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Estimating the Economic Impacts of Climate Change Using Weather Observations*
Charles D. Kolstad® and Frances C. Moore?

Abstract

This paper reviews methods that have been used to statistically measure the effect of climate on
economic value, using historic data on weather, climate, economic activity and other variables. This has
been an active area of research for several decades, with many recent developments and discussion of
the best way of measuring climate damages. The paper begins with a conceptual framework covering
issues relevant to estimating the costs of climate change impacts. It then considers several approaches
to econometrically estimate impacts that have been proposed in the literature: cross-sections, linear
and non-linear panel methods, long-differences, and partitioning variation. For each method we
describe the kind of impacts (short-run vs long-run) estimated, the type of weather or climate variation
used, and the pros and cons of the approach.

I. INTRODUCTION

Physical changes in the climate due to greenhouse gas emissions are now well-documented, and future
changes due to unmitigated greenhouse gas emissions are generally well understood. But quantifying
the economic consequences of changes in temperature, rainfall, sea-level, or other climate variables has
long been recognized as extremely challenging. Doing so is critical, however, to developing informed
mitigation and adaptation policy: optimal mitigation rates depend on the severity of global impacts,
while adaptation policies in particular places and sectors must be designed to address the expected
damages in those areas.

Although early studies estimating the economic damages associated with climate change used process
models to simulate the effects of changing climate variables (e.g., Smith and Tirpak, 1989), much recent
work has instead focused on statistical approaches using historical data. The benefit of these models is
that they are based on observed relationships in real-world settings. For the most part, these models do
not assume any theory-based structural relationships among variables (ie, they are reduced-form
specifications). Initial approaches used one time point, exploiting cross-sectional variation in climate to
estimate the marginal effect of long-run changes in the distribution of temperature and rainfall (for
instance Mendelsohn, Nordhaus, & Shaw, 1994). Since the turn of the century, though, there has been
an explosion of literature using data which varies over both space and time (panel data) to estimate the
effects of inter-annual variation in weather on economic outcomes (for reviews, see Carleton & Hsiang,
2016 and Dell, Jones, & Olken, 2014).
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Panel approaches have significant advantages over cross-sectional regressions, not only because of the
expanded set of data used (varying in time and space) but also because fixed-effects are able to control
for many unobserved omitted variables, particularly time-invariant variation across space, which is often
a concern in this setting (Deschénes & Greenstone, 2007). However, the benefit of using fixed-effects is
offset by the fact that climate is basically fixed over time in most econometric applications, making
identification of the direct effect of climate on impacts difficult.

Furthermore, there have long been concerns that the effect of inter-annual weather variation on
impacts cannot be used to identify the effect of climate changes because the response to short-run
weather fluctuations may be fundamentally different than the response to a permanent change in the
distribution of those fluctuations (ie, the climate). This difference is due to adaptation: people and firms
may respond differently (adapt) to permanent changes in the expected distribution of weather than to
short-term and unanticipated fluctuations in weather. If this adaptation is significant then the impact of
weather fluctuations may not be a good analog for the effect of a permanent change in the climate.

The question of how best to estimate the effects of long-run changes in climate has long been one of
contention. In their review of studies using panel data to estimate the effect of weather fluctuations on
economic outcomes, Dell et al. (2014) identify three high priority areas for future research, concluding
with: “Third, and perhaps most importantly, bridging from the well-identified results from short-run
shocks [weather] to longer-run outcomes [climate] is an important dimension for future work.” (p. 790).
Resolving this issue is essential if recent empirical results are to be used to inform damage functions and
ultimately the social cost of carbon used in the cost-benefit analysis of climate policy (Burke et al., 2016;
Diaz & Moore, 2017; Greenstone et al, 2013).

Because of the importance of this topic, significant research attention has been devoted recently to the
guestion of how to statistically identify climate change impacts using historical panel data. A number of
new approaches have been proposed that exploit the richness of many panel data-sets, which often
contain information on inter-annual weather variation, long-term differences in climate, and medium-
term (decadal) changes in average weather conditions. Comparing the responses to these different
types of variation can give information on the importance of private adaptation and a more accurate
estimate of climate change impacts.

This paper begins by establishing a conceptual framework for thinking about climate, weather,
adaptation, and the overall economic costs of climate change. The paper then reviews different
approaches that have been proposed for econometrically estimating the effects of climate change, both
the classic cross-sectional approach, more recent panel approaches using interannual weather variation,
and very recent hybrid approaches that use a mix of cross-sectional and interannual variation in order to
better identify climate change impacts.

Il. CONCEPTUAL FRAMEWORK

A. Climate and Weather

A rigorous discussion of methods to identify climate change impacts must begin with a definition of
climate, climate change, and weather. Strictly speaking, weather is the instantaneous condition of the
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atmosphere at a particular location (see Oxford English Dictionary). The weather at any given point can
be described not just by temperature and rainfall, but by numerous other variables such as air pressure,
wind speed and direction, relative humidity, cloud cover, and wind shear, to name just a few. Weather
is a complex multi-variate and time-varying concept.

For most economic and policy applications, representing actual weather is impractical and summary
statistics are generally sufficient. These summary variables reduce the dimensionality of weather while
retaining relevant information for the application. The choice of summary statistic will depend on the
application — in agriculture, annual or monthly growing and killing degree-days® and total monthly or
annual precipitation have been useful. For human health, peak wet-bulb temperature may be more
relevant while heating and cooling degree days are often used to model energy demand. In this paper
we will refer to the time- and space-varying summary or sufficient statistic as the “weather statistic” or
simply the “weather,” keeping in mind that the exact nature of that summary statistic will depend on
the application, and that this is sometimes a multi-variate quantity.

Climate, on the other hand, is classically defined as the probability distribution over weather outcomes.
In the economic and policy context (this paper), climate will be defined to be the full, possibly joint,
probability distribution of the relevant weather statistic(s). Climate change, therefore is defined as a
change in the probability distribution from which the weather statistic is drawn each time period. The
goal of empirical studies estimating climate impacts is to use historical data to infer the welfare
consequences of future changes in the climate (weather distribution).? For further discussion of these
issues see Hsiang (2016) and Lemoine (2018).

B. Welfare Consequences of Changes in Weather and Climate

Ultimately we are interested in the welfare consequences of climate change. Conceptually, we start
with a simple representation of a production process (eg, Pope and Chavez, 1994; Kelly et al, 2005;
Hsiang, 2016), whereby output is influenced by two sets of variables: weather realizations and
production choices. Weather is not controllable by the economic agent and is generally unanticipated;
production choices (eg, what to plant and when, or how much capital to invest) are decisions made by
the economic agent and are based on a host of factors, including prices and expectations about
stochastic weather.

3Degree days are daily temperature differences summed over a period of time. Usually the temperature
differences are the difference between the average temperature on a day and some base temperature. For
instance, heating degree days are defined by the US EIA as the extent to which temperature is less than a base of
65°F. The agricultural literature often defines growing degree days as the extent to which daily temperature
exceeds 8°C for the days in a growing season and similarly, killing degree days are defined with respect to a base
temperature of 29°C (eg, Butlet and Huybers, 2012).

4 The World Meteorological Organization (WMO) requires member nations to compute 30-year “climate normals”
- the annual or monthly mean and variance of weather variables over a defined 30 year period and to update these
every 30 years (Arguez & Vose, 2011). In statistical terms, this simply means that the climate (weather distribution)
is estimated using a 30 year sample, although only measuring two moments (mean and variance) may not be the
best way to estimate the underlying distribution of a weather statistic.
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Even in a stationary climate, agents face variation in the weather arising from chaotic fluctuations in the
earth system, termed “internal” or “natural” variability in the climate science literature (Deser, Knutti,
Solomon, & Phillips, 2012). Assuming agents know the stationary climate distribution they face, they will
make investments to reduce the net losses associated with this variability, balancing the costs of such
investments with the bentifts of lower impacts of weather fluctuations. A good example of this is
investments in irrigation capital to reduce the losses from variable natural precipitation — these
investments may be profitable in a dry or highly variable climate, but may not be justified in a wetter
climate.

Similarly, when climate changes (and the agent knows it) and thus the realizations of weather change,
the agent can take change its production choices, adapting to the change in climate as best it can.
Determining optimal responses to a changed climate involves trading off the costs of such actions with
the benefits, in terms of net expected losses from the new distribution of weather. Such actions are
termed private adaptation in the context of climate change; in economics, this is simply the natural
adjustment of an economic agent to changed technologies or prices.> The net cost of the change in
climate is the sum of the net change in production expenditures less the net value gain in expected
output. For instance if climate change consists of a drop in annual mean precipitation, then adaptive
action may be costly investments in irrigation and water storage; output losses will be changes in
expected output, taking into account the change in adaptive responses. The net impact, the costs of
adaptive action plus the loss in expected output after adaptive action has occurred, will be the damage
from the change in climate. On net, the costs of the climate change may be positive or negative. (ltis
also easy to see that the impacts of changes in weather, represented in most panel models, does not
capture the full impacts of climate change since adaptive actions are ignored.)

Both expectations and fixed capital investments can adjust in response to permanent changes in climate
but not in response to short-term variation in weather. We can therefore define the short-run response
to a change in climate as the effect of a shift in the true climate keeping expectations, beliefs and, by
extension, investments fixed (Kelly et al, 2005). This short-run response could be estimated by observing
the effects of weather fluctuations. The long-run response in contrast is the effect of a change in climate
after both beliefs and capital investments have been allowed to equilibrate to the new climate. As long
as there are management or investment adaptations that agents can take to improve outcomes under
the changed climate, the short- and long-run effects of climate change will be different.

To complicate the issue a bit more, the change in climate may be instantaneous or gradual and the
impacts will be different in those two cases. Consider a change in the climate distribution. Firstly, we
consider an instantaneous shift in the climate (Figure 1a). Though not a realistic representation of
climate change, this will provide some intuition for discussion of a more gradual process. Since the
climate distribution can only be inferred from experience of weather, this sudden shift is not initially
observed. Instead, the first draws from the changed climate may be interpreted only as unusual weather
events. Gradually though, evidence in the form of repeated weather observations will lead an agent to
update their beliefs regarding the underlying climate distribution. Conditioned on this new belief, the

5 Some adaptation is not taken by individual agents but rather collectively. Examples include investments in flood
control or public infrastructure. Typically governments are involved in such public adaptation and market failures
resulting from collective action problems may result in under-provision of these adaptations. These inefficiencies
are not considered further in this paper, which focuses on private adaptation.
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agent will re-optimize their investments and management to maximize welfare under the new climate
distribution.

Figure 1b shows expected welfare under this simple representation of climate change. Climate change
lowers welfare both because of inherently worse outcomes under the changed climate and because
agents are initially not adapted to or even informed about the new climate. The equilibrium costs of a
shift in climate are defined as the residual loss in welfare , including adaptation costs, after adjusting to
the new climate (lightly shaded area, Figure 1b). Adjusment costs are additional costs associated with
being imperfectly adjusted to a particular climate (darker shaded area, Figure 1b). Adustment costs can
arise both from incorrect beliefs about the state of the climate distribution (“mistakes”), and from the
time it takes to replace obsolete factors of production (eg, captial). Both beliefs and factor investments
will adjust over the long-run, but not in response to short-run fluctuations in weather (for non-climate
adjustment cost applications see Abel and Eberly, 1994; Cooper and Haltiwanger, 1995). The magnitude
of adjustment costs will depend on the net benefits of adaptation options and the time-scale over which
adaptation occurs (Kelly, Kolstad and Mitchell, 2005). Certain sectors in which long-lived capital stocks
are important, such as forestry or coastal defenses, are likely to have larger adjustment costs than
others.

A more realistic representation of climate change accounts for the fact that it is not a step change, but
instead accumulates gradually over time. The concepts of equilibrium and adjustment costs translate to
this setting. Figure 1c shows the same change in climate as in Figure 1a, but occuring gradually over 25
years. Figure 1d shows changes in welfare given the same response function and adjustment rate shown
in Figure 1b, but occuring in response to the gradually changing climate. Imperfect adjustment to the
climate at any given point in time still results in a wedge between the equilibrium welfare and that
achieved by agents with imperfect information (i.e. adjustment costs). Welfare only converges to the
equilibrium value over time, once the climate has stabilized. If climate change is slower relative to the
rate of adjustment, or if agents are able to anticipate future climate change then adjustment costs will
be smaller.

C. Quantifying Climate Change Damages

Full accounting of the net economic costs of climate change will include both equilibrium costs
(including the residual damages after full adaptation and the costs of adaptation) and adjustment costs
(which are temporary and will depend on the rate of adaptation and the effectiveness of adaptation
options). Few empirical methods are able to fully estimate all these aspects of climate damages. There
are some special cases, however, where adjustment costs are small or adaptation opportunities are
minimal so that quantifying the economic damages associated with climate change is somewhat easier.
It remains the case that only looking at how economic output changes with weather shocks cannot be
used as a proxy for the economic impacts of a change in climate, except in certain cases.

One special case is where the potential margins for adaptation and adjustment are ineffective or very
limited. In this case the short-run responses to weather changes and the long-run responses to climate
change will be nearly identical, so that knowing either is sufficient to characterize climate change
damages. Hsiang (2016) has used the envelope theorem to suggest that, in cases where adaptation
technologies are continuous, adaptation is unlikely to be significant, at least for marginal changes in the
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climate. The corollary though is provided by Guo and Costello (2013), who show that, in cases where
adaptation technologies are discontinuous, the potential benefits of adaptation are theoretically
unbounded, even for marginal changes in climate.

A second special case is one in which adaptations may be beneficial but the rate of adaptation is fast. In
this case equilibrium costs will make up the vast majority of climate change damages and adjustment
costs can be safely ignored as of second order importance. In this setting, only the residual damages
under equilibrium and the adaptation costs need be known in order to quantify climate damages. Some
authors have argued that because climate changes only over decades to centuries, economic
adjustment rates will be relatively rapid and adjustment costs correspondingly small (Schlenker,
Hanemann, & Fischer, 2005). Unless either of these conditions applies, however, fully understanding the
costs of climate change requires characterizing both equilibrium and adjustment costs and therefore
requires knowing both the short- and long-run response to a change in climate.

In the following section we review the reduced form empirical methods that have been used to estimate
the effects of weather and climate, with a view to informing estimates of climate change damages. A
long-standing question in the literature has surrounded the trade-off between improving confidence in
empirical estimates using fixed-effects to control for unobserved omitted variables and estimating the
long-run, equilibrium response to climate change. We first review this debate through a discussion of
cross-sectional and linear panel models, and then review a more recent set of methods, which we
collectively term “hybrid approaches”, that combine the cross-sectional and time-series variation in
panel data to produce response functions more relevant to climate change impacts while retaining the
benefits of fixed effect specifications.

1ll. EMPIRICAL APPROACHES

Given the conceptual framework outlined above, it is clear that, depending on the setting, the short-run
response, long-run response, and rate of adaptation could all be relevant to fully quantifying climate
change impacts. Various empirical approaches have been proposed that can estimate some or all of
these. Here we review some of the most common econometric approaches, as well as emerging
techniques that combine the short- and long-run variation in panel data in order to improve
quantification of climate change impacts (see also Hsiang, 2016; Blanc and Schlenker, 2017; Dell, Jones,
and Olken, 2014). For each technique, we will cover the kind of climate or weather variation used, a
stylized estimating equation, the ability of the method to estimate equilibrium and / or adjustment
costs, and any threats to unbiased identification. Some authors have pointed out the trade-off between
using variation over long timescales (which is most relevant for identifying climate change impacts if
adaptation is significant), and the improved identification enabled by higher frequency variation
(Schlenker, 2010; Hsiang and Burke, 2014). In this section we will describe these tradeoffs systematically
for the various approaches proposed in the literature for identifying climate impacts. Table | summarizes
some of the differences among these various approaches, along with a stylized estimating equation for
each method.

A. Cross-Section

The first econometric approach to estimating climate change impacts used cross-sectional variation in
long-term climates to estimate the equilibrium (i.e. long-run) effects of a change in climate. Pioneered
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by Mendelsohn, Nordhaus and Shaw (1994),° this approach compares outcomes across space,
essentially using hotter places with the current climate as analogs for currently colder places under a
changed climate. Since the differences in climate observed across space are long-term and assumed
stable, it is reasonable to assume that agents will have fully adjusted investments and management
practices to maximize output under the climate they face. The cross-sectional approach therefore gives
an estimate of the long-run response to climate change and can be used to estimate the equilibrium
costs of a change in climate.

The econometric specification involves an economic outcome of interest on the left hand side of the
equation, varying over space at an instant of time, with a function of climate, various other observable
controls, and an error term on the right hand side of the equation (see Table 1, row 1). Note that panel
data, where available, can be used to estimate pooled cross-sectional models (Masetti and Mendelsohn,
2011; Schlenker, Hanemann and Fischer, 2006). However, since in most settings relevant to climate
change, cross-sectional variation is large relative to time-series variation, models that do not use spatial
fixed-effects will have the same benefits and concerns regarding identification as standard cross-
sections.

There are a number of potential problems with this approach. One important question that has received
much attention is whether the set of observable cross-sectional variables included as controls are able
to remove all confounding variables that might otherwise bias estimates of the effect of climate on the
left-hand side economic outcome. If unobservable factors are correlated with the climate and also affect
the outcome, then the estimated effect of climate will be biased. For instance, in an agricultural setting,
soil quality often varies with climate, but also affects productivity and therefore land values. To the
extent soil quality is observed, it can be controlled for in the regression, but there is always a concern
that unobservable characteristics may be important. Schlenker, Hanemann, and Fisher (2005) show that
the estimated effect of climate on land values differs significantly between irrigated and non-irrigated
counties, suggesting that ignoring historic investments in irrigation infrastructure would lead to bias.
Ortiz-Bobea (2016) proposes an approach to account for time-invariant unobservables by controlling for
observable characteristics of neighboring counties and finds this significantly changes the estimated
effect of climate change on US agriculture.

A second challenge in this class of regressions is how to define the climate variables used as explanatory
variables since, as discussed above, the climate itself is not observable. If the climate is stationary (or the
relevant agents believe the climate is stationary) then the historic distribution of the relevant summary
weather statistic can be used as a noisy estimate of the climate. Itis common in the literature to
assume a stationary climate, using the past 30-years of weather observations to estimate the climate
(Mendelsohn et al., 1994; Mendelsohn & Reinsborough, 2007). However, if agents recognize the climate
is non-stationary then the question of how to estimate the effect of climate is more complicated, with
the largest effect on forward-looking outcomes such as land prices. Severen, Costello and Deschenes

& A much earlier paper (Johnson and Haigh, 1970) take a very similar approach, motivated by weather modification
policy. They estimate a cross-sectional model of land prices in 1964, as influenced by soil characteristics and
climatic variables, among other exogenous parameters. As noted by Aufhammer et al (2013), as early as 1925,
researchers were examining the effect of weather on economic output. However, the Mendelsohn et al (1994)
analysis is more widely known and much more specifically oriented towards the issue of economic impacts of a
change in climate.
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(2016) for instance show evidence that climate change projections are already capitalized into
agricultural land markets, meaning using only past observations of weather to estimate climate will
result in a biased estimate of climate change impacts. The ideal variable to use would be agent’s beliefs
about the weather distribution, but this is not usually directly observable.

The main benefit of the cross-sectional approach is that it yields the long-run, equilibrium effects of
climate change, incorporating the net benefits of all possible margins of adaptation. If adjustment costs
are small, either because they occur rapidly relative to the rate of climate change or because the
margins of adjustment are limited, then an unbiased cross-sectional regression is sufficient to estimate
the impacts of climate change. However, some have argued that long-lived institutions and path-
dependence of institutional and economic processes mean adjustment costs may be substantial, or even
constitute the vast majority of climate change damages. The implication is that in such a case, the cross-
section, by only estimating equilibrium costs, would substantially under-estimate total impacts. (Quiggin
& Horowitz, 1999).

B. Linear Panel

In response to identification concerns in cross-sectional approaches, the past decade has seen a growth
in the use of panel data to estimate weather impacts, though the effects of climate are harder to
identify (Carleton & Hsiang, 2016; Dell et al., 2014). Because panel data includes observations of many
units in many time periods, fixed-effects can be used to control for all time-invariant differences
between units and all common differences between time periods. A stylized estimating equation can be
written with the economic outcome of interest on the left hand side of the equation, varying over time
and space. The right hand side of the estimating equation is linear in weather (varying over time and
space), a fixed effect varying over space, a fixed effect varying over time plus an error term (Table 1, row
2). The flexible control for unobservable differences provided by the fixed effects increases confidence
that omitted variables are not biasing the estimated relationship, relative to a cross-sectional approach.
(Note that non-linear panels have substantively different qualities in terms of representing adaptation
and therefore are dealt with in the next section.)

Estimation of the coefficient on weather in this panel setting comes from averaging the effect of time-
series variation in weather in each location. Permanent differences in climate (used in the cross-section
approach) are captured by the location fixed-effect, making identifying the effect of climate, as distinct
from other location invariates, difficult. Statistical power in explaining weather comes from using the
deviation of the weather statistic in a particular year from its average value in each location. Common
trends in weather (e.g. due to climate change) are removed with the time fixed-effect. Moreover, since
non-stationarity could result in spurious correlations, gradual changes in weather over time are also
often removed with smooth, region-specific time trends. This means the variation used for estimation in
this setting tends to come from temporary, and unexpected weather shocks (Schlenker, 2010).

The use of weather variation that is unexpected and temporary for estimation means that this method
gives an estimate of the short-run response to climate change: we would not expect capital investments,
factor use, or beliefs about the average climate to adjust in response to short-term weather shocks. If
opportunities for adaptation and adjustment are small then the short-run and long-run response will be
similar and either can be used to estimate the impacts of climate change. Hsiang (2016) uses the
envelope theorem to argue that this is the case in situations where adaptation technologies are
continuous. In cases where the adaptation potential is substantial, however, using the short-run
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response to infer climate change impacts will result in a biased estimate of damages because it does not
account for longer-term changes people can make to improve outcomes under a permanent change in
climate.

Although time-invariant omitted variables are not a concern in the linear panel setting (they are
absorbed in the location fixed effect), there are some cases in which time varying omitted variables
could raise issues when using the estimate to calculate climate change impacts (beyond the questions of
adaptation described previously). An example is the effect of temperature on mortality. Temperature
and relative humidity are correlated and both affect mortality rates, but they are projected to change in
opposite ways with climate change (Fischer & Knutti, 2013). Therefore a panel regression of mortality
rates on temperature alone, without controlling for relative humidity, could give a biased estimate of
climate change effects on mortality.

C. Emerging Hybrid Approaches

The cross-section and panel approaches described above are well established in the literature and have
given rise to a well-worn dichotomy between the benefits of clean identification of the impacts of
weather and short-run impacts using a panel estimate and the benefits of accounting for long-run
adaptations and identifying the role of climate using the cross-section. However, a number of emerging
approaches are using panel data in innovative ways, combining cross-sectional, inter-annual, and
decadal variation in weather to estimate climate change effects while still controlling for unobservable
confounding variables. Here we characterize these approaches, grouping them into three groups:
heterogeneous marginal effects, partitioning variation, and long-differences.

1 Heterogeneous Marginal Effects

It is unlikely warming will have the same effect in cold places as in hot places, meaning a linear response
function with a constant marginal effect may often be inappropriate for modeling the effect of climate
change. In other words, in this example, it is likely that the marginal effect of warming will vary as a
function of climate, implying the need for a non-linear response function. Because panel data contains
information on the effect of inter-annual weather variability in multiple locations, it can be used to
model this heterogeneity. Two approaches have been proposed to estimate heterogenous marginal
effects: non-linear panel models and multi-stage models.

Non-linear panel models are similar to linear panel models except they involve a nonlinear function of
weather. The fact that weather enters non-linearly means that the marginal effect of a change in
weather is itself a function of weather. (For instance, if the function is a quadratic, then the marginal
effect of weather is linear.) Although the effect of climate on the level of economic value is removed
through the location fixed-effect, the expected marginal effect of a change in weather in a particular
location depends on the distribution of the weather; i.e. on the climate in that place. Therefore, the
non-linearity in weather implicitly allows the marginal effect of weather to vary with climate across
locations.

Using the example of temperature, because the marginal effect of weather is allowed to vary cross-
sectionally with climate in a non-linear panel, time-series variation in weather in places with hot and
cold climates is used to estimate the gradient of the hot and cold support respectively. If long-run
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adaptation alters the marginal response to weather variation, then these effects will be captured in the
panel estimates, despite the fact that the location fixed-effect captures all time invariant differences
between locations. In other words, unlike the linear specification discussed in section 2, non-linear panel
estimates cannot be interpreted as only the short-run response to climate change (though they still are
not able to fully account for the effect of a change in climate on output).

Figure 2 shows schematically how non-linear specifications, by allowing for varying marginal effects of
warming, imply that the estimated effects are a mix of long- and short-run responses, if adaptation is
possible. In this hypothetical panel dataset there are observations of weather and economic value from
only two locations (eg, hot and cold), with the distribution of weather (climates) shown by the red
(warmer) and blue (cooler) distributions. In the top panel (A), the climates are quite different; in the
lower panel (B) the climates “overlap”. There are also two technologies available to agents — one that
performs best in hot climates and one that performs best in cold climates: the true relationship between
weather and economic value (y) in the two locations is shown as solid lines, and assumed to be
piecewise linear for simplicity. Following Schlenker and Roberts (2009), note that both places are
adapted to the level of heat exposure they face so that the warmer location (red) does best for its
climate and the cooler location (blue) is more productive when temperatures are lower.

In panel A, the climates are quite distinct so that only observations from the cool location are used to
estimate the slope of the cooler part of the value function and only observations from the warm

location are used to estimate the hotter part. The resulting response function (black dashed line)
captures the low heat sensitivity of a location that has adapted over the long-run to a hotter climate, not
the high heat sensitivity of a cool location temporarily exposed to hot temperatures. It cannot be
interpreted as the short-run response to climate change because it does not capture the large sensitivity
to heat stress of the cooler location. Nor can it be interpreted as the long-run response because it does
not capture the lower productivity associated with switching to more heat-tolerant technologies.”

In panel B, the climates of the two locations overlap so that the estimated response function is a
weighted average of the locally adapted and un-adapted effects. In general, since most observations of
hot weather come from places with hot climates (and conversely for cool weather), the estimated
responses will be heavily influenced by locations adapted to that type of weather, though the exact
weighting will depend on the pattern of time-series and cross-sectional variation in the data and the
functional form of the response curve.

Deryugina and Hsiang (2017) provide a theoretical development of this, as well as an empirical
application estimating the effect of climate on income in the United States. They suggest that the
marginal effect of weather on output is the same as the marginal effect of climate on output, a relatively
new result which has not yet been widely embraced or confirmed in the literature. It is however a
potentially important breakthrough in being able to indirectly measure the economic impact of climate.

The argument that the effects of climate can be exactly identified using the effects of weather
fluctuations relies on the envelope theorem. If y is a maximized quantity (for example profits or welfare)
with a value dependent both on the weather statistic realization (w) and on a set of production
decisions by agents (b), then agents will choose b conditional on their beliefs about the distribution of

7 Note that it is only the slope of the value function — the marginal value -- that is identified in the estimation.
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the weather state (i.e. the climate c), producing the value function V(c). Differentiating the value
function with respect to c results in an expression for the marginal value of a small change in the
climate. The envelope theorem tells us that the derivative of b with respect to c is zero, which simplifies
the result.?

An emerging approach closely related to the non-linear panel is to model the effect of weather and
climate in two steps. A first step models the local-linear effect of weather variation, allowing this linear
response to weather fluctuations to vary across space, all linearly. In a second step, the coefficient on
weather (from the first step) is used as the left hand side variable with a nonlinear function of climate
and other control variables on the right hand side. The first example of this approach is given in Butler
and Huybers (2012) who estimate the effects of extreme heat on maize yields separately for each
county in the US. They then model this marginal effect as a function of expected heat exposure, showing
evidence for adaptation to climate change in the form of lower heat sensitivity in warmer places. In an
extension, Schlenker et al. (2013) show the importance of accounting both for lower average yields as
well as improved heat tolerance in estimating the long-run effects of climate change.

Heutel, Miller, and Molitor (2017) take a similar approach in estimating the mortality effect of
temperature fluctuations in the US by allowing the impact of different temperatures to vary depending
on climate. They find evidence for heterogeneity in the marginal effect of both hot and cold days, with
evidence for adaptation at both ends of the temperature distribution (i.e. hot days are more damaging
in cool places and cold days are more damaging in hot places), with significant implications for the
estimated impact of climate change. Carleton et al. (2018) also use this two step approach to estimate
the global mortality effects of climate change, first identifying the local effect of weather variation, and
then modeling these coefficients as a function of average climate (and income). They also argue
variation in the marginal effect of weather across climates can be used to bound adaptation costs for
non-optimized outcomes, such as mortality.

Finally, Auffhammer (2018) uses individual billing data to estimate the short-run relationship between
daily weather and energy consumption in California, allowing this to vary by zip code. In a second step,
he models how this response on the intensive margin varies with climate (for instance due to varying
rates of air conditioner adoption), showing this extensive margin of adjustment is important for
estimating the effect of climate change on energy demand.

A major benefit of allowing for heterogeneous marginal effects of warming is that they can be used to
estimate the long-run effect of climate change while still controlling for time-invariant unobservables
correlated with the outcome using the spatial fixed-effect. In the two-stage approach, the short-run
response (i.e. keeping 3; fixed) and the long-run response (i.e. allowing £5; to vary with the climate) are
both modeled explicitly. In the single-stage non-linear panel, the long-run response can be recovered by
integrating out the local marginal effects (Schlenker et al., 2013).

Though the location fixed-effect removes all time-invariant unobservables correlated with the outcome,
improving confidence in identification relative to the cross-section, there could still be omitted variables
concerns with these models. This is because the variation in the marginal effect of weather fluctuations

8 Deryugina and Hsiang (2017) assume that w is deterministic in their theoretical development, which simplifies
their analysis and allows them to conclude that the value of a small change in climate is the same as the value of a
small change in weather. It is not clear if this result still holds in the more realistic case of when w is stochastic.
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is estimated in cross-section. The second stage equation makes it clear that any variable correlated with
climate that also affects the marginal response to weather will bias the estimate of the effect of climate
if not explicitly controlled for. In other words, time-invariant differences affecting the marginal response
to weather can introduce omitted variable bias in this setting if not controlled for. This is also a problem
in the non-linear panel because the curvature to the response function comes from heterogeneity in the
marginal effect of weather across space — if this heterogeneity is driven by something other than
climatological variation, then the estimated response function will be biased.

An example is the global effect of temperature on GDP. It is well known that hotter countries have, on
average, lower per-capita income (i.e. income is negatively correlated with climate). There are also
plausible reasons why poorer countries might be more sensitive to weather variations, having to do with
the fraction of the economy in agriculture or the availability of protective technologies (i.e. income is
correlated with the marginal effect of weather). Not accounting for income differences while allowing
for heterogeneous marginal effects of warming will therefore lead to a biased estimate of the true
response since some of the negative effects of warmer temperatures in hot places could be due to lower
incomes. This could be controlled for explicitly by including per-capita income as a covariate in the
second part of the two-stage approach, or by estimating difference response curves for rich and poor
places, as done by Burke, Hsiang and Miguel (2015).

2 Long Differences

A second emerging technique for measuring the effects of a changing climate involves using the fact that
the weather varies randomly over a range of timescales. Therefore, trends in weather over the medium-
term have a random component that is plausibly exogenous to other variables and can be used to
estimate the effect of variations over a longer time frame than typical inter-annual variations. These
guasi-random decadal variations in weather trends result from chaotic fluctuations in the climate
system, tending to have larger amplitudes at smaller spatial scales.® Furthermore, even a stationary
climate may appear to be changing to an economic agent informed by only a short sample of weather
data (such as a 10 year normal).

The long differences approach regresses a long difference in economic value on a long difference in
weather (Table 1, row 5). Long difference in this context usually means at least several decades. Note
that because the estimating equation typically includes an intercept term (as well as sometimes regional
fixed-effects) that remove the average trends in weather and outcome across the sample, power comes
from the effect of idiosyncratic variation in weather trends around the average. In other words,
statistical power comes not from the average effect of climate change, but from the medium- to long-
term variations in the climate system about that average.

The stylized estimating equation above makes clear that the long-differences regression is essentially a
cross-sectional regression in long-term trends. Differencing the dependent and independent variables
removes the effect of time-invariant omitted variables that are a major concern in the standard cross-

SFor instance, variance in the 10-year temperature trends in a county will be larger than the variance in the 10-year
average temperature trends over the whole US (Deser, Knutti, Solomon, & Phillips, 2012; Thompson, Barnes,
Deser, Foust, & Philips, 2015).
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section. But any variables correlated with trends in weather that also affect trends in the outcome
variable would bias identification if not controlled for. This is why the question of whether the medium-
run trends in weather are random is important — spatially random trends are very unlikely to be
correlated with other variables that might also affect the dependent variable.

Figure 3 shows the variation in the change in 30-year averages of annual temperatures across the
continental United States over two different timescales. The upper panel shows the longer timescale
(1850-2017) which shows substantial spatial structure (associated with the amplification of warming at
higher latitudes) that might be correlated with unobserved variables, introducing bias if used in a long-
differences specification without regional fixed-effects or control variables. The lower panel shows
changes over a shorter period of time (~50 years) and shows smaller, but more spatially heterogenous,
changes. In general, the spatial pattern of variation in long differences will depend on the weather
statistic (e.g. temperature will be different from rainfall) and the timescale under consideration.

One question around long differences is whether the variation used for the estimation reflects an actual
change in the climate distribution or simply sampling variability that would be expected in a stochastic
process. This question has not been dealt with explicitly in the literature, but has implications for the
interpretation of long-differences estimates: would one expect to observe adaptation in response to
fluctuations that may be consistent with a stationary climate distribution? In practice, this concern has
been partly addressed either by demonstrating robustness of results to multiple start and end periods
(e.g. 10-year averages vs 30-year averages) or by using fitted linear trends that capture long-term non-
stationarity (Burke & Emerick, 2016; Moore & Lobell, 2015). It is important to note that, at the time and
spatial scales examined in long-differences specifications so far, most of the variation used would not be
expected to be a result of anthropogenic climate change. Instead it largely arises from low frequency
natural variability in the climate system (Deser et al., 2012; Hawkins & Sutton, 2012).

Because long-differences uses a longer time-scale of variation than the inter-annual variation used in a
standard panel model, it should capture the effect of adaptations that occur over the medium-term. If
adaptations are available over decadal timescales that are not available over inter-annual timescales,
then the marginal effect of a gradual change in weather will be less than the effect of a sudden change
in weather. Referring back to Figure 1, this long-differences approach is estimating something in
between the short- and long-run climate change effects. Depending on the rate of adaptation in the
particular system, this might be closer to one or the other.

Dell, Jones and Olken (2012) use long-differences to estimate the effect of a one degree warming
occurring over 15 years on GDP growth rates and find this is similar to the effect of interannual
variations, arguing that this provides evidence that adaptation is not particularly effective over this time-
frame. Burke and Emerick (2016) use long-differences (regressing the change in yield on the change in
climate) to look at the effect of changes in temperature over a 20 year period on rainfed maize yields in
the US and find effects similar to those estimated in a panel using interannual variation. Moore and
Lobell (2015) and Lobell and Asner (2003) both also estimate the effect of decadal trends in temperature
on yields in Europe and the US using specifications similar to long-differences.

With a long enough dataset, it is possible to develop a panel of long-differences by observing multiple
periods of medium-term change in the same unit, improving the precision of the estimate of effects of
changes at these time-scales and allowing for better control of unobserved variables. For example, Taraz
(2017) develops a panel of decadal changes in the Indian monsoon to test for changes in irrigation
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adoption and crop choice. Hsiang (2016) uses spectral analysis to create a panel of crop yield and
temperature variation at various frequencies from 5 years to 33 years. He shows the estimated response
of yield to temperature change is similar on all time-scales, suggesting limited effectiveness of
adaptation.

3 Partitioning Variation

A final set of emerging approaches uses the fact that panel data contains variation in both weather and
climate, and can therefore be used to jointly estimate the effects of both long- and short-run variation.
We characterize these as “partitioning variation” because they decompose variation in the outcome
variable into that associated with climate and that associated with interannual fluctuations around the
climatological average. The former gives the long-run effect and the latter a short-run impact. A
characteristic estimating equation involves economic value on the left hand side. The right hand side
involves a nonlinear function of the weather deviation (from, for instance, a long-run mean), a nonlinear
function of climate, controls and an error term. For instance, an estimating equation of this form is used
by both Kelly et al (2005) and Moore and Lobell (2014) to jointly estimate the short- and long-run effect
of warming on agriculture.

Despite using panel data, the long-run function of climate is estimated using cross-sectional variation.
This means it is susceptible to the same set of omitted variable problems as the standard cross-section,
and typically requires the inclusion of a large set of control variables. A possible alternative approach
proposed by some authors is to use the fact that climate at a location varies over time to estimate both
the long- and short-run effects in a panel, including location and period fixed effects.

This has the strong benefit of allowing for time-invariant omitted variables to be controlled for using the
location fixed-effect. But it also changes the interpretation of the climate term — rather than the long-
run equilibrium effect, it instead captures the medium-run effect. Depending on the timescale of
adaptations, this may be closer to the long- or short-run response. Examples of this include Merel and
Gammans (2017) as applied to US crop yields and Bento, Mookerjee, and Severnini (2017) who compare
the effect of 30-year changes in mean ozone concentrations with that of inter-annual fluctuations
around the mean.

One challenge of this approach is in knowing how to measure the long-term climate, particularly when
the climate is non-stationary and given that we typically do not observe agents’ expectations of
weather. If the estimated climate is different from what agents are actually expecting or prepared for,
then this will induce measurement error into the deviation term and bias in the estimation of the short-
run response. In practice, this appears not to matter substantively. For instance, Moore and Lobell
(2014) use both a 30-year baseline climate and a 30-year rolling average to define climate and find it
does not affect estimates of the short-run response.

One final, distinct, approach that shares theoretical commonalities with this set of studies, is to use
forecast and unforecasted weather events to estimate the difference in response to surprising and
expected weather. This approach uses the fact that reliable forecasts change actors’ information state,
removing the gap between the short- and long-run response driven by imperfect information about the
weather (Allen, Graff-Zivin, & Schrader, 2016; Schrader, 2017). In this sense, forecasted weather is
analogous, in terms of the information available to actors, to a change in climate. Relatively few studies
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have looked at forecasts in the context of climate change adaptation. Schrader (2017) uses the changing
accuracy of El Nino forecasts to estimate the value of adaptation in the Pacific albacore fishery. Although
not directly linked to climate change, Rosezweig and Udry (2014) show that Indian farmers adjust
fertilizer application in response to skillful forecasts of monsoon intensity and show that accurate
forecasts have significant value in this setting.

IV. RATES OF ADJUSTMENT AND ADAPTATION

The previous section has described the now rich and varied literature aimed at identifying the short-,
medium-, and long-run effects of climate change. However, Figure 1 shows that fully identifying the
total costs associated with climate change also requires determining the rate of adjustment. For a given
adaptation effectiveness (i.e. difference between short- and long-run response curves), adjustment
costs will be larger with a longer transition time. Kelly et al (2005) break down the rate of adaptation
into two components: that associated with learning about a changed climate using weather
observations and that associated with replacing long-lived capital and other quasi-fixed factors once
learning has occurred.

Rates of adaptation are limited by learning if agents must infer a change in the underlying climate
distribution using their own observations of weather, which provide only a noisy signal of the climate
state. Kelly et al (2005) parameterize a Bayesian learning model based on characteristics of the climate
system in order to estimate learning-related adjustment costs in US agriculture. Moore (2017) compares
a hierarchical Bayesian learning model with simpler learning heuristics and shows that adjustment costs
do not appear particularly sensitive to the learning model, so long as agents are able to learn from
weather and update expectations about the climate distribution. Neither of these papers tests the
hypothesized learning models against data. Kala (2016) however uses data on how planting dates
respond to changes in the onset of the Indian monsoon to empirically compare several learning models,
finding evidence for ambiguity aversion among farmers.

Even after accounting for learning-related adjustment costs, however, adaptation could be further
slowed by the turnover time of long-lived capital (and possibly other factors of production which do not
re-equilibrate instantaneously and costlessly). Since climate change is relatively gradual, it may be that
capital will adjust gradually, however empirical studies are rare. Hornbeck (2012) shows that equilibrium
adjustment to the Dust Bowl productivity shock took decades, suggesting that at least in some cases, the
rate of adjustment could be comparable to the rate of climate change. Results of long-differences
studies showing similar impacts of medium- and short-run changes in weather could be interpreted to
suggest that either the potential for adaptation is small or that adaptation occurs only over longer time-
scales (Burke & Emerick, 2016).

V. CONCLUSIONS

Improving the empirical basis for estimates of the economic consequences of climate change is
important both as an area of academic inquiry and as an input into the formation of adaptation and
mitigation policy decisions (Diaz & Moore, 2017). A long-standing (and by now well-worn) dichotomy
has developed in the literature between cross-sectional and panel analysis for estimating climate change
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impacts. On the one hand, cross-sectional analysis can be effective in capturing the long-run equilibrium
impacts of different climates, at least in agriculture, but the threats to identification posed by omitted
variables mean causal interpretation of results is not always warranted. On the other hand, panel
regressions solve many omitted variable concerns through the use of location and time fixed-effects, but
at the risk of only identifying the short-run response to weather variation, which will overestimate the
impacts of climate change if adaptation is substantial.

The review presented here seeks to break through this dichotomy in two ways. Firstly, while much of
the debate around cross-section vs panel regressions has focused on identifying the equilibrium costs of
climate change, total damages are made up of both equilibrium and adjustment costs. The relative
importance of these two components will depend on the speed and predictability of climate change and
the dynamics of capital adjustment in a particular sector. Neither cross-sections nor standard panel
models alone identify both types of costs.

Secondly, our review of new methods being applied to panel data (termed “hybrid approaches” in this
paper) reveal it is not always the case that using panel data, even with location fixed-effects, limits
identification to only the short-run response. Panel data contains rich information on the effects of
short-, medium-, and long-term variation in weather, and new approaches are using this in innovative
ways to estimate the response functions on multiple timescales. These approaches greatly reduce
omitted variable concerns relative to a cross-section while still estimating a response that includes more
adaptation than occurs in response to interannual variation in weather. This remains fertile ground for
research; judging by the number of new and innovative working papers being produced, this is
recognized by the research community.

This review has also uncovered a number of pressing research needs. These include better integration of
new empirical approaches with theoretical models describing the dynamic response of agents to a
changing climate, as well as more work to constrain the rate of adaptation in various locations and
sectors. Furthermore, while much empirical work has focused on the US and particularly in the
agriculture sector, expansion beyond these settings is desirable for fully understanding the effects of
climate change.

This is an exciting, important, promising and active field of research.
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Approach

Cross-Section

Linear Panel

Heterogeneous
Marginal Effects:
Nonlinear Panel

Heterogeneous
Marginal Effects:
Two Stage Panel

Long Differences

Partitioning
Variation

Stylized Estimating Equation

v; = f(c;) + Controls; + ¢;

Vit = Bwir + 1y + 0 + €

Vie = f(Wie) + p; + 6, + &;¢

Ty = Biwie + i + 6 + &4

2MB; = f(c;) + Controls; + ¢
Yie = Yig—ae =

f(Wi,t - Wi,t—At) + &

Vie = fwie — ¢;) + g(cy)

+Controls; + &;;

Typical
Representation
of Weather

None

Linear

Non-linear

Linear in first
stage; absent in
second stage

Linear

Nonlinear

Typical

Representation of

Climate

Direct and
Nonlinear

Removed through

fixed effects

Removed through

fixed effects.

Marginal effect of

weather varies
with climate.

Fixed effects in first

stage;

direct nonlinear in

second stage

Medium-run
climatic variation

captured through

long differences

Nonlinear

Remarks

Applies at a
single time
point

Coefficient on
weather in first
stage becomes
LHS in stage 2

Selected Papers

Mendelsohn et al (1994)

Deschenes and Greenstone
(2007)

Dell, Jones and Olken (2012)
Deryugina and Hsiang (2017)

Burke, Hsiang, and Miguel
(2015)

Butler and Huybers (2012);
Heutel et al (2017)

Auffhammer (2018)

Burke and Emerick (2016);
Moore and Lobell (2015)

Kelly et al (2005)

Moore and Lobell (2014)

Table I: Summary of different empirical approaches to estimating impacts of weather and climate on economic activity.
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Key: In equations, y represents the value of economic activity, w represents a weather statistic, c represents the climate (ie, the distribution of
the weather statistic), i is an index on spatial location, t is an index on time, W is a fixed effect varying with time, 0 is a fixed effect varying over
space, € is an error term and “controls” refers to other relevant exogenous variables. B is a coefficient to be estimated and f() is a nonlinear

function, also to be estimated.
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Figure One: Components of welfare losses under sudden and gradual climate change. a) Mean temperature for a
sudden change in climate. b) Equilibrium and adjustment costs given a sudden change in climate. c) Mean
temperature for a gradual change in climate. d) Equilibrium and adjustment costs given a gradual change in
climate. Adapted from Kelly, Kolstad and Mitchell (2005).
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Panel A: Large cross-sectional variation in climate relative to time-series variation in weather

Value (y)

Weather Statistic (w)

Panel B: Smaller cross-sectional variation in climate relative to time-series variation in weather

>

Value (y)

Weather Statistic (w)

Estimated Weather Response,

True Weather Response,
Pooled Panel Regression

True Weather Response,
Hot Locations

Cold Locations

Figure 2: Schematic example of panel estimates with heterogeneous marginal effects of weather. There are two
locations (red and blue), with a uni-dimensional weather (eg temperature). Climate (weather distributions) are
shown in the shaded areas, and two production technologies are shown by the solid lines. In the upper panel, the
weather at the two locations is quite different, with no overlap between the two distributions. In the lower panel
the two locations are more similar. The warmer location (red) uses the production technology that is less sensitive
to extreme heat while the cooler location (blue) uses the technology that performs better at cooler temperatures.
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The panel estimate (dashed line) will be a weighted combination of the two marginal effects, with the weighting
depending on the relative importance of time-series vs cross-sectional variation. Note that the nonlinear panel
estimate is only of the marginal value-weather function (ie, the slope of the dashed line in the figure).

Warming 1850-1879 to 1988-2017 (degrees C)
O <0.9 0 o0g11 B 1113 ® 1315 ® 1516 W 186

Warming 1950-1979 to 1988-2017 (degrees C)
O <06 O 06-07 @ 07-08 W 08-08 WM 091 W >1

Figure 3: Long-differences in 30-year averages of annual temperatures over the continental United States over two
different time-scales. Upper panel shows change over a longer time period (1850-1879 average to 1988-2017
average) while the lower panel shows change over a more recent period (1950-1979 average to 1988-2017
average). Changes over the longer time period are both larger and less spatially random than changes over the
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shorter time period. Values shown are spatial averages over US counties of temperature data on a 1° grid
interpolated from station data by Berkeley Earth. ¥

10 Berkeley Earth Data. Retrieved March 5, 2018, from http://berkeleyearth.org/data/

Draft: 30 January 2019 22



References

Abel AB, and JC Eberly (1994). “A Unified Model of Investment Under Uncertainty,” Amer Econ Rev,
84:1369-85.

Allen, R., Graff-Zivin, J., & Schrader, J. (2016). Forecasting in the Presence of Expectations. European
Physical Journal Special Topics, 225(3), 535-550.

Arguez, A., & Vose, R. S. (2011). The Key to Deriving Alternative Climate normals. Bulletin of the
American Meteorological Society, 92(6), 699—704. http://doi.org/10.1175/2010BAMS2955.1

Auffhammer, M. (2018). Climate Adaptive Response Estimation: Short and Long Run Impacts of Climate
Change on Residential Electricity and Natural Gas Consumption Using Big Data (No. 24397).
Cambridge, MA.

Barreca, A., Clay, K., Deschénes, O., Greenstone, M., & Shapiro, J. S. (2015). Convergence in Adaptation
to Climate Change: Evidence from High Temperatures and Mortality, 1900-2004. American
Economic Review, 105(5), 247-251. http://doi.org/10.1257/aer.p20151028

Blanc, Elodie and Wolfram Schlenker, "The Use of Panel Models in Assessment of Climate Impacts on
Agriculture," Rev. Env. Econ. Pol., 11:258-79 (2017).

Burke, M. B., & Emerick, K. (2016). Adaptation to Climate Change: Evidence from U.S. Agriculture.
American Economic Journal: Economic Policy, 8(3), 108—140. Retrieved from
http://web.stanford.edu/~mburke/papers/Burke_Emerick_2015.pdf

Burke, M., Craxton, M., Kolstad, C. D., Onda, C,, Allcott, H., Baker, E., ... Tol, R. S. J. (2016). Opportunities
for advances in climate change economics. Science, 352(6283), 292—-293. Retrieved from
http://science.sciencemag.org/content/352/6283/292.abstract

Burke, M., Hsiang, S. M., & Miguel, E. (2015). Global non-linear effect of temperature on economic
production. Nature, 527, 235-239. http://doi.org/10.1038/nature15725

Butler, E. E., & Huybers, P. (2012). Adaptation of US maize to temperature variations. Nature Climate
Change, 3(1), 68-72. http://doi.org/10.1038/nclimate1585

Carleton, T. A, & Hsiang, S. M. (2016). Social and economic impacts of climate. Science, 353(6304), 1112.
http://doi.org/10.1126/science.aad9837

Carleton TA, et al. (2018) Valuing the Global Mortality Consequences of Climate Change Accounting for
Adaptation Costs and Benefits (Becker Friedman Institute, Working Paper No 2018-51, Chicago, IL).

Dell, B. M., Jones, B. F., & Olken, B. A. (2012). Temperature Shocks and Economic Growth: Evidence from
the Last Half Century. American Economic Journal: Macroeconomics, 4(3), 66—95.

Dell, M., Jones, B. F., & Olken, B. A. (2014). What Do We Learn from the Weather? The New Climate-
Economy Literature. Journal of Economic Literature.

Deryugina, T., & Hsiang, S. M. (2017). The Marginal Product of Climate (NBER Working Paper Series No.
24072). Cambridge, MA.

Deschénes, O., & Greenstone, M. (2007). The Economic Impacts of Climate Change: Evidence from
Agricultural Output and Random Fluctuations in Weather. American Economic Review, 97(1), 354—
385. http://doi.org/10.1257/aer.97.1.354

Draft: 30 January 2019 23



Deser, C., Knutti, R., Solomon, S., & Phillips, A. S. (2012). Communication of the Role of Natural
Variability in Future North American Climate. Nature Climate Change, 2(October), 775-780.
http://doi.org/10.1038/NCLIMATE1562

Diaz, D., & Moore, F. C. (2017). Quantifying the Economic Risks of Climate Change. Nature Climate
Change, 7, 774-782.

Fischer, E. M., & Knutti, R. (2013). Robust Projections of Combined Humidity and Temperature Extremes.
Nature Climate Change, 3, 126—130.

Guo, C., & Costello, C. (2013). The value of adaption: Climate change and timberland management.
Journal of Environmental Economics and Management, 65(3), 452—468.
http://doi.org/10.1016/j.jeem.2012.12.003

Hawkins, E., & Sutton, R. (2012). Time of Emergence of Climate Signals. Geophysical Research Letters,
39(1), L01702. http://doi.org/10.1029/2011GL050087

Heutel, G., Miller, N. H., & Molitor, D. (2017). Adaptation and Mortality Effects of Temperature Across
U.S. Climate Regions (NBER Working Paper No. 23271). Cambridge, MA.

Hornbeck, R. (2012). The Enduring Impact of the American Dust Bowl: Short and Long-Run Adjustments
to Environmental Catastrophe. American Economic Review, 102(4), 1477-1507.

Hsiang S. M. & Burke M. (2014) Climate, conflict, and social stability: what does the evidence say? Clim
Change 123(1):39-55.

Hsiang, S. M. (2016). Climate Econometrics. Annual Review of Resource Economics, 8, 43-75.

Kelly, D., Kolstad, C., & Mitchell, G. (2005). Adjustment Costs from Environmental Change. Journal of
Environmental Economics and Management, 50(3), 468—495.
http://doi.org/10.1016/j.jeem.2005.02.003

Lemoine (2018) Sufficient Statistics for the Cost of Climate Change (NBER Working Paper No. 25008).
Cambridge, MA.

Lobell, D. B., & Asner, G. P. (2003). Climate and Management Contributions to Recent Trends in U.S.
Agricultural Yields. Science, 299, 1032.

Massetti E. & Mendelsohn R. (2011) Estimating Ricardian Functions with Panel Data. Clim Chang Econ
2:301-319.

Mendelsohn, R. (2000). Efficient Adaptation to Climate Change. Climatic Change, 45, 583—600.

Mendelsohn, R., Nordhaus, W. D., & Shaw, D. (1994). The Impact of Global Warming on Agriculture: A
Ricardian Analysis. American Economic Review, 84(4), 753-771.

Mendelsohn, R., & Reinsborough, M. (2007). A Ricardian analysis of US and Canadian farmland. Climatic
Change, 81(1), 9-17. http://doi.org/10.1007/s10584-006-9138-y

Moore, F. C. (2017). Learning, Adaptation, and Weather in a Changing Climate. Climate Change
Economics, 8(4), 1750010-1.

Moore, F. C., & Lobell, D. B. (2014). The Adaptation Potential of European Agriculture in Response to
Climate Change. Nature Climate Change, 4(7), 610-614.

Draft: 30 January 2019 24



Moore, F. C., & Lobell, D. B. (2015). The Fingerprint of Climate Trends on European Crop Yields.
Proceedings of the National Academy of Sciences, 11(9), 2670-2675.
http://doi.org/10.1073/pnas.1409606112

Ortiz-Bobea, A. (2016). The Economic Impacts of Climate Change on Agriculture: Accounting for Time-
Invariant Unobservables in the Hedonic Approach. Dyson School of Applied Economics and
Management Working Paper (No 2016-15), Ithaca, NY.

Quiggin, J., & Horowitz, J. K. (1999). The Impact of Global Warming on Agriculture: A Ricardian Analysis:
Comment. American Economic Review, 89(4), 1044—1045.

Rosenzweig, M., & Udry, C. R. (2014). Forecasting Profitability (No. 19334). Cambridge, MA.

Schlenker, W. (2010). Crop Responses to Climate and Weather: Cross-Section and Panel Models. In D. B.
Lobell & M. B. Burke (Eds.), Climate Change and Agriculture: Adapting Agriculture to a Warmer
World (pp. 99-108). Amsterdam: Springer Netherlands.

Schlenker, W., Hanemann, W. M., & Fischer, A. C. (2005). Will U.S. Agriculture Really Benefit from Global
Warming? Accounting for Irrigation in the Hedonic Approach. American Economic Review, 95(1),
395-406.

Schlenker W., Hanemann W. M., Fisher A. C. (2006) The Impact of Global Warming on U.S. Agriculture:
An Econometric Analysis of Optimal Growing Conditions. Rev Econ Stat 88(1):113—125.

Schlenker, W., & Roberts, D. L. (2009). Nonlinear Temperature Effects Indicate Severe Damages to U.S.
Corn Yields Under Climate Change. Proceedings of the National Academy of Sciences, 106(37),
15594-15598.

Schlenker, W., Roberts, M. J., & Lobell, D. B. (2013). US maize adaptability. Nature Climate Change, 3(8),
690—691. http://doi.org/10.1038/nclimate1959

Severen, C., Costello, C., & Deschénes, O. (2016). A Forward Looking Ricardian Approach: Do Land
Markets Capitalize Climate Change Forecasts? (NBER Working Paper No. 22413). Cambridge, MA.

Taraz, V. (2017). Adaptation to Climate Change: Historical Evidence from the Indian Monsoon.
Environment and Development Economics, 22(5), 517-545.

Thompson, D. W. J., Barnes, E. A., Deser, C., Foust, W., & Philips, A. S. (2015). Quantifying the Role of
Internal Climate Variability in Future Climate Trends. Journal of Climate.
http://doi.org/10.1175/JCLI-D-14-00830.1

Draft: 30 January 2019 25





