for each cross-section the maximum spread in the portfolio ex-

posures to the LL factor and a measure of the implied timing premium. On average, the

timing premium is about 1.5% per year, i.e., about 35% of our measured leading premium

(see table 1).

Portfolios sorted on firm-level LL-exposure. Computing cross-correlograms on firm-

level cash flows is impractical because cash flows are too noisy. Consistent with prior liter-

ature, we use the firm-level returns exposure to our return-based factor to proxy the extent

to which a firm leads/lags the cycle.

Specifically, we start by taking our LL factor from our benchmark procedure that considers

30 industries. For each firm, we then compute its conditional exposure to the LL factor

(βLL,i,t) over a rolling-window that includes the past 60 months. We control for the FF3

factors in the regression and sort firms according to their βLL,i,t into 30 portfolios that we

use as test assets. By grouping together all firms with strongly positive (negative) exposure,

this procedure bundles the most leading (lagging) firms in the economy across industries.

These portfolios are re-formed once a year.

10Fama and French (1993) do not estimate market prices of risk as we do. We run the Fama-MacBeth
regressions replication code choosing our industry portfolios as test assets. In this cross section, we obtained
poorly identified, and often negative, market price of risk for both SMB and HML.
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Table 10: Disentangling Timing Premium from Leading Premium

Max(βLL)-Min(βLL) λLL·(Max(βLL)-Min(βLL))
30 industries 0.588 3.18
38 industries 0.522 2.63
49 industries 0.665 3.91
BE/ME and Size (25) 0.082 0.37
BE/ME and OP (25) 0.338 1.22
BE/ME and INV (25) 0.183 0.79
OP and INV (25) 0.288 1.62
Size and OP (25) 0.182 0.92
Size and INV (25) 0.145 0.61
Size and Beta (25) 0.324 1.40
Size and LT Reversal (25) 0.183 0.79
Size, BE/ME, INV, OP (40) 0.215 1.11

Mean 0.310 1.55
Median 0.252 1.16

Notes: This table presents spreads in test assets’ exposures to the LL factor βLL, Max(βLL)-
Min(βLL), together with the product of these spreads and the corresponding factor risk premia,
λLL(Max(βLL)-Min(βLL)). We employ the generalized method of moments (GMM) to estimate
the linear factor model stated in equations (2)–(3). All returns are monthly from January 1972
through December 2012. At the bottom of the table, we report sample mean and median of the
quantities.

Our results are reported in Table 11 (top portion of each panel) and confirm what we had

found in our previous analysis, namely that the LL factor is priced and it enters the discount

factor in an independent and significant way. Furthermore, the implied size of the timing

premium is about 1.8% per year, as indicated by the values in the last column of Panel A.

We then turn our attention to firm heterogeneity within industries. We focus on 38 (49)

industries and sort firms within each industry in 3 (2) portfolios according to their βLL,i,t

exposure.11 This procedure enables us to have a larger cross section of test assets and

confirms that the LL factor is still priced in the cross-section. To be conservative, we use the

top- and bottom-20% exposure coefficients from our cross sections to imputed the timing

premium. We confirm the timing premium ranges from 1.3% to 2% per year.

11When we compute the βLL,i,t with 38 (49) industries we also use the benchmark LL factor that we
obtained working with 30 industries.
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Table 11: Prices of Risk and Pricing Kernel Loadings – LL Cross Section

Panel A: E[Rex
i ] = βMKTλMKT + βSMBλSMB + βHMLλHML + βLLλLL

λMKT λSMB λHML λLL

(
βLL − βLL

)
λLL

30 LL-portfolios
0.64∗∗∗ 0.82 0.49 1.02∗ 1.77
(0.19) (0.57) (0.39) (0.53)

38 Industry × 3 LL-portfolios
0.72∗∗∗ 0.25 -0.22 0.52∗ 1.29
(0.19) (0.27) (0.19) (0.28)

49 Industry × 2 LL-portfolios
0.60∗∗∗ -0.14 0.14 0.75∗ 2.09
(0.18) (0.21) (0.26) (0.40)

Panel B: mt = m− bMKTMKTt − bSMBSMBt − bHMLHMLt − bLLLLt
bMKT bSMB bHML bLL

30 LL-portfolios
0.06∗∗∗ 0.10 0.10∗∗ 0.12∗∗

(0.02) (0.06) (0.05) (0.06)
38 Industry× 3 LL-portfolios

0.05∗∗∗ 0.01 0.00 0.07∗∗

(0.01) (0.04) (0.03) (0.03)
49 Industry× 2 LL-portfolios

0.06∗∗∗ -0.02 0.03 0.09∗∗

(0.01) (0.03) (0.03) (0.04)

Notes: This table presents factor risk premia and the exposures of the pricing kernel to the FF3
factors (MKT , SMB, HML) and our lead-lag factor (LL). We employ the generalized method of
moments (GMM) to estimate the linear factor model stated in equations (2)–(3). Using a linear
projection of the stochastic discount factor m on the factors (m = m−f ′b), we determine the pricing
kernel coefficients as b = E[ff ′]−1λ. We use portfolios based on the individual firms’ exposures to
the LL factor (βLL,i,t) estimated over previous 60 months as our test portfolios. The top section
of each panel presents results for 30 lead-lag portfolios. In the middle (bottom) section the test
portfolios are constructed by sorting firms on their βLL,i,t within each of 38 (49) industries into
3 (2) subgroups. βLL (β

LL
) denotes the top (bottom) quintile of the LL-betas distribution. Our

sample consists of monthly returns for test portfolios from January 1972 through December 2012.
The numbers in parentheses are standard errors adjusted according to Newey and West (1987).
One, two, and three asterisks denote significance at the 10%, 5%, and 1% levels, respectively.

3.3 Further Robustness Checks

In section B.1 of the appendix, we carry out several robustness tests relevant for our empirical

findings. We start by assessing alternative measures for our lead/lag indicator. We then

consider an alternative way to correct for seasonality and a sorting procedure based on

Granger causality. All results are reported in Table B10.
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We consider leads and lags of other cash-flows like, for example, dividends, operating

income, capital expenditures and asset growth and confirm that leading firms bear a higher

cost of equity. We also show that looking at leading and lagging firms is different from

sorting firms according to their past cash-flow growth and creating a winners-minus-losers

(WML) strategy. We show that our findings are robust to forming our lead-lag portfolio at

an annual frequency, but they vanish if we proceed with an unconditional sorting done over

the entire sample, consistent with the diffusion model presented in section 2.1 in which all

industries are ex-ante identical.

4 An Equilibrium Model for the Leading Premium

By no-arbitrage our leading premium is connected to the spread between the equity yield

curve and the bond yield curve (see appendix C). Equivalently, the leading premium is

partially a reflection of the timing premium. As a result, any equilibrium asset pricing

model able to deliver a substantial timing premium can produce our empirical findings.

Given our empirical evidence on long-run dividends growth from Section 3, we focus on an

equilibrium model featuring two main elements: (a) an information structure affected by

leads and lags of long-run cash flows growth; and (b) preferences sensitive to the timing of

information about future growth.

Specifically, we assume that the representative agent has Epstein and Zin (1989) prefer-

ences, i.e.,

Ut =

[
(1− δ)C

1− 1
ψ

t + δEt
[
U1−γ
t+1

] 1− 1
ψ

1−γ

] 1

1− 1
ψ

and her stochastic discount factor is

Mt = δe−
1
ψ

∆ct

(
Ut

Et−1[U1−γ
t ]

1
1−γ

)1/ψ−γ

.

In this economy, there are three fundamental cash flows: consumption, C; a redundant
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cash flow that provides anticipated information, Dlead; and a lagged redundant cash flow,

Dlag. We assume that the following holds:

∆ct+1 = µ+ xt−jc + εct+1 (5)

xt+1 = ρxt + εxt+1 (6)

∆dleadt+1 = µ+ φleadx xt + φlead0 εc,t+1 + εd,leadt+1 (7)

∆dlagt+1 = µ+ φlagx xt−jd +

jlag∑
f=0

φlagf εc,t+1−f + εd,lagt+1 , (8)

where

vt+1 =



εct+1

εxt+1

εd,leadt+1

εd,lagt+1


∼ N .i .i .d .(0,Σ), and Σ = diag(σ2

c , σ
2
x, σ

2
d,lead, σ

2
d,lag).

According to this law of motion, the leading portfolio has predictive power for expected

consumption growth jc periods ahead, that is, Et[∆ct+1+jc ] = xt. For the lagged cash flows,

the time lag on the long-run component is denoted by jd. We also allow the agent to

have advance information with respect to the exposure of the lagged cash flow to short-run

consumption shocks over a maximum time horizon of jlag periods. We do this to be consistent

with the data, but it is not the main driver of our results.

At this point, we must clarify that this exercise has the sole purpose to assess the potential

of this class of models to produce a substantial timing and leading premium. Since we are

completely abstracting from network connections across firms and we work with managed

portfolio cash flows, a good performance of our economy must be interpreted as an upper

bound on what this class of models could deliver in a fully fledged network model.

The endogenous returns associated with this log-linear setting are reported in Appendix

E. In what follows, we focus on the procedure that we use to calibrate these portfolio cash

flows.

28



Calibration Strategy. Quarterly consumption data are from the BEA and include non-

durables and services. To identify xt−jc , we run a standard forecasting regression using the

thirteen factors formed by Jurado et al. (2015) and represent the estimated long-run risk

component as an AR(1) process, consistent with Equation (6).12 This procedure enables us

to identify both long-run (εx,t) and short-run (εc,t) consumption news.

We compute the dividends paid out by both our lead and lag portfolios and aggregate them

to a quarterly frequency.13 We deflate them using quarterly US CPI and then regress the

growth rates of these cash flows on leads and lags of both short- and long-run consumption

news, consistent with Equations (7)–(8). We use adjusted R2 to optimally pin down the

maximum number of leading/lagging periods, as detailed in Appendix D. We set statistically

insignificant coefficients to zero.

We summarize our main results in Table 12. The consumption long-run component lags

that of the leading cash flow by 27 quarters (jc = 81 months). The long-run component of

the cash flow of the lagged portfolio lags by 47 quarters (jd = 141 months). To be consistent

with the data, we also allow this cash flow to load on lagged short-run consumption shocks.

According to our results, anticipated information on these shocks plays a very marginal role

(the estimated φlagf coefficients can be found in Table D1 in the appendix).

The data suggest that the dividends of the leading portfolio tend to be more exposed

to long-run growth news than those of the lagged portfolio. This fact is consistent with

the view that lagging firms may use advance information to smooth their long-run dividend

growth. Consistent with these results, we set φleadx = 8.60 and φlagx = 6.39. The relevance of

this observation is twofold. First, we properly control for heterogeneous exposure to shocks,

12The point estimate of ρ is corrected for the small-sample bias (Kendall (1954)):

E (ρ̂− ρ) = − (1 + 3ρ̂)

n
.

13Let Rexp,t and Rcump,t represent the ex- and cum-dividend returns of portfolio p. Let Vp,t be the ex-dividend
value of the investment strategy in portfolio p at time t. Dividends Dp,t are then computed recursively:

Dp,t = Vp,t−1(Rcump,t −Rexp,t)
Vp,t = Vp,t−1R

ex
p,t,

assuming Vp,0 = 1.
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as suggested by Bansal et al. (2005). Second, after accounting for heterogeneity in exposure

we can isolate the role of heterogeneity in the timing of exposure, i.e., the relevance of the

pure timing premium.

The properties of aggregate consumption growth are consistent with both prior findings

and our own estimation results. We set the monthly persistence of long-run risk to 0.9, a value

lower than that in Bansal and Yaron (2004) and consistent with our empirical confidence

interval.14 The volatility of the long-run news, σx, is calibrated to be consistent with the R2

that we obtain from estimating equation (5). The volatility of the consumption short-run

shock is calibrated to a low level, consistent with the fact that we use post-1972 data, i.e.,

observations from a period of great moderation.

Results. Under our benchmark calibration, we set the preference parameters as in Bansal

and Yaron (2004). Specifically, the relative risk aversion (γ) is set to 10; the intertemporal

elasticity of substitution (ψ) is 1.5; and the subjective discount rate (δ) is set to 0.99 to keep

the risk-free rate to a low level.

Our benchmark model produces an annualized LL premium of 3.10%, a number consistent

with our empirical evidence. In order to look at the composition of the leading premium, we

remove advance information by setting jc = jd = 0 and hence determine the portion of the

premium solely driven by heterogeneous exposure (φleadx > φlagx ). We find that heterogeneous

exposure generates a premium of 1.65%. Thus the pure timing premium is 1.45% per year,

a figure consistent with our estimates range.

These results are mostly driven by information about long-run growth, as can be seen by

comparing our benchmark setting with the case in which we remove short-run risk exposure

from the cash flow of both the leading and the lagging portfolios (φpf = 0 for all f and

p ∈ {lead, lag}). In this case, our results are actually stronger, as the LL premium is even

closer to its empirical counterpart.

We also compute the utility-consumption ratio associated with these scenarios. By com-

14We estimate the quarterly persistence parameter ρ and report the inference for ρ1/3. Standard errors
are computed using the delta method.
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paring these ratios in log units, we can compute welfare benefits in terms of percentage

of lifetime consumption. Specifically, we find that advance information about the long-run

component of growth in the economy produces welfare benefits in the order of just 6% of

lifetime consumption.

In order to correctly interpret this figure, we run the Lucas (1987) experiment in our

economy and obtain welfare benefits of removing all uncertainty in the order of 65%.15 As a

result, the advance information that we identify in the cross section of industries represents

less than 10% of the maximum attainable welfare benefits.

Epstein et al. (2014) point out that in the Bansal and Yaron (2004) model, most of the

Lucas welfare benefits originate from full resolution of uncertainty, not from the removal of

deterministic fluctuations. Our computations show that the early resolution of uncertainty

in the cross section of industries is simultaneously valuable but limited, as it carries a strong

market price of risk, but reveals future long-run consumption dynamics over a relatively

short horizon.

We also look at the aforementioned model configurations under the special case of time-

additive preferences, i.e., when ψ = 1
γ

= 0.1. Since in this case the representative agent does

not care about the timing of resolution of uncertainty, advance information is not priced. As

a result, the lead-lag expected return difference disappears, and our empirical findings take

the form of an anomaly. In Appendix E, the reader can find explicit derivations of the LL

premium in the context of simple lead-lag structures.

Link to our multifactor model. In order to investigate our model’s ability to reproduce

the cross-sectional pricing predictions found in the data, we construct a synthetic cross

section of redundant dividend claims that differ in their exposure to fundamental shocks and

in the timing of their exposure.

15This number is much smaller than that in Croce (2013), as our consumption process is calibrated
according to post-1972 data, i.e., its volatility is moderate.

31



Table 12: Predictions for Quantities and Prices

Panel A: Benchmark Calibration

δ12 γ ψ 12µ σc
√

12 V (x)/V (∆c) ρ φleadx φlagx jc jd
0.99 10 1.50 1.80% 0.65% 0.57% 0.90 8.60 6.39 81 141

Data 0.65% 0.50% 0.83 8.60 6.39 81 141
s.e. (0.02) (0.04) (3.86) (4.71)

Panel B: Main Moments
EZ case (ψ = 1.5) CRRA (ψ = γ−1 = 0.1)

Bench- No lead LRR only Bench- No lead LRR only
DATA mark (jc = jd = 0) (φpf = 0, ∀f) mark (jc = jd = 0) (φpf = 0, ∀f)

E[rex,leadd − rex,lagd ] 4.04 (0.60) 3.09 1.66 3.48 0.04 0.03 0.00

E[rex,leadd ] 9.00 (0.72) 7.64 7.84 7.37 0.28 0.28 0.00

E[rex,lagd ] 4.96 (0.89) 4.56 6.19 3.89 0.24 0.24 0.00

σ[rex,leadd ] 16.79 (0.54) 26.83 26.24 26.50 17.08 9.08 16.46

σ[rex,lagd ] 18.85 (0.60) 22.03 25.00 19.20 15.74 17.60 15.34
E[rf ] 0.94 (0.12) 2.24 2.22 2.24 19.01 19.01 19.01
E[rexc ] - 0.33 0.36 0.33 −0.30 −3.45 −0.30
σ[rexc ] - 1.22 1.26 1.22 8.26 26.41 8.26

U/C - 3.99 3.76 3.99 1.34 1.31 1.34

Notes: Panel A summarizes the benchmark monthly calibration of the cash-flow dynamics described in equations (5)–(8). The entries for the
data are obtained from formal estimation procedures applied to quarterly consumption and dividend data. The long-run risk volatility σx is
selected to align the V (xt)/V (∆c) ratio in the model to the R2 of our regressions in the data. For the leading portfolio, the annualized volatility
of the dividend-specific shocks is set to 7%. For the lagged portfolio we use a figure twice as large, consistent with our estimation results. The
exposures to short-run shocks are set as in appendix table D1. In panel B, we report key annualized moments in percentage terms. When we
set jc = jd = 0, we remove all advance information about the long-run growth component in the economy. The column labeled ‘LRR Only’
features advance information about the long-run component, but it removes exposure of dividends to short-run consumption risk at all horizons
(φpf = 0,∀f, p ∈ {lead, lag}). The rightmost three columns refer to the case in which we adopt CRRA preferences (ψ = γ−1). U/C denotes the
average utility-consumption ratio. All standard errors are Newey-West adjusted.
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Specifically, we let the dividends for stock i follow the dynamics specified in equation (8)

with specific parameters jid, φ
i
f , . . . . Since the effect of current and past short-run shocks on

risk premiums is modest, we focus only on exposure to contemporaneous short-run shocks,

i.e., we set φif = 0 for all f > 1. For consistency, we re-estimate the system of equations

(7)–(8) and report the new estimates in Table 13. We omit the long-run risk exposures φleadx

and φlagx , because they remain unaffected.

Our simulated cross section of cash flows consists of (a) a leading dividend claim which

depends on xt; (b) a lagging asset that lags the leading claim by 141 months, i.e, it depends

on xt−141; and (c) fifteen additional lagging claims with specific lags jid evenly spread out

between 0 and 141 months. Thus, some assets lead aggregate consumption (those with a

lagging period shorter than 81 months), whereas all other assets lag, as in the data.

Additionally, our synthetic assets differ in both their exposure to the long-run shock (φix)

and their exposure to the short-run shock (φif ). For the sake of consistency with the data, we

also allow these cash flows to randomly differ in their idiosyncratic volatility (σid, i = 1, .., 15).

This dimension is not crucial for our results.

For each synthetic asset, we uniformly draw a triplet (φix, φ
i
f , σ

i
d) from our estimated

intervals. For example, the interval for the φif values is consistent with the results in Table

13. Since we draw these parameters independently from jid, we are able to simulate a cross

section of returns in which heterogeneous exposure and heterogeneous timing of exposure to

shocks are distinct phenomena.

We use many repetitions of small samples of simulated returns. In each sample, we

construct the model-implied LL factor by computing the difference between leading and

lagging claim returns, as in the data. We proxy the market factor (MKT ) by focusing on

the return of the claim to aggregate consumption. We then estimate the following linear

factor models:

E[Rex
i ] = βi,MKTλMKT + vi,

E[Rex
i ] = βi,LLλLL + vi,

E[Rex
i ] = βi,MKTλMKT + βi,LLλLL + vi,

(9)

where Rex
i is mean excess return on a synthetic asset. For each sample, we compute the
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Table 13: Short-Run Risk Exposure (Simplified)

φlead0 φlag0

6.58∗ −6.12
(3.54) (5.05)

Notes: This table presents estimated loadings of the leading and lagging dividends on the contem-
poraneous shock to the consumption growth, as specified in the system of equations (5)–(8). The
estimation is restricted by imposing that φif = 0, ∀f > 1, i.e., there is no anticipated information
with respect to short-run consumption news. Numbers in parentheses are Newey-West adjusted
standard errors.

mean squared error (MSE) between simulated returns and returns predicted by these three

different factor-based models. We depict the implied distribution of MSEs across simulated

samples in Figure 3 along with the point estimates obtained from our empirical investigation.

We highlight two important takeaways from this exercise. First, the cross section of our

synthetic returns can be explained by a two-factor linear model, where the market factor

picks up differences in exposure to risks, whereas the LL factor picks up heterogeneity in

the timing of exposure. For this reason, the LL factor systematically improves the MSE

by lowering its average and, more generally, by shifting more probability mass toward lower

MSE values.

Second, under our benchmark calibration the model fit improvement

MFI = 1−
√

MSE(MKT + LL)/MSE(MKT ),

i.e., the relative improvement in MSE obtained by adding the LL factor, tends to be mod-

est compared to its empirical counterpart. According to our simulations, the probability of

observing our estimated MFI or a higher value is just 2%. The reason for this outcome

is related to the fact that volatilities are calibrated to modest values under the benchmark

calibration, and hence we do not have a sizeable heterogeneity across our relevant factors.

When we refine our calibration and increase our volatility parameters so that the volatility

of consumption growth is 2%, the improvement of fit associated with the LL factor becomes

more sizeable and our empirical estimate corresponds to the 70th percentile of our simu-

lated distribution. We find this result reassuring: under a refined calibration consistent
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Fig. 3: Mean Squared Error (MSE) Distribution

This figure examines the goodness of fit of the factor models described in the system of equations
(9). The entries from the model are obtained from repetitions of small samples. The entries from
the data are obtained from our estimates derived from post-1972 quarterly data. In the model,
we construct a cross section of synthetic assets whose cash flows lag to different extents the cash
flow of the leading claim. Assets also randomly differ in their exposure to short- and long-run
risk, as in the data. The LL factor is constructed as a spread in the returns of the most-leading
and most-lagging portfolios. In the model, the market return is proxied by the consumption claim
return. In the top panels, we depict the MSEs across simulated samples. In the bottom panels,
we depict the empirical distribution of the model fit improvement (MFI) obtained by adding the
LL factor to the MKT factor (MFI = 1−

√
MSE(MKT + LL)/MSE(MKT )). The point estimate

of MSE improvement in the data (using 30-industry portfolio returns) is represented by a vertical
dashed line. The right panels are obtained using a refined calibration in which the total volatility
of consumption growth is set to its 1929–2008 estimate of 2%.

with long-sample US consumption variance, our model performs well both qualitatively and

quantitatively.

Further simulations results. Given our simulated cross section of cash-flows, we can

now investigate the properties of our empirical approach based on cross-correlograms to pin
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Table 14: LL Indicator for Simulated Cash Flows
Specification Benchmark, Benchmark RW = 47 RW = 70,

no leads/lags ML = 29 ML = 29

LL portfolio return 0.00 0.32∗∗∗ 2.00∗∗∗ 3.01∗∗∗

s.e. (0.03) (0.07) (0.08) (0.11)
NW s.e. (0.02) (0.07) (0.08) (0.11)

Accuracy
All leads − 0.53 0.90 0.99
All lags − 0.56 0.96 1.00
Leading Portfolio − 0.75 0.98 1.00
Lagging Portfolio − 0.64 0.90 0.99

Notes: This table provides average returns of the LL portfolio returns constructed by adopting
our empirical LL indicator on our simulated cross section of cash flows. Monthly cash flows are
simulated as described in section 4 and time-aggregated to the quarterly frequency. Under our
benchmark procedure, for each asset we compute the ±4-quarter (maximum lead/lag, ML) cross-
correlation between industry-level output growth and the output growth using 20-quarter rolling
windows (RW). Second, we identify the lead or lag for which the maximum absolute cross-correlation
is attained and assign it to the corresponding industry as its LL indicator. A positive (negative)
LL indicator denotes an industry whose output growth leads (lags) GDP growth. The LL portfolio
is a zero-investment strategy that is long in the top-3 leading assets and short in the top-3 lagging
assets. The results from the first column refer to the case in which we apply our benchmark
procedure to coincidental cash-flows (jd = jc = 0). In the rightmost two columns we alter RW and
ML. We report in parentheses both simple and Newey and West (1987)-adjusted standard errors
across small sample repetitions. The bottom portion of the table reports share of assets correctly
identified as leading/lagging for all assets (All leads/lags), and for the assets that belong to the
extreme Leading/Lagging portfolio. Each short sample contains 492 monthly observations. One,
two, and three asterisks denote significance at the 10%, 5%, and 1% levels, respectively.

down the LL indicator. Our main results are reported in Table 14. The first column confirms

that when the model cash flows are all coincidental (jc = jd = 0), our procedure produces

no leading premium. Thus concerns about spurious results are mitigated.

When we instead have a proper lead/lag structure, our benchmark empirical procedure

captures a positive and significant leading premium. Not surprisingly, the magnitude of the

premium measured in the data is much smaller than the maximum spread implied by the

model because the accuracy of the LL indicator in the data is rather imperfect and hence

we are not identifying the most leading/lagging stocks with perfect accuracy. This result

suggests that our empirical estimates for the premium may be considered rather conservative.

Most importantly, the next two column show that our LL indicator is consistent, meaning

that it correctly sorts cash flows when we increase the length of our rolling window and we
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consider more leads and lags in the computation of our cross-correlograms. Increasing the

maximum lead/lag in our cross-correlogram from 4 to 29 quarters of course also requires us

to increase the length of our rolling window. When the rolling window length is set to 47

quarters, the accuracy of our LL indicator is enhanced and we recover most of the leading

premium. With a 70-quarter window, the identification of leading and lagging assets is

basically perfect.

5 Conclusion

In this study, we compute conditional leading/lagging indices for industry-level cash flows

with respect to US GDP. We find that leading industries, i.e., industries whose cash flows

contain information relevant for future aggregate growth, exhibit average returns that are

approximately 4% higher than those of lagging industries.

This return difference remains sizeable and significant even after adjusting for a large

number of other risk factors both in the time series and in the cross section of equity returns.

After controlling for heterogenous exposure to risk, we find a pure annual timing premium

of about 1.5%.

Our investigation implies at least two novel insights: (a) the cross section of industry

returns can be significantly explained by heterogeneity in the timing of exposure to shocks;

and (b) asset prices are sensitive to the timing of economic fluctuations.

We provide a theoretical foundation for our findings in the context of a rational equilibrium

model in which agents have a preference for early resolution of uncertainty and hence price

advance information about future cash flows. Our setting explains our empirical findings

and suggests that advance information in the cross section of industry cash flows is valuable

but limited, as it results in moderate welfare benefits.

Future work should extend our investigation by including other potentially valuable

sources of anticipated information. This task could be accomplished by considering other

classes of financial securities, such as domestic bonds, options, and international assets.
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Appendices

A Other Examples of our LL Cross Section

To provide further economic guidance about our measure, in Figure A1 we report our maxi-

mum correlation LL indicators for the consumer goods, manufacturing, and business equip-

ment sectors. We focus on these large aggregates because their average lead-lag structure has

been documented in the literature (see, among others, Greenwood and Hercowitz (1991) and

Gomme et al. (2001)), and hence they represent a natural reference point for our methodol-

ogy.

Consistent with prior studies, the unconditional average of the LL indicators in our sample

suggests that the consumer goods sector leads national output by a little more than a month

(a lead of 0.38 quarters), whereas manufacturing lags it slightly (a lag of around 0.6 quarters).

Business equipment, i.e., investment goods, lag consumer goods by almost three quarters,

as it takes time for firms to adjust their investment orders. Our LL indicators suggest that

the lead-lag structure across these sectors experiences fluctuations that are pronounced over

time but moderate in the cross section.

Specifically, during recession periods both the consumer goods sector and the business

equipment sector tend to respond more promptly to shocks, as the former represents a

stronger leading indicator, and the latter lags national output just by a few weeks. During

booms, in contrast, both the consumer goods and the business equipment sectors lag the

cycle by a longer period of time. The difference in the LL indicators of the two sectors,

however, remains pretty stable, as it ranges from 2.13 quarters during recessions to 2.9

quarters during booms. In our main analysis with many industries, these cross sectional

fluctuations become more relevant.
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Fig. A1: Lead-Lag Indicator for Selected Industries

This figure depicts the lead-lag (LL) indicator for three major industries. The LL indicator is

computed in two steps. First, for each industry, in each quarter we compute the ±4-quarter

cross-correlation between industry-level output growth and the domestic output growth using 20-

quarter rolling windows. Second, we identify the lead or lag for which the maximum absolute

cross-correlation is attained and assign it to the corresponding industry as its LL indicator. A

positive (negative) LL indicator denotes an industry whose output growth leads (lags) GDP growth.

Quarterly growth rates are adjusted for inflation and seasonality. In the top panel, grey bars denote

NBER recession periods. In the bottom panel, we report for each industry the average of the LL

indicator over our entire sample (denoted as “mean”), and its average value during booms and

recessions.

B Data Sources and Additional Tables

In our empirical analysis, we use a cross section of monthly stock returns from the Center

for Research in Security Prices (CRSP) and corresponding quarterly firm-level data from

Standard & Poor’s COMPUSTAT for the period January 1972 through December 2012.

Prior to 1972, the quarterly data coverage is modest. All growth rates are in real terms and

seasonally adjusted. We retrieve macroeconomic data series for GDP, consumption, and CPI

from the website of the Federal Reserve Bank of St. Louis. Industry definitions based on

SIC codes are taken from Kenneth French’s website.
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Table B1: LL Portfolio - Market Capitalization Share of Extreme Portfolios

Returns on LL portfolio
Benchmark

Minimum share,% 10 15 20 25 30

Average return 4.15∗ 4.20∗∗ 3.91∗∗ 3.48∗∗ 3.21∗∗

(2.35) (1.79) (1.64) (1.51) (1.26)
CAPM α 4.85∗∗ 4.96∗∗∗ 4.54∗∗∗ 4.04∗∗∗ 3.58∗∗∗

(2.35) (1.89) (1.72) (1.54) (1.31)
FF3 α 5.48∗∗ 4.68∗∗ 4.10∗∗ 3.48∗∗ 3.39∗∗

(2.53) (2.08) (2.03) (1.68) (1.55)

Notes: This table provides average value-weighted returns of the LL portfolio, that is, a zero-dollar
strategy long in Lead and short in Lag industries as defined in section 3. We depart from our
benchmark portfolio construction by varying the minimal share of extreme portfolios in terms of
market capitalization. In the benchmark specification, both the Lead and Lag portfolios represent
at least 15% of the total market value in each quarter. Monthly return data start in 1972:01 and end
in 2012:12. Industry definitions are from Kenneth French’s website. The numbers in parentheses
are standard errors adjusted according to Newey and West (1987). One, two, and three asterisks
denote significance at the 10%, 5%, and 1% levels, respectively.
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Table B2: Lead-Lag Portfolio Sorting: Cross-Industry LL Index

Panel A: 30 industries
Lead Mid Lag LL

Average return 9.66∗∗∗ 5.84∗∗ 5.72∗∗ 3.95∗

(2.84) (2.72) (2.89) (2.08)
CAPM α 3.21∗∗ −0.90 −0.88 4.09∗

(1.57) (0.60) (1.30) (2.20)
FF3 α 3.51∗∗ −1.04 −1.37 4.87∗∗

(1.59) (0.62) (1.29) (2.27)

Panel B: 38 industries
Lead Mid Lag LL

Average return 8.40∗∗∗ 6.53∗∗ 4.64∗ 3.76∗∗

(2.41) (2.88) (2.61) (1.90)
CAPM α 1.87∗ −0.26 −1.79 3.65∗

(1.09) (0.49) (1.48) (2.09)
FF3 α 1.96∗ −0.20 −2.49 4.45∗∗

(1.13) (0.50) (1.49) (2.13)

Panel C: 49 industries
Lead Mid Lag LL

Average return 7.98∗∗∗ 6.86∗∗∗ 3.64 4.34∗∗

(2.67) (2.67) (2.86) (1.71)
CAPM α 1.44 0.14 −2.89 4.33∗∗

(1.22) (0.35) (1.21) (1.82)
FF3 α 1.40 0.05 −3.17 4.57∗∗

(1.47) (0.34) (1.30) (2.17)

Notes: This table provides real annualized value-weighted returns of portfolios of firms sorted ac-
cording to their cross-industry index of leads and lags (LL) as detailed in section 2. Our Lead
(Lag) portfolio contains the top (bottom) 20% of our leading industries. These portfolios represent
at least 15% of the total market value in each quarter. All other firms are assigned to the middle
(Mid) portfolio. The LL portfolio reflects a zero-dollar strategy long in Lead and short in Lag.
Return data are monthly over the sample 1972:01–2012:12. Industry definitions are from Kenneth
French’s website. CAPM α (FF3 α) denotes average excess returns unexplained by the CAPM
(Fama-French three-factor model). The numbers in parentheses are standard errors adjusted ac-
cording to Newey and West (1987). One, two, and three asterisks denote significance at the 10%,
5%, and 1% levels, respectively.
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Table B3: LL Factor vs. Industry Momentum: Robustness

Industry Momentum (Lag, Hold)
(1,1) (6,6) (12,12)

30-industries LL factor
MKT+indMOM 4.44∗∗ 4.14∗∗ 4.71∗∗

(1.75) (1.69) (1.92)
FF3+indMOM 4.09∗ 3.74∗∗ 4.17∗∗

(2.10) (1.73) (1.79)

38-industries LL factor
MKT+indMOM 4.09∗∗∗ 3.62∗∗ 3.27∗∗

(1.42) (1.46) (1.54)
FF3+indMOM 4.30∗∗ 4.20∗∗∗ 3.70∗∗

(1.70) (1.52) (1.64)

49-industries LL factor
MKT+indMOM 5.08∗∗ 4.51∗∗ 4.94∗∗

(2.09) (1.86) (2.09)
FF3+indMOM 4.50∗∗ 3.79∗∗ 4.07∗∗

(2.15) (1.90) (1.97)

Notes - This table reports the intercept αLL of the regression of the LL factor constructed from
the cross section of 30, 38 and 49 industries on the corresponding industry momentum factor with
different formation (Lag) and holding (Hold) periods (1 period means 1 month). The industry
momentum is constructed following the methodology of Moskowitz and Grinblatt (1999). We
control for the market factor (MKT) and Fama and French 3 factors (FF3). Newey-West adjusted
standard errors are reported in in parentheses. Monthly data start in 1972:01 and end in 2012:12.
One, two, and three asterisks denote significance at the 10%, 5%, and 1% levels, respectively.
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Table B4: LL Factor vs. Other Factors: Principal Component Analysis

αLL 3.35∗∗ 3.19∗ 2.59∗

(1.68) (1.68) (1.45)
PC1 0.09∗∗ 0.09∗∗ 0.09∗∗

(0.04) (0.04) (0.04)
PC2 −0.14∗∗∗ −0.14∗∗∗ −0.14∗∗∗

(0.04) (0.04) (0.04)
PC3 0.10 0.10 0.10

(0.09) (0.09) (0.08)
PC4 0.01 0.01

(0.06) (0.05)
PC5 −0.05 −0.05

(0.06) (0.06)
PC6 0.17∗∗

(0.08)
PC7 0.23∗∗∗

(0.08)
Expl. Var 68.9% 83.8% 93.6%
Adj. R2 0.11 0.11 0.16
# Obs. 492 492 492

Notes - This table reports the results from regressing the benchamrk LL factor constructed from
the cross section of 30 industries on principal components extracted from Fama and French 5 fac-
tors, industry momentum (6,6) of Moskowitz and Grinblatt (1999), industry betting-against-beta,
investment-minus-consumption, durability, quality-minus-junk and 30-industry momentum factors.
Expl. Var. shows how much of the variation in the factors is explained by the selected principal
components. Newey-West adjusted standard errors are reported in in parentheses. Monthly data
start in 1972:01 and end in 2012:12. One, two, and three asterisks denote significance at the 10%,
5%, and 1% levels, respectively.
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Table B5: LL Factor vs. Other Factors: Principal Component Analysis (II)

αLL 3.42∗ 3.77∗ 3.47∗

(1.95) (1.95) (1.79)
PC1 0.20∗∗∗ 0.20∗∗∗ 0.20∗∗∗

(0.03) (0.03) (0.03)
PC2 0.02 0.02 0.02

(0.05) (0.05) (0.05)
PC3 0.03 0.03 0.03

(0.10) (0.10) (0.10)
PC4 −0.02 −0.02

(0.06) (0.06)
PC5 0.10∗∗ 0.10∗∗

(0.05) (0.05)
PC6 0.08

(0.08)
PC7 0.14∗∗

(0.06)
Expl. Var 68.9% 83.8% 93.6%
Adj. R2 0.13 0.14 0.15
# Obs. 492 492 492

Notes - This table reports the results from regressing the LL factor constructed from the cross
section of 30 industries (using the cross-industry weighted index of leads and lags) on principal
components extracted from Fama and French 5 factors, industry momentum (6,6) of Moskowitz
and Grinblatt (1999), industry betting-against-beta, investment-minus-consumption, durability,
quality-minus-junk and 30-industry momentum factors. Expl. Var. shows how much of the varia-
tion in the factors is explained by the selected principal components. Newey-West adjusted standard
errors are reported in parentheses. Monthly data start in 1972:01 and end in 2012:12. One, two,
and three asterisks denote significance at the 10%, 5%, and 1% levels, respectively.

Table B6: LL Factor during NBER Recessions and Booms

α βdummy
30 industries 2.97∗ 8.42

(1.80) (6.70)
38 industries 3.81∗∗ 1.62

(1.62) (5.21)
49 industries 3.30∗ 8.83

(1.89) (6.47)

Notes: This table reports the results from regressing the LL factor on a recession dummy. The
dummy takes on value of 1 during the NBER defined recession periods and 0 otherwise. Newey-
West adjusted standard errors are reported in in parentheses. Monthly data start in 1972:01 and
end in 2012:12.
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Table B7: The Disconnect between LL and Other Factors (II)

Announcement Factor Network Factor
αLL 4.28∗∗ 4.56∗∗ αLL 6.56∗∗∗

(2.15) (2.08) (2.37)
MKT −0.12 −0.12 MKT −0.22∗∗∗

(0.08) (0.08) (0.06)
SMB 0.04 0.04 SMB −0.23∗∗∗

(0.08) (0.08) (0.06)
HML 0.05 0.05 HML −0.55∗∗∗

(0.15) (0.15) (0.17)
SW e −0.01 TMB 0.11∗

(0.02) (0.06)
SW n −0.03

(0.02)
Adj.R2 0.02 0.03 Adj.R2 0.41
# Obs. 492 492 # Obs. 110

Notes - The left portion of this table reports the results from regressing the LL factor constructed
from the cross section of 30 industry portfolios on Fama and French 3 factors, market (MKT), size
(SMB), and value (HML), together with earnings announcement value-weighted returns from Savor
and Wilson (2016) for announcers (SW e) and non-announcers (SW n). The right portion of this
table controls for the Top-Minus-Bottom (TMB) risk factor identified by Gofman et al. (2017) in
production networks. Newey-West adjusted standard errors are reported in parentheses. Monthly
data start in 1972:01 and end in 2010:12. The TMB factor is available starting from 2003:11.
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Table B8: Lead-Lag Portfolio Sorting with Consumption

Lead Mid Lag LL
Average return 9.65∗∗∗ 8.01∗∗∗ 4.74 4.91∗

(2.44) (2.49) (3.74) (2.64)
CAPM α 2.54∗ 0.27 −4.16∗ 6.70∗∗

(1.32) (0.74) (2.12) (3.05)
FF3 α 2.12∗ −0.08 −3.27∗∗ 5.39∗∗

(1.23) (0.67) (1.58) (2.21)
LL indicator 1.37 −0.19 −2.26 3.63
Turnover 0.04 0.07 0.05 0.07

Notes: This table provides real annualized value-weighted returns of portfolios of firms sorted
according to their industry-level lead-lag (LL) indicator. We depart from our benchmark procedure
for computing the LL indicator by (i) using consumption growth instead of GDP growth, and (ii)
using Granger causality with a 40-quarter rolling window. A positive (negative) LL indicator
denotes an industry whose output growth leads (lags) GDP growth. Our Lead (Lag) portfolio
contains the top (bottom) 20% of our leading industries. These portfolios represent at least 15% of
the total market value in each quarter. All other firms are assigned to the middle (Mid) portfolio.
The LL indicator row refers to the average portfolio-level lead-lag indicators. Turnover measures
the percentage of industries entering or exiting from a portfolio. Return data are monthly over the
sample 1977:01–2012:12. Industry definitions are from Kenneth French’s website. CAPM α (FF3
α) denotes average excess returns unexplained by the CAPM (Fama-French three-factor model).
The numbers in parentheses are standard errors adjusted according to Newey and West (1987).
One, two, and three asterisks denote significance at the 10%, 5%, and 1% levels, respectively.
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Table B9: Prices of Risk and Pricing Kernel Loadings

Momentum factor
E[Rex

i ] = βMKTλMKT + βSMBλSMB + βHMLλHML + βMOMλMOM + βLLλLL

λMKT λSMB λHML λMOM λLL
0.99∗∗∗ -0.28 -0.07 0.31 0.89∗

(0.23) (0.20) (0.23) (0.73) (0.49)

mt = m− bMKTMKTt − bSMBSMBt − bHMLHMLt − bMOMMOMt − bLLLLt
bMKT bSMB bHML bMOM bLL
0.07∗∗∗ -0.05∗∗ 0.01 0.01 0.10∗

(0.01) (0.02) (0.04) (0.05) (0.06)

Durability factor
E[Rex

i ] = βMKTλMKT + βSMBλSMB + βHMLλHML + βDURλDUR + βLLλLL

λMKT λSMB λHML λDUR λLL
0.58∗∗∗ -0.22 -0.07 0.04 0.65∗

(0.19) (0.23) (0.23) (0.21) (0.39)

mt = m− bMKTMKTt − bSMBSMBt − bHMLHMLt − bDURDURt − bLLLLt
bMKT bSMB bHML bDUR bLL
0.04∗∗∗ -0.04 0.00 0.00 0.07∗

(0.01) (0.03) (0.03) (0.02) (0.04)

Notes: This table presents factor risk premia and the exposures of the pricing kernel to the FF3
factors (MKT , SMB, HML), the Carhart (1997) momentum factor (MOM), the Gomes et al.
(2009) durability factor (DUR) and our lead-lag factor (LL). We employ the generalized method
of moments (GMM) to estimate the linear factor model stated in equations (2)–(3). Using a
linear projection of the stochastic discount factor m on the factors (m = m − f ′b), we determine
the pricing kernel coefficients as b = E[ff ′]−1λ. Our sample consists of monthly returns for 49-
industry portfolios from January 1972 through December 2012. The numbers in parentheses are
standard errors adjusted according to Newey and West (1987). One, two, and three asterisks denote
significance at the 10%, 5%, and 1% levels, respectively.
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B.1 Further Robustness Checks

In this section, we carry out several robustness tests relevant for our empirical findings.

We start by assessing alternative measures for our lead/lag indicator. We then consider a

different way to correct for seasonality. Finally, we employ a sorting procedure based on

Granger causality. All results are reported in Table B10.

Alternative Measures of Our LL Indicator. First, we consider the cross-correlation

between quarterly GDP growth and industry cash flow growth within a larger 6-quarter

window (as opposed to a 4-quarter window in our base case analysis). Second, instead of

selecting the lead or lag for which the maximum absolute correlation is attained, we compute

an average lead-lag weighted by the absolute values of the cross-correlation coefficients.16 We

find that the average return of our LL portfolio still cannot be explained by the FF3 model.

These results suggest that our findings are not sensitive to the specific way in which we

assign a lead-lag indicator to an industry.

X11 Method. Aggregate data are adjusted for seasonality by applying the X11 method,

whereas our COMPUSTAT-based cash flow measures are seasonally-adjusted using dummy

variables. Using the X11 method on industry-level cash flows does not alter our main results

in a significant way.

Granger causality. In a variation of our benchmark approach we construct a lead-lag

measure that employs the Granger causality to establish leads and lags between industry

cash flow growth and GDP growth. In particular, we say that an industry is lagging GDP, if

GDP growth Granger-causes the cash flow growth of this industry. In the opposite direction,

an industry leads GDP if the industry cash flow growth Granger-causes GDP growth. In

the absence of any causality, we assign zero to the lead-lag measure. When both time series

Granger cause each other, we say that the lead-lag relation is undetermined and treat the

respective industry cash flow as contemporaneous to GDP.

16In this case, the LL indicator is computed as
∑4
i=−4 i ·

|ρi|∑4
i=−4 |ρi|

, where ρi = corr(∆GDPt,∆CFt+i).
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More specifically, we regress industry i’s cash flow growth, ∆git, on a constant, its past

realizations, and past realizations of GDP growth, ∆gGDP , up to 4 lags each:

∆git = c+
4∑
j=1

αj∆g
i
t−j +

4∑
j=1

γj∆g
GDP
t−j + eit. (B.1)

We then test the null hypothesis γ1 = γ2 = γ3 = γ4 = 0. If we reject the null (i.e., if at

least one of the γ’s is not equal to zero), we argue that ∆gGDP Granger causes ∆gi, meaning

that industry i lags GDP. We identify the indicator value, that is, the corresponding lead,

either by selecting the γj with highest significance (based on the respective t-statistic), or by

computing the weighted average of all the γj coefficients using their t-statistics as weights

(Granger Causality VW). For the Granger causality tests, we increase the rolling window

to 40 quarters. We proceed in a similar way when looking at leads.17 Our main results are

robust to this alternative specification.

Alternative cash flow measures. A possible concern with respect to our analysis is that

our results are driven by the use of the Acharya et al. (2014) cash flow measure. Table B11

and B12 confirm our findings on the leading premium also when we use dividends, operative

income or investment-based measures of fundamental cash flows.

17In particular, for each industry we estimate the following equation:

∆gGDPt = c+
4∑
j=1

αj∆g
GDP
t−j +

4∑
j=1

γj∆g
i
t−j + eit (B.2)

If we fail to reject the null hypothesis, we conclude that cash flow growth of industry i Granger causes the
GDP growth and consequently industry i leads GDP.
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Table B10: Lead-Lag Portfolio: Granger Causality and Seasonal Adjustement

±6 Lags Average LL x11 SAAR Granger Causality Granger Causality VW
LL LL Strong LL LL Strong LL LL Strong LL LL Strong LL LL Strong

Average return 3.33∗ 3.76 2.67 3.16∗ 3.28∗ 3.99∗ 3.41∗ 4.84∗∗ 1.99 4.52∗∗

(2.00) (2.43) (1.64) (1.71) (1.86) (2.06) (2.05) (1.94) (1.51) (2.03)
CAPM α 4.62∗∗ 5.07∗∗ 2.94∗ 3.25∗ 4.05∗∗ 4.91∗∗ 4.16∗∗ 5.06∗∗∗ 2.89∗ 5.25∗∗

(2.18) (2.37) (1.68) (1.73) (1.90) (2.00) (2.02) (1.90) (1.52) (2.22)
FF3 α 3.03∗ 4.24∗ 2.95∗ 4.50∗∗∗ 3.97∗ 5.38∗∗ 4.07∗∗ 5.24∗∗∗ 3.62∗ 5.59∗

(1.57) (2.30) (1.58) (1.56) (2.27) (2.36) (1.94) (1.95) (1.89) (2.86)
Turnover 0.07 0.06 0.08 0.06 0.12 0.10 0.14 0.11 0.07 0.05

Notes: This table provides average value-weighted excess returns unexplained by the Fama-French three-factor model (FF3) of the LL and LL
Strong portfolios. The benchmark construction of the LL indicator is described in section 3. We depart from the benchmark procedure by either
(a) seasonally adjusting the industry cash flows using the BEA x11 procedure instead of seasonal dummies or (b) using the Granger causality
methodology to determine leads/lags instead of cross correlation; or (c) determining lead/lags using Granger causality, where lead and lags are
weighted by respective t-statistics. LL refers to a zero-dollar strategy long in Lead and short in Lag. Return data are monthly over the sample
1972:01–2012:12. Industry definitions are from Kenneth French’s website. The numbers in parentheses are standard errors adjusted according
to Newey and West (1987). One, two, and three asterisks denote significance at the 10%, 5%, and 1% levels, respectively.
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Table B11: Portfolio Sorting: Alternative Measures of Cash Flows

Dividends OI
LL LL Strong LL LL Strong

Average return 3.28∗∗ 3.96∗∗ 5.25∗∗ 7.43∗∗∗

(1.51) (2.01) (2.09) (2.08)
CAPM α 3.29∗∗ 4.59∗∗ 5.72∗∗∗ 7.74∗∗∗

(1.53) (2.04) (2.13) (2.19)
FF3 α 4.15∗∗∗ 4.89∗∗ 6.44∗∗∗ 8.12∗∗∗

(1.56) (2.06) (2.16) (2.29)

Notes: This table provides real annualized value-weighted returns of portfolios of firms sorted
according to their industry-level lead-lag (LL) indicator. The formation of portfolios is similar to
our benchmark specification with the only difference being the industry cash flow measure we use to
construct the LL indicator. In this table, we report results for LL and LL Strong portfolios using
dividends (Dividends) and operating income (OI ) as our cash slow measures. Return data are
monthly over the sample 1972:01–2012:12. Industry definitions are from Kenneth French’s website.
CAPM α (FF3 α) denotes average excess returns unexplained by the CAPM (Fama-French three-
factor model). The numbers in parentheses are standard errors adjusted according to Newey and
West (1987). One, two, and three asterisks denote significance at the 10%, 5%, and 1% levels,
respectively.

Table B12: Portfolio Sorting: Alternative Measures of Cash Flows (II)

CAPX PPEGT
LL LL Strong LL LL Strong

Average return 2.41∗ 4.19∗∗ 1.72 3.85∗∗

(1.41) (1.73) (1.64) (1.78)
CAPM α 2.99∗∗ 4.24∗∗ 2.53 4.32∗∗

(1.50) (1.85) (1.80) (1.93)
FF3 α 3.40∗∗ 4.32∗∗ 2.60 3.58∗∗

(1.56) (1.92) (1.81) (1.70)

Notes: This table provides real annualized value-weighted returns of portfolios of firms sorted
according to their industry-level lead-lag (LL) indicator. The formation of portfolios is similar to
our benchmark specification with the only difference being the industry cash flow measure we use
to construct the LL indicator. In this table, we report results for LL and LL Strong portfolios
using capital expenditures (CAPX ) and gross value of property, plant and equipment as our cash
slow measures. Return data are monthly over the sample 1972:01–2012:12. Industry definitions
are from Kenneth French’s website. CAPM α (FF3 α) denotes average excess returns unexplained
by the CAPM (Fama-French three-factor model). The numbers in parentheses are standard errors
adjusted according to Newey and West (1987). One, two, and three asterisks denote significance
at the 10%, 5%, and 1% levels, respectively.
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Table B13: Lead-Lag Portfolio Sorting: Cash Flow Momentum

Winners Mid Losers W-L
Average return 8.60∗∗∗ 6.04∗∗ 6.41∗∗ 2.19

(2.99) (2.66) (3.25) (1.70)
CAPM α 1.8 −0.41 −0.81 2.62

(1.22) (0.56) (1.30) (1.79)
FF3 α 1.08 −0.41 −0.73 1.81

(1.26) (0.51) (1.55) (2.27)

Notes: This table provides real annualized value-weighted returns of portfolios of firms sorted
according to their industry-level cash flow growth. First, in each quarter we compute the industry-
level cash flow growth over past quarter. Our Winners (Losers) portfolio contains the top (bottom)
20% of industries with the highest (lowest) cash flow growth. These portfolios represent at least 15%
of the total market value in each quarter. All other firms are assigned to the middle (Mid) portfolio.
The W-L portfolio reflects a zero-dollar strategy long in Winners and short in Losers. Return data
are monthly over the sample 1972:01–2012:12. Industry definitions are from Kenneth French’s
website. CAPM α (FF3 α) denotes average excess returns unexplained by the CAPM (Fama-
French three-factor model). The numbers in parentheses are standard errors adjusted according to
Newey and West (1987). One, two, and three asterisks denote significance at the 10%, 5%, and 1%
levels, respectively.

Cash flow growth momentum. Another concern regarding our interpretation of the

results is that they are possibly just the reflection of past cash flow growth momentum, rather

than a phenomenon related to advance information. In order to address this concern, we sort

firms according to the past growth rate of their industry-level cash flow. We form a winners-

minus-loosers investment strategy and look at the implied factor. We find no significant

spread, meaning that our lead-lag sorting is not a reflection of fundamental momentum.

Equivalently, our leading (lagging) firms are not systematically winners (losers).
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Table B14: Static LL Portfolios Formation
Average Return

Initial Sorting 1.00
(1.28)

Unconditional LL 0.03
(1.71)

Notes - This table reports the results his table provides real annualized value-weighted returns of
portfolios of firms sorted according to their industry-level lead-lag (LL) indicator. The portfolios
are formed at the beginning of the sample and rebalanced quarterly with respect to their value
weights keeping the industry composition constant. The Initial Sorting row documents the aver-
age return of the LL portfolio (i) constructed at the beginning of the sample using our standard
procedure; and (ii) never reformed. Unconditional LL is based on a full-sample computation of
cross-correlations and an unconditional sorting. Newey-West adjusted standard errors are reported
in parentheses. Monthly data start in 1972:01 and end in 2012:12. Industry definitions are from
Kenneth French’s website. One, two, and three asterisks denote significance at the 10%, 5%, and
1% levels, respectively.

Formation frequency. Table B14 shows that our leading premium is mainly a conditional

phenomenon. There is no premium when we either retain the sorting based on the initial

estimate of the lead-lag indicator or when we estimate only one unconditional lead-lag indi-

cator using the whole sample. On the other hand, Table B15 shows that our results do not

hinge on high-frequency re-balancing and re-sorting. The leading premium can be captured

even when we form our portfolios once a year.
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Table B15: Lead-Lag Portfolio Sorting and Formation Frequency

Formation frequency CAPM α FF3 α
Quarterly 6.12∗∗∗ 6.23∗∗

(1.95) (2.49)
Semiannual 5.33∗∗ 5.22∗∗

(2.13) (2.13)
Annual 3.79∗ 5.09∗∗∗

(2.26) (1.84)

Notes: This table provides real annualized value-weighted returns of portfolios of firms sorted
according to their industry-level lead-lag (LL) indicator. The LL portfolio reflects a zero-dollar
strategy long in Lead and short in Lag. In each portfolio, we identify the industries with the
absolute value of correlation above the portfolio’s median and group them in a subportfolio denoted
as ‘Strong’. This table shows the results of the LL Strong portfolio which is a zero-dollar trading
strategy long in Lead Strong and short in Lag Strong. In our portfolio construction, we use 30
industries and three different frequencies of portfolio rebalancing: quarterly, semiannuallly and
annually. Returns data are monthly over the sample 1972:01–2012:12. Industry definitions are
from Kenneth French’s website. CAPM α (FF3 α) denotes average excess returns unexplained by
the CAPM (Fama-French three-factor model). The numbers in parentheses are standard errors
adjusted according to Newey and West (1987). One, two, and three asterisks denote significance
at the 10%, 5%, and 1% levels, respectively.

58



C Intuition based on no-arbitrage

Consider two stocks, denoted as leading and lagging. For the sake of simplicity, assume

that they both pay dividends only once, n periods from now. From a time-0 perspective,

the dividend of the leading firm, Dlead
n , is assumed to be unknown and random because the

leading stock faces economic uncertainty. In order to abstract away from average growth,

we assume E0[Dlead
n ] = Dlead

0 . Consistent with our empirical analysis, we assume that the

leading stock provides information about the future cash flow of the lagging firm. To make

the intuition as crisp as possible, assume that Dlag
n = Dlead

0 , that is, the future cash flow of

the lagging stock is perfectly forecastable given the current cash flow of the leading firm.

Let y0(n) be the yield of a bond with maturity n and v0(n) be the dividend yield associated

with the cash flow Dlead
n . Furthermore, assume for simplicity Dlead

0 = Dlag
0 ≡ D0. By no

arbitrage, the dividend yield for the lagging firm must be equal to y0(n), since its cash flow

is known at time 0, so that P lag
0 = D0e

−y0(n)n. In contrast, the leading firm must offer a

yield of v0(n), i.e., P lead
0 = D0e

−v0(n)n. This implies that the following holds:

P lag
0

D0

/
P lead

0

D0

=
pdlag0

pdlead0

= e(v0(n)−y0(n))n

=
E0[Dlead

n ]

F0,n

,

where F0,n is the future (or forward) price at time 0 for the dividend Dlead
n to be paid at

time n, and pdi0 is the price-dividend ratio of claim i at time 0. This implies

1

n

(
log pdlag0 − log pdlead0

)
= v0(n)− y0(n),

i.e., the difference between the log valuation ratios of the lagging and the leading stock is

equal to the forward equity premium (in the terminology of Binsbergen et al. (2012)) for a

maturity of n periods.

If investors are adverse to dividend uncertainty, we have F0,n < E0[Dlead
n ], and lagging
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firms are more valuable than leading firms. Equivalently, an investment strategy long in the

leading and short in the lagging stock should pay the forward equity premium on leading

dividends.

This result is important for two reasons. First, the forward equity premium features no

time-discounting, as it is determined by the difference between the expected dividend at

time n and the certain payoff F0,n paid at time n, i.e., it can be regarded as the price of a

static lottery. Hence this premium is a pure measure of the value of advance information on

n-period ahead cash flows.

Second, the forward equity premium equals the difference between equity and bond yields

of the same maturity. Thus to obtain a positive leading premium we need a model that

produces a significant positive gap between the yield curve of zero-coupon equities and that

of bonds over the horizon for which leading industry cash flows predict lagging industry cash

flows.

It is important to highlight that the existence of a leading premium depends on the spread

between the equity and the bond yield curve, not on the slope of the equity curve. In the

main text, we adopt an equilibrium model that delivers an upward sloping aggregate equity

yield curve for the sole sake of analytical tractability. Richer settings like those of Lettau

and Wachter (2007), Lettau and Wachter (2011), Croce et al. (2014), and Ai et al. (2017),

which are consistent with the empirical evidence in Binsbergen et al. (2012), Binsbergen

et al. (2013), and Binsbergen and Koijen (2017), would produce similar insights about the

nature of the leading premium.

Empirical support. The derivations described above suggest that lagging stocks should

behave more like bonds, whereas leading stocks should behave more like uncertain aggregate

equity. We provide further support to our analysis by estimating a quarterly VAR with

three variables: aggregate bond yield, aggregate equity yield, and then the yield of either

our lagging portfolio or our leading portfolio. The portfolio yields are computed in a standard

way by using the cum- and ex-dividends return of our stocks. The bond yield is from the

Fama-Bliss data set and is for a maturity of one year.
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Fig. C2: Variance Decomposition of Leading/Lagging Portfolio Yields

This figure depicts the variance decomposition of the forecast error of the leading and lagging

portfolio log yields estimated froma VAR(3). The variables in the model are: one-year bond yield;

aggregate equity market log price-dividend ratio; and either leading or lagging log price-dividend

ratio. The data is quarterly and spans the period 1972Q1:2012Q4.

After imposing a lower-triangular structure on the covariance matrix of the shocks, we

can identify the role played by bond-specific and equity-specific shocks in determining the

variance of our lagging and leading dividend yields. Since our results do not change if we

rank the aggregate equity yield first and the bond yield second in our VAR, we do not need

to take a stand on causality of bond and equity shocks for the purpose of our exercise.

In Figure C2, we show the variance decomposition for both our leading and lagging

portfolios. Not surprisingly, given the persistence of dividend yields, the leading (lagging)

yield-specific shock explains most of the variance of the leading (lagging) portfolio dividend

yield (right panel). Most importantly, consistent with our intuition bond-specific shocks

matter more than aggregate equity-specific shocks for our lagging portfolio (left panel). The

opposite is true for our leading portfolio (middle panel).
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Table D1: Information on Short-Run Consumption Shocks

Leading Portfolio
φlead0 6.58∗

s.e. (3.54)
Lagging Portfolio: optimal jlag = 18

f 2 3 4 6 7 8 11 18

φlagf −11.33∗∗ −12.34∗∗∗ −8.69∗ 6.94 9.29∗ 11.97∗∗ 11.56∗∗ 12.37∗∗∗

s.e. (4.61) (4.69) (4.78) (4.71) (4.76) (4.74) (4.60) (4.54)

Notes: This table reports loadings of dividend claims on shocks to the consumption growth. Max-
imum lags j2,lead and j2,lag are chosen to maximize adjusted R-squared. Newey-West adjusted
standard errors are reported in in parentheses. The quarterly data start in 1972:Q1 and end in
2012:Q4. One, two, and three asterisks denote significance at the 10%, 5%, and 1% levels, respec-
tively.

D Cash Flow Dynamics

This section provides further details about the estimation of the cash flows described in

equations (5)–(8). Specifically, the values for the time-horizons jc, jd, jlag are selected in the

range of ±30 quarters for the long-run risk exposures and from 0 to 20 quarters for the

short-run risk exposures. Our objective is to choose these integers in order to maximize

the adjusted R2. After determining the maximal lag for the short-run consumption shocks

(jlag), we re-estimate the model, restricting all statistically insignificant lagged exposures to

be zero. Under our selected horizons, our regressions have an R2 of 14% and 38% for leading

and lagging dividend growth, respectively. We report the estimated loadings of leading and

lagging portfolio cash flows on short-run shocks in table D1.

E Model Solution

In this section, we present derivations of the model solution in a general form. The

consumption dynamics (5) can be written in the following generalized format:

∆ct+1 = µ+ Ac|s · st + Ac|εcε
c
t+1, (E.1)
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where st =

 sxt

sct

 denotes the set of relevant state variables. The information set available

to the investor at time t is It =
{
xt−jc , {εxt+1−i, i = 1, .., jc}, {εct−f , f = 1, .., fc}

}
.

The components of state vectors refer to anticipated information received in the past up

until time t that has forecasting power for future consumption growth:

sxt =



xt−jc

εxt−jc+1

...

εxt


︸ ︷︷ ︸

N1×1

, sct =



εct−fc

εct−fc+1

...

εct


︸ ︷︷ ︸

N2×1

, N = N1 +N2. (E.2)

The dynamics of the state vector can be represented as

sxt+1 =



ρ 1 0 . . . 0 0

0 0 1 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 0 1

0 0 0 . . . 0 0


︸ ︷︷ ︸

Λx

sxt +



0 0

0 0

...
...

0 0

1 0


︸ ︷︷ ︸

Ωx

 εxt+1

εct+1



sct+1 =



εct−fc+1

εct−fc
...

εct

εct+1


=



0 1 0 . . . 0 0

0 0 1 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 0 1

0 0 0 . . . 0 0


︸ ︷︷ ︸

Λc

sct +



0 0

0 0

...
...

0 0

0 1


︸ ︷︷ ︸

Ωc

 εxt+1

εct+1



st+1 =

 Λx 0

0 Λc

 st +

 Ωx

Ωc


 εxt+1

εct+1

 .
Consider a claim to aggregate consumption with price PC

t at time t and let pct denote
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the log price-consumption ratio:

pct = log

(
PC
t

Ct

)
. (E.3)

The log-linearization of Campbell and Shiller (1988) implies

pct = pc+ Apcst. (E.4)

In our economy with recursive preferences, the pricing equation for consumption claim can

be written as

1 = E
[
e···−

θ
ψ

∆ct+1+θrct+1|It
]

≈ Et

[
e···−θ(1− 1

ψ )Ac|sst+θκcApcst+1−θApcst
]

⇓

0 = θ
(

1− 1
ψ

)
Ac|s + θκcApcΛ− θApc

⇓

Apc =
(

1− 1
ψ

)
Ac|s (I − κcΛ)−1 .

Given this result, we can recover the log return on the consumption claim rct+1, the risk-free

rate rft , and the stochastic discount factor mt+1:

rct+1 = rc + 1
ψ
Ac|sst + κc

(
1− 1

ψ

)
Ac|s (I − κcΛ)−1 Ω︸ ︷︷ ︸
ηc

εst+1 + Ac|εcε
c
t+1

rft = rf + 1
ψ
Ac|sst

mt+1 = m− 1
ψ
Ac|sst − κc

(
γ − 1

ψ

)
Ac|s (I − κcΛ)−1 Ω︸ ︷︷ ︸
ηm

εst+1 − γAc|εcεct+1.

(E.5)

Let η ≡ Ac|s (I − κcΛ)−1 Ω, ηc ≡ κc

(
1− 1

ψ

)
η and ηm ≡ κc

(
γ − 1

ψ

)
η be 2-by-1 vectors of

exposure coefficients to short- and long-run shocks. The system of equations (E.5) can be
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rewritten as follows:

rct+1 = rc + 1
ψ
Ac|sst + Γcvt+1

Γc =

[
Ac|εc + ηc,2 ηc,1 0 0

]
mt+1 = m− 1

ψ
Ac|sst + Γmvt+1

Γm =

[
−γAc|εc − ηm,2 −ηm,1 0 0

]
,

where ηc,k and ηm,k are the k-th components of the vectors ηc and ηm, respectively (k = 1, 2).

The expected excess return on the consumption claim reads as

Et[r
ex,c
t+1 ] = −cov(mt+1 − Et[mt+1], rct+1 − Et[rct+1])− 1

2
V [rct+1 − Et[rct+1]]

= −ΓmΣΓ′c − 1
2
ΓcΣΓ′c.

From the properties of the stochastic discount factor, it follows that

E[rf ] = − log(δ) + 1
ψ
µ1−θ

θ
(−ΓmΣΓ′c − 1

2
ΓcΣΓ′c)− 1

2θ
ΓmΣΓ′m,

m = θ log(δ)− θ
ψ
µ+ (θ − 1)

(
E[rex,c] + E[rf ]

)
.

By evaluating the Euler equation for the consumption claim at st = 0, we obtain the

equation for κc:

κc = em+µ+ 1
2
V [(Γm+Γc)vt+1]. (E.6)

Similarly to Equation (E.1), the dividend growth dynamics in Equations (7) and (8) can

be represented as

∆dt+1 = µ+ Ad|s · st + Ad|εcε
c
t+1 + Adε

d
t+1, (E.7)

which implies that the price-dividend ratio and the dividend returns have the following

structure:

pdt = pd+ Apdst

rdt+1 = rd + κdpdt+1 − pdt + ∆dt+1,

where

Apd =

(
Ad|s −

1

ψ
Ac|s

)
(I − κdΛ)−1 .
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Consequently, in vector form the following holds:

rdt+1 = rd + 1
ψ
Ac|sst + Γdvt+1

Γd =

[
Ad|εc + ηd,2 ηd,1 Ad 0

]
ηd = κd

(
Ad|s − 1

ψ
Ac|s

)
(I − κdΛ)−1 Ω.

The expected excess return on the dividend claim is

Et[r
ex,d
t+1 ] = −ΓmΣΓ′d −

1

2
ΓdΣΓ′d.

By evaluating the Euler equation for the dividend claim at st = 0, we obtain the equation

for κd:

κd = em+µ+ 1
2
V [(Γm+Γd)vt+1].

E.1 Special Case I: Advance Information on Long-Run Risk Only

Consider a slightly modified version of the Bansal and Yaron (2004) economy in which

consumption growth depends on a past value of the long run risk process xt−jc , i.e., the

agent has advance information on the long-run component for jc periods:

∆ct+1 = µ+ xt−jc + εct+1 (E.8)

xt+1 = ρxt + εxt+1. (E.9)

The investor’s information set at time t consists of the realization xt−jc and shocks to long-

run risk process up to date t
{
εxt−jc+1, . . . , ε

x
t

}
. Consequently, we can rewrite the dynamics of

the long-run component, using the state variables in the information set and the innovation

εxt+1, as

xt+1 = ρjc+1xt−jc +

jc∑
i=1

ρiεxt+1−i + εxt+1. (E.10)

Following the standard solution approach, we consider a claim to aggregate consumption

C, whose log price-to-cash flow ratio at time t is denoted by pct. One can show that pct is
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given as follows:

pct = pc+ Axxjc−1 +

jc∑
i=1

Aiε
x
t−jc+i,

where

Ax =
1

1− 1/ψ

1

1− κcρ
, Ai =

(κc)
i

1− 1/ψ

1

1− κcρ
, i = 1, . . . , jc,

and the constant κc solves Equation (E.6).

Given this, we can obtain the log return on the consumption claim rct+1, the risk-free rate

rft , and the stochastic discount factor mt+1 as follows:

rct+1 = rc + 1
ψ
xt−jc + εct+1 +

(
1− 1

ψ

)
κjc+1
c

1−κcρε
x
t+1

rft = rf + 1
ψ
xt−jc

mt+1 = m− 1
ψ
xt−jc − γεct+1 −

(
γ − 1

ψ

)
κjc+1
c

1−κcρε
x
t+1.

(E.11)

Note that (E.11) is equivalent to the solution of the Bansal and Yaron (2004) economy when

we set jc = 0.

Up to a Jensen correction term the equity premium is:

Et[r
ex,c
t+1 ] ≈ −cov(mt+1 − Et[mt+1], rct+1 − Et[rct+1])

= γσ2
c +

κ2jc+2
c (1− 1

ψ )(γ− 1
ψ )

(1−κcρ)2
σ2
x.

Since κc < 1, the contribution of the long-run risk component to the expected excess return

on the consumption claim diminishes with the lag jc, i.e., the longer in advance information

is available, the lower the risk premium.

Let us now introduce a redundant claim with dividend growth defined by

∆dt+1 = µ+ φxxt + εdt+1.

Relative to the consumption claim, this claim provides an investor with forward looking

information about long-run risk. The log return and expected excess return (in levels) on
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the dividend claim can be expressed as

rdt+1 = rd +
1

ψ
xt−jc +

κd

(
φx − 1

ψ
κjcd

)
1− κdρ

εxt+1 + εdt+1

Et[r
ex,d
t+1 ] = −cov(mt+1 − Et[mt+1], rdt+1 − Et[rdt+1])

=
κjc+1
c κd

(
φx − 1

ψ
κjcd

)(
γ − 1

ψ

)
(1− κcρ)(1− κdρ)

σ2
x. (E.12)

Assuming a preference for the early resolution of uncertainty (γ > 1
ψ

) and an elasticity of

intertemporal substitution ψ > 1, the expected excess return increases with jc, i.e., with

the amount of time the dividend claim is actually leading the consumption claim.18 With

increasing jc the dividend claim exhibits more and more information risk relative to the con-

sumption claim, which in turn generates an increasing information premium as a component

of the expected excess return.

E.2 Special Case II: Advance Information on Short-Run Risk Only

We now consider a different modification of the Bansal and Yaron (2004) setup in which

a dividend claim depends on past realizations of shocks to consumption. Specifically, we

assume that consumption growth depends on the long-run risk process as in the Bansal

and Yaron (2004) setup. This is equivalent to setting jc equal to 0. Next, we introduce

a redundant asset whose cash flows depend on past realization of shocks to consumption.

Thus, the cash flows in the economy can be represented as

∆ct+1 = µ+ xt + εct+1 (E.13)

xt+1 = ρxt + εxt+1 (E.14)

∆dt+1 = µ+ φxxt + φfε
c
t+1−f + εdt+1, (E.15)

18To see this point, consider two different lag values, jc and j′c : j′c < jc. The fix point that determines
the approximation constant for the dividends claim implies kd < k′d < 1. Simultaneously, k′c < kc, as more
advance information reduces consumption risk.
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where f is a lag of the consumption shock and φf stands for the loading of dividend growth

on this shock.

Since there is no advance information about consumption, we obtain the following stan-

dard expressions for the log return on the consumption claim rct+1, the risk-free rate rft , and

the stochastic discount factor mt+1:

rct+1 = rc + 1
ψ
xt + εct+1 +

(
1− 1

ψ

)
κc

1−κcρε
x
t+1

rft = rf + 1
ψ
xt

mt+1 = m− 1
ψ
xt − γεct+1 −

(
γ − 1

ψ

)
κc

1−κcρε
x
t+1.

(E.16)

Next, consider the dividend claim with cash flow dynamics specified in Equation (E.15).

Conjecturing that the price-dividend ratio is affine in the state variables and using the Euler

equation, we find that the return on this claim is given as follows:

rdt+1 = rd +
1

ψ
xt +

κd

(
φx − 1

ψ

)
1− κdρ

εxt+1 + φfκ
f+1
d εct+1 + εdt+1.

Apart from a Jensen correction term, the expected excess return on the dividend claim is

Et[r
ex,d
t+1 ] = −cov(mt+1 − Et[mt+1], rdt+1 − Et[rdt+1])

= γφfκ
f+1
d σ2

c +
κcκd

(
φx − 1

ψ

)(
γ − 1

ψ

)
(1− κcρ)(1− κdρ)

σ2
x, (E.17)

implying that advance information on the short-run shock reduces the required risk premium,

although to a much more modest extent, because the market price of risk on short-run shocks

is not as large as that on long-run news shocks (as one can see from a comparison of the

expressions (E.12) and (E.17)).
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