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1 Introduction

Virtually every developed country collects taxes from corporations. In this paper, we take as

given the desire to tax firms, and ask how firms should be taxed or, equivalently, which firms

should be taxed. We consider economies with financial frictions, in which, for some firms, the

marginal value of funds inside the firm is higher than outside the firm. We refer to these firms

as constrained firms.

By studying the problem of a government that seeks to maximize the total value of the

corporate sector in the economy subject to a tax revenue target, we identify an elementary

but general principle that shapes any optimal corporate taxation exercise. We refer to it as

the corporate taxation principle: corporate taxes should be designed to minimize the tax burden

faced by constrained firms. In other words, whenever possible, corporate taxes should be levied

on unconstrained firms. If the government had full information about firms’ financing and

investment opportunities, this principle would be enough to implement an optimal allocation

in which only unconstrained firms are taxed. However, it is not easy for the government

to determine whether a firm is constrained or not. When firms have private information

about their future investment opportunities, the government must design an optimal incentive

compatible mechanism to induce firms to reveal whether or not they are constrained. The

optimal mechanism must account for the fact that firms understand that if they reveal themselves

to be unconstrained, they will be taxed. The set of possible mechanisms includes very complex

policies. However, we show that the optimal mechanism features a simple implementation: a

corporate dividend tax.

The existence of a rich literature that seeks to identify financially constrained firms supports

our premise that it is difficult for the government to determine whether a firm is financially

constrained. Our results build on this literature by making use of the notion that the payout

policy of a firm can help reveal whether it is financially constrained. This argument, which

arises endogenously in our a model, has a long history, going back to, at least, Fazzari, Hubbard

and Petersen (1988), who a priori argue that firms that are consistently paying large dividends

are not likely to be financially constrained. Kaplan and Zingales (1997) provide direct evidence

relating dividend payments to financial constraints. They show that, even within a sample

of low-dividend-paying firms, paying relatively more dividends is associated with a reduced

likelihood of reporting being financially constrained. Consistent with these ideas, the optimal

mechanism in our model uses the payout policy of a firm to determine whether a firm should be

taxed or not.

Throughout the paper, and motivated by the richness of our framework, we define corporate

taxes as “taxes collected from corporations.” Our framework allows for conventional corporate
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income taxes, which in practice are based on a firm’s profit, adjusted for numerous credits

and deductions. The optimal policy in our model endogenously determines whether taxes

on corporations should be based on profits or alternative variables. We show that corporate

dividend taxes, defined as taxes that are paid by corporations in proportion to the amount of

dividends they pay, characterize the optimal mechanism. Note that the corporate dividend tax

that we identify is distinct from a personal dividend tax, which taxes dividends received by an

individual within the personal income tax system. There is a key difference between corporate

and personal dividend taxes. Because some shareholders do not pay personal income taxes (e.g.,

endowments), dividend taxes in the personal income tax code can generate clientele effects that

are absent from the dividend taxes in the corporate tax system that we describe.1

In our model, firms make investment and financing decisions at the beginning of each

date, before production materializes. As in Rampini and Viswanathan (2010), we consider an

environment with limited enforcement and no exclusion after default. This constrains the ability

of firms to raise financing, as well as the ability of the government to set taxes. After production

occurs, firms make a dividend decision, face taxes, and contemplate the possibility of defaulting.

We sequentially study i) a static model with perfect information, which illustrates the corporate

taxation principle; ii) a static model in which firms have private information about their future

investment opportunities, and iii) a dynamic model in which firms have private information

about future investment opportunities.

In the first static model that we study, we characterize optimal tax policy in a single-

date model under perfect information about the firms future investment opportunities. If a

government who seeks to raise revenue can tax, but not subsidize, firms, the optimal policy

is to tax only unconstrained firms, provided that this policy generates sufficient revenue. This

is the corporate taxation principle. Intuitively, the government, valuing the welfare of all firms

equally, wishes to collect taxes from the firms for whom paying taxes is least costly. Even without

a revenue raising goal, if the government could both tax and subsidize firms – a scenario that we

do not study – the optimal policy involves undoing all financial frictions by taxing unconstrained

firms and subsiding constrained firms.

Next, we study a two-date model, in which the second date corresponds to the solution to

the single-date full-information optimal tax problem. In the first date, firms privately learn their

productivity in the second date. The government can use the firm’s payout policy to elicit this

information. Our main result shows that the optimal mechanism can be implemented with a

corporate dividend tax, provided that this policy raises sufficient revenue. The key intuition

1The personal income tax also can treat share repurchases and dividends differently; our model treats dividends
and share repurchases as equivalent. See Allen, Bernardo and Welch (2000) for a theory of dividend determination
under clientele effects.
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is that the desire to pay dividends separates firms that will be unconstrained in the second

date from firms that will be constrained. Firms that will be unconstrained in the second date

anticipate that they will be taxed, and have low marginal products, and therefore prefer paying

dividends in the first date to retaining earnings. Firms that will be constrained in the second

date are in the opposite situation. They will have high marginal products and will not be

taxed, and therefore prefer to not pay dividends. This difference between constrained and

unconstrained firms allows the government to raise taxes in an incentive-compatible way by

taxing dividends. Other choices by the firm (in our model, capital/investment during the first

date) are not distorted in the optimal mechanism, because they are determined by firms’ current

productivity, not its future productivity. As a result, they cannot be used to separate firms that

have good or bad investment opportunities in the future.

Our most general set of results arise in the context an infinite-horizon dynamic model in

which the productivity of a given firm is time varying, and at each date the firm but not the

government knows its productivity in the next date. This model allows for entry and exit, has

to deal with the evolution of the distribution of firms, and must account for the ability of the

government to borrow and save. Although, in general, it is well-known that solving dynamic

models with asymmetric information is challenging (e.g., Pavan, Segal and Toikka (2009)), our

results from the static model allow us to guess and verify the optimal policies in the dynamic

model. We show that the optimal sequence of mechanisms can also be implemented by a

corporate dividend tax.

The corporate taxation principle that underlies our results has a strong analogy to the

personal taxation principle in Mirrlees (1971). However, there are also two key differences.

First, we adopt the view that the government has no particular desire to equalize the value

of various firms. In the classic non-linear optimal income taxation literature, the goal of the

government is to transfer resources from individuals with low marginal utility to individuals

with high marginal utility. In contrast, the issue in our model is not “incentives vs. equality,”

but rather “plucking the goose as to obtain the largest amount of feathers with the least possible

amount of hissing.” Second, the financial frictions in our model arise from the firms’ ability to

default or restructure. The tax authority does not have any special power to circumvent these

constraints. As a result, the possibility of defaulting acts as an interim participation constraint

in our model that limits the ability of the government to extract as much as it would like from

unconstrained firms.

Our approach integrates several well-developed literatures. There is an extensive literature

on corporate taxation, surveyed by Auerbach (2002) and Graham (2013). This literature includes

both theoretical models and empirical work, but largely takes as given the existing structure
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of corporate taxes. One strand of this literature that is particularly close to our work is the

literature on dividend taxation in the personal income tax system. The “old view” (e.g., Poterba

and Summers (1985)) is that dividend taxes raise the cost of equity financing, distorting firms’

investment decisions. The “new view” (expressed, for example, in Korinek and Stiglitz (2009))

is that firms, except at the beginning of their life-cycle, do not actively issue equity, and as a

result dividend taxes are not distortionary for existing firms. Our model, in effect, embeds this

perspective – the optimality of dividend taxes, as opposed to some other kinds of corporate

taxation, is closely related to this fact. Our model assumes that firms maximize the expected

value of dividends, and therefore is not obviously compatible with the “agency view” advocated

by Chetty and Saez (2010).2 We further discuss how our results relate to some of the existing

literature in section 5.

Our approach shares the emphasis on optimal allocations, rather than particular taxes, with

the existing work that studies optimal non-linear taxation, following Mirrlees (1971). Our

dynamic model shares some features with the work in dynamic public finance, recently surveyed

in Golosov, Tsyvinski and Werquin (2016). The key difference between our paper and these large

literatures is our focus on firms and financial frictions. Dynamic Mirrleesian models of optimal

taxation focus on the behavior of households and treat firms as a veil (see, e.g., Farhi and Werning

(2012)). We adopt, for simplicity, a partial equilibrium perspective that emphasizes how financial

frictions create a meaningful distinction between corporate and household taxes. The financial

frictions we employ build, in particular, on the work of Kehoe and Levine (1993), Alvarez and

Jermann (2000), and, more closely, Rampini and Viswanathan (2010). Like Li, Whited and Wu

(2016), we add taxes to a financial frictions model of the firm, but study optimal mechanisms

rather than particular tax instruments. Because we simply assume that the government must

raise revenues by taxing firms, our results cannot speak to the question of whether taxing firms

is ever optimal. Much (but not all, Straub and Werning (2014)) of the work on capital taxation

under full information (Judd (1985); Chamley (1986); Chari and Kehoe (1999)) argues that, at

least in the long-run, capital taxes should be zero. With asymmetric information, this exact

result is overturned, but the welfare gains of capital taxation might be quite small (Farhi and

Werning (2012)). To our knowledge, there are no results about the optimality or sub-optimality of

corporate taxation with asymmetric information and financial frictions in a general equilibrium

model. There is also a large literature on the incidence of corporate taxation, going back to

Harberger (1962), and on the related issue of the choice of organizational form. Our partial

equilibrium approach can be thought of as a building block towards addressing the more general

2Given the additivity property of corrective and revenue raising policy objectives (Sandmo, 1975; Kopczuk,
2003), it seems reasonable to study optimal revenue raising policies in an environment that features no corrective
policies.
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questions of whether corporate taxation is desirable at all, its incidence, and its interactions with

the taxation of households.

Section 2 describes the common environment that applies to a single date in all of our

models. Section 3 studies static models with perfect information and asymmetric information,

introducing our main results, while section 4 extends our results to a richer dynamic

environment. Section 5 interprets our results and discusses policy implications, and section 6

concludes. The Appendix contains all proofs and derivations.

2 Environment

We begin by describing the common structure of a single date that applies to both the static and

dynamic environments that we consider. There are three groups of agents in the economy: firms,

outside investors, and a government. There is a single consumption good (dollar), which serves

as numeraire. Both firms and outside investors are risk-neutral, and discount cash-flows within

the date, between the beginning and end, at a gross real interest rate of R.3

Figure 1 illustrates the timeline of events within a date. At the beginning of the date, before

production occurs, firms make financing and investment decisions. At the end of the date,

after production and depreciation materialize, firms choose dividend payments, pay taxes, make

repayments to outside investors, and consider the possibility of defaulting.

Financing and
Investment

Dividends paid/
Taxes and

Repayments due

Production/
Depreciation Default

Figure 1: Single Date Timeline

Financing/Investment stage Firms are initially endowed with resources wt, and can raise

additional funds from outside investors, mt ≥ 0. We assume that the government cannot

subsidize firms. Firms invest these resources in capital kt, broadly defined, satisfying the

following budget constraint:

kt ≤ wt + mt. (1)

3Note that the interest rate is constant and invariant to policy – this is what we mean when we say that our
analysis is partial equilibrium. One might expect the structure of corporate taxation to affect the real interest rate
and the stochastic discount factor. Indeed, these sort of effects are central to the literature on capital taxation. As
mentioned above, we view our analysis as building towards a consideration of these general equilibrium effects.
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An investment of kt dollars at the beginning of date t yields f (kt, θt) dollars when production

occurs. Firms’ date t productivity depends on their date t type, θt, which is observed by all

agents as of the beginning of date t. We assume that f (kt, θt) is increasing and differentiable in

both arguments, and concave in capital. We also assume that the marginal product of capital is

increasing in the firm’s type. Formally, the derivative fkθ exists almost everywhere and is weakly

positive wherever it exists. Firms that employ no capital receive no output, that is, f (0, θt) = 0

for all types. Capital depreciates neo-classically at a rate δ ∈ [0, 1]. Initial wealth, financing and

investment choices, and production outcomes are observable to the government and outside

investors. We assume that there exists a first-best level of capital, k∗ (θt), which is the smallest

level of capital such that4

fk (k∗ (θt) , θt) + 1− δ = R.

We further assume that once capital exceeds the first-best level, the marginal product of capital

remains constant:

fk (k, θt) + 1− δ = R, ∀k > k∗ (θt) .

This assumption mimics the ability of the firm, after exhausting its ability to invest in physical

capital, to invest at the risk-free rate. We discuss this assumption in more detail below.

The source of asymmetric information in this model arises from the privately known

future investment opportunities of the firm. At the beginning of date t, firms learn their

type for the next date, θt+1, which determines their future productivity. This generates

asymmetric information, since outside investors and the government do not learn the firm’s

future productivity until the beginning of date t + 1. Because the firm learns its next period

type at the beginning of the period, it may condition its dividend, capital, and default decisions

on this information. Repayments to outside investors and taxes can be assessed based on the

firm’s decisions, and therefore could be conditioned on the firm’s type next period. However,

the next period type itself is private to the firm. Therefore, repayments to outside investors and

tax payments must satisfy incentive-compatibility conditions.

Dividend/Taxes stage After production and depreciation take place, firms declare a weakly

positive dividend, dt ≥ 0. After this dividend is declared, firms must pay back bt ≥ 0 to

outside investors and pay taxes τt ≥ 0 to the government. As we formally describe below

when introducing the possibility of defaulting, the government/outside investors can allow or

block the proposed dividend. Blocking the dividend prevents the money from leaving the firm,

although it cannot prevent default. The firm decides whether or not to default to maximize the

4That is, the first-best level of capital for a firm of type θ corresponds to the smallest solution of the problem:
maxk f (k, θ) + (1− δ) k− Rk.
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payoff to its owners.

The continuation wealth of a firm that repays its obligations is given by wt+1, which can be

expressed as

wt+1 = f (kt, θt) + (1− δ) kt − dt − bt − τt, (2)

provided that this quantity is weakly positive. If this quantity is not weakly positive, repayment

is not feasible, and the firm is forced to default, a situation that we describe next.

As in Rampini and Viswanathan (2010), we consider an environment with limited

enforcement but no exclusion. If a firm defaults, it receives its continuation wealth wD, which

corresponds to the flow production and a fraction 1− ϕ of the depreciated capital stock. The

continuation wealth wD (kt, θt) can be expressed as a function of the firm’s capital choice, kt, and

its date t productivity, θt, as follows:

wD (kt, θt) = f (kt, θt) + (1− ϕ) (1− δ) kt, (3)

where ϕ ∈ (0, 1]. The value of ϕ captures a form of limited enforcement that restricts the amount

of funds that other parties (outside investors and the government) can receive from a firm. We

require that a firm declare a dividend no larger than its continuation wealth in the event of

default, so dt ≤ wD(kt, θt), which prevents the firm from continuing with negative wealth.

In case of default, firm owners cannot be excluded from starting a new firm with the same

type as the defaulting firm. To ensure the government cannot circumvent this friction, it is

natural to suppose that the government cannot condition on a firms’ history, only its current

wealth level and type. Consistent with this assumption, we will also assume that the government

lacks commitment. Otherwise, the government might commit to treating new firms, which result

from a default, differently, and thereby discourage default. Formally, a firm will not default if

dt + V (wt+1, θt+1) ≥ max
{

dt + V
(

wD (kt, θt)− dt, θt+1

)
, V
(

wD (kt, θt) , θt+1

)}
, (4)

where V (w, θ) denotes the continuation value for a firm that start a new date with resources w

and type θ. The max operator in the right-hand side of Equation (4) reflects the government and

creditors’ ability to block the firm’s proposed dividend. The firm can either propose a dividend

acceptable to the government and creditors, in which case the first term in the maximization is

the relevant constraint, or propose an unacceptable dividend, which will be blocked, making

the second term in the maximization the relevant constraint. To avoid default, both of these

deviations to default by the firm must be unprofitable. In what follows, we study mechanisms

that avoid default. In our settings, it is without loss of generality to avoid default, and strictly

optimal in the presence of inefficiencies associated with default.
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We allow the repayments bt to be contingent on the firm’s capital, kt, and the firm’s current

type, θt, but not the firm’s dividend payment. The simplest interpretation of this restriction is

that we allow our firms to issue only one-period debt. As a result, we set mt = R−1bt. An

alternative interpretation is that the outside investors also know the firm’s next period type, and

hence must break-even for each type. However, this interpretation requires the outside investors

to have an informational advantage over the government, and the government may be able to

extract this information almost costlessly (Cremer and McLean, 1988).

Remarks on the environment The environment considered here is meant to be the simplest

one that allows for meaningful financing, investment, dividend, and default decisions, all of

them necessary to study corporate taxation. We now briefly discuss several simplifications and

conjecture how our results might apply to richer environments.

First, our environment has a single production input, capital, and decreasing returns to scale.

Including labor or intermediate inputs should not affect our results. Constant returns to scale in

production, combined with decreasing demand for each firms’ unique variety, should also allow

our results to hold.

Second, our environment features no uncertainty, with the exception of the process governing

the firm’s type, θt. Our results remain unaltered by the addition of observable and contractible

shocks, as in Rampini and Viswanathan (2010), under the assumption that both creditors and

the government can condition their payments/taxes on this shock. Adding such a shock would

allow us to discuss issues like security design in more detail, at the expense of additional

notation.

Third, and related to the previous point about security design, there are multiple ways

of interpreting the environment. In the model, the agent receiving dividends is the agent

controlling the firm’s decisions. If firms maximize value for their shareholders, then dividends in

the model map indeed to payments to shareholders in reality. Alternatively, one might interpret

the model under the assumption of managerial control of the firm. In this case, “dividends” are

really managerial compensation, which may include in-kind benefits or wages, and the outside

investors might hold debt or equity claims. In other words, our results implicitly assume that it

is possible to identify payments to the agents who control the firm. Our model also assumes that

dividends cannot be negative, meaning that the shareholders or manager are unable to inject

additional funds into the firm. We conjecture that our results would hold if negative dividends

were feasible but costly, as in many models of financial frictions (e.g., Bolton, Chen and Wang

(2011)). We leave the development of a richer model, in which there are conflicts of interest

between manager and shareholders and both influence the firm’s decisions, to future work.
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Fourth, note that taxes and payments enter symmetrically in the model, operating entirely

through the continuation wealth wt+1. That is, substituting repayments bt for taxes τt does not

change either the default constraints or the initial budget constraint. This formulation ensures

that the government cannot circumvent the financial frictions by assessing taxes that are not

subject to default. Note also that any tax increase will tighten firms’ financing constraint – this

follows immediately from Equations 2 through 4. The key intuition behind our result that a

dividend tax is optimal is that firms for whom the no-default constraint is binding will not pay

dividends, and hence will not be taxed if taxes are proportional to dividends.

Lastly, our information structure is different from the one usually assumed in dynamic

public finance (e.g., Golosov, Tsyvinski and Werquin (2016)), which emphasizes the “Inverse

Euler Equation.” Capital taxation in those models arises through a Jensen’s inequality effect,

which requires uncertainty about the household’s future type or other relevant variables. In

contrast, in our model, the firms are perfectly informed about their type (the only exogenous

state variable) in the next period. Moreover, the curvature of the value functions in our model

arises from financial frictions, instead of utility functions, and in our model the possibility of

default constrains the set of mechanisms that can be employed.

3 Static Optimal Taxation

We begin by studying a single-date model with full information and linear continuation values.

Subsequently, we study a single-date model with asymmetric information about firms future

continuation values. We assume that the space of types is the unit interval, θt ∈ [0, 1].5

3.1 Full Information

We refer to the date in this single-date model as t = 1. We assume that the firm simply consumes

whatever wealth remains inside the firm at the end of date one. Formally, the continuation value

corresponds to

V2 (w2, θ2) = w2.

The firm’s value function at the beginning of date 1, given its initial wealth w1 and type θ1, is

V1 (w1, θ1) = R−1 {d1 (w1, θ1) + w2 (w1, θ1)} , (5)

5Focusing on a one-dimensional type space is not without loss of generality. In particular, it may be useful
to draw distinctions between average and marginal products. We believe that it is more appropriate to interpret
our type as controlling marginal, not average, productivity. Assuming a one-dimensional type space allows us to
convey the intuition of the model in a more straightforward way.
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where d1 (w1, θ1) and w2 (w1, θ1) correspond to optimal allocations. The no-default constraint,

defined in Equation (4), can be expressed as follows:

d1 (w1, θ1) + w2 (w1, θ1) ≥ wD (k1 (w1, θ1) , θ1) ,

where k1 (w1, θ1) denotes the optimal level of capital.

We adopt the language of mechanism design to describe the government’s optimal policy,

even though, with full information, there are no incentive compatibility constraints. In the rest of

the paper, we will introduce asymmetric information and exploit direct revelation mechanisms

to characterize the optimal policy. We proceed as if the government chooses all of firm’s choice

variables, {k1, b1, m1, d1}, and taxes τ1, for each level of wealth w1 and type θ1, which are both

observable variables. Each of these choice variables is required to be weakly positive, and the

upper bound on dividends, d1 ≤ wD(k1, θ1), must also be satisfied. The government must

respect the financing/investment budget constraint (1) and the definition of continuation wealth

and wealth after default, introduced in Equations (2) and (3).

The government must also respect the no-default constraint, which can be interpreted as

an interim participation constraint. The no-default constraint arises from the possibility of the

firm complying with the government’s mechanism, but then defaulting instead of paying its

obligations. There is a second interim participation constraint that arises from the possibility of

the firm disregarding the government’s mechanism entirely. If a firm does this, the government

can respond by assigning the firm infinite taxes, inducing default and preventing outside

borrowing. As a result, the firm would be limited to investing its initial wealth in capital and

then defaulting. The constraint to ensure this deviation is unprofitable is

d1 (w1, θ1) + w2 (w1, θ1) ≥ wD (k1 (w1, θ1) , θ1) .

This constraint will always be satisfied, so long as the firm’s level of capital, k1 (w1, θ1), is weakly

greater than its wealth, w1, and the no-default constraint is satisfied. This will always be the case,

and consequently this constraint is redundant.

Finally, the government must, across the population of firms, raise sufficient resources

through taxation. Let µ1 (w1, θ1) denote the measure of firms with wealth w1 and type θ1. The

government’s tax policies must satisfy

R−1
ˆ ∞

0

ˆ 1

0
τ1 (w1, θ1) µ1 (w1, θ1) dθ1dw1 ≥ G + B1 > 0,

where G denotes the (strictly positive) required expenditure and B1 is government debt that
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must be repaid. In this one-period model, G and B1 play exactly the same role; we introduce

government debt to connect this model to our two-period and dynamic models.

Subject to all of these constraints, the government maximizes the welfare of firms,

ˆ ∞

0

ˆ 1

0
V1 (w1, θ1) µ1 (w1, θ1) dθ1dw1.

Although the government’s problem features numerous constraints, it can be simplified as

follows. First, note that the firm’s choice of dividends is irrelevant – the wealth of the firm at the

end of the period will be consumed, one way or another. It is also straightforward to observe

that the financing/investment budget constraint always binds. As a result, there is really only a

single choice variable for the firm (in the lemma below, we choose capital, but this is arbitrary).

The problem can also be simplified by introducing a multiplier, χ1, on the government’s revenue-

raising constraint. Aside from this constraint, there is no interaction between the firms, and the

Lagrangian version of the problem can be studied firm by firm. The multiplier χ1 has a simple

interpretation: it is the marginal cost to the firms of raising an additional unit of revenue through

taxation. The following lemma summarizes these claims.

Lemma 1. The government’s mechanism design problem can be written as

J1(µ, B) = min
χ1≥0

χ1(G + B1) +

ˆ ∞

0

ˆ 1

0
U1 (w1, θ1; χ1) µ1 (w1, θ1) dθ1dw1,

where

U1 (w1, θ1; χ1) = max
k1≥0,τ1≥0

R−1 { f (k1, θ1) + (1− δ) k1 − Rk1}+ w1 + R−1 (χ1 − 1) τ1, (6)

subject to the constraint that

w1 ≤ k1 ≤
w1 − R−1τ1

1− R−1ϕ (1− δ)
.

Proof. See the Appendix, Section B.1.

First, note that, if constraints on the government’s choice of capital do not bind, the

government can choose to set the capital equal to its first-best level, k∗ (θ1). If the firm has

so much wealth that it can achieve more than the first-best capital level without any borrowing,

w > k∗ (θ), the government can choose to set capital equal to wealth. Because the marginal

product of capital is equal to the risk-free rate for all k > k∗ (θ), this is equally good from the

perspective of government. In contrast, if wealth is insufficient to reach the first-best level of

capital, in the absence of taxes, then the government cannot set k1 ≥ k∗ (θ1). As a result, the
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marginal product of capital, in equilibrium, will be greater than the risk-free rate, and we will

call the firm constrained.

The marginal benefit to the government of taxation, R−1 (χ1 − 1), is the same for all firms.

When χ1 = 1, for the unconstrained firms, there is no particular reason to tax one firm instead

of another; so the optimal policy is not determined. However, it will never be optimal to tax a

constrained firm if there exists an unconstrained firm that could be taxed instead. As a result, if

the government can raise a sufficient quantity of revenue from the unconstrained firms, it will

not tax the constrained firms. The following proposition summarizes these results.

Proposition 1. (Single-date optimal tax) If the level of required expenditure G is sufficiently small and

there exists a positive mass of firms with k∗ (θ1) <
w1

1−R−1 ϕ(1−δ)
, there exists an optimal policy in which

χ1 = 1 and the government sets

τ1 (w1, θ1) = τR max {w1 − w̄ (θ1) , 0} , (7)

for some τ ∈ [0, ϕ (1− δ)], where we define w̄ (θ), which corresponds to the level of wealth required to

achieve the first-best level of capital in the absence of taxes,

w̄ (θ) =
(

1− R−1ϕ (1− δ)
)

k∗ (θ) . (8)

Proof. See the Appendix, Section B.2.

Note that w̄ (θ1) corresponds to the level of wealth required to achieve the first-best level

of capital in the absence of taxes. We have chosen to focus on a particular policy – a linear

tax on “excess wealth” – because of its simplicity and because it generates certain properties in

the government and firm’s date one value functions that resemble the results of our dynamic

model without commitment. Specifically, the following corollary describes the properties of the

functions V1 and U1 under the particular policy we have chosen.

Corollary 1. The functions V1 (w, θ) and U1 (w, θ) are increasing and concave in wealth, and Lipschitz

continuous in firm type. For all w > w̄ (θ), Vw (w, θ) = 1− τ and Uw (w, θ) = 1, and for all w < w̄ (θ),

Vw (w, θ) > 1 and Uw (w, θ) > 1. For w < w̄ (θ), U and V are strictly concave in wealth and have

strictly positive cross-partials Vwθ and Uwθ.

Proof. See the Appendix, Section B.3.

These properties summarize the intuitive idea that firms with wealth levels below w̄ (θ) are

constrained and untaxed, whereas firms with wealth levels above w̄ (θ) pay a tax rate τ on excess

wealth. In the next subsection, we will use this full-information equilibrium as the second date
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in a two-date model with asymmetric information. The date one value functions described in

this section will be the continuation value functions at date zero (the first date in the model). The

properties of the marginal value of wealth, for firms and for the government, just described will

lead to a particular optimal mechanism at date zero, a dividend tax.

Our choice to study this particular full-information policy and to use it as the continuation

value in our two-period model anticipates the results we will show in the infinite-horizon

model. In particular, the results of Corollary 1 are almost identical to the properties that we

will conjecture in our dynamic model (Conjecture 1).6

Figure 2 below graphically illustrates the firm’s continuation value function.

V1 (w, θ)

ww̄ (θ)

Figure 2: Continuation value

Remark. (Corporate Taxation Principle) Proposition 1 illustrates the principle that optimal corporate

taxation under financial frictions implies taxing unconstrained firms, which have a low marginal

value of funds inside the firm, and leaving untaxed constrained firms, which have a high

marginal value of funds. We next study how this principle manifests in a richer model in which

the government has asymmetric information about firms’ investment opportunities.

3.2 Asymmetric Information

We now study a two-date model in which firms have private information about their future

productivity/investment opportunities. We refer to the first date in this two-date model as t = 0.

We assume for simplicity that all firms start with the same values of initial wealth w0 and current

productivity θ0, although it is straightforward to introduced observable heterogeneity along both

dimensions, and we consider such heterogeneity in our dynamic model. We assume that the

second date of the model is the full-information model described in the previous sub-section.
6The difference is that, in the dynamic model, Vw (w, θ) can be in the interval (1− τ, 1) for unconstrained firms.

This difference is a consequence of the fact that in the one and two-date models, firms can pay out wealth to their
shareholders at the end of date one without ever paying a “dividend.”
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We will impose some assumptions on the initial wealth w0, the initial productivity θ0, and

the distribution of types at date one, which we denote µ(θ1|θ0). These assumptions simplify our

analysis of the two-period model, but play no role in the dynamic model.

Assumption 1. The most productive type θ1 in the support of µ(θ1|θ0) will be constrained at date one,

and the least productive type in the support of µ(θ1|θ0) cannot be constrained at date one, but has some

productive investment opportunities. Formally,

f (k∗ (θ0) , θ0) + ((1− δ)− R) k∗ (θ0) + Rw0 < max
θ1:µ(θ1|θ0)>0

w̄ (θ1) (9)

f (w0, θ0) + (1− ϕ) (1− δ)w0 > min
θ1:µ(θ1|θ0)>0

w̄ (θ1) ≥ ϕ (1− δ)w0 (10)

We also assume that reaching the date zero first-best level of capital is possible but not required,

w0 < k∗ (θ0) <
1

R−ϕ(1−δ)
w0.

Note that w̄ (θ) is increasing in θ, meaning that firms with higher types become constrained

at higher levels of wealth. Under assumption 1, we show that it is feasible to raise funds without

distortions, and that the optimal government policy can be implemented using a dividend tax.

We are now ready to describe the optimal mechanism design problem of the government. We

allow for the possibility of a “double” deviation in the mechanism, in which a firm reports some

type θ′1 initially, when choosing investment/financing, and then reports another type θ′′1 when

declaring a dividend/making a default decision. Formally, we use the notation d0 (θ
′
1, θ′′1 ) to refer

to the dividend allocated to a firm that reports θ′1 at the investment/financing, and then reports

θ′′1 at the dividend/tax stage. We use the same two-argument notation for other variables. For

variables that exclusively depend on the first report, like k0 or b0, we use a single argument

notation, of the form k0 (θ
′
1) and b0 (θ

′
1). We consider incentive-compatible direct revelation

mechanisms with IC constraints at the financing/investment stage and the dividend/taxes stage.

The government faces a revenue raising constraint across the population of firms. However,

we allow the government to borrow and save at the risk-free rate. Government borrowing and

saving plays a crucial role in the model: it allows the date zero government to control the tax

rate set by the date one government, even though the government lacks commitment.

As described in Proposition 1, assuming truthful reporting by firms in date zero, the date one

government will set

B1 + G = R−1τR
ˆ 1

0
max{w1 (θ1, θ1)− w̄ (θ1) , 0}µ(θ1|θ0)dθ1

for some τ ∈ [0, ϕ (1− δ)], if such a policy is feasible. By controlling firm continuation wealth
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w1(θ1, θ1) and the debt B1, the date zero government can in-effect determine the next period’s

tax rate.

The date one debt B1 is determined (again assuming truthful reporting by firms at date zero)

by the flow budget constraint

R−1B1 = B0 + G− R−1
ˆ 1

0
τ0(θ1, θ1)µ(θ1|θ0)dθ1.

We divide the government’s problems into two steps, consisting of a choice of tax rate τ

to implement at date one and an optimal mechanism given that tax rate. The government

maximizes the current value of the firms,

J0(w0, θ0) = max
τ∈[0,ϕ(1−δ)]

max
...

R−1
ˆ 1

0
{d0(θ1, θ1) + V1(w1(θ1, θ1), θ1; τ)}µ(θ1|θ0)dθ1,

subject to a single intertemporal budget constraint

B0 + G(1 + R−1) = R−1
ˆ 1

0
τ0(θ1, θ1)µ(θ1|θ0)dθ1

+ R−1τ

ˆ 1

0
max{w1 (θ1, θ1)− w̄ (θ1) , 0}µ(θ1|θ0)dθ1,

maximizing over the capital, dividends, debt, continuation wealth, and date zero taxes for

firms. We use the notation V1(w1, θ1; τ) to emphasize that the firms’ continuation value function

depends on the tax rate being implemented in the next period.

The government is subject to multiple constraints. In particular, it must respect firms’ budget

constraints, which imply that investment must be funded with internal resources and outside

investors funds,

k0
(
θ′1
)
≤ w0 + R−1b0

(
θ′1
)

, ∀θ′1. (Budget Constraint) (11)

The government also faces the no-default constraint as well as the upper limit on dividend

payments, which can be expressed as

wD
0
(
θ′1
)
≤ d0

(
θ′1, θ′′1

)
+ wR

0
(
θ′1, θ′′1

)
, ∀θ′1, θ′′1 , (No Default) (12)

d0
(
θ′1, θ′′1

)
≤ wD

0
(
θ′1
)

, ∀θ′1, θ′′1 . (Upper Limit on Dividends) (13)

Note that the no-default constraint has a simpler form than Equation (4), because we will

separately consider deviations to a blocked dividend. In fact, it follows from the definitions
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of continuation wealth that the default constraint can be reformulated as

b0
(
θ′1
)
+ τ0

(
θ′1, θ′′1

)
≤ ϕ (1− δ) k0

(
θ′1
)

, ∀θ′1, θ′′1 (14)

which effectively limits the amount of capital and is almost identical to the constraint described

in Rampini and Viswanathan (2010).
The government needs to account for three sets of incentive constraints. The first set of

constraints apply at the financing/investment stage. These constraints guarantee that firms
find it optimal not to deviate at the beginning of the date, when investment is determined and
financing from outside investors is received. The second set of constraints prevents firms from
deviating at the time in which dividends are paid and taxes are collected. Finally, the last set of
constraints guarantees that firms declare a dividend that will not be blocked by the government
or outside investors. Formally, these

d0
(
θ′1, θ1

)
+ V1

(
w1
(
θ′1, θ1

)
, θ1; τ

)
≤ d0 (θ1, θ1) + V1 (w1 (θ1, θ1) , θ1; τ) , ∀θ1, θ′1, (Financing/Investment IC)

(15)

d0
(
θ′1, θ′′1

)
+ V1

(
w1
(
θ′1, θ′′1

)
, θ1; τ

)
≤ d0

(
θ′1, θ1

)
+ V1

(
w1
(
θ′1, θ1

)
, θ1; τ

)
, ∀θ1, θ′1, θ′′1 , (Dividend/Taxes IC)

(16)

V1

(
wD (k0(θ

′
1), θ0

)
, θ1; τ

)
≤ d0

(
θ′1, θ1

)
+ V1

(
w1
(
θ′1, θ1

)
, θ1; τ

)
, ∀θ1, θ′1. (Blocked Dividend IC)

(17)

Finally, the government is subject to non-negativity constraints regarding dividend payments

d0 (θ
′
1, θ′′1 ) ≥ 0, tax levels, τ0 (θ

′
1, θ′′1 ) ≥ 0, outside funding, b0 (θ

′
1), and continuation wealth , and

must have k0 (θ
′
1) ≥ w0.

Summing up, the problem of the government is to maximize its objective, subject to

constraints (11), (12), (13), (15), (16) and (17). Our description of the problem assumes that it

is optimal for the government at date zero to induce the government at date one to implement

the full-information allocation we described in the previous section; we prove this as part of

the theorem below. We state a more general version of the full mechanism design problem in

Appendix Section A.3.

Theorem 1 introduces our main result.

Theorem 1. Under Assumption 1, if the amount of funds to be raised B0 + G(1 + R−1) is not too large,

the optimal mechanism can be implemented by a dividend tax.

Proof. See the Appendix, Section B.2.

Theorem 1 shows that the principle of taxing only unconstrained firms remains valid even

when the government has asymmetric information about firms’ continuation values. The
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dividend tax allows the government to cleanly separate constrained and unconstrained firms

while raising revenue.

4 Dynamic Optimal Taxation

In this section, we extend the static analysis of the previous section to an infinite-horizon

context. To extend our static model to a dynamic context, we introduce firm entry and exit, firm

heterogeneity, and government borrowing and saving. We discuss each of these elements before

formally describing the government’s problem. After introducing the government’s problem,

we conjecture (and subsequently verify) a functional form for the government’s value function

that assumes a structure for continuation values that is essentially the same as the one assumed

for the static model in the previous section. We eventually show that most of the conclusions of

the previous section carry over to the dynamic model. Our main result will again show that a

dividend tax is optimal, provided that the amount of money required by the government is not

too large.

4.1 Firm Entry and Exit

In our dynamic model, we consider firm entry and firm exit. We will begin by describing firm

exit. Each period, some firms are exogenously forced to become “exiting,” meaning that they

will be forced to exit next period. Firms that are not forced to become exiting can nevertheless

choose to become exiting. This will not occur in equilibrium, but the threat of premature firm

exit will limit the government’s ability to tax the firms.

Formally, we assume that the lowest type, θ = 0, is “exiting.” For this type, k∗ (0) = 0,

meaning that the firm has no productive opportunities and can only hold cash. Once the firm is

exiting, it will remain exiting forever. Formally, in the notation we use below, µ (θ|0) is the Dirac

delta function. As a result, the value function of an exiting firm with wealth w is

Vt (w, 0) = R−1 (dt (w, 0) + Vt+1 (wt+1 (w, 0) , 0)) .

A firm of type θ will be forced to become exiting next period with probability µ (0|θ). As in

the static model, firms privately know their current and next period type, including whether or

not they are exiting, at the beginning of the current period. The government only observes the

firms’ current type. As a result, the government can identify which firms are exiting, but will not

know ex-ante which firms will become exiting next period. Firms that are not forced to become

exiting can choose to become exiting instead of or in addition to defaulting. If the government
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does not want a firm to voluntarily exit (which it will not), the government must ensure that the

firm has an incentive to continue if it does not default,

Vt+1 (wt+1, θt+1) ≥ Vt+1 (wt+1, 0) ,

and that it has no incentive to deviate by both defaulting and exiting,

dt + Vt+1 (wt+1, θt+1) ≥ max
{

dt + Vt+1

(
wD

t − dt, 0
)

, Vt+1

(
wD

t , 0
)}

.

In the solution to the government’s problem that we will guess and verify, these constraints will

be satisfied in any allocation satisfying the no-default constraint, and the government does not

want any firm to exit prematurely.7

We now turn to describing firm entry. At the end of each period, a measure of potential

entrants, e (w̄, θ), are born with outside wealth w̄ and type θ > 0 (no firm is born exiting). Each

potential entrant faces the same fixed cost of entry, F. Each potential entrant can choose how

much wealth to put into the firm. We define wE (w̄, θ) as an entry wealth that maximizes utility,

wE (w̄, θ) ∈ arg max
w∈[0,w̄]

Vt+1 (w, θ)− w,

and firms will choose to enter if

Vt+1 (wE (w̄, θ) , θ)− wE (w̄, θ) ≥ F.

The measure of firms entering the economy is therefore

et (w, θ) =

ˆ ∞

0

ˆ ∞

0
δdirac (wE (w̄, θ)− w) 1 {Vt+1 (wE (w̄, θ) , θ)− wE (w̄, θ) ≥ F} e (w̄, θ) dw̄dw,

(18)

where δdirac (·) denotes the Dirac delta function.

We have assumed that, if there are multiple levels of entry wealth that maximize utility,

wE (w̄, θ) will implement an arbitrary rule to determine which level of wealth entrants choose.

In the equilibrium we construct, there will be only one optimal level of entry wealth. Our

assumption that the mass of potential entrants, e (w̄, θ), is the same each period simplifies the

exposition but is not necessary. Relatedly, for simplicity we have assumed that entry is a one-

shot option, rather than allowing potential entrants to wait before entering.

7The form of exit we contemplate truly involves shutting down the firm. We do not model the possibility that
firms may shift their activities to a different tax jurisdiction, but speculate that adding such a possibility would limit
the taxes the government could collect but otherwise leave the problem unchanged.
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Observe that, because entry happens at the end of the period, the government in the next

period will take whatever entry decisions are made as given. That is, the government lacks

commitment regarding entry. This assumption simplifies the problem, and brings it closer to the

static problem analyzed in the previous section; we speculate it is not necessary for the results.

Having described the entry and exit of firms, we turn next to the dynamics of the population of

firms.

4.2 The Population of Firms

In our discussion of the static model, we assumed (mainly for expositional purposes) that there

was a single common type and initial wealth level. In the dynamic model, we will instead have

a population of firms with different wealth levels, current types, and types next period. We

will use the measure µt (w, θ) to denote the mass of firms at time t with wealth w and current

(observable) type θ.

We assume that the type structure is Markov, and let µ(θ′|θ) denote the likelihood that a firm

of current type θ will have type θ′ at the next date. Of course, the next period’s type θ′ is known

to the firm (but not the government) in the current period; this is the private information of the

model. We assume that µ(θ′|θ) is Lipschitz continuous with respect to θ for θ ∈ (0, 1], and that

µ(θ′|θ1) strictly first-order stochastically dominates µ(θ′|θ2) for all θ1 > θ2.8

At each date t, the government inherits a joint distribution µt, and through its policies will

influence the distribution µt+1 that carries over to the next period. Let wt+1 (w, θ, θ′) denote

the continuation wealth for a firm with current wealth w, current type θ, and future type θ′,

assuming truthful reporting of the firms’ future type θ′. Assuming that the government avoids

premature exit by firms, the next period’s distribution of firm types is

µt+1(w′, θ′) = et(w′, θ′) +

ˆ ∞

0

ˆ 1

0+
δ(wt+1(w, θ, θ′)− w′)µ(θ′|θ)µt (w, θ) dθdw (19)

+ 1(θ′ = 0)
ˆ ∞

0
δdirac(wt+1(w, 0)− w′)µt(w, 0)dw.

Having described the evolution of the population of the firms in the model, we are now able

to describe the government’s problem.

8Our first-order stochastic dominance assumption implies, at least to some degree, persistence of types. It is a
sufficient but not necessary assumption to prove our conjecture; in particular, the case of IID types could be handled
through a slightly different argument.
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4.3 The Government’s Problem

In our dynamic model, the government is able to borrow and save freely, but lacks commitment.

Each period, the government inherits debt Bt and a population of firms µt. The government

spends G each period, and hence the next period’s debt is

R−1Bt+1 = Bt + G− R−1
ˆ ∞

0

ˆ 1

0+

ˆ 1

0
τt(w, θ, θ′)µ(θ′|θ)µt (w, θ) dθ′dθdw

− R−1
ˆ ∞

0
τt(w, 0)µt(w, 0)dw, (20)

where τt(w, θ, θ′) is the tax revenue raised under truthful reporting from a firm with wealth w,

current type θ > 0, and next period’s type θ′, and τt(w, 0) is the revenue raised from exiting

firms.

Let Jt(B, µ) denote the government’s value function, and let Vt (w, θ) denote the firm’s value

function (or, equivalently, the net present value of dividends under the current and future

optimal policies of the government). At each time t, the government takes the policies of

future governments, and hence Jt+1(B′, µ′) and Vt+1(w′, θ′; B′, µ′), as given. Note that the firm

continuation values Vt+1 depend on both the firm specific variables (w′, θ′) and government debt

B′ and the measure µ′, because the latter two could determine future government policies and

hence future firm continuation values.

Each period, the government designs an incentive-compatible direct-revelation mechanism

for the current period, of the sort described in our static model, which allocates debt, capital,

taxes, dividends, and continuation wealth to each of the firms. Let M denote the set of such

mechanisms, and let m ∈ M be a particular mechanism, including the functions τt and wt+1 that

are necessary to define the evolution of the population of firms and of government debt, and the

function dt that describes the dividends paid in the current period. For a detailed description

of this mechanism design problem, which is a slight generalization of the mechanism design

problem for the static model, see Appendix Section A.3.

We study a Markov sub-game perfect equilibrium of the game between the current

government and its future selves. The government’s problem (again assuming that no firms

are exiting prematurely), in recursive form, is

Jt (Bt, µt) = max
mt∈M

R−1
ˆ ∞

0

ˆ 1

0+

ˆ 1

0
dt(w, θ, θ′)µ(θ′|θ)µt (w, θ) dθ′dθdw

+ R−1
ˆ ∞

0
dt(w, 0)µt(w, 0)dw

+ R−1 Jt+1(Bt+1, µt+1), (21)
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subject to the equations describing the evolution of debt (20) and of the firm population (19), a

transversality condition,

lim
s→∞

R−s Jt+s (Bt+s, µt+s) = 0,

and a No-Ponzi condition,

lim
s→∞

R−sBt+s ≤ 0,

taking all future policies as given Markov functions of Bt+1 and µt+1.

The solution to this problem induces a value function for the non-exiting firms,

Vt(w, θ; Bt, µt) = R−1
ˆ 1

0
{d∗t (w, θ, θ′) + Vt+1(w∗t+1(w, θ, θ′), θ′; Bt+1, µt+1)}µ(θ′|θ)dθ′

and for exiting firms,

Vt(w, 0; Bt, µt) = R−1{d∗t (w, 0) + Vt+1(w∗t+1(w, 0), 0; Bt+1, µt+1)},

where d∗t and w∗t+1 denote policies under the government’s optimal mechanism.

In this equilibrium, sub-game perfection requires that each government optimizes, meaning

that

Jt(B, µ) = Jt+1(B, µ),

and we impose the additional stationarity restriction9 that Vt(w, θ; B, µ) = Vt+1(w, θ; B, µ).

The equilibrium we study is equivalent to a problem in which an infinitely-lived government

maximizes the net present value of the dividends for all current and future firms, subject to a

single inter-temporal budget constraint (arising from the No-Ponzi restriction) and a restriction

to Markov policies in the set of history-independent mechanisms. This equivalence follows

from that fact that our equilibrium satisfies the transversality condition mentioned above. The

restriction to the set of history-independent mechanisms is important, and a consequence of

the government’s lack of commitment. A government that could punish defaulting firms that

re-enter the economy (which is ruled out by history-independence) could relax the financial

frictions in the economy.10

The government’s ability to borrow and save is critical for our main result in the presence of

any kind of transition dynamics (that is, if the population of firms does not start in a steady state).

If the government were required to raise a particular amount of tax revenue each period, with

9This restriction is mild, but rules out equilibria in which the government oscillates between different policies
that achieve the same value for the government but have different continuation values for specific firms.

10We leave open the question of whether there are non-Markov “sustainable” equilibria (Chari and Kehoe, 1990)
in which a government without commitment nevertheless punishes defaulting firms and circumvents the financial
frictions. We thank Felipe Varas for pointing out this possibility.
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no ability to smooth distortions across periods, the government would need to impose different

dividend tax rates in each period (assuming a dividend tax is the optimal policy). However,

because firms can defer dividend payments at no cost by accumulating cash, if dividend taxes

will be lower in the future, the government will not be able to collect any dividend taxes today.

Consequently, a dividend tax would not be optimal in this case. In our model, because the

government can borrow and save, today’s government can leave tomorrow’s government with

a debt level that ensures tomorrow’s government will implement the same dividend tax rate that

today’s government implements. Consequently, it is possible for the government to maintain a

constant dividend tax rate. This discussion should also make it clear that our assumption of

constant government spending G is not important– only the net present value of the stream of

government spending matters.

Having introduced the new elements of the model, we next describe our assumption

that ensures the feasibility of dividend taxation and our conjecture about the form of the

government’s value function, and then discuss our result.

4.4 Assumptions, Conjecture, and Result

To discuss our assumptions that ensure the finiteness of value functions, we introduce the value

function V̄(w, θ; τd), which is the value function for a firm in a market equilibrium with wealth

w and type θ given a dividend tax rate τd. By “market equilibrium” we mean that the firm

chooses its own borrowing, capital, dividends, and continuation wealth, subject to all of the

limits and financial frictions in our model, in the presence of a dividend tax. We provide a more

precise description of this function in Appendix A.1. Our assumptions will also be defined using

the mass of firms that enter each period in the presence of a dividend tax, ē(w, θ; τd), which is

defined by (18) with the value function V̄(w, θ; τd) in the place of the continuation value.

Our first assumption ensures that the firm and government value functions we study are

finite. We use the notation µ0 (w, θ) to denote the initial population of firms.

Assumption 2. There exists a constant, Vmax, such that, for all θ ∈ [0, 1] and w ∈ [0, ∞) with either

µ0 (w, θ) > 0 or ē(w, θ; 0) > 0, V̄(w, θ; 0) < Vmax, and the total value of all present and future dividends

in the economy is strictly positive and finite for all τ ∈ [0, τ̄), for some τ̄ > 0:

0 <

ˆ ∞

0

ˆ 1

0
V̄ (w, θ; τ) µ0 (w, θ) dθdw +

1
R− 1

ˆ ∞

0

ˆ 1

0
V̄ (w, θ; τ) ē (w, θ; τ) dθdw < ∞.

This assumption is necessary, from a technical perspective, to ensure that the optimization

problems we study are well-behaved. It implicitly embeds restrictions on the transition

probabilities of types, µ(θ′|θ), along with the production functions for each type, to ensure that
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firm’s net present value of dividends is finite. It also requires that the initial mass of firms and

entering firms have finite wealth, and that the total mass of firms be finite. The requirement

that the net present value of all dividends in the economy is strictly positive and finite ensures

that the government’s value function is finite and that the government can raise at least some

revenue from the firms through a dividend tax.

Next, we conjecture a form for the government’s value function. Our proof strategy is to

derive the optimal mechanism, using this conjecture as the continuation value, and then show

that the resulting value functions satisfy the conditions of our conjecture.

Conjecture 1. The optimal mechanism m ∈ M and firm value function V(w, θ; B, µ) = V (w, θ) do not

depend on B or µ or time. There exists a τ ∈ [0, 1), a continuous increasing function w̄(θ), and a function

U (w, θ) such that, for all w > w̄(θ), Vw (w, θ) = 1− τ and Uw (w, θ) = 1 , and for all w < w̄(θ),

Vw (w, θ) > 1− τ and Uw (w, θ) > 1, with V and U concave in w and with V(0, θ) = U(0, θ) = 0,

such that

J(Bt, µt) = JE −
G

1− R−1 − Bt +

ˆ ∞

0

ˆ 1

0
U (w, θ) µt (w, θ) dθdw,

where JE is a positive constant. Furthermore, U and V are Lipschitz continuous in θ, and, for w < w̄(θ),

U and V are strictly concave in wealth and have strictly positive cross-partials Vwθ and Uwθ. The function

U (w, θ), for θ > 0, is the net present value of future taxes and dividends,

U (w, θ) = R−1
ˆ 1

0

{
dt(w, θ, θ′) + τt(w, θ, θ′) + U(wt+1(w, θ, θ′), θ′)

}
µ(θ′|θ)dθ′, ∀θ > 0,

U(w, 0) = R−1 {dt(w, 0) + τt(w, 0) + U(wt+1(w, 0), 0)} .

The function U (w, θ) can be thought of as the “social value” of the firm. It is always greater

than the private value of the firm, V (w, θ). The constant JE represents the value of the future

entering firms.

Verifying the conjecture involves several steps. First, we solve for the optimal mechanism that

characterizes dt, τt, wt+1, and other variables, assuming that the continuation value functions U

and V have the properties described in the conjecture. This step is essentially identical to our

analysis of the static model, and also allows us to show that the optimal mechanism can be

implemented by a dividend tax. Second, having solved for the optimal mechanism, we show

that the value functions U and V indeed have the conjectured properties. Third, it is relatively

straightforward to show that the conjectured value function J satisfies the recursive equation

characterizing equilibrium (21), and to state a condition under which the No-Ponzi condition

will be satisfied.

The following theorem states our main result. The theorem is expressed in terms of the
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“funding need” at date zero, B0 + G
1−R−1 , which is the net present value of the funds the

government needs to raise. Note that there is a maximum amount of revenue that can be raised

by the government, since higher taxes are associated with lower firm entry, which reduces the

total tax base and generates a revenue Laffer curve.

Theorem 2. There exists a non-empty interval of the funding need, B0 +
G

1−R−1 , such that Conjecture 1

holds, the equilibrium satisfies the No-Ponzi condition and the transversality condition, and the optimal

sequence of mechanisms can be implemented by a constant dividend tax.

Proof. See the Appendix, Section B.5.

5 Interpretation and Policy Implications

In this section, we discuss a variety of practical and theoretical issues related to our results.

We will begin by discussing the relationship between our corporate dividend tax and corporate

taxes as they are implemented in the United States and most other developed countries. We will

then discuss forces that are absent from our model but have been used to explain firms’ dividend

policies, and conjecture how our results might change in the presence of these forces. We also

emphasize that the optimal policy may be sensitive to the nature of financial frictions assumed

in the model, and discuss general equilibrium considerations that are absent from our analysis.

Finally, we will mention a proposed tax reform in France along the lines of our optimal policy.

First, at various time periods in the United States, dividends and share repurchases were

treated differently for individual income tax purposes. In our model, “dividends” include all

payments to the agents controlling the firm, and hence should be interpreted to include share

repurchases. That is, our optimal policy would tax dividends and share repurchases at the same

rate. Related to this, in the United States and most other countries, corporate taxes are assessed

on earnings, net of various deductions. Our results show that this is in fact a reasonable way to

structure taxes, provided that deductions are given for all retained earnings. After all, earnings

less retained earnings is by definition equal to dividends plus share repurchases.11

Intriguingly, at a high level, the current tax system, modified to have full expensing of

investment, may not be too far from this policy. This conclusion is reminiscent of the “new view”

of dividend taxation (described in, for example, Auerbach (2002)). Perhaps more strikingly, the

model justifies taxing dividends but not interest payments on debt (interpreting the claims of

11Implementing the corporate dividend tax found to be optimal in this paper within the current personal tax
system may impact individuals’ investment decisions. For instance, households may have incentives to use firms
as tax-deferred investment vehicles in order to avoid capital taxes. We thank Michael Faulkender for pointing out
this issue.
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outside investors in the model as debt). The key distinction, from the model’s perspective, is

control. A time-invariant tax on payments to the agents controlling the firm (which we interpret

as dividends) does not distort the intertemporal decisions of firms, only entry (a point made

by Korinek and Stiglitz (2009)). Any other tax would both distort intertemporal decisions and

entry. Our model currently does not allow the firm to issue equity except on entry, so we cannot

say if dividend taxes distort debt/equity choices after entry. However, in our dynamic model,

dividend taxes do distort equity issuance downwards at entry, and hence lead to firms having

more debt and less equity at various points in their lifecycle. Despite this, dividend taxes are

optimal, because all taxes that raised the same amount of value from the firm would distort the

equity issuance decision by at least as much. This emphasizes the point that interest deductibility

might both distort debt/equity decisions and be optimal.

This discussion leads naturally to the second point we wish to emphasize, which is related

to forces that are absent from the model but perhaps related to firms’ dividend policies. Our

assumption that shareholders control the firm, and hence that “payments to the agent controlling

the firm” are indeed dividends, may not apply to all firms. Managerial entrenchment (Zwiebel,

1996) or other agency conflicts between shareholders and managers (Chetty and Saez, 2010)

might result in managerial, as opposed to shareholder, control of the firm. In this case, we

speculate that our model could be reinterpreted to justify a tax on managerial compensation.

However, if managers and shareholders have the same information and can engage in an optimal

contract, then it may not matter which one is taxed. The simplest case in which this is true is

when the manager is paid in proportion to the dividends shareholders receive. Regardless of

who controls the firm, it might also be possible for the agent controlling the firm to extract value

from the firm through in-kind benefits, as markups for goods or services provided, or disguised

as payments to unrelated parties. If these payments destroy value relative to dividend payments

(along the lines of, e.g., DeMarzo and Sannikov (2006)), then the possibility of such payments

will limit the dividend tax rate the government can implement but otherwise leave our results

unchanged.

Our model also omits signaling and catering explanations for firms’ dividend choices, both

of which have been discussed in the literature and may be relevant for optimal policy. With

regards to catering, we have little to say; welfare analysis in the presence of behavioral biases on

the part of investors is beyond the scope of our model. With regards to signaling, recall that our

model does feature asymmetric information. The key missing dimension is a reason for the firm

to care about creditors’ (as opposed to the government’s) perceptions, because our creditors only

purchase debt in the firm. However, the firm is concerned about signaling its marginal value of

wealth to the government – this is the essence of the model. Augmenting the model with choices
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about which securities to issue to outside investors would allow us to speak more directly to the

signaling value of dividends.

One change to our model that would drastically change results is altering the nature of

the financial friction. In a previous version of the paper, we considered a model with full

commitment by the government and creditors, including the ability to prevent defaulting firms

from re-entering. The resulting financial friction was equivalent to the one introduced by Kehoe

and Levine (1993). In this model, only the firm’s continuation value (the present value of its

future dividends) matters for the financial friction, and the firm’s current wealth is irrelevant.

In this model, if the government could assess a tax on firms entering the economy and then

commit to never tax them again, this would be the optimal policy. The principle of avoiding

taxing constrained firms still applies in this model, but because of the forward-looking nature

of the constraint, dividend taxes in the future exacerbate the constraints of firms today. As

a result, dividend taxes do not avoid taxing constrained firms, and hence are not optimal.

The key distinction between the two models concerns firms’ ability to borrow against their

entire continuation value (which can be interpreted as future earnings) or only their tangible

assets. Rampini and Viswanathan (2013) provide evidence that tangible assets are an important

determinant of firm borrowing capacity, but which of these constraints apply to which firms is,

to our knowledge, an open question.12

Our model takes a partial equilibrium approach, neglecting general equilibrium

considerations. In practice, corporate taxes are likely to influence equilibrium interest rates (and

stochastic discount factors more generally), and these concerns are in fact central to the extensive

literature on capital taxation. Our model features both asymmetric information and financial

frictions, and hence the classic capital taxation results cannot be directly applied to the model.

Other taxes, such as labor income or consumption taxes, will likely affect both constrained

and unconstrained firms, and (speculatively) our corporate taxation principle suggests that a

corporate dividend tax may be preferable to these taxes. We intend to pursue this question in

future research.

Finally, we should highlight that France in 2012 implemented a corporate dividend tax

somewhat along the lines suggested by our analysis (in addition to the more traditional

corporate taxes). France assessed a 3% tax on all dividends paid. Court rulings eventually

caused the tax to be declared unconstitutional, apparently because of double taxation, and in

2017 the tax was repealed.

12Considering a scenario with limited enforcement and no exclusion after default, as in Rampini and Viswanathan
(2010), but with a government with full commitment, is problematic, since the government can use its commitment
ability to overcome financial frictions.
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6 Conclusion

We have provided a normative analysis of optimal corporate taxation under financial frictions.

Without financial frictions, all firms operate at the first-best level. With financial frictions, if the

government has full information, it is optimal to tax only the unconstrained firms, consistent

with the corporate taxation principle that we introduce in this paper. When firms’ future

investment opportunities are private information, the government must use a mechanism to

elicit which firms are unconstrained in an incentive compatible way. Although the structure of

the problem appears complicated, we show that a dividend tax can both separate constrained

and unconstrained firms and raise revenue, and hence is optimal. Practically, this dividend tax

could be implemented in our current tax system by allowing for full deductibility of retained

earnings.

To our knowledge, this paper is the first to address the question of how corporate taxes

should be structured in an environment in which any feasible tax instrument can be employed.

Future work taking into account manager-shareholder conflict, security design, interactions

between personal and corporate taxation, and general equilibrium considerations should result

in a deeper understanding of optimal corporate taxation.
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APPENDIX

A Problem Definitions

In this appendix section, we formally define a variety of value functions and mechanism design

problems. These definitions are used in our proofs and referenced in the main text. Section A.1

defined the function V̄ that described the net present value of a firm’s dividends in the dynamic

model under a constant dividend tax. Section A.2 defines V̄0 and V̄1, which are the net present

value of a firm’s dividends under a constant dividend tax in the static model, at dates zero and

one respectively.

Section A.3 describes the full mechanism design problem for a non-exiting firm in the

dynamic model, and Section A.4 describes the mechanism design problem for an exiting firm.

Sections A.5 and A.6 describe the “capital sub-problem” and “capital choice problem,” which

break down the full mechanism design problem of Section A.3 into two parts. The capital choice

problem corresponds to the first report of the firms, which determines their debt and capital

levels, and the capital sub-problem corresponds to the second report, which occurs after capital

is observed and determines the firm’s dividend payment and taxes.

A.1 Definition of V̄ (w, θ; τ)

Define

π(k, θ) = f (k, θ) + (1− δ)k− Rk.

Consider the firm’s problem in the presence of a dividend tax, assuming that firm knows its next

period type θ′:

V̄
(
w, θ, θ′; τ

)
= max

b≥0,k,w′≥0,d≥0
R−1 {d + V̄

(
w′, θ′; τ

)}
subject to

w′ = π (k, θ) + Rk−
(

1 +
τ

1− τ

)
d− b

w ≤ k ≤ w + R−1b

τ

1− τ
d + b ≤ ϕ (1− δ) k

d ≤ π (k, θ) + k (R− ϕ (1− δ))

d + V̄(w′, θ′; τ) ≥ V̄(π (k, θ) + k(R− ϕ (1− δ)), θ′; τ)

and note that voluntary exit is never optimal (V̄(w′, θ′; τ) ≥ V̄(w′, 0; τ) for all w′, θ).
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The firm’s continuation value function prior to learning its type is

V̄(w, θ; τ) =

ˆ 1

0
V̄(w, θ, θ′; τ)µ(θ′|θ)dθ′.

This defines a Bellman equation that, along with the transversality condition

lim
t→∞

R−tV(wt, θt; τ) = 0

defines a unique value function V̄(w, θ; τ).

A.2 Definition of V̄0(w, θ; τ) and V̄1(w, θ; τ)

In the static problem, the firm’s value function in the presence of a dividend tax rate τ in both

periods is

V̄1(w, θ; τ) = max
b≥0,k,w′≥0,d≥0

R−1{d + w′}

subject to

w′ = π (k, θ) + Rk−
(

1 +
τ

1− τ

)
d− b

w ≤ k ≤ w + R−1b

τ

1− τ
d + b ≤ ϕ (1− δ) k

d ≤ π (k, θ) + k(R− ϕ (1− δ))

and

V̄0(w, θ, θ′; τ) = max
b≥0,k,w′≥0,d≥0

R−1{d + V̄1(w′, θ′; τ)}

subject to

w′ = π (k, θ) + Rk−
(

1 +
τ

1− τ

)
d− b

w ≤ k ≤ w + R−1b

τ

1− τ
d + b ≤ ϕ (1− δ) k

d ≤ π (k, θ) + k(R− ϕ (1− δ))

d + V̄1(w′, θ′; τ) ≥ V̄1(π (k, θ) + k(R− ϕ (1− δ)), θ′; τ),
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with

V̄0(w, θ; τ) =

ˆ 1

0
V̄0(w, θ, θ′; τ)µ(θ′|θ)dθ′.

A.3 Statement of the Mechanism Design Problem for Non-Exiting Types

In this subsection, we describe the mechanism described problem given observable wealth wt

and current type θt > 0. The multiplier χt controls the relative value of taxes and dividends,

from the government’s perspective. In the dynamic problem, in Conjecture 1 we have implicitly

assumed that χt = 1. In the static problem, we will show that χt ≥ 1, and the theorem will apply

in the case in which χt = 1 by focusing on situations in which required spending G is sufficiently

small.

Given our timing assumptions, illustrated in Figure 1, firms sequentially choose capital

and financing, and then make dividend and default decisions. We allow for the possibility

of a “double” deviation in the mechanism, in which a firm reports some type θ′t+1 initially,

when choosing capital/financing, and then reports another type θ′′t+1, when declaring a

dividend/making a default decision. Formally, we use the notation dt
(
θ′t+1, θ′′t+1

)
to refer to the

dividend allocated to a firm that reports θ′t+1 at the investment/financing, and then reports θ′′t+1

at the dividend/tax accrual stage. We use the same two-argument notation for other variables.

We consider incentive-compatible direct revelation mechanisms, with both initial and interim IC

constraints.

Formally, the government solves the following problem:

max
dt(·),bt(·),wt+1(·),kt(·),τt(·)

R−1
ˆ 1

0

{
dt (wt, θt, θt+1, θt+1) + U (wt+1 (wt, θt, θt+1, θt+1) , θt+1)

+χtτt (wt, θt, θt+1, θt+1)

}
µ (θt+1| θt) dθt+1

subject to the following constrains:

- Financing/Investment Budget Constraint:

kt
(
wt, θt, θ′t+1

)
≤ wt + R−1bt

(
wt, θt, θ′t+1

)
, ∀wt, θt, θ′t+1,

- Dividend/Taxes Budget Constraint:

wt+1
(
wt, θt, θ′t+1, θ′′t+1

)
≤ π(kt

(
wt, θt, θ′t+1

)
, θt) + Rkt

(
wt, θt, θ′t+1

)
− dt

(
wt, θt, θ′t+1, θ′′t+1

)
− bt

(
wt, θt, θ′t+1

)
− τt

(
wt, θt, θ′t+1, θ′′t+1

)
, ∀wt, θt, θt+1, θ′t+1, θ′′t+1,

- No Default:
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wD (kt
(
wt, θt, θ′t+1

)
, θt
)
≤ dt

(
wt, θt, θ′t+1, θ′′t+1

)
+ wt+1

(
wt, θt, θ′t+1, θ′′t+1

)
, ∀wt, θt, θ′t+1, θ′′t+1,

- Upper Limit on Dividends:

dt
(
wt, θt, θ′t+1, θ′′t+1

)
≤ wD (kt

(
wt, θt, θ′t+1

)
, θt
)

, ∀wt, θt, θ′t+1, θ′′t+1

- Dividend/Taxes IC:

dt
(
wt, θt, θ′t+1, θ′′t+1

)
+ V

(
wt+1

(
wt, θt, θ′t+1, θ′′t+1

)
, θt+1

)
≤ dt

(
wt, θt, θ′t+1, θt+1

)
+ V

(
wt+1

(
wt, θt, θ′t+1, θt+1

)
, θt+1

)
, ∀wt, θt, θt+1, θ′t+1, θ′′t+1,

- Financing/Investment IC:

dt
(
wt, θt, θ′t+1, θt+1

)
+ V

(
wt+1

(
wt, θt, θ′t+1, θt+1

)
, θt+1

)
≤ dt (wt, θt, θt+1, θt+1)

+ V (wt+1 (wt, θt, θt+1, θt+1) , θt+1) , ∀wt, θt, θt+1, θ′t+1,

- Blocked Dividend No Default:

V
(

wD (kt
(
wt, θt, θ′t+1

)
, θt
)

, θt+1

)
≤ dt (wt, θt, θt+1, θt+1)

+ V (wt+1 (wt, θt, θt+1, θt+1) , θt+1) , ∀wt, θt, θt+1, θ′t+1

as well as non-negativity constraints and the lower bound on capital,

dt
(
wt, θt, θ′t+1, θ′′t+1

)
≥ 0, τt

(
wt, θt, θ′t+1, θ′′t+1

)
≥ 0, wt+1

(
wt, θt, θ′t+1, θ′′t+1

)
≥ 0,

bt
(
wt, θt, θ′t+1

)
≥ 0, kt

(
wt, θt, θ′t+1

)
≥ w0

and the definitions

π (k, θ) := f (k, θ) + (1− δ) k− Rk,

wD (k, θ) := f (k, θ) + (1− ϕ) (1− δ) k.

Note that this formulation omits deviations to exit, because we do not permit such deviations
in the static model, and under our conjecture in the dynamic model will never be occur or be a
binding constraint.

A.4 Statement of the Mechanism Design Problem for Exiting Types

For exiting types, there is no asymmetric information, and no production. That is,

f (k, 0) = Rk− (1− δ) k,

and therefore π (k, 0) = 0 and wD (k, 0) = (R− ϕ (1− δ))k.
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The government solves

U(w, 0) = max
dt(·),bt(·),wt+1(·),kt(·),τt(·)

R−1 {dt (wt, 0) + U(wt+1 (wt, 0) , 0) + τt (wt, 0)} ,

subject to the constraints

kt (wt, 0) ≤ wt + R−1bt (wt, 0) , ∀wt, (Financing/Investment Budget Constraint)

wt+1 (wt, 0) ≤ Rkt (wt, 0)− dt (wt, 0)

− bt (wt, 0)− τt (wt, 0) , ∀wt, (Dividend/Taxes Budget Constraint)

wD (kt (wt, 0) , 0) ≤ dt (wt, 0) + wt+1 (wt, 0) , ∀wt, (No Default)

dt (wt, 0) ≤ wD (kt (wt, 0) , 0) , ∀wt, (Upper Limit on Dividends)

V(wD (kt (wt, 0) , 0) , 0) ≤ dt (wt, 0) + V(wt+1 (wt, 0) , 0), ∀wt, (Blocked Dividend No Default)

observing that the two no-default constraints are identical, as well as non-negativity constraints
and the lower bound on capital,

dt (wt, 0) ≥ 0, τt (wt, 0) ≥ 0, wt+1 (wt, 0) ≥ 0, bt (wt, 0) ≥ 0, kt (wt, 0) ≥ w0.

A.5 Statement of the Capital Sub-Problem

In this subsection, we consider the mechanism design problem described in the Appendix
Section A.3, taking as given the initial wealth wt, initial type θt > 0, and initial capital level
k chosen. The initial capital choice decisions generate an endogenous measure of types,

µ̂(θt+1; k) = µ(θt+1|θt)1(kt(wt, θt, θt+1) = k).

To keep notation compact, in what follows we will use the shorthand wt+1(θ) to mean
wt+1 (wt, θt, θ′′, θ) for some θ′′1 such that kt(wt, θt, θt+1) = k, and likewise for dt(θ) and τt(θ).
Note by Lemma 2 below that it is without loss of generality to assume all such θ′′1 have the same
allocations. We define the variable yt (θ) as

yt (θt) := wt+1 (θ) + dt (θ) .

We also constrain the problem to have a particular value of yt(1) for the top type, yt(1) = y1.
That is, we will consider the value of yt(1) for the top type as part of the capital choice problem
(see below).

The sub-problem can be expressed as a function of two controls, dt (θ) and yt (θ):

J (µ̂, wt, θt, k, y1, V∗) = max
dt(θ),yt(θ)

R−1

´ 1
0 µ̂(θ; k)dθ

ˆ 1

0

{
χt(π (k, θt) + Rwt)− χtyt (θ)

+U (yt (θ)− dt (θ) , θ) + dt (θ)

}
µ̂(θ; k)dθ,
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subject to the constraints

wD (k, θt) ≤ yt (θ) , ∀θ (No Default)

dt (θ) ≤ wD (k, θt) , ∀θ (Upper Limit on Dividends)

0 ≤ dt (θ) , ∀θ (Non-Negative Dividends)

yt (θ) ≤ π (k, θt) + Rwt, ∀θ, (Non-Negative Taxes)

and the incentive constraints

dt
(
θ′
)
+ V

(
yt
(
θ′
)
− dt

(
θ′
)

, θ
)
≤ dt (θ) + V (yt (θ)− dt (θ) , θ) , ∀θ, θ′ (Dividend/Taxes IC)

V
(

wD, θ
)
≤ dt (θ) + V (yt (θ)− dt (θ) , θ) , ∀θ, (Blocked Dividend No Default)

dt (θ) + V (yt (θ)− dt (θ) , θ) ≤ V∗(θ), ∀θs.t.µ̂(θ; k) = 0, (Financing/Investment IC)

and the constraints on the top type allocation, yt(1) = y1.
The function V∗(θ) from the financing/investment IC is shorthand: V∗(θ) =

dt (wt, θt, θt+1, θt+1) + V (wt+1 (wt, θt, θt+1, θt+1) , θt+1) in the mechanism of Appendix Section
A.3. In other words, for types θ that do not receive this capital level in equilibrium, the
financing/investment IC is relaxed by reducing that type’s payoff from this capital level.

The problem is well-defined given a feasible value of y1 ∈
[
wD (k, θt) , π (k, θt) + Rwt

]
and a

function V∗(θ) such that is it possible to satisfy all of the constraints. We adopt the convention
that J (µ̂, wt, θt, k, d1, y1, V∗) = −∞ for infeasible problems.

A.6 Statement of the Capital Choice Sub-Problem

In this subsection, we rewrite the mechanism design problem of A.3 by separating it into the
capital choice problem and the capital sub-problem described in the previous section. We
simplify the problem using the result of Lemma 2 below that both budget constraints bind, and
hence eliminate the debt and taxes choice variables.

The problem is

max
dt(·),yt(·),kt(·),V∗(·)

ˆ 1

0
J(µ̂(·; kt (wt, θt, θ)), wt, θt, kt (wt, θt, θ) , yt (wt, θt, θ, 1) , V∗(θ))µ(θ|θt)dθ

subject to the constraints

wD (kt (wt, θt, θt+1) , θt) ≤ yt (wt, θt, θt+1, 1) ∀wt, θt, θt+1, (No Default at Top)

yt (wt, θt, θt+1, 1) ≤ π (kt (wt, θt, θt+1) , θt) + Rwt ∀wt, θt, θt+1, (Non-Negative Debt/Taxes at Top)

and lower bounds on dividends at the top and capital,

kt
(
wt, θt, θ′t+1

)
≥ w0,

36



and the requirement that dt(wt, θt, θ′t+1, ·), yt(wt, θt, θ′t+1, ·) are in the set of optimal policies of the
capital sub-problem for all θ′t+1, the form of the financing/investment IC constraint,

V∗(θt+1) ≤ dt (wt, θt, θt+1, θt+1) + V (yt+1 (wt, θt, θt+1, θt+1)− dt (wt, θt, θt+1, θt+1) , θt+1) ,

and using the definitions

µ̂(θ′; kt (wt, θt, θ)) = µ(θ′|θt)1(kt (wt, θt, θ) = kt
(
wt, θt, θ′

)
).

Note that we can write V∗(θ) as a choice variable and use the inequality constraint because
the function J(·, V∗) is weakly greater than J(·, V∗

′
) if V∗(θ) ≥ V∗

′
(θ) for all θ.

B Proofs

B.1 Proof of Lemma 1

The government solves the following problem:

max
ˆ ∞

0

ˆ 1

0
R−1 {d1 (w1, θ1) + w2 (w1, θ1)} µ1(w1, θ1)dw1dθ1,

subject to the following set of constraints, which must apply for each level of wealth w1 and type
θ1:

k1 (w1, θ1) ≤ R−1b (w1, θ1) + w1, ∀w1, ∀θ1 (Financing/Investment Budget Constraint)

w2(w1, θ1) ≤ f (k1, θ1) + (1− δ) k1 − d1 − b1 − τ1 (Dividend/Taxes Budget Constraint)

wD
1 (k1 (w1, θ1) , θ1) ≤ d1 (w1, θ1) + wR

1 (w1, θ1) , ∀w1, ∀θ1 (No Default)

d1 (w1, θ1) ≤ wD
1 (k1 (w1, θ1) , θ1) , ∀w1, ∀θ1 (Upper Limit on Dividends)

as well as the revenue-raising constraint,

B1 + G ≤
ˆ ˆ

R−1τ1 (w1, θ1) dF (w1, θ1) , (Revenue Raising)

and the non-negativity constraints for k1, d1, b1, and τ1.
Observe immediately that the dividend/taxes budget constraint must bind. We can express

d1 (w1, θ1) + w2 (w1, θ1) as follows:

d1 (w1, θ1) + w2 (w1, θ1) = f (k1 (w1, θ1) , θ1) + (1− δ) k1 (w1, θ1)− b1 (w1, θ1)− τ1 (w1, θ1) .

When combined with the definition of continuation wealth after default in Equation (3), the
no-default constraint simplifies to

b1 (w1, θ1) + τ1 (w1, θ1) ≤ ϕ (1− δ) k1 (w1, θ1) .
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As a result, d1 (w1, θ1) enters only in the limit on dividends, and therefore it is without loss of
generality to assume d1 (w1, θ1) = 0 and ignore the limit on dividends. Moreover, if the initial
budget constraint does not bind, the government can increase k1 (w1, θ1), increasing the objective
and relaxing the no-default constraint, which implies that budget constraints must bind at the
optimum.

Therefore, the government’s problem can be reformulated in simplified form as follows:

max
ˆ ∞

0

ˆ 1

0
R−1 { f (k1 (w1, θ1) , θ1) + (1− δ) k1 (w1, θ1)− b1 (w1, θ1)− τ1 (w1, θ1)} µ1 (w1, θ1) dθ1dw1

subject to

k1 (w1, θ1) = R−1b1 (w1, θ1) + w1, ∀w1, ∀θ1 (Budget Constraint)

b1 (w1, θ1) + τ1 (w1, θ1) ≤ ϕ (1− δ) k1 (w1, θ1) , ∀w1, ∀θ1 (No Default)

B1 + G ≤
ˆ ∞

0

ˆ 1

0
R−1τ1 (w1, θ1) µ1 (w1, θ1) dw1dθ1, (Revenue Raising)

in addition to the the non-negativity constraints. This problem has affine constraints and a
concave objective function, and therefore the infinite dimensional analog of the KKT conditions
are necessary and sufficient to find an optimum. Solving for b1 (w1, θ1) in the budget constraint
and substituting in, allows us to rewrite the objective function as follows:
ˆ ∞

0

ˆ 1

0

{
R−1 ( f (k1 (w1, θ1) , θ1) + (1− δ) k1 (w1, θ1)− τ1 (w1, θ1)− Rk1 (w1, θ1)) + w1

}
µ1 (w1, θ1) dθ1dw1.

Solving for b1 (w1, θ1) in the budget constraint and substituting in, we can rewrite the no default
constraint as follows,

k1 ≤
w1 − R−1τ1

1− R−1ϕ (1− δ)

The non-negativity constraint on b1 implies that w1 ≤ k1. By defining the Lagrange multiplier
on the revenue raising constraint by χ1, we can express the new objective function as

ˆ ∞

0

ˆ 1

0

{
R−1 ( f (k1 (w1, θ1) , θ1) + (1− δ) k1 (w1, θ1)− (1− χ1) τ1 (w1, θ1)− Rk1 (w1, θ1)) + w1

}
µ1(w1, θ1)dθ1dw1,

which concludes the proof.

B.2 Proof of Proposition 1

First, note that if χ1 < 1, it will be optimal to set τ1 = 0 always, and therefore raise no revenue.
Therefore, it must be that χ1 ≥ 1, and that, if χ1 = 1 is feasible, it will be optimal.

If χ1 = 1, the government’s problem corresponds to

U1 (w1, θ1; 1) = max
k1≥0,τ1≥0

R−1 { f (k1, θ1) + (1− δ) k1 − Rk1}+ w1,
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subject to the following constraint on capital allocations

w1 ≤ k1 ≤
w1 − R−1τ1

1− R−1ϕ (1− δ)
,

and non-negativity constraint for k1 and τ1. Let µ and φ be the multipliers on the upper and
lower bounds for capital, and let ν be the multiplier on the constraint that τ1 ≥ 0. We can
therefore define the following Lagrangian:

L = R−1 { f (k1, θ1) + (1− δ) k1 − Rk1}+ w1 − µ

(
k1 −

w1 − R−1τ1

1− R−1ϕ (1− δ)

)
+ φ (k1 − w1) + ντ1.

Note that, under the assumption that w1 ≥ 0 for all firms, the capital non-negativity constraint
becomes redundant. The optimality conditions for k1 and τ1 respectively are

R−1 { fk (k1, θ1) + (1− δ)− R} − µ + φ = 0⇒ R−1 { fk (k1, θ1) + (1− δ)− R} = µ− φ (A1)

− 1
R− ϕ (1− δ)

µ + ν = 0⇒ ν =
1

R− ϕ (1− δ)
µ (A2)

Equation (A2) implies that if µ > 0, then ν > 0 and τ1 = 0. In general, µ > 0 and φ > 0 are
mutually exclusive. Therefore, if τ1 = 0, that is, ν > 0, it must be that µ > 0 and φ = 0.

Because fk (k1, θ1) + (1− δ)− R ≥ 0, ∀k1, with equality if and only if k1 ≥ k∗ (θ1), it follows
that k1 < k∗ (θ1) implies that µ > 0 and φ = 0, and also ν > 0 and τ1 = 0. This case requires that

k∗ (θ1) >
w1

1− R−1ϕ (1− δ)
.

If k1 ≥ k∗ (θ1), then we must have µ = φ = 0 and ν = 0. This case requires that

k∗ (θ1) ≤
w1

1− R−1ϕ (1− δ)
.

In this case, the tax is indeterminate, but must necessarily satisfy

0 ≤ τ1 ≤ ϕ (1− δ)w1,

so that the feasible set for capital is non-empty.13 In the statement of Proposition 1, we propose
the following tax function

τ1 (w1, θ1) = τR max
{

w1 −
(

1− R−1ϕ (1− δ)
)

k∗ (θ1) , 0
}

,

where τ ∈ [0, ϕ (1− δ)]. The proposed functional form satisfies the restrictions on τ1 in both
cases, and raises positive revenue. Therefore, as long as the revenue raised by the proposed
policy satisfies the revenue-raising constraint, our claim holds.

13Note that feasibility requires that τ1 satisfies w1 ≤ w1−R−1τ1
1−R−1 ϕ(1−δ)

.
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B.3 Proof of Corollary 1

Properties of V1

The function V1 (w1, θ1) = R−1{d1 (w1, θ1) + w2 (w1, θ1)} corresponds to an indirect utility
function for firms. Note that

d1 (w1, θ1) + w2 (w1, θ1) = f (k1 (w1, θ1) , θ1) + (1− δ) k1 (w1, θ1)− τ1 (w1, θ1)− Rk1 (w1, θ1) + Rw,

= f (k1 (w1, θ1) , θ1) + (1− δ) k1 (w1, θ1)

− τR max {w1 − w̄ (θ1) , 0} − Rk1 (w1, θ1) + Rw,

where we use the fact that the optimal policy satisfies τ1 (w1, θ1) = τ max {w1 − w̄ (θ1) , 0}.
Substituting in for the capital chosen,

k1 (w1, θ1) = min{k∗(θ1),
w1

1− R−1ϕ (1− δ)
}.

Note first that V1(w, θ) is continuous. Anywhere w1 > w̄(θ),

V1,w(w1, θ1) = 1− τ.

Anywhere w1 < w̄(θ),

V1,w(w1, θ1) = R−1
fk

(
w1

1−R−1 ϕ(1−δ)
, θ1

)
+ (1− δ)− R

1− R−1ϕ (1− δ)
+ 1 > 1

by the assumption that if w1 < w̄(θ), w1
1−R−1 ϕ(1−δ)

< k∗(θ1). The properties of the cross-partial
and concavity follow from the cross-partial and concavity of the production function. Lipschitz
continuity follows from the differentiability of the production function (and hence k∗(θ1)) with
respect to θ1.

Properties of U1

The function U1 (w1, θ1; 1) corresponds to an indirect utility function for firms from the
perspective of the government. The expression is

f (k1 (w1, θ1) , θ1) + (1− δ) k1 (w1, θ1)− Rk1 (w1, θ1) + Rw,

where again
k1 (w1, θ1) = min{k∗(θ1),

w1

1− R−1ϕ (1− δ)
}.

The argument above for V1 applies from this point, essentially unmodified.
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B.4 Proof of Theorem 1

The government’s problem in the static model, assuming they wish to implement the tax rate τ

described by 1, is

J0(w0, θ0) = max
τ∈[0,ϕ(1−δ)]

max
mt∈M(τ)

R−1
ˆ 1

0
{d0(θ1, θ1) + V1(w1(θ1, θ1), θ1; τ)}µ(θ1|θ0)dθ1

subject to the constraints

B1 + G = R−1τR
ˆ 1

0
max{w1 (θ1, θ1)− w̄ (θ1) , 0}µ(θ1|θ0)dθ1,

R−1B1 = B0 + G− R−1
ˆ 1

0
τ0(θ1, θ1)µ(θ1|θ0)dθ1,

which can be combined into

B0 + G(1 + R−1) = R−1
ˆ 1

0
τ0(θ1, θ1)µ(θ1|θ0)dθ1

+ R−1τ

ˆ 1

0
max{w1 (θ1, θ1)− w̄ (θ1) , 0}µ(θ1|θ0)dθ1.

Note that the set of feasible mechanisms is influenced by the tax rate, through the continuation
value function of the firms.

The Lagrangian version is

J0(w0, θ0) = max
τ∈[0,ϕ(1−δ)]

max
mt∈M(τ)

min
χ0≥0

R−1
ˆ 1

0
{d0(θ1, θ1) + χ0τ0(θ1, θ1)}µ(θ1|θ0)dθ1

+ R−1
ˆ 1

0
{V1(w1(θ1, θ1), θ1; τ) + χ0τ max{w1 (θ1, θ1)− w̄ (θ1) , 0}}µ(θ1|θ0)dθ1.

We begin by proving that if χ0 < 1, the optimal mechanism collects no taxes. This is shown
below in Lemma 5.

Consequently, if a solution with χ0 = 1 is optimal, it is feasible. Note also that if an infeasibly
high tax rate τ is required, the government’s continuation value will be lower than if such a tax
rate were feasible, and hence if the tax rate associated with a χ0 = 1 solution is feasible, that
solution is optimal even without the requirement that τ be implementable.

Hence, we conjecture that χ0 = 1, and write the Lagrangian as

J0(w0, θ0) = max
τ∈[0,ϕ(1−δ)]

max
mt∈M(τ)

R−1
ˆ 1

0
{d0(θ1, θ1) + τ0(θ1, θ1) + U1(w1(θ1, θ1), θ1; τ)}µ(θ1|θ0)dθ1,

noting that in the solution to the full information problem,

U1(w1, θ1; τ) = V1(w1, θ1; τ) + τ max{w1 − w̄ (θ1) , 0}.
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By Proposition 3 below, the optimal mechanism uses either maximal or first-best capital, and
sets taxes proportional to dividends. By Proposition 4, it can be implemented as a dividend tax.

Under our assumptions for the static model, capital is first-best and the top type is
constrained. Consequently,

τ0(θ1, θ1) = τ max{π(k∗(θ0), θ0) + Rw0 − w1(θ1, θ1), 0}

The funds raised are

R−1
ˆ 1

0
τ0(θ1, θ1)µ(θ1|θ0)dθ1 + R−1τ

ˆ 1

0
max{w1(θ1, θ1)− w̄ (θ1) , 0}µ(θ1|θ0)dθ1 =

R−1τ

ˆ 1

0
max{π(k∗(θ0), θ0) + Rw0 − w̄(θ1), 0}µ(θ1|θ0)dθ1.

By the assumption 1 (in particular, (10)), this is a positive quantity, and hence there is a non-
empty interval of B0 + G(1 + R−1) with a positive, feasible dividend tax.

B.5 Proof of Theorem 2

In this subsection, we prove Theorem 2. First, under our conjecture, using Lemma 2, Proposition
2, and Proposition 3 below, we have shown that the optimal mechanism assigns zero dividends
and taxes to the top type, and taxes proportional to the dividends paid to all other types, given
a particular wt, θt, with the same constant of proportionality,

τt(w, θt, θt+1, θt+1) =
τ

1− τ
dt(w, θt, θt+1, θt+1).

In addition, the capital level chosen is either maximal or first-best.
The implementation claim follows from Proposition 4 below.
To complete the proof, we must show that the functions Ut (w, θ) and Vt (w, θ) have the

claimed properties. Combining the result of the aforementioned propositions,

Ut (w, θ) = R−1
ˆ 1

0
{dt(w, θ, θ′, θ′) + τt(w, θ, θ′, θ′) + Ut+1(wt+1(w, θ, θ′, θ′), θ′)}µ(θ′|θ)dθ′

= R−1
ˆ 1

0
Ut+1(π(min{w R

R− ϕ (1− δ)
, k∗(θ)}, θ) + Rw, θ′)}µ(θ′|θ)dθ′.

Observe that Ut(0, θ) = 0 and that Ut (w, θ) inherits the concavity in wealth from Ut+1. Lipschitz
continuity in θ follows from the differentiability of the production function (and hence of k∗(θ))
and the Lipschitz continuity of µ(θ′|θ). If w R

R−ϕ(1−δ)
< k∗(θ), then Ut,w+ (w, θ) > 1. If

w R
R−ϕ(1−δ)

≥ k∗(θ) but π(k∗(θ), θ)+ Rw < supθ′ :µ(θ′|θ)>0 w̄(θ′), then Ut,w+ (w, θ) > 1. Otherwise,
Ut,w+ (w, θ) = 1 as required. Hence, we have

w̄(θ) = max{R− ϕ (1− δ)

R
k∗(θ), sup

θ′ :µ(θ′|θ)>0
R−1(w̄(θ′)− π(k∗(θ), θ))}.
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Note that if w > w̄(θ), we have Ut,wθ(w, θ) = 0. If w < w̄(θ), then Ut,wθ(w, θ) > 0 by the fact
that fkθ(k, θ) > 0 for k < k∗(θ) (if w R

R−ϕ(1−δ)
< k∗(θ)) and the fact that µ(θ′|θ) strictly first-order

stochastically dominates µ(θ′|θ′′) for θ > θ′.
The same argument applies essentially unmodified to Vt (w, θ), and hence both functions

have the claimed properties. Lemma 6 below proves the corresponding results for exiting firms.
Observe that, due the conjecture, Vt+1 (w, θ) ≥ Vt+1(w, 0) and Ut+1 (w, θ) ≥ Ut+1(w, 0)

and hence the government never wants a firm to voluntarily exit, and firms never choose to
voluntarily exit, assuming that the no-default constraints are satisfied.

To conclude, we must verify that our conjectured value function satisfies the Bellman
equation. Plugging in the conjectured function,

Jt(Bt, µt) = R−1
ˆ ∞

0

ˆ 1

0+

ˆ 1

0
d∗t (w, θ, θ′)µ(θ′|θ)µt (w, θ) dθ′dθdw

+ R−1
ˆ ∞

0
d∗t (w, 0)µt(w, 0)dw

+ R−1{JE −
G

1− R−1 − Bt+1 +

ˆ ∞

0

ˆ 1

0
U (w, θ) µt+1 (w, θ) dθdw}.

Plugging in the debt evolution Equation (20)

Jt(Bt, µt) = R−1
ˆ ∞

0

ˆ 1

0+

ˆ 1

0
d∗t (w, θ, θ′)µ(θ′|θ)µt (w, θ) dθ′dθdw

+ R−1
ˆ ∞

0
d∗t (w, 0)µt(w, 0)dw

+ R−1{JE −
G

1− R−1 +

ˆ ∞

0

ˆ 1

0
U (w, θ) µt+1 (w, θ) dθdw}

− Bt − G + R−1
ˆ ∞

0

ˆ 1

0+

ˆ 1

0
τ∗t (w, θ, θ′)µ(θ′|θ)µt (w, θ) dθ′dθdw

+ R−1
ˆ ∞

0
τ∗t (w, 0)µt(w, 0)dw.

Plugging in the population evolution Equation (19), and doing some simplification
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Jt(Bt, µt) = R−1
ˆ ∞

0

ˆ 1

0+

ˆ 1

0
(d∗t (w, θ, θ′) + τ∗t (w, θ, θ′))µ(θ′|θ)µt (w, θ) dθ′dθdw

+ R−1
ˆ ∞

0
{d∗t (w, 0) + τ∗t (w, 0)}µt(w, 0)dw

+ R−1 JE + R−1
ˆ ∞

0

ˆ 1

0
U(w′, θ′)et(w′, θ′)dθ′dw′

+ R−1
ˆ ∞

0

ˆ 1

0

ˆ ∞

0

ˆ 1

0+
U(w′, θ′)δ(w∗t+1(w, θ, θ′)− w′)µ(θ′|θ)µt (w, θ) dθdwdθ′dw′

+ R−1
ˆ ∞

0

ˆ ∞

0
U(w′, 0)δ(w∗t+1(w, 0)− w′)µt(w, 0)dwdw′

− Bt − G(1 +
R−1

1− R−1 )

which further simplifies to

Jt(Bt, µt) = R−1
ˆ ∞

0

ˆ 1

0+

ˆ 1

0
(d∗t (w, θ, θ′) + τ∗t (w, θ, θ′) + U(w∗t+1(w, θ, θ′), θ′))µ(θ′|θ)µt (w, θ) dθ′dθdw

+ R−1
ˆ ∞

0
{d∗t (w, 0) + τ∗t (w, 0) + U(w∗t+1(w, 0), 0)}µt(w, 0)dw

+ R−1 JE + R−1
ˆ ∞

0

ˆ 1

0
U(w′, θ′)et(w′, θ′)dθ′dw′

− Bt −
G

1− R−1 .

Defining

JE =
R−1

1− R−1

ˆ ∞

0

ˆ 1

0
U(w′, θ′)et(w′, θ′)dθ′dw′

and noting that et(w′, θ′) is time-invariant, and using the equations

U (w, θ) =

ˆ 1

0
(d∗t (w, θ, θ′) + τ∗t (w, θ, θ′) + U(wt+1(w, θ, θ′), θ′))µ(θ′|θ)dθ′,

U(w, 0) = R−1{d∗t (w, 0) + τ∗t (w, 0) + U(w∗t+1(w, 0), 0)},

the conjecture for the form of the function J(B, µ) is verified.
Lastly, we must show that the transversality and No-Ponzi conditions hold. Observe,

however, that under the dividend tax implementation, we have

V (w, θ) = V̄(w, θ; τ) = (1− τ)V̄(w, θ; 0)

and
U (w, θ) =

1
1− τ

V (w, θ) = V̄(w, θ; 0).
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Thus, it must the case that the net present value of taxes collected is

τ

1− τ

ˆ ∞

0

ˆ 1

0
V̄(w, θ; τ)µ0 (w, θ) dθdw +

τ

1− τ

1
R− 1

ˆ ∞

0

ˆ 1

0
V̄(w, θ; τ)ē(w, θ; τ)dθdw,

which is strictly positive by assumption 2. It follows that there is a non-empty interval of
B + G 1

1−R−1 such that

τ

1− τ

ˆ ∞

0

ˆ 1

0
V̄(w, θ; τ)µ0 (w, θ) dθdw+

τ

1− τ

1
R− 1

ˆ ∞

0

ˆ 1

0
V̄(w, θ; τ)ē(w, θ; τ)dθdw = B0 +G

1
1− R−1

for τ ∈ [0, τ̄). It follows immediately that if this equation holds, the No-Ponzi condition holds
with equality.

Observe that, under the optimal mechanism, we always have wt+1(wt, θt, θt+1) ≤ w̄(1), and
hence µt (w, θ) will have bounded support for all t > 1. This implies that

lim
t→∞

R−t
ˆ ∞

0

ˆ 1

0
U (w, θ) µt (w, θ) dθdw = 0,

which proves the transversality condition, concluding the proof.

B.6 Preliminary Lemmas

Lemma 2. In the mechanism design problem (A.3), the financing/investment and dividend/taxes budget
constraints bind. Moreover, for any type types θ̃t+1 and θ̂t+1 with kt(wt, θt, θ̃t+1) = kt(wt, θt, θ̂t+1)

in an optimal allocation, it is without loss of generality to suppose that dt(wt, θt, θ̂t+1, θ′t+1) =

dt(wt, θt, θ̃t+1, θ′t+1) for all wt, θt, θt+1, θ′t+1, and likewise for τt(·) and wt+1(·).

Proof. Suppose otherwise: that the financing/investment budget constraint was slack for some
types. By substituting debt for taxes one-to-one, it is possible to weakly increase the objective
function and leave all other constraints unchanged. Similarly, if the dividend/taxes budget
constraint is slack, it would be possible to raise taxes and weakly improve welfare.

Next, we rewrite the problem in terms of dividends, continuation wealth, and capital. Note
that the dividend limit and no-default constraint together imply weakly positive continuation
wealth. The reformulated problem corresponds to

max
dt(·),wt+1(·),kt(·)

R−1
ˆ 1

0
{(1− χt)dt (wt, θt, θt+1, θt+1) + U (wt+1 (wt, θt, θt+1, θt+1) , θt+1)} µ (θt+1| θt) dθt+1

+R−1χt

ˆ 1

0
{π(kt (wt, θt, θt+1) , θt) + Rwt − wt+1 (wt, θt, θt+1, θt+1)} µ (θt+1| θt) dθt+1,
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subject to the constraints (no default, upper limit on dividends, positive taxes

wD (kt
(
wt, θt, θ′t+1

)
, θt
)
≤ dt

(
wt, θt, θ′t+1, θ′′t+1

)
+ wt+1

(
wt, θt, θ′t+1, θ′′t+1

)
, ∀wt, θt, θ′t+1, θ′′t+1,

dt
(
wt, θt, θ′t+1, θ′′t+1

)
≤ wD (kt

(
wt, θt, θ′t+1

)
, θt
)

, ∀wt, θt, θ′t+1, θ′′t+1,

wt+1
(
wt, θt, θ′t+1, θ′′t+1

)
+ dt

(
wt, θt, θ′t+1, θ′′t+1

)
≤ π(kt

(
wt, θt, θ′t+1

)
, θt) + Rwt, ∀wt, θt, θ′t+1, θ′′t+1,

as well as (dividend/taxes IC, financing/investment IC, blocked dividend)

dt
(
wt, θt, θ′t+1, θ′′t+1

)
+ V

(
wt+1

(
wt, θt, θ′t+1, θ′′t+1

)
, θt+1

)
≤ dt

(
wt, θt, θ′t+1, θt+1

)
+ V

(
wt+1

(
wt, θt, θ′t+1, θt+1

)
, θt+1

)
, ∀wt, θt, θt+1, θ′t+1, θ′′t+1,

dt
(
wt, θt, θ′t+1, θt+1

)
+ V

(
wt+1

(
wt, θt, θ′t+1, θt+1

)
, θt+1

)
≤ dt (wt, θt, θt+1, θt+1) + V (wt+1 (wt, θt, θt+1, θt+1) , θt+1) , ∀wt, θt, θt+1, θ′t+1,

V
(

wD (kt
(
wt, θt, θ′t+1

)
, θt
)

, θt+1

)
≤ dt (wt, θt, θt+1, θt+1) + V (wt+1 (wt, θt, θt+1, θt+1) , θt+1) , ∀wt, θt, θt+1, θ′t+1

as well as non-negativity constraints and the lower bound on capital,

dt
(
wt, θt, θ′t+1, θ′′t+1

)
≥ 0, kt

(
wt, θt, θ′t+1

)
≥ w0.

Now suppose that in a optimal policy, there were two types, θ̃ and θ̂, such that
kt
(
wt, θt, θ̃

)
= kt

(
wt, θt, θ̂

)
but, for some θ, dt

(
wt, θt, θ̃, θ

)
6= dt

(
wt, θt, θ̂, θ

)
(and thus, by the

ICs, wt+1
(
wt, θt, θ̃, θ

)
6= wt+1

(
wt, θt, θ̂, θ

)
). Observe that it would be feasible to switch all of

the allocations of type θ̃ to those of θ̂, dt
(
wt, θt, θ̃, θ

)
→ dt

(
wt, θt, θ̂, θ

)
and wt+1

(
wt, θt, θ̃, θ

)
→

wt+1
(
wt, θt, θ̂, θ

)
, or vice versa. Doing so would relax (weakly) the financing/investment ICs

and would still satisfy the dividend/taxes ICs and the blocked-dividend no default constraint.
Because the capital level is the same, the no-default, upper limit on dividends, and taxes positive
constraints would still be satisfied.

Consequently, for the objective function, the values for the reports (θ̂, θ̂) and (θ̂, θ̃) must be
the same, and likewise for (θ̃, θ̃) and (θ̃, θ̂). Therefore, it is without loss of generality to switch
one to the other.

Lemma 3. It is without loss of generality, in the capital sub-problem (A.5), to restrict attention to
“monotone” allocations that have dividends weakly decreasing in type and continuation wealth weakly
increasing in type, treating “about to exit” firms as the lowest type.

Proof. See the Technical Appendix, C.1. The result is standard (e.g., Fudenberg and Tirole (1991)),
except that the cross-partial of our firm continuation value, Vwθ, is only weakly positive.

Lemma 4. Any allocation that is monotone (in the sense of Lemma 3) and satisfies the global IC conditions
satisfies the local IC condition for all θ ∈ (0, 1):

d
dθ

[dt (θ) + V(wt+1 (θ) , θ)] = Vθ(wt+1(θ), θ).

Proof. See the Technical Appendix, C.2. The result is standard (e.g., Fudenberg and Tirole (1991)),
except that the cross-partial of our firm continuation value, Vwθ, is only weakly positive, and the
function has a kink in wealth at w̄(θ).

Lemma 5. In the static model, if the multiplier χ0 is less than one, no taxes will be collected.
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Proof. Consider the capital sub-problem for the static model. The problem is, ignoring the
financing/investment ICs,

max
d0(θ1)≥0,y0(θ1)≥0

R−1
ˆ 1

0
{d0(w0, θ0, θ1) + χ0τ0(w0, θ0, θ1)}µ̂(θ1; k)dθ1

+ R−1
ˆ 1

0
{V1(w1(w0, θ0, θ1), θ1; τ) + χ0R−1τ max{w1 (w0, θ0, θ1)− w̄ (θ1) , 0}}µ̂(θ1; k)dθ1.

subject to the constraints

wD ≤ y0 (θ1) , ∀θ1 (No Default)

d0 (θ1) ≤ wD(k, θ0), ∀θ1 (Upper Limit on Dividends)

0 ≤ d0 (θ1) , ∀θ1 (Non-Negativity of Dividends)

y0 (θ1) ≤ π(k, θ0) + Rw0, ∀θ1 (Debt/Taxes Positive)

and the incentive constraints

d0(θ
′
1) + V1

(
y0
(
θ′1
)
− d0(θ

′
1), θ1; τ

)
≤ d0 (θ1) + V1 (y0 (θ1)− d0 (θ1) , θ1; τ) , ∀θ1, θ′1.

d0 (θ1) + V1 (y0 (θ1)− d0 (θ1) , θ1; τ) ≥ V1(wD, θ1; τ).

Observe that when χ0 < 1, if the firm is constrained (w1 < w̄(θ)), the objective is increasing
in y0(θ1) and decreasing in d0(θ1). If the firm is unconstrained, the derivative with respect to
y0(θ1) is

−χ0 + (1− τ + τχ0) = (1− τ)(1− χ0) > 0

and with respect to d0(θ1) is

1− (1− τ + τχ0) = τ(1− χ0) > 0.

Hence, it follows that the best possible allocation for a type (ignoring incentive compatibility) is

y0(θ1) = π(k, θ0) + Rw0

and
d0(θ1) = min(max(π(k, θ0) + Rw0 − w̄(θ1), 0), wD(k, θ0)).

Observe that these dividends are increasing in type, and that w1(θ1) = w̄(θ1) for all dividend-
payers with d0(θ1) < wD(k, θ0). Hence, over this interval, by the assumption that y0(θ1) is
constant and all types are at the kink, no type wants to deviate to a higher type or a lower type,
and therefore the dividend/taxes IC constraint is satisfied.

47



In this case, there is no revenue raised initially, and

τ(w1(θ1)− w̄(θ1)) = τ max(π(k, θ0) + Rw0 − w̄(θ1)− wD(k, θ0), 0)

= τ max(Rw0 − (R− ϕ (1− δ))k− w̄(θ1), 0)

By assumption, all types in the support of µ(θ1|θ0), and hence µ̂(θ1; k), satisfy

ϕ (1− δ))w0 ≤ w̄(θ1),

and by k ≥ w0 it follows that no revenue is raised. It always follows that first-best capital, or
maximum capital if first-best is infeasible, is optimal in the capital choice problem. Consequently,
the financing/investment ICs do not bind and this solution is optimal.

However, this solution raises no revenue, and hence we must have χ0 ≥ 1.

B.7 The Optimal Policy for Exiting Types

Lemma 6. The optimal policy for exiting types can be implemented by a constant dividend tax with
τt(w, 0) = τ

1−τ dt(w, 0).

Proof. Consider the mechanism design problem for exiting types. Observing immediately that
both budget constraints bind, we have

dt(wt, 0) + wt+1 (wt, 0) = Rwt − τt(wt, 0).

Thus, the government is free to choose any feasible allocation (by U(w, 0) = w). To implement a
tax rate

τt(wt, 0) =
τ

1− τ
dt(wt, 0),

we need for the no-default constraint

Rwt −
τ

1− τ
dt(wt, 0) ≥ (R− ϕ (1− δ))kt(wt, 0)

and for the blocked dividend constraint

Rwt ≥ (R− ϕ (1− δ))kt(wt, 0)

Choose kt(wt, 0) = wt relaxes these constraints as much as possible, and hence we must have

τ

1− τ
dt(wt, 0) ≤ ϕ (1− δ)wt

and the upper limit on dividends,

dt(wt, 0) ≤ (R− ϕ (1− δ))wt.
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The firm value is

V(w, 0) = R−1{dt(wt, 0) + (1− τ)(Rwt −
1

1− τ
dt(wt, 0)}

= (1− τ)wt.

Observe also that implementation via a dividend tax is immediate, by the firm’s indifference
with regards to paying dividends. Hence any dividend policy that satisfies the transversality
condition is optimal– say,

dt(wt, 0) = min{1− τ

τ
ϕ (1− δ) , R− ϕ (1− δ)}wt.

B.8 The Relaxed Capital Sub-Problem

In this subsection, we describe a relaxed version of the capital sub-problem (A.5), taking the
value d1 as given. In our proofs below, we will solve this problem, and then show that its solution
is a solution to the relaxed problem.

Motivated by our monotonicity results (see Lemma 3 above), we restrict attention to
monotone allocations in the capital sub-problem. We define θH ∈ [0, 1] as the value for which
dt(θ) > dt(1) for all θ < θH and dt(θ) = dt(1) for all θ > θH.

We also impose “relaxed monotonicity conditions,”

wt+1(0) ≤ wt+1(θ) ≤ y1 − d1,

and use only the local IC condition (Lemma 4). Furthermore, for all types 0 < θ ≤ θ∗, we ignore
all of the limits on dividends, the positive taxes constraint, the deviation to default constraint,
and the no-default constraint. We also ignore the financing/investment IC constraint.

The relaxed problem

JR (µ̂, wt, θt, k, y1) = max
θH∈[0,1],wt+1(θ)≥0,yt(θ)≥0

R−1
ˆ 1

θH+

{
χt(π (k, θt) + Rwt)− χty1

+U (y1 − d1, θ) + d1

}
µ̂(θ; k)dθ

+ R−1
ˆ θH

0

{
χt(π (k, θt) + Rwt) + (1− χt)yt (θ)

+U (wt+1(θ), θ)− wt+1 (θ)

}
µ̂(θ; k)dθ,

subject to the constraints

wt+1(0) ≤ wt+1(θ) ≤ y1 − d1, ∀θ ∈ [0, θH]

yt(θ) + V(wt+1(θ), θ)− wt+1(θ) +

ˆ θH

θ
Vθ(w(θ′), θ′)dθ′ = d1 + V(y1 − d1, θ), ∀θ ∈ [0, θH],
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and the constraints for the exiting (bottom) types,

wD (k, θt) ≤ yt (0) , (No Default)

dt (0) ≤ wD (k, θt) , (Upper Limit on Dividends)

0 ≤ dt (0) , (Non-Negative Dividends)

yt (0) ≤ π (k, θt) + Rwt. (Non-Negative Debt/Taxes)

Observe that this problem is a strictly relaxed version of the capital sub-problem, and hence
if a solution to this problem is feasible in the capital sub-problem, it is optimal.

B.9 Optimal Policy in the Relaxed Capital Sub-Problem

Proposition 2. Suppose that the arguments to the Capital Sub-Problem satisfy the following necessary
conditions for feasibility:

wD (k, θt) ≤ y1 ≤ π (k, θt) + Rwt,

that the financing/investment IC has been relaxed (V∗(θ) = ∞), and that χt = 1. Then in the Relaxed
Capital Sub-Problem an optimal mechanism is characterized by, for all θ,

dt(θ)− d1 = (1− τ)max{y1 − d1 − wt+1(θ), 0},

wt+1(θ) = min{y1 − d1, max{w̄(θ), wt+1(0)}},

wt+1(0) = max{y1 − d1 −
wD − d1

1− τ
,

wD − y1

τ
+ y1 − d1)},

dt(θ) + V(wt+1(θ), θ) = d1 + V(y1 − d1, θ),

d1 =

0 y1 ≤ w̄(1)

min{ 1−τ
τ (π (k, θt) + Rwt − y1), y1 − w̄(1), wD (k, θt)} y1 > w̄(1)

.

Moreover, this allocation is also a solution to the Capital Sub-Problem with the financing/investment IC
relaxed.

Proof. Observe first that it is without loss of generality to suppose that wt+1(θ) < y1 − d1 for all
θ < θH, otherwise θH can be decreased without altering the objective function. Note also that
for any types with the same allocation as the top type, the proposition holds.

We first consider the case in which θH > 0, so some non-exiting types have an allocation
different from the top type. In the χt = 1 case, the objective function is

JR (µ̂, wt, θt, k, y1, V∗) = max
θH∈[0,1],wt+1(θ)≥0,yt(θ)≥0

R−1
ˆ 1

θH+

{
π (k, θt) + Rwt

+U (y1 − d1, θ)− y1 + d1

}
µ̂(θ; k)dθ

+ R−1
ˆ θH

0
{π (k, θt) + Rwt + U (wt+1(θ), θ)− wt+1 (θ)} µ̂(θ; k)dθ.
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Because there are no constraints on yt(θ) for θ ∈ (0, θH), the local IC constraint can be thought
of as definition. The FOC for increasing wt+1(θ) for θ ∈ (0, θH) is

(Uw+ (wt+1(θ), θ)− 1)µ̂(θ) = νH(θ),

where νH is the multiplier on the relaxed monotonicity constraint and Uw+ denotes the
directional derivative in the increasing wealth direction. This multiplier does not bind, so it
immediately follows that wt+1(θ) ≥ w̄(θ), and it is without loss of generality to suppose that
wt+1(θ) > w̄(θ). Applying this argument to the type θH, it follows by the continuity of w̄(θ) that
wt+1(θH) ≥ w̄(θH) as well.

Consequently, the local IC requires that (using Vθw = 0 along the integral), for all θ ∈ [0, θH),

yt(θ) + V(wt+1(θ), θ)− wt+1(θ) +

ˆ θH

θ
Vθ(y1 − d1, θ′)dθ′ = d1 + V(y1 − d1, θ)

and hence
yt(θ) + V(wt+1(θ), θ)− wt+1(θ) = d1 + V(y1 − d1, θ),

which is
dt(θ)− d1 = (1− τ)(y1 − d1 − wt+1(θ)),

or
y1 − yt(θ) = τ(y1 − d1 − wt+1(θ)).

The local IC also directly implies that

yt(θH) + V(wt+1(θH), θH)− wt+1(θH) = d1 + V(y1 − d1, θH),

and hence these properties hold for θH as well. It follows that the positive dividend and positive
taxes constraints for these all of these types (from the Capital Sub-Problem) are satisfied, given
a feasible (y1, d1).

Observing that

dt(θ) + V(wt+1(θ), θ)−V(wD (k, θt) , θ) = d1 + V(y1 − d1, θ)−V(wD (k, θt) , θ),

if y1 − d1 ≥ wD, the deviation to default constraint is satisfied, and if y1 − d1 < wD, then

d1 + V(y1 − d1, θ)−V(wD (k, θt) , θ) = dt(1)−
ˆ wD(k,θt)

y1−d1

Vw+ (w, θ) dw

≥ dt(1)−
ˆ wD(k,θt)

y1−d1

Vw+(w, 1)dw,

and thus dt(θ1) + V(wt+1(θ1), θ1)− V(wD, θ1) ≥ d1 + V(y1 − d1, 1)− V(wD, 1) ≥ 0. Hence, the
deviation to default constraint (from the Capital Sub-Problem) is satisfied, assuming a feasible
allocation for the top type.
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Now consider the bottom type. We have, from earlier,

yt(0) + V(wt+1(0), 0)− wt+1(0) = d1 + V(y1 − d1, 0),

noting that this must also be true in the case where θH = 0.
This simplifies (by w̄(0) = 0) to

yt(1)− τwt+1(1) = yt(0)− τwt+1(0),

and hence for all θ ∈ (0, 1],

yt(θ)− τwt+1(θ) = yt(0)− τwt+1(0)

dt(θ) + (1− τ)wt+1(θ) = dt(0) + (1− τ)wt+1(0),

yt(θ) ≥ yt(0),

dt(θ) ≤ dt(0),

implying that the no-default constraint and the dividend upper bound do not bind (from the
Capital Sub-Problem, for types θ ∈ (0, θH]). By these results, we have

τt(θ) = π (k, θt) + Rwt − yt (θ)

= π (k, θt) + Rwt − y1 + τ max{y1 − d1 − wt+1(θ), 0},

U(wt+1 (θ) , θ) = U(y1 − d1, θ),

dt (θ) = d1 + (1− τ)max{y1 − d1 − wt+1(θ), 0},

and therefore

π (k, θt) + Rwt + U (wt+1(θ), θ)− wt+1 (θ) =

τt(θ) + dt(θ) + U (wt+1(θ), θ) =

π (k, θt) + Rwt − y1 + d1 + U(y1 − d1, θ). (A3)

Any allocation satisfying wt+1(θ) ≥ w̄(θ) for all types θ ≤ θ∗ is optimal (given allocations
for the top and bottom types), so it is without loss of generality to choose a monotone one. We
choose

wt+1(θ) = max{w̄(θ), wt+1(0)}.

Now consider the allocation of the bottom type. We must have y1− d1 ≥ wt+1(0) ≥ w̄(0) = 0,

wD (k, θt) ≥ dt(0) = d1 + (1− τ)(y1 − d1 − wt+1(0)),

y1 − τ(y1 − d1 − wt+1(0)) = yt(0) ≥ wD (k, θt) .

Observe that y1 − d1 = wt+1(0) is always feasible (given a feasible top type allocation), but the
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lowest possible value is determined by

wt+1(0) ≥ max{0, y1 − d1 −
wD (k, θt)− d1

1− τ
,

wD (k, θt)− y1

τ
+ y1 − d1}.

Note, however, that
wD (k, θt)− y1

τ
+ y1 − d1 < 0

implies
wD (k, θt)− d1 − (1− τ)(y1 − d1) < 0,

and hence

y1 − d1 −
wD (k, θt)− d1

1− τ
> 0.

Therefore, the lower bound is always

wt+1(0) ≥ max{y1 − d1 −
wD (k, θt)− d1

1− τ
,

wD (k, θt)− y1

τ
+ y1 − d1} ≥ 0.

For the value d1, if y1 ≤ w̄(1), then d1 = 0 is optimal, because the top types are constraint
and reducing d1 increases the objective. Note in this case the reducing dividends can in change
wt+1(0), but this has no effect on the government’s objective function. The deviation-to-default
constraint is satisfied in this case by y1 ≥ wD (k, θt). If y1 > w̄1, which can only happen in the
dynamic case, the government is indifferent between all feasible allocations. Setting

d1 = min{1− τ

τ
(π (k, θt) + Rwt − y1), y1 − w̄(1), wD (k, θt)}

ensures that
0 ≤ d1 ≤ wD (k, θt) ,

V(wD(k, θ1), 1) ≤ d1 + V(y1 − d1, 1).

As a result, if the capital sub-problem is feasible, there always exists a monotone, locally IC
(and hence globally IC) allocation satisfying all of the constraints in the capital sub-problem,
with a θ∗ such that w̄(θ) ≤ wt+1(1) for all θ ≤ θ∗, satisfying the stated properties.

B.10 Uniqueness of the Capital Level in the Capital Choice Problem

Proposition 3. There is an optimal allocation in the capital choice problem in which, for all θ, θ′,

kt(wt, θt, θ) = min{wt
R

R− ϕ (1− δ)
, k∗(θt)},

dt(wt, θt, θ, θ′) =
τ

1− τ
τt(wt, θt, θ, θ′).
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Proof. Note that

JR(µ̂, wt, θt, k, y1, V∗) = R−1{π (k, θt) + Rwt − y1 + d1 +

ˆ 1

0
U (y1 − d1, θ) µ̂(θ; k)dθ}

where
d1 = max{min{1− τ

τ
(π (k, θt) + Rwt − y1), y1 − w̄(1), wD (k, θt)}, 0}.

In the relaxed version of the capital choice problem, in which we relax ICs, it is immediately
apparent that the objective function is increasing in y1 and increasing in k, at least weakly, and is
strictly increasing in k if k < k∗(θt).

Hence, if R
R−ϕ(1−δ)

wt < k∗(θt) (meaning that achieving first-best is not possible), we will set

kt(wt, θt, θt+1) =
R

R−ϕ(1−δ)
wt and

yt(wt, θt, θt+1, 1) = π(
R

R− ϕ (1− δ)
wt, θt) + Rwt.

In this case, dt(wt, θt, θt+1, 1) = 0.
Otherwise, set k = k∗(θt). In this case, if π(k∗(θt), θt) + Rwt ≤ w̄(1), we will set

yt(wt, θt, θt+1, 1) = π(k∗(θt), θt) + Rwt and dt(wt, θt, θt+1, 1) = 0.
If π(k∗(θt), θt) + Rwt > max{w̄(1), wD(k∗(θt), θt)}, then any value of π(k∗(θt), θt) + Rwt ≥

yt(wt, θt, θt+1, 1) ≥ max{w̄(1), wD(k∗(θt), θt)} is optimal. There exists a value of y1 with positive
dividends such that

1− τ

τ
(π (k, θt) + Rwt − y1) ≤ min{y1 − w̄(1), wD (k, θt)}

and using this value, dividends dt(wt, θt, θt+1, 1) will proportional to taxes,

dt(wt, θt, θt+1, 1) =
1− τ

τ
τt(wt, θt, θt+1, 1) =

1− τ

τ
(π (k, θt) + Rwt − y1).

It follows also that

τt(wt, θt, θt+1, θ) = π(kt(wt, θt, θt+1), θt) + Rwt − yt(wt, θt, θt+1, θ)

= π(kt(wt, θt, θt+1), θt) + R− dt(wt, θt, θt+1, θ)

− wt+1(wt, θt, θt+1, 1)+

+
1

1− τ
(dt(wt, θt, θt+1, θ)− dt(wt, θt, θt+1, 1))

which simplifies to

τt(wt, θt, θt+1, θ) =
τ

1− τ
dt(wt, θt, θt+1, θ).

Because the optimal allocation in the relaxed problem is the same for all types, it is incentive
compatible. Therefore, this allocation is optimal in the capital choice problem, and hence in the
original mechanism design problem.
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Proposition 4. The allocation described in Proposition 3 can be implemented using only a dividend tax
at a rate

τt(wt, θt, θt+1, θt+1) =
τ

1− τ
dt(wt, θt, θt+1, θt+1).

Proof. Consider the problem defining V̄(w, θ; τ) (A.1), and conjecture that V̄(w, θ; τ) = V (w, θ)

in the optimal mechanism.
Observe that if d = 0, we will have

V(w′, θ′) ≥ V(π(k) + k(R− ϕ (1− δ)), θ′)

by the borrowing constraint, and hence this constraint cannot bind. The budget constraint binds,
and hence we have

w′ = π (k, θ) + Rw− (1 +
τ

1− τ
)d.

τ

1− τ
d ≤ Rw0 − (R− ϕ (1− δ) k)

The simplified optimization problem is

V̄(w, θ, θ′; τ) = max
k,d≥0

R−1{d + V(w, θ′)}

subject to

w′ = π (k, θ) + Rw− (1 +
τ

1− τ
)d,

τ

1− τ
d ≤ Rw0 − (R− ϕ (1− δ) k),

d ≤ π (k, θ) + k(R− ϕ (1− δ)).

If the firm is constrained but has a positive dividend, the FOC for reducing d is

−1 + V(w′, θ′)(1 +
τ

1− τ
) ≤ 0,

a contradiction. Therefore, constrained firms will pay no dividends. Such firms will also choose
at least first-best capital if possible, and maximum capital otherwise, and have

w′ = π̄ + Rw.

Such types must have w̄ (θ′) > π̄ + Rw. For unconstrained firms, the FOC for reducing
dividends is satisfied exactly. It follows that the upper bound constraints don’t bind, and
therefore that these types will also employ first best capital if possible, and maximal capital
if not, and are free to choose the same dividends required by the optimal mechanism. As a
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consequence, it follows immediately that

V̄(w, θ; τ) = V (w, θ)

is verified. This argument applies essentially unmodified to the static problem, with slightly
different notation for the value functions.

C Technical Appendix

C.1 Proof of Lemma 3

J(µ̂, wt, θt, k, y1, V∗) = max
dt(θ),yt(θ)

R−1

´ 1
0 µ̂(θ; k)dθ

ˆ 1

0

{
χt(π (k, θt) + Rwt)− χtyt (θ)

+U (yt (θ)− dt (θ) , θ) + dt (θ)

}
µ̂(θ; k)dθ,

subject to the constraints

wD (k, θt) ≤ yt (θ) , ∀θ (No Default)

dt (θ) ≤ wD (k, θt) , ∀θ (Upper Limit on Dividends)

0 ≤ dt (θ) , ∀θ (Non-Negative Dividends)

yt (θ) ≤ π (k, θt) + Rwt, ∀θ, (Non-Negative Taxes)

and the incentive constraints

dt
(
θ′
)
+ V

(
yt
(
θ′
)
− dt

(
θ′
)

, θ
)
≤ dt (θ) + V (yt (θ)− dt (θ) , θ) , ∀θ, θ′ (Dividend/Taxes IC)

V
(

wD, θ
)
≤ dt (θ) + V (yt (θ)− dt (θ) , θ) , ∀θ, (Blocked Dividend No Default)

dt (θ) + V (yt (θ)− dt (θ) , θ) ≤ V∗(θ), ∀θs.t.µ̂(θ; k) = 0, (Financing/Investment IC)

and the constraints on the top type allocation, yt(1) = y1.
The dividend/taxes IC constraint for types θ > θ′ are

dt (θ)− dt
(
θ′
)
≥ V

(
wt+1

(
θ′
)

, θ
)
−V (wt+1, θ)

dt (θ)− dt
(
θ′
)
≤ V

(
wt+1

(
θ′
)

, θ′
)
−V

(
wt+1 (θ) , θ′

)
and therefore

V
(
wt+1

(
θ′
)

, θ′
)
−V

(
wt+1 (θ) , θ′

)
≥ V

(
wt+1

(
θ′
)

, θ
)
−V (wt+1 (θ) , θ) .

Suppose that wt+1 (θ
′) > wt+1 (θ). Then we would have

ˆ wt+1(θ
′)

wt+1(θ)
Vw
(
w, θ′

)
dw ≥

ˆ wt+1(θ
′)

wt+1(θ)
Vw (w, θ) dw,
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which can be expressed as

0 ≥
ˆ wt+1(θ

′)

wt+1(θ)

ˆ θ

θ′
Vwθ

(
w, θ′′

)
dθ′′dw.

This would require, by Vwθ (w, θ′′) > 0 if w < w̄ (θ), that

w ≥ w̄
(
θ′′
)

for all the domain of integration, a constraint that is tightest at wt+1 (θ) ≥ w̄ (θ). In this case,
Vw (w, θ′) = Vw (w, θ) = 1− τ, and we would have

dt (θ)− dt
(
θ′
)
= (1− τ)

(
wt+1

(
θ′
)
− wt+1 (θ)

)
,

and indifference for the firms between these two types.
Note that in this case we must have dt (θ) > dt (θ′) and

dt (θ) + wt+1 (θ) < wt+1
(
θ′
)
+ dt

(
θ′
)

,

which is
yt
(
θ′
)
> yt (θ) .

Imagine first that µ̂(θ; k) = 0. In this case, setting the allocation of type θ to the allocation of
type θ′ has no effect on the objective or budget/positive taxes constraints, and removes a global
IC, and hence is without loss of generality. Likewise, if µ̂(θ′; k) = 0, setting the allocation of type
θ′ to the allocation of type θ is w.l.o.g.

Now suppose that neither of these conditions hold, and define weighted averages,

wR
A =

µ̂(θ; k)wt+1 (θ) + µ̂(θ′; k)wt+1 (θ
′)

µ̂(θ; k) + µ̂(θ′; k)
,

and

dA =
µ̂(θ; k)dt (θ) + µ̂(θ′; k)dt (θ′)

µ̂(θ; k) + µ̂(θ′; k)
,

and define yA = wR
A + dA.

Consider an alternative allocation which sets yt (θ) = yt (θ′) = yA and dt (θ) = dt (θ′) = dA,
leaving all other types unchanged. Note that, because all of these types are unconstrained at all
of the relevant wealth levels, for all θ′′ ∈ [θ′, θ],

−χtyt
(
θ′′
)
+U

(
yt
(
θ′′
)
− dt

(
θ′′
)

, θ′′
)
+ dt

(
θ′′
)
= U

(
w̄ (θ) , θ′′

)
−χtyt

(
θ′′
)
+ dt

(
θ′′
)
+
(
yt
(
θ′′t
)
− dt

(
θ′′
)
− w̄

(
θ′′
))

.

Hence the objective function is linear in yt and dt and it follows that this alternative allocation
achieves the same utility. Likewise, by construction, the alternative allocation leaves the
budget/positive taxes constraint unchanged.
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Note also that
wt+1

(
θ′
)
> wA

and

dt
(
θ′
)
− dA = − (1− τ)

(
wt+1

(
θ′
)
− wA

)
.

For any type θ′′, we must have

dt
(
θ′
)
+ V

(
wt+1

(
θ′
)

, θ′′
)
− dA −V1

(
wA, θ′′1

)
=

V
(
wt+1

(
θ′
)

, θ′′
)
−V

(
wA, θ′′

)
− (1− τ)

(
wt+1

(
θ′
)
− wA

)
≥ 0.

Therefore, if the global IC was satisfied in the original allocation,

dt
(
θ′′
)
+ V

(
wt+1

(
θ′′
)

, θ′′
)
≥ dt

(
θ′
)
+ V

(
wt+1

(
θ′
)

, θ′′
)

,

it will be satisfied in the new allocation,

dt
(
θ′′
)
+ V

(
wt+1

(
θ′′
)

, θ′′
)
≥ dA + V

(
wA, θ′′

)
.

Lastly, the deviation to default constraint can be written as

dt (θ) + (1− τ) (wt+1 (θ)− w̄ (θ)) + V (w̄ (θ) , θ) ≥ V
(

wD (k, θt) , θ
)

and therefore

dA + (1− τ) (wA − w̄ (θ)) + V (w̄ (θ) , θ) ≥ V
(

wD (k, θt) , θ
)

,

and the constraint is still satisfied. The same argument applies for type θ′1, and for the
financing/investment IC constraint. It follows that the new allocation is at least as good, and has
weakly monotone increasing levels of continuation wealth after repayment. By the IC constraint,
this implies that dividends must be weakly decreasing in type.

C.2 Proof of Lemma 4

Consider first the possibility of jumps in the level of continuation wealth/dividends. Note
that both of these are bounded and monotone, and hence converge to some limit and are
differentiable almost everywhere. Suppose for some θ1 > θ′1,

lim
θ′1→θ−1

wR
0
(
θ′1
)
= wR

0
(
θ−1
)
< wR

0 (θ1) .
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By the global IC, we must have

d0
(
θ′1
)
− d0 (θ1) ≤ V1

(
wR

0 (θ1) , θ1

)
−V1

(
wR

0
(
θ′1
)

, θ1

)
d0
(
θ′1
)
− d0 (θ1) ≥ V1

(
wR

0 (θ1) , θ′1

)
−V1

(
wR

0
(
θ′1
)

, θ′1

)
and hence

lim
θ′1→θ−1

d0
(
θ′1
)
− d0 (θ1) = V1

(
wR

0 (θ1) , θ1

)
−V1

(
wR

0
(
θ−1
)

, θ1

)
> 0.

Hence, jumps in wR
0 (θ1) imply jumps in d0 (θ1), and the argument can be used in reverse to show

that jumps in dividends imply jumps in continuation wealth, as well.
We can rewrite the IC, using the Lipschitz continuity of V with respect to θ as

dt
(
θ′1
)
+ V

(
wt+1

(
θ′1
)

, θ1
)
= dt

(
θ′1
)
+ V

(
wt+1

(
θ′1
)

, θ′1
)
+

ˆ θ1

θ′1

V1,θ
(
wt+1

(
θ′1
)

, θ
)

dθ

≤ dt (θ1) + V (wt+1 (θ1) , θ1)

and

dt (θ1) + V
(
wt+1 (θ1) , θ′1

)
= dt (θ1) + V (wt+1 (θ1) , θ1)

−
ˆ θ1

θ′1

Vθ (wt+1 (θ1) , θ) dθ

≤ dt
(
θ′1
)
+ V

(
wt+1

(
θ′1
)

, θ′1
)

.

Hence we must have

lim
θ′1→θ1

´ θ′1
θ1

Vθ (wt+1 (θ
′
1) , θ) dθ

θ′1 − θ1
≥ lim

θ′1→θ+1

dt (θ′1) + V (wt+1 (θ
′
1) , θ′1)− dt (θ1)−V (wt+1 (θ1) , θ1)

θ′1 − θ1

≥ lim
θ′1→θ1

´ θ′1
θ1

Vθ (wt+1 (θ1) , θ) dθ

θ′1 − θ1

and

lim
θ′1→θ−1

´ θ1
θ′1

V1,θ (wt+1 (θ1) , θ) dθ

θ1 − θ′1
≥ lim

θ′1→θ−1

dt (θ1) + V (wt+1 (θ1) , θ1)− dt (θ′1)−V (wt+1 (θ
′
1) , θ′1)

θ1 − θ′1

≥ lim
θ′1→θ−1

´ θ1
θ′1

Vθ (wt+1 (θ
′
1) , θ) dθ

θ1 − θ′1
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Anywhere wt+1 (θ1) is left continuous,

lim
θ′1→θ−1

´ θ1
θ′1

V1,θ (wt+1 (θ1) , θ) dθ

θ1 − θ′1
= Vθ (wt+1 (θ1) , θ1) ,

and anywhere it is right-continuous,

lim
θ′1→θ1

´ θ′1
θ1

V1,θ (wt+1 (θ1) , θ) dθ

θ′1 − θ1
= Vθ (wt+1 (θ1) , θ1) ,

and therefore
dt (θ1) + V (wt+1 (θ1) , θ1)

is continuous, and differentiable anywhere wt+1 (θ1) is continuous, which is almost everywhere.
Moreover, observe by the properties of V that

Vθ (w̄ (θ) , θ) ≥ Vθ

(
wt+1

(
θ′1
)

, θ
)
≥ Vθ (0, θ) ,

and hence we must have

lim
θ′1→θ1

´ θ′1
θ1

Vθ (wt+1 (θ
′
1) , θ) dθ

θ′1 − θ1
≤ Vθ (w̄ (θ1) , θ1)

and

lim
θ′1→θ−1

´ θ1
θ′1

V1,θ (wt+1 (θ
′
1) , θ) dθ

θ1 − θ′1
≥ V1,θ (0, θ1) .

Therefore, the function
dt (θ1) + V (wt+1 (θ1) , θ1)

is Lipschitz-continuous, implying absolute continuity, and hence

dt (θ1) + V (wt+1 (θ1) , θ1) = dt
(
θ′1
)
+ V

(
wt+1

(
θ′1
)

, θ′1
)

+

ˆ θ1

θ′1

Vθ (wt+1 (θ) , θ) dθ.
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