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Interest rates have fallen to extreme lows across advanced economies, and they are
projected to stay low. At the same time, market concentration, business pro�ts, and
markups have been rising steadily. The rise in concentration has been associated with
a substantial decline in productivity growth; furthermore, the productivity gap between
leaders and followers within the same industry has risen. This study investigates the
e�ect of a decline in interest rates on investments in productivity enhancement when
�rms engage in dynamic strategic competition. The results suggest that these broad secu-
lar trends—declining interest rates, rising market concentration, and falling productivity
growth—are closely linked.

In traditional models, lower interest rates boost the present value of future cash �ows
associated with higher productivity, and therefore lower interest rates encourage �rms to
invest in productivity enhancement. This study highlights a second strategic force that
reduces aggregate investment in productivity growth at very low interest rates. When
�rms engage in strategic behavior, market leaders have a stronger investment response
to lower interest rates relative to followers, and this stronger investment response leads
to more market concentration and eventually lower productivity growth.

The model is rooted in the dynamic competition literature (e.g. Aghion et al. (2001)).
Two �rms compete in an industry both intra-temporally, through price competition, and
inter-temporally, by investing in productivity-enhancing technology. Investment increases
the probability that a �rm improves its productivity position relative to its competitor. The
decision to invest is a function of the current productivity gap between the leader and the
follower, which is the state variable in the industry. A larger productivity gap gives the
leader a larger share of industry pro�ts, thereby making the industry more concentrated.
The model includes a continuum of industries, all of which feature the dynamic game be-
tween a leader and follower. Investment decisions within each industry induce a steady
state stationary distribution of productivity gaps across markets and hence overall indus-
try concentration and productivity growth.

The theoretical analysis is focused on the following question: What happens to ag-
gregate investment in productivity enhancement when the interest rate used to discount
pro�ts falls? The model’s solution includes the “traditional e�ect” through which a de-
cline in the interest rate leads to more investment by market leaders and market followers.
However, the solution to the model also reveals a “strategic e�ect” through which market
leaders invest more aggressively relative to market followers when interest rates fall. The
central theoretical result of the analysis shows that the strategic e�ect dominates the tra-
ditional e�ect at a su�ciently low interest rate; as the interest rate approaches zero, it is
guaranteed that economy-wide measures of market concentration will rise and aggregate
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productivity growth will fall.
The intuition behind the strategic e�ect can be seen through careful consideration of

the investment responses of market leaders and market followers when the interest rate
falls. When the interest rate is low, the present value of a persistent market leader be-
comes extremely high. The attraction of becoming a persistent leader generates �erce
and costly competition especially if the two �rms are close to one another in the produc-
tivity space. When making optimal investment decisions, both market leaders and market
followers realize that their opponent will �ght hard when their distance closes. However,
they respond asymmetrically to this realization when deciding how much to invest. Mar-
ket leaders invest more aggressively in an attempt to ensure they avoid neck-and-neck
competition. Market followers, understanding that the market leader will �ght harder
when they get closer, become discouraged and therefore invest less aggressively. The re-
alization that competition will become more vicious and costly if the leader and follower
become closer in the productivity space discourages the follower while encouraging the
leader. The main proposition shows that this strategic e�ect dominates as the interest rate
approaches zero.

The dominance of the strategic e�ect at low interest rates is a robust theoretical re-
sult. This result is shown �rst in a simple example that captures the basic insight, and
then in a richer model that includes a large state space and hence richer strategic consid-
erations by �rms. The existence of this strategic e�ect and its dominance as interest rates
approach zero rests on one key realistic assumption, that technological catch-up by mar-
ket followers is gradual. That is, market followers cannot “leapfrog” the market leader
in the productivity space and instead have to catch up one step at a time. This feature
provides an incentive for market leaders to invest not only to reach for higher pro�ts but
also to endogenously accumulate a strategic advantage and consolidate their leads. This
incentive is consistent with the observations that real-world market leaders may conduct
defensive R&D, erect entry barriers, or engage in predatory acquisition as in Cunning-
ham et al. (2019). This assumption is also supported by the fact that gradual technological
advancement is the norm in most industries, especially in recent years (e.g., Bloom et al.
(2020)).

The exploration of the supply side of the economy is embedded into a general equi-
librium framework to explore whether the mechanism is able to quantitatively account
for the decline in productivity growth. The general equilibrium analysis follows the lit-
erature in assuming that the long-run decline in interest rates is generated by factors on
the demand side of the economy, which is modeled as a reduction in the discount rate
of households. We conduct a simple calibration of the model and show that the model
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generates a quantitatively meaningful rise in the pro�t share and decline in productivity
growth following the decline in the interest rate from 1984 to 2016 in the United States.

The insights from the model have implications for anti-trust policy. Policies that tax
leader pro�ts or subsidize follower investments are less e�ective than one that dynami-
cally facilitates technological advancements of followers. Furthermore, more aggressive
anti-trust policy is needed during times of low interest rates. The baseline model abstracts
from �nancial frictions by assuming that market leaders and market followers face the
same interest rate. We believe that the introduction of �nancial frictions that generate a
gap between the interest rates faced by market leaders and market followers would lead
to even stronger leader dominance when interest rates fall.1 For example, using data on
interest rates and imputed debt capacity, we show that the decline in long-term rates has
disproportionately favored industry leaders relative to industry followers.

The model developed here is rooted in dynamic patent race models (e.g. Budd et al.
(1993)). These models are notoriously di�cult to analyze; earlier work relies on numerical
methods (e.g. Budd et al. (1993), Acemoglu and Akcigit (2012)) or imposes signi�cant
restrictions on the state space to keep the analysis tractable (e.g. Aghion et al. (2001) and
Aghion et al. (2005)). We bring a new methodology to this literature by analytically solving
for the recursive value functions when the discount rate is small. This new technique
enables us to provide sharp, analytical characterizations of the asymptotic equilibrium as
discounting tends to zero, even as the ergodic state space becomes in�nitely large. The
technique should be applicable to other stochastic games of strategic interactions with a
large state space and low discounting.

This study also contributes to the large literature on endogenous growth.2 The key
di�erence between the model here and other studies in the literature, e.g. Aghion et al.
(2001) and Peters (forthcoming), is the assumption that followers have to catch up to the
leader gradually and step-by-step instead of being able to close all gaps at once. This
assumption provides an incentive for market leaders to accumulate a strategic advantage,
which is a key strategic decision that is relevant in the real world. We show this key
“no-leapfrog” feature overturns the traditional intuition that low interest rates always
promote investment, R&D, and growth; instead, when interest rates are su�ciently low,
this strategic e�ect always dominates the traditional e�ect, and aggregate investment and
productivity growth will fall.

1For related work on �nancial constraints and productivity growth, see Caballero et al. (2008), Gopinath
et al. (2017) and Aghion et al. (2019a).

2Recent contributions to this literature include Acemoglu and Akcigit (2012), Akcigit et al. (2015), Akcigit
and Kerr (2018), Cabral (2018), Garcia-Macia et al. (2018), Acemoglu et al. (forthcoming), Aghion et al.
(forthcoming), and Atkeson and Burstein (forthcoming), among others.
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In contemporaneous work, Akcigit and Ates (2019) and Aghion et al. (2019b) respec-
tively argue that a decline in technology di�usion from leaders to followers and the ad-
vancement in information and communication technology—which enables more e�cient
�rms to expand—could have contributed to the rise in �rm inequality and low growth.
While we do not explicitly study these factors in the model here, the economic forces high-
lighted by our theory suggest that low interest rates could magnify market leaders’ incen-
tives to take advantage of these changes in the economic environment. More broadly, the
theoretical result of this study suggests that the literature exploring the various reasons
behind rising market concentration and declining productivity growth should consider
the role of low interest rates in contributing to these patterns.

This paper is also related to the broader discussion surrounding “secular stagnation”
in the aftermath of the Great Recession. Some explanations, e.g., Summers (2014), focus
primarily on the demand side and highlight frictions such as the zero lower bound and
nominal rigidities.3 Others such as Barro (2016) have focused more on the supply-side,
arguing that the fall in productivity growth is an important factor in explaining the slow
recovery. This study suggests that these two views might be complementary. For example,
the decline in long-term interest rates might initially be driven by a weakness on the
demand side. But a decline in interest rates can then have a contractionary e�ect on
the supply-side by increasing market concentration and reducing productivity growth.
An additional advantage of this framework is that one does not need to rely on �nancial
frictions, liquidity traps, nominal rigidities, or a zero lower bound to explain the persistent
growth slowdown such as the one we have witnessed since the Great Recession.

1 Motivating Evidence

Existing research points to four secular trends in advanced economies that motivate the
model. First, there has been a secular decline in interest rates across almost all advanced
economies. Rachel and Smith (2015) show a decline in real interest rates across advanced
economies of 450 basis points from 1985 to 2015. The nominal 10-year Treasury rate
has declined further from 2.7% in January 2019 to 0.6% in July 2020. This motivates the
consideration of extremely low interest rates on �rm incentives to invest in productivity
enhancement.

Second, measures of market concentration and market power have risen substantially
over this same time frame. Rising market power can be seen in rising markups (e.g., Hall

3See e.g., Krugman (1998), Eggertsson and Krugman (2012), Guerrieri and Lorenzoni (2017), Benigno
and Fornaro (forthcoming), and Eggertsson et al. (2019).
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(2018), De Loecker et al. (2020), Autor et al. (2020)), higher pro�ts (e.g., Barkai (forthcom-
ing), De Loecker et al. (2020)), and higher concentration in product markets (e.g., Grullon
et al. (2019), Autor et al. (2020)). Diez et al. (2019) from the International Monetary Fund
put together a �rm-level cross-country dataset from 2000 onward to show a series of
robust facts across advanced economies. Measures of markups, pro�tability, and concen-
tration have all risen. They also show that the rise in markups has been concentrated in
the top 10% of �rms in the overall markup distribution, which are �rms that have over
80% of market share in terms of revenue.

Third, productivity growth has stalled across advanced economies (e.g., Cette et al.
(2016), Byrne et al. (2016)). It is important to note that this slowdown in productivity began
before the Great Recession, as shown convincingly in Cette et al. (2016). The slowdown in
productivity growth has been widespread, and was not initiated by the Great Recession.

Fourth, the decline in productivity growth has been associated with a widening pro-
ductivity gap between leaders and followers and reduced dynamism in who becomes a
leader. Andrews et al. (2016b) show that the slowdown in global productivity growth is
associated with an expanding productivity gap between “frontier” and “laggard” �rms.
In addition, the study shows that industries in which the productivity gap between the
leader and the follower is rising the most are the same industries where sector-aggregate
productivity is falling the most.

Berlingieri et al. (2017) use �rm level productivity data from OECD countries to esti-
mate productivity separately for “leaders,” de�ned as �rms in the 90th percentile of the la-
bor productivity distribution for a given 2-digit industry, and “followers,” de�ned as �rms
in the 10th percentile of the distribution. The study shows that the gap between leaders
and followers increased steadily from 2000 to 2014. Both the Andrews et al. (2016b) and
Berlingieri et al. (2017) studies point to the importance of the interaction between market
leaders and market followers in understanding why productivity growth has fallen over
time. Andrews et al. (2016a) show that the tendency for leaders, which they call frontier
�rms, to remain market leaders has increased substantially from the 2001 to 2003 period
to the 2011 to 2013 period. They conclude that it has become harder for market followers
to successfully replace market leaders over time.

As shown below, these facts are consistent with the model’s prediction of what hap-
pens when interest rates fall to low levels. Furthermore, even the timing of these pat-
terns is consistent with the results of the model. As shown below, the model predicts
that market power increases as the interest rate declines, but productivity growth has an
inverted-U relationship and only declines when the interest rate becomes su�ciently low.
In the real-world, the decline in real interest rates began in the 1980s, and measures of
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market concentration began rising in the late 1990s. The trends in productivity growth,
in contrast, began later. Most studies place the beginning of the period of a decline in pro-
ductivity growth between 2000 and 2005, and the rising productivity gap between market
leaders and followers also emerged at this time.

2 A Stylized Example

Declining interest rates in advanced economies have been associated with a rise in market
power, a widening of productivity and markups between market leaders and followers,
and a decline in productivity growth. This section begins the theoretical analysis of the
e�ect of a decline in interest rates on market concentration and productivity growth. More
speci�cally, we begin by presenting a stylized example to illustrate the key force in the
model: low interest rates boost the incentive to invest for industry leaders more than for
industry followers. Section 3 below presents the full model.

Consider two �rms competing in an industry. Time is continuous and as in the dy-
namic patent race literature, there is a technolgoical ladder such that �rms that are further
ahead on the ladder are more productive and earn higher pro�ts. The distance between
two �rms on the technological ladder represents the state variable for an industry. To
keep the analysis as simple as possible, we assume that an industry has only three states:
�rms can compete neck-and-neck (state=0) with �ow pro�t π0 = 1/2 each, they can be
one step apart earning �ow pro�ts π1 = 1 for the leader and π−1 = 0 for the follower, or
they can be two steps apart. If �rms are two steps apart, that state becomes permanent,
with leader and follower earning π2 = 1 and π−2 = 0 perpetually.

Firms compete by investing at the rate η in technology in order to out-run the other
�rm on the technological ladder. The �rm pays a �ow investment cost c (η) = −η2/2

and advances one step ahead on the technological ladder with Poisson rate η. Starting
with a technological gap of one step, if the current follower succeeds before the leader,
their technological gap closes to zero. The two �rms then compete neck-and-neck, both
earning �ow pro�t 1/2 and continue to invest in order to move ahead on the technological
ladder. Ultimately each �rm is trying to get two steps ahead of the other �rm in order to
enjoy permanent pro�t of π2 = 1.

Given the model structure, we can solve for equilibrium investment levels. At an in-
terest rate r, the value of a permanent leader is v2 ≡ 1/r and the value of a permanent
follower is v−2 ≡ 0. Firms that are zero or one-step apart choose investment levels to max-
imize their �rm values, taking the other �rm’s investment level as given. The equilibrium
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�rm value functions satisfy the following HJB equations:

rv1 = max
η
π1 − η2/2 + η (v2 − v1) + η−1 (v0 − v1) (1)

rv0 = max
η
π0 − η2/2 + η (v1 − v0) + η0 (v−1 − v0) (2)

rv−1 = max
η
π−1 − η2/2 + η (v0 − v−1) + η1 (v−2 − v−1) (3)

where {η−1, η0, η1} denote the investment choices in equilibrium.
The intuition behind the HJB equations can be understood using equation (1) that

relates the �ow value rv1 for a one-step-ahead leader to its three components: �ow pro�ts
minus investment costs (π1 − η2/2), a gain in �rm value of (v2 − v1) with Poisson rate η
if the �rm successfully innovates, and a loss in �rm value of (v0 − v−1) with Poisson rate
η−1 if the �rm’s competitor successfully innovates.

Both �rms compete dynamically for future pro�ts and try to escape competition in
order to enjoy high pro�ts π2 inde�nitely. Suppose the industry is in state 1. Then the
investment intensity for the leader and the follower are given by the �rst order conditions
from HJB equations, η1 = v2−v1 and η−1 = v0−v−1, respectively. Intuitively, the magni-
tude of investment e�ort depends on the slope of the value function for the leader and the
follower. The follower gains value from reaching state=0 so it has a chance to become the
leader in the future; the leader gains value from reaching to state=2 not because of higher
�ow pro�ts (note π1 = π2 = 1) but, importantly, by turning its temporary leadership into
a permanent one.

The key question is, what happens to equilibrium investment e�orts in state 1 if there
is a fall in interest rate r? The answer, summarized in proposition 1, is that the leader’s
investment η1 rises by more than the follower’s investment η−1 as r falls. In fact, as r → 0,
the di�erence between leader’s and follower’s investment diverges to in�nity.

Proposition 1. A fall in the interest rate r raises the market leader’s investment more than
it raises the follower’s, and their investment gap goes to in�nity as r goes to zero. Formally,
dη1/dr < dη−1/dr with limr→0 (η1 − η−1) =∞.

All proofs are in the appendix. The intuition for (η1 − η−1)→∞ is as follows. Since
η1 = v2 − v1, a fall in r increases investment for the leader as the present value of its
monopoly pro�ts (v2 ≡ 1/r) is higher were it to successfully innovate. However, for the
follower η−1 = v0 − v−1, and the gain from a fall in r is not as high due to the endoge-
nous response of its competitor in state=0 were the follower to successfully innovate. In
particular, a fall in r also makes �rms compete more �ercely in the neck-and-neck state
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zero. A fall in r thus increases the expectation of a tougher �ght were the follower to suc-
cessfully catch up to s = 0. While the expectation of a more �erce competition in future
state-zero disincentivizes the follower from catching up, the possibility of “escaping” the
�erce competition through investment raises the incentive for the leader. This strategic
asymmetry continues to amplify as r → 0, giving us the result.

The core intuition in this example does not depend on simplifying assumptions such
as exogenous �ow pro�ts, quadratic investment cost, state independent investment cost,
or limiting ourselves to three states. For example, the full model that follows allows for an
in�nite number of possible states, microfounded �ow pro�ts with Bertrand competition,
investment cost advantage for the follower, and other extensions. Also note that we do
not impose any �nancing disadvantage for the follower vis-a-vis the leader as they both
face the same cost of capital r. Any additional cost of �nancing for the follower, as is
typically the case in practice, is likely to further strengthen our core result.

The key assumption for the core result is that follower cannot “leapfrog” the leader.
As we explained, the key intuition relies on the expectation that the follower will have to
“duke it out” in an intermediate state (state zero in our example) before it can get ahead
of the leader. This expectation creates the key strategic asymmetry between the response
by the leader and the follower to a lower interest rate. The follower is discouraged by
the �erce competition in the future if it were to successfully close the technological gap
between itself and the leader. The same is not true for the leader. In fact for the leader in
state s = 1, the expectation of more severe competition in state s = 0 makes the leader
want to escape competition with even greater intent. All of this gives the leader a larger
reward for investment relative to the follower as r falls. We discuss the plausibility and
applicability of the no-leapfrogging assumption in more detail below, and we show that
the idea of incremental innovation applies to a wide range of settings in the real world.

The next section moves to a more general setting with a potentially in�nite number
of states. This breaks the rather arti�cial restriction of the simple example that leader-
ship becomes perpetual in state 2. In the general set up, the leader can continue to create
distance between itself and the follower by investing, but it cannot guarantee permanent
leadership. Adding this more realistic dimension to the framework brings out additional
important insights: not only does a fall in r increase the investment gap between the
leader and the follower, but for r low enough, the average follower stops investing all to-
gether thereby killing competition in the industry. Therefore, while the example imposed
permanent leadership exogenously, the full model shows that leadership endogenously
becomes permanent. And as in the example, the expectation of permanent leadership
makes the temporary leader invest more aggressively in a low interest rate environment.
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As a result, a fall in the interest rate to a very low level raises market concentration and
pro�ts, and ultimately reduces productivity growth.

3 Model

The model has a continuum of markets with each market having two �rms that compete
with each other for market leadership. Firms compete along a technological ladder where
each step of the ladder represents productivity enhancement. The number of steps, or
states, is no longer bounded, so �rms can move apart inde�nitely. Firms’ transition along
the productivity ladder is characterized by a Poisson process determined by the level of
investment made by each �rm.

We aggregate across all markets and de�ne a stationary distribution of market struc-
tures and the aggregate productivity growth rate. Section 4 characterizes the equilib-
rium and analyzes how market dynamism, aggregate investment, and productivity growth
evolve as the interest rate declines toward zero. This section and Section 4 evaluate the
model in partial equilibrium taking the interest rate and the income of the consumer as
exogenously given. Section 5 then endogenizes these objects by embedding the model
into general equilibrium.

3.1 Consumer Preferences

Time is continuous. At each instance t, a representative consumer decides how to allocate
one unit of income across a continuum of duopoly markets indexed by v, maximizing

max
{y1(t;ν),y2(t;ν)}

exp

{∫ 1

0

ln
[
y1 (t; ν)

σ−1
σ + y2 (t; ν)

σ−1
σ

] σ
σ−1

dν

}
(4)

s.t.
∫ 1

0

p1 (t; ν) y1 (t; ν) + p2 (t; ν) y2 (t; ν) dν = 1,

where yi (t; ν) is the quantity produced by �rm i of market v and pi (t; ν) its price. The
consumer preferences in (4) is a Cobb-Douglas aggregator across markets ν, nesting a
CES aggregator with elasticity of substitution σ > 1 across the two varieties within each
market.

Let P (t) ≡ exp
(∫ 1

0
ln
[
p1 (t; ν)1−σ + p2 (t; ν)1−σ] 1

1−σ
)

be the consumer price in-
dex. Cobb-Douglas preferences imply that total revenue of each market is always one,
i.e. p1 (t; ν) y1 (t; ν) + p2 (t; ν) y2 (t; ν) = 1. Hence �rm-level sales only depend on the
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relative prices within each market and are independent of prices in other markets, i.e.
y1(t;ν)
y2(t;ν)

=
(
p1(t;ν)
p2(t;ν)

)−σ
. This implies that all strategic considerations on the �rm side take

place within a market and are invariant to prices outside a given market.

3.2 Firms: Pricing and Investment Decisions

The two �rms in a market are indexed by i ∈ {1, 2} and we drop the market index ν
to avoid notational clutter. Each �rm has productivity zi with unit cost of production
equal to λ−zi for λ > 1. Given consumer demand described earlier, each �rm engages in
Bertrand competition to solve,

max
pi

(
pi − λ−zi

)
yi s.t. p1y1 + p2y2 = 1 and y1/y2 = (p1/p2)−σ . (5)

The solution to this problem can be written in terms of state variable s = |z1 − z2| ∈
Z≥0 that captures the productivity gap between the two �rms. When s = 0, two �rms
are said to be neck-and-neck; when s > 0, one �rm is a temporary leader while the
other is a follower. Let πs denote leader’s pro�t in a market with productivity gap s, and
likewise let π−s be the follower’s pro�t of the follower in the market. Conditioning on the
state variable s, �rm pro�ts πs and π−s no longer depend on the time index or individual
productivities and have the following properties.

Lemma 1. Given productivity gap s, the solution to Bertrand competition leads to �ow
pro�ts

πs =
ρ1−σ
s

σ + ρ1−σ
s

, π−s =
1

σρ1−σ
s + 1

,

where ρs de�ned implicitly by ρσs = λ−s
(σρσ−1

s +1)
σ+ρσ−1

s
is the relative price between the leader

and the follower. Equilibrium markups arems = σ+ρ1−σs

σ−1
andm−s = σρ1−σs +1

(σ−1)ρ1−σs
.

Lemma 2. Under Bertrand competition, follower’s �ow pro�t π−s is weakly-decreasing and
convex in s; leader’s and joint pro�ts, πs and (πs + π−s), are bounded, weakly-increasing,
and eventually concave in s.4 Moreover, lims→∞ πs > π0 ≥ lims→∞ π−s.

Lemma 2 states that a higher productivity gap is associated with higher pro�ts for the
leader and for the market as a whole. We therefore interpret markets in a lower state to
be more competitive than markets in a higher state. Markups are also (weakly) increasing
in the state s.

4A sequence {as} is eventually concave i� there exists s̄ such that as is concave in s for all s ≥ s̄.
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Our main theoretical results hold under any sequence of �ow pro�ts {πs}∞s=−∞ that
satisfy the properties in Lemma 2, as our proofs show. Such a pro�t sequence could be
generated by alternative forms of competition (e.g., Cournot) or anti-trust policies (e.g.,
constraints on markups or taxes on pro�ts). For clarity, even though lims→∞ πs = 1 under
Bertrand, we let π∞ ≡ lims→∞ πs denote the limiting pro�t of an in�nitely-ahead leader,
and we derive our theory using the notation π∞.

As an example under Bertrand competition, when duopolists produce perfect substi-
tutes (σ → ∞), pro�ts are πs = 1 − e−λs for leaders and π−s = 0 for followers and
neck-and-neck �rms. As another example outside of the Bertrand microfoundation, our
main results hold for the following sequence of pro�ts: πs = 0 if s < 1 and πs = π∞ > 0

if s ≥ 1, i.e. all leaders receive the identical �ow pro�ts whereas followers and neck-and-
neck �rms have zero pro�t.

Investment Choice

The most important choice in the model is the investment decision of �rms competing for
market leadership. A �rm that is currently in the leadership position incurs investment
cost c (ηs) in exchange for Poisson rate ηs to improve its productivity by one step and
lower the unit cost of production by a factor of 1/λ. The corresponding follower �rm
chooses its own investment η−s and state s transitions over time interval ∆ according to,

s (t+ ∆) =


s (t) + 1 with probability ∆ · ηs,
s (t)− 1 with probability ∆ · (κ+ η−s) ,

s (t) otherwise.

where parameter κ ≥ 0 is the exogenous catch-up rate for the follower. There is a nat-
ural catch-up advantage that the follower enjoys due to technological di�usion from the
leader to the follower; this guarantees the existence of a non-degenerate steady-state and
is a standard feature in patent-race-based growth models (e.g., Aghion et al. (2001), and
Acemoglu and Akcigit (2012)).

Firms discount future payo�s at interest rate r which is taken to be exogenous from
the perspective of �rm decision-making.5 Firm value vs (t) equals the expected present-

5We illustrate in Section 5.1 how r is endogenously determined in general equilibrium and can be viewed
as coming from the household discount rate.
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discount-value of future pro�ts net of investment costs:

vs (t) = E
[∫ ∞

0

e−rτ {π (t+ τ)− c (t+ τ)} dτ
∣∣s] . (6)

Value function (6) illustrates the various incentives that collectively determine how a
�rm invests. The basic problem is not only inter-temporal, but most importantly, strategic.
A �rm bears the investment cost today but obtains the likelihood of enhancing its market
position by one-step which earns it higher pro�ts in the future. However, there is also an
important strategic dimension embedded in (6), as a �rm’s expected gain from investment
today is also implicitly a function of how its competitor is expected to behave in the future.
For instance, in the example of Section 2, intensi�ed competition in the neck-and-neck
state has a discouragement e�ect on the follower’s investment and a motivating e�ect on
the leader’s.

We impose regularity conditions on the cost function c (·) so that �rm’s investment
problem is well-de�ned and does not induce degenerate solutions. Speci�cally, we as-
sume c (·) is twice continuously di�erentiable and weakly convex over a compact invest-
ment space: c′ (ηs) ≥ 0, c′′ (ηs) ≥ 0 for ηs ∈ [0, η]. We assume the investment space
is su�ciently large, c (η) > π∞ and η > κ—so that �rms can compete intensely if they
choose to—and c′ (0) is not prohibitively high relative to the gains from becoming a leader
(c′ (0)κ < π∞ − π0)—otherwise no �rm has any incentive to ever invest.

We look for a stationary Markov-perfect equilibrium such that the value functions and
investment decisions are time invariant and depend only on the state. The HJB equations
for �rms in state s ≥ 1 are

rvs = πs + (κ+ η−s) (vs−1 − vs) + max
ηs∈[0,η]

[ηs (vs+1 − vs)− c (ηs)] (7)

rv−s = π−s + ηs
(
v−(s+1) − v−s

)
+ κ

(
v−(s−1) − v−s

)
+ max

η−s∈[0,η]

[
η−s
(
v−(s−1) − v−s

)
− c (η−s)

]
.

(8)

In state zero, the HJB equation for either market participant is

rv0 = π0 + η0 (v−1 − v0) + max
η0∈[0,η]

[η0 (v1 − v0)− c (η0)] . (9)

These HJB equations have the same intuition as those in equations (1) through (3) in our
earlier example. The �ow value in state s is composed of current pro�t net of investment
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cost, capital gain from successfully advancing on the technological ladder, and capital loss
if the �rm is pushed back on the ladder.

De�nition 1. (Equilibrium) Given interest rate r, a symmetric Markov-perfect equilib-
rium is an in�nite collection of value functions and investments {vs, v−s, ηs, η−s}∞s=0 that
satisfy equations (7) through (9). The collection of �ow pro�ts {πs, π−s}∞s=0 is generated
by Bertrand competition as in Lemma 1.

3.3 AggregationAcrossMarkets: Steady State andProductivityGrowth

The state variable in each market follows an endogenous Markov process with transition
rates governed by investment decisions {ηs, η−s}∞s=0 of market participants. We de�ne
a steady-state equilibrium as one in which the distribution of productivity gaps in the
entire economy, {µs}∞s=0, is time invariant. The steady-state distribution of productivity
gaps must satisfy the property that, over each time instance, the density of markets leaving
and entering each state must be equal.

De�nition 2. (Steady-State) Given equilibrium investment {ηs, η−s}∞s=0, a steady-state
is the distribution {µs}∞s=0 (

∑
µs = 1) over the state space that satis�es:

2µ0η0︸ ︷︷ ︸
density of markets

going from state 0 to 1

= (η−1 + κ)µ1︸ ︷︷ ︸
density of markets

going from state 1 to 0

, (10)

µsηs︸︷︷︸
density of markets

going from state s to s+1

=
(
η−(s+1) + κ

)
µs+1︸ ︷︷ ︸

density of markets
going from state s+1 to s

for all s > 0. (11)

where the number “2” in equation (10) re�ects the fact that a market leaves state zero if
either �rm’s productivity improves.

We de�ne aggregate productivity Z (t) as the inverse of the total production cost per
unit of the consumption aggregator:

λZ(t) ≡
exp

(∫ 1

0
ln
[
y1 (t; ν)

σ−1
σ + y2 (t; ν)

σ−1
σ

] σ
σ−1

)
∫ 1

0
λ−z1(t;ν)y1 (t; ν) + λ−z2(t;ν)y2 (t; ν) dν

, (12)

where recall λ is the step size of productivity increments. Note that λ−Z(t) is also the ideal
cost index for the nested CES demand system in (4).
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The next lemma characterizes the steady-state productivity growth rate as a function
of the steady-state distribution in productivity gaps {µs}∞s=0 and �rm-level investments
{ηs, η−s}∞s=0.

Lemma 3. In a steady state, the aggregate productivity growth rate g ≡ d lnλZ(t)

dt
is

g = lnλ ·
(
∞∑
s=0

µsηs + µ0η0

)

= lnλ ·
∞∑
s=1

µs (η−s + κ) .

The productivity gap distribution is stationary in a steady state and, on average, the
productivity growth rate at the frontier—leaders and neck-and-neck �rms—is the same
as that of market followers. Consequently, Lemma 3 states that aggregate productivity
growth g is equal to the average rate of productivity improvements for leaders and neck-
and-neck �rms, weighted by the fraction of markets in each state (�rst equality), and that
g can be equivalently written as the average rate of productivity improvements for market
followers (second equality).

4 Analytical Solution

4.1 Linear Cost Function

The dynamic game between the two �rms is complex and has rich strategic interactions,
with potentially in�nite state-contingent investment levels by each player to keep track
of. To achieve analytical tractability, throughout this section we assume the cost function
is linear in investment intensity: c (ηs) = c · ηs for ηs ∈ [0, η]. The model with a convex
cost function is solved numerically in Section 5, where we show that the core results carry
through. Because of linearity, �rms generically invest at either the upper or lower bound
in any state; hence, investment e�ectively becomes a binary decision, and any interior
investments can be interpreted as �rms playing mixed strategies. For expositional ease,
we focus on pure-strategy equilibria in which ηs ∈ {0, η}, but all formal statements apply
to mixed-strategy equilibria as well.
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4.2 Market Equilibrium

The rest of this section solves for the equilibrium investment decisions by the leader and
the follower in a market, dropping the market index ν for brevity. When the interest
rate is prohibitively high, there may be a trivial equilibrium in which even the neck-and-
neck �rms in state zero do not invest, and aggregate investment and productivity growth
are both zero in the steady state. Because the main result evaluates the e�ect of low
interest rates r, for expositional simplicity we restrict analysis to equilibria with positive
investment in the neck-and-neck state, and we present results that hold across all non-
trivial equilibria.

Let n + 1 ≡ min {s|ηs < η} be the �rst state in which the market leader does not
strictly prefer to invest, and likewise, let k + 1 ≡ min {s|η−s < η} be the �rst state in
which the market follower does not strictly prefer to invest.

Lemma 4. In any non-trivial equilibrium, the leader invests in more states than the follower,
n ≥ k. Moreover, the follower does not invest (η−s = 0) in states s = k + 2, ..., n+ 1.

Figure 1: Illustration of Equilibrium Structure

Lemma 4 establishes that the leader must maintain investment in (weakly) more states
than the follower does. The structure of an equilibrium can thus be represented by Figure
1. States are represented by circles, going from state 0 on the left to state n+1 on the right.
The coloring of a circle represents investment decisions: states in which the �rm invests
are represented by dark circles, whereas white ones represent those in which the �rm does
not invest. The top row represents leaders’ investment decisions while the bottom row
represents followers’. The corresponding steady-state features positive mass of markets
in states {0, 1, . . . , n+ 1}, and we can partition the set of non-neck-and-neck states into
two regions: one in which the follower invests ({1, . . . , k}) and the other in which the
follower does not ({k + 1, . . . , n + 1}). In the �rst region, the productivity gap widens
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with Poisson rate η and narrows with rate (η + κ). In expectation, the state s tends to
decrease in this region, and the market structure tends to become more competitive. For
this reason, we refer to this as the competitive region. Note this label does not re�ect
competitive market conduct or low �ow pro�ts—leaders’ pro�ts can still be high in this
region—instead, the label re�ects the fact that joint pro�ts tend to decrease over time.
In the second region, the downward state transition occurs at a lower rate (κ), and the
market structure tends to stay or become more monopolistic and concentrated. We refer
to this as the monopolistic region.

The formal proof of Lemma 4 is in the appendix; the intuition behind the n ≥ k proof
is as follows. Suppose the leader stops investing before the follower does, n < k. In this
case, the high �ow payo� πn+1 is transient for the leader and the market leadership of
being n+ 1 steps ahead is �eeting, because the follower invests in state n+ 1 and the rate
of downward state transition is high (η + κ). This implies a relatively low upper bound
on the value for the leader in state n + 1. However, because �rms are forward-looking
and their value functions depend on future payo�s, the low value in state n+ 1 “trickles
down” to value functions in all states, meaning the incentive for the follower to invest—
motivated by the future prospect of eventually becoming the leader in state n+ 1—is low.
This generates a contradiction to the presumption that follower invests in more states
than the leader does.

Figure 2 shows the value functions for both the leader and the follower, which help
explain their investment decisions. The solid black curve represents the value function of
the leader, whereas the dotted black curve represents the value function of the follower.
The two dashed and gray vertical lines respectively represent k and n, the last states in
which the follower and the leader invest, respectively.

The �rm value in any state is a weighted average of the �ow payo� in that state and
the �rm value in neighboring states, with weights being functions of the Poisson rate of
state transitions.6 Figure 2 shows that v0− v−k is substantially lower than vk− v0; in fact,
the joint value of both �rms is strictly increasing in the state: 2v0 < v1 + v−1 < · · · <
vn+1 + v−(n+1). This is due to three complementary forces. First, joint pro�ts (πs + π−s)

are increasing in the state (Lemma 2). Second, as both �rms invest in the competitive
region, their investment cost further lowers the �ow payo�s in the competitive region
relative to the later, monopolistic region, i.e., states k + 1 through n + 1. Third, again
because both players invest in the competitive region, a �rm close to state 0 expects having
to incur investment costs for a substantial amount of time before it will be able to escape

6For instance, for s in the competitive region (0 < s < k), vs = πs−cηs+ηsvs+1+(η−s+κ)vs−1

r+ηs+η−s+κ
, as implied

by equation (7).

16



Figure 2: Value functions

the region and move beyond state k + 1.
The inequalities 2v0 < vs + v−s < vn + v−n hold for any s < n and imply that the

leader’s incentive to invest and move from state 0 to s is always higher than the follower’s
incentive to move from state −s to 0 (as vs − v0 > v0 − v−s). Likewise, the leader’s in-
centive to move from state s to n is always higher than follower’s incentive to move from
state −n to −s. The valuation di�erence v0 − v−s is low precisely because both �rms
compete intensely in states 0 through k, and their investment costs dissipate future rents.
This is the sense in which strategic competition serves as a deterrent to the follower. The
fact that competition serves as an endogenous motivator to the leader for racing ahead
manifests itself through the convexity of the value function of a leader in the competitive
region. As the leader approaches the end of the competitive region (s = k), its value
function increases sharply, as maintaining its leadership would become substantially eas-
ier once the leader escapes the competitive region and gets to the monopolistic region.
Conversely, falling back is especially costly to a leader within reach of the monopolistic
region, precisely because of the intensi�ed competition when s < k.

Why does the leader continue to invest in states k + 1 through n, even though the
follower does not invest in those states? It does so to consolidate its strategic advantage.
Because of technological di�usion κ, leadership is never guaranteed to be permanent, and
a leader always has the possibility of falling back. As the value of being a far-ahead leader
is substantially higher than being in the competitive region—due to intense competition in
states 0 through k—it is worthwhile for the leader to create a “bu�er” between its current
state and the competitive region. The further ahead is the leader, the longer it expects to
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stay in the monopolistic region before falling back to state k.
For su�ciently large s, both �rms cease to invest. This happens to the follower because

it is too far behind—its �rm value is low, and the marginal value of catching up by one
step is not worth the investment cost. This is known as the “discouragement e�ect” in
the dynamic contest literature (Konrad (2012)). The leader eventually ceases investment
as well, due to a “lazy monopolist” e�ect: the “bu�er” has diminishing value, and once
the lead (n− k) is su�ciently large, an additional step of security is no longer worth the
investment costs.

4.3 Steady State

The steady-state of an equilibrium can be characterized by the investment cuto� states,
n and k.7 The aggregate productivity growth rate in the steady-state is a weighted av-
erage of the productivity growth rate in each market; hence, aggregate growth depends
on both the investment decisions in each state as well as the stationary distribution over
states, which in turn is a function of the investment decisions. Given the investment cut-
o�s (n, k), equations (10) and (11) enable us to solve for the stationary distribution {µs}
in closed form. The following result builds on Lemma 3 and shows that the aggregate
growth rate can be succinctly summarized by the fraction of markets in the competitive
and monopolistic regions.

Lemma 5. In a steady-state induced by equilibrium investment cuto�s (n, k), the aggregate

productivity growth rate is

g = lnλ
(
µC · (η + κ) + µM · κ

)
,

whereµC ≡∑k
s=1 µs is the fraction ofmarkets in the competitive region andµM ≡∑n+1

s=k+1 µs

is the fraction of markets in the monopolistic region. The fraction of markets in each region

7Technically, because we do not assume leader pro�ts {πs} are always concave, the leader may resume
investment after state n+ 1. However, because market leaders do not invest in state n+ 1, the investment
decisions beyond state n+ 1 are irrelevant for characterizing the steady-state because there are no markets
in those states. Moreover, because {πs} is eventually concave in s (c.f. Lemma 2), all equilibria follow a
monotone structure when interest rate r is small.
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satis�es

µ0 + µC + µM = 1, µ0 ∝ (κ/η)n−k+1(1 + κ/η)k/2,

µC ∝ (κ/η)n−k
(
(1 + κ/η)k − 1

)
, µM ∝ 1− (κ/η)n−k+1

1− κ/η .

Lemma 5 follows from the fact that aggregate productivity growth is equal to the
average rate of productivity improvements for market followers (Lemma 3). It shows the
fractions of markets in the competitive and monopolistic regions are su�cient statistics
for steady-state growth, and that markets in the competitive region contribute more to
aggregate growth than those in the monopolistic region. Intuitively, both �rms invest
in the competitive region, and, consequently, productivity improvements are rapid, the
state transition rate is high, dynamic competition is �erce, leadership is contentious, and
market power tends to decrease over time. On the other hand, the follower ceases to invest
in the monopolistic region, and, once markets are in this region, they tend to become more
monopolistic over time. The monopolistic region also includes state n + 1, where even
the leader stops investing. On average, this region features a low rate of state transition
and low productivity growth.

Equilibrium investment cuto�s (n, k) a�ect aggregate growth through their impact
on the fraction of markets in each region. Lemma 5 implies that holding n constant, a
higher k always draws more markets into the competitive region, thereby raising the
steady-state productivity growth rate. On the other hand, holding k ≥ 1 constant—that
followers invest at all—a higher n reduces productivity growth by expanding the monopo-
listic region and reducing the fraction of markets in the competitive region. We formalize
this discussion into a Corollary, and we further provide lower bounds for the steady-state
investment and growth rate when k ≥ 1.

Corollary 1. Consider an equilibrium with investment cuto�s (n, k). The steady-state
growth rate g is always increasing in k, and g is decreasing in n if and only if k ≥ 1.

Lemma 6. Consider an equilibrium with investment cuto�s (n, k). If k ≥ 1, then in a
steady-state, the aggregate investment is bounded below by c ·κ, and the productivity growth
rate is bounded below by lnλ · κ.

4.4 Comparative Steady-State: Declining Interest Rates

The key theoretical results of the model concern the limiting behavior of aggregate steady-
state variables as the interest rate declines toward zero. Conventional intuition suggests
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that, when �rms discount future pro�ts at a lower rate, the incentive to invest should
increase because the cost of investment declines relative to future bene�ts. This intuition
holds in our model, and we formalize it into the following lemma.

Lemma 7. limr→0 k = limr→0 (n− k) =∞.

The result suggests that, as the interest rate declines, �rms in all states tend to raise
investment. In the limit as r → 0, �rms sustain investment even when arbitrarily far
behind or ahead: followers are less easily discouraged, and leaders are less lazy.

However, the fact that �rms raise investment in all states does not translate into high
aggregate investment and growth. These aggregate variables are averages of the invest-
ment and productivity growth rates in each market, weighted by the steady-state distri-
bution. A decline in the interest rate not only a�ects the investment decisions in each
state but also shifts the steady-state distribution. As Lemma 5 shows, a decline in the in-
terest rate can boost aggregate productivity growth if and only if it expands the fraction
of markets in the competitive region; conversely, if more markets are in the monopolistic
region—for instance if n increases at a “faster” rate than k—aggregate productivity growth
rate could slow down, as Corollary 1 suggests.

Our main result establishes that, as r → 0, a slow down in aggregate productivity
growth is inevitable and is accompanied by a decline in investment and a rise in market
power.

Theorem 1. As r → 0, aggregate productivity growth slows down:

lim
r→0

g = lnλ · κ.

In addition,

1. No markets are in the competitive region, and all markets are in the monopolistic re-
gion:

lim
r→0

µC = 0; lim
r→0

µM = 1.

2. The productivity gap between leaders and followers diverges:

lim
r→0

∞∑
s=0

µss =∞.
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3. Aggregate investment to output ratio declines:

lim
r→0

c ·
∞∑
s=0

µs (ηs + η−s) = cκ.

4. Leaders take over the entire market, with high pro�t shares and markups:

lim
r→0

∞∑
s=0

µsπs = π∞.

Under Bertrand competition, the average sales of market leaders converges to 1 and
that of followers converges to zero; aggregate labor share in production converges to
zero.

5. Market dynamism declines, and leadership becomes permanently persistent:

lim
r→0

∞∑
s=0

Msµs =∞,

whereMs is the expected time before a leader in state s reaches state zero.

6. Relative market valuation of leaders and followers diverges:

lim
r→0

∑∞
s=0 µsvs∑∞
s=0 µsv−s

=∞.

The Theorem states that, as r → 0, all markets in a steady-state are in the monopolistic
region, and leaders almost surely stay permanently as leaders. Followers cease to invest
completely, and leaders invest only to counteract technology di�usion κ. As a result,
aggregate investment and productivity growth decline and converge to their respective
lower bounds governed by the parameter κ.

In the model, a low interest rate a�ects steady-state growth through two competing
forces. As in traditional models, a lower rate is expansionary, as �rms in all states tend
to invest more (Lemma 7). On the other hand, a low rate is also anti-competitive, as
the leader’s investment response to a decline in r is stronger than follower’s response.
This anti-competitive force changes the distribution of market structure toward greater
market power, thereby reducing aggregate investment and productivity growth. Theorem
1 shows that the second force always dominates when the level of the interest rate r is
su�ciently low.
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In fact, the limiting rate of productivity growth, κ · lnλ, is independent of the limiting
pro�t lims→∞ πs and the investment cost c. Theorem 1 therefore has precise implications
for anti-trust policies. As we elaborate in Section 6, policies that raise κ can promote
growth, whereas policies that reduce leader pro�ts or reduce the follower’s investment
costs are ine�ective when r is low.

Because κ lnλ is the lower bound on productivity growth (c.f. Lemma 6), Theorem
1 implies an inverted-U relationship between steady-state growth and the interest rate,
as depicted in Figure 3. In a high-r steady-state, few �rms invest in any markets, and
aggregate productivity growth is low. A marginally lower r raises all �rms’ investments,
and the expansionary e�ect dominates. When the interest rate is too low, however, most
markets are in the monopolistic region, in which followers cease to invest, and aggregate
productivity growth is again low. The anti-competitive e�ect of a low interest rate also
generates other implications: the leader-follower productivity gap widens, the relative
leader-follower market valuation diverges, the pro�t share and markups rise, and business
dynamism declines.

Figure 3: Steady-state growth and the interest rate: inverted-U

Lemma 7 shows that, as r → 0, the number of states in both the competitive and
monopolistic regions grow to in�nity, but n and k may grow at di�erent rates. Theorem 1
shows that the fraction of markets in the monopolistic region µM converges to one, which
can happen only if the monopolistic region expands at a “faster rate” than the competitive
region, i.e., the leader raises investment “faster” in response to a low r than the follower
does. In the Appendix, we provide a sharp characterization on the exact rate of divergence
for k and (n− k) and the rate of convergence for µM → 1 (Lemma A.4).

To understand the leader’s stronger investment response, we again turn to Figure 2.
The shape of the value functions in the �gure holds for any r. As the �gure demonstrates,
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the leader’s value close to state 0 in the competitive region is small relative to its value
in state n + 1, and the leader would experience a sharp decline in value if it slips back
from the monopolistic region into the competitive region. When the interest rate is low, a
patient leader invests even far into the monopolistic region (i.e., n− k grows inde�nitely
as r declines) in order to avoid the future prospect of falling back, and the leader stops
investing only when it expects to stay in the monopolistic region for a su�ciently long
time. As r → 0, a leader behaves as if it is in�nitely patient. Even the distant threat
of losing market power is perceived to be imminent; consequently, leaders scale back
investment only if they expect to never leave the monopolistic region, causing market
leadership to become endogenously permanent.

Why does a symmetric argument not apply to the follower? Consider the follower
in state k + 1. As r → 0, k + 1 grows inde�nitely (Lemma 7), and the follower in this
marginal state is further and further behind. Because both �rms invest in all states 0

through k, the follower in state k+1 expects to �ght a longer and longer war before it can
reach state 0 and has a chance to become the leader. As the �ght for leadership involves
intense competition and large investment costs for a long time, the follower is eventually
discouraged from the �ght—when it is more than k steps behind—despite low r. Once
again, the intense competition in states 0 through k dissipates future rents and serves
as an endogenous deterrent to the follower in state k + 1. Low interest rates motivate
investment only if future leadership is attainable. As r → 0 and as k grows, it becomes
in�nitely costly to overcome the competition in states 0 through k, and the prospect of
becoming a future leader is perceived to be too low even for a patient follower in state
k + 1.

Theorem 1 is an aggregate result that builds on sharp analytical characterizations of
the dynamic game between duopolists in each market. The duopolist game is rooted in
models of dynamic patent races and is notoriously di�cult to analyze: the state variable
follows an endogenous stochastic process, and �rms’ value functions are recursively de-
�ned and therefore depend on �ow payo�s and investment decisions in every state of
the ergodic steady-state distribution {µs}n+1

s=0 . Even seminal papers in the literature rely
on numerical methods (e.g. Budd et al. (1993), Acemoglu and Akcigit (2012)) or restrictive
simpli�cations to make the analysis tractable.8 Relative to the literature, our analysis of an
economy in a low-rate environment is further complicated by the fact that, as r declines,
the ergodic state space {0, 1, · · · , n+ 1} becomes in�nitely large.

In order to obtain Theorem 1, we fully characterize the asymptotic equilibrium as r →
8For instance, Aghion et al. (2001) and Aghion et al. (2005) assume leaders do not invest in all s ≥ 1,

e�ectively restricting the ergodic state space as {0, 1}.
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0. We analytically solve for the recursive value functions as a �rst-order approximation in
r around r = 0, and we analytically characterize the rate at which equilibrium objects—
value functions, investment cuto�s, the stationary distribution of productivity gaps—grow
as r → 0. Theorem 1 is a distillation of the full characterization, and we relegate the
formal proof to the appendix. In what follows, we provide a sketch of the proof, in four
steps. Each step aims to explain a speci�c feature in the shape of value functions shown
in Figure 2. Note because total revenue in a market is always equal to 1, rvs ≤ 1 for all s.

Step 1: The leader’s value in state n+ 1 is asymptotically large.

Formally, Lemma A.1 shows limr→0 rvn+1 → π∞ − cκ > 0. To see this, note the leader
stops investing in state n + 1 if and only if the marginal investment cost is higher than
the change in value function, implying

c ≥ vn+2 − vn+1 ≥
πn+2 − rvn+1

r + κ
, (13)

where the last inequality follows from rearranging the HJB equation (7) for state n + 2.
This in turn generates a lower bound for rvn+1:

rvn+1 ≥ πn+2 − c(r + κ)
(Lemma 7)−−−−−→ π∞ − cκ.

Step 2: The follower’s value in state k + 1 is asymptotically small.

Formally, Lemma A.2 shows rv−(k+1) → 0. To understand this, note the follower stops
investing in state k + 1 only if the marginal change in value function is lower than the
investment cost (v−k− v−(k+1) < c). As r → 0, the leader continues to invest in in�nitely
many states beyond k, and the follower stops investing in state k + 1 despite knowing
that once it gives up, the market structure tends to move in the leader’s favor inde�nitely,
and that investing instead could delay or prevent falling back inde�nitely. Lemma A.2
shows that follower not investing in state k + 1 must imply follower’s value in that state
is asymptotically small.

Step 3: The value of a neck-and-neck �rm is asymptotically small.

Formally, rv0 → 0. This is because as k → ∞ (Lemma 7), �rms in state zero expect to
spend an inde�nitely long time in the competitive region (states s = 1, . . . , k), in which
both �rms invest at the upperbound, with a negative joint �ow payo� due to intense
competition. In fact, k must grow at a rate exactly consistent with an asymptotically small
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v0; this is because v0 can be asymptotically large only if k grows slowly, but a large v0 in
turn implies that v−k must be large—as the follower in state−k is forward looking—which
contradicts the earlier statement, that rv−k → 0. Conversely, the fact that v0 must be non-
negative—�rms can always guarantee at least zero payo�—imposes an upper bound on
the rate at which k diverges.

Step 4: A leader experiences an asymptotically large decline in value as it falls
from the monopolistic region into the competitive region.

Formally, limr→0 r(vk+1 − vk) > 0. This follows from the fact that vn+1 is asymptotically
large (step 1) and v0 is asymptotically small (step 3).

Step 4 implies that falling back into the competitive region is costly for the leader.
Hence, starting from state k + 1, the leader continues to invest in additional states in
order to consolidate market power and reduce the future prospect of falling back. Its �rm
value increases as the productivity gap widens, and the leader stops only when the value
function is su�ciently high, as characterized by inequalities (13). As a leader becomes
in�nitely patient, he must invest in su�ciently many states beyond k until the prospect
of falling back into the competitive region vanishes, thereby endogenously perpetuating
market leadership and causing the monopolistic region to become absorbing.

5 General Equilibrium and Quantitative Analysis

5.1 General Equilibrium

Up to this point, the analysis has taken the interest rate as exogenous, and we exogenously
specify that the representative consumer has unit expenditure at each time t. We now
embed the model into a general equilibrium framework by endowing the consumer with
intertemporal preferences and endogenous income.

We limit our attention to the steady-state equilibrium, i.e., a balanced growth path,
with aggregate productivity and consumption both growing at a constant rate g. Let r̂ be
the interest rate faced by the consumer. All of the formal statements in earlier sections
continue to hold along the balanced growth path if we re-de�ne r ≡ r̂ − g. In other
words, what we have been calling “the interest rate” in earlier sections is the growth-
adjusted interest rate in the context of general equilibrium, which, as we show, is also
equal to the discount rate of the representative consumer.
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Formally, the consumer has the following intertemporal preferences:

max
{y1(t;ν),y2(t;ν),L(t)}

∫ ∞
0

e−ρt (lnC (t)− L (t)) dt (14)

s.t. C (t) = exp

(∫ 1

0

ln
[
y1 (t; ν)

σ−1
σ + y2 (t; ν)

σ−1
σ

] σ
σ−1

dν

)
,

∫ 1

0

p1 (t; ν) y1 (t; ν) + p2 (t; ν) y2 (t; ν) dν = w (t)L (t) + Π (t) ,

where ρ is the discount rate and Π (t) is the total pro�t net of the investment cost accrued
to producers in the economy.

We normalize the wage rate w (t) ≡ 1 for all t, and specify that production and the
investment cost are both paid in labor. The labor market clearing condition is

L (t) =

∫ 1

0

[
y1 (t; ν)λ−z1(t;ν) + y2 (t; ν)λ−z2(t;ν)

]
dν+

(
∞∑
s=1

µs (t) (c (ηs) + c (η−s)) + 2µ0 (t) c (η0)

)
.

The consumption aggregator C (t) in (14) is once again CES across varieties within each
market and Cobb-Douglas across markets. Given our normalization, the consumer’s in-
tratemporal problem implies total expenditure on all consumption goods is equal to one,
thereby inducing instantaneous demand functions that coincide with the preferences in
(4) of Section 3. In addition, the intertemporal preferences in (14) imply an Euler equation:

g (t) ≡ d lnC (t)

dt
= r̂ (t)− ρ (15)

where r̂ (t) is the general equilibrium interest rate and g (t) is the growth rate of aggregate
consumption.

On a balanced growth path, the consumption price index P (t) takes the same form as
de�ned in Section 3.1, and it declines at a constant rate g relative to the numeraire; hence,
the value function of a �rm currently in state s is

vs (t) = E
[∫ ∞

0

e−r̂τ
{
π (t+ τ)− c (t+ τ)

P (t+ τ) /P (t)

}
dτ
∣∣s]

= E
[∫ ∞

0

e−(r̂−g)τ {π (t+ τ)− c (t+ τ)} dτ
∣∣s]

The model presented in earlier Sections 3 and 4 represents the production-side of this
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economy, and the earlier analysis demonstrates an inverted-U relationship between g and
r̂ − g. That production-side relationship and the consumer-side Euler equation (15) to-
gether pin down the interest rate r̂ and aggregate productivity growth g on a balanced
growth path.

The Euler equation implies that in any equilibrium, r̂ − g must be equal to the con-
sumer discount rate ρ. Consequently, the general equilibrium version of the main result
of Theorem 1 states that, if the consumer discount rate ρ declines towards zero, then in
the limit, r̂−g → 0, and aggregate productivity growth rate g must decline and converge
to κ · lnλ (which implies that r̂ → κ · lnλ as well). Aggregate investment must decline,
along with market dynamism and the aggregate labor share; markets become more con-
centrated, with high levels of markups, pro�ts, and �rm inequality.

What could be the sources of a decline in ρ? We follow Krugman (1998) and note that
a decline in ρ can be seen as a catch-all shock that stands in place for any secular changes
on the consumer side that pushes consumers towards saving more and consuming less,
including a change in preferences, tightened borrowing constraints (e.g., Eggertsson and
Krugman (2012)), or structural shifts such as an aging population (e.g., Eggertsson et al.
(2019)) and rising inequality (e.g., Summers (2014), Mian et al. (2020)). Hence, the model
presents an alternative view of the reasons behind “secular stagnation.” As in traditional
secular stagnation explanations, an initial inward shift in the consumer-side curve can
lower equilibrium interest rates to very low levels. However, “stagnation” is not due to
monetary constraints such as the zero lower bound or nominal rigidities. Instead, a large
fall in interest rates can make the economy more monopolistic for reasons laid out above,
thereby lowering investment and productivity growth. This is depicted in Figure 4.

5.2 Quantitative Analysis

This section explores the quantitative properties of the model, with two goals. The �rst
goal is validation—the model is numerically solved with a convex investment cost func-
tion, and we show that the limiting properties of the steady-state in Theorem 1, as well
as other qualitative features of the equilibrium discussed in Section 4, continue to hold as
we dispense with the linear-investment-cost assumption. Second, we show that, despite
its parsimony, the model has some quantitative bite in explaining long-run trends in pro-
ductivity growth and the pro�t shares. The quantitative model also has the added bene�t
that it illustrates some of the main mechanisms of the model.

According to Theorem 1, the steady-state distance between leaders and followers di-
verges as r → 0. Hence, under either Bertrand or Cournot competition, the steady-state
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Figure 4: Growth and the interest rate in general equilibrium

Profit share, markup, and concentration

low rate high rate

low rate high rate

Business dynamism

Leader-follower productivity gap

Aggregate investment
and

productivity growth

low rate high rate

low rate high rate

low rate high rate

Relative market value

Relative P/E ratio

Profit share, markup, and concentration

Business dynamism

Leader-follower productivity gap

Aggregate investment
and

productivity growth

Relative market value

Relative P/E ratio

interest rate interest rate

interest rateinterest rate

interest rate interest rate

gr
ow

th
 ra

te

Exogenous growth

interest rate

gr
ow

th
 ra

te

Eu
ler

 eq
ua

tio
n

Eu
ler

 eq
ua

tio
n

pro�t share converges to one. For quantitative relevance, we continue to assume Bertrand
competition but modify the microfoundation for �ow pro�ts {πs} as follows. We specify
that the production cost of the follower is λmax{s,s̄} times the cost of the leader for some
parameter s̄; hence, while a greater distance always implies a bigger strategic advantage
for the leader—it takes the follower more steps to catch up with the leader—a greater s
only translates into an additional production cost advantage up to s ≤ s̄. For simplicity,
we set s̄ = 1, so that �ow pro�ts for both �rms are constant for all s ≥ 1.

The calibration is purposefully simple with only four other parameters. The cost func-
tion is speci�ed to be quadratic, c (ηs) ≡ (c · ηs)2, where c is a cost-shifter, and the in-
vestment space is assumed to be su�ciently large so that ηs is always interior. The other
three parameters are κ, the rate of technological di�usion; λ, the step-size of productivity
gains; σ, the elasticity of substitution between two �rms in the same market. The param-
eters σ and λ jointly determine �ow pro�ts {πs}, which, along with c and κ, determine
the equilibrium growth rate.

The calibration is done using the general equilibrium version of the model, with r ≡
r̂ − g, i.e., a �rm’s discount rate r is indeed the real interest rate r̂ minus the productiv-
ity growth rate g. The calibration of these parameters {c, κ, σ, λ} targets four moments:
TFP growth rate and pro�t shares in high- and low-interest rate steady-states. The high-
interest rate steady-state represents the U.S. economy during the years 1984–2000, and
the low-interest rate steady-state for the years 2001–2016. For TFP growth—1.10% in the
high-r̂ period and 0.76% in the low-r̂ period—we use the unadjusted total factor produc-
tivity for the business sector from the Federal Reserve Bank of San Francisco’s database
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(Fernald (2015)).
For the pro�t share, we target 0.14 in the high-r̂ period and 0.17 in the low-r̂ period,

and we compute it from our model as average pro�ts net of investment cost relative to
revenue across all �rms. These pro�t shares translate into markups of 16% and 20%, re-
spectively; they capture the rise in markups in the United States and correspond roughly
to the midpoint of recent estimates in the literature.9 Finally, for the real interest rate,
the U.S. AA corporate bond rate net of current in�ation is used, which is 4.69% for the
high-r̂ period and 1.09% for low-r̂ period (Farhi and Gourio (2019)). We use the AA cor-
porate bond rate instead of the 10-year treasury rate—3.94% and 1.06% in the two periods—
because the former is more relevant as the �rms’ discount rate, but the quanti�cation is
not sensitive to this choice. Table 1 shows the parameter values for the model’s �t.

Table 1: Calibration: Parameters and Model Fit

Definition Parameter Value Moment Target Model

Elasticity of substitution σ 12 TFP growth, high-r̂ 1.10% 1.09%
Productivity step size λ 1.21 TFP growth, low-r̂ 0.76% 0.76%
Technology diffusion rate κ 3.93 Profit share, high-r̂ 0.14 0.14
Investment cost shifter c 33.4 Profit share, low-r̂ 0.17 0.17

Definition Parameter Value

Elasticity of substitution σ 12
Productivity step size λ 1.21
Technology diffusion rate κ 3.93
Investment cost shifter c 33.4

Moments Target Model

High interest rate: r − g = 3.59%
TFP growth 1.10% 1.09%
Lerner index 0.14 0.14

Low interest rate: r − g = 0.33%
TFP growth 0.76% 0.76%
Lerner index 0.17 0.17

1

Figure 5 shows aggregate variables as steady states are compared for a decline in in-
terest rates under the calibration. Panel A plots the productivity growth rate g against the
interest rate r̂.10 There are three noteworthy features. First, as the theory predicts, g has
an inverted-U relationship with r̂. Moving from right to left, as r̂ declines, g �rst increases
as in traditional models. But eventually g declines. Second, in the limit as r̂ − g → 0, g
converges to κ · lnλ. This is a sharp prediction that is shown above analytically in Theo-
rem 1 under the linear-investment-cost assumption. The numerical solution here shows
that the prediction continues to hold under a convex investment cost. Note that this is
not an artifact of the calibration, as we �nd g converges to κ lnλ under any calibration of
the model. Third, growth is maximized at g = 1.1% when the real interest rate is around
r̂ = 4%. The productivity growth rate therefore starts to decline well above the limit,
implying that the mechanism is empirically relevant.

Panel B of Figure 5 shows an U-shaped relationship between the net pro�t share and
the interest rate. As r̂ declines, competition always intensi�es in any given state, but the

9See Gutiérrez and Philippon (2016, 2017); Hall (2018); Barkai (forthcoming); Edmond et al. (2019);
De Loecker et al. (2020), among many others.

10Recall that in general equilibrium, r ≡ r̂−g is the discount rates used by �rms when making investment
decisions.
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Figure 5: Comparative steady states: low interest rates on productivity growth,
pro�t share, and average leader-follower distance
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leader-follower distance tends to widen. Intensi�ed competition raises investment costs,
whereas widening leader-follower-distance raises gross pro�ts. As r̂ declines (right to left
in the �gure), initially the �rst force dominates and the pro�t share declines; eventually for
r̂ su�ciently low, the second force dominates, steady-state competition and investment
decline, and the pro�t share increases.

Panel C of Figure 5 shows the average leader-follower distance monotonically in-
creases as r̂ declines and tends to in�nity as r̂ − g → 0. This is consistent with Theorem
1, which establishes the divergence in leader-follower distance analytically under a linear
investment cost.

Figure 6 shows additional comparative steady state results by illustrating how state-
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Figure 6: Comparative steady states: state-by-state value functions, investment,
and stationary distribution for r̂ = 4% (solid line) and r̂ = 2% (dashed line)
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by-state value functions (Panel A), investment levels (Panel B), and the stationary distri-
bution of leader-follower distance (Panel C) vary at two levels of interest rates, r̂ = 4%

(solid line) and r̂ = 2% (dashed line). These �gures con�rm that the qualitative prop-
erties established analytically in Section 4 continue to hold under a convex investment
cost. Panel A shows that the gain in the leader’s value (black line) from state 0 to being
far ahead (e.g. in state 12) is greater than the loss in the follower’s value (grey line), and
the asymmetry is greater under a lower interest rate. As explained above, this feature of
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the equilibrium value functions is due to the intensi�ed competition between �rms when
their distance s is small, as shown in Panel B. Strategic competition therefore serves as
an endogenous motivator for the leader and a deterrent for the follower, resulting in the
leader investing more than the follower in every state along the intensive margin. Panel
B further demonstrates that the leader-follower investment gap widens in every state as
r declines. Finally, Panel C plots the stationary distribution of �rm distance {µs} and
shows the distribution undergoes a �rst-order-stochastic-dominant shift to the right as r
declines.

6 Additional Discussion

This section presents a number of extensions. The policy implications of the framework
are discussed in Section 6.1. Section 6.2 discusses the implication of introducing real-
world �nancial frictions, and Section 6.3 discusses the key “no-leapfrog” feature of the
model and its relevance in the real world. Section 6.4 discusses transitional dynamics and
the model’s asset-pricing implications.

6.1 Policy Implications

The main result in Theorem 1, that limr→0 g = κ · lnλ, has interesting implications for an-
titrust policies in a low interest rate environment. As with traditional endogenous growth
models, it is the incentive to gain market power that drives investment and growth in this
framework. The additional insight in the model studied here is that investment by market
leaders responds more aggressively to lower interest rates than the investment by market
followers. Correspondingly, a low interest rate environment creates an expectation that
market leaders will �ght much more �ercely if market followers were to try to close in
on the leader. This expectation of tougher competition, and the associated higher cost,
discourages challengers from investing to unseat market leaders.

The expectation of tougher resistance by market leaders in a low interest rate envi-
ronment reduces competition and growth. In these situations, regulation that reduces the
expectation of tougher competition from market leaders can help raise investment and
productivity growth. The model therefore shows why anti-trust regulation may become
more important in a low interest rate environment.

But which anti-trust policies are most e�ective in this model? Broadly speaking, there
are two types of potential policies that are relevant. The �rst type aims at helping market
followers in terms of �ow payo�s—such as taxing the leader’s �ow pro�ts or subsidizing
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the follower’s �ow investment costs. The second type facilitates technological transfers
from leaders to followers—such as policies that directly raise κ by restricting defensive
R&D and removing barriers for followers to compete.

In principle, policies focused directly on �ow payo�s may promote investment by
discouraging leaders’ investment and encouraging followers’. However, as Theorem 1
suggests, these policies are ine�ective at promoting investment and growth in a low in-
terest rate environment. As r → 0, the leader-follower strategic asymmetry continues to
prevail, and the growth rate slows down to the same limit (κ · lnλ) whether these policies
are in place or not. Because the strategic asymmetry is so strong, it is ine�ective to merely
encourage the followers; policies must target technological transfers directly by raising κ,
thereby helping followers even as they become endogenously discouraged.

The calibrated model from section 5.2 can be used to demonstrate these intuitions.
Two policies focused on �ow payo�s are considered: one which taxes leader pro�ts by
10% and the other which reduces the follower’s investment cost by 10%. We also consider
a policy that raises the rate of technological di�usion κ by 10%. Figure 7 shows the e�ects
of these interventions; Panel A plots the relationship between the growth rate and the
interest rate, and Panel B plots the relationship between the pro�t share and the interest
rate. The baseline calibration is the solid line in black; the counterfactuals are represented
in grey with various markers.

Figure 7: Counterfactual productivity growth and pro�t share: 10% tax on leader pro�ts
and 10% higher κ
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Figure 7 shows that taxing leader pro�ts, while e�ective in reducing market power
(Panel B), are not e�ective in stimulating investment and growth when the interest rate
is su�ciently low (Panel A). Intuitively, the value to erecting barriers for a strategic ad-
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vantage as r approaches zero is so large that even with 10% taxes, the value of being a
permanent leader goes to in�nity; market leaders therefore still have the incentive to com-
pletely discourage the followers. The intuition from Theorem 1 continues to hold under
policies that constrain markups and pro�ts, and, as r → 0, growth will decline to the very
same limit, κ · lnλ, regardless of whether the pro�t tax is in place or not. Taxing leader
pro�ts also has the undesirable e�ect that, for r̂ su�ciently high (e.g. at the rates that pre-
vail in 1984–2000) the policy also reduces growth by discouraging the incentive to become
a leader. For similar reasons, subsidizing the follower’s investment is also ine�ective in
promoting growth when the interest rate is low.

Antitrust policies focused on technological transfers on the other hand are e�ective in
increasing investment and growth in our model. Theorem 1 implies that raising κ stimu-
lates growth by directly raising the limiting growth rate of the economy. Figure 7 further
shows that a higher κ raises the growth rate even when the interest rate is signi�cantly
above its lower limit. This is because a greater κ facilitates technological di�usion from
leaders to followers, helping the followers even as they become endogenously discour-
aged. The steady-state therefore features more markets in states with stronger compe-
tition and greater investment, which leads to a higher aggregate growth rate. The fact
that a higher κ implies more competitive markets is also evident in Panel B, which shows
that the aggregate pro�t share is lower than the baseline for all levels of the interest rate,
despite κ not directly a�ecting the �ow pro�ts in any given market.

Finally, we note that it is important for policy to raise κ in all states. If the rate of tech-
nology di�usion were state-dependent {κs}∞s=1 and always �nite—for instance, if policy
facilitates technology transfer only if followers were not too far behind—then it is the
limiting rate lims→∞ κs that matters in for aggregate growth in a low interest rate envi-
ronment: limr→0 g = (lims→∞ κs) · lnλ. Intuitively, because the leader-follower distance
tends to diverge, bounded variations in κs for �nite distance does not a�ect the steady-
state as r → 0.

Figure 8 demonstrates this result. We consider three alternative policies that facilitate
technology transfer but only for �nite states. The state-dependent κs that these policies
represent are shown in Panel A. Speci�cation 1 sets κ1 to be 50% higher than κ in the base-
line calibration, and κs decays linearly towards the baseline over �ve states. Speci�cation
2 sets κ1 to be 100% higher than the baseline and κs again decays linearly over �ve states.
Speci�cation 3 sets κ1 to be 100% higher than baseline and decays over 10 states. Panel
B shows how steady-state growth rate varies with the interest rate under these policies.
Evident from the �gure, all three policies raise productivity growth when r > 0; however,
the e�ectiveness declines as r → 0, and, in the limit, the growth rate always converges to
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κ · lnλ.

Figure 8: Counterfactual productivity growth and pro�t share: state-dependent κ
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6.2 Introducing Financial Frictions

The model assumes that �rms face no �nancial frictions. In particular, both the market
leader and the follower use the same interest rate r to discount cash �ows and neither
faces an external �nancing premium. Financial frictions are intentionally assumed away
to highlight that even when �rms are not handicapped by an asymmetric �nancing con-
straint, the strategic incentive of market leaders becomes stronger as r → 0, and such an
incentive causes market power to increase in low-rate environments. We conjecture that
introducing �nancial frictions would strengthen the core results of the model. Related
points are made in the literature such as Caballero et al. (2008) and Gopinath et al. (2017).

Empirical evidence on �nancial frictions further suggests that �nancial frictions hurt
market followers more than market leaders, especially in a low interest rate environment.
In particular, a declining long-term interest rate is asssociated with a larger �nancing gap
between industry leaders and followers. This fact is shown by constructing the interest
rate faced by industry leaders (the top 5% of �rms in any industry) versus industry fol-
lowers in Compustat data. A �rm’s interest rate is calculated by dividing annual interest
expense by total debt. Then the median imputed interest rate for industry leaders and fol-
lowers is plotted in the left panel of Figure 9 over time, along with bootstrapped standard
errors.

The �gure shows that as the risk-free rate falls over time, the interest rate paid by the
industry leaders and followers also falls. However, the spread in basis points increases as r
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declines. This shows that �nancing costs fall less than one-for-one for industry followers
relative to industry leaders. The decline in the relative cost of borrowing for industry lead-
ers when the interest rate is low gives an additional reason to build a strategic advantage
over followers.

This �nancing advantage that leaders enjoy can further be seen in the right panel of
Figure 9. This �gure plots the relative debt capacities for the median industry leader and
follower in the Compustat data. Let π be EBIT for a �rm, i the �rm’s interest rate, and
D its maximum debt capacity. The maximum debt capacity D can be calculated using a
minimum interest coverage ratio, kmin that lenders require, along with the formula kmin =
π
i∗D . A recent note from the Federal Reserve suggests that kmin = 2 (Palomino et al.
(2019)).

The right panel of Figure 9 plots imputed debt capacity for the median industry leader
and follower using the �rm’s interest rate and EBIT. Debt capacities are normalized to
one at the beginning of sample. We can see that over time, as the long-term interest rate
has fallen, the debt-capacity gap between industry leaders and followers has expanded
considerably. The middle blue line shows how much of the gap is coming from the median
leader and follower facing di�erent interest rates alone. That is, it plots the follower’s debt
capacity assuming the follower continues to earn the leader’s EBIT throughout the sample
period. Figure 9 makes it clear that low interest rates have given industry leaders a large
�nancing advantage over followers. They can use this advantage to, for example, threaten
potential entrants with price wars or predatory acquisitions. All of this is assumed away
in the model, but would likely strengthen the results if considered explicitly.

Figure 9: Interest rate and debt capacity for industry leaders and followers
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6.3 Discussion of Model Assumptions

The key feature of the model that delivers the main result is that technological progress
is incremental and follows a step-by-step process. In other words, the follower cannot
“leapfrog” the leader in a single step. As explained earlier, it is the expectation of tougher
competition for the follower when rates are low that discourages the follower relative to
the leader as interest rates fall. For this expectation to remain relevant, investment today
should bring the follower closer to leader, but it cannot allow the follower to leapfrog the
leader regardless of how far back the follower is.

The condition of incremental innovation is plausible and relevant in a wide variety
of contexts. Most of the innovation that happens is gradual and incremental, with each
patent or scienti�c paper making an incremental contribution without creating a whole
new paradigm. Recent empirical work by Bloom et al. (2020) suggests that if anything,
innovation may be becoming more incremental and gradual in recent years. Moreover,
low interest rates in a leapfrogging world would raise investment levels which is counter-
factual.

The “no leapfrogging” condition is also realistic in that it helps to understand the real-
world phenomena of market leaders conducting defensive R&D, erecting entry barriers,
and engaging in predatory acquisitions. In the model, market leaders invest not only for
higher �ow pro�ts but, importantly, also to acquire a strategic advantage and to prolong
leadership—the main theorem holds even if a leader’s �ow pro�t does not increase with
distance, e.g. when πs = π∞ > 0 ∀s ≥ 1. The model’s insight also helps to explain the
ever expanding “kill zone” around industry giants’ area of in�uence that makes it di�cult
for young startups to thrive (Cunningham et al. (2019)). As the Economist headlined in its
report on June 2, 2018, “American tech giants are making life tough for startups”. One can
show that in our model, if market followers always leapfrog the leader with one successful
investment, the leader no longer has the incentive to create such an empirically realistic
strategic advantage. Instead, the leader invests only to acquire higher �ow pro�ts.

Nonetheless, the “no leapfrogging” condition cleanly identi�es the scope and limit of
the theoretical result. An economy can break-out of the low investment and low pro-
ductivity equilibrium in a low interest rate environment if there appears on the horizon
the possibility of investing in paradigm-shifting technology that will enable followers to
leapfrog leaders (e.g., Cabral (2018)). However, if such paradigm-shifting opportunities
are rare, or only apply to a small set of industries, the insight from the framework will
continue to hold.

Finally, it is important to note that the key results are insensitive to other auxiliary fea-
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tures of the model. Figure 7 shows that productivity growth converges to the same limit
κ lnλ under a convex cost function, alternative pro�t levels, and follower cost advantage
(i.e., state-dependent cost function). Figure 8 further shows that, when the rate of tech-
nology di�usion is state-dependent, growth converges to lims→∞ κs · lnλ. Intuitively,
Theorem 1 characterizes the asymptotic equilibrium as r → 0; consequently, bounded
variations of κs in �nite states do not a�ect �rms’ decisions in the limit.

6.4 Transitional Dynamics and Asset-Pricing Test

This study focuses mainly on the analysis of steady-states of the model. How long does
it take for the economy to transition from one steady-state into another, following an un-
expected and permanent interest rate shock? Figure 10 answers this question by showing
the impulse response of a decline in the interest rate from 4% to 2%. Panel A shows the
time path of productivity growth and Panel B is for the average productivity gap between
leaders and followers. Starting from a steady-state, a permanent decline in the interest
rate immediately moves market participants to a new equilibrium, featuring higher in-
vestments and productivity growth given any productivity gap (Panel A). The average
productivity gap starts to rise, although it moves slowly (Panel B). Over time, as the dis-
tribution of the state variable converges to the new steady-state and as the average pro-
ductivity gap increases, the equilibrium growth rate and investment eventually decline to
the new steady-state level.

Figure 10 shows the convergence is rapid. Productivity growth is 1.1% in the initial
steady-state and 0.82% in the new-steady-state; Panel A shows that it takes about 1.5
quarters for the growth rate to decline to 0.96%, closing about half of the steady-state
di�erence. The initial boost in productivity growth lasts only 0.75 quarters, after which
the growth rate declines below 1.1%.

A companion paper (Liu et al. (2020)) examines the transitional dynamics of the model
for an unexpected shock to the interest rate. It shows that, starting from a steady-state
with a low interest rate, an unexpected but permanent decline in the interest rate ben-
e�ts industry leaders more than industry followers, and this asymmetric e�ect becomes
stronger at lower levels of the initial interest rate. In the language of asset pricing, the
model predicts that, when interest rates are low, market leaders have higher “duration”—
log-sensitivity of �rm valuation to the interest rate—and also higher “convexity”—the sec-
ond derivative of log-valuation with respect to the interest rate.

The companion study tests this hypothesis using CRSP-Compustat merged data from
1962 onward. It constructs a “leader portfolio” that is long industry leaders and is short
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Figure 10: Impulse response: reduction of interest rate from 4% to 2%
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industry followers, and it examines the portfolio’s performance in response to quarterly
changes in interest rates. As the analysis there shows, the leader portfolio exhibits higher
returns in response to a decline in interest rates for interest rates below a threshold, and
this response becomes stronger at lower levels of the initial interest rate. Therefore, the
model’s asset pricing implications of a decline in the interest rate are supported in the
data.

7 Conclusion

This study highlights a new strategic force for the determination of �rm investment in
productivity enhancement. This strategic force leads to an asymmetric investment re-
sponse of market leaders to market followers when interest rates fall to low levels. Mar-
ket leaders aggressively invest to escape competition when interest rates are low, whereas
market followers become discouraged by the �erce competition that would be necessary
to gain market leadership.

This strategic force delivers a uni�ed explanation for the presence across advanced
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economies of low interest rates, high market concentration, high pro�ts, large productiv-
ity gaps between market leaders and followers, and low productivity growth. The slow-
down in productivity growth has been pervasive across almost all advanced economies.
The slowdown started well before the Great Recession, suggesting that cyclical forces
related to the crisis are unlikely to be the trigger. Furthermore, the slowdown in produc-
tivity is highly persistent, lasting well over a decade. The long-run pattern suggests that
explanations relying on price stickiness or the zero lower bound on nominal interest rates
are less likely to be the complete explanation. This paper introduces the possibility of low
interest rates as the common global factor that can potentially explain the slowdown in
productivity growth.
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A Appendix: Proofs

A.1 Proof of claims in Sections 2 and 3

Proof of Proposition 1 The solution to HJB equations (1) through (3) imply that equi-
librium investment and value functions must satisfy ηs = vs+1 − vs for s ∈ {−1, 0, 1}.
The HJB equations can thus be re-written as

(r + ηs/2 + η−s) vs = πs + ηsvs+1/2 + η−svs−1 for s ∈ {−1, 0, 1} . (A.1)

Substitute using v2 = π2/r, v−2 = π−2/r, v1 = v2− η1, v0 = v2− η1− η0, and v−1 = v2−
η1− η0− η−1, the HJB equations become a system of three quadratic equations involving
three endogenous variables {η−1, η0, η1} with exogenous parameters {πs} and r. That
dηs/dr < 0 follows from totally di�erentiating the system of equations and applying the
implicit function theorem.

We prove a generalized version of the limiting result that as r → 0, η1 → ∞, η−1 →
∞, and (η1 − η−1) → ∞, under a quadratic cost function with a leader disadvantage.
Speci�cally, we de�ne cs = 1 if s < 1 and cs = c if s = 1, and we write the HJB equation
for state s ∈ {−1, 0, 1} as

rvs = max
η
πs − csη2/2 + η (vs+1 − vs) + η−s (vs−1 − vs) .

The parameter c is a cost shifter for the leader. The example in Section 2 has c = 1. When
c > 1, leader holds a cost disadvantage relative to the follower. We now prove the limiting
result for a generic c. Note optimal investment satis�es η−1 = v0− v−1, η0 = v1− v0, and
cη1 = v2− v1. After substituting these expressions into the HJB equation and then taking
the limit r → 0, we obtain

v1 ∼
η1v2 + 2η−1v0

η1 + 2η−1

, v0 ∼
v1 + 2v−1

3
, v−1 ∼

η−1v0 + 2η1v−2

η−1 + 2η1

,

where we use x ∼ y to denote limr→0 (x− y) = 0. Using optimal investment decisions
to substitute out v−1, v0 and v1, we obtain

cη1 ∼
8η−1 (v2 − v−2)

6η1 + 9η−1

, η−1 ∼
2η1 (v2 − v−2)

6η1 + 9η−1

,
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thereby implying cη2
1 ∼ 4η2

−1. As r → 0, v2 − v−2 → ∞, implying that η1 → ∞,
η−1 → ∞, and (η1 − η−1) → ∞ if and only if c < 4. In particular, when the leader
does not have a cost disadvantage (c = 1), the di�erence between leader and follower
investment diverges.

Proof of Lemmas 1 and 2 The CES demand within each market implies that the market
share of �rm i is δi ≡ piyi

p1y1+p2y2
=

p1−σi

p1−σ1 +p1−σ2

. Under Bertrand competition, the price of
a �rm with productivity zi must solve pi = σ(1−δi)+δi

(σ−1)(1−δi)λ
−zi , with markup mi ≡ pi

λ−zi
=

σ(1−δi)+δi
(σ−1)(1−δi) and pro�ts πi = δi

(
pi−λ−zi

pi

)
. Now de�ne ρs as the relative price between

leader and follower in a market with productivity gap s. Taking ratios of the prices and
re-arrange, we derive that ρs must solve ρσs = λ−s

(σρσ−1
s +1)

σ+ρσ−1
s

. Market share is therefore
δs = ρ1−σs

ρ1−σs +1
for the leader and δ−s = 1

ρ1−σs +1
for the follower and pro�ts are πs = 1

σρσ−1
s +1

and π−s = ρσ−1
s

σ+ρσ−1
s

, respectively. Leader’s markup is ms = σ+ρ1−σs

σ−1
and follower’s markup

is m−s = σρ1−σs +1

(σ−1)ρ1−σs
.

The fact that follower’s �ow pro�ts are convex in s follows from algebra. Moreover,
lims→∞ ρ

σ
sλ

s = 1/σ; hence, for large s, πs ≈ 1

σ
1
σ λ−

σ−1
σ s+1

and π−s ≈ 1

σ
2σ−1
σ λ

σ−1
σ s+1

. The
eventual concavity of πs and (πs + π−s) as s → ∞ is immediate. Also note that, as
s→∞, πs → 1, π−s → 0, ms →∞, m−s → 0.

Proof of Lemma 3 The expression g = lnλ (
∑∞

s=0 µsηs + µ0η0) shows that aggre-
gate growth is equal to lnλ times the weighted-average investment rate of �rms at the
frontier—leaders and neck-and-neck �rms. In a steady-state, the growth rate of the pro-
ductivity frontier must be the same as the growth rate of followers; hence, aggregate
growth rate g can also be written as g = lnλ (

∑∞
s=1 µs (η−s + κ)).

To prove the expression formally, we proceed in two steps. First, we express aggre-
gate productivity growth as a weighted average of productivity growth in each market.
We then use the fact that, given homothetic within-market demand, if a follower in state
s improves productivity by one step (i.e. by a factor λ) and a leader in state s−1 improves
also by one step, the net e�ect is equivalent to one step improvement in the overall pro-
ductivity of a single market.

Let p (ν) ≡
[
p1 (ν)1−σ + p2 (ν)1−σ] 1

1−σ be the price index of a single market ν. We can
equivalently index for markets not using ν but instead using

(
s, zF

)
, the productivity gap

and the productivity of the follower. The growth rate g of aggregate productivity de�ned
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in (12) is equal to −d lnP
dt

, where P is the ideal consumer price index, and can be written
as:

g ≡ d lnλZ

dt
= −d lnP

dt
= −d

∫ 1

0
ln p (ν) dν

dt
= −

∞∑
s=0

µs ×
d
[∫
zF

ln p
(
s, zF

)
dF
(
zF
)]

dt
.

Now recognize that productivity growth rate in each market,−d ln p(s,zF )
d ln t

, is a function of
only the productivity gap s and is invariant to the productivity of follower, zF . Speci�cally,
suppose the follower in market

(
s, zF

)
experiences an innovation, the market price index

becomes p
(
s− 1, zF + 1

)
. If instead the leader experiences an innovation, the price index

becomes p
(
s+ 1, zF

)
. The corresponding log-changes in price indices are respectively

aFs ≡ ln p
(
s− 1, zF + 1

)
− ln p

(
s, zF

)
= − lnλ+ ln

[
ρ1−σ
s−1 + 1

] 1
1−σ − ln

[
ρ1−σ
s + 1

] 1
1−σ ,

aLs ≡ ln p
(
s+ 1, zF

)
− ln p

(
s, zF

)
= ln

[
ρ1−σ
s+1 + 1

] 1
1−σ − ln

[
ρ1−σ
s + 1

] 1
1−σ ,

where ρs is the implicit function de�ned in the proof for Lemma 1. The log-change in
price index is independent of zF in either case. Hence, over time interval [t, t+ ∆], the
change in price index for markets with state variable s at time t follows

∆ ln p
(
s, zF

)
=

aLs with probability ηs∆,

aFs with probability (η−s + κ · 1 (s 6= 0)) ∆.

The aggregate productivity growth can therefore be written as

g = −µ02η0a0 −
∞∑
s=1

µs ×
(
ηsa

L
s + (η−s + κ) aFs

)
,

where a0 ≡ aF0 = aL0 . Finally, note that if both leader and follower in a market experiences
productivity improvements, regardless of the order in which these events happen, the
price index in the market changes by a factor of λ−1: aFs + aLs−1 = aLs + aFs+1 = − lnλ for
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all s ≥ 1. Hence,

g = −µ02η0a0 −
∞∑
s=1

µs ×
(
ηsa

L
s + (η−s + κ) aFs

)
= −µ02η0a0 −

∞∑
s=1

µs ×
(
ηsa

L
s + (η−s + κ)

(
− lnλ− aLs−1

))
= lnλ ·

∞∑
s=1

µs (η−s + κ)−
(
∞∑
s=1

µs ×
(
ηsa

L
s − aLs−1 (η−s + κ)

)
+ µ02η0a0

)
.

Given that steady-state distribution {µs} must follow equations (10) and (11), we know

∞∑
s=1

µs×
(
ηsa

L
s − aLs−1 (η−s + κ)

)
+µ02η0a0 =

∞∑
s=1

µsηsa
L
s +µ02η0a0−

(
∞∑
s=1

µsa
L
s−1 (η−s + κ)

)
= 0.

Hence aggregate growth rate simpli�es to g = lnλ ·∑∞s=1 µs (η−s + κ), which traces
the growth rate of productivity laggards. We can also apply equations (10) and (11)
again to express productivity growth as a weighted average of frontier growth: g =

lnλ · (∑∞s=1 µsηs + 2µ0η0) .

A.2 Proof of claims in Sections 4.2 and 4.3

Section 4 maintains the assumption that investment cost is linear, c (ηs) = c · ηs for
ηs ∈ [0, η]. As discussed in Section 3.2, we assume the investment space is su�ciently
large—cη > π∞ and η > κ—so that �rms can compete intensely if they choose to—and c
is not prohibitively high relative to the gains from becoming a leader (cκ < π∞ − π0)—
otherwise no �rm has any incentive to ever invest.

Proof of Lemma 4 Recall n + 1 is the �rst state in which market leaders choose not
to invest, and k + 1 is the �rst state in which followers choose not to invest: n + 1 ≡
min {s|s ≥ 0, ηs < η} and k + 1 ≡ min {s|s ≤ 0, ηs < η}. Suppose n < k, i.e. leader
invests in states 1 through n whereas follower invests in states 1 through at least n + 1.
We �rst show that, if these investment decisions were optimal, the value functions of both
leader and follower in state n + 1 must be supported by certain lower bounds. We then
reach for a contradiction, showing that, if n < k, then market power is too transient to
support these lower bounds on value functions.
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The HJB equation for the leader in state n+ 2 implies

rvn+2 = max
ηn+2∈[0,η]

πn+2 + ηn+2 (vn+3 − vn+2 − c) +
(
η−(n+2) + κ

)
(vn+1 − vn+2)

≥ πn+2 + (η + κ) (vn+1 − vn+2) . (A.2)

That the leader does not invest in state n + 1 implies c ≥ vn+2 − vn+1; combining with
(A.2) to obtain

rvn+1 ≥ πn+2 − c (η + κ+ r) .

The HJB equation for the follower in state n+ 1 implies

rv−(n+1) = max
η−(n+1)∈[0,η]

π−(n+1) +
(
η−(n+1) + κ

) (
v−n − v−(n+1)

)
− cη−(n+1)

≥ π−(n+1) + κ
(
v−n − v−(n+1)

)
. (A.3)

That the follower invests in state n + 1 implies c ≤ v−n − v−(n+1); combining with (A.3)
to obtain

rv−(n+1) ≥ π−(n+1) + cκ. (A.4)

Combining this with the earlier inequality involving rvn+1, we obtain an inequality on
the joint value wn+1 ≡ vn+1 + v−(n+1):

rwn+1 ≥ πn+2 + π−(n+1) − c (η + r) (A.5)

We now show that inequalities (A.4) and (A.5) cannot both be true. To do so, we
construct alternative economic environments with value functions ŵ(0)

1 and v̂(0)
−1 such that

ŵ
(0)
1 ≥ wn+1 and v̂(0)

−1 ≥ v−(n+1); we then show that even these dominating value functions
ŵ

(0)
1 and v̂(0)

−1 cannot satisfy both inequalities.
First, �x n and �x investment strategies (leader invests until state n+ 1 and follower

invests at least through n+ 1); suppose for all states 1 ≤ s ≤ n+ 1, follower’s pro�ts are
equal to π−(n+1) and leader’s pro�ts are equal to πn+2; two �rms each earn π−(n+1)+πn+2

2

in state zero. The joint pro�ts in this modi�ed economic environment are independent
of the state by construction; moreover, the joint �ow pro�ts always weakly dominate
those in the original environment and strictly dominate in state zero (πn+2 + π−(n+1) ≥
π1 +π−1 > 2π0). Let ŵs denote the value function in the modi�ed environment; ŵs > ws

for all s ≤ n+ 1.
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Consider the joint value in this modi�ed environment but under alternative invest-
ment strategies. Let n̄ index for investment strategies: leader invests in states 1 through
n̄ whereas the follower invests at least through n̄ + 1. Let ŵ(n̄)

s denote the joint value in
state s under investments indexed by n̄. We argue that ŵ(n̄)

n̄+1 is decreasing in n̄. To see
this, note the joint �ow payo�s in all states 0 through n̄ is constant by construction and
is equal to x ≡

(
πn+2 + π−(n+1) − 2cη

)
—total pro�ts net of investment costs—and the

joint �ow payo� in state n̄ + 1 is
(
πn+2 + π−(n+1) − cη

)
= x + cη. ŵ(n̄)

n̄+1 is equal to a
weighted average of x/r and (x+ cη) /r, and the weight on (x+ cη) /r is higher when n̄
is smaller. Hence, ŵ(n̄)

n̄+1 is decreasing in n̄, and that ŵ(0)
1 ≥ ŵ

(n)
n+1 > wn+1. The same logic

also implies v̂(0)
0 = 1

2
ŵ

(0)
0 > 1

2
w0 = v0.

Consider follower’s value v̂(0)
−1 in the alternative environment, when investment strate-

gies are indexed by zero, i.e. �rms invest in states 0 and −1 only. We know v̂
(0)
−1 must be

higher than v−(n+1) because

v̂
(0)
−1 =

π−(n+1) − cη + κv̂
(0)
0

r + κ+ η
>
π−(n+1) − cη + κv0

r + κ+ η
≥ π−(n+1) − cη + κv−n

r + κ+ η
= v−(n+1).

We now show that the inequalities rv̂(0)
−1 ≥ π−(n+1) +cκ and rŵ(0)

1 ≥ πn+2 +π−(n+1)−
c (η + r) cannot both hold. We can explicitly solve for the value functions from the HJB
equations:

ŵ
(0)
0 =

πn+2 + π−(n+1) − 2cη + 2ηŵ
(0)
1

r + 2η

ŵ
(0)
1 =

πn+2 + π−(n+1) − cη + (η + κ) ŵ
(0)
0

r + η + κ

v̂
(0)
−1 =

π−(n+1) − cη + (η + κ) ŵ
(0)
0 /2

r + η + κ

Solving for ŵ(0)
1 and v̂(0)

−1 , we obtain

rŵ
(0)
1 = πn+2 + π−(n+1) − cη

(
1 +

η + κ

r + 3η + κ

)

(r + η + κ) rv̂
(0)
−1 = r

(
π−(n+1) − cη

)
+ (η + κ)

(
πn+2 + π−(n+1)

2
− cη r + 2η + κ

r + 3η + κ

)
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That rv̂(0)
−1 ≥ π−(n+1) + cκ implies

(r + η + κ) rv̂
(0)
−1 = r

(
π−(n+1) − cη

)
+(η + κ)

(
πn+2 + π−(n+1)

2
− cη r + 2η + κ

r + 3η + κ

)
≥ (r + η + κ)

(
π−(n+1) + cκ

)
=⇒ (η + κ)

(
πn+2 − π−(n+1)

2
− cη r + 2η + κ

r + 3η + κ

)
≥ (r + η + κ) cκ+ cηr

Since πn+2−π−(n+1)

2
≤ πn+2

2
< cη, it must be the case that

(η + κ) cη > (r + η + κ) cκ+ cηr + (η + κ) cη
r + 2η + κ

r + 3η + κ
.

On the other hand, that rŵ(0)
1 ≥ πn+2 + π−(n+1) − c (η + r) implies r ≥ η η+κ

r+3η+κ
; hence

the previous inequality implies

(η + κ) cη > (r + η + κ) cκ+ (η + κ) cη
η

r + 3η + κ
+ (η + κ) cη

r + 2η + κ

r + 3η + κ

= (r + η + κ) cκ+ (η + κ) cη,

which is impossible; hence n ≥ k.
We now show that the follower does not invest in states s ∈ {k + 1, ..., n+ 1}. First,

note

(r + η + κ) (v−s − v−s−1) = π−s − π−s−1 + κ (v−s+1 − v−s) + η (v−s−1 − v−s−2)

+ max {η (v−s+1 − v−s − c) , 0} −max {η (v−s − v−s−1 − c) , 0} .

Suppose v−s+1 − v−s ≥ (v−s − v−s−1), then

(r + η + κ) (v−s − v−s−1) ≥ π−s − π−s−1 + κ (v−s+1 − v−s) + η (v−s−1 − v−s−2)

=⇒ (r + η) (v−s − v−s−1) ≥ π−s − π−s−1 + η (v−s−1 − v−s−2) .

If v−s+1 − v−s < (v−s − v−s−1), then

(r + η) (v−s − v−s−1) < π−s − π−s−1 + η (v−s−1 − v−s−2)

+ max {η (v−s+1 − v−s − c) , 0} −max {η (v−s − v−s−1 − c) , 0}
≤ π−s − π−s−1 + η (v−s−1 − v−s−2) .
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To summarize, for all s,

v−s+1−v−s ≥ (v−s − v−s−1) ⇐⇒ (r + η) (v−s − v−s−1) ≥ π−s−π−s−1+η (v−s−1 − v−s−2)

(A.6)
Now suppose η−k−1 = 0 but η−s′ = η for some s′ ∈ {k + 2, ..., n+ 1}. This implies

v−(k−1) − v−k ≥ c > v−k − v−k−1 < v−s′+1 − v−s′ ,

implying there must be at least one s ∈ {k + 2, ..., n+ 1} such that v−s+1− v−s ≥ v−s−
v−s−1 < v−s−1 − vs−2. Applying (A.6),

(r + η) (v−s − v−s−1) ≥ π−s − π−s−1 + η (v−s−1 − v−s−2) (A.7)

(r + η) (v−s−1 − v−s−2) < π−s−1 − π−s−2 + η (v−s−2 − v−s−3) (A.8)

Inequality (A.7) and v−s−v−s−1 < v−s−1−v−s−2 implies r (v−s − v−s−1) > π−s−π−s−1;
convexity in follower’s pro�t functions further implies r (v−s − v−s−1) > π−s−1− π−s−2.
Substitute into inequality (A.8), and using the fact v−s−v−s−1 < v−s−1−vs−2, we deduce
it must be the case that (v−s−2 − vs−3) > (v−s−1 − v−s−2). Applying (A.6) again,

(r + η) (v−s−2 − v−s−3) < π−s−2 − π−s−3 + η (v−s−3 − v−s−4) .

That r (v−s−2 − v−s−3) > π−s−2−π−s−3 further implies (v−s−3 − v−s−4) > (v−s−2 − v−s−3).
By induction, we can show vs−1 − vs−2 < vs−2 − vs−3 < · · · < v−n − v−(n+1). But

(r + η + κ)
(
v−n − v−(n+1)

)
≤ π−n − π−(n+1) + κ (v−n+1 − v−n) + η (v−n+1 − v−n+1)

=⇒ (r + η)
(
v−n − v−(n+1)

)
≤ π−n − π−(n+1)

which is a contradiction, given convexity of the pro�t functions. Hence, we have shown
v−k − v−(k+1) ≥ v−s − v−s−1 for all s ∈ {k + 1, ..., n+ 1}, establishing that follower
cannot invest in these states.
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Proof of Lemma 5 Given the cuto�s (n, k), aggregate productivity growth is (from
Lemma 3) g = lnλ · (∑n

s=1 µsη + 2µ0η) . The steady-state distribution must follow

µsη =



µ1 (η + κ) /2 if s = 0

µs+1 (η + κ) if 1 ≤ s ≤ k − 1

µs+1κ if k ≤ s ≤ n+ 1

0 if s > n+ 1

(A.9)

Hence we can rewrite the aggregate growth rate as

g = lnλ ·
(

2µ0η +
k−1∑
s=1

µsη +
n∑

s=k−1

µsη

)

= lnλ ·
(
µ1 (η + κ) +

k∑
s=2

µs (η + κ) +
n+1∑
s=k

µsκ

)
= lnλ ·

(
µC (η + κ) + µMκ

)
,

as desired. To solve for µ0, µC , and µM as functions of n and k, we use (A.9) to write µs
as a function of µn+1 for all s. Let α ≡ κ/η, then

µs =


µn+1α

n+1−s if n+ 1 ≥ s ≥ k

µn+1α
n+1−k (1 + α)k−s if k − 1 ≥ s ≥ 1

µn+1α
n+1−k (1 + α)k /2 if s = 0

Hence µ0 = µn+1α
n+1−k (1 + α)k /2. The fraction of markets in the competitive and

monopolistic regions can be written, respectively, as

µM = µn+1

n+1∑
s=k+1

αn+1−s = µn+1
1− αn−k+1

1− α ,

µC = µn+1α
n+1−k

k∑
s=1

(1 + α)k−s = µn+1α
n−k
(

(1 + α)k − 1
)
.
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Proof of Lemma 6 Given k ≥ 1, the fraction of markets in the competitive region can
be written as

µC =
k∑
s=1

µs = µ1+µ1 (1 + α)−1︸ ︷︷ ︸
=µ2

+ · · ·+µ1 (1 + α)−(k−1)︸ ︷︷ ︸
=µk

= µ0
κ+ η

2η︸ ︷︷ ︸
=µ1

1− (1 + α)−k

1− (1 + α)−1 ≥ µ0
κ+ η

2η

Aggregate growth rate can be re-written as

g = lnλ ·
[
(1− µ0)κ+ µCη

]
≥ lnλ ·

[
(1− µ0)κ+ µ0

κ+ η

2

]
≥ lnλ · κ.

Aggregate investment is I = 2η
(
µC + µ0

)
+ η

(
µM − µn+1

)
. The de�nition of a steady-

state implies 2ηµ0+η
(
µM − µn+1

)
= (η + κ)µC+κµM , thus I = 2ηµC+κ (1− µ0) ≥ κ,

as desired.

A.3 Proof of claims in Section 4.4

Consider the following recursive equations of value functions {us}∞s=−∞:

rus+1 = λs+1 + ps+1 (us − us+1) + q (us+2 − us+1) (A.10)

where λs+1 is the �ow payo�, ps+1 and q are respectively the Poisson rate of transition
from state s+1 into state s and state s+2. Given us and ∆us ≡ us+1−us, we can solve for
all us+t, t > 0 as recursive functions of us and ∆us. The recursive formulation generically
does not have a closed-form representation. However, as r → 0, the value functions do
admit asymptotic closed form expressions, as Proposition A.1 shows. In what follows, let
∼ denote asymptotic equivalence as r → 0, i.e. x ∼ y i� limr→0 (x− y) = 0.

Proposition A.1. Consider value functions {us}∞s=−∞ satisfying (A.10). Fix state s and
integer t > 0.

Suppose λs′ ≡ λ and ps′ ≡ p for all states s ≤ s′ ≤ t. Let δ ≡ rus−λ
q

, a ≡ p
q
, b ≡ r

q
,

then for all t > 0,

us+t − us ∼ (∆us)
1− at
1− a + δ

t− a−at
1−a

1− a + ∆us · b
(t− 1)

(
1 + at

)
(1− a)− (2− a)

(
at − a

)
(1− a)3

+δb
1

(1− a)3

(
(t− 2) (t− 1)

2
(1− a)− (t− 3) at − a (2− a) (t− 1) + 2a (1− a)

)
(A.11)
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us+t − us+t−1 ∼ ∆usa
t−1 + δ

1− at−1

1− a + ∆usb

(
(t− 1)

(
1 + at

)
− (t− 2)

(
1 + at−1

))
(1− a)2

−∆usb

(
(2− a)

(
at − at−1

))
(1− a)3 +

δb

(1− a)2

(t− 2) (t− 1)− (t− 2) (t− 3)

2

− δb

(1− a)3 (t− 3) at + (t− 4) at−1 − a (2− a)

)
. (A.12)

If t→∞ as r → 0, then the formulas can be simpli�ed as follows:

1. If a < 1, then us+t − us+t−1 ∼ ∆usa
t−1 + δ

1−a + b∆us
(1−a)2

; further,

(a) if r∆us → 0, then us+t − us ∼ ∆us
1

1−a + tδ
1−a ;

(b) if r∆us 6→ 0, then r (us+t − us) ∼ r∆us
1−a .

2. Suppose a > 1 and r∆us → 0.

(a) If ∆us + δ
a−1
6∼ 0, then r (us+t − us) ∼

(
∆us + δ

a−1

)
rat

a−1
and

r (us+t − us+t−1) ∼
(
∆us + δ

a−1

)
rat−1.

(b) If ∆us + δ
a−1
∼ 0, then us+t − us ∼ − bδ

(1−a)4
· at+1.

Suppose λs′ and ps′ are state-dependent. Let λ ≥ λs′ and p ≤ ps′ for all s ≤ s′ ≤ t.
The formulas in (A.11) and (A.12) provide asymptotic lower bounds for us+t−us+t−1 and
us+t− us. Conversely, if λ ≤ λs′ and p ≥ ps′ for all s ≤ s′ ≤ t, then the formulas provide
asymptotic upper bounds for us+t − us+t−1 and us+t − us.
Remark. Proposition A.1. expresses us+t and ∆us+t as functions of us and ∆us. One can
also apply the Proposition write us and ∆us as functions of ∆us+t and us+t. Proposition
A.1. thus enables us to solve for value functions asymptotically, and we apply it repeated
throughout the rest of this appendix.

Proof of Proposition A.1. First suppose λs′ ≡ λ and ps ≡ p are constant for all states
s ≤ s′ ≤ t. Given us and ∆us, we can solve for value functions us+t as

us+1 − us = ∆usus+2 − us+1 = a∆us + b∆us + δ

us+2 − us = (1 + a) ∆us + b∆us + δ
(A.13)
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us+3 − us+2 = a2∆us + (1 + 2a) b∆us + (1 + a) δ + o (r)

us+3 − us = (1 + a+ a2) ∆us + (1 + 1 + 2a) b∆us + (1 + 1 + a) δ + bδ + o (r)

where o (r) captures terms that vanishes as r → 0. Applying the formula iteratively, one
can show that

us+t+1 − us+t = at∆us + δ

t−1∑
z=0

az + b∆us

t∑
z=1

zaz−1 + bδ
t−1∑
z=1

z∑
m=1

mam−1 + o (r)

us+t+1−us = ∆us

t∑
z=0

az+δ
t∑

z=0

z−1∑
m=0

am+b∆us

t∑
z=1

z∑
m=1

mam−1+bδ
t−1∑
x=1

x∑
z=1

z∑
m=1

mam−1+o (r)

One obtains the proposition by applying the following formulas for power series summa-
tions:

1.
∑t

z=0 a
z = 1−at+1

1−a ;

2.
∑t

z=0

∑z−1
m=0 a

m =
t+1−a−a

t+1

1−a
1−a ;

3.
∑t

z=1

∑z
m=1 ma

m−1 =
t(1+at+1)(1−a)−(2−a)(at+1−a)

(1−a)3
;

4.
∑t−1

x=1

∑x
z=1

∑z
m=1 ma

m−1 = 1
(1−a)3

(
t(t−1)

2
(1− a)− (t− 2) at+1 − a (2− a) t+ 2a (1− a)

)
.

The third and fourth summations formulas follow because
z∑

m=1

mam−1 =
(
1 + 2a+ 3a2 + · · ·+ zaz−1

)
=
(
1− az + a

(
1− az−1

)
+ · · ·+ az−1 (1− a)

)
/ (1− a)

=
(
1 + a+ · · ·+ az−1 − zaz

)
/ (1− a) = (1− az − (1− a) zaz) / (1− a)2

s∑
z=1

z∑
m=1

mam−1 =

s∑
z=1

(1− az − (1− a) zaz) / (1− a)2 =

(
s−

(
a− as+1

)
− a (1− a)

s∑
z=1

zaz−1

)
/ (1− a)2

=
(
s−

(
a− as+1

)
− a ((1− as) / (1− a)− sas)

)
/ (1− a)2

=
(
s (1− a)−

(
a (1− a)− (1− a) as+1

)
−
(
a− as+1

)
+ sas+1 (1− a)

)
/ (1− a)3

=
(
s
(
1 + as+1

)
(1− a)− (2− a)

(
as+1 − a

))
/ (1− a)3
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s−1∑
x=1

x∑
z=1

z∑
m=1

mam−1 =

s−1∑
x=1

(
x
(
1 + ax+1

)
(1− a)− (2− a)

(
ax+1 − a

))
/ (1− a)3

=

(
s−1∑
x=1

x (1− a) + xax+1 (1− a)− (2− a)
(
ax+1 − a

))
/ (1− a)3

=

(
s (s− 1) (1− a) /2 + a2 (1− a)

s−1∑
x=1

xax−1 − a (2− a) (s− 1)− (2− a) a2 1− as−1

1− a

)
/ (1− a)3

=

(
s (s− 1)

2
(1− a)− (s− 2) as+1 − a (2− a) s+ 2a (1− a)

)
/ (1− a)3 .

Now suppose λs and ps are state-dependent, and λ ≥ λs′ , p ≤ ps′ for all s ≤ s′ ≤ t.
Let δs ≡ rus−λs

q
, as ≡ ps

q
and note δs > δ ≡ rus−λ

q
, as > a. By re-writing equations

in this proof as inequalities (e.g. rewrite (A.13) as us+2 − us+1 > a∆us + b∆us + δ and
us+2−us > (1 + a) ∆us+ b∆us+ δ), the formulas in the Proposition provide asymptotic
lower bounds for us+t − us+t−1 and us+t − us as functions of us and ∆us. Conversely,
if λ ≤ λs′ and p ≥ ps′ for all s ≤ s′ ≤ t, then the formulas provide asymptotic upper
bounds for us+t − us+t−1 and us+t − us. QED.

Proof of Lemma7 Recalln and k are the last states in which the leader and the follower,
respectively, chooses to invest in an equilibrium. Both n and k are functions of the interest
rate r. Also recall that we use ws ≡ vs + v−s to denote the total �rm value of a market in
state s.

We�rst prove limr→0 n =∞. Consider the sequence of value functions v̂s generated
by an alternative sequence investment decisions: leader follows equilibrium strategies and
invests in n states whereas follower does not invest in any state. Under these alternative
investments, �ow payo� is higher in every state, hence the joint value of both �rms is
higher in every state—including state 0—thus v̂0 ≥ v0. One can further show by induction
that the alternative value functions dominate the equilibrium value functions (v̂s ≥ vs)
for all s ≥ 0; intuitively, leader’s value is higher in any state because it expects to spend
more time in higher payo� states, since the follower does not invest. Also by induction
one can show ∆vs ≥ ∆v̂s for all s ≥ 0; intuitively, when the follower does not invest,
leader has less of an incentive to invest as well.

Now suppose n is bounded, and we look for a contradiction. Let N be the smallest
integer such that (1) N > n for all r, and (2) πN − π0 > cκ. Note rvN = r · πN+κvN−1

r+κ
→

rvN−1 as r → 0; hence rvN ∼ rvN−1. By induction, becauseN is �nite, rvs ∼ rvt ∼ rv−s

for any s, t ≤ N . Likewise, rv̂s ∼ rv̂t for any s, t ≤ N . The fact that leader does not
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invest in state N − 1 implies limr→0 (vN − vN−1) < c =⇒ limr→0 rvN−1 > πN − cκ,
which further implies limr→0 rv̂0 ≥ limr→0 rv0 = limr→0 rvN−1 > πN − cκ. Also note
that ∆v̂0 > ∆ŵ0 = rŵ1−(2π0−2cη)

r+2η
→ rŵ0−(2π0−2cη)

2η
= rv̂0−(π0−cη)

η
. We now put these pieces

together and apply Proposition A.1 to compute a lower bound for ∆v̂n as a function of v̂0

and ∆v̂0 (substitute us = v̂0, us+t = v̂N , a = κ/η, b = r/η, δ = rv̂0−(πN−cη)
η

):

lim
r→0

∆v̂N ≥ lim
r→0

(
∆v̂0 (κ/η)N−1 +

rv̂0 − (πN − cη)

η

1− (κ/η)N−1

1− κ/η

)

> lim
r→0

rv̂0 − (π0 − cη)

η
(κ/η)N−1 +

rv̂0 − (πN − cη)

η

1− (κ/η)N−1

1− κ/η

> lim
r→0

πN − cκ− (π0 − cη)

η
(κ/η)N−1 +

πN − cκ− (πN − cη)

η

1− (κ/η)N−1

1− κ/η

> lim
r→0

c (κ/η)N−1 +
c (η − κ)

η

1− (κ/η)N−1

1− κ/η
= c,

where the last inequality follows the fact that πN − π0 > cκ. Thus limr→0 ∆vN ≥
limr→0 ∆v̂N > c and the leader must invest in state N , a contradiction.

Next, suppose limr→0 k =∞ but (n− k) remain bounded. Let ε ≡2cη − π∞ > 0.
The joint �ow payo� πs + π−s − 2cη is negative and bounded above by −ε in all states
s ≤ k. As k → ∞, if n − k remain bounded, then there are arbitrarily many states in
which the total �ow payo�s for both �rms is negative and only �nitely many states in
which the �ow payo�s may be positive. The �rm value in state 0 is therefore negative.
Since �rms can always ensure non-negative payo�s by not taking any investment, this
cannot be an equilibrium, reaching a contradiction. Hence limr→0 (n− k) =∞.

To show limr→0 k = ∞, we �rst establish a few additional asymptotic proper-
ties of the model.

Lemma A.1. (1) rvn ∼ π∞ − cκ; (2) vn+1 − vn ∼ c; (3) r (n− k) ∼ 0; (4) rk ∼ 0.

Proof. (1) The fact that leader invests in state n but not in state n+ 1 implies

πn+2 − rvn+1

r + κ
= vn+2 − vn+1 ≤ c ≤ vn+1 − vn =

πn+1 − rvn
r + κ

=⇒ π∞ − cκ = lim
r→0

(πn+2 − cκ) ≥ lim
r→0

rvn ≥ lim
r→0

(πn+1 − cκ) = π∞ − cκ, Q.E.D.

(2) The claim follows from the previous one: vn+1 − vn = πn+1−rvn
r+κ

∼ π∞−rvn
κ
∼ c.
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(3) The previous claims show rvn ∼ π∞− cκ and ∆vn ∼ c. We apply Proposition A.1
to iterate backwards and obtain a lower bound for (vk − vn):

lim
r→∞

r (vk − vn) ≥ lim
r→∞
− r

2

κ2

rvn − (π∞ − cη)

(1− η/κ)4 (η/κ)n−k+1 ∼ − r
2

κ2

c (η − κ)

(1− η/κ)4 (η/κ)n−k+1

Since |limr→0 r (vk − vn)| ≤ π∞, limr→0 r
2 (η/κ)n−k+1 must remain bounded, implying

r (n− k) ∼ 0.
(4) We apply Proposition A.1 to �nd a lower bound for wk−w0 (where a ≡ η/κ > 1):

lim
r→0

r (wk − w0) ≥ lim
r→0

(
∆w0 +

rw0 − (π∞ − 2cη)

a− 1

)
rak

a− 1
≥ lim

r→0

(
2cη − π∞
a− 1

)
rak

a− 1
.

Since r (wk − w0) is bounded, it must be that rak is bounded; therefore rk ∼ 0. QED.

Lemma A.2. rv−k ∼ r∆v−k ∼ rv−n ∼ ∆v−n ∼ 0.

Proof. First, note that follower not investing in state k + 1 implies c ≥ ∆v−(k+1). We
apply Proposition A.1 to �nd an upper bound for (v−n − v−k) as a function of rv−k and
∆v−(k+1): v−n−v−k ≤ limr→0

(
−∆v−(k+1)

η
η−κ + (n− k) rv−k

η−κ

)
, which implies r (v−n − v−k) ∼

0. Let m ≡ �oor(n+k
2

). That the follower does not invest in state m implies c ≥ ∆v−m.
Proposition A.1. provides a lower bound for v−(n+1) − v−n as a function of rv−m and
∆v−m−1: limr→0

(
v−(n+1) − v−n

)
≥ limr→0−∆v−(m+1) (κ/η)n−m+ rv−m−π−m

η−κ = limr→0
rv−m
η−κ ,

where the equality follows from limr→0 (κ/η)n−m = 0 and limr→0 π−m → 0. Since the
LHS is non-positive, it must be the case that limr→0 ∆v−n = limr→0 rv−m = 0. But since
rv−n ≤ rv−m, it must be that rv−n ∼ 0, which, together with rv−n ∼ rv−k, further
implies rv−k ∼ 0. That r∆v−k ∼ 0 follows directly from the HJB equation for state k.
QED.

We now prove limr→0 k = ∞. We show k bounded =⇒ rwk ∼ r∆wk ∼ 0, and
we look for a contradiction. First, we use the fact that 0 ≤ π−s for all 0 ≤ s ≤ k and
apply Proposition A.1 (simpli�cation 1a, substituting us ≡ v−k+1, us+t = v0, t = k + 1,
∆us = ∆v−k, a = η

η+κ
, b = r

η+κ
, δ =

rv−(k+1)−(−cη)

η+κ
) to �nd an asymptotic upper bound

for rv0:

lim
r→0

rv0 = lim
r→0

r
(
v0 − v−(k+1)

)
≤ lim

r→0

r

1− κ/η

(
∆v−(k+1) + k

rv−(k+1) + cη

η

)
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By Lemma A.1 part (4) and Lemma A.2, the RHS converges to 0, implying that rv0 ∼
rw0 ∼ 0. Further, using the HJB equation for state 0, we �nd that ∆w0 ≡ w1 − w0 =
rw0+2cη−2π0

2η
∼ c− π0/η.

Lower and upper bounds for rwk and r∆wk can be found, as functions of ∆w0 and
rw0, using Proposition A.1 (simpli�cation 2(a), substituting us ≡ w0, us+t = wk, t = k,
∆us = ∆w0, a = η+κ

η
, b = r

η
, and δ = rw0−(−2cη)

η
for the upper bound, δ = rw0−(π∞−2cη)

η

for the lower bound):

lim
r→0

(
∆w0 +

rw0 + 2cη − π∞
κ

)
η

κ
r

(
η + κ

η

)k
≤ lim

r→0
(rwk − rw0) (A.14)

≤ lim
r→0

(
∆w0 +

rw0 + 2cη

κ

)
η

κ
r

(
η + κ

η

)k

lim
r→0

(
∆w0 +

rw0 + 2cη − π∞
κ

)
r

(
η + κ

η

)k−1

≤ lim
r→0

(r∆wk) (A.15)

≤ lim
r→0

(
∆w0 +

rw0 + 2cη

κ

)
r

(
η + κ

η

)k−1

.

If k is bounded, these inequalities imply rwk ∼ r∆wk ∼ 0.
Now suppose rwk ∼ r∆wk ∼ 0 and we look for a contradiction. Let k̂ ≡ max {k,N}

where N is the smallest integer such that πN − π0 > cκ. That |N − k| is �nite and
rwk ∼ r∆wk ∼ 0 jointly imply rwN ∼ r∆wN ∼ 0. Note that πk̂ is a lower bound for
πs for all n ≥ s ≥ k̂; we apply Proposition A.1 (simpli�cation 1, substituting us ≡ wk̂,
us+t = wn+1, t = n + 1 − k̂, ∆us = ∆wk̂, a = κ

η
, b = r

η
, δ =

rwk̂−(πk̂−cη)
η

) and obtain
rwk̂−(πk̂−cη)

η−κ as an asymptotic upper bound for wn+1 − wn. Lemma A.1 part 2 further
implies that

lim
r→0

rwk̂ − (πk̂ − cη)

η − κ ≥ c ⇐⇒ lim
r→0

rwk̂ ≥ πk̂ − cκ > 0. (A.16)

This contradicts the presumption that rwk̂ ∼ 0. QED.
Note that (A.14), (A.15), and the contradiction above jointly imply limr→0 rwk > 0 and

limr→0 r∆wk > 0, and that r
(
η+κ
η

)k
converges to a positive constant. We summarize

these �ndings into a Lemma.
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Lemma A.3. limr→0 r∆wk > 0, and r
(
η+κ
η

)k
converges to a positive constant as r →

0.

Proof of Theorem 1. We show limr→0 (κ/η)n−k (1 + κ/η)k = 0, which, based on
Lemma 3, is a su�cient condition for µM → 1, µC → 0, and g → κ · lnλ.

To proceed, we �rst �nd a lower bound for ∆wk by applying simpli�cation 2 of Propo-
sition A.1 (substituting us ≡ w0, us+t = wk, t = k, ∆us = ∆w0, a = η+κ

η
, b = r

η
,

δ = rw0−(π∞−2cη)
η

):

lim
r→0

r∆wk ≥ lim
r→0

(
∆w0 +

rw0 − (π∞ − 2cη)

κ

)
r

(
η + κ

η

)k
. (A.17)

Simpli�cation 1 of Proposition A.1 provides asymptotic bounds for ∆wn (substituting
us = wk, us+t = wn, t = n− k, ∆us = ∆wk, a = κ

η
, b = r

η
; the upper bound is obtained

using δ = rwk−(πk−cη)
η

and the lower bound is obtained using δ = rwk−(π∞−cη)
η

):

lim
r→0

[
∆wk

(
(κ/η)n−k +

rη

(η − κ)2

)
+
rwk + cη − πk

η − κ

]
≥ lim

r→0
∆wn

lim
r→0

∆wn ≥ lim
r→0

[
∆wk

(
(κ/η)n−k +

rη

(η − κ)2

)
+
rwk + cη − π∞

η − κ

]
.

Since limr→0 πk = π∞, the lower and upper bounds coincide asymptotically. Furthermore,
Lemma A.1 shows ∆wn ∼ c; hence,

c ∼ ∆wk

(
(κ/η)n−k +

rη

(η − κ)2

)
+
rwk + cη − π∞

η − κ . (A.18)

Next, we apply simpli�cation 1(b) of Proposition A.1 to obtain (substituting us ≡ wk,
us+t = wn, t = n − k, ∆us = ∆wk, a = κ

η
, b = r

η
; the simpli�cation applies because

limr→0 r∆wk > 0, as stated in Lemma A.3): r (wn − wk) ∼ r∆wk
(η−κ)/η

. Part 1 of Lemma A.1
further implies

π∞ − cκ− rwk ∼
r∆wk

(η − κ) /η
. (A.19)

Substituting the asymptotic equivalence (A.19) into (A.18), we obtain

c ∼ c+ ∆wk

(
(κ/η)n−k +

rη

(η − κ)2

)
− rη∆wk

(η − κ)2
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=⇒ 0 ∼ ∆wk (κ/η)n−k .

Further substitute into inequality (A.17),

0 ≥ lim
r→0

(
∆w0 +

rw0 − (π∞ − 2cη)

κ

)(
η + κ

η

)k
(κ/η)n−k

Given ∆w0 ≥ 0, rw0 ≥ 0, and 2cη − π∞ > 0, the inequality can hold if and only if
limr→0

(
η+κ
η

)k
(κ/η)n−k = 0, as desired. All other claims in Theorem 1 follows directly.

QED.
Finally, the next result characterizes the relative rate of divergence between (n− k)

and k, as well as the rate of convergence of µM .

Lemma A.4. 1) limr→0
n−k
k

= 2 ln(1+κ/η)
ln η/κ

; 2) limr→0
1−µM
r

converges to a positive con-
stant.

Proof of Lemma A.4. We �rst prove n+k
k
∼ 2 ln(1+α)

− lnα
. Note Lemmas A.1 and A.2 jointly

imply rwn+1−(π∞−cη)
η−κ ∼ c ∼ ∆wn. We apply Proposition A.1 simpli�cation 2(b) to �nd

limr→0 rwk. We substitute us = wn+1, us+t = wk, ∆us = wn − wn+1 = −∆wn, a = η
κ

,
b = r

κ
; the upper bound is obtained using δ = rwn+1−(πk−cη)

κ
and the lower bound is

obtained using δ = rwn+1−(π∞−cη)
κ

, and that the lower and upper bounds coincide as r → 0.
Simpli�cation 2(b) applies because ∆us + δ

a−1
∼ −c + rwn+1−(π∞−cη)

κ(η/κ−1)
∼ 0. Proposition

A.1 implies

wk − wn+1 ∼ −
r

κ (η/κ− 1)4

c (η − κ)

κ
(η/κ)n+1−k

=⇒ r (wn+1 − wk) ∼
c (η − κ)

κ2 (η/κ− 1)4 r
2 (η/κ)n+1−k

substitute into (A.19) =⇒ r∆wk ∼ ϕ1 · r2 (η/κ)n−k for some constant ϕ1 > 0.

We denote a = Φ (f (r)) if a/f (r) converges to a positive constant as r → 0. By
Lemma A.3, limr→0 r∆wk > 0, hence (κ/η)n−k = Φ (r2). Lemma A.3 also states that
(1 + κ/η)−k = Φ (r); hence (η/κ)n−k ∼ ϕ2 (1 + κ/η)2k for some constant ϕ2 > 0, im-
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plying

(n− k) ln (η/κ) ∼ lnϕ2 + 2k ln

(
η + κ

η

)
=⇒ n− k

2k
∼ 2 ln (1 + κ/η)

ln η/κ
, as desired.

We now prove 1− µM = Φ (r). By Lemma 3 and denoting α ≡ κ/η,

1− µM =
αn−k

(
(1 + α)k − 1

)
+ αn−k+1 (1 + α)k /2

1−αn−k+1

1−α + αn−k
(

(1 + α)k − 1
)

+ αn−k+1 (1 + α)k /2
.

Hence
(
1− µM

)
∼ (κ/η)n−k (1 + κ/η)k. But we have established above that (κ/η)n−k =

Φ (r2) and (1 + κ/η)−k = Φ (r); jointly, these asymptotic relationships imply 1− µM =

Φ (r), as desired.
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