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ABSTRACT

An organ transplant can improve a patient’s life while also realizing substantial savings in 
healthcare expenditures. Like many other scarce public resources, organs from deceased donors 
are rationed to patients on a waitlist via a sequential offer mechanism. The theoretical trade-offs 
in designing these rationing systems are not well understood and depend on agent preferences. 
This paper establishes an empirical framework for analyzing waitlist systems and applies it to 
study the allocation of deceased donor kidneys. We model the decision to accept an organ or wait 
for a more preferable organ as an optimal stopping problem, and develop techniques to compute 
equilibria of counterfactual mechanisms. Our estimates show that while some types of kidneys 
are desirable for all patients, there is substantial match-specific heterogeneity in values. We then 
evaluate alternative mechanisms by comparing their effect on patient welfare to an equivalent 
change in donor supply. Past reforms to the kidney waitlist primarily resulted in redistribution, 
with similar welfare and organ discard rates as the benchmark first come first served mechanism. 
These mechanisms and other commonly studied theoretical benchmarks remain far from optimal: 
we design a mechanism that increases patient welfare by the equivalent of a 14.2 percent increase 
in donor supply.
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1 Introduction

As of January 7, 2019, there were 94,971 patients on the kidney waiting list in the United
States, while only 13,483 deceased donor transplants were performed in 2018.1 Each trans-
plant improves the expected quality and length of a transplanted patient’s life while saving
hundreds of thousands of dollars in expected dialysis costs (Wolfe et al., 1999; Irwin et al.,
2012; Held et al., 2016). Yet, approximately 20 percent of medically suitable organs ex-
tracted for transplantation are discarded. The allocation of deceased donor kidneys does
not use money because of ethical considerations and legal restrictions,2 making traditional
price-based market-clearing mechanisms infeasible. Instead, available kidneys are allocated
through a centralized waitlist. Given these constraints, it is essential to find mechanisms
that efficiently allocate resources, minimize waste, and achieve equitable outcomes.3 Similar
considerations motivate the use of waitlist systems to allocate other deceased donor organs,
public housing, long-term care, child-care, and child-adoption.

Previous research and guidance on waitlist design either ignores dynamic incentives or as-
sumes specific forms of market primitives. Theoretical approaches to designing dynamic
assignment mechanisms have found that even qualitative trade-offs are sensitive to the prim-
itives of the market.4 Absent clear recommendations from theory, many organ allocation
agencies use simulations to predict the effects of alternative allocation rules. The simulations,
including those used to design organ allocation rules,5 do not allow decisions to respond to
changes in the system. Moreover, recent empirical advances in analyzing allocation systems
are restricted to static choice settings.

This paper develops an empirical framework for analyzing waitlist mechanisms that sequen-
tially assign objects to forward-looking agents, and applies these methods to study the de-
ceased donor kidney allocation system in the U.S. We make several methodological and
empirical contributions. First, we develop a method for estimating agent preferences using
typical administrative data, and apply it to the kidney waitlist data from New York to es-

1Source: https://optn.transplant.hrsa.gov/data/view-data-reports/national-data/
2The National Organ Transplantation Act (NOTA) makes it illegal to obtain human organs for transplan-

tation by compensating donors.
3These goals are articulated by the Organ Procurement and Transplantation Network (OPTN), a contrac-

tor for the Health Resources & Services Administration (HRSA), in their policy document titled “Concepts
for Kidney Allocation” (OPTN, 2011). A committee that was charged with reforming the allocation system
adopted a new mechanism in 2014. We discuss these reforms in greater detail below.

4Agarwal et al. (2018b) compare the results in Su and Zenios (2004), Leshno (2017), Arnosti and Shi
(2017), and Bloch and Cantala (2017) and show by example that optimal design depends on the nature of
preference.

5For example, Kidney Pancreas Simulated Acceptance Module (KPSAM) used by the kidney allocation
committee to evaluate various proposed mechanisms prior to the reforms enacted in 2014 assumes that
acceptance decisions on the kidney waitlist do not depend on mechanism used, thereby ignoring differences
in dynamic incentives generated by various mechanisms. Similar methods are used by the organ allocation
agencies in the U.K., Scandinavia and France.

https://optn.transplant.hrsa.gov/data/view-data-reports/national-data/
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timate payoffs from various types of transplants. This step is based on an optimal stopping
problem faced by a patient when she is offered a kidney. Second, we define a notion of steady
state equilibrium that is amenable to computation and counterfactual analysis of a broad
class of mechanisms. Finally, we use these techniques to compare alternative mechanisms on
key outcome measures such as efficiency, equity, and organ waste.

Our empirical results imply that the new kidney allocation system implemented in 2014
leaves significant room for improvement on both average patient welfare and discard rates.
This system, which was designed with the assistance of simulations that ignored dynamic
incentives, mostly resulted in redistribution relative to the prior mechanism. In fact, our
results suggest that these simulations yield biased and attenuated results, highlighting the
importance of dynamic incentives and their equilibrium effects. We use our estimates to
derive a mechanism that can generate large welfare gains while also reducing waste.

Our empirical application studies deceased donor kidneys allocated in the New York City
area (henceforth, NYRT) between 2010 and 2013. The allocation mechanism used to match
deceased donor kidneys with patients relies on a coarse point system based on donor and
patient characteristics and the patient’s waiting time. As soon as an organ becomes available,
it is offered to patients on the waitlist in decreasing order of these priority points. The decision
of whether or not to accept an offer remains with the patient and the transplant surgeon.6
Each organ is allocated to the highest-priority biologically compatible patient who accepts
it. The patient is removed from the waitlist once she is transplanted. Otherwise, she may
remain on the waitlist and may choose to accept the next organ she is offered. The priority
system does not depend on whether a patient has refused previous offers. Even though the
timing and quality of future offers are uncertain, it can be optimal to turn down an offer to
wait for a more suitable one.

We begin by documenting several key descriptive facts using rich administrative data on
patient and donor characteristics and acceptance decisions. Patients on the NYRT waitlist
face extreme scarcity. While 1,400 patients join the waitlist each year, fewer than 400 de-
ceased donor kidneys are recovered in NYRT. These donors vary widely in quality; some are
accepted immediately, while others are rejected by every patient and discarded. The chance
a patient is high on the list for a particular type of organ, and therefore the chance of being
offered desirable organs, increases with waiting time. As a result, patients have an incentive
to reject offers and wait for a better kidney. Indeed, Agarwal et al. (2018b) document that
acceptance rates are higher for patients who are less likely to receive offers. Therefore, con-
sistent with dynamic considerations, patients with a higher option value of waiting are more
likely to refuse an offer for an organ.

Motivated by these descriptive facts, we model an agent’s decision to accept an offer as a
6We refer to the decision-maker as the patient because our data does not directly identify cases in which

a surgeon makes a decision on behalf of her patient. This approach is reasonable if each surgeon acts in the
best interest of each of her patients.
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continuous-time optimal stopping problem. She accepts the current offer if the value from
the object is higher than the expected value of continuing to wait. The distribution of
potential future offers depends on the mechanism and the strategies of the other agents on
the list. Our empirical strategy combines acceptance probabilities with detailed knowledge
of the mechanism to recover the value of a transplant. Our technique adapts methods for
inverting conditional choice probabilities in this continuous-time problem (Hotz and Miller,
1993; Arcidiacono and Miller, 2011; Arcidiacono et al., 2016) to suit dynamic assignment
mechanisms. This approach eases the computation of the continuation values relative to
full solution methods (Pakes, 1986; Rust, 1987, for example) because the distribution of
future offers depends on all characteristics that influence priorities in the mechanism, and is
therefore high-dimensional.

The estimated values from transplants are intuitive. All patients value certain characteristics
that are correlated with organ quality – for instance, younger donors are preferred by all
patients, as are immunologically similar matches. We also estimate substantial donor-level
unobserved heterogeneity; including this feature significantly improves the fit of our estimated
choice probabilities. In addition, there is significant match-specific heterogeneity in values.
For example, we find that older patients place less value on younger donors as compared to
younger patients. This match-specific preference heterogeneity creates scope for the design
of the allocation mechanism to improve match quality. Moreover, our descriptive results
show that the current mechanism produces significant mismatch on several dimensions. For
instance, young patients are often allocated organs from older donors, while many old patients
receive organs from young donors. Motivated by these facts, we conclude the paper by
analyzing equilibrium allocations of the pre- and post-2014 U.S. kidney allocation systems,
benchmark mechanisms from the theoretical literature, and welfare-maximizing mechanisms
that exploit the rich heterogeneity across donors and patients.

Predicting assignments in these counterfactual mechanisms requires us to solve two technical
issues. First, we need to formulate an equilibrium notion that is both tractable and consistent
with our estimation procedure. Computing counterfactuals is challenging because it involves
solving a dynamic game with many players. An unrestricted state-space could include the
composition of the entire waitlist, resulting in a system with an extremely high-dimensional
stationary distribution. To make progress, we develop a notion of a steady-state equilibrium
in the spirit of previous approaches to simplifying this task (Hopenhayn, 1992; Weintraub et
al., 2008; Fershtman and Pakes, 2012). Our approach computes a steady-state distribution
of types and a steady-state queue length. This allows us to find a tractable computational
algorithm that iterates between solving the value function using backwards induction and
calculating the steady-state composition of the queue by forward simulation.

Second, we need to ensure that assignments under counterfactuals of interest are indeed iden-
tified. In dynamic models such as ours, counterfactuals may not be invariant to normalizing
the payoff of an action because they arbitrarily restrict payoffs across states (see Aguirre-
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gabiria and Suzuki, 2014; Kalouptsidi et al., 2015). Our estimates normalize the payoff of
never receiving an assignment to zero. We formally show that our normalization is appropri-
ate for the mechanism design counterfactuals we consider if the value of declining all offers
remains fixed. In our empirical context, this assumption is satisfied if the value of remaining
on dialysis until death, and the value and opportunity of receiving a living-donor transplant
do not change when the deceased donor allocation system is redesigned. We argue that both
these assumptions are reasonable.
Our framework allows us to compare, for each patient, the welfare effect of a change in a
mechanism to an equivalent change in deceased donor supply (arrival rates) under the existing
mechanism. This quantity has the advantage of being interpretable and independent of an
arbitrary choice of units during estimation. We then aggregate these equivalent changes in
donor supply across patients as a summary of the welfare effects.
We start by comparing assignments generated by mechanisms that are used in practice to
two benchmarks recommended for the kidney allocation system in the theoretical literature.
Specifically, we compare the pre- and post-2014 assignment systems with the first come first
served (FCFS) (Bloch and Cantala, 2017) and last come first served (LCFS) (Su and Zenios,
2004) waitlists. These benchmarks encode notions of procedural fairness and/or perform well
under specific forms of agent preferences.
The efficiency properties of various mechanisms turn on whether selective agents generate
a net positive or negative externality on others. When an agent declines an object, she
allows others to receive an assignment earlier, generating a positive externality. However,
by refusing an object and remaining on the list, she generates a negative externality as she
takes away future offers. Which force is more important depends on preferences and the
mechanism. Bloch and Cantala (2017) show that FCFS induces agents to be selective and
produces better assignments when preferences are highly heterogeneous. Selective agents
only accept high idiosyncratic match value objects but allow others to receive an offer for
a typical object earlier instead of later, generating a positive externality. However, FCFS
performs poorly when all agents value each object identically because selective agents pass
on only low quality objects onto those lower on the list. This fact creates strong incentives to
wait, resulting in organ waste. In fact, Su and Zenios (2004) show that in this environment
LCFS improves social surplus by reducing waste.7 It does so by providing incentives to accept
offers quickly as waiting results in reduction in priority and therefore lower quality offers in
the future.
Our results show that previously used mechanisms and commonly studied theoretical bench-
marks can yield either high average patient welfare or low discards, but not both. The
reforms in 2014 resulted primarily in redistribution from older patients to younger patients,
with little improvement in the welfare of the average patient. In fact, both the pre- and

7Observe that when all agents place an identical value on each object, social surplus is a function only of
waste.
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post-2014 mechanisms yield patient welfare and organ discard rates within 1.9 percent of the
benchmark first come first served mechanism. Last come first served is able to dramatically
reduce organ discard rates (27 percent), but at the cost of lowering patient welfare by 34
percent due to poor match quality.
To systematically find reallocation gains beyond those afforded by these previous recom-
mendations, we calculate optimal assignments and optimal offer rates. In the former, the
designer has full information about agent preferences and can force agents to accept organs;
it is therefore a theoretical bound on the maximum welfare that can be achieved under any
mechanism. In the latter, the designer uses only observable characteristics and cannot force
agents to accept offers. We use the solution to this problem to design an alternative to the
current mechanism. We also try a greedy approach to improving efficiency by offering organs
to patients that are predicted to benefit from them the most.
Our results show significant scope for improving assignments. The theoretical bound on the
maximum possible gains from improved assignments is equivalent to a 28.1 percent increase
in donor supply. While substantial, implementing this assignment requires full information
about the value of an organ to all currently registered patients and the ability to dictate
allocations. Even with full information, it may be politically infeasible to achieve these gains
in practice because such a mechanism would make take-it-or-leave-it organ offers to patients
with irreversible organ failure.
We then design a waitlist mechanism aimed at increasing patient welfare. To do this, we solve
for offer rates as a function of agent and object observables that maximize patient welfare,
but cannot dictate acceptance behavior. Using this solution, we design a scoring mechanism
can achieve an increase in the average patient’s welfare equivalent to a 14.2 percent increase
in donor supply. This increase is approximately half of the potential gains from any possible
allocation reform. This mechanism also increases transplant rates by 7.8 percent, and as a
result, equilibrium queue lengths and waiting times are much shorter than under the pre-2014
mechanism.
We then consider mechanisms that aim to achieve welfare gains without substantially hurting
any patient type. Specifically, we solve of Pareto improving offer rates that maximize patient
welfare subject to making no patient type worse off. We then approximate this mechanism
using a scoring rule. The importance of the status quo and distributional constraint in this
exercise substantially influences the solution. Patient welfare increases by an equivalent of
only 9.1 percent.
Our solutions are able to reduce discards and increase patient values by simultaneously con-
sidering heterogeneity in patients’ transplant values and dynamic incentives. They reallocate
offers to patients who not only have high values for specific organs, but also are very likely
to accept them. This allows the mechanism to increase the quantity of transplants without
lowering match value. Explicitly considering incentives is crucial for these gains. A mecha-
nism which naively prioritizes patients based on predicted transplant value only marginally
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improves on the pre-2014 mechanism, increasing patient welfare and transplant rates by 1.2
and 0.3 percent, respectively.

These results point to the significant scope of using our empirical framework for improving
dynamic assignment mechanisms. Previously used empirical approaches for reforming organ
allocation systems are unable to identify these gains. Moreover, a naive comparison that
ignores incentives and holds choice probabilities fixed, as done in KPSAM (SRTR, 2015),
predicts much smaller differences between these mechanisms and therefore understates the
trade-off between match quality and organ discards. This finding suggests that recommenda-
tions need to account for equilibrium responses, be specific to the primitives of the market,
and incorporate the desired objectives of the policy maker.

Related Literature

The design of scoring rules for organ allocation has been an active area of research in the
Medical and Operations Research communities (Zenios et al., 2000; Su et al., 2004; Zenios,
2004; Kong et al., 2010; Su and Zenios, 2006; Bertsimas et al., 2013). However, this previous
research, as well as the KPSAM acceptance module (see SRTR, 2015) used by the Scientific
Registry of Transplant Recipients (SRTR) to simulate the effects of various allocation sys-
tems, does not empirically model patients’ dynamic incentives to accept or reject an organ
offer. As a result, the current approach taken by SRTR assumes that acceptance decisions do
not depend on the waitlist mechanism. Empirical evidence in Agarwal et al. (2018b) suggests
that ignoring dynamic incentives may result in biased predictions.

Within economics, there is a large body of theoretical work (see Roth et al., 2004, 2007,
for example) and a more recent empirical literature (see Agarwal et al., 2018a) studying
the design of living donor kidney exchange markets. Despite the growth in the living donor
markets, deceased donors continue to be the primary source of kidneys for transplantation,
enabling approximately 70 percent of all kidney transplants in the United States.8

Our paper is related to Zhang (2010), which uses a dynamic model to study how patients
learn about the quality of an organ. It shows that patients lower on the list are more likely to
refuse an organ if patients that are higher have refused it. The paper argues that this pattern
is most consistent with a parametric model of observational learning. Our approach abstracts
away from learning,9 but allows for unobserved donor heterogeneity to capture correlation
in acceptance behavior. We do this to focus on allocation issues and equilibrium responses
when simulating changes to the offer system.

The methods in this paper contribute to the growing literature on empirical approaches for
analyzing centralized assignment systems (see Agarwal, 2015; Fack et al., 2015; Abdulka-

8In 2017, organs from deceased donors accounted for 14,038 out of 19,849 kidney transplants. Source:
https://optn.transplant.hrsa.gov/data/view-data-reports/national-data/.

9Zhang (2010) uses data from 2002. Anecdotal evidence suggests that the information available to patients
about donors was dramatically better and standardized during our sample period (2010-2013). This fact
significantly reduces the scope for observational learning.

https://optn.transplant.hrsa.gov/data/view-data-reports/national-data/
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diroglu et al., 2017; Agarwal and Somaini, 2018, for example). These previous approaches
have focused on static assignment mechanisms. To our knowledge, the only exceptions are
Waldinger (2017) and Reeling and Verdier (2018). Waldinger (2017) estimates a model of
public housing choice in which agents face a two-stage decision with a portfolio choice prob-
lem in the first stage.10 Reeling and Verdier (2018) analyze a dynamic allocation mechanism
in which agents can enter a lottery for a good each period, and apply it to study the alloca-
tion of bear hunting licenses. In contrast, our methods pertain to an optimal stopping rule
that differs from these settings.

This distinction between static and dynamic assignment systems is important because the
theory of static allocation systems, e.g. mechanism design approaches to school choice (Ab-
dulkadiroglu and Sönmez, 2003), is comparatively well-developed. Abdulkadiroglu et al.
(2017) show that, at least in New York City, there is little difference between various well-
coordinated school choice systems. In contrast, Leshno (2017), Bloch and Cantala (2017),
Arnosti and Shi (2017), and Su and Zenios (2004) arrive at different conclusions about which
sequential offer system performs the best. Their results depend on the nature of preference
heterogeneity. Therefore, estimating these primitives is essential when designing dynamic
allocation mechanisms.

Our work builds on the estimation of dynamic discrete choice models (Wolpin, 1984; Pakes,
1986; Rust, 1987; Hotz and Miller, 1993), particularly recent developments in continuous-
time versions of these models (Arcidiacono et al., 2016), and the estimation of dynamic
games (Bajari et al., 2007; Pakes et al., 2007; Aguirregabiria and Mira, 2007; Pesendorfer
and Schmidt-Dengler, 2008). Additionally, we employ a model of beliefs and an equilibrium
notion that resembles concepts aimed at making the analysis of dynamic games tractable
(Hopenhayn, 1992; Weintraub et al., 2008; Fershtman and Pakes, 2012). We discuss the
relationship to this literature when we develop our approach.

Overview

Section 2 describes the kidney allocation system, the available data and documents key facts
from the market. Sections 3 and 4 model the optimal stopping problem from the perspective
of each agent and detail our estimation methods. Section 5 describes our parameter estimates.
Section 6 defines a steady-state equilibrium and summarizes results on existence; presents our
approach to welfare comparisons; and outlines the algorithm for computing an equilibrium.
Section 7 describes the mechanisms we compare and presents the results. Section 8 concludes.

10This work is also related to a literature that estimates preferences for public housing to answer questions
about how to design an allocation mechanism (see Geyer and Sieg, 2013; Sieg and Yoon, 2016; van Ommeren
et al., 2016; Thakral, 2016). A key difference is that these approaches are based only on final assignments
instead of detailed choice data.
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2 Background, Data and Descriptive Evidence

This section starts with the basics of kidney transplation before describing the allocation
system. Next, we detail our data sources and the information available for the study. Finally,
we present key descriptive facts to motivate our model and empirical exercises.

2.1 Basics of Kidney Transplantation

As of December 31, 2016, there were 726,331 cases of End-Stage Renal Disease (ESRD)
in the United States (USRDS, 2018). Medicare provides near universal coverage to ESRD
patients; unlike traditional Medicare that is age-specific, the Medicare ESRD program is
the only disease-specific entitlement program. This program cost the federal government
$35.4 billion in 2016, accounting for 7.2 percent of overall Medicare paid claims (USRDS,
2018). This program therefore accounts for approximately 1 percent of the federal budget.
Transplantation is the best treatment for ESRD, as it improves both the quality and length
of life while saving an estimated $270,000 over the life of a transplanted patient (Wolfe et
al., 1999; Irwin et al., 2012; Held et al., 2016; USRDS, 2018).

A kidney from a deceased donor is considered transplantable to a patient if they are biologi-
cally compatible. A donor’s organ is considered incompatible if the patient has a pre-existing
immune response to proteins on the organ’s cells. A biologically incompatible patient’s im-
mune system will recognize and attack the transplanted organ, resulting in graft failure.11
Following transplantation, medications allow transplant physicians to limit new immune re-
sponses to foreign protein types, but pre-existing immune responses lead to immediate loss of
the transplanted organ if not avoided. The specific form of incompatibility is not important
for the purposes of this study.

11The immune system tags foreign objects (antigens) with antigen-specific antibodies so that white blood
cells (leukocytes) can defend against them. Each donor has blood-type antigens and up to 6 specific types
of human leukoctye antigen (HLA) proteins out of a set of hundreds of possible types that are relevant for
kidney transplantation. Some patients have pre-existing antibodies to some subset of these antigens. A
transplant recipient’s immune system will immediately attack the donor’s kidney and reject the organ if the
recipient has an antibody to any one of the donor antigens. A recipient is tissue-type compatible with a
donor’s kidney if she has no pre-existing antibodies corresponding to the donor’s antigens Danovitch (2009),
even if the donor and the recipient do not have the same antigens. A transplant between certain incompatible
patient-donor pairs has become possible due to development of desensitization technologies (see Orandi et al.,
2014), but compatible transplants are preferred. Following transplantation, the immune system will attack
any foreign antigen if such an attack is not attenuated with immunosuppressive medications. Pre-existing
donor-specific antibodies cause immediate rejection of a transplanted organ and cannot be prevented using
immunosuppression. Thus, transplant physicians measure pre-existing immune responses and avoid them,
whereas they prevent future immune responses by treating a transplanted patient with immunosuppressive
medications that prevent an immune response to newly-identified foreign antigens. Also for this reason, an
organ from a donor that has some antigens in common with the recipient is more desirable because the
patient is less likely to develop a new immune response to the organ after transplantation.
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Because of biological compatibility, the transplantation possibilities available to patients differ
based on their immune systems. In the United States, kidneys from deceased donors are
largely allocated to patients of the same blood type to maintain a balance in transplantation
opportunities across blood types. However, some patients have immune systems that react
to a broader range of tissues, even from donors with the same blood type. These patients
have fewer transplantation options. A patient’s immune sensitization is commonly measured
by Calculated Panel Reactive Antibodies (CPRA), which is the percentage of donors in a
representative sample with whom she is tissue-type incompatible. This measure is calculated
from blood tests conducted to determine the set of human protein types (antigens) to which
a patient has had a pre-existing immune response.

The benefits of a transplantation can substantially differ, even conditional on biological com-
patibility. Organs from donors that are younger, died of brain death under controlled circum-
stances, and did not suffer from diabetes, strokes or hypertension usually function longer.
Measured kidney function, time from removal of the organ to anticipated transplantation,
size and weight match between the patient and the donor is also considered important. A
donor with tissue proteins that are similar to the patient’s is considered preferable because
the likelihood of the patient developing an immune response post-transplantation is reduced.
In some cases, the donor may have an infectious disease that the patient is at risk of getting if
she proceeds with a transplant. There are a number of other factors that influence the med-
ical benefits from specific organs and to specific patients. We refer the reader to Danovitch
(2009) for further details about kidney biology.

2.2 The Allocation of Deceased Donor Kidneys

Assignment of organs from a potential donor begins after death is declared (brain or cardiac)
and necessary consent for donation has been obtained. The Organ Procurement Organization
(OPO) in the donor’s area obtains information about the donor from tests and the donor’s
medical history. This information is entered into a system, called UNet, that is used to
coordinate across transplant centers. The OPO staff use UNet to determine the order in
which patients will be offered each of the donor’s organs, to transmit information about the
donor to the transplant centers, and to record accept/reject decisions. OPO staff usually
contact the surgeons for several potential recipients simultaneously to solicit their decisions.
This process can take place while the donor is on life-support and before the potential donor’s
organs have been extracted in order to maintain organ viability. Once a kidney has been
recovered from the donor, transplant surgeons or patients that were potentially interested in
receiving that kidney may decline based on any new information discovered during medical
testing or the physical examination of the kidney. These final decisions need to be made
without delay, usually within an hour. A final compatibility blood test is then conducted
using samples from the donor and all patients that have accepted an organ. The donor’s
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kidneys are then allocated to the highest priority patients on the waitlist that were willing
to accept the organs.

When offering organs, UNet first excludes patients who are not biologically compatible with
the donor. This exclusion is based on a detailed patient immunological profile that is submit-
ted when the patient is registered on the waitlist. Specifically, the allocation system requires
patients to list unacceptable donor antigens, i.e. donor protein types with which the patient’s
immune system is likely to react. The allocation system runs a “virtual crossmatch” with
these data, which we mimic in our analysis.

Next, UNet screens out patients that have listed pre-set exclusion criteria within the system.
These criteria allow patients to automatically exclude kidneys that are transplantable but
undesirable because of donor characteristics such as age, health conditions, and kidney func-
tion. UNet then orders the remaining set of patients first by priority type, and then within
priority type by priority points. Finally, it breaks ties in order of time waited.

The priority and points system is motivated by both equity and efficiency concerns. The
system in place during our sample period (2010 to 2013) first offers kidneys to patients with
a perfect tissue-type match, then to patients from the local OPO in which the organs were
recovered, then regionally, and finally nationally. Within each priority group, the points
system is based on tissue type similarity, whether or not the patient is pediatric, patient
sensitization, and waiting time. The detailed priority system is described in policy section 8
in OPTN (2014).

New kidney allocation rules were implemented on December 4, 2014. This new system gives
greater priority to the healthiest patients for the most desirable donors, increases priority for
extremely hard to match patients, and reduces emphasis on wait time. Israni et al. (2014)
discusses this system and the rationale for the changes. We refer the reader to OPTN (2017)
for a detailed description of the priorities and points used.

2.3 Data Sources

This study uses data from the Organ Procurement and Transplantation Network (OPTN).
The OPTN data system includes data on all donors, wait-listed candidates, and transplant
recipients in the US, submitted by the members of the Organ Procurement and Transplan-
tation Network (OPTN). The Health Resources and Services Administration (HRSA), U.S.
Department of Health and Human Services provides oversight to the activities of the OPTN
contractor. For tractability, we restrict attention to data on the kidney waitlist and the
acceptance decisions of all patients in the New York Organ Donor Network (NYRT) between
January 1st, 2010 and December 31st, 2013.12 NYRT is the largest donor service area (DSA),

12We end our sample in 2013 to rule out anticipatory effects and to avoid modeling transition dynamics as
agents ancitipate the new system introduced in December 2014. Reports from the United Network for Organ
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in terms of number of patients, that used the standard allocation rules in the United States
prior to 2014.13

The primary dataset on the waitlist, the Potential Transplant Recipient (PTR) dataset, con-
tains the offers made and accept/reject decisions. This dataset is drawn from the records
generated by UNet, which is the backbone software system used to coordinate offers and
decisions. In addition, we obtained detailed information on patient and donor characteris-
tics from the Standard Transplantation Analysis and Research (STAR) dataset. Fields in
the STAR dataset are populated based on information gathered in UNet as well as forms
submitted by transplant centers after a transplant is performed.

2.4 Descriptive Analysis

We now describe our sample of patients and donors and document choice patterns. A striking
feature of the waitlist is that even though there is extreme scarcity, some donors are rejected
by a very large number of patients. Choices suggest that large differences in donor quality
combined with substantial priority for waiting time incentivize patients to reject low-quality
donors and wait for more attractive offers.

Patients and Donors

Table 1 describes our patient sample. A total of 9,917 patients were registered with NYRT
at some point between 2010 and 2013. Panel A shows the state of the waitlist on January
1st of each year in our sample and summarizes a subset of important patient characteristics.
Our dataset includes rich information on patient health status, including indicators of patient
health (e.g. body mass index, age, total serum albumin), and medical history (e.g. diabetes,
years on dialysis). The average patient on the list has waited for a little over two years, with
the average waiting time increasing over time. Recall that CPRA measures the probability of
tissue-type mismatch with a randomly chosen donor. The average CPRA is about 12 percent,
which indicates that there is more than a one-in-ten chance that a patient is tissue-type
incompatible with a randomly chosen donor. The standard deviation is large because there
are many patients with extremely low or extremely high CPRA. The allocation mechanism
awards priority and points to high CPRA patients because of equity concerns.

Sharing (UNOS) that track transplantation rates after the adoption of the new system show the existence
of short-term transition dynamics (termed “bolus-effects” in these reports) immediately following the reform
(Wilk et al., 2017).

13See Hart et al. (2017) for a map of DSAs in the United States. As mentioned above, except in cases of
perfect tissue-type matching, allocation takes place based on geography, with DSAs constituting the smallest
unit. A little less than half of DSAs used rules that were different from the baseline rules. We identified
the DSAs that use non-standard rules via a special request for administrative documentation on the various
rules in use.
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Panel B describes the patients that enter and exit the waitlist during our sample. The list is
growing; the number of new patients joining exceeds the number leaving. Panel C shows the
reasons for departure from the list and the characteristics of patients by the stated reason for
departure. The most common reason for depature is receiving a deceased donor transplant.
The average patient has waited for 3.08 years before receiving a deceased donor. The second
most common reason is that the patient either dies or becomes “too sick to transplant.” These
patients are 61.5 years old on average, compared to 54.3 years for patients who received
deceased donor transplants. The third most common departure reason is receiving a live
donor transplant, which is more likely for younger patients and often occurs within the first
year on the waitlist. Finally, some patients leave for other or unknown reasons including a
move outside the NYRT area.

Table 2 summarizes the rich set of donor characteristics used in our study. These include
donor age, cause of death, relevant medical history (diabetes, hypertension), and the leading
indicator of donor kidney function (donor creatinine). Panel A presents the statistics for
donors recovered within NYRT during our sample period. Just under 200 donors are recov-
ered from the NYRT area each year, which is only one-seventh of the number of patients
joining the waitlist in NYRT. Therefore, there is extreme scarcity in organ supply within the
region. The refusal rate remains high despite this scarcity. Across donors, the mean number
of biologically compatible offers that met the pre-set screening criteria is over 430, but the
median is much lower, at 27. This skewed distribution arises because undesirable kidneys are
rejected by many patients, while desirable kidneys are accepted quickly. Indeed, over 20% of
donors have at least one of their viable kidneys discarded. Organs from these donors were
refused by an average of almost 1,500 patients. The mean and median amongst the group of
donors for which both of their viable kidneys were accepted are 123.1 and 15 respectively.14
Our observable donor covariates which should predict organ quality – including age, cause of
death, and donor creatinine – are correlated with discards in the expected ways. The last two
sets of columns show that a number of donors recovered in NYRT were ultimately offered to
patients elsewhere. For these donors, only about 0.3 kidneys were transplanted per donor,
indicating that most of these kidneys were discarded.

In addition to donors recovered within the local area, NYRT patients are also offered donors
from other parts of the country. Indeed, panel B shows that a total of 1,470 donors were
offered to patients registered with NYRT in the average year. Because most of these donors
were recovered elsewhere in the country but offered to NYRT patients after a large number
of refusals, these donors are likely to be undesirable. It is therefore not surprising that they
see a very large number of offers and high discard rates. Again, the relatively poor quality
of these donors is captured by our observable characteristics. Compared to donors recovered
in NYRT, the average non-NYRT donor offered to NYRT patients is older, less likely to

14The number of transplanted kidneys amongst donors with no discards is less than two because some
donors have only one viable kidney for donation.
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have died of head trauma, more likely to be diabetic or hypertensive, more likely to be an
undesirable donor (ECD) or be donating after cardiac death (DCD), and more likely to have
a high creatinine level. The average donor offered to NYRT patients ultimately donates only
0.75 kidneys.

Waitlist, Offers and Acceptance Rates

We now describe the offer and acceptance rates in the data. Throughout the paper, we only
consider blood and tissue type compatible offers. As a reminder, we refer to the decision-
maker as the patient for simplicity of exposition, assuming that any decisions made by sur-
geons are in the best interest of each individual patient. Overall, patients receive many offers
and reject most of them. This is because desirable kidneys are accepted quickly, while less
desirable kidneys are offered to many patients before being accepted or discarded. A pa-
tient’s likelihood of receiving a high-quality offer rises as her waiting time increases, creating
a strong incentive for patients to wait for attractive offers.

While position on the list increases with waiting time, the kidney allocation system signif-
icantly differs from a first come first served waitlist. Figure 1a plots waiting time against
position on the list for offers where the donor met the patient’s screening criteria. The hor-
izontal axis is the (donor-specific) position of a patient, and the vertical axis is the average
waiting time for patients at that position. Mean waiting time falls quickly as we go down the
list. However, the system is not well approximated by a first come first served queue. We
calculated the fraction of times that two patients who are offered the same donor are ordered
identically on the list for the next donor they are both offered. This fraction is 81.5 percent.
It would be 100 percent in a first come first served system, and 50 percent in a system that
randomly ordered patients for each donor. This summary shows the importance of the points
and priorities other than for waiting time in determining position on the list.

Acceptance rates suggest that patients who are higher on the list have access to higher quality
donors. Figure 1b shows the fraction of offers accepted by the position of the patient. The
acceptance rate in the first few positions is much higher than later positions, but still only
between 15 and 20 percent. Only about 1 percent of offers are accepted in lower positions,
and this rate falls even farther below the top 20 positions. This sharp decline near the top
occurs for two reasons. First, for some donors, the first few offers are made to patients with
a perfect tissue-type match. These offers have a high acceptance rate because perfect tissue-
type matches are rare and extremely valuable. The second reason, which is the predominant
one, is that lower positions see a negatively selected set of kidneys because desirable kidneys
are likely to be accepted near the top of the list. Both reasons give patients a strong incentive
to reject offers and wait to receive a higher-quality donor in the future.

Because lower-quality kidneys are offered to more patients, patients receive many offers,
but the overall acceptance rate, as a fraction of offers, is extremely low. Table 3 describes
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these overall patterns in offer and acceptance rates. Panel A considers all feasible offers,
including offers that did not meet the patient’s pre-set criteria. A typical patient receives
about 220 offers per year, but only 0.15 percent of offers are accepted. When interpreting
these low acceptance rates, it is important to remember that the majority of offers are from
very undesirable donors. Offers from desirable donors are more likely to be accepted: kidneys
recovered in NYRT are accepted five times more often, and 10.6 percent of offers of a perfect
tissue-type match are accepted. The panel also shows that patients with sensitized immune
systems – that is, patients with CPRA above 80 percent – receive many fewer offers from
transplantable donors even though the system gives them higher priority, and are more likely
to accept. Panels B and C restrict to offers that are likely to be more attractive. Panel B
studies offers that met patients’ pre-set criteria. The typical patient still gets such an offer
every three or four days. However, a typical patient only receives about two offers per month
from donors recovered within NYRT. Panel C restricts to offers in the first 10 positions,
which are even more likely to be for organs from desirable donors. These offers are rare – the
typical patient can expect to receive less than one such offer each year – but they are very
likely to be accepted.
Taken together, these statistics suggest that the supply of desirable donors in NYRT is scarce
and that patients have to wait several years before receiving a transplant from a desirable
donor. Moreover, our dataset contains rich information predictive of the likelihood that a
donor is refused.

Evidence on Mismatch

Table 4 provides suggestive evidence of mismatch between donors and transplanted patients.
Panel A reports the rates at which patients receive any transplant. Pediatric patients are
very likely to be transplanted, either with a deceased donor kidney or through a living
donor. The priority given to these patients is likely an important contributing factor. Adult
patients are less fortunate, but interestingly, among adults there is no signficant gradient
in transplant probability with age. In contrast, the chance of receiving a live donor does
fall with age. Panel B describes transplanted donors by age for those patients who receive
a kidney through the deceased donor waitlist. Pediatric patients are much more likely to
receive a transplant from a young donor as compared to older patients. Although there
is some assortative matching by age, signs of age mismatch remain. Many patients above
the age of 65 continue to receive kidneys from young adults and middle-aged donors. One
concern in interpreting these numbers is that a kidney transplanted to an older patient may be
undesirable for other reasons. Panel C focuses on a subset of donors with no clear medically
undesirable characteristics such as diabetes, cardiac death, high creatinine levels or hepatitis
C. The qualitative patterns of age mismatch persist. These patterns motivated some of the
2014 OPTN reforms, which attempted to match healthier patients (typically young adults)
to donors whose organs are predicted to last longest.
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Another patient characteristic that will be important in the improvements we ultimately
identify is whether the patient had already begun dialysis when they joined the waitlist.
Some patients with end-stage renal disease who qualify for the waitlist still have marginal
kidney function and can avoid dialysis. These patients are relatively healthy compared to
patients already on dialysis at registration, but they are still likely to need dialysis in the
future. The last two columns of Table 4 show that outcomes differ substantially for patients
on and off dialysis. While patients not yet on dialysis at registration represent 32 percent of
our patient sample, they receive only 27 percent of deceased donor transplants. In contrast,
they are much more likely to receive a living donor transplants (Panel A): 17 percent of
off-dialysis patients received a live donor transplant during our sample, while only 7 percent
of on-dialysis patients did. Consistent with being healthier, dialysis patients are much less
likely to depart the waitlist because they died or were too sick to transplant. Despite these
differences, donors are nearly equally distributed by age among on- and off-dialysis patients
(Panel B), though patients not on dialysis at registration are a bit more likely to receive a
very young or very old donor.

Evidence on Response to Dynamic Incentives

A central assumption in our framework is that agents are forward-looking and respond to
dynamic incentives. One implication of this assumption is that patients for whom the option
value of waiting is lower should be less selective. Agarwal et al. (2018b) present descriptive
evidence consistent with dynamic incentives using data from all areas of the United States.
They find that highly sensitized patients who are immunologically compatible with fewer
donors – and who can therefore expect to receive fewer offers in the future – are more likely
than less sensitized patients to accept an offer of a given quality. We replicated their research
strategy using data from patients registered in NYRT and found similar patterns. We briefly
describe the strategy and results below.

The ideal experiment would compare two identical populations of patients that face different
option values for exogeneous reasons. However, we are not aware of such variation in the
context of kidney allocations. Instead, Agarwal et al. (2018b) use the likelihood that a patient
is biologically compatibile with a randomly chosen donor, as measured by the Calculated
Panel Reactive Antibody (CPRA), to study how variation in option values affect acceptance
decisions. A patient that is likely to be biologically compatible with a large number of donors
should have a high option value of waiting, and therefore be more selective.

We replicate their findings for NYRT and show that, as predicted by the presence of dynamic
incentives, CPRA is negatively correlated with offers for compatible organs and positively
correlated with acceptance rates (Figures B.1a and B.1b in the Appendix). This pattern is
robust to rich controls for patient priority and indicators of the value of an offer, for example,
patient and donor characteristics, match characteristics, interactions of CPRA with tissue-
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type similarity (Table B.1 in the Appendix).
The main concern is that immune sensitization also influences the value from a transplant.
Patients develop sensitive immune systems primarily through blood transfusions and prior
transplants. Therefore, these patients are more likely to be frail, making a transplant risky.
This risk is less justified unless the donated organ is of high quality. By this argument,
sensitized patients should be less likely to accept offers. The fact that we find the opposite
correlation strengthens our argument for the importance of dynamic incentives.

3 A Model of Decisions in a Waitlist

This section presents a model of agents’ decisions in a waitlist mechanism that will form
the basis of our empirical strategy. We begin by defining a class of sequential assignment
mechanisms and the primitives governing agents’ decisions while on the waitlist. Agents
and objects arrive according to exogenous processes, and each object is offered to agents on
the waitlist in order of an agent-object-specific priority score until the object is accepted
by an agent or rejected by everyone. We then provide assumptions on agents’ payoffs and
beliefs, as well as the evolution of the state space, which lead to a tractable optimal stopping
problem from the agent’s perspective. Though the model is motivated by the structure of
our application, it may be useful in other settings in which items are offered sequentially to
agents, including other organ allocation settings.

3.1 Notation and Preliminaries

Consider a sequential assignment mechanism in which objects indexed by j are offered to
agents indexed by i waiting on a list. Let xi denote observed characteristics of agent i; let
zj and ηj respectively denote observed and unobserved characteristics of object j; and let ti
denote the amount of time the agent has been waiting on the list. We assume that agents
observe both ηj and zj. The model does not include unobserved agent heterogeneity. We
discuss this restriction in Section 4.2.
Objects may be incompatible with some agents. Let cij = 1 if object j is compatible with
agent i, and 0 otherwise. Incompatibility can arise due to biological reasons in the organ
allocation context but they may arise due to other restrictions (e.g. legal) in other contexts.
Time is continuous. Objects and agents arrive at poisson rates λ and γ, respectively. The
characteristics of each arriving agent x are independent and identically distributed (iid).
Similarly, each object’s characteristics (z, η) are drawn iid from the cumulative distribution
function (CDF) F upon arrival. We assume that each object must be assigned before the
next object is offered. The poisson arrival process and continuous time together imply that
simultaneous arrivals are zero probability events.
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3.2 Mechanisms and Primitives

3.2.1 Mechanisms

We consider sequential assignment mechanisms that use a priority score. The mechanism
allocates each object as it arrives:

• Step 1 (Ordering): The priority score sijt ≡ s (t;xi, zj) is calculated for all agents on
the waitlist. Ties in the score, if any, are broken using a known tie-breaking rule. For
example, ties could be broken either uniformly at random or by waiting time.15

• Step 2 (Offers): Each agent may decide to accept or reject the object, with accep-
tance denoted by aij = 1. The mechanism may solicit decisions from multiple agents
simultaneously. A mechanism does not make offers to agents that are known to be
incompatible with the object.

• Step 3 (Assignment): The object(s) are allocated to agents with the highest qj priorities
for whom aij = 1, where qj is the number of copies of the object available. An object
cannot be allocated to an incompatible agent.

• Step 4 (Arrivals and Departures): An agent is removed from the waitlist once an object
has been assigned to her. Other agents may exogenously join or leave the list.

Within the set of general offer-based waitlist systems, the primary restriction is on the order
in which offers are made. Specifically, we assume that an agent’s priority does not depend on
the other agents in the market. This restriction is adequate for estimation using the deceased
donor kidney allocation system in place during our sample period. Moreover, such mecha-
nisms are a natural class to consider because they are simple and transparent to implement.
Indeed, all deceased-donor organ allocation mechanisms as well as systems considered by the
kidney allocation committee during their deliberations prior to the 2014 reform were offer
mechanisms based on priority scores.16 In counterfactual analysis, we will compare assign-
ments that result from various mechanisms that obey this structure to benchmark optimal
assignments.

Typical administrative datasets from such assignment systems contain information on all
characteristics used to determine the priority score because the characteristics are used to
make offers. This allows a researcher to calculate the order in which any object would be
offered. Our empirical exercises required us to develop computer code for this purpose, and

15If ties are broken by ti, it must be that no two agents have the same value. Since time is continuous and
agent arrivals are governed by a poisson process, simultaneous arrivals will be zero-probability events, and ti
strictly orders any two patients with probability one.

16Based on an examination of committee reports and public comments downloaded from
https://optn.transplant.hrsa.gov/members/committees/kidney-committee/.
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we were able to verify the output of our code using administrative records of the offers that
were made during our sample period.

One complication in our setting is that organs must be allocated within a certain time frame
that depends on the condition of the organ and various logistical factors. Limited manpower
at the Organ Procurement Organization (OPO) can limit the number of patients that can
be contacted and offered the organ. We treat the maximum number of offers that can be
made for each object as exogeneous.

3.2.2 Payoffs

There are three types of primitive payoffs in the model. The first is the (expected) net
present value of agent i being assigned a compatible object j after waiting t periods, denoted
Γij (t). In our application, this term captures the value placed by patients and surgeons on
transplants from various types of organs. The second is the expected net-present value from
from departure without an assigment, Di (t). In our application, departures occur due to
living donor transplants, death, or transfers to other listing centers (Table 1). We view Di (t)
as incorporating any of those reasons.17 Finally, agents incur an expected flow payoff while
waiting on the list, di (t). In our application, di (t) is best interpreted as the payoff from
living without a functioning kidney, which includes dialysis for most patients.

Two economic implications of the payoffs in our model are worth noting. First, we abstract
away from costs of considering an offer. These costs are likely small relative to the value of
transplants and the flow costs of remaining on dialysis. Second, we assume that agents only
value their own outcomes and not those of others. This assumption is commonly made in
theoretical and empirical work on assignment mechanisms (e.g. Abdulkadiroglu and Sönmez,
2003; Abdulkadiroglu et al., 2017). This restriction may be violated if surgeons value the
outcomes of other patients, especially those that they might be treating. NYRT has a
total of 10 transplant hospitals staffed with many more kidney transplant surgeons. This
limits common agency problems that surgeons might face. The payoffs can be interpreted as
accruing to the patients if surgeons act in the best interest of each of their patients.

Our empirical framework makes the following assumptions on these payoffs:

Assumption 1. (i) The (expected) net present value of an assignment is additively separable
in a payoff shock εijt:

Γij (t) ≡ Γ (t, xi, zj, ηj) + εijt. (1)
17We can represent the value from a departure as a weighted average over the value from the various events,

i.e. Di (t) =
∑
k pik (t)Dik (t) where k denotes the type of depature (e.g. obtaining a live donor, death etc.)

and pik (t) is the probability of each type of depature conditional on a departure occuring. The formulation
is agnostic about the sources of these payoffs. For example, the net present value of death can include any
bequest motives.
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(ii) The random variables εijt are iid with a known, non-atomic distribution with cdf G.

(iii) The expected flow payoffs from waiting di (t) and the expected payoff from departing
without an assignment Di (t) depend only on (xi, t) .

Restrictions on εijt imposed in Assumptions 1(i) and 1(ii) are common in the dynamic discrete
choice literature. They will allow us to use an approach based on an inversion technique due
to Hotz and Miller (1993). The comparison with other methods and specific functional form
assumptions on G, Γ (·), and the distribution of ηj are discussed in Section 4 below.

Assumption 1 implies that the model excludes agent-level unobserved heterogeneity. We
discuss analytical challenges in relaxing this assumption once we have laid out our estimation
approach in Section 4.2.

3.2.3 Arrivals and Departures

Agents arrive stochastically, and may depart the list prior to assigment. We make the fol-
lowing assumption on the arrival and departure processes:

Assumption 2. (i) Departures prior to assignment and arrivals are governed by Poisson
processes that are independent of the waitlist composition and design.

(ii) The departure rate of agent i is given by δi (t) ≡ δ (t;xi). Further, each agent has a
terminal date Ti <∞ at which departure occurs with probability 1.

In our application, we assume that patients die on or before their 100-th birthday. Ti therefore
corresponds to the waiting time for a patient on the day she turns 100 years of age.18

The primary economic restriction for our purposes is that departures prior to assignment
and arrivals do not depend on the design of the kidney waitlist. Table 1 shows that the
most common reason for departure without a deceased donor transplant is death or patients
becoming “too sick to transplant.” It seems safe to assume that these events are not responsive
to the design of the kidney waitlist. The second most common reason is receiving a living
donor transplant. Departures due to this reason are exogeneous if the design of the kidney
waitlist does not affect the probability of finding a compatible living donor, and if patients
always prefer a living donor to staying on the deceased donor waitlist. These conditions
are plausible in our setting because living donors are medically superior to deceased donors

18It is straightforward to extend the framework to allow for agents that could remain on the list forever,
Ti = ∞. This generalization will primarily change computational techniques and require that the value
function for each patient approaches a constant. We restrict our attention to the finite time-horizon case for
simplicity of exposition.
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and produce better transplant outcomes in terms of patient and graft survival.19 Finally, a
minority of patients depart for other reasons, in most cases for undisclosed reasons or because
they move residences.

Similarly, we assume that agent arrivals do not depend on the design of the waitlist. During
our sample period, patients could register as soon as kidney function is sufficiently poor.20
Therefore, it is in a patient’s interest to join the waitlist as soon as possible. This feature of
the priority system motivates our assumption that arrivals do not depend on the state of the
waitlist or the allocation mechanism. In counterfactuals, we consider priority systems that
do not change how waiting time is calculated.

3.3 Individual Agent’s Problem

Agents on the waitlist who receive an offer of an object must decide whether to accept it or
wait for a future offer. This results in an optimal stopping problem from the perspective of
the agent (Pakes, 1986; Rust, 1987). We follow a common estimation strategy in dynamic
games by considering an agent’s optimal decision rule taking the distribution of actions of
other agents as observed in the data (Pakes et al., 2007; Bajari et al., 2007). Solving for
counterfactuals will require a notion of equilibrium, which we discuss in Section 6. This
section starts by describing a general formulation of this single-agent problem before making
simplifying restrictions.

3.3.1 Beliefs

To make an informed decision about whether to accept an offer, an agent must form beliefs
about the organs she may be able to obtain in the future if she declines the current offer.
Recall that the kidney waitlist offers organs to patients in sequence of their priority scores

19Living donor superiority is partly driven by the higher medical quality of living donor kidneys, and also
by the fact that living donation allows for a better planned transplant. For example, patients receiving a
living donor transplant can proactively start immunotherapy. OPTN and SRTR (2011) report the rate of
late graft failure for transplanted patients by donor type (living or deceased). This measures the time at
which half of the transplanted patients are alive with the kidney still functioning. The rate of late graft
failure for adult patients transplanted in 1991 was 10.1 years for deceased donor kidneys, compared to 15.8
years for living donor kidneys. Some of this difference may be due to selection into who receives each type
of transplant. Hart et al. (2017) compare outcomes following living and deceased donation by patient age
and primary diagnosis using the chances of graft failure 10 years after transplantation. This statistic for
adults transplanted with a deceased donor kidney in 2005 is 52.8%, whereas it is only 37.3% for those that
received a living donor. They report that 5year patient survival differences for living donor and deceased
donor recipients are large even when broken down by patient age or primary diagnosis (compare figures KI
79 and KI 80 with figures KI 82 and KI 83 from Hart et al. (2017)).

20This feature is shared for all DSAs, including NYRT, that used standard allocation rules during our
sample period. A patient was qualified for registration once they had begun dialysis or had a glomerular
filtration rate (GFR) below 20mL per minute.
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as long as the kidney remains viable for transplantation. The organs are allocated to the
highest priority agents that are compatible with and accept the organ. At the end of the
allocation process, each organ j effectively has a cutoff priority s∗j , such that only an agent
with priority at least s∗j would have received the organ if she accepted it. This score depends
on the decisions of all agents on the list at the time, their compatibility, and the number of
offers that can be made for the object. Agent i can expect to obtain a compatible kidney as
long as her score, sijt, exceeds s∗j . Therefore, it is sufficient for an agent to form beliefs over
the probability distribution of s∗j in order to decide which organs are likely obtainable in the
future.

The beliefs about the distribution of the cutoffs priority s∗j depend on the quality of the organ
and the information an agent may have about the competitive environment. Let

H (s;Fi,t, zj, ηj) = P
(
s∗j < s

∣∣∣Fi,t, zj, ηj) (2)

denote the belief for the CDF of s∗j given the information set Fi,t and the organ characteristics
zj and ηj. Therefore, if agents know the scoring rule, then agent i believes that the probability
of receiving an offer for organ j is given by H (s (ti;xi, zj) ;Fi,t, zj, ηj).

In principle, the information set can include the history of offers previously received (and
rejected) by the agent as well as identities of the other agents on the waitlist at a given point
in time. However, there are several reasons, discussed below, why beliefs are unlikely to be
sensitive to such information. We therefore assume that an agent’s beliefs des not depend on
such fine information:

Assumption 3. Each agent i’s believes that the probability that an object with characteristics
(zj, ηj) is compatible and will be available to her after a waiting time of t is

π (t; zj, ηj, xi) = H (sijt; zj, ηj)× P (cij = 1| zj, xi) ,

where sijt = s (t; zj, xi) and H (·; zj, ηj) is the conditional distribution of the cutoff s∗j given
(zj, ηj).

This assumption embeds three key restrictions. First, it assumes that beliefs are not sensitive
to short-term variation in the set of other agents currently on the waitlist. The primary threat
to this restriction is that some surgeons may be treating multiple patients on the kidney
waitlist or may learn about other patients from their colleagues. This concern is limited
by the fact that the NYRT area has many transplant hospitals and surgeons. Second, it
abstracts away from inference about the likelihood of receiving future offers based on past
offers. This restriction is motivated by the institutional features and empirical observations
discussed below in Section 3.3.4. Finally, it assumes that the probability that an organ is
compatible depends only on observables and is independent of the cutoff. This restriction is
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appropriate in our context because surgeons list the blood- and tissue-types that are known
to be incompatible with the patient.

Our assumption on beliefs is a reasonable approximation if assessments about which organs
are likely to be available are based primarily on a surgeon’s extensive experience treating
patients. It also eases the analysis relative to beliefs of the form in equation (2) because
it dramatically reduces the dimension of the information set, and therefore the state space,
in the dynamic problem. It is well known that this curse of dimensionality can complicate
analysis and estimation in dynamic models (see Pakes and McGuire, 2001, for example).

The simplification of the state space in Assumption 3 is similar in spirit to equilibrium
concepts that have been introduced to make the estimation of dynamic games tractable.
These concepts simplify the state space by abstracting away from aggregate uncertainty
in the composition of competitor types (Hopenhayn, 1992; Weintraub et al., 2008) or by
modeling beliefs as being based on past experience (Fershtman and Pakes, 2012). Despite
these simplifications, the state space continues to be quite rich because, in addition to aspects
that influence payoffs, it contains all characteristics that influence priorities or determine
whether or not any given object j is compatible.

3.3.2 Value functions

We assume that agents make optimal accept/reject decisions by comparing the net present
value of an object to the value of waiting. Holding the strategies of other agents fixed, she
decides to remain on the list instead of accepting object j if the payoff from an assignment
Γij (t) is less than the value of continuing to wait conditional on the agent’s type xi and
current waiting time t, denoted Vi (t) ≡ V (t;xi). The Hamilton-Jacobi-Bellman differential
equation defining the value of waiting at time t is:

(ρ+ δi (t))Vi (t) = di (t) + δi (t)Di (t) +λ
∫
πij (t)Emax {0,Γij (t)− Vi (t)} dF + V̇i (t) , (3)

where the operator E takes expectations over the idiosyncratic payoff shocks εijt in equation
(1), and, with a slight abuse of notation, πij (t) = π (t;xi, zj, ηj) defined in Assumption 3.

This expression can be derived by considering an agent’s value of waiting at time t for an
infinitesimal duration ∆t. In the event that no object arrives during this period, the agent in-
curs flow payoffs from dialysis di (t) ∆t and may depart exogenously with probability δi (t) ∆t,
incurring a payoff of Di (t) if such a departure offers. In the event that an object arrives using
this period, which occurs with probability λ∆t, the object’s characteristics are drawn from
the CDF F . The integral calculates the expected increment in the agent’s value function for
each arrival. Specifically, the agent receives an offer for this object with probability πij (t)
and accepts it if Γij (t) > Vi (t), yielding an incremental value of Emax {0,Γij (t)− Vi (t)}
from an offer for object j. In the limit as ∆t→ 0, the probability that both departures and
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object arrivals occur within the interval ∆t tends to zero, yielding the differential equation
above.21

Equation (1) shows an intuitive result that values depend on the flow payoffs while waiting
on the list, the possibility of and value from exogeneous departures, and the option value
of potential offers. The differential equation defining Vi (t) has a unique solution that is
determined by the terminal condition Vi (Ti) = Di (Ti) because the probability of receiving
additional offers in the remaining time vanishes as t→ Ti.

3.3.3 Normalization and Simplifying the Value Function

A typical dataset from a sequential assigment mechanism such as ours only contains infor-
mation about accept/reject decisions. As is well understood, data on actions alone may not
be sufficient for identifying all primitives of a dynamic discrete choice model, and the payoff
from one action must be normalized in each state (Magnac and Thesmar, 2002). However,
Aguirregabiria and Suzuki (2014) and Kalouptsidi et al. (2015) point out that such normal-
izations may not be innocuous because they arbitrarily restrict payoffs from specific actions
across various states. These restrictions can affect the validity of answers to certain coun-
terfactual predictions. This fact poses a potentially serious problem for empirical analysis
if one is interested in answering questions that depend on primitives that are not identified
from choice data.

Fortunately, the counterfactuals involving changes in the mechanism are identified in our
model. Intuitively, in any waitlist mechanism, the trade-offs between accepting an offer and
waiting should only depend on payoffs relative to the value of never receiving an assignment.
Assumptions 1(iii) and 2(i) together imply that the value of never receiving an assignment
does not depend on the mechanism. This discussion suggests normalizing the value of refusing
all offers, irrespective of the state.

21Specifically, the discretized version of the Hamilton-Jacobi-Bellman Equation defining the value of waiting
at time t is:

Vi (t) = 1
1 + ρ∆t

[
di (t) ∆t+ δi (t) ∆tDi (t) + λ∆t

∫
πij (t)Emax {Vi (t+ ∆t) ,Γij (t)}dF

+ (1− (δi (t) + λi (t)) ∆t)Vi (t+ ∆t) + o (∆t)] ,

where λi (t) = λ
∫
πij (t) dF is the rate at which agent i expects to receive an offer at time t. The leading

fraction represents discounting due to time preferences. The first term is the flow payoff from remaining on
dialysis. The second term is the expected probability of departure multiplied by its value. The third term
represents the value for a kidney arriving. The fourth term denotes the value of waiting in period t+ ∆t in
the case when no offer arrives and an exogenous departure does not occur. The remainder term includes the
payoff in the event that multiple donors or objects arrive, or that a donor arrives and the patient departs,
within ∆t. These events have probability of order o (∆t). Therefore, the remainder is of order o (∆t) as long
as all expected payoffs are bounded. Taking the limit as ∆t→ 0 under mild continuity conditions yields the
differential equation above.
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Formally, the value of refusing all offers, and therefore never being assigned, is defined by
the differential equation

(ρ+ δi (t))Oi (t) = di (t) + δi (t)Di (t) + Ȯi (t)

and the terminal condition O (Ti) = Di (Ti) . Under Assumptions 1(iii) and 2(i) this value
does not depend on the waitlist, and therefore future offer probabilities πij (t). Measuring
Vi (t) and Γij (t) relative to Oi (t) suffices for analyzing decisions and differences in welfare
under the current and alternative mechanisms. Appendix B.1 formally shows that this is the
case.

With this in mind, we normalize the net present value of refusing all offers in the future,
Oi (t), to zero at all t. This normalization implies that di (t) + δi (t)Di (t) = 0 for all t and
that Di (Ti) = 0. Equation (3) now simplifies to

(ρ+ δi (t))Vi (t) = λ
∫
πij (t)Emax {0,Γij (t)− Vi (t)} dF + V̇i (t) (4)

As can be seen, the advantage of this particular normalization is that the set of primitives
that need to be estimated is greatly reduced. We no longer need to estimate the flow payoffs
from remaining on the list or the net present value of departing. Going forward, we interpret
Γij (t) and Vi (t) as values relative to never receiving an assignment.

The solution to differential equation above is

V (t;xi) =
∫ Ti

t
exp (−ρ (τ − t)) p (τ |t;xi)

(
λ
∫
π (τ ;xi, z, η) ψ̃ (τ, xi, z, η) dFz,η

)
dτ, (5)

where
p (τ |t;xi) ≡ exp

(
−
∫ τ

t
δ (τ ′;xi) dτ ′

)
is the probability that agent i does not exogenously depart before τ conditional on being on
the list at t and

ψ̃ (τ, xi, z, η) ≡ Emax {0,Γ (τ, xi, z, η) + εijt − V (τ ;xi)}

is the incremental value to agent i of receiving an offer of an object with characteristics (z, η)
at time τ , with expectations taken over εijt. We have explicitly reintroduced agent and object
characteristics into the notation because this equation will form the basis of our empirical
strategy. This solution is based on the boundary condition limt→Ti V (t;xi) = O (Ti;xi) = 0
because the probability of receiving an offer after t vanishes as t → Ti. This equation also
clarifies that the model and approach is readily extended to the case when Ti is infinite. To
do this, one would replace the condition that Vi (Ti) = 0 with the condition limt→∞ Vi (t) = 0.
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3.3.4 Descriptive Evidence and Institutional Support for Assumption 3

In addition to the tractability provided by Assumption 3, the institutional and empirical fea-
tures of our setting make it an appealing model of beliefs and acceptance behavior. To begin
with, there are several reasons why recent history should have limited predictive power for
future offers. First, it is unrealistic that surgeons have detailed information about patients on
the waitlist that are not under their care. Privacy concerns preclude surgeons from obtaining
such information. Second, the set and order of patients on the waitlist varies significantly
across donors, limiting the ability to predict future offers based on recent experience. We
calculated the fraction of times any two patients are prioritized in the same order for two ran-
domly chosen donors. We find that the priorities do not preserve the order of patients 18.5%
of the time. A random order would place this number at 50%. This calculation focuses only
on cases where both patients are compatible with the two donors. Including incompatibility
would indicate even less persistence. Last, but not least, we directly test for autocorrelation
in priority-score cutoffs s∗j across organs ordered by the date on which they arrived. One
would expect non-zero serial correlation across these cutoffs if the offers a patient observed
contained information about the likelihood of receiving future offers. We were not able reject
the null hypothesis of zero rank autocorrelation across a range of partitions of donors (Table
B.2 in the Appendix).22 Taken together, the evidence suggests that recent offers are not
particularly predictive of future cutoffs.

We also directly test whether recent offer history predicts current acceptance behavior, and
fail to find evidence that it does. Suppose that a patient sees a string of unexpectedly frequent
or high-quality offers. If the patient updates her beliefs based on recent history, she should
infer that she faces relatively little competition from other patients on the waitlist and can
expect a better offer set in the near future. As a result, the patient should become more
selective – less likely to accept an organ of a particular quality – if her recent offer history is
better. In contrast, if the patient does not update her beliefs based on recent history, recent
offers should have no predictive power for current acceptance behavior.

We test this hypothesis by constructing an offer-specific variable for the number of years since
the patient’s most recent offer. We include this variable as an additional predictor in the
acceptance regressions presented in Section 2. Under the null hypothesis of no updating, the
coefficient on time since last offer should be zero. Under the alternative of updating based on
recent history, we expect a positive coefficient because patients who have waited a long time
since their last offer expect lower continuation values, and should therefore be more likely to
accept an offer of a given quality.

Table 5 presents coefficient estimates from several specifications that include measures of
the patient’s recent offer history. The first two columns include time since last offer as
a predictor in the standard acceptance regressions. Without controlling for current offer

22In fact, the p-values of the test statistic across relatively fine partitions are close to uniformly distributed.
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characteristics, the estimated coefficient on time since last offer is positive and statistically
significant; however, with additional controls the coefficient becomes much smaller and sta-
tistically insignificant. This finding suggests that recent offer rates do not predict current
acceptance behavior.

Of course, time since last offer may not fully capture the value of a patient’s recent offers,
leading to a lack of power or omitted variables bias.23 For example, beliefs may be formed
not only based on the most recent offer, but the last several, and a test based on the time
since the previous offer may be underpowered. Columns (3) and (4) show that when time
since last offer is averaged across a patient’s two and five most recent offers, the coefficient
estimate on average time since last offer remains positive but statistically insignificant. There
may also be other reasons why time since last offer is not the most relevant proxy for the
value of a patient’s recent offers. Column (5) includes controls for donor characteristics
of the previous offer. This has almost no impact, and the coefficient estimates on donor
characteristics are statistically insignificant. Finally, it is possible that our test does not
consider the relevant set of offers. Column (6) restricts the analysis to offers from ideal
donors, and column (7) restricts to donors recovered in NYRT. In these two specifications,
the time since last offer coefficient is statistically insignificant and in fact becomes negative.
Taken together, there is no evidence that patients adjust their acceptance behavior based on
the recent offers they have experienced. We are therefore comfortable with the restrictions
embedded in Assumption 3.

4 Estimation

The key primitive needed to predict equilibrium allocations and welfare under alternative
mechanisms are the transplant values, Γ (t, x, z, η). The challenge for estimation is that
acceptance decisions in our data depend on both the value of the offered organ and the value
of continuing to wait. The two leading techniques for estimating dynamic choice models of
this type are the conditional choice probabilities (CCP) approach (Hotz and Miller, 1993;
Aguirregabiria and Mira, 2007; Arcidiacono and Miller, 2011) and the full solution or nested
fixed point approach (Miller, 1984; Wolpin, 1984; Pakes, 1986; Rust, 1987). We employ the
CCP approach because it affords a computationally tractable estimator that allows us to
use detailed knowledge of the mechanism. This section begins by laying out our preferred
approach and the empirical specification before discussing alternatives in Section 4.2.

23Note that many sources of bias, such as patient unobserved heterogeneity and measurement error, would
bias our estimates toward finding a positive coefficient on time since last offer. For example, suppose our
controls for patient priority were imperfect. In this case, some patients would be unobservably higher-priority
and, as a result, more selective. For these patients, we would observe lower times since last offer and lower
acceptance rates for a given kidney, generating a positive omitted variables bias.
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4.1 A CCP Approach for Sequential Assignments

Although equation (5) is an integral equation, it expresses the value function in terms of three
sets of parameters. The first is the distribution of difference between the value of accepting
an offer and declining:

Γ (t, x, z, η) + ε− V (t;x) .

The second is the distribution of offers an agent receives in the future, which is a function of
the object arrival rate γ, the distribution of object characteristics F , and the offer probabilities
π. The final set of parameters are the departure rates δ (t;x) and the parameter governing
time-preferences ρ. The value function can be recovered if these parameters can be estimated.
The differences in the first set of parameters can then be used to obtain Γ (·) .

We estimate the model in four steps. First, we estimate departure rates using observed patient
departures. Second, we estimate conditional choice probabilities from patient accept/reject
decisions. We use these estimates and the Hotz-Miller inversion to solve for the differences
Γ (t, x, z, η)+ε−V (t;x) and ψ̃ (τ, x, z, η) = Emax {0,Γ (t, x, z, η) + ε− V (t;x)} in equation
(5). Third, we compute the integral in equation (5) using the empirical distribution of donor
types and offer probabilities to estimate F and π. In the final step, we recover transplant
values Γ (t, x, z, η) by solving for each patient’s value function at each date by evaluating
equation (5).

As is well known, time preferences are not identified from observed choices alone in dynamic
discrete choice models (Magnac and Thesmar, 2002). We therefore set the discount rate ρ to
a fixed value of 5 percent per year. Our results are robust to using an annual discount rate
of 10 percent. For modest discount rates, most of the discounting of future offers is due to
the term δ (t;x), which is estimated at approximately 16% per year for the average patient.

Step 1: Estimating Departure Rates

A patient’s continuation value on the waiting list depends on how long she can expect to
continue waiting before an exogenous departure. Our dataset contains information on how
long each patient is observed on the list without a transplant, and their reason for departure.
We can therefore construct a censored measure of the length of time a patient would remain on
the list without a transplant. Censoring occurs if the patient is transplanted, or if she is still
on the list at the end of the sample period. These censored measures can be used to estimate
departure rates independently of payoffs because Assumption 2 implies that, conditional on
patient characteristics, departure from the list prior to assignment is exogenous.

We estimate a censored Gompertz proportional hazards model in which the rate of departure
takes the form

δ (t;xi) = δ1 exp (δ2t) exp (xiβ) , (6)
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where δ1 exp (δ2t) is the baseline hazard function for the Gompertz model and xi are observed
patient covariates. The parametric form for the baseline hazard function has the advantage of
allowing for a simple expression for the survival function p (τ |t;xi) ≡ exp (−

∫ τ
t δ (τ ′;xi) dτ ′).

It turns out that the estimated model yields a survival curve similar to the semi-parametric
Cox proportional hazards model.

Step 2: CCP Representation and Gibbs Sampling

Consider the probability that agent i refuses an offer of kidney j at time t. Assumption 1(i)
implies that this probability is given by

Pijt = G (V (xi, t)− Γ (xi, zj, ηj, t)) ,

where G is the CDF of εijt. This quantity is referred to as the conditional choice probability
(CCP) of refusing an offer, given xi, zj, ηj, and t. For now, assume that Pijt is known.
Proposition 1 of Hotz and Miller (1993) shows that for any known distribution G that satisfies
Assumption 1(ii), there is a known function ψ such that

ψ (Pijt) = Emax {0,Γ (xi, zj, ηj, t) + εijt − V (xi, t)} ,

where the dependence of ψ on G has been suppressed for simplicity of notation. Substituting
ψ (Pijt) for ψ̃ (τ, xi, zj, ηj) in equation (5), the value function can be re-written in terms of
the CCPs as

V (t;xi) =
∫ Ti

t
exp (−ρ (τ − t)) p (τ |t;xi)

(
λ
∫
πij (τ)ψ (Pijt) dF

)
dτ. (7)

Therefore, if Pijt can be estimated, the only remaining unknowns in this equation are πij (τ)
and F . The value of a transplant Γ (xi, zj, ηj, t) = V (xi, t) − G−1 (Pijt) can therefore be
written in terms of the remaining unknowns, Pijt, πi (·) and F , without directly solving the
integral equation (5).

In our application, we assume that εijt ∼ N (0, 1) .24 The variance of this term serves as
our scale normalization. Further, we assume that Γ (·) is additively separable in ηj and
approximate

V (xi, t)− Γ (xi, zj, ηj, t) = χ (xi, zj, t) θ + ηj, (8)

where χ (·) is a flexible set of functions with interactions between its arguments. We include
dummies in xi and zj for categorical variables and piecewise linear splines for their continuous
elements, as well as piecewise linear splines in t. The bases in these categorical variables and

24Therefore, G = Φ is the CDF of the standard normal. This give us a simple expression for evaluating
ψ (Pijt) because in this case ψ (P ) = φ

(
Φ−1 (P )

)
− (1− P ) Φ−1 (P ) .
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splines are interacted with each other. Donor unobserved heterogeneity is parameterized as
ηj ∼ N (0, ση), with a variance to be estimated.

Because agents make an accept/reject decisions, they solve a binary choice problem. We
estimate the parameters (θ, ση) using a Gibbs’ sampler (McCulloch and Rossi, 1994; Gel-
man et al., 2014), which yields a posterior distribution with a mean that is asymptotically
equivalent to the maximum likelihood estimator (see van der Vaart, 2000, Theorem 10.1
(Bernstein-von-Mises)).25

Identification of these parameters is intuitive. The parameter θ is identified by the rela-
tionship between the covariates and the probability of acceptance. The variance, σ2

η, of the
donor-specific unobservable is identified because many donors have two kidneys offered to
patients. The correlation between the number of offers before the acceptance of the first
and second kidneys reveals the importance of unobserved donor quality. If σ2

η is large, then
conditional on the observables xi, zj, and t, an early acceptance of the first kidney from a
donor indicates that the second acceptance should soon follow. In constrast, if σ2

η is small,
then the position of the first acceptance should have little information about the second. The
intuition is similar to those for results on the identification of measurement error models (see
Kotlarski’s theorem in Rao, 1992; Hu and Schennach, 2008).

Step 3: Simulating the Mechanism

With estimates of the CCP parameters (θ, σ2
η) and departure rates δi(t), our next objective is

to use equation (7) to calculate each patient’s value function and recover transplant values.
To do this, we only need to estimate the inner integral in equation (7),

W (xi, t; θ0) =
∫
πj (t;xi)ψ (Pijt) dF,

= E
[
P (cij = 1|zj, xi) 1

{
sijt > s∗j

}
ψ (Pijt)

∣∣∣xi, t]
because ρ is fixed and we have consistent estimates of p (τ ; t, xi), θ0 and λ0. Expectations in
this expression are taken over donor characteristics (zj, ηj) drawn from F ; and the priority-
score cutoff s∗j drawn from the conditional distribution of cutoffsH (·; z, ηj) given (zj, ηj). The
second equality is implied by the definition of πij (t) given in Assumption 3. As a notational
reminder, cij = 1 if agent i is compatible with object j and sijt is the priority score of agent
i for object j at time t.

We estimate this quantity by first determining the set of donors that patient i would have
been offered had the donor arrived when the patient had waited for t periods. Recall from

25The Gibbs’ sampler obtains draws of θ and ση from a sequence of conditional posterior distributions using
a Markov chain given dispersed priors and an initial set of parameters

(
θ0, σ0

η

)
. The invariant distribution

of the Markov chain is the posterior given the prior and the data. Details on the implementation, including
burn-in procedures and convergence diagnostics, are in Appendix B.2.
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our discussion in Section 3.3.1 that an agent receives an offer for object j if she is compatible
and her priority score exceeds s∗j . Therefore, we constuct the sample analog

Ŵ
(
xi, t; θ̂

)
= 1
J

J∑
j=1

P̂ (cij = 1) 1
{
sijt > s∗j

}
ψ
(
P̂ijt

)
(9)

where the Pijt is replaced with P̂ijt = G
(
χ (xi, zj, t) θ̂ + ηj

)
, and j indexes a donor in our

sample and the observed threshold priority for that donor, s∗j . Because the summand in this
expression conditions on s∗j , we draw ηj from the posterior distribution given the observed
accept/reject decisions of all patients offered donor j. Knowledge of the mechanism allows
us to directly compare the patient’s priority score sijt with s∗j . Further, our dataset contains
rich information on donor proteins and patient immune system characteristics that allow us
to accurately estimate the probability with which cij = 1.26

It is worth emphasizing the importance of Assumption 3 in substituting the expectation
with the sample average. Under a richer information set Fi,t (as defined in equation 2) that
conditioned on the history of offers received by a patient or the configuration of the list, we
would only be able to use the subset of donors that were offered to a patient with exactly
the same information set when calculating the second approximation above. It is easy to see
why this would restrict the sample size and limit our ability to accurately estimate W .

Theorem 1 in Appendix B.4 shows that, for each xi and t, Ŵ
(
xi, t; θ̂

)
is a
√
J-consistent

estimator of W (xi, t; θ0) under conditions formalized in Assumption 4, also in Appendix
B.4. The main requirement is on the serial dependence of the value of offers to a patient.
Specifically, we require that the dependence of a potential future offer on the organ that has
arrived today diminishes with the time-horizon for the future offer. The other conditions for
the result are technical regularity conditions on the primitives, and the use of a well-behaved
estimator for θ0.

Step 4: Estimating Γ

The final step recovers V (t;xi) and Γ (t, xi, zj, ηj) . We estimate V (t;xi) for time t and agent
i by numerically integrating the expression in equation (7). To do this, we evaluate the
integrand at a large number of points. We substitute the sample analog for W (xi, τ ; θ0) in
equation (9), the estimated departures model for p (τ |t;xi), and the observed donor arrival
rate for λ. Details of this procedure for computing V̂ (t;xi) are provided in Appendix B.2.

26As mentioned in Section 2.2 a crossmatch is conducted using blood from the donor and patient in case
the virtual crossmatch yielded a false negative. We observe the rate of positive crossmatches in the data
using instances where a kidney was accepted because of a negative crossmatch, but the transplant did not
occur because the final crossmatch was positive. We use this conditional probability of a positive crossmatch
for P̂ (cij = 1) in the expression above. Further details are provided in Appendix B.3.
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Once V̂ (t;xi) is calculated, we recover Γ (·) by inverting G :

Γ̂ (t, xi, zj, ηj) = V̂ (t;xi)−G−1
(
P̂ijt

)
.

This quantity can be calculated for any value of (t, xi, zj) .

4.2 Discussion

Unobserved Heterogeneity

The model omits patient unobserved heterogeneity. Arcidiacono and Miller (2011) develop
CCP approaches that allow for time-invariant unobserved heterogeneity with discrete types.
There are three main complications in applying our methods. First, both the departure rates
δi (t) and choice probabilities would ideally depend on unobserved heterogeneity and would
need to be simultaneously estimated. Second, a solution to the well-known initial conditions
problems needs to be developed for the agents already on the waiting list at the begining
of the sample. Third, one may further argue that unobserved heterogeneity may be time
varying if unobserved patient health is stochastic. This last extension may require significant
revision to the model.

We believe that abstracting away from unobserved heterogeneity still yields useful results be-
cause our dataset contains a very rich set of patient characteristics. Nonetheless, we explored
specifications in which unobserved heterogeneity was included in the CCP specification only.
These specifications yielded qualitatively similar results for the counterfactual analysis (see
Appendix E for details).

Our model does include donor-level unobserved heterogeneity through η. One motivation
for doing this is the pattern of sharply declining acceptance rates by position documented
in Figure 1b. The observable characteristics included in the model do not explain all of this
sharp decline or the composition of offers, especially at lower positions on the waitlist. We
will compare model fit with and without such unobserved heterogeneity in the next section.

Comparison with Full Solution Approaches

An alternative to the CCP approach is to use a full solution or nested fixed point approach.
The full solution approach would parametrize Γ (·) directly, say, as χ (x, z, t, η) θΓ, recover
the value function by solving the fixed point in equation (5), and optimizing a statistical
loss function (e.g. maximimum likelihood) to obtain an estimate θ̂Γ. Compared to the CCP
approach outlined above, the primary advantage of the full solution approach is to avoid
directly parametrizing the (endogenous) difference in equation (8), Γ (·)− V (·), in terms of
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χ (·). Aside from the appeal of using an implied functional form for V (·) that is consistent
with the primitives, the approach also uses the data more efficiently.
However, this full solution approach is well known to be computationally burdensome when
the state space is large (see Hotz and Miller, 1993; Arcidiacono and Miller, 2011). The high
dimensionality of the state space remains a problem in the deceased donor allocation context
despite the simplified model of beliefs. Specifically, the simulation in equation (9) computes
the compatibility and priority score for each patient and donor using all the variables that
enter the assignment mechanism and detailed information about the immune response of a
patient to each potential donor. A full solution or nested fixed point method would require
us to separately solve for the value function using equation (5) for each patient at every single
offer. Moreover, it would require such a solution to be computed for each guess of θΓ used
within an optimization routine.27

The CCP approach avoids these complications and makes it computationally feasible to re-
spect the details of the mechanism. The main cost is loss in statistical efficiency because we
directly estimate the difference in equation (8), and parametrize this difference in terms of
the functions χ (·) . The latter cost is mitigated by using flexible functional forms. Nonethe-
less, our implementation does impose some continuity across continuous states and limits
interactions because a fully non-parametric approach is prohibitive given the dimensionality
of the state space.

5 Parameter Estimates

This section describes our estimates of patient departure rates, conditional choice probabili-
ties, the value function, and the value of transplantation.

5.1 Departure Rates

Table 6 presents estimates from hazard models of departures from the kidney waitlist prior
to transplantation. We estimated models under different parametric assumptions about
the baseline hazard functions. We used all of the patient-specific variables included in the
CCP model.28 Across specifications, we estimate an increasing baseline hazard of departure,

27Essentially no two patients are identical because the mechanism awards points whenever a donor and
a patient have overlapping antigens, and because immune responses to donors are idiosyncratic. There are
about 2.85 million offers in our dataset, making this problem extremely computationally expensive. One
approach to simplifying the problem, as done in our counterfactual analysis, is to evaluate the value function
for each patient on a discrete grid of times. Because we have just under 10,000 patients, even a grid with
100 points for each patient would require solving for approximately 1 million instances of the value function
at each guess of θΓ.

28The hazard model specifications include the CPRA variable from the CCP model, but omits a dummy for
CPRA > 0.8. Because priority is discontinuous in CPRA at 0.8, it is important to allow acceptance behavior
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consistent with patients becoming less healthy over time. Column (1) presents a Gompertz
model, in which the estimated value of log (δ1) is -5.151 per day, indicating an increasing
baseline hazard. Other coefficient estimates reveal significant heterogeneity across patients
in their departure rates. For example, diabetic patients depart at higher rates. Patients with
blood type A are more likely to depart than patients with blood type O, perhaps because
of better living donor transplant opportunities. Among pediatric patients, older patients
are less likely to depart, perhaps because they are better able to tolerate dialysis. However,
as patients get older, the departure rates begin to increase with age. Columns (2) and (3)
estimate corresponding Weibull and Cox proportional hazards models with the same set of
patient covariates. Point estimates for these coefficients remain stable across assumptions on
the baseline hazards, including the semi-parametric Cox proportional hazards model. Figure
B.2 in the appendix compares the estimated survival curves from columns (1) and (3) and
shows that the Gompertz hazards model yields a survival curve that is very similar to the
non-parametric Cox proportional hazards model. We use the Gompertz hazard model with
patient covariates reported in column (1) as our preferred specification.

5.2 Estimated CCPs

We estimated three specifications for the conditional choice probability of accepting an offer.
All specifications include the rich set of patient and donor observed characteristics sum-
marized in Tables 1 and 2. The first specification includes all of these baseline variables,
but does not include donor unobserved heterogeneity (η) or the state variable time t. The
second specification adds donor unobserved heterogeneity, and the third specification adds
waiting time interacted with a variety of characteristics. We explain the choice of baseline
characteristics, and then describe the estimates.

The baseline characteristics common across specifications, as well as linear splines and inter-
actions among these variables, were chosen by surveying the medical literature. Specifically,
we use covariate and spline specifications from the KPSAM model, which was used by the
kidney allocation committee to predict the outcomes of various allocation systems.29 We also
include any covariates that were part of the survival models for kidney transplant patients
used in Wolfe et al. (2008). Following KPSAM and our earlier observation that donors from
other DSAs are less desirable, we include interactions of donor and patient characteristics

to be discontinuous at this point. Departures without a transplant, however, should not be discontinuous in
CPRA. Moreover, specifications of the departures model that included this variable estimated a statistically
insignificant coefficient.

29We obtained the KPSAM module from the Scientific Registry of Transplant Recipients (SRTR),
which contains the specification of the KPSAM acceptance model. Our dataset contained all but
one of the variables used in that model. Visit https://www.srtr.org/requesting-srtr-data/
simulated-allocation-models/ for a description of the various simulated allocation models and the pro-
cedure to request these modules.

https://www.srtr.org/requesting-srtr-data/simulated-allocation-models/
https://www.srtr.org/requesting-srtr-data/simulated-allocation-models/
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with whether the donor was recovered in NYRT. In addition, we include patient-donor spe-
cific variables that capture match-specific heterogeneity, for example whether there are two
DR antigen mismatches. We specify piecewise linear splines for continuous covariates and
interact them with a variety of indicator variables.

Table 7 presents select parameter estimates from the three specifications (see Table B.3 for the
full specification). The estimated coefficients on observed donor characteristics are intuitive
and fairly robust across specifications. For example, offers from donors older than 50 years
of age are less likely to be accepted than offers from 35 to 50 year old donors, and kidneys
from younger donors are even more likely to be accepted. These differences are larger for
donors recovered in NYRT. A perfect tissue type match is very desirable, much more so than
a young donor. Also intuitive are our estimates that offers of kidneys with more antigen
mismatches (A, B or DR) are less desirable and that regional and national offers are less
likely to be accepted.

We also estimate significant patient-level and match-specific heterogeneity in acceptance
rates. Consistent with our discussion in Section 2, patients with more sensitive immune
systems (higher CPRA) are more likely to accept an offer. Acceptance rates also depend
on patient age. Among pediatric patients, older patients are more likely to accept an offer,
which is intuitive because size compatibility is important for younger pediatric patients.
Adult patients of different ages are equally likely to accept a middle-aged donor, but older
patients are more likely to accept a donor who is over 50 years old. This pattern is consistent
with the idea that it is more important for younger patients to obtain kidneys that are likely
to function for a long time, and suggests potential welfare gains from improved matching on
patient and donor age.

In the second specification, the estimated standard deviation of donor unobserved heterogene-
ity is 1.03. The implied change in acceptance rate from a one standard deviation increase in
η is therefore half the difference between a kidney recovered inside NYRT and one recovered
outside NYRT. The third specification shows that acceptance rates fall rapidly with waiting
time in the first few years before starting to increase after year three. Most other parame-
ter estimates, including the standard deviation of unobserved donor-level heterogeneity, are
similar in the second and third specifications.

Figure 2 describes the fit of these models. The first panel mimics the fit of acceptance rates
by position described in Figure 1b, but includes offers that did not meet pre-set screening cri-
teria. This panel shows that including donor unobserved heterogeneity much better captures
the sharp decline in acceptance rates. The specification that excluded donor unobserved het-
erogeneity does not even accurately capture the average acceptance rate across the first 20
positions. Instead, it implies a more gradual decline as the composition of donor observables
changes moving down the list. The second panel of Figure 2 describes the fit of acceptance
rates by time waited. Not surprisingly, the third specification does the best job of capturing
changes in acceptance rates over time.



36

Taken together, we feel comfortable with the fit of the CCPs in the third model and use that
as our preferred specification. All results that follow use estimates from this specification.

5.3 Estimated Value of Organ Offers

Below, we develop an interpretable measure for comparing values across patients in terms of
an equivalent change in donor arrival rates (supply). We then use these units to describe our
estimates.
Sequential assignment mechanisms can re-assign offers from some patients to others. Moti-
vated by this fact, consider the proportional increase in a patient’s value from a one-time
offer for kidney j at the time of registration:

EVij ≡
Emax {0,Γ (0, xi, zj, ηj) + εij − V (0;xi, λ)}

V (0;xi, λ) ,

where the dependence of V on the object arrival rate λ is re-introduced for clarity. The
numerator is the difference between the value with and without an additional one-time offer
for object j at time 0, and the denominator is the baseline value.
Instead of a one-time offer, the same change in value can be generated by an increase in the
donor arrival rate. Specifically, let λij be defined such that

V (0;xi, λij) = V (0;xi, λ) + Emax {0,Γ (0, xi, zj, ηj) + εij − V (0;xi, λ)} .

Using this expression, we can rewriteEVij as

EVij = V (0;xi, λij)− V (0;xi, λ)
V (0;xi, λ)

≈ λij − λ
λ

,

where the approximation follows because, holding behavior and offer probabilities fixed,
V (t;xi, λ) is approximately linear in λ (see equation 5). This approximation is appropriate
for small changes in λ, so that offer probabilities do not change substantially.
The equivalent change in donor arrivals is, by definition, invariant to the scale of utility units
across agents and will be used to report welfare effects going forward. It equates an additional
one-time offer to the value of an alternative policy that is able to marginally increase the
organ supply. This feature makes this quantity similar in spirit to Equivalent Variation at
the time of registration, yielding a measure of payoffs that is interpretable across agents for
small changes in the environment.
Figures 3 – 5 describe our estimates in these units. The results are based on our preferred
specification, which includes donor unobserved heterogeneity and time waited. The plots



37

show how the value of an organ offer varies across specific patient and donor characteristics,
holding all remaining characteristics fixed.

Healthier patients, whether measured by patient age or by dialysis status at registration,
prefer younger donors. Figure 3 shows that patients across all age groups prefer younger
adult donors. However, the relative value of a young donor decreases with patient age. For
a 70 year old patient, a single offer from an 18 to 35 year old donor is as valuable as a 4 to 5
percent increase in overall donor supply, while a donor over 50 years old is half as valuable.
In contrast, for a 20 year old patient, a donor over 50 years old is only one twentieth as
valuable as an 18 to 35 year old donor.30 This pattern is consistent with the CCP estimates
and with the intuition that older donors should place less value on an organ that is likely to
function for a very long period of time. Similarly, Figure 4 shows that patients off dialysis
at registration place a relatively higher value for younger donors

In addition to donor age and patient health, a perfect tissue type match is especially impor-
tant for patients (Figure 5). Such an offer from a young donor is worth a 32 percent increase
in overall donor supply for a representative patient; from a donor over age 50, it is still worth
a 17 percent increase in supply. This result is also intuitive because an organ with a perfect
tissue type match is less likely to cause an adverse immune response, thereby increasing the
life-years afforded by the transplant. Offers which are not perfect tissue type matches are an
order of magnitude less valuable.

Detailed estimates for V and Γ (in εijt units) are presented in Tables B.3 and B.3 in the
Appendix. The reported co efficients are obtained from a projection of these quantities on
χ (·). The projection coefficients for both Γ and V are intuitive. For example, younger donors
are more valuable, while donors with tissue type mismatches are less valuable. Similarly,
donors recovered outside NYRT are less desirable.

6 Steady State Equilibria and Welfare Comparisons

6.1 Equilibrium Concept

We now define an equilibrium concept for counterfactual analysis. The concept is intended
to capture a large pool of agents waiting for offers and making optimal decisions. Agents
have type x ∈ X , and objects have type z ∈ ζ, where we henceforth include the unobserved
donor characteristic η in z for notational simplicity. For computational reasons, we will treat
X and ζ as finite sets.

30Older patients place higher values on all types of offers, in terms of equivalent supply increases. This
is mainly because older patients exogenously depart more quickly, and therefore place a higher value on a
single current offer relative to a proportional increase in the stream of future offers.
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To compactify notation, albeit with a slight abuse, the rest of the paper replaces subscripts
that index individuals i and objects j with types x and z respectively. For instance, we
write the value function as Vx (t) instead of V (t;xi) and the scoring rule as sxz (t) instead of
s (t;xi, zj) . The notation for other quantities such as π, Γ and δ is adapted analogously.
Agents follow type-symmetric accept/reject strategies, σx : R × R+ → {0, 1}, indexed by
x ∈ X . The first element of the domain is the payoff of being assigned a particular object, Γ,
and the second element is time waited, t ∈ R+. We exclude strategies that depend on richer
information because beliefs are restricted to satisfy Assumption 3.
We model the composition of the queue using a single steady state. Specifically, the queue
composition will be governed by a probability density function, m, defined on the set X ×
[0, T ], where T is the maximum wait time.31 This density governs the distribution of agents
of each type and how long they have waited. We write mx (t) to denote the density evaluated
at (x, t). The length of the queue is denoted by N .

Definition 1. A steady state equilibrium consists of an accept/reject strategy σ∗, beliefs
π∗, a queue size N∗, and a probability measure m∗ such that the following conditions hold:

1. Optimality: For each agent of type x ∈ X and an offer with net present value Γ,

σ∗x (Γ, t) = 1 {Γ ≥ Vx (t; π∗)} ,

where Vx (t; π∗) is the net present value for type x of declining the object and following
the optimal strategy given π∗ after t.

2. Consistent beliefs: For each (t, x, z) , the beliefs π∗ (t;x, z) is consistent with equilibrium
offer probabilities. In particular, for mechanisms that uses the scoring rule s,

π∗xz (t) = H∗z (sxz (t))× P (c = 1|x, z) ,

where H∗z (s) is the probability that the object is available only to agents above the
score s if N∗ agents are drawn iid from m∗, and they follow strategy σ∗.32

3. Steady State: m∗ and N∗ satisfy the balance conditions

(a) For each x ∈ X , m∗x (t) and N∗ satisfy

ṁx (t) = −mx (t)κx (t) and mx (0) = γx
N∗

,

31We assume that the density m is defined with respect to the Lebesgue measure on the Borel sets formed
from X × [0, T ], where X is a finite set. Our counterfactuals continue to assume that no agent lives past one
hundred years of age. Consequently, we set T to one hundred years and restrict mx (t) = 0 for all t such that
a agent of type x would be more than one hundred years old.

32We do not restrict the queue length N∗to be an integer and therefore round it to the nearest integer
when calculating π.



39

where γx is arrival rate of an agent of type x, and κx (t) is the equilibrium departure
rate of an agent of type x at waiting time t.

(b) m∗ is a density: ∑x∈X
∫ T

0 mx (τ) dτ = 1

The first condition states that each agent makes optimal decisions at each point in time given
her beliefs, assuming that she continues to make optimal decisions in the future. The value
from declining an offer is given by the Hamilton-Jacobi-Bellman equation defined in Section
3.3. The second condition imposes that agents have correct beliefs. In the specific case of
a mechanism based on the scoring rule s, it writes agent beliefs about future offers as the
product of the steady state distribution of cutoffs and exogenous compatibility realizations.
The distribution H∗z governs the cutoffs that arise when agents use strategies σ∗ and N∗

agents are drawn from a distribution governed by m∗.33 The final condition determines the
composition of agent characteristics on the list. The left-hand side in part (a) is the change
in the density of agents of type x who have waiting time t. The right-hand side term is the
rate of departure for those agents. Departures occur for both exogenous reasons and because
agents are removed from the waiting list once they are assigned; that is, κx (t) is the sum
of δx (t) and the equilibrium rate at which agents of type x are assigned at time t. The
strategy σ∗ and the offer rate of objects, given by π∗, determine the endogenous departures.
The agent arrival rate γx is exogenous, and in the context of our application, it will only be
positive for agents with zero waiting time since patients begin to accumulate waiting time
once they enter the queue. Part (b) ensures that m∗ integrates to one.

This equilibrium concept abstracts away from transitional dynamics in the size and compo-
sition of the queue. For example, in our empirical context, it is possible that several patients
join the queue in close succession before any organs arrive. One approach may be to model
these dynamics by assuming that the queue length and composition follow a Markov process.
In principle, one could solve for the stationary distribution over the queue length and queue
compositions. However, this distribution is extremely high dimensional, and it would make
counterfactual exercises computationally intractable.

As in Assumption 3, we view our equilibrium concept as an approximation to the behavior
of the system. For example, although the mass of agents of type x is discrete, part 3(a)
implies that the ratio mx (t) /mx (0) is given by the survival curve implied by the equilib-
rium departure rates κx (t). Similarly, N∗ is assumed to be the expected queue length. In
fact, Theorem 2 in Appendix C uses a concentration inequality to show that the stationary
distribution of the queue length concentrates mass on N∗. Our result implies that if N∗ is
5000, the weight placed by the stationary distribution on queue lengths that deviate by more
than 5 percent is at most 0.5 percent. Hence, we expect that our equilibrium notion will be
a good approximation for the behavior of the waitlist.

33In contrast with a direct continuum approximation with no aggregate uncertainty, this specification
allows for H∗z to be non-degenerate.
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Finally, we prove the existence of a steady state equilibrium for sequential assignment mech-
anisms that use a priority score in Theorem 3. The challenge in showing existence arises
because the strategies, beliefs and composition are a function of time, which is a continu-
ous variable. We use the Brower-Schauder-Tychonoff fixed point theorem (Corollary 17.56,
Aliprantis and Border, 2006) for general Banach spaces to prove existence. The primary
assumptions are technical regularity conditions imposing bounds and Lipschitz continuity of
primitive objects. The main substantive condition is that the set of scores used in the mech-
anism is finite. Our results do not rule out multiplicity of equilibria. However, we did not
find multiple equilibria for the set of counterfactuals and specifications that are considered
below.

6.2 Welfare Comparisons

Given a mechanismM and a donor arrival rate λ, let the steady-state value of an agent
of type x be the integrated value function over current and future generations:

V̄Mx (λ) = γx
ρ

∫ ∞
0

exp (−ρτ)VMx (0;λ) dτ +
∫ T

0
N∗m∗x (τ)VMx (τ ;λ) dτ. (10)

The first term represents the discounted value of agents of type x that are expected to arrive
in the future, and the second term represents the value of agents presently on the waiting
list. The first term is weighted by the net present value of the total mass of future arrivals
γx
ρ
, and the second term is weighted by the equilibrium measure N∗mx (τ) that governs the

mass of agents of type x that have waited for τ periods. By considering the welfare of both
current and future generations, we take the view of a social planner who is interested in the
net present value of payoffs generated by all future assignments. Our tables will also report
an alternative measure that only considers the value at the time of entry, VMx (0;λ). The
theoretical discussion in this subsection applies to this alternative as well.

LetM0 be the baseline mechanism used during our sample period and let λ0 be the observed
donor arrival rate. For any mechanismM, define λx (M), the equivalent donor arrival rate
for agents of type x, as the solution to the equation V̄Mx (λ0) = V̄M0

x (λx (M)) . As discussed
in Section 5.3, we can express a change in the value function for type x as an equivalent
change in the donor arrival rate:

EVx (M) = V̄Mx (λ0)− V̄M0
x (λ0)

V̄M0
x (λ0)

≈ λx (M)− λ0

λ0
.

This measure describes the welfare effects for each patient in terms of an alternative policy
that keeps the mechanism fixed, but is able to increase (or decrease) organ donation rates.

A common challenge in comparing the aggregate welfare effects of various mechanisms in
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environments without transfers is the lack of a clear numeraire good that can be used to
justify a comparison based on a Kaldor-Hicks criterion. The measure EVx (M) is type-
specific, and therefore does not make comparisons across patients of different types. We
will summarize welfare effects by reporting equally weighted averages of EVx (M). This
aggregation treats equivalent changes in donor arrivals for different patient types as equal.
Of course, alternative welfare weights are easily entertained within this framework. Our
results will also report distributional effects on key subgroups in order to allow the reader to
independently assess the welfare effects for alternative weights on these subgroups.

6.3 Computing Equilibria

We compute steady-state equilibria using an algorithm that iterates between computing
the value function and optimal decisions, and the steady-state composition of the waitlist.
A detailed description with expressions for each step of the procedure and pseudocode is
provided in Appendix D. The following discussion provides a simplified description of the
key steps.

In addition to the primitives, the algorithm uses a discrete time grid t = t0, . . . , tl, tl+1, . . . , T ,
abitrary initial beliefs π0, and a sample of patients and donors as inputs. An equilibrium is
computed by iterating through the following steps for k ≥ 1:

1. Compute the value function V k
x (tl), given beliefs πk−1, via backwards induction from

the value of waiting in the next period V k
x (tl+1):

V k
x (tl) =

∫ tl+1

tl

exp (−ρ (τ − tl)) pi (τ |tl)λ
∫
πk−1 (t;x, z)Emax

{
V k
x (tl+1) ,Γ (τ ;x, z) + ε

}
dFdτ.

The inner integral in the above expression is approximated using sampled subset of
donor types. This procedure starts with V k

x (T ) = 0 for all x and k, and working
backwards to compute V k

x (t) for all t. This calculation also yields patient strategies
σkx (Γ, t) = 1

{
Γ ≥ V k

x (t)
}
and departure rates κkx (t) .

2. Compute the queue composition mk via forward simulation:

mk
x (tl) ∝ γx exp

(
−
∫ tl

0
κkx (τ) dτ

)
.

3. Compute πk (t;x, z), which is the probability that an agent of type x is offered an object
of type z using the queue composition and the accept/reject strategies σkx (Γ, t).

4. For step k > 1: Terminate if the change in value functions and queue length/compositions
between iterations – supx,l

∣∣∣V k
x (tl)− V k−1

x (tl)
∣∣∣, supx,l

∣∣∣mk
x (tl;x)−mk−1

x (tl)
∣∣∣, Nk−Nk−1
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– are uniformly below a chosen tolerance level. If these conditions are not satisfied,
repeat steps 1-4.

If this algorithm terminates, the resulting accept/reject rules yield an equilibrium (up to
the threshold tolerance). Because the equilibrium we compute may not be unique, we tried
different starting values for π0. Our experiments at the estimated parameters do not indicate
that multiplicity is a concern in our setting.

To keep the computational burden manageable, the results we present below are based on a
type space given by a random sample of 300 patients and 500 donors drawn from our dataset.
Further, we discretize time into quarters for the first 15 years after registration, then every
2 years until year 25, and every 25 years thereafter. As discussed in Appendix E, the results
reported below are not sensitive to a larger set of types used to calculate equilibria of scoring
mechanisms and to finer partitions after the first few years since the probability that a patient
survives without a transplant falls dramatically.

7 Evaluating Design Trade-Offs

7.1 Alternative Mechanisms

A new deceased donor organ allocation system was adopted in December 2014. The mandate
of the kidney committee, as laid out by the U.S. Department of Health and Human Services,
was to find mechanisms that balanced the goals of providing equitable outcomes for patients,
efficiently using available organs, and minimizing organ waste. This section compares mech-
anisms aimed at achieving these goals to the two mechanisms used prior to and following the
2014 re-design.34

We start by computing four benchmarks against which we compare simpler mechanisms
motivated by theory and practice.

• Optimal Assignments: This problem bounds the welfare gain achievable by any
mechanism. To do this, we maximize the steady-state average welfare of all agents
subject only to feasibility constraints. The program solves for an assignment policy
a (ε;x, z, t) ∈ {0, 1} under full information about preferences and rational expecta-
tions (but no foresight) about object arrival and agent departure processes. The policy

34Our calculations only change the allocation mechanism in NYRT. Evaluating a nationwide change would
require us to use data on decisions made by all patients in the US, which is burdensome due to the patchwork
of variants on points used in approximately half the states. To simplify this task, we keep the system used
to prioritize patients from the rest of the United States fixed to the pre-2014 system. We also assume that
the policy function of patients from the rest of the US, which governs offers for non-local donors to patients
in NYRT, remains fixed.
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can dictate assignments to agents as a function of the agent type, the object type, time
waited, as well as the preference shocks ε for all agents.

We choose a to maximize the average equivalent donor supply increase, ∑x
V̄ ax (λ0)
V̄
M0
x (λ0)

,
where V̄ a

x (λ0) is the steady-state value for type x under assignment policy a. The
feasibility constraints ensure that the total rate of assignment does not exceed the total
arrival rate of objects. Specifically, for each z, we impose (a time-discretized version
of) the constraint

∑
x

∫ T

0
Nmx (t)P (c = 1, a = 1|x, z, t) dt ≤ qz.

The term P (c = 1, a = 1|x, z, t) is the probability that an object of type z is compatible
(c = 1) and assigned (a = 1) to a randomly chosen agent of type x that has waited for
time t. In addition, we require that the composition of the waitlist be in steady state
(Definition 1, part 3). These constraints are described in detail in Appendix D.2.1.

• Optimal Offer Rates: We solve for welfare maximizing offer rates in which the
designer can choose offer rates, but cannot dictate assignments or condition on offer
rates refused in the past. The offer rates πxz (t) depend on observable characteristics of
patients, but not unobserved preference shocks ε. We solve for steady-state equilibria
(Definition 1), implying that agents make optimal decisions given these offer rates. Jus-
tifications for only not allowing the designer to dictate assignments include respect for
patient and doctor discretion and the concern that forcing assignments or penalizing
terminally ill patients may be politically infeasible. In addition, a designer may not
have full information about idiosyncratic preferences, and may therefore be unable to
implement the optimal assignment solution even if she can dictate assignments.

Formally, we choose π to maximize ∑x
V̄ πx (λ0)
V̄
M0
x (λ0)

, where, with a slight abuse of nota-
tion, V̄ π

x (λ0) is the equilibrium steady-state value for type x under offer rates π. The
offer rates are subject to feasibility constraints, so that the steady-state rate of assign-
ment implied by offer and acceptance rates does not exceed the arrival rate of objects.
In this problem, the feasibility constraint from the optimal assignment problem is mod-
ified by replacing the term P (c = 1, a = 1|x, z, t) with the probability πxzt of making
an offer to an agent of type x that has waited for time t multiplied by the probability
that this offer is the last offer than can be made. Ignoring, for the moment, the limit
on the maximum number of offers that can be made, for each donor type z, we impose
the constraint that

∑
x

∫ T

0
Nmx (t)πxz (t)P (Γxzt + ε > Vx (t) |x, z) dt ≤ qz.
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The left-hand side is the expected number of objects assigned under offer rates π and
the right-hand side is the total number of objects available. The mathematical problem
we solve is formally described in Appendix D.2.2.

Because this constraint is placed only on expected quantities, the offer rates may not be
implementable for any particular instance of objects of type z. The solution provides
an upper bound on welfare under any offer mechanism that does not condition on past
behavior or have information about idiosyncratic preferences.

• Approximately Optimal Priorities: Although the offer rates calculated above may
not be implementable, we can use the solution to implement very similar offer rates in
equilibrium using a scoring rule. Specifically, we set sxz (t) to the values of πxz (t) that
solve the optimal offer rates. Therefore, types with higher values of π are accorded
higher priority. This mechanism can be implemented and described using the existing
organ allocation infrastructure. We compute an equilibrium for these priorities using
the algorithm outlined in Section 6.3.

• Approximately Optimal Pareto Improving Priorites: In practice, policy makers
may be constrained to reforms that do not systematically disadvantage specific groups
of patients. We design a priority system that aims to improve the welfare of the average
patient without significantly hurting many patient types. To do this, we use a procedure
similar to the one used to derive approximately optimal priorities. Specifically, we first
solve for offer rates that are defined identically to the optimal offer rates except that
they are constrained to make no agent type worse off than under pre-2014 priorities at
the time they join the waitlist.35 We then solve for the equilibrium allocation under a
scoring function sxz (t) that is equal to the values of πxz (t) that are the solution to this
problem.

It is worth noting that the resulting mechanism may not result in a strict Pareto
improvement in equilibrium. However, we expect that fewer agents will be significantly
worse off under these priorities relative to the approximately optimal priorities. Our
solutions will allow us to quantify these effects.

We compare these benchmarks to a set of waitlist priority rules motivated by theory and
practice. These mechanisms use scoring rules sxz (t) to order patients waiting for a transplant
and break ties uniformly at random among patients with the same score. The focus on priority
rules is motivated by the design parameters considered by the kidney allocation committee.36

35During the 2014 reforms to the deceased donor kidney allocation mechanism, the kidney committee
conducted simulations to verify that there would be no adverse impacts by race, age group, geography, or
CPRA.

36Our examination of the meetings of the kidney allocation committee indicate that they did not consider
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Priority rules are simpler to describe and implement than mechanisms in which assignment
probabilities are determined. Equilibria for this class of mechanisms can be computed using
the algorithm described in Section 6.3.

• Post-2014: In December 2014, the kidney allocation mechanism switched to a sys-
tem that awards greater priority to patients who are extremely difficult to match (high
CPRA), and also prioritizes healthier patients for higher quality donors. The rationale
for the first change was that high CPRA patients have few opportunities for transplan-
tation and are likely to accept most organs. Therefore, giving them additional priority
could reduce organ waste and achieve more equitable outcomes for sensitized patients.
The second change intended to offer high-quality kidneys to patients likely to benefit
from them most, and in particular to reduce age mismatch.

• First Come First Served (FCFS): One concern of the kidney committee has been
to maintain a transparent and procedurally fair offer system. FCFS is a procedurally
fair and commonly used mechanism which offers objects to agents in the order they
joined the waiting list. FCFS also has attractive efficiency properties: Bloch and
Cantala (2017) show that it maximizes agent welfare within a broad class of primitives
when values for an object are drawn i.i.d. across agents. This result is driven by the
fact that FCFS encourages agents to be selective and choose only objects with high
match-specific values. We approximate this system by finely discretizing time on a grid
t0, t1, . . . , tL and set sxz (t) = l if t ∈ [tl−1, tl).

• Last Come First Served (LCFS): Another goal of the kidney committee has been
to minimize organ waste. Last come first served provides strong incentives to accept
organs because agents that refuse an offer are demoted if other agents arrive in the
future. Su and Zenios (2004) show that a last come first served system both maximizes
welfare and minimizes organ waste when there is agreement across agents on the values
of various objects, that is, if preferences are vertical. This is because social welfare
depends not on who is assigned the object, but only on the fraction of objects allocated.
We approximate this system by finely discretizing time on a grid t0, t1, . . . , tL and set
sxz (t) = L− l if t ∈ [tl−1, tl).

• Greedy Priorities: This mechanism attempts to maximize welfare by using a greedy
procedure which offers organs to patients in order of predicted match value. For each
donor, it divides patients into 10 equally sized bins based on our predicted welfare gain
from assignment, measured in donor supply units (EVxz). sxz (t) is set to 10 for those
in the highest bin and to 1 for those in the lowest bin.

alternatives in which doctors were mandated to accept particular organs, or in which past rejections were
used to update priorities.
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Some of the mechanisms we consider, particularly the approximately optimal and greedy
priorities, condition finely on patient and donor characteristics. One concern with such fine
conditioning is that agents may manipulate the characteristics they report to the mechanism.
We therefore caution against interpreting our results as describing readily implementable
mechanisms. However, it is worth noting that such manipulation would likely involve forging
medical records. In addition, most patient characteristics in our model are already used by
the pre- or post-2014 mechanism.37 Another concern is that a finely tuned priority system is
complicated to understand for market participants. Addressing this issue is beyond the scope
of this paper as it requires a well-articulated and practically relevant notion of mechanism
complexity.

7.2 Comparing Mechanisms

We now describe the equilibrium outcomes under each mechanism described in the previous
section. Our analysis shows that previous theoretical and practical recommendations can
either increase patient welfare or organ discard rates, but not both. Fortunately, the optimal
mechanisms described above can improve on both these goals while also ensuring that almost
no patient type is significantly worse off.

The priority systems that have been in place in the U.S. since 2010 are very similar to
the benchmark first come first served mechanism in terms of average patient welfare and
transplant rates. In particular, the 2014 reforms did little to improve average patient welfare,
and primary resulted in redistribution towards younger and more highly sensitized patients.
Indeed, we find a small decline for patients above age 50 after the 2014 reforms and gains for
younger patients (Table 8). These welfare changes are small on average, and only a minority
(16 percent) of patients, most of whom are young, benefit from the change. In addition,
the pre- and post-2014 mechanisms yield patient welfare and organ discard rates within 1.9
percent of the benchmark first come first served mechanism (Figure 6). Consistent with these
results, waiting times, queue lengths, and the quality of the average donor transplanted are
similar across the three mechanisms.

These results suggest that the priorities implemented in the pre- and post-2014 mechanisms
primarily result in redistribution relative to the FCFS benchmark. Most patients marginally
prefer FCFS to the two mechanisms that have been used in practice (Table 8). As mentioned
earlier, Bloch and Cantala (2017) show that FCFS results in desirable equilibrium allocations

37In fact, all but two of the patient characteristics in our model were used to determine priority in either
the pre- or the post-2014 kidney allocation system. The patient characteristics in our model include those
used to calculate the EPTS score in the post-2014 mechanism (see https://optn.transplant.hrsa.gov/
resources/allocation-calculators/epts-calculator/), CPRA, total serum albumin, and body mass
index. Only the last two characteristics are not used in the post-2014 mechanism. These characteristics were
implicitly used in design proposals based on a model of estimated life-years from transplantation because this
model includes these variables.

https://optn.transplant.hrsa.gov/resources/allocation-calculators/epts-calculator/
https://optn.transplant.hrsa.gov/resources/allocation-calculators/epts-calculator/
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when preferences are heterogeneous. Patients that have a strong preference for a particular
type of kidney should be willing to wait for those organs. For example, even though the
pre-2014 system did not explicitly prioritize young patients for kidneys from young donors,
a significant degree of age matching was discernible (Table 4). For this reason, a relatively
coarse priority system may not be able to sufficiently improve welfare relative to FCFS.
In contrast to the first three mechanisms, last come first served (LCFS) substantially reduces
organ discard rates at the cost of lower patient welfare. Discard rates fall by 26.6 percent
under LCFS relative to the pre-2014 mechanism, and the steady state queue length falls to
2,694 from 4,992. This increase in transplant rates comes at a significant welfare cost because
patients accept organs that are poorly matched to them: the welfare of the average patient
falls by an equivalent of a 33.6 percent reduction in donor supply (Figure 6). This result is
also reflected in donor characteristics, with patients accepting organs from donors that are
older, more likely to be hypertensive, and less likely to have died from head trauma (Table
8).
The stark difference between LCFS and the other systems occurs because LCFS dramatically
changes agents’ incentives, penalizing them for rejecting poorly matched offers instead of
rewarding them with higher priority in the future. A model that ignores these incentives
finds that the allocations are largely insensitive to the mechanism. Panel B in Table 8
shows that changes in predicted discard rates, queue lengths, and donor characteristics are
similar across the benchmark mechanisms when acceptance probabilities do not adjust to the
new equilibrium. Thus, it is essential to consider incentives when predicting the effects of
alternative allocation mechanisms.
These results also highlight an important trade-off between organ discard rates and match
quality identified in the theoretical literature. Su and Zenios (2004) show, using a model in
which agents have identical preferences over objects, that LCFS reduces selectivity because
agents expect to receive lower quality offers in the future. This force encourages agents
to accept mismatched offers, which reduces organ discards but also lowers match quality.
In contrast, FCFS increases selectivity as agents retain their priority when they decline an
offer, but also increases discard rates when there is a limit to the number of offers that can
be made. Bloch and Cantala (2017) use a model with highly heterogeneous agent preferences
to show that the benefits of improved match quality due to increased selectivity can make
FCFS a desirable mechanism. Our empirical findings weigh in favor of models that emphasize
heterogeneity in match value: in terms of patient welfare, the loss from lower match quality
under LCFS substantially outweighs the gain from fewer discards.
However, these theoretical benchmarks are far from optimal; a mechanism designed using
estimated preferences as inputs can substantially increase both patient welfare and transplant
rates, and many of these gains are possible without significantly disadvantaging specific
patient groups.
The upper bound on welfare implied by an optimal assignment is large: a designer who has
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full information about preferences and can dictate assignments can improve patient welfare
by an equivalent of a 28.1 percent increase in donor supply. At the same time, this designer
can reduce discard rates by 13.6 percent. Table 8 shows that the vast majority (83 percent)
of patient types are better off at registration under these assignments than under the pre-
2014 mechanism. However, not all patients are better off even in this ideal case; there are
trade-offs between efficiency and distributional objectives.

The approximately optimal priorities achieve half of these potential gains. Patient welfare
increases by 14.2 percent, and discard rates fall by 7.8 percent (Table 8). Since patients are
transplanted at higher rates, they spend less time on the waiting list, and queue lengths fall
from almost 5,000 to below 4,400. These results suggest that large improvements may be
possible by re-designing priority rules. In fact, the approximately optimal priorities mecha-
nism achieves most of the gains possible under any offer mechanism. The optimal offer rates,
which place an upper bound on welfare from any offer mechanism, performs only marginally
better: it increases patient welfare by 17.4 percent and reduces discards by 7.5 percent.
While these gains are large, one drawback of approximately optimal priorities is that gains
are concentrated amongst a minority of agents: only 42 percent of patient types are better
off at registration than they were under the pre-2014 mechanism. The next section discusses
how the approximately optimal priorities mechanism is able to find these improvements, and
in particular how gains are distributed across patients.

A significant fraction of these gains can be achieved while respecting the types of distri-
butional constraints faced by policy makers. The approximately optimal Pareto improving
priorities mechanism increases patient welfare by 9.1 percent and reduces discards by 4.5 per-
cent. As under approximately optimal priorities, this mechanism increases welfare through
a combination of higher transplant rates and improved match quality. Recall that because
this mechanism approximates the optimal Pareto improving offer rates with a scoring rule,
constraint that no type should be worse off may not be exactly satisfied. In fact, most patient
types (85 percent) are slightly worse off at registration under our approximation than they
were under pre-2014 priorities. However,these patients experience small welfare losses: 99.7
percent of patients are no more than 5 percent worse off at registration. Thus, the very
strong requirement that no patient type be significantly worse off ex-ante can be approxi-
mately satisfied while achieving a substantial improvement in average patient welfare and
transplant rates.

The mechanism designer is only able to achieve these gains by considering patient incentives.
The greedy priorities mechanism, which offers organs to patients based on predicted match
value alone, only marginally improves on the pre-2014 mechanism. It increases the average
patient’s welfare by 1.2 percent and reduces organ discards by 0.3 percent (Figure 6). This
small improvement is surprising given that greedy priorities incorporates the rich estimated
heterogeneity in preference estimates, emphasizing the value of explicitly incorporating in-
centive constraints into the mechanism design problem.
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It is worth noting that our computed steady state queue length for the pre-2014 mechanism
is 4,942 (Table 8, panel A), which is only slightly larger than the queue length of 4,632 on
January 1, 2013 (Table 1, panel A). This similarity is remarkable for two reasons. First,
this moment of the data is not targeted in the CCP approach but matches our model.38 A
slightly longer steady state should be expected as the kidney waiting list was growing during
our sample period. Second, it suggests that our sample is likely close to the steady state.
Indeed, panel A in Table 1 shows that the rate of growth in the length of the waiting list in
NYRT declined during our sample period.

Finally, Appendix E assesses the sensitivity of our results to three variations. First, we esti-
mate a model with a limited form of patient unobserved heterogeneity. Second, we evaluate a
model with a discount factor of 10 percent per year. Third, we re-compute the counterfactu-
als using a sample with 1000 and 1500 types of patients and donors respectively instead of the
300 and 500 types used in the baseline results. Our main qualitative conclusions are robust
to these variations. For example, we robustly find that the pre- and post-2014 mechanisms
are both similar in overall welfare and outcomes to the first come first served mechanism.

7.3 Optimal Offer Mechanism: Sources of Welfare Gains

Why is the approximately optimal priorities able to substantially outperform benchmark
mechanisms? The answer is closely tied to dynamic incentives. Compared to the pre-2014
benchmark, approximately optimal priorities offers high quality organs to patients who not
only have high transplant values (in terms of equivalent increases in donor supply), but are
also are likely to accept the organs they are offered in equilibrium. This allows the mechanism
to reduce discards while dramatically increasing the welfare of some patients.

In particular, the approximately optimal priorities reallocate desirable donors from patients
on dialysis to patients off dialysis at registration. Table 10 compares transplant rates, offer
probabilities, and waiting times for an offer under the pre-2014, greedy, approximately opti-
mal, and approximately optimal Pareto improving priorities, separately by patient age and
dialysis status at registration.39 The first set of columns compares the number of transplants
per year from each donor type received by each patient group. Under baseline priorities,
older off-dialysis patients (Panel B) receive about 11 transplants per year from young NYRT
donors, compared to more than 37 under approximately optimal priorities. Meanwhile, older
on-dialysis patients (Panel D) receive 30 kidneys each year from young healthy donors under

38The steady-state length of the waiting list N is approximately the ratio of the arrival rate of patients γ
to the average rate of departure (due to transplantation or otherwise) of each patient κ̄. This is because, for
large N , the queue must satisfy the detail balance condition α = Nκ̄. The choice probabilities, our simulation
of the mechanism and the estimated departure process without a transplant directly influence κ̄. That our
results on queue lengths are close is reassuring for the methodology laid out in this paper.

39While we do not report reallocation patterns under the (infeasible) optimal offer rates mechanism, they
are very similar to the approximately optimal priorities.
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baseline priorities, but only 25 under approximately optimal priorities. A similar realloca-
tion occurs from young on-dialysis to young off-dialysis patients. In contrast, transplant
rates from non-NYRT donors and low quality NYRT donors increase across all patient types,
driving an overall increase in transplants. Approximately optimal Pareto improving priorities
yield similar qualitative patterns to those in the unconstrained approximately optimal prior-
ities, but the differences across patient groups are less stark. This is because the mechanism
approximates offer rates that are constrained to make each patient type better off ex-ante;
therefore, it cannot reallocate as many desirable organs across groups.

This reallocation is achieved by offering high-quality donors to off-dialysis patients. The sec-
ond group of columns in Table 10 reports the probability that a patient of each type receives
an offer from a donor of each type, conditional on the donor being offered to some NYRT
patients. These results capture the incentives faced by each patient type by quantifying the
stream of offers they receive. The probability that a young off-dialysis patient receives an
offer from a young NYRT donor rises from 8.2 percent at baseline to 13.5 percent under ap-
proximately optimal priorities; the same probability for a young on-dialysis patient falls from
6.0 percent to 4.6 percent. On-dialysis patients see a uniform decrease in offer probability
across donor types under the approximately optimal priorities, and consistent with this, they
are worse off. In contrast, among off-dialysis patients, older patients see an increase in offer
probabilities for all donor types, while younger patients see a slight decrease for less desirable
NYRT donors. Thus the approximately optimal priorities perform age/quality matching in
addition to reallocating organs to off-dialysis patients.

A natural question is why reallocation from on-dialysis to off-dialysis patients maximizes
patient welfare. Table 11 shows that it is beneficial to reallocate organ offers to off-dialysis
patients because they not only value each offer more, but are also more likely to accept. Panel
A reports the average value of an offer from a randomly chosen donor to different groups of
patients. To illustrate potential reallocation gains, patient types are weighted according to
their steady-state proportions under pre-2014 priorities. Off-dialysis patients benefit more
than on-dialysis patients from an offer from each donor group. An offer from a young, healthy
NYRT donor is equivalent to a donor supply increase of 32.6 percent for an older off-dialysis
patient, but only 18.1 percent for an older on-dialysis patient. The difference is even starker
for non-NYRT donors, who are less desirable (equivalent to 0.9 and 0.4 percent increases in
donor supply, respectively). This is in part because off-dialysis patients have low offer rates
in the baseline mechanism, so each additional offer is quite valuable. In addition, healthy
donors are valued relatively more highly by young off-dialysis patients, which explains the
age/quality matching under approximately optimal priorities. Panel B shows that off-dialysis
patients are also more likely to accept an offer from a randomly chosen donor in the baseline
mechanism. For example, off-dialysis patients would accept 1.2 percent of non-NYRT donors,
while on-dialysis patients would accept 0.8 to 0.9 percent of them. Differences are similar for
other donor types. Because of the limit on the number of offers than can be made, offering
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the organs to patients more likely to accept increases transplant rates, and therefore expected
welfare conditional on match quality. Approximately optimal priorities performs much better
than greedy priorities in part because greedy priorities only considers transplant values and
not dynamic incentives, and therefore misses many of these potential gains.

Finally, one concern is that using dialysis status to determine priorities may result in agents
trying to game the system. While addressing this issue is beyond the scope of this paper,
we make two observations. First, the post-2014 mechanism implicitly uses dialysis status to
determine priority through the Expected Post Transplant Survival model. Second, during
our sample period, patients were allowed to register on the list as soon as kidney function was
sufficiently low (below a glomerular filteration rate of 20), but dialysis may not be necessary
for all patients (for example, if the glomerular filteration rate is above 15). Therefore, if
gaming is of concern, then priority could be alternatively awarded based on measured kidney
function.

8 Conclusion

Previous reforms of organ allocation systems have been assisted by a simple simulation model
that does not account for the dependence of accept/reject rules on agents’ incentives in
various mechanisms. This paper develops an empirically tractable method for estimating
the value of various assignments in dynamic assignment systems, shows how to compute
equilibria of counterfactual mechanisms, and computes optimal solutions. Our results show
that accounting for changes in agents’ incentives is important in predicting outcomes.

Moreover, we find that there is significant scope for further improving the deceased donor
kidney allocation mechanism. There exist mechanisms that improve the average patient’s
welfare by as much as the equivalent of a 14.2 percent increase in donor arrival rates while
also reducing organ waste. An allocation system that also ensures that no patient type is
worse off can realize the majority of these gains. In contrast, the reforms implemented in
2014 were mostly redistributive, and both the pre- and the post-2014 systems are similar
to a first come first served system. Alternatively, if our measure of patient welfare is of no
concern and the only goal is to reduce organ discards, it is possible to do so by 26.6 percent
using a last come first served system.

These findings suggest significant scope for using empirical approaches to improve dynamic
assignment mechanisms. While the specific objective function for a designer may differ from
those considered considered here, our methods can inform design once a well-defined objective
and a set of acceptable mechanisms has been specified. Our approach can be used to both
evaluate outcomes from specific proposed mechanisms and to find optimal solutions.

Our approach makes several simplifying assumptions. First, and foremost, we assume that
agent beliefs are passive and we analyze steady state equilibria. Relaxing these assumptions is
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an important direction for future work. Second, we do not allow for patient-level unobserved
heterogeneity. Including this feature, potentially with time-varying components, may be
important when applying these methods to other empirical contexts or data environments.
Third, we assume that arrival rates of patients and objects are exogenous, an assumption
reasonable in our setting, but one that may be particularly important to relax in other
applications. Finally, the outcomes we primarily focus on are organ waste and overall patient
welfare. Nonetheless, our framework can be used to evaluate the effects of various mechanisms
on other well-defined criteria that may be important for policy. These include equity or effects
on predicted medical outcomes. Enriching this framework to incorporate these features is
left for future work.

Empirical approaches for evaluating dynamic assignment systems are particularly important
because previous theoretical approaches have not provided sharp guidance on these mecha-
nisms. Models that emphasize heterogeneity in match value find that systems similar to first
come first served are most efficient (Bloch and Cantala, 2017), while those that emphasize
heterogeneity in object quality suggest that last come first served be adopted (Su and Zenios,
2004). Our results in this context find significant heterogeneity in match value and therefore
favor mechanisms of the former kind because they induce agent selectivity. Nonetheless,
we find that targeting offers using observable characteristics and equilibrium considerations
promises additional improvements. These findings demonstrate the large scope for empirical
work on understanding these designs more broadly than in the context of deceased donor
kidney allocation.
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Table 5: Acceptance Rate by Past Offer Rates

Dependent Variable: Current Offer Accepted

All Offers Ideal Donors NYRT Donors

(1) (2) (3) (4) (5) (6) (7)

Time Since Last Offer (Years) 0.0372 0.00227 0.00217 -0.000324 -0.00948

(0.00875) (0.00787) (0.00786) (0.00505) (0.00663)

Time Since Last Two Offers (Years) 0.00646

(0.00880)

Time Since Last Five Offers (Years) 0.0151
(0.0118)

Last Offer Donor Age -0.00000369

(0.00000304)

Last Offer from Diabetic Donor -0.0000854

(0.000116)

Last Offer from Expanded Criteria Donor -0.000174

(0.000116)

Last Offer from Donation after Cardiac Death 0.00000289

(0.000119)

Variables Affecting Priority X X X X X X

Patient Characteristics X X X X X X

Donor and Match Characteristics X X X X X X

Listing Center Fixed Effects X X X X X X

Observations 2793098 2831262 2831262 2821641 2831262 1083686 526233

R-squared 0.098 0.097 0.097 0.099 0.099 0.133 0.116

Mean Acceptance Rate 0.15% 0.15% 0.15% 0.15% 0.15% 0.25% 0.73%

Mean Time Since Last N Offers 0.005 0.005 0.005 0.005 0.005 0.012 0.023

S.D. Time Since Last N Offers 0.016 0.016 0.011 0.008 0.016 0.028 0.048

Notes: estimates from a linear probability model of offer acceptance as a function of the patient's recent offer history. Time Since Last N Offers measures 
the average number of years since the patient's previous offers, averaged over their last N offers. Time Since Last Offer, Including Inactive Periods counts 
inactive days as well as active days on the waitlist. Column (1) considers all offers and includes no controls for current offer characteristics. Columns (2) - 
(7) control for current patient, donor, and match characteristics. Column (5) includes controls for donor characteristics of the patient's previous offer. 
Column (6) restricts to offers from ideal donors, and Column (7) restricts to NYRT donors. Controls are as described in the notes for Appendix Table B.1. 
An ideal donor has no history of diabetes; is non-DCD; has creatinine below 3; and is Hepatitis C negative.
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Table 6: Survival Model Estimates

Gompertz Weibull Cox

(1) (2) (3)

Diabetic Patient 0.112 0.104 0.115

(0.0334) (0.0334) (0.0334)

Bloodtype A Patient 0.147 0.115 0.154
(0.0436) (0.0435) (0.0436)

Bloodtype O Patient 0.0146 0.0145 0.0132

(0.0390) (0.0390) (0.0391)

Calculated Panel Reactive Antibodies (CPRA) -0.000601 -0.000692 -0.000775

(0.00150) (0.00150) (0.00150)

CPRA = 0 0.182 0.171 0.173
(0.0737) (0.0736) (0.0738)

CPRA - 80 if CPRA>=80 -0.0182 -0.0154 -0.0172

(0.00652) (0.00652) (0.00652)

Age (at Registration) -0.0261 -0.0213 -0.0210
(0.0152) (0.0153) (0.0153)

Age - 18 if Age>=18 0.0230 0.0194 0.0186
(0.0186) (0.0187) (0.0187)

Age - 35 if Age>=35 -0.00964 -0.0120 -0.0104

(0.00960) (0.00960) (0.00960)

Age - 50 if Age>=50 0.0232 0.0230 0.0239
(0.00723) (0.00722) (0.00724)

Age - 65 if Age>=65 0.0243 0.0234 0.0241

(0.00923) (0.00922) (0.00925)

Prior Transplant 0.0205 0.0329 0.0289
(0.0547) (0.0545) (0.0547)

Body Mass Index (BMI) -0.0131 -0.0123 -0.0131
(0.00643) (0.00642) (0.00643)

Missing BMI 0.000107 0.132 -0.0477

(0.199) (0.199) (0.200)

BMI >= 18.5 -0.0653 -0.0743 -0.0675
(0.105) (0.106) (0.106)

BMI >= 25 -0.0140 -0.0177 -0.0133
(0.0492) (0.0492) (0.0492)

BMI >= 30 0.0285 0.0223 0.0269

(0.0595) (0.0594) (0.0595)

Total Serum Albumin -0.184 -0.180 -0.175
(0.0543) (0.0543) (0.0543)

Missing Total Serum Albumin -0.675 -0.598 -0.621

(0.187) (0.187) (0.187)

Total Serum Albumin >= 3.7 -0.0836 -0.0817 -0.0871
(0.0589) (0.0590) (0.0589)

Total Serum Albumin >= 4.4 0.0422 0.0308 0.0415
(0.0507) (0.0506) (0.0507)

On Dialysis at Registration -1.087 -1.067 -1.086

(0.0659) (0.0660) (0.0659)

Log Years on Dialysis at Registration 0.108 0.109 0.107
(0.0103) (0.0103) (0.0103)

Log Years on Dialysis at Registration * Over 5 Years -0.129 -0.123 -0.137

(0.105) (0.105) (0.105)

Constant -5.151 -4.702

(0.328) (0.337)

Constant (delta(2)) 0.000106
(0.0000207)

Constant (delta) -0.0635

(0.0142)

Observations 9917 9917 9917
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Table 7: Conditional Choice Probability of Acceptance (select co-efficients)

Base Specification Unobserved Heterog. Waiting Time  + UH

(1) (2) (3)

Calculated Panel Reactive Antibody (CPRA) 0.60  (0.05) 0.67  (0.06) 0.54  (0.08)

Donor Age < 18 0.30  (0.10) -0.10  (0.18) -0.07  (0.19)

Donor Age 18-35 0.60  (0.12) 0.09  (0.18) 0.14  (0.18)

Donor Age 50+ -0.83  (0.15) -0.81  (0.20) -0.85  (0.21)

Expanded Criteria Donor (ECD) -0.15  (0.02) -0.51  (0.08) -0.54  (0.08)

Donation from Cardiac Death (DCD) -0.11  (0.02) -0.49  (0.08) -0.49  (0.07)

Perfect Tissue Type Match 2.28  (0.31) 2.79  (0.42) 2.75  (0.43)

2 A Mismatches -0.08  (0.01) -0.01  (0.02) -0.01  (0.02)

2 B Mismatches 0.06  (0.02) 0.03  (0.02) 0.02  (0.02)

2 DR Mismatches -0.07  (0.02) -0.06  (0.02) -0.06  (0.02)

Regional Offer -1.34  (0.05) -2.69  (0.17) -2.75  (0.17)

National Offer -1.50  (0.04) -2.92  (0.11) -2.95  (0.12)

Non-NYRT Donor, NYRT Match Run 1.21  (0.02) 1.97  (0.05) 2.01  (0.06)

Patient on Dialysis at Registration -0.04  (0.01) -0.12  (0.02) -0.11  (0.02)

Log Waiting Time (years) -0.01  (0.05)

Log Waiting Time * Over 1 Year -0.10  (0.06)

Log Waiting Time * Over 2 Years -0.17  (0.12)

Log Waiting Time * Over 3 Years 0.42  (0.11)

Log Dialysis Time at Registration (Years) 0.05  (0.00) 0.05  (0.00) 0.05  (0.01)

Log Dialysis Time at Registration * Over 5 years 0.48  (0.03) 0.42  (0.03) 0.41  (0.04)

NYRT Donor * Donor Age < 18 -0.05  (0.06) 0.22  (0.20) 0.23  (0.22)

NYRT Donor * Donor Age 18-35 0.10  (0.04) 0.11  (0.13) 0.14  (0.14)

NYRT Donor * Donor Age 50+ -0.42  (0.03) -0.62  (0.11) -0.62  (0.13)

Patient Age * Donor Age < 18 -0.01  (0.00) 0.00  (0.00) 0.00  (0.00)

Patient Age * Donor Age 18-35 -0.02  (0.00) 0.00  (0.01) 0.00  (0.01)

Patient Age * Donor Age 50+ 0.02  (0.00) 0.02  (0.01) 0.02  (0.01)

Patient Age - 35 if Age >= 35 * Donor Age 18-35 0.00  (0.01)

Patient Age - 35 if Age >= 35 * Donor Age 50+ 0.00  (0.01)

Donor Unobservable Std. Dev. 0.98  (0.21) 1.00  (0.23)

Idiosyncratic Shock Std. Dev. 1.00 1.00 1.00

Acceptance Rate 0.150% 0.150% 0.150%

Number of Offers 2850572 2850572 2850572
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Table 9: Outcomes in Various Mechanisms, by Patient Group

Pre-2014 Priorities 2.40 38.3 32.2% 13.4% 27.5% -- -- -- --

Post-2014 Priorities 2.37 39.3 33.8% 13.4% 28.5% 0.9% 0.3% 55.3% 97.4%

First Come First Served 2.43 41.0 29.2% 12.7% 35.2% -5.5% -4.6% 68.4% 84.2%

Last Come First Served 2.33 42.6 26.6% 13.0% 40.7% -32.0% -39.9% 0.0% 7.9%

Greedy Priorities 2.43 38.0 33.4% 11.6% 29.0% 1.2% 1.5% 71.1% 78.9%

Optimal Assignment 2.07 39.5 30.7% 11.9% 33.3% 43.9% 30.7% 81.6% 92.1%

Approximately Optimal Priorities 2.20 38.6 31.4% 11.3% 33.1% 20.4% 13.1% 68.4% 84.2%

Approx. Opt. Pareto Improving Priorities 2.34 37.7 30.9% 12.3% 33.7% 6.1% 4.6% 18.4% 100.0%

Pre-2014 Priorities 2.51 47.1 21.6% 12.0% 44.6% -- -- -- --

Post-2014 Priorities 2.48 46.6 21.8% 11.8% 44.1% -0.7% -1.3% 25.4% 100.0%

First Come First Served 2.52 45.6 23.4% 12.0% 40.9% 3.7% 4.1% 95.8% 100.0%

Last Come First Served 2.52 48.4 22.1% 12.3% 48.7% -30.3% -41.5% 0.0% 4.2%

Greedy Priorities 2.58 44.7 23.9% 11.8% 38.0% 5.2% 5.8% 59.2% 71.8%

Optimal Assignment 1.87 44.5 25.3% 12.4% 38.7% 96.9% 65.7% 95.8% 100.0%

Approximately Optimal Priorities 2.10 44.7 25.7% 12.7% 37.5% 70.0% 45.7% 74.6% 88.7%

Approx. Opt. Pareto Improving Priorities 2.33 46.1 23.9% 13.5% 39.3% 37.7% 25.9% 38.0% 100.0%

Pre-2014 Priorities 2.53 40.2 27.5% 11.5% 34.1% -- -- -- --

Post-2014 Priorities 2.50 40.3 27.2% 11.5% 33.7% 0.0% -0.6% 43.7% 98.6%

First Come First Served 2.57 40.9 27.0% 11.0% 35.8% -1.0% -0.2% 84.5% 93.0%

Last Come First Served 2.49 42.7 26.9% 11.3% 41.1% -20.3% -31.3% 1.4% 9.9%

Greedy Priorities 2.49 40.5 27.3% 10.7% 35.4% -0.7% -1.8% 70.4% 90.1%

Optimal Assignment 2.31 41.8 26.8% 11.0% 41.1% 6.5% 0.9% 71.8% 93.0%

Approximately Optimal Priorities 2.51 41.5 25.8% 10.9% 41.4% -7.4% -7.9% 14.1% 36.6%

Approx. Opt. Pareto Improving Priorities 2.46 39.1 28.1% 10.3% 36.2% -1.0% -2.4% 0.0% 98.6%

Pre-2014 Priorities 2.56 46.1 24.3% 10.9% 40.8% -- -- -- --

Post-2014 Priorities 2.53 46.1 23.6% 10.9% 41.1% -0.7% -1.3% 29.2% 98.3%

First Come First Served 2.59 45.3 24.5% 11.4% 38.7% 1.7% 2.3% 87.5% 97.5%

Last Come First Served 2.42 47.2 23.4% 11.3% 45.3% -14.4% -28.4% 4.2% 13.3%

Greedy Priorities 2.54 46.6 23.3% 11.5% 42.1% 1.1% 0.2% 55.8% 77.5%

Optimal Assignment 2.25 46.4 23.1% 11.3% 43.7% 35.8% 21.2% 83.3% 97.5%

Approximately Optimal Priorities 2.48 47.2 22.9% 11.2% 44.4% 17.1% 9.1% 30.0% 51.7%

Approx. Opt. Pareto Improving Priorities 2.45 47.6 23.2% 10.8% 43.2% 13.9% 7.4% 8.3% 100.0%

Change in Equivalent 
Donor Supply (Mean)

At Listing 
Vx(0)

Steady 
State�Vx

Fraction with ΔVx(0)

> 0% > -5%

Waitlist

Cardiac 
Death 
(DCD)

Hyper-
tensive

Characteristics of Transplanted Donors

Age
Died of 
Head 

Trauma

Years on 
Waitlist

Panel A: Not on Dialysis at Registration, Age 0-49

Panel B: Not on Dialysis at Registration, Age 50+

Panel C: On Dialysis at Registration, Age 0-49

Panel D: On Dialysis at Registration, Age 50+
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Table 11: Sources of Welfare Gains

Young Old Low Quality 
Donor

Patients Not on Dialysis at Registration, Age 0-49 36.7 15.1 2.7 0.7
Patients Not on Dialysis at Registration, Age 50+ 32.6 18.6 5.1 0.9
Patients on Dialysis at Registration, Age 0-49 13.6 5.2 0.8 0.2
Patients on Dialysis at Registration, Age 50+ 18.1 7.9 2.2 0.4

Patients Not on Dialysis at Registration, Age 0-49 34.7 16.4 5.3 1.2
Patients Not on Dialysis at Registration, Age 50+ 26.7 18.5 6.2 1.2
Patients on Dialysis at Registration, Age 0-49 26.4 14.2 3.2 0.8
Patients on Dialysis at Registration, Age 50+ 25.6 15.7 5.3 0.9

NYRT Donor Non NYRT 
Donor

Panel B: Percentage Willing to Accept

Panel A: Value of an Offer

Notes: in each cell, quantities are averaged over randomly drawn donors and patients according to their 
proportions in the Pre-2014 Priorities (Baseline) mechanism. Panel A reports the average equivalent change 
in donor supply from an offer from each donor type to each patient type. All numbers are reported in 
percentage (%) units.
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Figure 1: Offer Statistics by Position on Waiting List

(a) Waiting Time by Position

(b) Acceptance Rate by Position

Note: Sample is offers made to NYRT patients between 2010 and 2013, excluding offers that did not meet a patient’s pre-set

donor screening criteria. Positive crossmatches are counted as acceptances. In each figure, the black line plots the mean among

offered patients in each position group, and the shaded region represents pointwise 95 percent confidence intervals.
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Figure 2: Model Fit

(a) Fit by position

(b) Fit by wait time
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Figure 3: Value of an Organ Offer by Patient and Donor Age

Notes: Patient and donor characteristics other than those explicitly varied are set to median values from the NYRT sample.

Value functions are computed at registration.
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Figure 4: Patient Age and Dialysis

Notes: Patient and donor characteristics other than those explicitly varied are set to median values from the NYRT sample.

Value functions are computed at registration.
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Figure 5: Value of an Organ Offer by Match Quality

Notes: Patient and donor characteristics other than those explicitly varied are set to median values from the NYRT sample.

Value functions are computed at registration.
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Figure 6: Welfare and Organ Utilization under Alternative Mechanisms

Pre‐2014 Priorities

Post‐2014 Priorities

First Come First Served

Last Come First Served

Greedy Priorities

Optimal Assignment

Optimal Offer Rates
Approximately Optimal Priorities
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Notes: Results are reported relative to pre-2014 priorities and based on each mechanism’s steady state equilibrium. The

reduction in fraction discarded is defined as the change in the number of kidneys rejected by all NYRT patients to whom the

organ was offered.
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