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1 Introduction

Digital transactions traditionally rely on a central record-keeper, who is trusted to behave

honestly and be sophisticated enough to defend against cyber-vulnerabilities. Blockchains

instead decentralize record-keeping, with the best-known application being the P2P payment

system Bitcoin (Nakamoto, 2008). The majority of existing blockchains rely on various forms

proof-of-work (PoW) protocols, often known as “mining,” in which independent computers

(“miners”) dispersed all over the world spend resources and compete repeatedly for the

right to record new blocks of transactions, and the winner in each round gets rewarded.1

Independent miners have incentives to honestly record transactions because rewards are

valid only if their records are endorsed by subsequent miners.

Compared to a centralized system, a blockchain has several advantages, including en-

hanced robustness to cyber-attacks or mechanical glitches from the removal a “single point

of failure.”2 A blockchain is also presumably less vulnerable to misbehaviors or censorships,

as it shifts the trust on the stewardship of a central book-keeper to the selfish economic

incentives of a large number of competitive miners. However, these advantages rely on ad-

equate decentralization of the system, which is so far only a technological possibility rather

than a guaranteed economic reality. Indeed, while Nakamoto (2008) envisions a perfect

competition among independent computer nodes dispersed across the world, many cryp-

tocurrencies have over the years witnessed a rise of “pooled mining” wherein miners partner

together and share mining rewards, as opposed to “solo mining” wherein individual miners

bear all idiosyncratic risks. Furthermore, the benefits of PoW blockchains come at high

costs: practitioners and academics well-recognize their ever-increasing energy consumption

and the climate and environmental consequences.3

Bitcoin mining provides an illustration: Mining pools grew from constituting only 5%

of the global hash rates (a measure of computation power devoted to mining) in June 2011

to almost 100% ever since late 2015, as shown in Figure 1. The rise of mining pools also

1Section 6.3 extends our discussion to other consensus protocols such as Proof-of-Stake (PoS), Practical
Byzantine Fault Tolerance (PBFT), etc.

2The recent scandal at Equifax offers a vivid lesson. See, e.g., Economist (2017).
3As of April 2018, aggregate electricity devoted to Bitcoin mining alone exceeds 60 TWh, roughly the

annual energy consumed by Switzerland (Lee, 2018). The cryptocurrency forum Digiconomist provides
similar estimates, noting that mining a single block consumes enough energy to power more than 28 U.S.
homes for a full day (https://digiconomist.net/bitcoin-energy-consumption). Mora, Rollins, Taladay, Kantar,
Chock, Shimada, and Franklin (2018) project that if Bitcoin follow the adoption pattern of other technologies,
it could push global warming above 2 Celsius degrees within three decades. See also Rogers (2017).
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Figure 1: The evolution of size percentages of Bitcoin mining pools

This graph plots (1) the growth of aggregate hash rates (right hand side vertical axis, in log scale) starting
from June 2011 to today; and (2) the size evolutions of all Bitcoin mining pools (left hand side vertical
axis) over this period, with pool size measured as each pool’s hash rates as a fraction of global hash rates.
Different colors indicate different pools, and white spaces indicate solo mining. Over time, Bitcoin mining
has been increasingly taken over by mining pools, but no pool seems to ever dominate the mining industry
for long. The pool hash rates data come from Bitcoinity and BTC.com, with details given in Section 5.

coincides with the explosive growth of global hash rates (plotted in red line, in log scale).

Meanwhile, some pools gained significant shares from time to time, with the best-known

example being GHash.io that briefly reached over 51% of global hash rates in July, 2014.

Although such cases call into question whether a blockchain system can stay decentralized,

none of the large pools emerged has snowballed into dominance for prolonged periods of

time. Instead, Figure 1 reveals that pool sizes seem to exhibit a mean reverting tendency,

suggesting concurrent economic forces suppressing over-centralization.

Motivated by these observations, we study the various centralization and decentralization

forces in the creation and industrial organization of mining pools, and relate them to the

energy consumption of mining as well as classic economic theories. Specifically, we model

miners’ decision-making in acquiring and allocating hash rates into mining pools, together

with the competition among pool managers who charge fees for providing risk-sharing ser-

vices. We highlight two features of cryptocurrency mining that are key to understanding

our results: (i) It is easy for profit-driven miners to participate in multiple mining pools, an
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interesting feature that contrasts with the traditional literature on labor and human capital

in which each individual typically only holds one job; (ii) As explained shortly, the dynamic

adjustment of mining difficulty needed to ensure network security leads to an arms race, im-

posing a negative externality that each individual’s acquisition of hash rates directly hurts

others’ payoffs.

We first underscore the significant risk-sharing benefit offered by mining pools: under

reasonable parameters, the certainty equivalent of joining a pool more than doubles that from

solo mining. Absent other considerations, a larger pool also offers higher risk-sharing benefits.

From an economist’s perspective, these results are natural, as partnerships/cooperatives have

been one of the most common organizational forms in humans history for risk sharing among

individuals, and as in the insurance industry, risk sharing works better when the insurance

provider covers a larger market. Yet in conventional settings the risk-sharing benefit is rarely

separable from production technologies with increasing economy of scale. The production

function of mining is such that the total revenue stays the same whether two miners join force

or not, and hence implies that mining pools emerge primarily due to risk sharing, allowing

us to pinpoint the interaction of risk sharing and competition.

While the above arguments may lead to a hasty conclusion that a large pool would grow

even larger, we prove otherwise: In a frictionless benchmark, perfect risk sharing could be

obtained and the exact pool size distribution is irrelevant. This is because the risk-sharing

benefit within a large pool could be alternatively obtained through miner’s diversification

across multiple small pools — a general insight reminiscent of the Modigliani-Miller Theo-

rem. Although investors (miners) are risk-averse, it is not necessary to have conglomerate

firms (pools) for risk sharing purposes, as investors (miners) can diversify on their own in the

financial market by holding a diversified portfolio (allocating hash rates to multiple pools).

As a result, the folk wisdom in the blockchain community that pools become concentrated

for better risk sharing is misguided, as long as miners can freely allocate their hash rates. In

other words, risk sharing indeed leads to the rise of mining pools, but not necessarily further

consolidations of pools (hence over-concentration).

Instead, the real consequence we emphasize is that the enormous amount of energy de-

voted to mining can be largely attributed to mining pools, which, as a financial innovation

intended for better risk sharing, severely escalates the arms race within PoW blockchains.

Under reasonable model parameters, mining pools can elevate the global computation power
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devoted to mining by multiple times.

Building on the insights from the frictionless benchmark, we introduce an empirically

relevant friction: some “passive hash rates,” however small, are not always optimally allo-

cated in real time, for example, due to miners’ inattention. This friction introduces pool

heterogeneity and potential market power, and allows us to better understand the industrial

organization of mining pools observed in practice, as well as its impact on the mining arms

race. We characterize the equilibrium in a static setting, and explain how the initial pool

size distribution affects pool growth: A larger incumbent pool optimally charges a higher

fee, which slows its percentage growth relative to smaller pools. In other words, if our model

were dynamic, pool sizes mean-revert endogenously.

The central force behind this result is the arms race effect highlighted earlier: A larger

pool has a larger impact on the global hash rates. In traditional oligopoly models, a larger

firm charges a higher price and produces less. A similar effect manifests in our setting: a

larger pool charges a higher fee and accommodates proportionally less active mining. Con-

sequently, absent other considerations, in the long run we expect a relatively decentralized

market structure to sustain in the global mining industry, and no single pool grows too

dominant.

Empirical evidence from Bitcoin mining supports our theoretical predictions. Every quar-

ter, we sort pools into deciles based on the start-of-quarter pool size, and calculate the average

pool share, average fee, and average log growth rate for each decile. We find that pools with

larger start-of-quarter size indeed charge higher fees, and grow slower in percentage terms.

We investigate these relationship in three two-years windows (i.e., 2012-2013, 2014-2015, and

2016-2017) respectively, and find in every window statistically significant results with signs

predicted by our theory.

In addition to the cross-section evidence on pool size, pool fees, and pool growth, we also

note that the rise of mining pools indeed coincides with the explosion of global hash rates.4

Under reasonable parameters, we find that in equilibrium the encouragement of more hash

rate acquisition induced by risk sharing trumps the discouragement from pool fees, and the

presence of mining pools still significantly amplifies mining energy consumption.

We further discuss several robustness results: taking into account pool entry as in a con-

testable market, introducing aggregate risks, and applying the model insights to alternative

4No causality claimed, as other factors could have also contributed to the explosion of global mining
power in Figure 1, such as upgrades of mining hardwares, increasing awareness of mining, etc.
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proof-of-work or proof-of-stake protocols. We also discuss how other external forces that

counteract over-concentration of pools could be added onto our framework.

Related literature. Our paper contributes to emerging studies on blockchains and dis-

tributed ledger systems (e.g., Harvey, 2016).5 Specifically, our study directly relates to

cryptocurrency mining games. Adding to earlier studies of Nakamoto (2008), Kroll, Davey,

and Felten (2013), and Kiayias, Koutsoupias, Kyropoulou, and Tselekounis (2016), Biais,

Bisiere, Bouvard, and Casamatta (2018) analyze equilibrium multiplicity in cryptocurrency

mining. Easley, O’Hara, and Basu (2017) and Huberman, Leshno, and Moallemi (2017)

relate transaction fees to mining and user waiting times. Dimitri (2017) and Ma, Gans, and

Tourky (2018) model mining as a Cournot-type competition and R&D race. Prat and Wal-

ter (2018) examine the relationship between Bitcoin price and hash rate investment. Many

studies also reveal that an adequate level of decentralization is crucial for the security of a

blockchain.6 For example, Eyal and Sirer (2014) and Eyal (2015) study “selfish mining” and

miner’s dilemma in which miners launch block-withholding attacks.7

These papers often follow the convention in the computer science literature to only con-

sider one pool behaving strategically as a single decision-maker.8 Moreover, almost all of

them only consider risk-neutral miners and take any mining pools as exogenously given sin-

gletons, while we emphasize risk-aversion — the rationale behind the emergency of mining

pools in the first place. In contrast, we characterize the full equilibrium wherein both miners

and pools are strategic and risk-averse, in addition to modeling the incentives of participants

and managers within each pool. Our findings on the creation and distribution of mining pools

5Other studies include Cong and He (2018) that examines informational tradeoffs in decentralized con-
sensus generation and how they affect business competition. Several papers study the impact of blockchains
on corporate governance (Yermack, 2017), holding transparency in marketplaces (Malinova and Park, 2016),
security-trade settlements (Chiu and Koeppl, 2018), and financial reporting and auditing (Cao, Cong, and
Yang, 2018). Also related are studies on initial coin offerings for project launch (Li and Mann, 2018), as well
as cryptocurrency valuation and the roles of tokens on platform adoption (Cong, Li, and Wang, 2018).

6Nakamoto (2008) explicitly requires that no single party shall control more than half of global computing
power for Bitcoin to be well-functioning (thus the concept of 51% attack). Empirically, Gencer, Basu, Eyal,
van Renesse, and Sirer (2018) investigate the extent of decentralization by measuring the network resources of
nodes and the interconnection among them. Also related is Budish (2018), which suggests intrinsic economic
limits to how economically important Bitcoin can become before being subjected to majority attacks.

7Along this line of research, Sapirshtein, Sompolinsky, and Zohar (2015) develop an algorithm to find
optimal selfish mining strategies. Nayak, Kumar, Miller, and Shi (2016) (stubborn mining) goes beyond the
specific deviation in Eyal and Sirer (2014) and consider a richer set of possible deviating strategies. They
conclude that there is no one-size-fits-all optimal strategy for a strategic miner.

8Beccuti, Jaag, et al. (2017) is an exception on how miner number/heterogeneity affects block-withholding.
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also connect with strands of literature on contracting and the theory of the firm.9 Instead of

focusing on a single pool as in Rosenfeld (2011); Schrijvers, Bonneau, Boneh, and Roughgar-

den (2016); Fisch, Pass, and Shelat (2017), we analyze the contracting relationships among

miners and pool managers and the interaction of multiple pools in an industrial organization

framework.

Many blogs, think tank reports, and media article have taken notice of the large energy

consumption by cryptocurrency mining. They focus on Bitcoin prices and mining hardwares

(e.g. ASICs versus GPUs, see Kugler (2018)), rather than modeling the mining industry

and identifying the impact from mining pools, which could be equally important. Several

studies recognize that costly mining serves to enhance network security and prevent double

spending (e.g. Chiu and Koeppl, 2017; Budish, 2018; Pagnotta and Buraschi, 2018); some

also point out the social waste from high energy consumption by cryptocurrency mining in

its current form (e.g. Chiu and Koeppl, 2017; Saleh, 2017). We are the first to demonstrate

how risk sharing affects the organization and energy consumption of the mining industry.10

The novel economic forces we identify in the mining industry also closely relate to classic

economic theories. In addition to the theory of the firms, Modigliani-Miller insight, and

oligopoly pricing as discussed earlier, active miners’ hash rate allocation decisions shares the

spirit of investors’ capital allocation decisions to mutual funds as in Berk and Green (2004).

The hard-coded nature of a blockchain together with its transparency offers researchers a

unique social science laboratory for analyzing and testing economic theories, for example,

on risk sharing and competition.

The rest of the paper proceeds as follows. Section 2 introduces the institutional details

of PoW mining and stylized facts about mining pools. Section 3 sets up the model and

analyzes a frictionless benchmark. Section 4 characterizes the equilibrium. Section 5 pro-

vides corroborating empirical evidence using Bitcoin data, before Section 6 discusses broader

implications and extensions. Section 7 concludes.

9Classical studies include Wilson (1968) on syndicates and Stiglitz (1974) on sharecropping. Recent
studies include Li (2015) on private information coordination.

10Our insight also shows up in traditional financial markets. For example, Li (2017) similarly features
better risk sharing leading to more aggressive risk.
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2 Mining Pools: Background and Principle

This section provides background knowledge of the Bitcoin mining process, analyzes the

risk-sharing benefit of mining pools, and introduces typical pool-fee contracts. Mining in

other PoW blockchains operates similarly.

2.1 Mining and Risky Reward

Bitcoin mining is a process in which miners around the world compete for the right to

record a brief history (known as block) of bitcoin transactions. The winner of the compe-

tition is rewarded with a fixed number of bitcoins (currently 12.5 bitcoins, or B12.5), plus

any transactions fees included in the transactions within the block.11 In order to win the

competition, miners have to find a piece of data (known as solution, or nonce), so that the

hash (a one-way function) of the solution and all other information about the block (e.g.

transaction details within the block and the miner’s own bitcoin address) has an adequate

number of leading zeros. The minimal required number of leading zeros determines the

mining difficulty.

Under existing cryptography knowledge, the solution can only be found by brute force

(enumeration). Once a miner wins the right to record the most recent history of bitcoin

transactions, the current round of competition ends and a new one begins.

Technology rules that for all practical purposes the probability of finding a solution is not

affected by the number of trials attempted. This well-known memoryless property implies

that the event of finding a solution is captured by a Poisson process with the arrival rate

proportional to a miner’s share of hash rates globally (e.g., Eyal and Sirer, 2014; Sapirshtein,

Sompolinsky, and Zohar, 2016). Specifically, given a unit hash cost c and a dollar award R

for each block, the payoff to a miner who has a hash rate of λA operating over a period T is

Xsolo − cλAT, where Xsolo = B̃soloR with B̃solo ∼ Poisson

(
1

D

λA
Λ
T

)
. (1)

Here, B̃solo is the number of blocks the miner finds within T — a Poisson distributed random

variable capturing the risk that a miner faces in this mining game. Λ denotes global hash rate

(i.e., the sum of hash rates employed by all miners, whether individual or pool), D = 60×10

11See Easley, O’Hara, and Basu (2017) and Huberman, Leshno, and Moallemi (2017) for more details.
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is a constant so that on average one block is created every 10 minutes.

The hash cost c in Eq.(1) is closely related to the energy used by computers to find

the mining solution. More importantly, an individual or pool’s success rate is scaled by

the global hash rate Λ devoted to mining, capturing the dynamic adjustment of the mining

difficulty so that one block is delivered per ten minutes on average.12 As emphasized later,

this constitutes the driving force for the mining “arms race” with negative externality.

Because mining is highly risky, any risk-averse miner has strong incentives to find ways

to reduce risk.13 A common practice is to have miners mutually insure each other by forming

a (proportional) mining pool. The next section describes how such a mining pool works.

2.2 Mining Pool and Risk Sharing

A mining pool combines the hash rates of multiple miners to solve one single crypto-

graphic puzzle, and distributes the pool’s mining rewards back to participating miners in

proportion to their hash rate contributions.14 Ignoring fees that represent transfers among

pool members for now, then following the previous example, the payoff to a participating

miner with hash rate λA who joins a pool with existing hash rate ΛB (throughout we use

upper case Λm to indicate hash rates at the pool level) is

Xpool − cλAT, where Xpool =
λA

λA + ΛB

B̃poolR with B̃pool ∼ Poisson

(
λA + ΛB

Λ

T

D

)
. (2)

Pooled mining provides a more stable cash flow and reduces the risk a miner faces. Indeed,

Proposition 1 (Risk Sharing Dominance). Xpool second-order stochastically dominates Xsolo,

so any risk-averse miner strictly prefers Xpool over Xsolo.

12This dynamic adjustment for scaling miners’ winning probabilities is a common feature in both PoW
and PoS blockchains. It ensures network security and reduces block collision (Gervais, Karame, Wüst,
Glykantzis, Ritzdorf, and Capkun, 2016; Vukolić, 2015).

13Bitcoin mining is in some sense analogous to gold mining. Just like a gold miner who spends manpower
and energy to dig the ground in search of gold, a Bitcoin miner spends computing powers and related
electricity/cooling/network expenses in search of solutions to some cryptography puzzles; just like a gold
miner who only gets paid when he successfully finds the gold, a Bitcoin miner only gets paid when he finds
a solution. Both are risky – a miner could continuously expend resources mining for a prolonged period
without any pay in the absence of a solution.

14Because the number of candidate partial solutions is astronomical, it makes negligible difference to
each participating miner’s payoff whether the pool coordinates their mining efforts or simply randomize the
assignment of partial problems.
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For illustration, consider the symmetric case with λA = λB. Relative to solo mining, a miner

who conducts pooled mining is twice likely to receive mining payouts but half the rewards

at each payment, generating a standard risk-sharing benefit.

While the risk-sharing benefit manifests itself in traditional industries too, it is often

inseparable from technologies with increasing economy of scale that naturally lead to industry

concentration. For example, in gold mining, even risk-neutral miners would join force to

reduce overheads and duplicate effort. Mathematically, given a production function F (·),
F (x1 + x2) > F (x1) + F (x2), where x1 and x2 are inputs of two firms/individuals. Crypto-

mining is unique in the sense that there is no mechanical economy of scale because the

aggregate speed of building blocks is set by the protocol. Block generation follows a Poisson

arrival given the current cryptography technology and difficulty adjustments. The additive

property of Poisson processes in turn implies the total revenue stays the same whether two

miners join force or not, that is, F (x1 + x2) = F (x1) + F (x2). The setting therefore allows

us to isolate and test the effects of pure risk sharing.

2.3 Quantifying the Risk-Sharing Benefits of Pooled Mining

The risk-sharing benefits of joining a mining pool can be substantial. To assess the

magnitude, we calculate the difference of certainty equivalents of solo mining and pooled

mining for a typical miner. Throughout the paper we use preference with Constant Absolute

Risk Aversion (CARA), i.e., exponential utility with risk-aversion parameter ρ:

u(x) ≡ 1

ρ

(
1− e−ρx

)
. (3)

All quantitative implications of our model will be calibrated based on widely-accepted mag-

nitudes of Relative Risk-Aversion (CRRA) coefficient.

The certainty equivalent of the revenue from solo mining, CEsolo, can be computed as

CEsolo ≡ u−1(E[u(X̃solo)]) =
λA
Λ

1

ρ

(
1− e−ρR

) T
D
. (4)

Similarly, the certainty equivalent of the revenue from joining a mining pool, CEpool, is

CEpool (ΛB) ≡ u−1(E[u(X̃pool)]) =
(λA + ΛB)

Λ

1

ρ

(
1− e−ρR

λA
λA+ΛB

)
T

D
. (5)
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We highlight that this certainty equivalent depends on the pool size λB and typically a larger

pool offers greater risk sharing benefit.

We choose reasonable parameters to gauge the magnitude of the risk-sharing bene-

fit of joining a pool. Suppose λA = 13.5(TH/s), which is what one Bitmain Antminer

S9 ASIC miner (a commonly used chip in the Bitcoin mining industry) can offer; ΛB =

3, 000, 000(TH/s), which is at the scale of one large mining pool; R = $100, 000 (B12.5

reward + ∼B0.5 transaction fees per block and $8000 per BTC gives $104,000); Λ =

21, 000, 000(TH/s), which is the prevailing rate; and ρ = .00002 (assuming a CRRA risk

aversion of 2 and a wealth of $100,000 per miner gives a corresponding CARA risk aversion

of 0.00002). Take T = 3600×24 which is one day. Then CEsolo = 4.002 and CEpool = 9.257,

which implies a difference of 5.255, about 57% of the expected reward E(X̃solo) (about 9.257).

In other words, for a small miner, joining a large pool almost boost his risk-adjusted payoff

by more than 131%.15 Equally relevant, for more risk-averse miners (e.g. ρ = .00004), given

the current mining cost parameters, joining a pool could turn a (certainty equivalent) loss

into a profit.16

The risk-sharing benefit has two major implications. First, active miners with a given

level of risk aversion would acquire hash rates more aggressively when mining in pools,

which escalates mining arms race and amplifies the energy consumption associated with

cryptocurrency mining. Second, mining pools could charge fees (price) to miners, which

in turn determine miners’ optimal hash rates allocations (quantity). Before we develop a

model to study the equilibrium fees and allocations under mining pool competitions, we first

describe the various forms of fee contracts used in practice.

15Even if we set ρ = .00001 (a miner with CRRA risk aversion of 2 and is twice richer), joining this large
pool increases his risk-adjusted payoff by more than 85%. The risk-sharing benefit can be still quantitatively
large even for small pools. For a small mining pool with only one existing miner using a S9 ASIC chip so
that ΛB = 13.5, joining it still implies a difference in certainty equivalents about 20% of the reward. All
values above were chosen at the time when the paper was first written in early 2018, including the Bitcoin
price $8,000. The risk-sharing benefit remains large even with a much lower Bitcoin price, which is $3,600
around early 2019. When we replace $8,000 with $3,600, for a small miner joining a large pool almost boost
his risk-adjusted payoff by more than 52%.

16Assuming a $0.12 per kWh electricity cost, and 1375w/h for S9 (see here), the power consumption

is c = 1.375 × 0.12/(3600 × 13.5) per TH. Then 1
Dρ

λA+ΛB
Λ

(
1− e−ρR

λA
λA+ΛB

)
− λAC = $6.1 × 10−5/s or

$5.3/day, while 1
Dρ

λA
Λ

(
1− e−ρR

)
− λAC = −$2.0× 10−5/s or −$1.7/day.
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2.4 Fee Contracts in Mining Pools

Broadly speaking, different pools in practice offer three categories of fee contracts: Pro-

portional, Pay per Share (PPS), and Cloud Mining. Table 3 in Appendix B gives a list of

contracts currently used by major pools. As explained later, all contracts effectively have

the same contracting variable – participating miners’ hash rates, and the three categories

mainly differ in two aspects: (i) the mapping from the contracting variable to payoff, and

(ii) pool fees and the treatment of transaction fees. We proceed to describe the contracting

variables and compare the mappings from contracting variables to payoffs. Other technical

details are left out as they are not essential for understanding the rest of the paper.

Pool managers and mining reward. A mining pool is often maintained by a pool

manager, who takes a percentage cut from miners’ rewards at payout, known as pool fees

which differ across pool contracts. In practice, when contributing to the same pool under

the same contract, all miners are subject to the same pool fee, regardless of the amount of

hash rates they contribute. In other words, there is no price discrimination.

Furthermore, different pools also vary in how they distribute transaction fees in a block.

These transaction fees are different from the pool “fees” that we focus on; as discussed in

Section 2.1, the transaction fees are what Bitcoin users pay to miners for including their

intended transactions into the newly mined block. While most pools keep transaction fees

and only distribute the fixed rewards from new blocks, given the recent rise of transaction fees

more pools now also share transactions fees. Our reduced form block reward R encompasses

both types of rewards.

Effectively observable hash rates. All classes of fee contracts effectively use a miner’s

hash rate as a contracting variable. Although in theory a miner’s hash rate is unobservable

to a remote mining pool, computer scientists have designed ways to approximate it with

high precision by counting so-called partial solutions. A partial solution to a cryptographic

puzzle, like a solution itself, is a piece of data such that the hash of all information about

the block and the partial solution has at least an adequate number of leading zeros that is

smaller than the one required by a full solution. One can view partial solutions as “trials,”

while the solution “the successful trial.” Counting the number of partial solutions hence

amounts to measuring hash rates with some measurement error.

11



Crucially, the approximation error between the measured hash rate and the true hash rate

can be kept arbitrarily small with little cost.17 For economists, if one interpret “mining”

as “exerting effort,” then an important implication is that the principal (pool manager)

can measure the actual hash rate (miner’s effort) in an arbitrarily accurate way, rendering

moral hazard issues irrelevant. All team members’ effort inputs are perfectly observable and

contractible, and the only relevant economic force is risk sharing, in stark contrast to that

in Hölmstrom (1979).

Fee contracts. As mentioned, the more than 10 types of fee contracts fall into three

categories: proportional, pay per share (PPS), and cloud mining.

One predominant category entails proportional-fee contracts.18 Under these contracts,

each pool participant only gets paid when the pool finds a solution. The pool manager

charges a fraction f ∈ (0, 1) of the block reward R, and then distributes the remaining

reward (1− f)R in proportion to each miner’s number of partial solutions found (and hence

proportional to their actual hash rates). More specifically, the payoff of any miner with hash

rate λA joining a pool with an existing hash rate λB and a proportional fee f is

λA
λA + ΛB

(1− f)B̃R− cλAT, with B̃ ∼ Poisson

(
λA + ΛB

Λ

)
T

D
. (6)

Another popular category entails pay-per-share (PPS) contracts: each pool participant

gets paid a fixed amount immediately after finding a partial solution (again, in proportional

to the hash rate). Hence the PPS contract corresponds to “hourly-based wages;” or, all

participating miners renting their hash rates to the pool. Following the previous example,

given a PPS fee fPPS, the participating miner’s payoff is simply r · λA with

r =
RT

DΛ
(1− fPPS) (7)

17Different contracts may use different partial solutions or weigh them differently, while all give fairly
accurate approximations of a miner’s actual hash rate.

18In practice, the most common proportional contract is Pay-Per-Last-N-Shares (PPLNS), which counts
each pool participant’s share within the last N partial solutions submitted by all pool participants, instead of
within the total number of partial solutions submitted in a given round before the pool finds a block. Other
contracts that fall under the proportional category may discount partial solutions submitted long before
the next block is found (e.g. as in geometric method). These alternative methods are adopted to prevent
pool-hopping, a point important in practice yet irrelevant to our analysis, as all these methods approximates
each pool participants’ pay share according to her actual hash rate share.
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being the rental rate while giving up all the random block reward. As shown, in practice the

PPS fee is quoted as a fraction of the expected reward per unit of hash rate (which equals
R
Λ
T
D

). Cloud mining, which essentially makes miners rent hash rates from the pool, does

exactly the opposite: a miner pays a fixed amount upfront to acquire some hash rate from

the pool, and then gets paid as if conducting solo mining.

Our theory focuses on proportional fees only, though the analysis easily extends to the

case of hybrid of proportional and PPS fees. There are two reasons for our modeling choice.

First, in practice, about 70% of pools are adopting proportional fees, and 28% pools are

using proportional fees exclusively.

The second reason, which is conceptually more important, is that a pure form of PPS

or cloud mining only involves risk allocation between miners and pool manager. Under our

framework with homogeneous risk aversion among miners and pool managers, they gain

nothing adopting PPS or cloud mining. In contrast, a proportional fee contract provides risk

sharing benefits.

2.5 Stylized Facts about Mining Pools

Table 1 provides an overview of the mining industry. The total hash rates in Bitcoin

mining (Column A), the number of identified mining pools (Column B), as well as the

concentration of mining pools (Column C, the total market share of the top-5 pools sorted by

hash rates) have mostly been increasing since 2011. From an individual miner’s perspective,

Column D gives the average pool fee (including proportional, PPS, and others) weighted

by hash rates for each year, which offers a gauge of overall cost in joining mining pools.

Column E gives the fraction of hash rates in the mining pools that are using proportional

fees; following a peak of 87% in 2011, this fraction has been mostly increasing in recent years,

with about 79% in 2017.

The rest of four columns focus on the evolution and magnitude of pool fees which fall

in the range of a couple of percentage points. Column F and G are for top-5 pools while

Column H and I for all pools. The stylized fact revealed by comparing “Top 5” and “All”

is that fees charged by top 5 pools are higher than the average fees charged by pools with

all sizes. This is one salient empirical pattern that motivates our paper.19

19Proportional fees are in general smaller than “average fee” which is the average of proportional fees,
PPS fees, and others. The reason is simple: PPS contracts offer zero risk exposure to participating miners,
so risk-averse miners are willing to pay a higher PPS fee than that of proportional contracts (or equivalently,
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Table 1: Evolution of Pool Sizes and Fees

This table summarizes the evolution of mining pool sizes and fees from 2011 to 2017. We report total
hash rates in Column A, total number of mining pools in Column B, and in Column C the fraction of
hash rates contributed by top-5 pools (i.e., sum of the top five pools hash rates over the market total hash
rates, including those from solo-miners). In Column D, we report the average fee weighted by hash rates
charged by mining pools. In Column E, we report the fraction of mining pools that use proportional fees;
the fraction is calculated as the number of pools that use proportional fees divided by the number of pools
with non-missing information on fee contracts. Column F and G give the simple averages of proportional
fees and average total fees charged by top-5 pools, respectively; and Column H and Column I are simple
averages across all pools. The pool hash rates information comes from Bitcoinity and BTC.com. The fee
contract information is obtained from Bitcoin Wiki. All fee and size data are downloaded in Feb 2018 and
converted into quarterly averages. Reward types are determined at the end of each quarter. Over time more
hash rates are devoted to Bitcoin mining, and a majority of mining pools offer proportional contracts. The
largest five pools on average charge higher fees.

Year

Avg. Fee # Frac. Of Fee (%)

Hash Rate # of Top 5 (Size-Weighted) Prop. Pools Top 5 All

(PH/s) Pools (%) (%) (%) Prop. Ave. Prop. Ave.
(A) (B) (C) (D) (E) (F) (G) (H) (I)

2011 0.01 8 7.63 0.57 87.12 0.28 0.28 0.28 0.25
2012 0.02 15 34.66 2.71 61.25 0.66 1.76 0.65 1.56
2013 1.48 23 71.01 2.73 62.57 1.58 2.29 1.16 2.02
2014 140.78 33 70.39 0.88 70.50 1.33 1.13 0.88 2.38
2015 403.61 43 69.67 1.51 77.92 1.10 1.31 0.84 1.33
2016 1,523.83 36 75.09 2.50 77.14 1.48 2.15 0.97 1.67
2017 6,374.34 43 62.25 1.67 78.89 2.00 1.43 1.42 1.32

3 An Equilibrium Model of Mining Pools

This section presents a model in which multiple pool managers compete in fees to attract

active miners. We first derive a benchmark result: in a frictionless environment where all

miners can actively acquire hash-rates and allocate them to different pools, risk sharing itself

does not lead to centralization, simply because miners can diversify themselves across pools.

The exact distribution of pool sizes also does not matter in this case.

Pool size distribution starts to matter when larger pools also have more passive hash rates

that are not necessarily optimally allocated across pools — a case we examine in Section

4. We derive that larger pools charge higher fees, leading to slower pool growth, and then

confirm these key theoretical predictions in Section 5 with data from Bitcoin mining pools.

pool managers charge more from miners for bearing more risk).
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The presence of mining pools also induces an aggressive arms race: Mining pools as a form

of financial innovation for risk sharing increases the global hash rates devoted to mining. To

the extent that the security of a blockchain features diminishing marginal benefit to global

hash rates (once above a certain threshold), this escalated arms race leads to energy wastes.

3.1 Agents and Economic Environment

We study a static model with both pool managers and individual miners having the same

CARA utility function given in Eq.(3) and using proportional-fee contracts.

Pool managers. There are M mining pools controlled by different managers; we take these

incumbent pools as given and study pool entry later in Section 6.1. Pool m ∈ {1, · · · ,M}
has Λpm > 0 (p stands for passive mining) existing passive hash rates that stick to these

pools. Empirically, we link Λpm to the initial pool size, under the assumption that a fixed

fraction of miners do not adjust their hash rate contributions across pools. Passive hash

rates come from miners who do not pay attention to changes in pool sizes or fees in real

time.20 The exact measure of passive miners
∑

m Λpm is not important for our qualitative

results.

Given the significant risk-sharing benefit to individual miners illustrated in Section 2,

managers of pools {m}Mm=1 post (proportional) fees {fm}Mm=1 simultaneously to attract Λam

active miners and maximize their expected utility, E
[
u(B̃mfmR)

]
, which can be expressed

using certainty equivalent as

max
fm∈[0,1]

Λam(fm) + Λpm

ρΛ(fm, f−m)

(
1− e−ρRfm

)
. (8)

It is worth emphasizing that when setting fees, the oligopolistic pool managers understand

the impact of fee levels on the global hash rate Λ and hence their own expected utility. In

other words, pool owners partially internalize the arms-race externality.

20This modeling assumption that only a fraction of players can actively re-adjust their decisions, in the
same spirit of Calvo (1983), is widely used in the literature (e.g., Burdzy, Frankel, and Pauzner (2001) and He
and Xiong (2012)). In the case of Bitcoin, although it involves little cost to re-adjust hash rates allocations,
inattention could generate inertia that leads to passive mining. Passive mining can be alternatively inter-
preted as “loyal fans” of the mining pool forum or early investors. In practice, a significant portion of Λpm
may also belong to the pool manager himself, which can be incorporated by modifying the fee expression.
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Active miners. There is a continuum of active homogeneous miners of total measure N ,

each of whom can acquire hash rate with a constant unit cost c. In other words, while mining

pools may enjoy market power, active miners are competitive.21

Taking the fee vector {fm}Mm=1 and passive hash rates {Λpm}Mm=1 as given, these active

miners can acquire and allocate hash rates to the above m pools. Optimal allocation among

existing pools, rather than a binary decision of participation or not, plays a key role in our

analysis. In practice, some miners also recognize this benefit of allocating hash rates across

many pools, even though no formal justifications are given.22

For an active miner facing {Λpm}Mm=1 and {fm}Mm=1, the payout when allocating a hash

rate of λm to pool m is

Xm =
λm

Λam + Λpm

B̃m(1− fm)R, (9)

where Λam (a stands for active mining) is the hash rate contribution to pool m from all

(symmetric) active miners. Recall that throughout the paper we use lower case λ to indicate

individual miner’s decisions while upper case Λm for hash rates at the pool level. Our

continuum specification of miners implies that for each individual miner λm is infinitesimal

relative to the pool size Λm; this is why λm does not show up in the denominator of Eq.(9).

Finally, an infinitesimal miner with infinitesimal risk tolerance would not solo mine, as long

as fm < 1 for some m.23

As a result, the active miner chooses {λm}Mm=1 to maximize

E

[
u

(
M∑
m=1

Xm − C
M∑
m=1

λm

)]
= E

[
u

(
M∑
m=1

(
λmB̃m(1− fm)

Λam + Λpm

)
R− C

M∑
m=1

λm

)]
,

where we have denoted cT as C. Since our analysis works under any choice of T , for brevity

of notation we further normalize T/D = 1. The certainty equivalent calculation based on

21We discuss in an earlier draft the case where active miners are endowed with fixed hash rates, which
does not change our findings concerning the industrial organization of mining pools.

22See forum discussions: “Mining pools are used primarily to reduce variance, and the larger the pool, the
more effective it is for this purpose. There is a simple way to decrease the variance further: Mine in multiple
pools.”

23 Formally, each miner with Σλm ·di hash rates has a risk tolerance of 1
ρ ·di (or, an absolute risk aversion

of ρ
di , where di is the measure of an infinitesimal miner so that

∫
di = N (as a result, the aggregate risk

tolerance of miners is N
ρ ). The certainty equivalent of solo mine of an infinitesimal miner, which is given in

Eq.(4), can be shown to be of a lower order than Eq.(10).
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exponential preference in Eq.(3) implies that the hash allocation to each pool decouples from

one another, and the optimization is equivalent to

max
λm≥0

[
Λam + Λpm

ρΛ

(
1− e−

ρR(1−fm)λm
Λam+Λpm

)
− Cλm

]
, ∀m, (10)

where the global hash rate Λ is

Λ =
M∑
m=1

(Λam + Λpm). (11)

In each miner’s objective (10), the global hash rate Λ scales down the winning probability

of each participating hash rate, so that in aggregate the block generation process is kept

at a constant. This is a feature of many proof-of-work-based blockchain protocols such as

Bitcoin, and the negative externality is important for understanding our results later.

In our setup, we have implicitly assumed that the infinitesimal active miners lack the

expertise to become pool managers (they remain customers of mining pools). This is consis-

tent with the following two facts: first, most miners simply run lightweight nodes (instead

of running full nodes); and second, setting up and maintaining a mining pool is an elaborate

process beyond most miners’ sophistication.

3.2 Definition of Equilibrium

We focus on a class of symmetric subgame perfect equilibria in which homogeneous

active miners take identical strategies. The notion of “subgame” comes from active miners

reacting to the fees posted by the M pools. In other words, all (homogeneous) active miners

take symmetric best responses to any (on- and off-equilibrium) fees, and each pool faces an

aggregate demand function (of the fee vector).

Definition. A symmetric subgame perfect equilibrium in which homogeneous players take

identical strategies is a collection of {fm}Mm=1 and {λm}Mm=1 so that

(1) Optimal fees: ∀m ∈ {1, 2, · · · ,M}, fm solves pool manager m’s problem in (8),

given {f−m} set by other pool managers;

(2) Optimal hash rates allocations: Given {fm}Mm=1 and {Λm}Mm=1, {λm}Mm=1 solve

every active miner’s problem in (10);
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(3) Market clearing: Nλm = Λam.

3.3 A Frictionless Benchmark

The initial size distribution of mining pools is directly captured by passive hash rates

{Λpm}Mm=1 in our model. To highlight the role of passive hash rates in our model, we first

analyze a frictionless benchmark without passive mining.

Proposition 2 (Irrelevance of Pool Size Distribution). Suppose ∀m ∈ {1, 2, ...,M}, Λpm = 0.

The following allocation constitutes a unique class of symmetric equilibira:

(1) Pool managers all charge zero fees: fm = 0 for all m ∈ {1, 2, ...,M};
(2) Active miners choose any allocation {λm}Mm=1 so that the global hash rates Λ satisfies

Λ = N
M∑
m=1

λm =
R

C
e−ρR/N . (12)

In this class of equilibra, every active miner owns an equal share of each mining pool,

and the exact pool size distribution {Λpm}Mm=1 is irrelevant.

Proposition 2 shows a stark irrelevance result of pool size distribution for the purpose

of risk sharing. In this class of equilibria, the global hash rate that miners acquire is Λ =
R
C
e−ρR/N , so that for each miner the marginal benefit of acquiring additional hash rate

hits the constant acquisition cost C. Under zero fees, each individual miner maximizes his

objective in (10). Fixing the total hash rate Λ in this economy, the allocation among pools

reaches full risk sharing among all miners.24 Pool managers charge zero fees due to Bertrand

competition, otherwise one pool manager can cut her fee to steal the entire market, thanks

to the identical services the pools provide without passive hash rates.

Fallacy of risk sharing and pools. Numerous discussions in the blockchain community

have focused on the centralization implications of mining pools, i.e., the better risk sharing

provided by larger pools would attract even more hash rates and lead to further concentra-

tion. Proposition 2 rejects this fallacy based on a Modigliani-Miller insight: In a frictionless

24An alternative way to obtain full risk sharing is through “insurance” contracts with pure financial
transfers. Such contracts could in theory allow each miner to solve their individual problems and therefore
getting rid of the over-concentration concern. Such contracts are however difficult to implement in reality,
due to costly-to-observe hash rates, and are rarely used. Another alternative is P2P pools, which require all
participating miners to run full nodes. They constitute a negligible market share.
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market, investors can perfectly diversify on their own, nullifying the risk sharing rationale

for conglomerates. In other words, as long as miners can join pools in a frictionless way, one

should not expect a single large pool to emerge.

In practice, reallocating between pools involves simply changing one parameter in the

mining script and hence participating in multiple pools entails negligible transaction cost.25

As a result, joining m pools with proper weights, so that each miner owns equal share of

each pool, is equivalent to joining a single large pool with the aggregate size of these m

pools. Precisely because individuals can allocate their hash rates to diversify by themselves,

forming large pools is unnecessary for risk-sharing purposes.

Given that miners in practice increasingly recognize the diversification benefits of mining

in multiple pools, our theoretical insight has practical relevance in that over-concentration

should not be a concern absent other frictions.26 We show later that even though the key

friction Λpm > 0 give market power to pools, the natural forces in the resulting monopolistic

competition also counteract over-concentration.

Pool collusion? Potential collusion among a subset of pool managers do not change the

result. In the benchmark setting, competition between two parties (potentially colluding

groups) would drive the equilibrium fee to zero and render the distribution of pool size irrel-

evant. Even if all incumbent managers collude, new entrants (once we allow them in Section

6.1) would present similar competitive force. Collusion only matters when we introduce the

passive mining friction Λpm. Still, to the extent that pool managers share the benefits from

collusion, we can simply view colluding pools as one pool with a larger Λpm.

25There is a key difference between Bitcoin mining pools and traditional firms that provide valuable
insurance to workers against their human capital risks (e.g., Harris and Holmstrom (1982); Berk, Stanton,
and Zechner (2010)): In the Bitcoin mining industry, it is easy for miners to allocate their computational
power across multiple pools, just like in standard portfolio allocation problems in financial investment. In
contrast, it is much harder for workers to hold multiple jobs.

26Our insight is also shared by some practitioners, though no formal argument or analysis has been put
forth. For example, an interesting forum post remarks that mining in multiple pools “not only helps variance
for individual miners, but is healthier for the network. In the current standard usage, there is a ‘the rich get
richer, the poor get poorer’ tendency where larger pools are more attractive and thus grow even larger, and
all else being equal, the equilibrium is a single huge pool (thankfully, all else is not equal). If miners adopt
the proposed strategy, the tendency will be to maintain the status quo distribution, so pools can rise and fall
based on their merits. Miners will enjoy the low variance of a single huge pool, without the centralization of
power problem.”
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4 Equilibrium Characterization and Implications

We now allow the passive mining friction Λpm > 0, and characterize the equilibrium quan-

tity and distribution of mining activities. Λpm introduces heterogeneity across pools, pins

down the equilibrium pool-size distribution, and reveals how mining pools affect the arms

race in a realistic setting with market powers. We impose a simple parametric assumption.

Assumption 1. ρR < N .

In our model, the aggregate risk tolerance of a measure N of CARA active miners is N
ρ

.

Assumption 1 essentially requires that the implied CRRA risk aversion, which is W ρ
N

with

W being the aggregate wealth of Bitcoin community, to be below W
R

, with R being the dollar

reward of each block. This trivially holds for reasonable CRRA coefficients (e.g., 2.)

4.1 Active Miners’ Hash Rates Allocations

Since each infinitesimal individual active miner within the continuum takes the fee vector

fm, and more importantly the pool m’s total hash rates Λm = Λam + Λpm as given, the first

order condition from miners’ maximization (10) gives,

R(1− fm)

Λ︸ ︷︷ ︸
risk-neutral valuation

e
−ρR(1−fm) λm

Λam+Λpm︸ ︷︷ ︸
risk aversion discount

= C︸︷︷︸
marginal cost

. (13)

The left (right) hand side gives the marginal benefit (cost) of allocating λm to a pool with

size Λm = Λam + Λpm, wherein the first term is the risk-neutral valuation of the marginal

benefit to hash rate: reward times the probability of winning ( 1
Λ

), adjusted by proportional

fee. The second term captures the miner’s risk-aversion discount. Fixing allocation λm, the

larger the pool size Λm he participates, the smaller the discount — as illustrated in Section

2.3; Fixing the pool size, the risk-aversion discount however worsens with his allocation λm.

Since the optimal allocation rule equates marginal benefit with marginal cost, the better

risk-sharing benefit from a larger pool leads to a higher active hash rate allocation.

In equilibrium we have Λam = Nλm, therefore

λm
Λpm

= max

{
0,

ln R(1−fm)
CΛ

ρR(1− fm)−N ln R(1−fm)
CΛ

}
, (14)
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where zero captures the corner solution of a pool not attracting any active miners (e.g., when

fm is high enough). Equation (14) leads to the following proposition that relates pool fees

to the equilibrium active hash-rate allocation in each pool.

Proposition 3 (Active Mining Allocation). In any equilibrium, and for any two pools m

and m′,

1. If fm = fm′ , then λm
Λm

=
λm′
Λm′

;

2. If fm > fm′ then we have λm
Λm
≤ λm′

Λm′
. If in addition λm′ > 0, then λm

Λm
<

λm′
Λm′

.

Proposition 3 tells that pools that charge the same fee grows at the same proportion,

and pools that charge higher fees grow slower.

4.2 Pool Managers’ Fee-setting

For pool owners, the objective in (8) can be written as

Λam(fm) + Λpm

Λ(fm, f−m)

(
1− e−ρRfm

)
=

Λam(fm) + Λpm

Λam(fm) + Λpm + Λ−m

(
1− e−ρRfm

)
(15)

where Λ−m =
∑

m′ 6=m (Λam′ + Λpm′) is the global hash rate minus pool m’s. Compared to

the miner’s problem in (10), pool owners engage in a monopolistic competition, and take

into consideration that fm not only affects their own pools’ hash rates but also the global

hash rate. Plugging Eq. (14) into Eq. (15) gives

1− e−ρRfm
Λ(fm)

·max

{
1,

ρR(1− fm)

ρR(1− fm)−N ln R(1−fm)
CΛ(fm)

}
︸ ︷︷ ︸

value per unit of initial size Λpm

· Λpm︸︷︷︸
initial size

(16)

Eq.(16) illustrates the dependence of global hash rate on pool fees: when each pool manager

sets the fee to maximize her value per unit of initial size Λpm, she also takes into account

the impact of her fee on the global hash rates Λ(fm).

Proposition 4 characterizes a monotonicity property between a pool’s passive hash rate

and the optimal fee it charges in equilibrium.
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Proposition 4 (Endogenous Pool Fees). ∀m,n ∈ {1, · · · , N} where Λam > 0 and Λan > 0,

Λpm > Λpn implies f ∗m > f ∗n. In other words, among pools that grow, a larger pool charges a

higher fee.

Note that if a pool charges fm = 1, it would not attract active miners and grow. Therefore

a growing pool must be charging an interior fee less than one. The intuition for Proposition

4 is rooted in that pools with more initial passive hash rates take into account their larger

“global hash rate impacts.” To see this, suppose pool owners ignore the fee impact on global

hash rate and view Λ(fm) as a constant, then the optimal choice of fm should maximize

the term “value per unit of Λpm”, which is independent of Λpm, leading to all managers

charging the same fee. However, pool managers who behave as oligopolists understand that

Λ′(fm) < 0; they take into account the fact that charging a lower fee brings more active

miners, pushing up the global hash rates Λ and hurting her pool’s profit. In the extreme,

a monopolist pool manager fully internalizes the cost of higher global hash rates. Because

every unit of active hash rate affects the aggregate hash rates equally, on the margin, a

larger pool who takes into account her “global hash rate impact” has a stronger incentive to

raise fees and curb the increase in mining difficulty, just like firms with larger market power

charge higher prices and produce less in a standard oligopolistic competition.27

We next discuss two implications of the equilibrium: (i) mining pools as a financial

innovation escalates the mining arms race (Section 4.3), and (ii) there is a mean-reverting

force in pool growth (Section 4.4).

4.3 Financial Innovation and Arms Race

Recall that absent mining pools, there is no solo-mining — an artifact of our modeling

choice of the continuum of infinitesimal miners (see footnote 23). To find an estimate of

solo-mining similar to that in a model with N discrete active miners, and to compare mining

activities with and without mining pools in an empirically relevant manner, we define solo-

mining as active miners acting in groups of unit measures, and then apply the optimality

condition (13)) so that no active miner would like to acquire more hash rates. Then the

total global hash rate under solo mining only is R
C
e−ρR, which is significantly smaller than

27This result is not driven by that pool managers benefit from charging a higher fee to get higher revenues
from the passive miners. In fact, absent active mining and the “global hash rate impact,” all pools would
charge the same fee f = 1 to maximize the revenue from passive miners.
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the total global hash rate with full risk sharing, R
C
e−ρR/N , especially for large N .

Our model is an example of financial innovation/vehicle that seemingly benefits individual

miners but in aggregate could lower their welfare (which is the opposite of global hash rates).

Miners’ welfare losses become significant precisely when the risk-sharing benefit of mining

pools is large — say, when the risk-aversion ρ is high, or the measure of active miners N is

large.

This economic force, which is already transparent even in the frictionless benchmark, is

of first-order importance for PoW-based blockchain consensus generation. The equilibrium

global hash rates are lower in the main model with frictions, because active miners face

positive fees that discourage their hash rate acquisition. However, under reasonable param-

eter choices, the implied global hash rates with mining pools can still multiply that without

mining pools.

For illustration, it suffices to study the case with pools of homogeneous size, and com-

pare the resulting endogenous global hash rates to the solo-mining case as well as the

frictionless benchmark. Say Λpm = Λp for all m ∈ {1, ...,M}, and focus on the situa-

tion where fees take interior solutions. After some simplifications of the first-order con-

ditions of (8) and (10), one can show that the endogenous fee f ∗ (charged by all pools)

solves ρR (1− f) (1− z (f)) = N ln R(1−f)z(f)
MCΛp

, and the global hash rates Λ = MΛp
z(f∗)

, with

z (f) ≡ (M−1)(1−e−ρRf)[N−ρR(1−f)]

Me−ρRfρ2R2(1−f)−(M−1)(1−e−ρRf)
.

Figure 2 provides a quantitative illustration. Each panel in Figure 2 plots the endogenous

global hash rates, as a function of reward R, under three scenarios: (i) solo-mining without

pools; (ii) full risk-sharing implied by Proposition 2 without passive mining friction; and (iii)

monopolistic competition with passive hash rates as initial pool size, with M = 2. Panels A

and B plot the global hash rates Λ for two risk-aversion coefficients ρ; Panels C and D plot

Λ for two values of the active miner measure N .

First, we observe that for solo-mining, the implied global hash rates increases with re-

ward R initially but decreases when R is sufficiently large; this is because the risk becomes

overwhelming when R increases.28 Second, when we compare Panel A (B) with C (D)

which feature N = 10 and N = 100 respectively, they by definition have the same solo-

mining outcomes, but their full risk-sharing hash rates differ by at most a factor of 1.4. The

relative small factor is expected from standard portfolio theory: quantitatively further risk-

28A result of CARA preference which has no wealth effect; the risk increases with R.
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diversification provides little benefit when an individual is already diversified across about

20 assets (pools, in our setting; see Figure 7.10 on page 254 in Fama, 1976).

Figure 2: Global Hash rates under Solo, Full Risk Sharing, and Equilibrium

Global hash rates Λ is plotted against block reward R under various parameters. We consider symmetric M
pools each with passive hash rates Λp = 3×106. The common parameter is C = 0.002, and other parameters
are given as following. Panel A: M = 2, N = 10, ρ = 2× 10−5; Panel B: M = 2, N = 10, ρ = 1× 10−5; Panel
C: M = 2, N = 100, ρ = 2× 10−5; Panel D: M = 2, N = 100, ρ = 1× 10−5.

Now we move on to the equilibrium outcome under mining pools with passive hash rates.

Relative to solo mining, both the full risk-sharing and the mining-pool equilibrium produce

about five times of global hash rates for ρ = 2 × 10−5 and R = 105, for both levels of N .

This wedge gets amplified greatly for R = 2×105, which is reasonable for peak Bitcoin price

in December 2017: the hash rates with mining pools rise to about ten times of that with

only solo mining. The arms race escalates when miners are more risk-averse.

As expected, the homogeneous two-pool equilibrium generates lower global hash rates

compared to the full risk-sharing equilibrium. Intuitively, pool managers with some market

power take into account the arms race effect and hence discourage active miners’ hash rate

acquisition by raising their fees. Even when we give the best chance of this market-power

force to produce a countervailing effect by considering the lowest possible of number of pools
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(here, M = 2), quantitatively there is no big difference from the full risk-sharing case. In

fact, the difference between the full risk-sharing and two-pool cases becomes invisible when

N is large (Panel C and D). Intuitively, when there are more competing active miners (i.e.

N is large), pools engage in a more aggressively competition which is the root of arms race.

The take-away from Figure 2 is that no matter whether we consider the friction of passive

mining, the introduction of mining pools as a form of financial innovation escalates the mining

arms race and contributes to its explosive growth in energy consumption in recent years.

4.4 Equilibrium Pool Growth

Propositions (3) and (4) lead to a key conclusion about the distribution of pool sizes.

Corollary 1 (Pool Growth Rate). A pool with a larger initial size Λpm has a (weakly) lower

growth rate Λam
Λpm

.

This result implies that profit-maximizing mining pools do not create excessive central-

ization, because a natural force from the market power of larger pools combined with the

arms race nature of the mining technology limits their growth.

For illustration, Figure 3 studies a three-pool equilibrium with comparative statics for

the endogenous fees charged by pool managers {f1, f2, f3} as well as equilibrium pool net

growth {Λa1/Λp1,Λa2/Λp2,Λa3/Λp3}. Without loss of generality, we assume Λp1 > Λp2 > Λp3.

Panel A presents how the equilibrium fees respond to exogenous changes in the risk

aversion ρ of this economy, and Panel B presents how the equilibrium fees vary with the

unit hash rate acquisition cost C. Not surprisingly, when risk aversion increases, individual

miners’ demands for risk sharing increase, and mining pools charge higher fees as shown in

Panel A of Figure 3. At the same time, larger pools charge higher fees, as predicted by

Proposition 4. Panel C shows that larger pools hence grows slower.

Panel B and D illustrate how the equilibrium outcomes change when we vary the constant

hash rate acquisition cost C. As the hash rate acquisition cost C lowers, more active hash

rates enter, and pool managers have stronger incentives to lower fees to compete for them.

Fees and pool growths across pools are similar to other panels.

Importantly, this absence of dominant pools over time implies that the market power and

internalization of mining externality by pool owners (discussed in Section 4.3) is small relative

to the extent risk sharing through mining pools encourage individuals to acquire additional
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Figure 3: Comparative Statics of Pool Fees and Growth

Equilibrium fees {f1, f2, f3} and the net pool growth rates Λa1/Λp1,Λa2/Λp2, and Λa3/Λp3 are plotted against
miner risk aversion ρ and unit hash rate cost C, respectively. The baseline parameters are: R = 1 × 105,
Λp1 = 3× 106,Λp2 = 2× 106, Λp3 = 1× 106, and N = 100. In Panel A and C: C = 0.002. In Panel B and
D: ρ = 2× 10−5.

hash rate. Consequently, even though Figure 2 depicts homogeneous pools, the aggravation

of the mining arms race would not be mitigated much in the presence of heterogeneous pools.

5 Empirical Evidence

Our theoretical analyses so far offer three predictions. First, global hash rates grow

significant as mining pools increasingly dominate the Bitcoin mining industry, as illustrated

in Figure 1. This section provides supporting evidence for the other two cross-sectional

predictions, that a pool with a larger initial size tends to (i) charge a higher fee, and (ii)

grow slower in percentage terms.
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Data description. Our data consist of two major parts, one on pool size evolution and the

other on pool fee/reward type evolution. In the first part, a pool’s size (share of hash rates)

is estimated from block-relay information recorded on the public blockchain (see BTC.com).

Specifically, we count the number of blocks mined by a particular pool over some time

interval, to be divided by the total number of newly mined blocks globally over the same

time interval; the ratio is the pool’s estimated hash rate share. Balancing the trade-off

between estimation precision and real-timeness, we take the time interval to be weekly.29 In

the second part, information about fee contracts is obtained from Bitcoin Wiki. We scrape

the entire revision history of the website (477 revisions in total) and construct a panel of

pool fee evolutions over time.30 Pool fees are aggregated to quarterly frequency by simple

average. The two parts are then merged to construct a comprehensive panel on pool size

and fee evolution. Table 1 in Section 2 has provided summary statistics of the data. Our

main analysis is at a quarterly frequency given potentially lagged adjustments.

Empirical results. Every quarter we first sort pools into deciles based on the start-of-

quarter pool size (estimated hash-rate share within the first week). We then calculate the

average proportional fee and average log growth rate across mining pools for each decile.

Figure 4 shows scatter plots for these decile-quarter observations: Panel A (B) presents

the relationship between initial pool size and proportional fee (subsequent pool size growth

rate). For robustness, we present the scatter plots for three two-year spans 2012-2013, 2014-

2015, and 2016-2017. As predicted by our theory, Panel A shows that larger pool grows in

a slower pace, and Panel B shows that cross-sectionally a larger pool charges a higher fee.

All regression coefficients are statistically significant at 5% level for all three time periods.

Detailed regression results are reported in Table 2.

29Our estimation procedure is standard. For example, blockchain.info provides real-time updates about
estimated hash rate distribution over the past 24 hours, 48 hours, and 4 days using the same method.
Bitcoinity tracks about 15 large mining pools’ real time hash-rate changes on an hourly basis. We favor
weekly frequency over daily frequency because among all the pools that successfully find at least one block
within a quarter, only (more than) 1.96% (42%) do not find any blocks within the first week (day) of that
quarter. This is important because later analysis uses the estimated hash-rate share within the first week as
the initial pool size for the quarter.

30Two large pools are missing from the Wiki: Bixin (which was available in the wiki as HaoBTC prior to
Dec 2016), and BTC.top, for which we fill their information through direct communication with the pools.
Bitfury, which is also missing from the Wiki, is dropped as it is a private pool not applicable to our analysis.
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Figure 4: Empirical Relationships of Pool Sizes, Fees, and Growths

This figure shows the binned plots of the changes in logShare (Panel A) and Proportional Fees (Panel
B) against logShare. Share is the quarterly beginning (the first week) hash rate over total market hash
rate. Fees are the quarterly averaged proportional fees. Within each quarter t,∆logSharei,t+1, Proportional
Feei,t, and logSharei,t are averaged within each logSharei,t decile, and these mean values are plotted for
2012-2013, 2014-2015, and 2016-2017, respectively. Red lines are the fitted OLS lines, with t-stat reported
at the bottom. Data sources and descriptions are given in Section 5.
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Table 2: Pool Sizes, Fees, and Growths: Regression Results

This table reports the regression results when we regress Proportional Fee and ∆logShare on logShare,
respectively. Share is the quarterly initial hash rate over total market hash rate. Fees are the quarterly aver-
aged reward fees. Within each quarter t, ∆logSharei,t+1, Proportional Feei,t, and logSharei,t are averaged
within each logSharei,t decile. The resulting mean values of ∆logSharei,t+1 and Proportional Feei,t are
then regressed on the mean value of logSharei,t respectively over two years in the left three columns, over
the entire sample period in the fourth column, and in addition control for quarter fixed effects in the fifth.
Data sources and their descriptions are given in Section 5.

Panel A: ∆logShare
2012-2013 2014-2015 2016-2017 2012-2017 2012-2017

logShare -0.219** -0.153*** -0.122** -0.176*** -0.176***
(-3.36) (-3.80) (-3.42) (-6.12) (-6.00)

Intercept 0.200* 0.135* 0.108* 0.153***
(2.01) (2.47) (2.21) (3.77)

Quarter FE No No No No Yes
Nobs 73 80 78 235 235

Panel B: Proportional Fee
2012-2013 2014-2015 2016-2017 2012-2017 2012-2017

logShare 0.452*** 0.203* 0.487*** 0.318*** 0.355***
(3.62) (2.08) (5.55) (5.24) (5.59)

Intercept 0.431* 0.683*** 0.924*** 0.700***
(2.07) (5.24) (11.38) (8.55)

Quarter FE No No No No Yes
Nobs 38 51 37 126 126

t statistics in parentheses
∗ : p < 0.05, ∗∗ : p < 0.01, ∗ ∗ ∗ : p < 0.001

6 Discussions and Extensions

In this section, we first examine how the market power of mining pools survives pool entry.

We then discuss how our model applies to alternative consensus protocols such as proof-of-

stake. Along the way, we also present an economist’s perspective on several important issues

such as the nature of risk and other centralization and decentralization forces.

6.1 Entry and Market Power of Mining Pools

Our model takes the pool managers with endowed passive hash rates as exogenously

given. This section discusses the pool’s intrinsic market power due to its passive hash rates,

and show that our results are robust to potential entry of competing mining pools.

We first consider the possibility of free entry of pool managers without passive hash rates.
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In equilibrium, incumbents always charge strictly positive fees to some active miners. We

then discuss the entry of pool managers with passive rates, so that the number of pools is

endogenously determined by the entry condition.

Pool entry without passive hash rates. Denote the number of incumbent pools with

passive hash rate by M I . Suppose new pool managers can enter the market by incurring

a setup cost K ≥ 0 each; the case of K = 0 corresponds to the case of free entry. We

assume that entrant pools do not have passive hash rates and start with Λpm = 0, ∀m ∈
{M I + 1, · · · ,M I + ME}, where ME is the endogenous number of new entrants. Denote

M ≡M I +ME the total number of (potential) mining pools.

We now show that without loss of generality, at most one pool without passive hash rates

enters; and incumbent pools with Λpm > 0 always enjoy some market power.

Proposition 5 (Entry and Market Power of Incumbent Pools).

1. For any K > 0, at most one pool enters. When K = 0, equilibrium outcomes for

active miners’ allocation and payoff are equivalent to the case with one pool entering

and charging zero fee.

2. Incumbent pools with passive hash rates always charge positive fees and attract positive

measure of active hash rate, even with free entry (K = 0).

The first part of the proposition follows from Proposition 2. Entrant pools are homo-

geneous and compete away any net profit among themselves. Therefore in equilibrium at

most one pool enters and breaks even. Proposition 2 implies that when K = 0, the size

distribution of entry pools is irrelevant from active miners’ perspective.

The second part has profound implications. Given that individual active miners face a

portfolio diversification problem, incumbent pools always retain some monopolistic power

even under free entry. For any fee fm charged by incumbent m, the marginal benefit of

allocating the first infinitesimal hash rate to this incumbent can be calculated by setting λm

and Λam to zero in R(1− fm)e
−ρR(1−fm) λm

Λam+Λpm in Eq. (13), which gives exactly the post-fee

risk-neutral valuation,

R(1− fm)

Λ
. (17)
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Suppose, counter-factually, that an incumbent pool with positive passive hash rates

charge zero fee fm = 0; then the risk-neutral valuation R
Λ

in Eq. (17) must exceed the

marginal cost C in any equilibrium with strictly positive active mining (due to the risk-

aversion discount in Eq.(13)).31 As a result, incumbent pools start charging positive fees.

Compared with a standard perfectly competitive market wherein a Bertrand-type price

competition allows entry firms to compete away any profit of incumbents, incumbent pools

here with strictly positive passive hash rates face a monopolistic competition: They are

essentially offering products with higher quality than entry pool with zero passive hash

rates. In particular, the first infinitesimal unit of hash rates allocated in incumbent pools

with Λpm > 0 corresponds to a risk-neutral valuation, while it has a strictly positive risk-

aversion discount in the new entry pool without passive hash rates.

We also note that with incumbents’ market power, the active miners never achieve full

risk sharing, resulting in a welfare distortion fixing the level of aggregate hash rates. But

as we discussed earlier, the lack of full risk-sharing also alleviates the arms race and reduce

energy consumption.

Pool entry with passive hash rates and number of incumbents. Given that entrants

without hash rates essentially offer inferior quality of goods, what if some new pool managers

with passive hash rates can enter?

Note, for entry with passive hash rates, the entry costs are strictly positive (K > 0)

including the acquisition cost of passive rates and set-up cost. Given a fixed set-up cost, a

finite number of pools enter. Then the equilibrium outcome resembles the one in our main

model, with an endogenous number of incumbent pools M I so that it is no longer profitable

to enter. The nature of post-entry industrial organization of mining pools is qualitatively

similar, with each pool exerting its monopolist power by charging positive fees to its active

mining customers. As in any monopolistic competition, entry continues until the profits

cannot cover the entry costs.

31In equilibrium, positive active mining in the entry pool with zero fee requires that R
Λ e
−ρR/N = C, which

implies that R
Λ > C.
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6.2 The Nature of Risk

Given that risk sharing drives the formation of mining pools, several issues regarding

the nature of the risk are worth discussing. First, a miner’s underlying mining risk B̃, i.e.,

whether and when a miner finds the solution, is idiosyncratic in its nature. Our paper em-

phasizes the importance of diversification, rather than pricing idiosyncratic risk (via pools).

Idiosyncratic risk matters little for pricing exactly because agents diversify it away.

The idiosyncratic nature of mining risk may also lead to a hasty conclusion: risk-averse

agents who are well-diversified on their financial wealth should be neutral to the idiosyncratic

mining risk if they can engage in infinitesimal amount of mining. This claim is incorrect,

because the celebrated asset pricing result holds only when agents can trade infinitesimal

“shares” of assets with idiosyncratic risks (which, in a way, is similar to participating in

mining pools). But in our model, without participating in pools, acquiring an infinitesi-

mal amount of hash rate shrinks the probability of winning toward zero without changing

the magnitude of (risky) reward.32 If this reward is significant relative to the agent’s con-

sumption/wealth, then risk-diversification benefits remain for this lottery with infinitesimal

winning probability.

Second, there is anecdotal evidence that miners are under-diversified for their idiosyn-

cratic mining incomes. It is also important to realize that throughout our observation period,

the mining income often represents a significant source of the miner’s total income, justifying

the relevance of diversifying the idiosyncratic risk in this context.33 Furthermore, as in the

discussion of the now famous “fallacy of large numbers” by Samuelson (1963) and a further

treatise by Ross (1999), mining over a long period of time does not help in general.

Third, why blockchain protocols randomize the allocation of newly minted cryptocurren-

cies or crypto-tokens to start with? Although outside our model, we believe the design is

motivated by the need to ensure proper ex-post incentives of record-generation once a miner

32In standard asset pricing models, an agent with utility function u who consumes C̃ and faces an asset

with idiosyncratic payoff R̃ and price p, solves maxε E
[
u
(
C̃ + εR̃− εp

)]
. Then the Euler equation gives

the risk-neutral pricing p = E[R̃] if R̃ is idiosyncratic. However, in our mining technology, the miner who

can acquire infinitesimal hash rates solves maxε εE
[
u
(
C̃ +R− εp

)]
+ (1− ε)E

[
u
(
C̃ − εp

)]
, as he receives

R with probability ε. The curvature of u enters in the valuation p = E[u(C̃+R)−u(C̃)]

E[u′(C̃)]
.

33The recent introduction of future contracts on CBOE and CME may alleviate this problem in a significant
way, but it is unclear how long it takes for the miner community to actively trading on the future contracts
or for more derivatives and insurance products to be introduced.
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has mined a block. If a miner always gets paid deterministic rewards in proportion to his

hash rate no matter who successfully mines the block, then a successful miner who puts in

very little hash rate (and thus gets very little reward) worries less about not being endorsed

by subsequent miners because the benefit of mis-recording could outweigh the expected cost

of losing the mining reward.

Finally, we can easily introduce systematic risk in the mining reward R̃, which we take

as deterministic so far. The Bitcoin mining reward these days is predominantly determined

by the price of the Bitcoin. If—which is a big if—Bitcoin ever becomes an important private

money that is free from inflation (due to rule-based supply), as some advocates envision,

then its exchange rate against fiat money would presumably be driven by macroeconomic

shocks such as inflation. It constitutes an interesting future study to analyze the role of

systematic risk in our framework, especially when R̃ offers some diversification benefits for

investors in the financial market.

6.3 General Implications for Consensus Protocols

Other proof-of-work blockchains Our model can help us better understand the cen-

tralizing and decentralizing forces in other proof-of-work blockchains. For example, major

cryptocurrencies such as Ethereum, Bitcoin Cash (BCH), Litecoin (LTC), and ZCash (ZEC),

etc., all rely on PoW and share features captured in our model. They have all witnessed the

rise of mining pools and similar trends in their mining industrial organizations.

Proof-of-stake protocols A popular alternative to the PoW protocol is the Proof-of-

Stake (PoS) protocol. In PoS, independent nodes are randomly selected to append the

blockchain, just like in PoW, but the probability to be selected is determined by the amount

of “stake” held, instead of the amount of computing power consumed. Examples include Nxt

and BlackCoin, where the calculation of “stake” involves the amount of crypto assets held

(randomized block selection method), as well as Peercoin, where the calculation of “stake”

involves how long a crypto asset has been held (coin age based system).34

Even though our model focuses on PoW protocols, its implications for the industrial or-

ganization of players in the decentralized consensus generation process applies to PoS equally

34 PoS systems are more environmentally friendly due to lower electricity consumption. While practitioners
have criticized PoS systems citing a “nothing at stake” problem, Saleh (2017) shows that the problem goes
away once we endogenize crypto-token price and the speed to consensus.
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well. This is because of PoS’s similar features of risky rewards and negative externality. The

same risk-sharing motive should drive the formation of “staking pools.” This indeed hap-

pens: The largest players such as StakeUnited.com, simplePOSpool.com, and CryptoUnited

typically charge a proportional fee of 3% to 5%. An individual’s problem of allocating her

stake is exactly the same as in (10), with λm indicating the amount of stake allocated to pool

m. All our results go through, except that in PoS the consensus generation process does not

necessarily incur wasterful energy consumption.

Several recent trends in the blockchain universe are consistent with our model predic-

tions: For example, in light of the high energy associated with PoW protocols, Ethereum

plans to switch from PoW to PoS (known as Casper); Recognizing mining pools’ inevitable

rise, systems such as EOS adopts delegated-Proof-of-Stake (DPoS) in its consensus gener-

ation process, in which a small group of validators can take control of the network: DPoS

stakeholders vote for delegates (typically referred to as block producers or witnesses) who

maintain consensus records and share rewards with their supporting stakeholders, in propor-

tion to their stakes after taking cuts, just like the pool managers in our model who charge

fees and give out proportional rewards to individual miners.35

6.4 Centralization in Decentralized Systems

In this paper we focus on risk sharing and market power as a centralizing and decentraliz-

ing force. This perspective does not preclude other forces. For example, Chapman, Garratt,

Hendry, McCormack, and McMahon (2017), de Vilaca Burgos, de Oliveira Filho, Suares,

and de Almeida (2017), and Cong and He (2018) discuss how the concern for information

distribution could make nodes in blockchain networks more concentrated.

The blockchain community has also proposed several reasons why a mining pool’s size

may be kept in check: (1) ideology: Bitcoin miners, at least in the early days, typically have

strong crypto-anarchism background, for whom centralization is against their ideology. We

think this force is unlikely to be first-order as Bitcoin develops into a hundred-billion-dollar

industry; (2) sabotage: just like the single-point-of-failure problem in traditional centralized

systems, large mining pools also attract sabotages, such as decentralized-denial-of-service

35Delegates on LISK, for example, offer up to more than 90% shares of the rewards to the voters. As of Oct
2018, about 80 percent offer at least 25% shares (https://earnlisk.com/). Some DPoS-based systems such as
BTS and EOS traditionally have delegates paying little or no rewards to stakeholders, but that is changing.
See, for example, https://eosuk.io/2018/08/03/dan-larimer-proposes-new-eos-rex-stake-reward-tokens/.
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(DDoS) attacks from peers.36 While sabotage concerns could affect pool sizes, it is outside

the scope of this paper; (3) trust crisis: it has been argued that Bitcoin’s value builds on it

being a decentralized system. Over-centralization by any single pool may lead to collapse in

Bitcoin’s value, which is not in the interest of the pool in question. Empirical evidence for

this argument, however, is scarce. We find no significant correlation between the HHI of the

mining industry with bitcoin prices. Nor do we find any price response to concerns about

GHash.IO 51% attack around July in 2014.

7 Conclusion

Our paper’s contribution is three-fold. First, we formally develop a theory of mining

pools that highlights risk sharing as a natural centralizing force. When applied to proof-

of-work-based blockchains, our theory reveals that financial innovations that improve risk

sharing can escalate the mining arms race, increasing energy consumption. Second, we

explain why a blockchain system could remain decentralized over time, and find empirical

evidences from the Bitcoin mining industry that support our theory. Albeit not necessarily

the only explanation for the industry evolution, ours closely ties to the risk-sharing benefit —

the main driver for the emergence of mining pools in the first place. Our framework therefore

serves as a backbone upon which other external forces (e.g. DDoS attacks) could be added.

Finally, our paper adds to the literature on industrial organization by incorporating the

network effect of risk sharing into a monopolistic competition model and highlight in the

context of cryptocurrency mining the roles of risks and fees in firm-size distribution.

As a first economics paper on mining pools, we have to leave many interesting topics

to future research. For example, we do not take into account potential pool collusion or

alternative pool objectives. Anecdotally, there is speculation that a large pool ViaBTC,

along with allies AntPool and BTC.com pool, are behind the recent promotion of Bitcoin

Cash, a competing cryptocurrency against Bitcoin. Hence these pools’ behavior in Bitcoin

mining may not necessarily be profit-maximizing. We also do not consider the ramification

of concentration along the vertical value chain of mining. For instance, Bitmain, the owner of

36See, for example, Vasek, Thornton, and Moore (2014). Owners or users of other mining pools have
incentives to conduct DDoS attacks because it helps reduce the competition they face and potentially attract
more miners to their pools. Opposition of Bitcoin, such as certain governments, banks, traditional payment
processors may also attack. For a summary, see http://www.bitecoin.com/online/2015/01/11102.html.
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AntPool and BTC.com, as well partial owner of ViaBTC, is also the largest Bitcoin mining

ASIC producer who currently controls 70% of world ASIC supply. Because we focus on pool

formation and competition, we leave open an orthogonal (geographic) dimension of mining

power concentration: locations with cheap electricity, robust network, and cool climate tend

to attract disproportionately more hash rates. In this regard, our findings constitute a

first-order benchmark result rather than a foregone conclusion.
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Appendix

A Proofs of Lemmas and Propositions

A1. Proof of Proposition 1

Proof. It is easy to verify that E[Xpool] = E[Xsolo]. Hence it suffices to show that Xsolo is a

mean-preserving spread of Xpool. To see this, note that

Xsolo = (B̃A
solo + B̃B

solo)R− B̃B
soloR = B̃poolR− B̃B

soloR

=
λA

λA + λB
B̃poolR+

λB
λA + λB

B̃poolR− B̃B
soloR

= Xpool +

(
λB

λA + λB
B̃poolR− B̃B

soloR

)
, and

E
[

λB
λA + λB

B̃poolR− B̃B
soloR | Xpool

]
= 0, (18)

where B̃i
solo, i ∈ {A,B} denotes the number of blocks a miner/pool with hash rate λi finds within

time T . (18) holds because

E
[

λB
λA + λB

B̃poolR− B̃B
soloR | B̃pool = n

]
=

λB
λA + λB

nR− E
[
B̃B
solo | B̃pool = n

]
R, while

E
[
B̃B
solo | B̃pool = n

]
= E

[
B̃B
solo | B̃A

solo + B̃B
solo = n

]
=

n∑
k=1

k

(
e−λB

λkB
k!

)(
e−λA

λn−kA
(n−k)!

)
e−(λA+λB) (λA+λB)n

n!

=
n∑
k=1

k
n!

k!(n− k)!

(
λB

λA + λB

)k ( λA
λA + λB

)n−k
=

λB
λA + λB

n

A2. Proof of Proposition 2

Proof. We prove the more general case with potential entrant pools. We start with individual

miner’s problem in Eq. (10). With Λpm = 0, the derivative with respect to λm is

1

Λ
R(1− fm)e−ρR(1−fm) λm

Λam − C (19)

Note that in a symmetric equilibrium, Λam = Nλm. Therefore the marginal utility of adding hash

rate to pool m is simply
1

Λ
R(1− fm)e−ρR(1−fm)/N − C (20)
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which is strictly monotone (either decreasing or increasing) in fm over [0, 1]. Then an equilibrium

must have fm being the same for all incumbent pools, for otherwise a miner can profitably deviate

by moving some hash rate from one pool to another. If all incumbent pools are charging positive

fees, then at least one pool owner can lower the fee by an infinitesimal amount to gain a non-trivial

measure of hash rate, leading to a profitable deviation. Therefore, fm = 0 ∀ m ∈ {1, 2, · · · ,M I},
where M I denotes the number of incumbent pools. We use M to denote the total number of entrant

and incumbent pools.

Now suppose we have entrants who can enter by paying K, they cannot possibly charge a

positive fee because otherwise all miners would devote hash rate to incumbents who charge zero

fees. Given that they are then indifferent between entering or not, any number of entrants could

be an equilibrium outcome if K = 0. If K is positive, they cannot enter and recoup the setup cost.

Now for individual miners to be indifferent between acquiring more hash rate or not, the global

hash rate Λ has to equalize the marginal benefit of hash rate with its marginal cost C, which leads

to Λ = R
C e
−ρR/N . Therefore the payoff to each miner is

1

ρΛ

[
M∑
m=0

Λam

(
1− e−ρR

λm
Λam

)]
− R

N
e−ρR/N =

1

ρ
(1− e−ρR/N )− R

N
e−ρR/N , (21)

where we have used the fact that
∑M

m=0 Λam = Λ, the sum of all hash rates of active miners in

consideration with an aggregate measure N . And the utility from mining in pools is strictly positive,

as it is easy to show that RHS is strictly positive when R > 0. So miners indeed join these pools.

The exact distribution of pool size does not matter as long as
∑M

m=0 λm = Λ/N = R
NC e

−ρR/N .

A3. Proof of Proposition 3

Proof. Obviously, for pools charging the same fm, the RHS of (14) is the same, implying λ∗m
Λpm

is

the same. Now, because of free entry of mining (fully flexible hash rate acquisition), in equilibrium

(13) implies that

R(1− fm) = CΛe
ρR(1−fm) λm

Λam+Λpm ≤ CΛeρR(1−fm)/N < CΛe, (22)

where the last inequality follows from Assumption 1. This implies that the RHS of (14), if positive,

has negative partial derivative w.r.t. fm. Therefore, among pools having positive active mining, a

pool charging a higher fee would have a smaller net growth λm
Λpm

in equilibrium.

A4. Proof of Proposition 4

The following lemmas are useful for the proof of Proposition 4.

Lemma 1. 1− N
ρR(1−f∗m) ln R(1−f∗m)

CΛ∗ > 0.
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Proof. Proof by contradiction. Suppose otherwise, then

CΛ∗ ≤ R(1− f∗m)e−
ρR(1−f∗m)

N < R(1− f∗m)e
−ρR(1−f∗m)

Λ∗am
N(Λ∗am+Λpm) ≤ CΛ∗.

Notice that the last inequality comes from active miner’s FOC.

Lemma 2. ∀m ∈ {1, · · · ,M}, if 1 ≥ 1

1− N
ρR(1−f∗m)

ln
R(1−f∗m)
CΛ∗

then f∗m = 1.

Proof. When 1 ≥ 1

1− N
ρR(1−f∗m)

ln
R(1−f∗m)
CΛ∗

, f∗m lies in an interval F ⊆ [0, 1] where Λm = Λpm. Within

F , Λ = Λ∗ is unaffected by unilateral changes to fm. Hence f∗m = argmaxF
1−e−ρRfm

Λ∗ = 1.

This lemma simply confirms that managers either charge an interior fee or charge the highest

fee and get no active miner. Therefore, when focusing on pools that grow, we only need to examine

those charging interior fees.

Lemma 3. ∀m s.t. fm < 1, pool owners’ FOC holds in equilibrium:

ρRe−ρRfm
(

1− N

ρR(1− fm)
ln
R(1− f)

CΛ

)
−
(

1− e−ρRfm
) N

ρR(1− fm)2

(
1− ln

R(1− f)

CΛ

)

−
(

1− e−ρRfm
)
(

1− N
ρR(1−fm)

ln
R(1−f)
CΛ

+ N
ρR(1−fm)

)
(

1− N
ρR(1−fm)

ln
R(1−fm)

CΛ

)2
N

ρR(1−fm)2 (ln R(1−fm)
CΛ − 1)Λpm

Λ +
∑

m′∈M1

N
ρR(1−fm′ )(

1− N
ρR(1−fm′ )

ln
R(1−fm′ )

CΛ

)2 Λpm′

= 0, (23)

where set M1 is so defined that ∀m ∈M1, f
∗
m < 1.

Proof. Substitute

dΛ
dfm

= −

∂
∂fm

Λ− 1

1− N
ρR(1−fm)

ln
R(1−fm)

CΛ

Λpm−Λ−m


∂
∂Λ

Λ− 1

1− N
ρR(1−fm)

ln
R(1−fm)

CΛ

Λpm−Λ−m

 =

1(
1− N

ρR(1−fm)
ln
R(1−fm)

CΛ

)2
N

ρR(1−fm)2
(ln

R(1−fm)
CΛ

−1)Λpm

1+
∑
m′∈M1

N
ρR(1−fm′ )

Λ

(
1− N

ρR(1−fm′ )
ln
R(1−fm′ )

CΛ

)2 Λp′m

into the derivative of pool m’s objective Λpm
1−e−ρRfm

Λ
(

1− N
ρR(1−fm)

ln
R(1−fm)

CΛ

) with respect to fm:

Λpm

 ρRe−ρRfm

Λ
(

1− N
ρR(1−fm) ln R(1−f)

CΛ

) − (1− e−ρRfm) N
ρR(1−fm)2

(
1− ln R(1−f)

CΛ

)
Λ
(

1− N
ρR(1−fm) ln R(1−f)

CΛ

)2

−

(
1− e−ρRfm

) (
1− N

ρR(1−fm) ln R(1−f)
CΛ + N

ρR(1−fm)

)
Λ2
(

1− N
ρR(1−fm) ln R(1−f)

CΛ

)2

dΛ

dfm

 ,

and factor out nonzero terms.

Proof of Proposition 4. We prove the proposition by contradiction. Suppose a larger pool charges

a weakly lower fee. From (23) in Lemma 3, we know that ∀m s.t. fm < 1
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Λpm

Λ∗ +
∑

m′∈M1

N

ρR(1−f ′∗m )(
1− N

ρR(1−f ′∗m )
ln
R(1−f ′∗m )
CΛ∗

)2 Λpm′

= (24)

(
1− N

ρR(1−f∗m) ln R(1−f∗m)
CΛ∗

)2(
1− N

ρR(1−f∗m) ln R(1−f∗m)
CΛ∗ + N

ρR(1−f∗m)

)
1−

ρ2R2(1− f∗m)2e−ρRf
∗
m

(
1− N

ρR(1−f∗m) ln R(1−f∗m)
CΛ∗

)
(1− e−ρRf∗m)N

(
1− ln R(1−f∗m)

CΛ∗

)
 .

Because the left hand side of (24) strictly increases in Λpm (its numerator equals Λpm and denom-

inator is independent of m), to arrive at a contradiction, we only need to show that the RHS of

(24) as a function of f∗m (keeping Λ∗ fixed because we are doing a cross-section comparison across

pools) is increasing, i.e.

∂

∂f


(

1− N
ρR(1−f) ln R(1−f)

CΛ∗

)2(
1− N

ρR(1−f) ln R(1−f)
CΛ∗ + N

ρR(1−f)

)
1−

ρ2R2(1− f)2e−ρRf
(

1− N
ρR(1−f) ln R(1−f)

CΛ∗

)
(1− e−ρRf )N

(
1− ln R(1−f)

CΛ∗

)

 > 0.

(25)

This is true because we can prove a set of stronger results:

∂
∂f

[ (
1− N

ρR(1−f)
ln
R(1−f)
CΛ∗

)
(

1− N
ρR(1−f)

ln
R(1−f)
CΛ∗ + N

ρR(1−f)

)
]
> 0, and (26)

∂
∂f

[(
1− N

ρR(1−f) ln R(1−f)
CΛ∗

)(
1−

ρ2R2(1−f)2e−ρRf
(

1− N
ρR(1−f)

ln
R(1−f)
CΛ∗

)
(1−e−ρRf)N

(
1−ln

R(1−f)
CΛ∗

)
)]

> 0. (27)

To see this, notice that the left hand side of (26) is

N
(1−f)2ρR

−
N ln

(
(1−f)R
cΛ∗

)
(1−f)2ρR

−
N ln

(
(1−f)R
cΛ∗

)
(1−f)ρR + N

(1−f)ρR + 1

−

(
2N

(1−f)2ρR
−

N ln
(

(1−f)R
cΛ∗

)
(1−f)2ρR

)(
1−

N ln
(

(1−f)R
cΛ∗

)
(1−f)ρR

)
(
−
N ln

(
(1−f)R
cΛ∗

)
(1−f)ρR + N

(1−f)ρR + 1

)2 (28)

=
N
(

N
(1−f)ρR − 1

)
(1− f)2ρR

(
−
N ln

(
(1−f)R
CΛ∗

)
(1−f)ρR + N

(1−f)ρR + 1

)2 , (29)

which is positive when N > (1− f)ρR, which always holds because N > ρR (Assumption 1).

Meanwhile, the left hand side of (27) is
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(1− f)2R3ρ3efρR

(
1−

N ln
(

(1−f)R
cΛ∗

)
(1−f)ρR

)
N (efρR − 1)

2
(

1− ln
(

(1−f)R
cΛ∗

)) −
(1− f)2ρ2R2

(
N

(1−f)2ρR
−

N ln
(

(1−f)R
cΛ∗

)
(1−f)2ρR

)
N (efρR − 1)

(
1− ln

(
(1−f)R
cΛ∗

))

+

2(1− f)ρ2R2

(
1−

N ln
(

(1−f)R
cΛ∗

)
(1−f)ρR

)
N (efρR − 1)

(
1− ln

(
(1−f)R
cΛ∗

)) +

(1− f)ρ2R2

(
1−

N ln
(

(1−f)R
cΛ∗

)
(1−f)ρR

)
N (efρR − 1)

(
1− ln

(
(1−f)R
cΛ∗

))2

×
1−

N ln
(

(1−f)R
cΛ∗

)
(1− f)ρR



+

 N

(1− f)2ρR
−
N ln

(
(1−f)R
cΛ∗

)
(1− f)2ρR


1−

(1− f)2ρ2R2

(
1−

N ln
(

(1−f)R
cΛ∗

)
(1−f)ρR

)
N (efρR − 1)

(
1− ln

(
(1−f)R
cΛ∗

))
 , (30)

which is equal to

A

(
1−

N ln
(

(1−f)R
CΛ∗

)
(1−f)ρR

)2

+

N
√
efρR−1

(
1−ln

(
(1−f)R
CΛ∗

))
(1−f)

√
ρR

−
(1−f)

√
R3ρ3(N−(1−f)ρR)

1−
N ln

(
(1−f)R
CΛ∗

)
(1−f)ρR


N
√
efρR−1

(
1−ln

(
(1−f)R
CΛ∗

))


2

N (efρR − 1)
(

1− ln
(

(1−f)R
CΛ∗

)) ,(31)

where A = (1−f)ρ2R2

N2(efρR−1)
(

1−ln
(

(1−f)R
CΛ∗

))2 ×
(

(1− f)N2ρR
(
efρR − 1

) (
1− ln

(
(1−f)R
CΛ∗

))2
+

N
2
(
e
fρR − 1

)(
1− ln

(
(1− f)R

CΛ∗

))
+ (1− f)

2
ρ
2
R

2
(
N

(
1− ln

(
(1− f)R

CΛ∗

))
+N − (1− f)ρR

)1−
N ln

(
(1−f)R
CΛ∗

)
(1− f)ρR

 . (32)

A > 0 when N > (1− f)ρR, which always holds because N > ρR (Assumption 1). Notice that for

equilibrium {f∗m}, Assumption 1 and Lemma 1 imply that the denominator of (31) is also positive.

We conclude that (31) (and thus (27)) is positive.

A5. Proof of Proposition 5

Proof. First, we prove by contradiction that in equilibrium at most one pool enters. Suppose

otherwise, then by a Bertrand argument all entrant pools charge zero fees, which would not render

enough revenues with certainty equivalent exceeding the cost K. A contradiction.

Given that at most one new pools enters, we argue that in equilibrium the new pool must be

collecting a certainty equivalent of K. If the pool collects more than K, then another potential

pool owner can deviate to enter and charge a lightly lower fee to make a positive net profit; if the
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pool owner collects less than K, then it has a profitable deviation to not enter at all.

Denote the fee charged by the entry pool by fE , we have the following lemma.

Lemma 4 (Pool Entry). There exists a strictly positive cutoff K̂ > 0 such that when K > K̂, no

new pool enters. When 0 < K ≤ K̂, at most one pool enters, charging an endogenous fee fE so

that it collects an certainty equivalent of K.

Proof. Suppose this new entrant pool owner charges fE , the marginal benefit of allocating hash

rate to the pool is 1
ΛR(1 − fE)e

−ρR(1−fE)
λE

ΛaE = 1
ΛR(1 − fE)e−ρR(1−fE)/N . If Λ were so large that

this is less than the marginal cost C, no active miner joins which contradicts the new pool owner’s

entry decision. Therefore, in an equilibrium with new pool entry, fE uniquely pins down Λ,

Λ =
1

C
R(1− fE)e−ρR(1−fE)/N , (33)

and

Λ ≥
MI∑
m=1

(Λam + Λpm) =
MI∑
m=1

max

{
Λpm,

ρR(1− fm)Λpm
ρR(1− fm) +N ln[CΛ]−N ln[R(1− fm)]

}
, (34)

where the last equality follows from (14).

In fact, pool owners choose fees to maximize

Λpm ·
1− e−ρRfm

ρΛ

[
1 + max

{
0,

N ln[R(1− fm)]−N ln[CΛ]

ρR(1− fm) +N ln[CΛ]−N ln[R(1− fm)]

}]
. (35)

We note that this optimization completely separates Λpm and fm. Therefore, the optimal fee

charged by all pools are the same and is independent of Λpm, which we denote by fI(Λ). Then (34)

simplifies to

Λ ≥

 MI∑
m=1

Λpm

max

{
1,

ρR(1− fI)
ρR(1− fI) +N ln[CΛ]−N ln[R(1− fI)]

}
, (36)

The entrant derives a utility of

uE(fE) ≡ ΛaE(fE)

ρΛ(fE)

(
1− e−ρRfE

)
=

Λ(fE)−
∑MI

m=1(Λam + Λpm)

ρΛ(fE)

(
1− e−ρRfE

)
(37)

=

(
1− e−ρRfE

)
ρΛ(fE)

Λ(fE)−

 MI∑
m=1

Λpm

max

{
1,

ρR(1− fI)
ρR(1− fI) +N ln[CΛ(fE)]−N ln[R(1− fI)]

}
We note that the expression is continuous and well-behaved in fE , and its optimization over the

bounded support fE ∈ [0, 1] subject to the constraint of (36) has a maximum that is bounded above
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by 1
ρ

(
1− e−ρR

)
. We denote the maximum by

u(K̂) ≡ max
fE

uE(fE). (38)

For K > K̂, no new pool enters because an owner cannot recover the entry cost K; for K ≤ K̂,

a new pool owner enters and charges an fE such that the certainty equivalence from the mining

revenue exactly equals K. Again due to the continuity of (37) in fE and the fact that (37) attains

zero when fE = 0, for any K ≤ K̂ there exists a feasible fee fE the entrant can charge in equilibrium

to recoup the entry cost K. The break-even condition for the entrant pool is exactly

(
1− e−ρRfE

)
ρΛ(fE)

Λ(fE)−

 MI∑
m=1

Λpm

max

{
1,

ρR(1− fI)
ρR(1− fI) +N ln[CΛ]−N ln[R(1− fI)]

} = u(K)

(39)

This said, it could be the case that for such an fE , the incumbents charge fees to attract active

hash rate exceeding the supposedly fixed Λ, which implies this would not be an equilibrium. As

such, when K is sufficiently small, there could be entry, but entry is not guaranteed in general.

The extreme case of K = 0 could in principal result in an arbitrary number of new pools, but

the equilibrium allocation is equivalent to only one entry pool (one can combine all entry pools

with zero fees into one as shown in Proposition 2).

The lemma tells us that there are only two situations we need to examine: (1) with sufficiently

high K, there is no entry and we have M = M I pools; otherwise, (2) we have M = M I + 1 pools,

with a global hash rate determined by the entrant pool’s fee charged to break even, taking the

equilibrium fees charged by other pools as given.

We can characterize the resulting equilibrium of K = 0 in a fairly clean way. The global hash

rates are pinned down by setting fE = 0 in Eq. (33), so that Λ = R
C e
−ρR/N . Given this, maximizing

Eq. (16) gives the strictly positive equilibrium fee fI(Λ) charged by all incumbent pools. This fee

in turn pins down the hash rates going to the incumbent pools, and the rest is attracted by the

entry pool. We note that the equilibrium risk-sharing allocation is distorted by the strictly positive

fees fI(Λ) > 0 charged incumbent pools, which inefficiently pushes more active hash rates toward

the zero-fee entry pool relative to the optimal risk sharing benchmark (absent fees).

Without new pool entry, the maximum global hash rate satisfies

Λ =

 MI∑
m=1

Λpm

 ρR

ρR+N ln[CΛ]−N lnR
(40)

Therefore, for sufficiently low
∑MI

m=1 Λpm, the marginal benefit of allocating λm to a pool charging

zero fee is 1
ΛRe

−ρR λm
Λam+Λpm exceeds the marginal cost C, so the pool owner can always charge a

A-7



positive fee and get a positive measure of active hash rate.

Now with new pool entry, suppose an incumbent pool charges zero fees, then the marginal

benefit of allocating some hash rate to it satisfies the following when λm is sufficiently small.

R

Λ
e
−ρR λm

Nλm+Λpm >
R

Λ
e−ρR

1−fE
N =

C

1− fE
> C (41)

Therefore, in equilibrium there is always positive allocation to the incumbent pool. As such, the

pool owner can always charge a positive pool fee and still gets positive measure of active hash rate.

Now with free entry, fE = 0 in equilibrium, and Λ = R
C e
−ρR/N . Because incumbents charge

positive fees, the active miners do not allocate as many hash rates to them as in the full risk-sharing

case.
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B A List of Mining Pool Fee Types

Source: Bitcoin Wiki.

• CPPSRB: Capped Pay Per Share with Recent Backpay.

• DGM: Double Geometric Method. A hybrid between PPLNS and Geometric reward types that enables

to operator to absorb some of the variance risk. Operator receives portion of payout on short rounds

and returns it on longer rounds to normalize payments.

• ESMPPS: Equalized Shared Maximum Pay Per Share. Like SMPPS, but equalizes payments fairly

among all those who are owed.

• POT: Pay On Target. A high variance PPS variant that pays on the difficulty of work returned to

pool rather than the difficulty of work served by pool.

• PPLNS: Pay Per Last N Shares. Similar to proportional, but instead of looking at the number of

shares in the round, instead looks at the last N shares, regardless of round boundaries.

• PPLNSG: Pay Per Last N Groups (or shifts). Similar to PPLNS, but shares are grouped into shifts

which are paid as a whole.

• PPS: Pay Per Share. Each submitted share is worth certain amount of BC. Since finding a block

requires shares on average, a PPS method with 0

• PROP: Proportional. When block is found, the reward is distributed among all workers proportionally

to how much shares each of them has found.

• RSMPPS: Recent Shared Maximum Pay Per Share. Like SMPPS, but system aims to prioritize the

most recent miners first.

• SCORE: Score based system: a proportional reward, but weighed by time submitted. Each submitted

share is worth more in the function of time t since start of current round. For each share score is

updated by: score += exp(t/C). This makes later shares worth much more than earlier shares, thus

the miners score quickly diminishes when they stop mining on the pool. Rewards are calculated

proportionally to scores (and not to shares). (at slushs pool C=300 seconds, and every hour scores

are normalized)

• SMPPS: Shared Maximum Pay Per Share. Like Pay Per Share, but never pays more than the pool

earns.
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Table 3: Selected Pool Reward Contracts

Name Reward Type Transaction fees Prop. Fee PPS Fee
AntPool PPLNS & PPS kept by pool 0% 2.50%
BTC.com FPPS shared 4% 0%
BCMonster.com PPLNS shared 0.50%
Jonny Bravo’s PPLNS shared 0.50%
Slush Pool Score shared 2%
BitMinter PPLNSG shared 1%
BTCC Pool PPS kept by pool 2.00%
BTCDig DGM kept by pool 0%
btcmp.com PPS kept by pool 4%
Eligius CPPSRB shared 0%
F2Pool PPS kept by pool 3%
GHash.IO PPLNS shared 0%
Give Me COINS PPLNS shared 0%
KanoPool PPLNSG shared 0.90%
Merge Mining Pool DGM shared 1.50%
Multipool Score shared 1.50%
P2Pool PPLNS shared 0%
MergeMining PPLNS shared 1%

Source: Bitcoin wiki
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