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1 Introduction

Time-varying risks lie at the heart of production-based asset pricing models. As firms make new

investments and old sources of cash flows become obsolete, the riskiness of the firms’ asset bases changes

(Berk, Green, and Naik 1999; Gomes, Kogan, and Zhang 2003). And when firms face systematic

productivity shocks and costly reversibility of investment, high-risk firms can turn into low-risk firms,

and vice versa (Zhang 2005; Cooper 2006). We show these models share one common feature: cross-

sectional di↵erences in expected returns vanish over time. This result does not depend on the specific

mechanism driving time-varying risks.

In this paper, we measure the extent to which the data align with this unifying feature of production-

based asset pricing models. We first show the data strongly support the idea of expected returns

converging over time. Even if a stock’s expected return today lies far above or below the average, we

cannot reject the null that its expected return after five years equals the average. Second, we show the

convergence in expected returns is commensurate with that in risks, regardless of whether we measure

them using betas or firm characteristics. Over time, today’s high-risk firms become less risky and

low-risk firms become riskier.

In Panel A of Figure 1, we use U.S. stock data and assign stocks into deciles each month from 1963

through 2016 based on estimates of stocks’ expected returns. In this computation, which we detail

below, we combine 34 return predictors into a proxy for firms’ expected returns. We report average

noncumulative returns for the top and bottom deciles over the next ten years; that is, the month-t

estimate is the average return in month t after portfolio formation, not the average return from today

to month t. Panels B and C illustrate the extent to which the data conform to two models, Berk, Green,

and Naik (1999) and Gomes, Kogan, and Zhang (2003). We simulate data from these models using the
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Figure 1: Average monthly returns on stocks sorted by expected returns. Panel A assigns
U.S. stocks into deciles based on a combination of 34 return predictors that use accounting information
(see text for details) and plots the average (non-cumulative) monthly returns for the top and bottom
deciles over the next ten years. Panels B and C simulate data from Berk et al.’s (1999) and Gomes et
al.’s (2003) models using cross-sectionally demeaned returns. The number of stocks and time periods
in the simulations match the average number of stocks and number of months in the U.S. data.

original papers’ parameters and rank firms into deciles each month based on their expected returns.

In both the simulations and actual data, di↵erences in average returns are initially large but collapse

to zero as we extend the maturity.1 Expected returns behave di↵erently in the two models. In Berk,

Green, and Naik (1999), the cross-sectional distribution of expected returns is almost symmetric and

the di↵erences decay slowly; in Gomes, Kogan, and Zhang (2003), the distribution is left-skewed and

the di↵erences decay faster.

We illustrate our key finding first with a characteristics-free bootstrap procedure. We take the

cross section of monthly stock returns from 1963 through 2016, preserve both the covariance structure

and distribution of returns, but set all expected returns to zero. We then inject small cross-sectional

di↵erences into expected returns and measure our ability to detect these di↵erences.

If di↵erences in expected returns persist, past stock returns positively predict the cross section of

stock returns. To see why, note that a stock’s return, rit, here consists of a constant term, µi, plus

1We compute averages of cross-sectionally demeaned returns to remove market-level variation, which is why the averages
in Figure 1 converge towards zero. Averages of non-demeaned returns would converge towards the average return of the
equal-weighted market portfolio.
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noise, "it:

rit = µi + "it. (1)

A stock’s average return therefore measures its expected return:

r̄itn =
1

n

nX

j=1

ri,t�j = µi

|{z}
expected
return

+
1

n

nX

j=1

"i,t�j .

| {z }
average

noise term

(2)

A cross-sectional regression of stock returns against past average returns is a regression of returns

against noisy estimates of expected returns.2 We show returns would be highly predictable even if

the persistent di↵erences in expected returns were negligible. Suppose, for example, the cross-sectional

standard deviation of the expected monthly stock returns is just 0.4%. This number is small, as it would

imply that di↵erences in expected returns would account for just R2 = 0.06% of the cross-sectional

variance of realized stock returns.3 Our bootstrap procedure shows that, among all-but-microcaps, the

prior five-year return (ten-year return) would nevertheless predict the cross section of returns with a

t-value of 2.03 (3.93). In actual data, however, past returns do not positively predict returns outside

the prior one-year period (momentum). In the five-year regression, for example, the t-value is �3.72.

Why do past returns predict the cross section of returns with a negative sign? We show that

production-based asset pricing models predict a positive association between past and future returns

only if the di↵erences in discount rates are persistent enough. Long-term reversals emerge when (1)

2Conrad and Kaul (1998) suggest this mechanism—that the cross section of realized returns measure di↵erences in
expected returns—may account for some of the momentum in stock returns: “The repeated purchase of winners from the
proceeds of the sale of losers will, on average, be tantamount to the purchase of high-mean securities from the sale of
low-mean securities. Consequently, as long as there is some cross-sectional dispersion in the mean returns of the universe
of securities, a momentum strategy will be profitable.” See, also, Berk, Green, and Naik (1999, p. 1584).

3The average cross-sectional variance of U.S. stock returns between 1963 and 2016 is 0.0286. If the cross-sectional

standard deviation of expected returns is 0.4%, this variation in expected returns would account for (0.004)2

0.0286 = 0.06% of the
cross-sectional variation in stock returns; or, conversely, 99.94% of the cross-sectional variation in monthly stock returns
would be unrelated to persistent di↵erences in expected returns.
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there are large di↵erences in expected returns that (2) rapidly converge to zero. Under these conditions,

past returns predominantly measure the direction of discount rate shocks. For example, a stock with

a positive past return likely is a stock hit with negative discount rate shocks—not one whose expected

return was high. This interpretation for the long-term reversals is very di↵erent from the overreaction

explanation proposed by De Bondt and Thaler (1985). The existence of long-term reversals does not

imply that high-return stocks become low-return stocks, and vice versa—in the risk-based models, both

the high- and low-return firms merely become average-return firms. The shocks to expected returns show

up in stock returns as discount rate shocks and, when these shocks are frequent and large enough, they

induce a significant negative association between past and future returns. The existence of long-term

reversals is consistent with our thesis: long-term discount rates do not vary across stocks.

As in Figure 1, we complement our bootstrapping results by sorting stocks into portfolios by di↵erent

combinations of return predictors. Many variables predict the cross section of stock returns,4 but

most are short-lived. Although some predict returns a few years out, none of them identify long-term

di↵erences in expected returns. We show this property extends to combinations of predictors as well.

When we sort stocks into portfolios by a combination of 46 predictors, the average return di↵erence

between the top and bottom deciles is 0.74% in the year following portfolio formation (t-value = 4.48),

but in the second year, the return di↵erence is just 0.25% with a t-value of 1.55. Even when we select

ex-post the most persistent predictors—which turn out to be those that use accounting rather than

price, volume, and return information—the combination of these predictors loses its predictive power

after approximately three years.

The long-run return estimates are precise enough to bound the amount of cross-sectional variation in

expected returns. Consider, for example, the CAPM alphas. In the year following portfolio formation,

4See, for example, Hou, Xue, and Zhang (2015), McLean and Ponti↵ (2016), and Harvey, Liu, and Zhu (2016).
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the 95% confidence interval for the CAPM alpha for the di↵erence between the top and bottom deciles

runs from 77 basis points to 129 basis points. In year eight, this confidence interval runs from �14 basis

points to 31 basis points. We can thus reliably identify significant di↵erences in short-term expected

returns but, as Figure 1 shows, these di↵erences evaporate quickly.

In production-based asset pricing models, expected returns converge because risks mean revert. We

therefore also examine how firms change over time. Without taking a stance on whether betas or

characteristics better measure risk, we show both converge in expectation toward the mean. However,

whereas di↵erences in average returns collapse to zero in five years, those in betas and characteristics

do not.

We show that a decomposition of firm characteristics into permanent and transitory components

resolves the seeming discrepancy in the behaviors of average returns and characteristics. Persistent cross-

sectional di↵erences in characteristics are not associated with any di↵erences in average returns. The

transitory di↵erences in characteristics command premiums and discounts, and these di↵erences vanish

in approximately five years. These results tie back to those in Cohen and Polk (1996), Asness, Porter,

and Stevens (2000), and Novy-Marx (2013), who find that industry-level (and therefore persistent)

di↵erences in characteristics such as value are not associated with di↵erences in average returns. We

generalize this result by showing that persistent di↵erences in characteristics, regardless of the source,

do not correlate with di↵erences in expected returns.

Existing literature documents sizable short-term di↵erences in expected returns.5 We contribute to

the literature by showing a wide gap between short-term and long-term returns—and little evidence of

persistent di↵erences in expected returns between firms. Because any di↵erences in expected returns are

5For example, Martin and Wagner (2016) estimate that “there is considerably more variation in expected returns. . . than
has previously been acknowledged.”
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short-lived, they carry little weight in the average discount rate and in firm valuation.6 These results

are consistent with financial markets valuing the equity of di↵erent firms using approximately the same

discount rate.

Although the data are consistent with the predictions of production-based asset pricing models, we

cannot rule out other theories. Consumption-based asset pricing models are the flip side of production-

based asset pricing models (Cochrane 1991). If firms’ covariances with consumption growth change over

time and their risks are stationary (i.e., they mean revert in the cross section), firms’ expected returns

will, on average, converge toward the mean. The data also do not shut out behavioral theories. If

di↵erences in expected returns reflect mispricing, and arbitrageurs profit by trading against mispricing,

cross-sectional di↵erences in expected returns can be expected to vanish over time. What the data

reject are models in which di↵erences in expected returns persist to a significant degree.

Assuming all anomalies reflect mispricing gives insight into mispricing’s potential economic signifi-

cance. As van Binsbergen and Opp (2017) point out, more persistent anomalies are likely to generate

greater distortions in the economy. An anomaly that generates an expected return of 10% per annum

and lasts for a year causes prices to be wrong by 10%; an otherwise similar anomaly lasting only for

one month causes prices to be wrong by less than one percent. If most anomalies are short-lived—as

our estimates suggest—the stock market can be ine�cient in returns but close to e�cient in prices.

Its perceived e�ciency depends on the investment horizon. An arbitrageur could reap great rewards

by trading anomalies but, at the same time, the market would be close to e�cient to a buy-and-hold

investor. This conclusion parallels that of Cohen, Polk, and Vuolteenaho (2009): “price is (almost)

right.”

6If a firm’s discount rate is r over the first year and r0 thereafter, its k-year discount rate is
⇥
(1 + r)(1 + r0)k�1

⇤1/k � 1.
Di↵erences in short-run discount rates carry over to long-run discount rates, but increasing the horizon k dilutes their role.
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2 Expected returns in production-based asset pricing models

Many production-based asset pricing theories seek to explain cross-sectional return patterns asso-

ciated with, for example, size and book-to-market. These models feature time-varying risks. In this

section, we describe and simulate data from four models. We show that—and explain why—cross-

sectional firm-level di↵erences in expected returns in these models tend to vanish.

2.1 Models and mechanisms

Model 1: Berk, Green, and Naik (1999): assets in place versus growth options. Firms

encounter new projects each period and they accept those with positive NPVs. Projects di↵er in their

amount of systematic risk, and old projects turn obsolete at random. Because new projects are drawn

from the same distribution, firms are asymptotically identical. In other words, high-risk firms will, on

average, encounter projects that lower their risk, and low-risk firms will tend to encounter projects that

increase their risk. Firm valuation in the model buttresses this point. A firm’s value is the sum of the

value of the assets in place and the value of future growth options. Of these two terms, the value of the

future growth options is the same across firms, because all firms expect to encounter the same projects.

Model 2: Gomes, Kogan, and Zhang (2003): general equilibrium with growth options.

Gomes, Kogan, and Zhang (2003) take the investment mechanism of Berk, Green, and Naik (1999) to

general equilibrium. Whereas Berk et al. assume the process describing the pricing kernel, Gomes et al.

model the household sector and let the markets clear. Returns in this model are completely described

by a conditional CAPM; size and book-to-market predict returns because they correlate with the true

conditional market betas. Also similar to Berk et al., new projects are distributed randomly across all

firms with equal probabilities. Therefore, all firms derive the same value from future growth options,
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and expected returns perfectly converge over time.

Model 3: Zhang (2005) and Lin and Zhang (2013): production shocks and costly re-

versibility of investment. Production in this model requires capital, and firm-level productivity is

subject to aggregate and idiosyncratic shocks. Firms have to pay to install new capital and to adjust it.

The pricing kernel is parametrized directly to have a countercyclical price of risk. Productivity shocks

alter firms’ riskiness; in bad times, when the price of risk is high, low-productivity firms find it costly to

shed unproductive capital. Because productivity shocks mean revert, firms’ expected returns converge

over time.

Model 4: Hackbarth and Johnson (2015) and Gu, Hackbarth, and Johnson (2017): op-

erating leverage and real options. Similar to Zhang (2005), production in this model requires

capital, and productivity is subject to aggregate and idiosyncratic shocks. Firms face both quasi-fixed

and variable costs for both upward and downward adjustments to capital. The random shocks cause

risks and, by extension, expected returns, to mean revert.

2.2 Changes in expected returns

We simulate 1,000 months of return data from the models described above using the parameters used

in the original studies; when a study considers multiple sets of parameters, we use those of the baseline

specification. Studies use di↵erent methods to choose the parameters. They are typically “fixed” based

on prior literature, directly estimated, or calibrated to match some features of the data, such as the

levels and volatilities of equity premium and interest rate. We discard the first 400 months of data to

ensure the simulations stabilize.

We assign stocks into deciles based on expected returns at the end of month t, and compute average

returns for stocks in these deciles over the next 15 years. We then average the estimates over all starting
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Figure 2: Average monthly returns on stocks sorted by expected returns. We simulate 1,000
months of return data from the four models described in Section 2. We run these simulations using
the same parameters as those used in the original studies. We discard the first 400 months and then
begin ranking stocks into deciles based on expected returns. We report the average cross-sectionally
demeaned monthly returns for these deciles over the next 15 years after portfolio formation.

months t. We repeat each simulation 1,000 times to reduce simulation-specific noise; this is di↵erent

from the graphs in the introduction’s Figure 1 in which we plot the data from single runs.

Figure 2 shows average, cross-sectionally demeaned monthly returns from the four models discussed

above. The models di↵er in the amount of dispersion in expected returns. In Berk, Green, and Naik

(1999), for example, the di↵erence in expected monthly returns between the top and bottom deciles
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is just over 40 basis points; in Zhang (2005), this di↵erence is over 140 basis points. In some models,

such as Berk, Green, and Naik (1999), the cross-sectional distribution of expected returns is nearly

symmetric; in others, such as Gomes, Kogan, and Zhang (2003), it is considerably left-skewed. The

common element of these models, however, is the convergence in expected returns. Although the

models di↵er in the speed of convergence—they model di↵erent economic mechanisms, and they are

parametrized di↵erently—expected returns converge in all of them.7 Figure A1 in the appendix shows

that as expected returns converge toward the mean, so do market betas.

The pattern in Figure 2 is not specific to the models we consider. If risks change but are stationary,

they must mean-revert. Moreover, unless a model builds in permanent cross-sectional di↵erences in, for

example, production technology, each firm’s risk (and its expected return) must be expected to converge

toward the common mean. We are not aware of any study on production-based asset pricing models

that has found the need to build in persistent di↵erences across firms.8

3 Data

We use the daily and monthly CRSP return data from January 1963 through December 2016 on

stocks listed on the NYSE, Amex, and NASDAQ. We exclude securities other than ordinary common

shares. We also exclude financials, which are identified as firms with SIC codes between 6000 and 6999.

We use CRSP delisting returns; if a delisting return is missing and the delisting is performance-related,

we impute a return of �30% for NYSE and Amex stocks (Shumway 1997) and �55% for Nasdaq stocks

7For example, Hackbarth and Johnson (2015, Table 2) impose significantly more firm-level persistence than the other
models or what is seen in the data. In their baseline model, the autocorrelation in profitability is 0.97, whereas it is 0.51
in the data.

8In the risk-based models, expected returns converge because of discount rate shocks. Although the market rationally
expects expected returns to converge, every discount rate shock comes as a surprise. In Berk, Green, and Naik (1999), for
example, a firm’s expected return changes when the firm’s old project (randomly) dies o↵ or it (randomly) encounters a
new project it chooses to undertake. Expected returns could also converge deterministically—an asset’s expected return
could, for example, be 10%, 9%, 8%, . . . over its life—and the market would discount the cash flows given these expected
changes. We use the term “convergence in expected returns” to refer to the convergence induced by discount rate shocks.
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(Shumway and Warther 1999).

We use balance sheet and income statement information from the annual and quarterly Compustat

files to construct various return predictors that have been proposed in the literature. We describe these

predictors in Section 6.1.

4 Detecting di↵erences in long-term discount rates: A bootstrap ap-

proach

4.1 Cross-sectional regressions

In this section, we estimate regressions that predict the cross section of stock returns with each

stock’s average past return. For each month t, we estimate a cross-sectional regression

rit = at + bt ⇥ r̄i,t�k1,t�k2 + eit, (3)

where r̄i,t�k1,t�k2 is stock i’s average return from month t � k2 to t � k1. If stock returns contain

persistent di↵erences in expected returns, as in equation (1), the slope estimate from these regressions

is proportional to cross-sectional variance of these di↵erences, b̂ ⇠ �̂2
µ. For example, if expected returns

are constant and return innovations IID, then

b̂t =
covcs(rit, r̄i,t�k1,t�k2)

varcs(r̄i,t�k1,t�k2)
=

covcs(µi + "i,t, µi +
1

k2�k1+1

Pt�k1
t0=t�k2

"i,t0)

varcs(µi +
1

k2�k1+1

Pt�k1
t0=t�k2

"i,t0)
=

�̂2
µ

�̂2
µ + 1

k2�k1+1 �̂
2
"

� 0. (4)

We estimate these regressions using actual and bootstrapped stock return data. We construct the

bootstrapped data to preserve both the distributions of returns and their covariance structure.
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4.2 Methodology

We generate each draw of simulated data in five steps:

1. We draw each stock’s expected return from a normal distribution with a mean of zero and a

standard deviation �µ. We denote stock i’s expected return by µi.

2. We cross-sectionally demean month-t returns and divide them by their standard deviation to

generate a vector of studentized residuals with unit variance. We denote this Nt ⇥ 1 vector of

residuals by ✏t, where Nt is the number of stocks in month t.

3. We estimate the Nt ⇥Nt covariance matrix of stock returns, ⌃t, using monthly data from month

t � 30 to month t + 30, that is, five years plus one month. We estimate pairwise covariances;

that is, we do not require all stocks to have non-missing returns for the entire estimation period.

Because the number of stocks exceeds the length of the time series, ⌃t is singular.

4. We replace the covariance matrix ⌃t with its nearest positive definite matrix using the algorithm

of Higham (2002). We denote this positive definite matrix by St.

5. We generate month-t stock-specific shocks "t by randomizing the elements of ✏t and by post-

multiplying them by the Cholesky factor of St. Stock i’s return in month t is then µi + "it.

These simulated returns have appealing properties. First, the resulting data matrix has the same

dimensions as the actual return data; that is, it has the same number of months and the same number

of stocks each month. Second, the factor structure of returns is the same as that in the actual data

and, given the rolling estimates of covariances, this factor structure changes over time as it does in the

data. Third, because we extract the shocks from actual stock returns, the distribution of stock returns

each month resembles the actual distribution of returns.
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We draw 100 random samples of returns using this procedure. Using each simulated dataset, we

estimate the cross-sectional regressions and record the average regression slopes and their t-values. We

then compare these estimates with those from the actual data, and examine how the estimates change

as we increase the amount of variation in expected returns, �µ.

4.3 Estimates

Table 1 reports results from cross-sectional regressions that we estimate using both actual and

simulated data. Panel A uses data on all stocks; Panel B restricts the sample to all-but-microcaps. All-

but-microcaps are stocks with market capitalizations above the 20th percentile of the NYSE distribution.

The estimates in the first column of Table 1 use actual data; the remaining columns simulate data

with values of �µ ranging from 0% to 1.4%. The average cross-sectional standard deviation of realized

monthly stock returns is 16.9%. Therefore, when �µ = 1%, cross-sectional variation in expected returns

explains (0.01)2/(0.169)2 = 0.35% of the cross-sectional variation in realized returns.

We estimate the cross-sectional regressions in equation (3) using various past return windows. The

first row predicts the cross section of month t returns using month t� 1 returns; the last row uses prior

20-year returns skipping a month. Each regression contains stocks that have non-missing returns in

month t and for at least half of the past return period. The regressions on the last row, for example,

include stocks that have at least ten years of non-missing returns.

The estimates that use actual return data show the e↵ects of short-term reversals (Jegadeesh 1990),

momentum (Jegadeesh and Titman 1993), and long-term reversals (De Bondt and Thaler 1985). Short-

term reversals show up as negative slope coe�cients in cross-sectional regressions of month t returns

against prior month returns. The estimates in the full and all-but-microcaps samples are �0.05 (t-value

= �12.12) and �0.02 (t-value = �3.51). Momentum registers as positive coe�cients in regressions
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Table 1: Fama-MacBeth regressions with actual and bootstrapped data

This table reports average coe�cients and t-values from regressions to predict the cross section of
monthly stock returns. The explanatory variable is the stock’s average return over the window specified
in the first column. Column “Actual data” uses returns on common stocks listed on NYSE, Amex, and
NASDAQ from 1963 through 2016. The sample excludes financials, which are identified as firms with
SIC codes between 6000 and 6999. Columns “Bootstrapped data” use data that are first randomized
to set the variation in expected returns to zero. These data are generated in five steps. First, month-t
returns are demeaned and divided by their standard deviation to generate a vector of residuals, ✏t, with
unit variance. Second, the covariance matrix of individual stock returns, ⌃t, is estimated using data
from 30 months prior to 30 months after month t. Third, this covariance matrix is transformed to the
nearest positive definite matrix St using the algorithm of Higham (2002). Fourth, month-t returns are
generated by randomizing the elements of ✏t and post-multiplying this vector by the Cholesky factor
of St. Fifth, µi is added to stock i’s return each month, where µis are drawn from a distribution
with a mean of zero and a standard deviation of �µ. The simulations vary the �µ from 0 to 1.4%.
We repeat the bootstrapping procedure 100 times for each value of �µ; this table reports the average
coe�cients and t-values across these simulations. Panel A uses data on all stocks; Panel B uses all-but-
microcaps. All-but-microcaps are stocks with market capitalizations above the 20th percentile in the
NYSE distribution.

Panel A: All stocks
Historical Bootstrapped data
return Actual Cross-sectional variation in expected returns, �µ
horizon data 0.0% 0.2% 0.4% 0.6% 0.8% 1.0% 1.2% 1.4%

Fama-MacBeth coe�cient estimates

[�1,�1] �0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01
[�12,�2] 0.04 0.00 0.00 0.01 0.02 0.03 0.04 0.06 0.08
[�60,�13] �0.17 �0.00 0.00 0.03 0.07 0.11 0.16 0.22 0.27
[�120,�61] �0.22 �0.00 0.02 0.08 0.16 0.24 0.32 0.40 0.47
[�120,�2] �0.28 �0.01 0.02 0.07 0.15 0.23 0.31 0.38 0.45
[�240,�121] �0.24 �0.00 0.05 0.17 0.30 0.42 0.52 0.60 0.66
[�240,�2] �0.29 �0.01 0.05 0.17 0.30 0.41 0.51 0.59 0.66

t-values

[�1,�1] �12.12 0.05 0.07 0.15 0.29 0.48 0.72 1.02 1.36
[�12,�2] 2.54 0.12 0.21 0.48 0.94 1.58 2.37 3.34 4.46
[�60,�13] �6.43 �0.15 0.15 1.02 2.46 4.36 6.68 9.38 12.42
[�120,�61] �4.85 �0.09 0.52 2.18 4.77 8.07 11.95 16.45 21.45
[�120,�2] �7.17 �0.19 0.48 2.33 5.18 8.82 13.06 17.97 23.39
[�240,�121] �3.59 �0.11 1.11 4.24 8.65 14.10 20.38 27.78 35.82
[�240,�2] �4.85 �0.18 1.17 4.62 9.49 15.45 22.21 30.20 39.00
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Panel B: All-but-microcaps
Historical Bootstrapped data
return Actual Cross-sectional variation in expected returns, �µ
horizon data 0.0% 0.2% 0.4% 0.6% 0.8% 1.0% 1.2% 1.4%

Fama-MacBeth coe�cient estimates

[�1,�1] �0.02 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02
[�12,�2] 0.10 0.00 0.01 0.02 0.04 0.06 0.09 0.12 0.15
[�60,�13] �0.11 �0.00 0.01 0.06 0.12 0.20 0.28 0.35 0.42
[�120,�61] �0.10 �0.00 0.04 0.13 0.25 0.37 0.47 0.55 0.62
[�120,�2] �0.17 �0.00 0.03 0.12 0.24 0.35 0.45 0.53 0.60
[�240,�121] �0.12 �0.01 0.07 0.24 0.41 0.54 0.64 0.71 0.77
[�240,�2] �0.18 �0.01 0.07 0.23 0.40 0.53 0.63 0.71 0.77

t-values

[�1,�1] �3.51 0.04 0.10 0.27 0.56 0.95 1.46 2.08 2.81
[�12,�2] 4.88 0.10 0.29 0.86 1.81 3.11 4.76 6.71 8.95
[�60,�13] �3.72 �0.14 0.41 2.03 4.62 8.09 12.23 16.98 22.30
[�120,�61] �1.76 �0.04 0.95 3.76 8.09 13.60 20.09 27.42 35.58
[�120,�2] �3.58 �0.07 0.96 3.93 8.48 14.28 21.06 28.70 37.19
[�240,�121] �1.59 �0.18 1.61 6.44 13.44 22.00 32.12 43.51 55.51
[�240,�2] �2.67 �0.25 1.66 6.77 14.13 23.08 33.53 45.23 57.78

against prior one-year returns skipping a month. The estimates in the full and all-but-microcaps samples

are 0.04 and 0.10, and these estimates are associated with t-values of 2.54 and 4.88. Long-term reversals

appear as negative slope coe�cients when we lag average returns by more than a year. For example, in

regressions that predict returns using prior five-year returns skipping a year, the slope coe�cients are

�0.17 and �0.11, and the t-values are �6.43 and �3.72.

Data in which expected returns are constant over time, vary across firms, and stock-specific in-

novations are serially and cross-serially uncorrelated cannot produce negative regression slopes. The

inevitability of positive regression coe�cients under these assumptions is best illustrated by considering

the Lo and MacKinlay (1990) decomposition of trading profits.9 They consider a strategy that weighs

9Lo and MacKinlay (1990) decompose profits to strategies that trade long-term reversals. Lewellen (2002) considers
profits to strategies that trade the momentum in individual stocks or portfolios of stocks.
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stock i by

wi,t =
1

N
(r̄i,t�k1,t�k2 � r̄m,t�k1,t�k2) , (5)

where r̄i,t�k1,t�k2 is stock i’s average return from month t� k2 to t� k1, and r̄m,t�k1,t�k2 is the return

on the equal-weighted market index. The expected trading profit in month t, E(⇡t) = E
⇣PN

i=1wi,tri,t
⌘
,

then decomposes into

E(⇡t) =
N � 1
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� 1
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⇥
10⌃1� tr(⌃)

⇤

| {z }
Cross-serial
covariances

+ �2
µ

|{z}
Persistent
variation
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, (6)

where tr(⌃) is the trace of the covariance matrix, 10⌃1� tr(⌃) is the sum of the cross-serial covariances,

and �2
µ is the cross-sectional variance of unconditional expected returns. The last term is always positive;

persistent cross-sectional variation in mean returns increases the profitability of trading strategies in

which weights increase in realized returns. Profits can therefore be negative only if stock returns are

negatively autocorrelated (the first term of equation (6) is negative) or positively cross-serially correlated

(the second term of equation (6) after the minus sign is positive). That is, a negative slope coe�cient

emerges only if a high return on an asset predicts a low return on that asset or high returns on other

assets.

The estimated regression slope in equation (4), which assumes IID innovations, is nonnegative; the

IID assumption sets the first two terms of the decomposition in equation (6) to zero. Therefore, in

Table 1’s bootstrapped data, the slope coe�cients start at zero when �µ = 0 and become increasingly

positive as we increase the amount of cross-sectional variation in expected returns. When �µ = 0.4%,

average past returns over various horizons begin to be identified as statistically significant predictors

of returns in the full sample. For the [�240,�2] window in Panel A, for example, the average slope

coe�cient is 0.17 and the t-value associated with this estimate is 4.62. In the all-but-microcaps sample,
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the estimates are even more statistically significant when �µ = 0.4% or greater.

The simulations in Table 1 show that if even a small amount of persistent variation was present in

expected returns, our regressions would have the power to detect it. A volatility parameter of �µ = 0.4%,

for example, corresponds to a world in which a cross-sectional regression of realized month-t returns rit

against expected returns µi has an R2 of 0.06%. Moreover, if expected returns remained constant in

the cross section, past returns should become more informative about returns as we increase the length

of the past-return window; a wider window yields more precise estimates of expected returns. In the

simulations, the t-values indeed increase in the length of the estimation window. In the data, however,

the slope coe�cients are and remain negative after the one-year momentum period.

These comparisons suggest the amount of persistent cross-sectional variation in expected returns

must be negligible; whatever the variation might be, it is completely overshadowed by long-term reversals

in individual stock returns. The term persistent can also be interpreted loosely here. If stocks’ expected

returns change over time, but slowly, a regression against five-year average returns would still typically

return a positive coe�cient. In the data, the cuto↵ is one year.

It is instructive to consider momentum to understand the amount of predictive power we would

expect to find at longer lags if cross-sectional di↵erences in expected returns persisted. In Panel B’s

all-but-microcaps sample, the slope coe�cient on momentum is 0.10 with a t-value of 4.88. In the

bootstrapped data, we approximately match this coe�cient when �µ = 1.0%. Here, the slope coe�cient

is 0.09 with a t-value of 4.76. If we were to attribute momentum to persistent cross-sectional variation in

mean returns, long-horizon past returns would be tremendously powerful predictors of the cross section

of stock returns. For example, in regressions against the prior ten-year returns skipping a month, the

t-value would be 21.06.
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5 Production-based models, discount rate shocks, and long-term re-

versals

5.1 Intuition

The Fama-MacBeth regressions in Section 4 show that past returns predict the cross section of

average returns with negative signs. These negative associations correspond to the long-term reversals

identified by De Bondt and Thaler (1985). The negative sign, based on the Lo and MacKinlay (1990)

logic, must be due either to negative autocorrelations or positive cross-serial correlations in stock returns.

The lack of persistent di↵erences in expected returns is a potential source of negative autocorrelations.

If di↵erences in expected returns are short-lived, some of the stock return variation is, by definition, due

to discount rate shocks. Long-term reversals could emerge if there are large but short-lived di↵erences

in expected returns; in that case, past returns predict future returns with a negative sign because the

return variation mostly reflects discount rate shocks.

Figure 3 gives a textbook illustration of the association between past and expected returns in the

presence of discount rate shocks.10 We assume all firms pay just one cash flow to shareholders at time

t = 5 and the expected value of this terminal cash flow is E(fCF1) = 100 at time t = 0. A firm’s market

value at any date prior to the terminal date is the present value of the expected cash flow. In Panel A,

all return variation is due to cash flow shocks. Because the discount rate is constant, di↵erences in

past returns are uninformative about di↵erences in expected returns. If a firm’s market value decreases

significantly—as it does at time t = 0—it must do so because the expected cash flow decreased. In

Panel B all return variation is due to discount rate shocks. If a firm’s market value decreases significantly,

it must be because the firm’s expected return increased. In this case, past returns correlate negatively

10Cochrane (2011) provides a detailed discussion and analysis of the variation in discount rates at the market level.
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Figure 3: Cash flow shocks, discount rate shocks, and the information content of past

returns. This figure illustrates the association between past and expected returns when return variation
is due to cash flow shocks (Panel A) or discount rate shocks (Panel B). When return variation is due
to cash flows shocks, expected returns are unrelated to past returns. When return variation is due to
discount rate shocks, the relation between past and expected returns is negative. In Panel C two firms
have identical discount rates at time t = �5. The di↵erences in these firms’ discount rates at time
t = 0 correlate perfectly with the di↵erences in past returns because their return variation is only due
to discount rate shocks.

with expected returns. A negative realized return signifies an increase in the expected return.

In Panel C, we endow two firms the same expected return at time t = �5 and randomly shock

these firms’ discount rates until time t = 0. Because one firm is hit with net-positive discount rate

shocks and the other with net-negative discount rate shocks, one firm’s expected return is higher than

that of the other at time t = 0. Moreover, because the firms started with identical expected rates at

time t = �5, the di↵erences in expected returns at time 0 correlate perfectly with di↵erences in past

returns.11 Past returns’ informativeness about expected returns depends on the intensity of discount

rate shocks relative to cash flow shocks. If firms’ expected returns rapidly converge toward a common

mean, past returns may mostly measure discount rate shocks. Here, past returns no longer measure

di↵erences in the levels of discount rates.
11The log return on firm i from t � 5 to t is ln(Pi,t/Pt�5) = pi,t � pt�5. The expected log return from t to t + 5

is ln(E(fCF1)/Pi,t) = ln(E(fCF1)) � pi,t. Because pt�5 and ln(E(fCF1)) are common across firms, the past and expected
returns encode the same information and correlate perfectly in the time-series (within a firm) and the cross section (across
multiple firms).
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5.2 Evidence from production-based models

In Table 2 we report estimates from cross-sectional regressions similar to those in Table 1. However,

instead of using the actual or bootstrapped data, we estimate these regressions using data simulated

from the four models described in Section 2. We simulate data using each model’s baseline parameters

and generate hypothetical datasets that match the length and size of the cross section of the actual

return data. With the Berk, Green, and Naik (1999) model, we also alter the model’s depreciation rate

and run additional simulations. We estimate cross-sectional regressions using each simulated sample

and record the average slope estimates and their t-values. Table 2 reports averages of the estimates and

t-values over 10,000 simulations for each specification.

The first four columns in Table 2 use data simulated from Berk et al. (1999). The original

parametrization of the model uses a depreciation rate of 1 � ⇡ = 1%. Berk et al. (1999, p. 1573)

determine this rate based on the calibrations of real business cycle models (Kydland and Prescott 1982;

Christiano and Eichenbaum 1992). In the model, the depreciation rate accounts for the probability

that a firm’s project becomes obsolete and ceases to generate cash flows. We vary this rate because

it a↵ects the rate of convergence of expected returns and, through the discount-rate mechanism, the

relation between past and future returns.

Figure 4 shows how the convergence of expected returns in the Berk et al. (1999) model depends

on the depreciation rate. When the depreciation rate increases, firms’ risks converge faster toward the

common mean; when we decrease the rate below that in the baseline model, expected returns become

more persistent. An increase in the depreciation rate therefore increases the amount of return variation

that is due to discount rate shocks.

Table 2 shows that, in the baseline specification of Berk et al. (1999), past returns do not significantly
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Table 2: Long-term reversals in production-based asset pricing models

This table reports average coe�cients and t-values from regressions to predict the cross section of
monthly stock returns. The explanatory variable is the stock’s average return over the window specified
in the first column. We estimate these regressions using data simulated from the models of Berk, Green,
and Naik (1999), Gomes, Kogan, and Zhang (2003), Lin and Zhang (2013), and Hackbarth and Johnson
(2015). Each simulated sample matches the dimensions of the actual stock data in Table 1. We use
each model’s baseline parameters. With the Berk et al. (1999) model, we also vary the depreciation
rate, 1 � ⇡, from the 1% rate of the baseline model. We repeat the simulations 10,000 times for each
specification and report the average estimates and t-values.

Model
Historical Berk, Green, and Naik Gomes, Hackbarth
return Depreciation rate, 1� ⇡ = Kogan, and Lin and and
horizon 0.5% 1.0% 2.0% 3.0% Zhang Zhang Johnson

Coe�cient estimates

[�1,�1] �0.00 �0.00 �0.00 �0.01 �0.01 �0.01 0.00
[�12,�2] �0.00 0.00 �0.03 �0.06 �0.07 �0.05 0.02
[�60,�13] 0.01 0.01 �0.08 �0.10 �0.10 �0.13 0.05
[�120,�61] 0.01 0.01 �0.03 �0.02 �0.01 �0.09 0.04
[�120,�2] 0.02 0.02 �0.16 �0.19 �0.21 �0.31 0.10
[�240,�121] 0.01 0.01 �0.01 �0.00 �0.00 �0.09 0.05
[�240,�2] 0.03 0.03 �0.18 �0.19 �0.22 �0.49 0.14

t-values

[�1,�1] �0.64 �0.39 �3.25 �4.64 �9.11 �2.96 2.71
[�12,�2] 0.10 0.53 �4.89 �6.79 �17.27 �3.20 5.77
[�60,�13] 1.29 0.97 �4.77 �6.50 �14.25 �3.29 6.82
[�120,�61] 1.21 1.05 �3.55 �3.47 �2.45 �3.22 6.14
[�120,�2] 1.94 1.07 �4.85 �6.48 �16.28 �3.39 7.32
[�240,�121] 1.13 0.85 �1.29 �0.51 �0.22 �2.95 5.70
[�240,�2] 2.08 1.13 �4.73 �6.21 �14.16 �3.36 7.36

predict the cross section of average returns. However, outside of this Goldilocks point, the association is

statistically significant. If we lower the depreciation rate, past returns positively predict future returns.

In this case, discount rate shocks are rare, and past returns mostly measure di↵erences in (relatively)

persistent expected returns. If we increase the depreciation rate, past returns negatively predict future

returns. This parametrization is close to the world of Panel C of Figure 3 in which all return variation
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Figure 4: Average monthly returns in the Berk, Green, and Naik (1999) model with di↵erent

depreciation rates. We simulate 1,000 months of return data from the model of Berk et al. (1999)
using four alternative values for the depreciation rate, 1� ⇡. All other parameters of the model are set
to the values used in the original study. We discard the first 400 months from each simulation and then
begin ranking stocks into deciles based on expected returns. We compute the average cross-sectionally
demeaned monthly returns for these deciles over the next 10 years after portfolio formation. This figure
averages over 10,000 simulations and reports the average monthly returns for the top and bottom deciles.

is due to discount rate shocks. Even when the depreciation rate is very high, the association between

past returns and future returns is weak only when the historical returns are over ten years old. What

happened between 10 and 20 years ago is uninformative about a firm’s expected return today because

these returns have already been followed by another 10 years of discount rate shocks.

The estimates from the other three models in Table 2 suggest the strength (or lack thereof) of

long-term reversals depends on the rate at which the discount rates converge. In Figure 2 the rate of

convergence varies across the three models. The rate of convergence is the fastest in Gomes et al. (2003);

it is the second fastest in Lin and Zhang (2013); and, in Hackbarth and Johnson (2015), discount rates

are very persistent. Consistent with this ordering, the estimates in Table 2 show the strongest long-term

reversals for Gomes et al. (2003), followed by Lin and Zhang (2013). In Hackbarth and Johnson (2015),

22



expected returns are so persistent that past returns positively predict future returns.

Figure 3 and Table 2 provide a compelling explanation for the negative slope estimates found in the

cross-sectional returns-on-past-returns regressions. These estimates would be positive if cross-sectional

di↵erences in expected returns were very persistent. The apparent reason for the negative estimates is

that expected returns are not very persistent. Expected returns vary dramatically across firms (Martin

andWagner 2016), but these di↵erences, on average, converge rapidly to zero. It is this convergence—the

discount rate shocks—that imprints the negative serial correlation into the data. Long-term reversals

are therefore the consequence of the lack of di↵erences in long-term discount rates.

6 Portfolio sorts

6.1 Return predictors

We complement the bootstrap analysis by using 46 predictors of stock returns to sort stocks into

portfolios. We use di↵erent combinations of these predictors to form portfolios, and then examine the

persistence in these portfolios’ average returns. The predictors we include are among those analyzed in

McLean and Ponti↵ (2016). We also take those few additional predictors from Linnainmaa and Roberts

(2018) that were published after McLean and Ponti↵ (2016) created their list.

Table 3 reports monthly average returns and CAPM and three-factor model alphas for HML-style

factors based on each of the 46 return predictors. We sort stocks into six portfolios by market capital-

ization and the predictor, and then compute value-weighted returns on these portfolios. The breakpoint

for size is the 50th NYSE percentile, and the breakpoints for the predictor are the 30th and 70th NYSE

percentiles. A factor’s return is the average return on the two high portfolios minus the average return

on the two low portfolios.
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Table 3: Average returns, CAPM and three-factor model alphas, and persistence of 46 return predictors

This table reports average returns and CAPM and three-factor model alphas for 46 return predictors.
Each return predictor is used to construct an HML-style factor by sorting stocks into six portfolios
by size and predictor. These sorts are independent and use NYSE breakpoints; the size breakpoint
is the median, and the predictor breakpoints are the 30th and 70th percentiles. A predictor’s return
is the average return on the two value-weighted high portfolios minus the average return on the two
value-weighted low portfolios. The high and low portfolios are determined so that “high” corresponds to
those stocks that the initial study identified as earning higher returns. “Accounting-based predictors”
are rebalanced annually at the end of each June; “Return-based predictors” are rebalanced monthly.
“Persistence” is the last holding period after which the average return or the CAPM or the three-factor
model alpha has a p-value above 0.05 for three consecutive months. A value of 50, for example, indicates
the factor’s average return or alpha remains statistically significantly di↵erent from zero for 50 months
after portfolio formation.

Average CAPM FF3 Persist-
Start return alpha alpha ence,

Predictor year r̄ t ↵̂ t ↵̂ t months

Accounting-based predictors

Earnings to price 1963 0.35 2.78 0.52 3.56 0.20 2.15 50
Enterprise multiple 1963 0.35 3.54 0.46 3.86 0.17 2.40 44
Gross profitability 1963 0.30 3.35 0.28 2.53 0.41 4.19 54
Inventory growth 1963 0.20 3.14 0.26 3.85 0.18 2.94 7
Piotroski’s F score 1963 0.28 3.73 0.37 4.95 0.34 5.24 12
Abnormal investment 1966 0.15 2.75 0.14 2.53 0.17 3.33 12
Accruals 1963 0.19 3.08 0.22 3.05 0.17 2.63 7
Accruals and book-to-market 1963 0.57 3.00 0.62 2.85 0.06 0.36 33
Net operating assets 1963 0.31 4.44 0.27 3.55 0.34 4.56 19
Net working capital changes 1963 0.18 3.07 0.22 3.26 0.20 3.17 7
O-score 1963 0.06 0.87 0.12 1.59 0.21 3.39 81
Profit margin 1963 �0.01 �0.13 0.10 1.00 0.18 2.19 1
Asset growth 1963 0.26 3.23 0.34 3.94 0.13 1.88 19
Sales to price 1963 0.42 3.70 0.45 3.08 0.06 0.58 26
One-year share issuance 1963 0.21 2.77 0.27 3.33 0.18 2.50 53
Five-year share issuance 1963 0.25 3.40 0.32 4.55 0.23 3.55 64
Sustainable growth 1963 0.16 2.01 0.24 2.82 0.04 0.50 7
Total external financing 1972 0.34 3.48 0.48 4.96 0.39 5.11 12
Z-score 1965 �0.01 �0.11 �0.08 �0.69 0.17 2.25 3
Industry-adjusted CAPX growth 1965 0.22 4.42 0.25 5.30 0.20 4.45 28
Sales-minus-inventory growth 1965 0.20 3.80 0.19 3.60 0.22 3.89 12
Investment to capital 1964 0.17 1.57 0.32 3.28 0.11 1.54 5
Investment growth rate 1964 0.20 3.48 0.24 4.03 0.15 2.68 18
Investment to assets 1963 0.25 3.94 0.29 4.38 0.19 2.94 28
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QMJ: Profitability 1964 0.25 3.14 0.31 3.43 0.45 5.56 80
Distress 1975 0.33 2.10 0.55 3.23 0.69 5.09 27
Book to market 1963 0.35 3.02 0.46 3.35 0.03 0.77 25
Operating profitability 1963 0.24 2.61 0.29 2.54 0.32 3.03 11
Organization capital 1963 0.25 4.02 0.32 5.66 0.36 6.76 29
Cashflow to equity 1963 0.40 3.19 0.53 3.71 0.14 2.13 47
Return on assets 1973 0.27 2.25 0.37 2.77 0.53 4.29 15
Return on equity 1970 0.29 2.38 0.40 3.03 0.50 3.92 4
Asset turnover 1963 0.21 3.87 0.23 3.91 0.20 3.57 22
Debt issuance 1972 0.10 1.01 0.01 0.10 0.16 2.01 1

Return-based predictors

52-week high 1963 0.52 3.10 0.76 5.11 0.82 6.39 11
Amihud’s illiquidity 1963 0.29 1.44 0.41 2.23 0.21 1.21 1
Beta 1963 0.03 0.17 0.39 2.57 0.30 2.62 3
Idiosyncratic volatility 1963 0.23 1.21 0.59 3.65 0.50 4.37 10
Industry momentum 1963 0.27 1.66 0.36 2.24 0.37 2.21 7
Long-term reversals 1963 0.31 3.15 0.32 2.76 0.07 0.70 14
Maximum daily return 1963 0.29 1.77 0.58 4.11 0.48 4.62 5
Momentum 1963 0.64 3.85 0.69 4.39 0.84 5.49 10
Intermediate momentum 1963 0.60 4.87 0.59 4.16 0.72 5.44 5
Seasonality 1963 0.60 7.83 0.57 7.00 0.63 7.67 1
Short-term reversals 1963 0.48 3.90 0.38 3.36 0.34 2.75 1
High-volume return premium 1963 0.52 8.16 0.56 9.14 0.51 8.00 3

We divide the predictors into accounting- and return-based predictors. A predictor is accounting-

based if it uses any information from either the balance sheet or income statement; the return-based

predictors use only return, price, or volume information. We recompute and rebalance the accounting-

based factors annually at the end of June and the return-based factors monthly.

The 46 return predictors that we examine explain di↵erences in average returns over our 1963 through

2016 sample period. Each factor earns a statistically significant average return, CAPM alpha, or three-

factor model alpha. The last column reports estimates of how long a factor retains its statistically

significant average return or alpha. We define persistence as the number of months that can be skipped

after portfolio formation without losing statistical significance for three consecutive months. Inventory

growth, for example, has an estimated persistence of seven months. That is, this factor’s returns
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are statistically significant in months one through seven after portfolio formation, but statistically

insignificant afterwards.12 We later use these persistence estimates to group together the ex-post most

persistent predictors.

6.2 Average long-term returns

In Figure 5 and Table 4, we form value-weighted portfolios using di↵erent combinations of return

predictors and then examine di↵erences in average returns at various horizons. In these computations,

the portfolios are formed at date t and then held unchanged for up to ten years. In addition to using

all 46 returns predictors, we form portfolios based on three subsets of predictors: (a) the 34 accounting-

based predictors, (b) the 12 return-based predictors, and (c) the 21 ex-post most persistent predictors.

These subsets comprise the predictors that retain their statistical significance for at least over a year

according to Table 3’s last column.

We form the portfolios by computing the average studentized predictor for each stock. We first

convert each predictor into a z-score by subtracting the cross-sectional average and by then dividing by

the cross-sectional standard deviation (see, e.g., Asness, Frazzini, and Pedersen (2013)). Similar to the

factors in Table 3, we sign each predictor so that high values correspond to high average returns based

on the original study. A stock’s signal is the average of its non-missing z-scores.

Figure 5 suggests little, if any, persistent di↵erences exist in average returns. In this figure, we

take the di↵erence between the top and bottom deciles and report the average value-weighted monthly

returns (Panel A) and CAPM alphas (Panel B) for months 1 to 120 following portfolio formation. These

returns are non-cumulative. That is, the return at horizon k is the average return that an investor would

have earned in month k after portfolio formation (“forward rate”). Table 4 reports average returns and

12Predictors can regain statistical significance later by chance or, in the case of seasonality, by nature (Heston and
Sadka 2008). If a predictor is statistically insignificant for three consecutive months, Table 3 classifies it as having lost its
predictive power.
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Panel A: Average monthly returns

Panel B: Monthly CAPM alphas

Figure 5: Average monthly returns and CAPM alphas on long-short strategies in months

1–120 after portfolio formation. We form decile portfolios at the end of each month by sorting
stocks into portfolios by di↵erent combinations of the 46 return predictors listed in Table 3. The left-
hand side of each panel uses the 34 predictors that use income statement or balance sheet information;
the right-hand side of each panel uses the 12 predictors that use price, return, or volume information.
We convert each predictor into a z-score by subtracting the cross-sectional average from the predictor
and dividing the di↵erence by the cross-sectional standard deviation. Each stock’s predictor is the
average of its non-missing z-scores. We construct value-weighted portfolios each month and hold these
portfolios for up to ten years. Panel A plots the average return di↵erence between the top and bottom
deciles, whereas Panel B plots the monthly CAPM alphas for the return di↵erence between the top and
bottom deciles. The average return in month t is its month t return (“forward rate”), not its average
return from today to month t. The shaded areas indicate 95% confidence intervals.
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Table 4: Annual post-formation spread portfolio returns

We form decile portfolios at the end of each month by sorting stocks into portfolios by di↵erent combi-
nations of the 46 return predictors listed in Table 3. Row “All” uses all predictors; “Accounting-based”
uses the 34 predictors that use some income statement or balance sheet information; “Return-based”
uses the 12 predictors that use price, return, or volume information; and “Ex-post long-lived” uses the
21 predictors in Table 3 that, when used in isolation, persist for at least a year and a month. We convert
each predictor into a z-score by subtracting the cross-sectional average from the predictor and dividing
the di↵erence by the cross-sectional standard deviation. Each stock’s predictor is the average of its non-
missing z-scores. We construct value-weighted portfolios each month and hold these portfolios for up to
eight years. Panel A reports average monthly returns and t-values for value-weighted high-minus-low
portfolios for di↵erent horizons following portfolio formation; Panel B reports monthly CAPM alphas
and t-values. The holding periods range from one month after portfolio formation to year ten after
portfolio formation. We adjust standard errors for overlapping returns using the Jegadeesh and Titman
(1993) method.

Panel A: Average returns
Return Horizon
predictor 1 month Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8

Average monthly long-short returns

All 1.23 0.74 0.25 0.20 0.05 0.02 0.16 0.06 �0.11
Accounting-based 0.83 0.73 0.53 0.40 0.18 0.08 0.00 �0.10 0.00
Price-based 1.51 0.46 �0.18 �0.20 �0.05 �0.06 0.05 0.11 �0.19
Long-lived 0.72 0.61 0.51 0.38 0.16 0.13 0.11 0.01 0.16

t-values

All 6.62 4.48 1.55 1.24 0.35 0.11 1.15 0.47 �0.83
Accounting-based 5.75 5.20 3.66 2.88 1.40 0.65 �0.04 �0.86 �0.02
Price-based 6.71 2.46 �1.06 �1.21 �0.30 �0.39 0.34 0.77 �1.32
Long-lived 3.99 3.55 3.02 2.31 1.02 0.86 0.78 0.07 1.19

t-values for the month following portfolio formation, as well as the average monthly returns and CAPM

alphas in years 1, 2,. . . , 10 following portfolio formation. We adjust standard errors for overlapping

observations using the Jegadeesh and Titman (1993) procedure.

Panel A of Table 4 shows the average return di↵erences between the top and bottom quintiles

rapidly vanish when we estimate expected returns using all 46 predictors.13 One month after portfolio

13Figure 5 and Table 4 use value-weighted portfolios. Table A1 in the Appendix reports the estimates for equal-weighted
portfolios.
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Panel B: CAPM alphas
Return Horizon
predictor 1 month Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8

CAPM alphas

All 1.55 1.03 0.49 0.45 0.29 0.23 0.35 0.24 0.08
Accounting-based 1.04 0.94 0.72 0.59 0.36 0.24 0.13 0.03 0.15
Price-based 1.84 0.76 0.06 0.04 0.17 0.14 0.25 0.30 0.00
Long-lived 0.99 0.88 0.75 0.60 0.37 0.32 0.28 0.17 0.33

t-values

All 10.11 7.79 3.73 3.41 2.36 1.78 3.00 2.10 0.71
Accounting-based 8.29 7.74 5.67 4.71 3.08 2.03 1.16 0.22 1.29
Price-based 9.55 5.06 0.42 0.30 1.30 1.07 1.97 2.38 �0.03
Long-lived 6.34 5.95 5.04 4.12 2.64 2.43 2.11 1.31 2.68

formation, the average return for the long-short portfolio is 123 basis points (t-value = 6.62); in the

year following portfolio formation, the return di↵erence is 74 basis points (t-value = 4.48); and, in

year two, it is just 25 basis points (t-value = 1.55). After year two, the di↵erences in average returns

are economically small and statistically insignificant. Taken together, this full set of predictors is not

informative about long-term di↵erences in average returns.

Figure 5 shows that accounting-based predictors are significantly more informative about di↵erences

in long-term returns than return-based predictors. The accounting-based predictors generate a return

di↵erence of 40 basis points per month in year three (t-value = 2.88), whereas the return-based predictors

are statistically significant only in the first year. The di↵erence is consistent with the persistence

estimates in Table 3. Moreover, this di↵erence between the two groups of predictors is also consistent

with prior research. Some return-based predictors, such as short-term reversals, are known to last only

for about one month (Jegadeesh 1990; Goyal and Wahal 2015). Others, such as momentum, turn into

reversals at longer lags (Jegadeesh and Titman 1993). Although other predictors, such as idiosyncratic

volatility, could contain information about long-term returns, they do not.
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The last row of Table 4 shows that even when we select the ex-post most persistent predictors—

those that, on their own, are statistically significantly di↵erent from zero for more than a year following

portfolio formation—we cannot reliably detect di↵erences in average returns between the top and bottom

quintiles after year three. This test purposefully stacks the playing field in favor of finding di↵erences in

average returns; after all, we use the same data to both identify the most promising predictors and to

test their performance. Nevertheless, this set of predictors displays only the same amount of persistence

as the full set of accounting-based predictors.

Panel B of Figure 5 and Panel B of Table 4 report monthly CAPM alphas for the long-short strategies

from Panel A. Statistically significant di↵erences in CAPM alphas persist longer than those in average

returns—they converge to zero seven years after portfolio formation. Market adjustment helps both

by increasing point estimates and, by the virtue of removing market-wide variation, lowering standard

errors. When we use all 46 return predictors, the CAPM alpha in the first year after portfolio formation

is 103 basis points with a standard error of 13 basis points; in Panel A, by contrast, the average return

in year one is 74 basis points with a standard error of 17 basis points. The fact that CAPM alphas are

higher than average returns is consistent with Table 3’s result that most anomalies are stronger on a

market risk-adjusted basis.

Average returns (Panel A) and market-adjusted returns (Panel B) are both important, but for

di↵erent purposes. Market-adjusted returns are relevant from an investing viewpoint, whereas average

returns are the ones that matter for capital budgeting. An investor could manage his portfolio to

keep it market neutral, thereby aiming to earn the market-adjusted returns reported in Panel B.14

Firms, however, do not discount cashflows at market-adjusted rates. Instead, Panel A’s average returns

represent the appropriate estimates of the di↵erences in firms’ discount rates.

14A statistically significant CAPM alpha indicates an investor who currently holds the market could earn a higher Sharpe
ratio by additionally taking a position in the left-hand-side strategy (Huberman and Kandel 1987).
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Figure 4 shows that our inability to detect di↵erences in future average returns is unlikely due to lack

of power. If a lack of power were the issue, we would expect the standard errors to increase as a function

of time from portfolio formation. Yet they do not: in Figure 5, the width of the confidence interval

remains approximately unchanged while the point estimates converge toward zero in all specifications.

In fact, we can estimate di↵erences in average returns and CAPM alphas with enough precision to bound

the amount of variation in long-term average returns. Consider, for example, the estimates in Panel A

of Table 4 where we use accounting-based predictors to form the portfolios. The 95% interval for the

average return in year one runs from 46 basis points to 101 basis points; in year six, by contrast, it runs

from �24 basis points to 23 basis points. Therefore, strong statistical evidence suggests di↵erences in

expected returns change as a function of time from portfolio formation.

Our results on the short-livedness of cross-sectional di↵erences in expected returns are not specific

to any one part of our sample. Figure A2 in the appendix divides the sample period into two halves

and shows our results are similar before and after 1990. Concerns related to firm survival also cannot

plausibly explain our results. Much of the convergence in expected returns happens already within the

first year, when any expected return e↵ects due to a change in the set of firms must be small. Our

results are also highly similar in a sample restricted to firms that will survive for ten years (Figure A3)

and in the unrestricted sample (Panel A of Figure 5).

In principle, this section’s evidence of the lack of persistence in predicted returns could be specific

to the chosen set of predictors, but such a sceniario is unlikely. First, Table 3 shows that, individually,

none of the predictors contain information about di↵erences in average returns beyond year five, and

we are not aware of any other predictors outside this list that do so.15 Second, Section 4’s bootstrap

15Some of the alphas in Table 3 are more persistent—such as the three-factor model alpha of the O-score anomaly, which
persists for 81 months—but the persistence in alphas is not the same as the persistence in average returns; an anomaly’s
alpha can remain significant because the anomaly’s loadings against the factors change over time. This distinction is
important: an investor at date 0 cannot construct a buy-and-hold portfolio based on O-scores that earns positive alphas
for 81 consecutive months.
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procedure suggests the search for such predictors should be futile. If persistent di↵erences existed in

expected returns, the Fama-MacBeth regression slopes would be positive. In the actual data, they are

not.

7 Changes in betas and characteristics over time

7.1 Estimates

In production-based asset pricing models, expected returns change as firms’ risks change. In a

model such as Gomes, Kogan, and Zhang (2003), returns are completely described by a single-factor

conditional CAPM. However, precisely because risks change—and, therefore, true betas as well—firm

characteristics may better predict returns than estimated betas (Lin and Zhang 2013). In Figure 6, we

measure changes in both market betas (Panel A) and firm characteristics (Panel B).

We estimate betas using one quarter of daily data. We assign stocks into deciles using quarter-q

estimates and then report average estimates for the next 40 quarters. By using non-overlapping data,

the estimation errors at the time of the portfolio sort are uncorrelated with those in the measurement

period.

Panel A shows that market betas converge toward the cross-sectional mean. In the first quarter

after portfolio formation, the average beta of the firm in the top decile is 1.63; that of the firm in the

bottom decile is 0.62. This initial beta gap of 1.01 narrows rapidly at first and then at a slower pace.

The gap is half of its initial value after five years, and after ten years, it is 0.36. That is, 65% of the

initial di↵erences in market betas disappear in ten years.

In Panel B, we assign firms into deciles at the end of each June by a combination of the 34 accounting-

based return predictors listed in Table 3. As before, we convert each predictor into a z-score by
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Figure 6: Changes in betas and firm characteristics. This figure reports average market betas
and firm-characteristic ranks for 10 years after portfolio formation. In Panel A we assign firms into
deciles by quarter-q market betas and report average betas starting in quarter q+ 1. We estimate each
market beta using one quarter of daily data so that the quarterly periods do not overlap. In Panel B,
we assign firms into deciles at the end of each June by a combination of the 34 accounting-based return
predictors listed in Table 3. We convert each predictor into a z-score by subtracting the cross-sectional
average from the predictor, and then scale by the cross-sectional standard deviation. A firm’s decile is
determined by the average of its non-missing z-scores.

subtracting the cross-sectional average from the predictor and scaling the di↵erence by the cross-sectional

standard deviation. A firm’s decile is determined by the average of its non-missing z-scores. By

construction, the average rank di↵erence between the top and bottom deciles is 9 at the time of portfolio

formation. One year later, this di↵erence is 4.2; after five years, it is 2.7; and after ten years, it is 2.0.

Thus, similar to market betas, di↵erences in firm characteristics evaporate rapidly at first. However,

although betas and characteristics of stocks in the top and bottom deciles converge toward each other,

large di↵erences remain even after ten years.
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7.2 Returns on permanent and transitory characteristics

In Figure 7, we show that firm characteristics are so persistent that we would expect them to be

associated with meaningful di↵erences in average long-term returns. The black line in this figure is the

same as that in Panel A of Figure 5; it shows the di↵erence in the average monthly returns between

the top and bottom deciles generated using accounting-based predictors. The shaded red line plots

the same top-minus-bottom return di↵erence after replacing each stock with its characteristics-matched

portfolio of stocks. We construct this return series by tracking, as in Panel B of Figure 6, a stock’s

decile assignment over time. If a stock’s decile in month t after portfolio formation is d, we replace the

stock’s actual return with the value-weighted return of stocks that today belong to decile d.

The di↵erence between the black and red lines in Figure 7 measures the di↵erence in the premiums

and discounts commanded by persistent and transitory characteristics. Figure 7 shows that cross-

sectional di↵erences in average returns disappear far faster than they should: if a firm’s characteristic

persists, the persistent part commands neither a premium nor a discount—only the part that eventually

disappears does.

Table 5 uses portfolio sorts similar to those reported in Table 4 to measure the di↵erence between

persistent and transitory firm characteristics. In this table, we sort stocks into portfolios based on

the original predictors (as in Table 4) as well as the permanent and transitory components of these

predictors. In Table 5, we report average return di↵erences between the top and bottom deciles over

the first year after portfolio formation.

We decompose each stock’s z-score by estimating a cross-sectional regression of today’s z-scores

against the ten-year average z-scores:

zit = at + bt ⇥ z̄10-year

it + eit. (7)
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Figure 7: Returns on characteristics-matched portfolios. We form decile portfolios by sorting
stocks into portfolios by the 34 accounting-based predictors listed in Table 3. We convert each predictor
into a z-score by subtracting the cross-sectional average from the predictor and dividing the di↵erence by
the cross-sectional standard deviation. Each stock’s predictor is the average of its non-missing z-scores.
We construct value-weighted portfolios each month and hold these portfolios for up to ten years. The
thin black line is the average monthly return di↵erence between the top and bottom deciles in month
t following portfolio formation. The thick red line uses returns on characteristics-matched portfolios.
Each month we calculate the current portfolio rank of a stock that was originally assigned into the top
or bottom decile. If a stock’s decile in month t is d, we replace the stock’s actual return in month t with
the value-weighted return on all stocks that would, as of today, belong to decile d. The red shaded area
indicates 95% confidence intervals.
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Figure 8: Changes in firm characteristics before and after portfolio formation. This figure
reports average firm characteristic ranks for 10 years before and after portfolio formation. We assign
firms into deciles at the end of each June by a combination of the 34 accounting-based return predictors
listed in Table 3. We convert each predictor into a z-score by subtracting the cross-sectional average from
the predictor, and then scale by the cross-sectional standard deviation. A firm’s decile is determined
by the average of its non-missing z-scores.

A firm’s persistent component is the fitted value, b̂t ⇥ z̄10-year

it , and the transitory component is the

residual, êit. The persistent component, as suggested by Figure 6, is economically large. When we

compute the z-scores using the accounting-based predictors, the average R2 is 25%; with return-based

predictors, it is 16%.

Figure 8 illustrates the rationale behind this decomposition. This figure is the same as Panel B

of Figure 6 except that we also track the evolution of firm characteristics before portfolio formation.

Top-decile stocks tend to lose their rankings over time, and these stocks are also the ones that gained in

rankings before portfolio formation. Those in the bottom decile tend to gain in rankings after portfolio
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Table 5: Decomposing predictors into persistent and transitory components

This table reports average returns for high-minus-low strategies that are long in the top decile of
stocks and short in the bottom decile of stocks. We assign stocks into deciles alternatively by all 46
return predictors, 34 accounting-based predictors, or 12 return-based predictors (see Table 3). The
accounting-based predictors are updated annually at the end of June; the price-based predictors are up-
dated monthly. We convert each predictor into a z-score by subtracting the cross-sectional average from
the return and dividing the di↵erence by the cross-sectional standard deviation. Each stock’s predictor
is the average of its non-missing z-scores. This table reports the return di↵erence between the value-
weighted top and bottom decile portfolios over the first year after portfolio formation. Columns labeled
“Original predictor” use unadjusted predictors. Columns labeled “Permanent component” and “Tran-
sitory component” decompose characteristics by estimating, for each characteristic, a cross-sectional
regression of month-t characteristics against the average characteristics over the prior ten years. The
permanent component is the fitted value from this regression, and the transitory component is the
residual. Holding-period returns in this table begin in July 1973 (and not in 1963 as in Table 4), and a
stock must have at least 10 years of historical z-scores to be included in the decomposition regression.

Original Permanent Transitory
Return predictor component component
predictors r̄ t-value r̄ t-value r̄ t-value
All 0.59 3.52 �0.07 �0.32 0.61 4.79
Accounting-based 0.50 3.69 0.05 0.29 0.47 4.25
Price-based 0.26 1.22 �0.28 �0.93 0.31 1.91

formation, and they are the ones that have fallen in rankings before portfolio formation.16 The regression

in equation (7) decomposes firm characteristics by comparing a stock’s rank at the time of portfolio

formation to its average pre-formation rank.

Table 5 shows the average return on a strategy that assigns stocks into deciles based on the transitory

component is approximately as high as that on a strategy based on the original signal. When we use all

46 predictors, the average return di↵erence between the top and bottom deciles based on the original

z-score is 59 basis points (t-value = 3.52). The average return di↵erence based on the transitory

component of the z-score is 61 basis points with a t-value of 4.79. The average return on a strategy

that assigns stocks into deciles based on the permanent component, by contrast, is close to zero. Using

16The near-symmetry of Figure 8 is not a coincidence. The post-formation pattern, for example, shows high-decile stocks
turn into lower-decile stocks over time. Reading this post-formation pattern backwards therefore implies low-decile stocks
were, on average, higher-decile stocks in the past. That is, the post-formation pattern implies the pre-formation pattern.
The figure is not perfectly symmetrical, because the observations at the beginning of the sample lack pre-formation data,
and those toward the end lack post-formation data.
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all 46 predictors, this average return di↵erence between the top and bottom deciles is –7 basis points

(t-value = –0.32).

8 Conclusions

We show that cross-sectional di↵erences in stocks’ expected returns converge to zero in five years.

Using di↵erent combinations of 46 return predictors, we are unable to identify any di↵erences in long-

term returns beyond this point. We devise a characteristics-free bootstrapping procedure that measures

our ability to detect persistent cross-sectional di↵erences in expected returns, and find no evidence of

such di↵erences. If di↵erences in expected returns persisted, past average stock returns would positively

and significantly predict the cross section of stock returns. In the data, this sign is negative.

Our results are consistent with firms’ risks changing over time. We show that in production-based

asset pricing models such as Berk, Green, and Naik (1999) and Zhang (2005), firms’ expected returns

converge toward the mean the same way they do in the actual data. The convergence in expected returns

through discount rate shocks can generate long-term reversals, that is, the negative association between

past and future returns. If expected returns were constant, past returns would measure di↵erences in

the levels of expected returns. However, when expected returns vary across firms, and these di↵erences

rapidly converge to zero, past returns measure the direction of discount rate shocks. Long-term reversals

are the inevitable consequence of the lack of di↵erences in long-term discount rates; they are thus not

necessarily an indicator of the markets overreacting to new information (De Bondt and Thaler 1985).

If, as our results suggest, firms’ expected returns rapidly converge to the mean, analysts should use

about the same discount rates to value stocks. To illustrate the importance of the changes in expected

returns to the valuation of cash flows, consider the Gordon growth model, P/D = 1/(r � g), where P

is the stock price, D is the dividend next year, r is the discount rate, and g is the dividend growth
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rate. Suppose two firms exist that will each pay a D = $1 dividend next year and that these dividends

thereafter increase at the rate of g = 2%. If one firm’s discount rate is fixed at 12% and the other’s

at 4%, the stock prices of the two firms are $10 and $50, respectively. However, if both firms’ discount

rates change to 8% in five years, their values are $14.2 and $19.8 instead. These valuations are the same

as if the market discounted all of the first firm’s dividends at a rate of 9% and those of the second firm

at a rate of 7%. The amount of cross-sectional dispersion in short-term discount rates far exceeds that

in firm valuations.

The relevance of the short-term di↵erences in expected returns depends on the lifespan of a firm’s

projects. If the average project generates long-term cash flows, the role of initial di↵erences in discount

rates will be small. Dechow, Sloan, and Soliman (2004) estimate that the equity duration of publicly

traded U.S. firms is on average 15.1 years. This estimate together with ours suggests the e↵ective

long-term discount rates of most firms must be close to each other.

The finding that di↵erences in unconditional expected returns are small goes against the conventional

wisdom that discount rates should vary across firms and even across projects within the same firm. For

example, corporate finance textbooks allow for considerable variation in the cost of equity, and rarely

consider the idea that firms’ discount rates would converge over time.17

Readers suggest our results are surprising in light of Proposition II of Modigliani and Miller (1958):

if two firms’ unlevered rates of return on equity are the same, but their debt-to-equity ratios di↵er, their

expected levered rates of returns di↵er as well. The assumption of similar unlevered rates of return on

equity is reasonable. High rates of returns attract competition, which can be expected to drive the rates

of return on investment toward equality (Stigler 1963; Fama and French 2000). Debt-to-equity ratios

17Welch (2017) is a rare exception to this tradition. His view reflects that of Levi and Welch (2017), who recommend
that the “cost-of-capital estimates should be shrunk far more than is common practice.” Blume (1971) is the first to report
that betas revert to the mean. Cohen, Polk, and Vuolteenaho (2009) also document that value stocks’ betas increase and
growth stocks’ betas decrease after portfolio formation. See Levi and Welch for a review of the cost-of-capital prescriptions
of corporate finance textbooks and academic literature.
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are also known to di↵er considerably across firms. Although leverage ratios display convergence toward

the mean, economically significant di↵erences in leverage persist for long periods of time (Lemmon,

Roberts, and Zender 2008).

Why do the data then not support the prediction that expected levered rates of return di↵er across

firms?18 The idea that equity risk is increasing in leverage relies on the assumption that markets are

frictionless, which leads firms’ investment and financing decisions to be independent of one another.

George and Hwang (2010) argue financial distress costs a↵ect firms’ capital structure decisions, induc-

ing low-leverage firms to assume greater exposures to systematic risk than high-leverage firms. This

neutralizes the mechanical e↵ect leverage has on equity risk. Johnson et al. (2011) draw similar con-

clusions from a generalized version of the George and Hwang (2010) model. The puzzle can thus be

explained by rational models, albeit ones with market frictions.

Our results also have asset pricing implications. Reliably extracting the risk-return relationship

from the data may be di�cult even when one exists. Suppose, for example, the true data-generating

process is a conditional CAPM. Our results would then imply firms’ betas must change rapidly to match

the changes in discount rates. Lin and Zhang (2013) make an analogous argument by simulating data

from Zhang’s (2005) model and showing the resulting data appear to support the characteristics-based

model of Daniel and Titman (1997) and not the risk-based model. Our results on the changes in average

returns, betas, and characteristics point toward the same conclusion. To give asset pricing models a

fair chance, econometric methods for testing them must accommodate rapid changes in firm risks.

18For example, Linnainmaa and Roberts (2018, Table 5) document that leverage is not a significant predictor of returns.
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Figure A1: Average market betas on stocks sorted by expected returns. We simulate 1,000
months of return data from the four models described in Section 2. We run these simulations using the
same parameters as those used in the original studies. We discard the first 400 months and then begin
ranking stocks into deciles based on expected returns. We report average cross-sectionally demeaned
market betas for these deciles over the next 15 years after portfolio formation.
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Figure A2: Average monthly returns on long-short strategies in months 1–120 after portfolio

formation: Subsamples We form decile portfolios at the end of each month by sorting stocks into
portfolios by di↵erent combinations of the 34 accounting-based return predictors listed in Table 3. We
convert each predictor into a z-score by subtracting the cross-sectional average from the predictor and
dividing the di↵erence by the cross-sectional standard deviation. Each stock’s predictor is the average
of its non-missing z-scores. We construct value-weighted portfolios each month and hold these portfolios
for up to ten years. Panel A reports average returns using the 1963–1989 sample; Panel B uses the
1990–2016 sample. The average return in year k is its year k return (“forward rate”), not its average
return from today to year k. The shaded areas indicate 95% confidence intervals.
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Figure A3: Average monthly returns long-short strategies in months 1–120 after portfolio

formation: Condition on survival We form decile portfolios at the end of each month by sorting
stocks into portfolios by di↵erent combinations of the 34 accounting-based return predictors listed in
Table 3. We convert each predictor into a z-score by subtracting the cross-sectional average from the
predictor and dividing the di↵erence by the cross-sectional standard deviation. Each stock’s predictor
is the average of its non-missing z-scores. We construct value-weighted portfolios each month and hold
these portfolios for up to ten years. This table di↵ers from Panel A of Figure 3 in that we condition on
firm survival: each month the sample includes only those firms that will go on to survive for at least 10
years. The average return in year k is its year k return (“forward rate”), not its average return from
today to year k. The shaded areas indicate 95% confidence intervals.
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Table A1: Measuring di↵erences in average long-term returns: Equal-weighted portfolios

This table is an alternative version of Table 4 with equal- instead of value-weighted portfolios. We form
decile portfolios at the end of each month by sorting stocks into portfolios by di↵erent combinations
of the 46 return predictors listed in Table 3. Row “All” uses all predictors; “Accounting-based” uses
the 34 predictors that use some income statement or balance sheet information; “Return-based” uses
the 12 predictors that use price, return, or volume information; and “Ex-post long-lived” use the 21
predictors in Table 3 that, when used in isolation, persist for at least a year and a month. We convert
each predictor into a z-score by subtracting the cross-sectional average from the predictor and dividing
the di↵erence by the cross-sectional standard deviation. Each stock’s predictor is the average of its non-
missing z-scores. We construct equal-weighted portfolios each month and hold these portfolios for up
to ten years. Panel A reports average monthly returns and t-values for equal-weighted high-minus-low
portfolios for di↵erent horizons following portfolio formation; Panel B reports monthly CAPM alphas
and t-values. The holding periods range from one month after portfolio formation to year ten after
portfolio formation. Average returns are computed using the Jegadeesh and Titman (1993) method to
avoid the use of overlapping return observations.

Panel A: Average returns
Return Horizon
predictor 1 month Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8

Average monthly long-short returns

All 1.53 0.65 0.24 0.15 0.09 0.03 0.08 0.03 �0.03
Accounting-based 1.05 0.87 0.60 0.46 0.29 0.18 0.06 0.07 0.06
Price-based 1.65 0.18 �0.27 �0.18 �0.08 �0.19 �0.01 �0.12 �0.19
Ex-post long-lived 1.12 0.89 0.66 0.51 0.33 0.21 0.07 0.06 0.06

t-values

All 8.39 3.82 1.50 1.00 0.68 0.25 0.67 0.26 �0.25
Accounting-based 7.00 6.02 4.30 3.37 2.30 1.52 0.56 0.64 0.55
Price-based 8.20 1.04 �1.73 �1.24 �0.62 �1.65 �0.07 �1.05 �1.72
Ex-post long-lived 6.80 5.64 4.39 3.46 2.38 1.60 0.61 0.55 0.50

48



Panel B: CAPM alphas
Return Horizon
predictor 1 month Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8

CAPM alphas

All 1.78 0.89 0.45 0.35 0.28 0.20 0.23 0.18 0.12
Accounting-based 1.24 1.05 0.77 0.62 0.45 0.33 0.19 0.20 0.18
Price-based 1.89 0.40 �0.10 �0.01 0.07 �0.06 0.12 0.00 �0.07
Ex-post long-lived 1.32 1.09 0.84 0.68 0.50 0.36 0.20 0.19 0.17

t-values

All 11.17 5.98 3.14 2.62 2.27 1.74 2.17 1.66 1.13
Accounting-based 9.18 8.16 6.12 5.08 3.98 3.14 1.94 2.08 1.95
Price-based 10.67 2.56 �0.70 �0.10 0.63 �0.58 1.13 �0.01 �0.67
Ex-post long-lived 8.84 7.64 6.15 5.03 3.85 3.00 1.83 1.77 1.67
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