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1 Introduction

More than a trillion dollars is spent on investment in transportation infrastructure across

the world each year (Lefevre, Leipziger, and Raifman, 2014). Is this money being well spent?

This is a difficult question to answer, as evaluating the welfare effect of infrastructure im-

provements faces three paramount challenges: first, there is a “routing problem”: because

agents endogenously choose how to travel along through the infrastructure network, an im-

provement along one segment can change trade costs across the entire network. Second, there

is an “economic problem”: a change in trade costs impacts the distribution of economic ac-

tivity (and hence welfare) in all locations through complex general equilibrium interactions,

made all the more complicated by market failures created by the presence of agglomeration

and dispersion spillovers. Finally, traffic congestion creates a critical feedback loop as in-

frastructure improvements change traffic patterns, affecting costs throughout the network,

thereby affecting trade flows, which in turn impacts traffic patterns. This myriad of complex

interactions makes evaluating the welfare impact of a particular infrastructure investment

difficult, let alone choosing where to best target infrastructure improvements.

In this paper, we develop and implement a new framework that overcomes each of the

aforementioned challenges, providing a tractable way of assessing the welfare impact of in-

frastructure improvements. In particular, this paper makes four contributions. First, we

solve the “routing problem” by deriving an analytical expression on how an infrastructure

investment between any two connected locations in an arbitrary infrastructure network de-

creases the cost of travel between all bilateral pairs. Second, we solve the“economic problem”

by analytically characterizing how equilibrium welfare changes in response to a reduction in

trade costs in the competitive equilibrium of a standard general equilibrium “gravity” spatial

economic framework with agglomeration and dispersion spillovers. Third, we combine the

routing framework with the general equilibrium spatial framework in the presence of traffic

congestion – which creates a crucial feedback between the routing problem and the economic

problem – to assess the welfare impact of infrastructure improvements. Finally, we apply

our framework to the U.S. highway network, estimating several crucial model parameters

using readily available data on observed traffic flows and calculating the welfare impact of

improving each of the thousands of existing highway segments.

To tackle the routing problem, we assume the economy is composed of many locations

arranged on a weighted graph. For each origin-destination pair, a continuum of heterogeneous

traders each chooses their own optimal cost-minimizing route. Combining convenient results

of extreme-value distributions popularized by Eaton and Kortum (2002) with results from

graph theory, we derive an analytical expression for the expected (iceberg) trade cost between
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all pairs of locations as a function of the underlying infrastructure network. In the special

case when trader heterogeneity goes to zero, this expression is simply equal to the cost

incurred along the least-cost route (which can be calculated using the algorithm presented

in Dijkstra (1959), albeit without an analytical solution).

Our framework also allows us to derive two additional analytical expressions that exploit

the analytical characterization of the routing problem but are essential for implementing our

framework. First, we derive how any small change in the infrastructure network changes the

expected trade cost between all pairs of locations. The expression is intuitive – the more“out

of the way” a segment of the network, the smaller the impact on of its improvement on the

iceberg trade cost of a bilateral pair – and provides a straightforward link between the routing

problem and the economic framework to evaluate the welfare impact of an infrastructure

network change. Second, for any number of traders moving between location pairs, we

characterize the amount of traffic along all segments of the network. This result will prove

helpful in exploiting traffic data in two ways: first, it allows us to introduce a traffic congestion

into the framework (where the cost of traveling along an infrastructure segment depends on

the amount of traffic); second, it will prove helpful when estimating the model using observed

traffic flows.

To tackle the “economic problem”, we derive the elasticity of equilibrium welfare with

respect to a small change in trade costs in a standard general equilibrium spatial framework

with labor mobility as in Allen and Arkolakis (2014). In the absence of agglomeration and

dispersion spillovers, the competitive equilibrium is efficient and the elasticity of equilib-

rium welfare to a change in bilateral trade costs is simply equal to the fraction of world

trade between those locations.1 However, in the presence of agglomeration and/or disper-

sion spillovers, the competitive equilibrium is not efficient, and we show that the response of

welfare to trade costs carries a distortion term. The distortion term has a very interesting in-

terpretation in itself: as the positive agglomeration spillovers become stronger the distortion

term is increasingly determined by higher-order relationships in the network of locations.

In particular, indirect connections obtain a higher weight in determining its value. Overall,

in the presence of inefficiencies the entire set of trading connections between locations is

necessary for the characterization of the effects of reducing transportation costs.

We then combine the routing and economic problems in the presence of traffic conges-

tion (modeled as proposed by Vickrey (1967)). As more traffic travels along a segment of

the network, the cost of traveling along that segment increases, inducing some traders to

1This argument can be shown to be extended in other spatial frameworks without labor mobility where
efficiency holds as in Anderson (1979); Anderson and Van Wincoop (2003); Allen, Arkolakis, and Takahashi
(2018).
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opt to take alternative routes, impacting the cost of traveling along other segments in the

network. The extent to which costs increase along each segment depend on the number of

traders traveling from each origin to each destination (i.e. trade flows) which are in turn

impacted by changes in travel costs along the network, creating a feedback loop between the

“economic problem” and the “routing problem.” Despite these complex interactions, we are

able to provide analytical characterizations of how welfare changes in response to a small

improvement of any segment of the infrastructure network described in form of sufficient

statistics observed in the data and model parameters.

Finally, we apply our framework to analyze the welfare impact of improving each of the

nearly 7,000 segments of the U.S. National Highway System connecting nearly 900 cities.

Using the observed traffic flows and travel times along each segment, we estimate traders are

not very heterogeneous (i.e. most take a route that is close to optimal), but traffic congestion

spillovers are substantial. Reassuringly, model-predicted traffic flows are strongly correlated

with observed traffic flows and, as an out of sample test, the model implied bilateral trade

flows between U.S. cities, when aggregated, correlate well with observed state to state trade

flows.

Using our estimated parameters we find large and heterogeneous welfare impacts of im-

proving the U.S. highway network. While the welfare gains of adding 10 additional lane-miles

range from $10 to $20 million for three quarters of the highway segments, we estimate sub-

stantially larger gains for segments within metropolitan areas and along important travel

corridors, with the returns exceeding $500 million for two highway segments in the New

York City metropolitan area. For every highway segment, these benefits exceed the costs

of construction and maintenance (estimated based on local topography), with the greatest

returns on investment for highways within the New York City and Los Angeles metropolitan

areas and in central Indiana (aptly nicknamed the “Crossroads of America”). Interestingly,

the presence of market failures due to agglomeration, dispersion spillovers and traffic conges-

tion have important implications for which segment improvements have the greatest welfare

impact.

This paper is connected to different strands of the literature related to transportation

economics and infrastructure evaluation. First, there is long literature dating back to Fogel

(1962, 1964) that evaluates the economic impact of infrastructure improvements. Indeed,

we show that, in the absence of externalities, our finding that the welfare elasticity to a

change in bilateral trade costs is equal to the value of trade between those locations, the

general equilibrium equivalent of the celebrated “Social Savings” formula Fogel heuristically

derives.2 More recently, there is a burgeoning field evaluating the general equilibrium impacts

2Crafts (2004) in a partial equilibrium setup where incomes are constant, formally shows that the Fogel
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of infrastructure investment, e.g. Donaldson (2012), Allen and Arkolakis (2014), Donaldson

and Hornbeck (2016) in an inter-city context and the work of Ahlfeldt, Redding, Sturm,

and Wolf (2015) in an intra-city context; see Redding and Turner (2014) and Redding and

Rossi-Hansberg (2017) for excellent reviews. Relative to this literature, we offer a “routing”

framework that allows us to analytically solve for the impact of an improvement to the

transportation network in a gravity framework without having to rely on computational

methods (such as Dijkstra’s algoritm or the “Fast Marching Method” pioneered by Osher

and Sethian (1988)), which allows us to incorporate traffic congestion in a tractable manner.

Second, there is also a long theoretical literature in transportation economics examining

agent’s optimal routing decisions; these tools are comprehensively summarized in Galichon

(2016). However, the bulk of the existing empirical transportation economics literature is

focused on combining agent based (utility maximizing or rule-based) econometric approaches

that describe the demand for transportation needs with rule-based descriptions of the supply

of transportation and the associated traffic.3 While the details of these models vary, the

endogenous routing choice oftentimes limits their applicability to a few stylized examples.

In addition, the only interaction of agents decisions is through transportation demand and

supply; other prices are explicitly taken as given so that the literature altogether avoids the

general equilibrium modeling. Relative to this literature, we embed a routing problem into

a spatial general equilibrium framework.

Third, there is a small (but growing) literature studying spatial policy in general equilib-

rium.4 Ossa (2014) and Ossa (2015) follow a computational approach to characterize optimal

tariff and tax policies in spatial frameworks, while Allen, Arkolakis, and Takahashi (2018)

and Allen, Arkolakis, and Li (2015) derive first order necessary conditions for the charac-

terizations of the optimal investment in infrastructure. Fajgelbaum and Gaubert (2018)

characterize the optimal transfers across locations in a general equilibrium framework in the

presence of market failures due to agglomeration and congestion forces with many types of

labor. Relative this literature, we derive the analytical relationship of how equilibrium wel-

fare responds to changes in bilateral trade frictions in the presence of market failures due to

agglomeration and dispersion forces and traffic congestion and show these relationships can

be expressed as functions of observables (e.g. trade flows).

Most closely related to this paper are two recent working papers, each of which evalu-

formula provides an upper bound of consumer gains from price improvement.
3See for example Chapter 10 on De Palma, Lindsey, Quinet, and Vickerman (2011) for a review and

De Palma, Kilani, and Lindsey (2005) and Eluru, Pinjari, Guo, Sener, Srinivasan, Copperman, and Bhat
(2008) for realistic large-scale micro-econometric models of urban systems with traffic.

4There is also an expanding literature evaluating infrastructure investment using credible instrumental
variables variation, see for example Baum-Snow (2007), Michaels (2008), and Duranton and Turner (2011,
2012).
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ates optimal infrastructure policy in general equilibrium with rich geographies. Alder et al.

(2014) use a general equilibrium spatial model similar to the one we employ and applies

a heuristic algorithm to derive an approximation to the global optimal transportation net-

work. Fajgelbaum and Schaal (2016) consider a spatial equilibrium model with externalities

whereby they assume traffic congestion with associated optimal Pigouvian taxes that turn

the equilibrium to an efficient one and the optimization problem to a convex optimization

problem. We make two contributions relative to these papers: first, we derive an analytical

relationship between the infrastructure network and the resulting iceberg trade costs from

the optimal routing problem, resulting in a tractable method incorporating traffic conges-

tion into a quantitative general equilibrium gravity framework; second, we derive analytical

expressions for how welfare responds to (small) infrastructure improvements in the compet-

itive equilibrium in the presence of market failures. However, unlike both these papers, we

consider small improvements to existing infrastructure networks rather than solving for the

globally optimal transportation network.

The remainder of the paper proceeds as follows. The next section presents the routing

framework for the endogenous transportation costs and derives a number of key properties.

Section 3 embeds this routing framework into a spatial economic model and derives the

elasticity of aggregate welfare in the presence of agglomeration, dispersion, and congestion

externalities. Section 4 uses the framework to evaluate the welfare impact of improving each

segment of the U.S. highway network. Section 5 concludes.

2 Endogenous transportation costs

In this section, we describe how to calculate the transportation costs between any two loca-

tions, accounting for the fact that agents endogenously choose the least cost route between

locations.

2.1 Setup

Consider a world composed of a finite number of locations i ∈ {1, ..., N}. These locations are

organized on a weighted graph with an associated infrastructure matrix T = [tij ≥ 1], where

tij indicates the iceberg trade cost incurred from moving directly from i to j (if i and j are

not directly connected in the graph, then tij =∞). The top left panel of Figure 1 provides

an example of such a network, where N = 25 and locations are arrayed in a two-dimensional

grid, with locations that are directly connected (i.e. tij is finite) if they are adjacent and not

connected (i.e. tij is infinite) otherwise.
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Trade between i and j is undertaken by a continuum of traders ν ∈ [0, 1] who travel along

(endogenously chosen) paths to get from i to j. A path p between i and j is a sequence of

locations beginning with location i and ending with location j {i = p0, p1, ..., pK = j}, where

K is the length of path p.5 The aggregate trade cost from i to j on a path p of length K,

τ̃ij (p), is the product of the instantaneous trade costs along the path:

τ̃ij (p) =
K∏
k=1

tpk−1,pk (1)

Each trader also incurs a path-specific idiosyncratic trade cost shock εij (p, ν), so the total

cost to trader ν of traveling along path p between i and j is τ̃ij (p) εij (p, ν). Let τij (ν)

indicate the cost trader ν incurs optimally choosing the path between i and j to minimize

the iceberg trade costs incurred:

τij (ν) = min
p∈PK ,K≥0

τ̃ij (p) εij (p, ν) .

The trade cost between locations i and j is expected trade cost τij from i to j across all

traders as:

τij ≡ Eν [τij (ν)] . (2)

Notice that in the limit case of no heterogeneity all traders choose the route with the

minimum deterministic trade cost, a case that is typically solved in the routing choice liter-

ature with the use of the Dijkstra algorithm (see e.g. Donaldson (2012)). The introduction

of trader heterogeneity allows us to “convexify” the problem, which we will see – under ap-

propriate assumptions on the idiosyncratic term – results in a tractable analytical solution.

Our baseline heterogeneous traders formulation instead departs from the tradition of the

deterministic routing choice algorithms and bears resemblance to stochastic path-assignment

methods used in transportation and computer science literature. As pointed out by Prato

(2009) a common characteristic of those stochastic methods is that all solutions are heuristic.

Even with heterogeneity most of those methods require the implementation of a minimum

cost algorithm in advance (a la Dijkstra) in order to a-priori exclude a number of possible

paths (e.g. by setting a cutoff of distance or maximum links away from the minimum cost

one).

While, of course, we could follow either of these traditions we instead choose to consider

all the possible paths and derive precise analytical formulas for the key routing choices,

5Following the literature on graph theory, we assume that tii =∞ to exclude paths that stay in the same
location; however, we allow traders shipping goods from i to i to choose the “null” path where they travel
nowhere and incur no trade costs (which is the only admissible path of length 0).
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which substantially reduces the computational burden and at the same time allows to con-

vexify the problem. 6 This choice of modeling of the routing problem, constitutes the first

computational advantage of our approach and it is twofold: First, it allows us to reduce a

problem of large computational complexity (at least polynomial as Dijkstra typically needs

to be implemented) to a problem where analytical solutions and immediate implementation

is admissible.7 Second, these analytical solutions can be exploited for the characterization

of the traffic problem as we discuss below.

Our first object of interest is the elasticity of the trade cost to changes in infrastructure

links in the graph. Given trader’s optimal route choice, an application of the envelope

theorem immediately results in the following proposition:

Proposition 1. The elasticity of trade costs between i and j to a change in the infrastructure

link kl is:

∂ ln τij
∂ ln tkl

= πklij , (3)

where πklij is the fraction of trade costs incurred from i to j on paths through link k,l.

Proof. See Appendix 6.1.

This expression implies that the elasticity of expected trade costs to investment in in-

frastructure is given by the share of trade costs spent in link k, l while traveling from i to

j. While intuitive, it gives little chance to empirically assess these elasticities as it requires

precise traffic flow measurements that document the precise path followed by each trip along

with the associated costs incurred along each segment. While access to traffic data is widely

available, these data typically reports the volume of traffic along a certain link without in-

formation on the origin and destination of each trip. Since our objective is to operationalize

traffic flows and other information on transportation infrastructure that will allow us to

measure the impact of infrastructure investment on trade costs, we proceed by parameter-

izing the distribution of path-specific idiosyncratic trade cost shock. We do so so that we

6We should note that the concept of heterogeneous traders formulation has been utilized previously by
Allen and Atkin (2015). However, their formulation does not consider the optimal route taken, as the the
random trader shocks are realized on the expected cost matrix instead of the infrastructure matrix. The
work of Bell (1995) on the other hand is the closer in the routing literature to our approach in that it
considers all the paths to compute the minimum routing choice problem. This method is still heuristic, in
that distributional assumptions are not made, and thus an analytical characterization is not obtained.

7In our case, by taking the logarithm of the above minimization problem, the program can be also ex-
pressed as a linear programming problem. This formulation allows the implementation of linear programming
path-finding algorithms, such as the widely used A* algorithm that focuses on likely paths. These algorithms
can reduce the number of computations but nevertheless use heuristics to guide the search while still requir-
ing the implementation of the Dijkstra method, resulting in relatively small computational gains (see for
example Zeng and Church (2009)).
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relate to a voluminous literature in spatial economics and also include the shortest path case

analyzed by a Dijkstra as a limit case. For this, we view our formulation as relaxing the

previous literature’s focus on the least cost route in order to better understand the impact

of changes in the investment matrix on realized trade costs.

2.2 Analytical Characterization of Optimal routes

To derive an empirically implementable measure of the elasticity of trade costs to infras-

tructure investment in what follows, we assume that εij (p, ν) is Frechet distributed with

shape parameter θ > 0. The extent to which traders differ in which path they choose is now

determined by the shape parameter θ. In a sense, the parameter θ can be considered as cap-

turing the possibility of mistakes and randomness in the choice of routes, with higher values

indicating greater agreement across traders. In the limit case of no heterogeneity, θ → ∞,

all traders choose the route with the minimum aggregate trade cost. The previous literature

in economics has focused exclusively on this limiting case and relied upon computational

methods to calculate this least cost route (i.e. using the Dijkstra algorithm as in Donaldson

(2012) and Donaldson and Hornbeck (2016) or the Fast Marching Method as in Allen and

Arkolakis (2014)).

Let Pij,K denote the set of all paths of length K that go from i to j. In our formulation

we allow traders to choose any possible path to ship a good from i to j – including the most

meandering of routes.8 Using the familiar derivations discussed in Eaton and Kortum (2002)

we can express the expected trade cost τij from i to j across all traders as:

τij ≡ Eν [τij (ν)] = c

(
∞∑
K=0

∑
p∈PK

τ̃ij (p)−θ
)− 1

θ

, (4)

where c ≡ Γ
(
θ−1
θ

)
. Substituting equation (1) into equation (4) yields:

τ−θij = c−θ
∞∑
K=0

∑
p∈PK

K∏
k=1

t−θpk−1,pk
.

In what follows, it is useful to characterize the weighted adjacency matrix A =
[
aij ≡ t−θij

]
.

Note that aij ∈ [0, 1], where 0 indicates there is no connection between i and j, aij = 1

indicates a cost-less connection, and aij ∈ (0, 1) indicates a costly connection. By summing

over all paths of length K, we can write the expected trade cost in a more convenient form

8Reassuringly, in the estimation results below, we find that traders are quite homogeneous so that the
probability of taking any route that is not very close to optimal is exceedingly small.
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by explicitly summing across all locations that are traveled to first, second, etc. as follows:

τ−θij = c−θ
∞∑
K=0

 N∑
k1=1

N∑
k2=1

...

N∑
kK−1=1

ai,k1 × ak1,k2 × ...× akK−2,kK−1
× akK−1,j

 ,

where kn is the sub-index for the nth location arrived at on a particular path. This portion of

the expression in the parentheses, however, is equivalent to the (i, j) element of the weighted

adjacency matrix to the power K, i.e.:

τ−θij = c−θ
∞∑
K=0

AKij ,

where AK =
[
AKij
]
, i.e. AKij is the (i, j) element of the matrix A to the matrix power K.9

Furthermore, as long as the spectral radius of A is less than one, the geometric sum can

be expressed as:10

∞∑
K=0

AK = (I−A)−1 ≡ B,

where we call B = [bij] the route cost matrix (which is simply the Leontief inverse of the

weighted adjacency matrix). Finally, the expected trade cost from i to j can be written as

a simple function of the route cost matrix:

τij = cb
− 1
θ

ij . (5)

Equation (5) provides an analytical relationship between any given infrastructure network

and the resulting bilateral trade cost between all locations, accounting for traders choosing

the least cost route.

2.3 Properties of the routing problem solution

In this subsection, we characterize key properties of the endogenous trade cost framework.

We first characterize the elasticity of expected trade costs from location i to location j to an

improvement in link tkl:

9Note that we could truncate the summation up to some finite K to restrict consideration to only paths
that are not “too” long. It turns out that by allowing for all possible K admits a more convenient analytical
solution. As we will see below, the inclusion of longer routes turns out not to be quantitatively important,
as all traders end up taking routes that are optimal or very nearly so.

10A sufficient condition for the spectral radius being less than one is if
∑
j t

−θ
ij < 1 for all i. This will

necessarily be the case if either trade costs between connected locations are sufficiently large, the adjacency
matrix is sufficiently sparse (i.e. many locations are not directly connected), or the heterogeneity across
traders is sufficiently small (i.e. θ is sufficiently large).
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Proposition 2. Assume that trader shocks are Frechet distributed with parameter θ. Then

the elasticity of expected trade costs to an improvement in link kl can be expressed as:

∂ ln τij
∂ ln tkl

=
bikaklblj
bij

=

(
c

τij
τiktklτlj

)θ
. (6)

Moreover,
∂ ln τij
∂ ln tkl

is also the probability a trader going from i to j uses link kl.

Proof. See Appendix 6.2.

Equation (6) is intuitive: the numerator on the right hand side is the expected trade cost

on the least cost route from i to j, whereas the denominator is the expected trade cost on

the least cost route from i to j through the transportation link kl. Hence, the more costly it

is to travel through the link kl relative to the unconstrained least cost route, the smaller the

effect an improvement in tkl has on the reduction of trade costs between i and j and the less

likely a trader is to use the link kl. Of course, because of proposition 1, both the elasticity

of expected trade costs to the transportation link kl and the probability of using link kl on

the way from i to j are equal to the fraction of costs incurred along the link, i.e.:

∂ ln τij
∂ ln tkl

= πklij . (7)

Hence, the more “out of the way” the transportation link kl is from the optimal path between

i and j, the less frequently that path is used, and the smaller the effect an improvement in

tkl has on the reduction of trade costs between i and j.

As an example, consider the network of locations presented in Figure 1. If we assume

that all connected locations have the same direct cost tij, then the top right panel depicts

the probability that an agent going from i = 1 (bottom left) to j = 25 (top left) travels

over each connection. As is evident, connections along the direct diagonal route are chosen

much more often than other routes, and connections near the diagonal route are chosen more

often than those further away. As an additional example, the bottom left panel depicts the

probability for agents going from i = 1 (bottom left) to j = 15 (top center). In this case,

there are four different paths that share the same least deterministic costs. As is evident,

traders are much more likely to use links on these routes than other links. However, there is

also heterogeneity in the probability traveled across these different links – for example, the

connection from 1 to 7 is traveled more often than the connection from 2 to 8. This occurs

because there are many more possible paths going from 1 to 15 that use the 1 to 7 link than
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that use the 2 to 8 link, so each trader is more likely to get an idiosyncratic draw that causes

her to choose a path using the former link.

3 The welfare impact of transportation infrastructure

improvements

We now introduce an general equilibrium spatial economic framework with agglomeration

and dispersion economies. Using this framework we present a new characterization of how

a change in any bilateral trade cost affects the endogenous aggregate welfare. We then

combine this result with the optimal routing framework presented in Section 2 in order to

characterize the welfare effect of changing the transportation infrastructure. Finally, we show

how to extend the framework to allow for traffic congestion, which creates a feedback loop

between the optimal routing and economic frameworks.

3.1 A general equilibrium economic geography model

We assume that the world is inhabited by an exogenous measure L̄ of agents and by the

locations as described in the previous section. On the consumption side, agents have constant

elasticity of substitution (CES) with elasticity of substitution σ preferences over differentiated

varieties produced in each location. To purchase goods, workers are randomly matched with

traders and hence face trade costs equal to the expected trade costs τij above. With CES

preferences of consumers, the value of goods shipped from location i to location j can be

written as:

Xij = p1−σ
ij P σ−1

j Ej, (8)

where Pj =
∑

i p
1−σ
ij is the ideal Dixit-Stiglitz price index and Ej is the total expenditure of

agents in location j. The welfare of the agents is given by

Wj = Cj × uj

where Cj is the CES aggregate consumption bundle in location j and uj is the amenity of

the location.

On the production side firms produce differentiated varieties in each location under per-

fect competition with a constant returns to scale technology that uses labor with productivity

Ai. The workers in location i are compensated with a wage wi. Given these assumptions,
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the price for a unit of a good from i for a consumer in location j is

pij = τij
wi
Ai
.

Substituted in expression (8) and using the fact that the only income is labor income, we

obtain the standard gravity equation for bilateral flows,

Xij =

(
τij
wi
Ai

)
1−σP σ−1

j wjLj. (9)

Finally, we assume, following a large literature in economic geography, that productivities

and amenities are subject to spillovers. In particular, following Allen and Arkolakis (2014),

we let Ai = ĀiL
α
i , and ui = ūiL

β
i whereby Āi, ūi > 0. This specification allows for sufficient

flexibility in modeling the externalities in production and amenities, while representing a

broad range of explanations. Although not a specific requirement we will constraint ourselves

to intuitive parametric regions whereby the agglomeration forces are positive and dispersion

forces are negative, α ≥ 0 ≥ β and σ > 1.

To close the model we assume that the following equilibrium conditions hold:

1. Total income Yi is equal to total sales:

Yi =
N∑
j=1

Xij. (10)

2. Total expenditure Ei is equal to total purchases:

Ei =
N∑
j=1

Xji. (11)

3. Trade balance

wjLj = Yi = Ei. (12)

Given trade balance, the welfare of a worker is given by Wi ≡ wi
Pi
ui. Using this expression

to substitute out for the price index and the third equilibrium to substitute for Ej, we can

rewrite equation (8) for the value of bilateral trade as follows:

Xij =

(
τij
Aiuj

)1−σ

w1−σ
i W 1−σ

j wσj Lj. (13)

Substituting the gravity equation (13) and the equilibrium condition (12) into equilibrium
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conditions (10) and (11) yields the following system of equilibrium conditions that along

with a normalization and the labor adding up constraint,
∑

i Li = L̄ determines wages and

population in all locations along with the aggregate welfare W .

In the economic geography framework, the imposition of welfare equalization results in

the following system of equilibrium equations:

wiLi = W 1−σ
∑
j

(
τij
Aiuj

)1−σ

w1−σ
i wσj Lj (14)

wiLi = W 1−σ
N∑
j=1

(
τji
Ajui

)1−σ

w1−σ
j wσi Li. (15)

which can be solved for the equilibrium distribution of wages and population, along with the

equilibrium welfare W . We normalize world income, Y W =
∑

j wjLj = 1.

In what follows, we use the system of equilibrium conditions above to derive how changes

in transportation infrastructure affects the equilibrium welfare of agents. As an intermediate

step, we first derive the welfare effects of a changes in a particular (endogenous) trade cost.

3.2 Elasticity of welfare to changes in trade costs

We now examine how a change in bilateral trade costs affects the aggregate welfare. To do

so, we consider a perturbation of the trade costs around the initial equilibrium. To build

intuition we start with the baseline case of no externalities, α, β = 0. In the absence of such

externalities across markets, the equilibrium is efficient so an application of the envelope

theorem to the corresponding planner’s problem yields:

∂ lnW

∂ ln τij
= Xij. (16)

Rearranging this formula and expressing it in differentials we obtain

∆W

W
=
pij
τij

Xij

Y W

∆τij
pij

=
∆τij
τij

Xij =⇒

and thus
∆W

W︸ ︷︷ ︸
social savings

= pij
∆τij
τij︸ ︷︷ ︸

change in price

× Xij/pij︸ ︷︷ ︸
initial quantity
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In our general equilibrium setup the result is intuitive as in the equilibrium more workers

and more economic activity accumulate in routes with more trade and trade costs reductions

proportionately apply to all of them.

This result implies that the impact of infrastructure investment can be summarized by

the percentage cost savings offered by the investment multiplied by the volumes of initial

trade. Notably, the formula for welfare gains is the same as the formula for the calculation

of ’Social Savings’ introduced by Fogel (1962, 1964) based on heuristic derivations.11

Nevertheless, the case of externalities, α, β 6= 0, is much more intricate. This is because

the competitive equilibrium is no longer efficient and so there is no corresponding planner’s

problem upon with the envelope theorem can be applied. Instead, we proceed by perturbing

the system (14) and (15).12 The following theorem characterize the welfare gains in the

general case:

Theorem 1. The welfare gains from an improvement in a link are given by

d lnW

d ln τkl
= Xkl (1 + κk + νl) (17)

where κk,νk for k = 1, .., N are given by

1 + κk = (β + α)

(
σ − 1

γ2

)∑
i

Li
L̄

(
(DG)−1

ik,22 +
σ

σ − 1
(DG)−1

y,ik,21

)
1

Yk
(18)

νk = (β + α)

(
σ − 1

γ2

)∑
i

Li
L̄

(
(DG)−1

ik,12 +
σ

σ − 1
(DG)−1

ik,11

)
1

Ek
, (19)

we normalize νN = 0, and (DG)−1
ik,mn are the i, k elements of the m,n submatrix of the inverse

of

DG =

[
σ(α+β)
γ2

I µ− 1+α
γ2

I

λ′ − 1−β
γ2

I (σ−1)(α+β)
γ2

I

]
−

[
0 0

λ1N ... λN−1,N λNN + β
α

0

]

where γ2 ≡ 1 + ασ + β (σ − 1), λ ≡
[
Xij
Ej

]
is the matrix of import shares and µ ≡

[
Xij
Yi

]
is

the matrix of export shares. Note that κk, νk → 0 as α, β → 0.

11This formula can be derived as an upper bound of the equivalent variation for the gains from infrastruc-
ture improvement in partial equilibrium (see e.g. Crafts (2004)). As aggregate demand and aggregate supply
respond to prices, the full general equilibrium derivation in our context yields the original Fogel formula.

12A perturbation of the system with α, β = 0 under symmetry, τij = τji, yields an one-equation linear
system. The perturbation of this system yields the formula 16, a familiar result in Matrix Perturbation
theory. Since our system is a multi-equation and highly non-linear an analytical derivation for the general
case was not previously available.
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Proof. See Appendix 6.3.

This explicit characterization of welfare gains as a function of changes in expected trade

costs constitutes the second computational advantage of our approach. It allows us to mea-

sure the welfare benefits of transportation costs for small changes in trade costs, even in

the presence of externalities. With externalities, κk and νl are the economic distortions that

impact the welfare elasticity of trade costs. Notice that these distortions can be written

solely as a function of model parameters and the trade links across locations.What is the

interpretation of these distortions? To obtain intuition, consider the case of symmetric trade

costs, where there is a single distortion for each location, i.e. κk ∝ νk and we can write:

1 + κk = (ρ− 2)
N∑
i=1

(
Li
L̄

)
(DyG)−1

ik ,

where ρ ≡ 2+α−β
1+(σ−1)β+ασ

, γ1 ≡ 1 − α (σ − 1) − σβ, andDyG = µ + (1 − ρ)I = µ − γ1
γ2
I =

γ1
γ2

(
I − γ2

γ1
µ
)

in the case of unique equilibrium α + β < 0. All in all, in we can express:

1 + κk = (β + α)
σ − 1

γ1

N∑
i=1

Li
L̄

[
1 +

γ2

γ1

µik +

(
γ2

γ1

)2

µ
(2)
ik +

(
γ2

γ1

)3

µ
(3)
ik + ...

]
,

where µ
(n)
ij is the i, j element of the nth power of the export matrix, which can be interpreted

as the impact of higher order network effects on the welfare distortion. If agglomeration forces

are equal to dispersion forces, i.e. α+β = 0, γ2 = γ1 and the weights of all ordered effects are

equalized. As net agglomeration forces (i.e. α+β) increase, however,γ2/γ1 increases, meaning

that the market distortions depend more on higher order effects of spatial propagation.

3.3 Elasticity of welfare to transportation infrastructure improve-

ments

In the absence of traffic congestion externalities, a simple application of the product rule

allows us to determine the elasticity of aggregate welfare to infrastructure improvements by

combining the elasticity of welfare to bilateral trade costs and the elasticity of bilateral trade

costs to infrastructure improvements:

d lnW

d ln tij
=

N∑
k=1

N∑
l=1

d lnW

d ln τkl
× d ln τkl
d ln tij

. (20)
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Note that because traders are optimally choosing their routes, any change in the infrastruc-

ture link ij can potentially affect any bilateral trade flows kl, which is why we sum across

all kl pairs. From Proposition 1 and Theorem 1, this expression becomes:

d lnW

d ln tij
=

N∑
k=1

N∑
l=1

Xkl × πijkl × (1 + κk + νl) . (21)

There are two things to note about of equation (21). First, given model parameters, all

elements comprising the right hand size are in principle observable in the data, namely trade

flows, bilateral expenditures on each link, and populations. In the absence of spillovers (i.e.

α, β = 0), we have κk = νl = 0 for all k and l, so that d lnW
d ln tij

=
∑N

k=1

∑N
l=1Xkl × πijkl, i.e. the

elasticity of aggregate welfare to an infrastructure improvement along link ij is equal simply

to the total value of goods being shipped over that link.

As an example, return to the two dimensional grid network considered in Figure 1 and

suppose all locations have identical productivities and amenities and labor is mobile. The

bottom right panel of Figure 1 depicts the elasticity of welfare to a change in each direct

connection. As is evident, reducing the cost of traveling over links in the center of the grid

have larger impacts on welfare than those in the periphery. Intuitively, this is for two reasons:

first, the connections in the center are more likely to be traveled than on the periphery (see

the bottom left panel of Figure 1) and hence will have larger effects on bilateral trade costs;

second, because they are more centrally located, locations in the center will have greater

populations and economic output, so that the trade flows flowing through the central links

will be larger on average. As a result, improvements to those links will have larger effects on

welfare.

3.4 Traffic and congestion

Up until this point, the optimal routing problem and the economic geography model could

be considered separately, as there is no interaction between the elasticity of trade costs to

infrastructure improvements and the elasticity of welfare to trade costs; this is why equation

(20) can be derived immediately from the product rule. In the presence of congestion,

however, this is no longer the case: if the amount of trade flowing over a link affects the cost

of trading along that link, then the impact of infrastructure improvements will depend in

part on how trade adjusts to the new infrastructure. For example, the “fundamental law of

road congestion” of Duranton and Turner (2011) suggests that infrastructure improvements

will result in negligible reductions in the cost of travel, as they will result in additional traffic
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(trade) flowing on the network.13

It turns out that with several straightforward assumptions, the analytical framework

developed above can easily admit traffic congestion. As we will see, the introduction of

congestion creates a complex (but tractable) interplay between the optimal routing problem

and the general equilibrium economic framework. Moreover, incorporating congestion both

substantially improves the model’s ability to match observed traffic flows and has important

implications on which infrastructure improvements result in the greatest welfare gains.

To begin, as above we assume that trader shocks are Frechet distributed; under this

assumption, the value of goods flowing over each link has a convenient analytical solution.

Define the N ×N traffic matrix Ξ whose ijth element is the value of the flow of goods over

link ij, i.e. Ξij =
∑N

k=1

∑N
l=1 Xklπ

ij
kl. We then have the following Corollary:

Corollary 1. When trader shocks are Frechet distributed, the traffic matrix has the following

analytical representation:

Ξ = A�B′ (X�B) B′, (22)

where X is observed matrix of trade flows and the “�” and “�” indicate the Hadamard product

and division operators, respectively, i.e. element by element multiplication/division.

Note that this expression holds regardless of whether or not there is traffic congestion.

In addition to proving essential for incorporating congestion, it will also allow us to estimate

the parameters governing trade costs using readily observed traffic data when city-to-city

trade flows (and link specific expenditure shares) are unobserved.

Second, we assume that the trade cost incurred along the direct connection from i and j

is a function of the time it takes to travel from i to j, timeij:

tij = exp (κ× timeij) , (23)

where c1 > 0 and timeij be the time (in hours) it takes to travel along link ij. The exponential

functional form has been used extensively in the economic geography literature, and has a

number of attractive properties including 1. traveling costs are always greater or equal to

one, i.e. tij ≥ 1; 2. Given expression (1), conditional on travel time, the number of locations

through which a trader passes does not affect the trade costs that trader incurs; and 3. the

effect of a reduction in travel time on the percentage change in welfare is proportional to the

welfare elasticity to a change in the infrastructure cost, i.e. ∂ lnW
∂timeij

= κ ∂ lnW
∂ ln tij

.

13 Indeed, in the following framework it is possible to construct examples where an infrastructure improve-
ment along one segment actually reduces aggregate welfare due to congestion externalities, reminiscent of
the famous Braess’ paradox, see e.g. Frank (1981).
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Third, to incorporate congestion, we follow a popular specification suggested by Vickrey

(1967) by assuming that the time per unit distance (i.e. inverse speed) is related to the

traffic (per lane-mile) by the following function:

timeij
distij

= δ−1
0 + δ1

(
Ξij

distij × lanesij

)δ2
, (24)

where δ0 is the unimpeded speed of traffic and δ1 and δ2 are parameters that govern the

strength of congestion; if δ1 > 0 and δ2 > 0, then it will take a greater amount of time to

travel a particular distance the greater the traffic Ξij. As we will see below, this functional

form fits the observed relationship between travel time and traffic remarkably well.

Combining these three assumptions with equation (5) yields the following expression for

the expected trade costs between any two locations:

τ 1−σ
ij = c

(
I−

[
exp

(
−c1

δ0

− c3

(
Ξij

distij × lanesij

)δ2)])c2

, (25)

where c1 ≡ θ × κ, c2 ≡ σ−1
θ

, and c3 ≡ θ × κ× δ1. Note that equation (25) implicitly defines

the trade costs, as traffic Ξij depends in trade costs in all locations (see equation (22)).

Intuitively, traffic congestion creates a feedback loop, where greater traffic on one segment of

the infrastructure network increases the cost of traveling along that segment. The immediate

impact through the optimal routing problem is to divert traffic to other parts of the network,

thereby affecting costs elsewhere. However, the extent to which costs elsewhere are impacted

depends on the amount of traffic, which in turn depends on trade flows: this is the feedback

from the economic model to the routing model. However, by improving a portion of the

infrastructure network, the changes in costs will result in changes in equilibrium economic

activity and trade flows: this is the feedback from the routing model to the economic model.

Despite this feedback loop, we can still derive the welfare impact of an infrastructure

improvement. To do so, we apply the chain rule as follows:

d lnW

d ln lanesmn
=

N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

d lnW

d ln τkl
× d ln τkl
d ln tij

× d ln tij
d ln lanesmn

.

An increase in the number of lanes on the infrastructure link between m and n will potentially

impact the congestion between i and j, thereby affecting the cost of traveling along the

link between i and j. However, once we have characterized these (complicated) congestion

spillovers, the rest of the calculation is reasonably straightforward: changes in costs along

links will impact expected trade costs between all locations, each of which will affect aggregate
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welfare.

Applying the inverse function theorem to equation (24) yields the following expression

for the congestion externalities:

d ln tij
d ln laneskl

=
{
A−1

}
ij,kl
× α2c2distkl

(
Ξkl (t)

distkl × laneskl

)α2

where A is an N2 ×N2 matrix with elements:

Aij,kl = 1k=i,l=j − α2c2distij ×
(

Ξij (t)

distij × lanesij

)α2 d ln Ξij (t)

d ln tkl

and

d ln Ξij (t)

d ln tkl
=

N∑
m=1

N∑
n=1

Xmnπ
ij
mn∑N

k=1

∑N
l=1Xklπ

ij
kl

(∑
k′l′

d lnXmn

d ln τk′l′
πklk′l′ + θ

(
πklmn − πklmi − πkljn

)
− θ × 1i=k,j=l

)
.

While complicated, note that the expression depends only on model parameters and observ-

ables (e.g. trade flows).14

4 The welfare effects of improving the U.S. National

Highway System

We now use our framework to evaluate the welfare impacts of improving the U.S. National

Highway System. The U.S. National Highway System is a network of strategic highways

within the United States, including the Interstate Highway System and other roads serving

major transport facilities and it constitutes the largest highway system in the world. The

main backbone of the National Highway System, the Interstate Highway System, is one

of the world’s largest infrastructure megaprojects in history (Kaszynski, 2000). It took

more than thirty five years to construct at an estimated cost $560 billion (in 2007 dollars),

and total annual maintenance costs are approximately $130 billion (CBO, 1982; FHA, 2008;

NSTIFC, 2009). However, little is known about the relative importance of different segments

of the highway system in terms of how each affects the welfare of the U.S. population. Such

knowledge is crucial for appropriately targeting future infrastructure investments.

14We refer the interested reader to Allen, Arkolakis, and Takahashi (2018) for the analytical expression
for d lnXmn

d ln τk′l′
, which itself depends only on observed trade flows, the trade elasticity, and the strength of

agglomeration and dispersion forces.
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4.1 Data

Data on the length, location, number of lanes, and average annual daily traffic (AADT) of all

1,029,142 segments of the highway system in the continental United States comes from the

National Highway Planning Network data-set published by the Federal Highway Association

(FHA, 2015), which itself is a compilation of geo-coded datasets from each state’s department

of transportation. We combine this data set with the location, population, and median-

income of all U.S. cities located within 10 kilometers from the continental U.S. highway

network with a population of at least 50,000 people from Edwards (2017); these 893 cities

comprise 140 million people, slightly less than half of the total continental U.S. population.

The top panel of Figure 2 depicts the highway network and the location of all 893 cities,

where the size of the city indicates its population (larger dots indicate greater population)

and the color of the highway segment indicates the amount of traffic (blue indicates little

traffic, red indicates large amounts of traffic).

To construct the adjacency matrix of the highway network, we use the Network Analyst

Toolbox in ArcGIS to calculate the shortest route along the highway network from each

U.S. city to each of its 25 nearest neighbors; as long as that route does not pass through

the center of another city, we identify those two cities as adjacent.15 In total, we identify

6,924 links in the adjacency matrix. For each link, we calculate the average AADT, average

number of lanes, and total distance across all segments along the shortest route between the

cities. Note that this procedure does not impose symmetry and allows for the traffic and

number of lanes to differ depending on the direction traveled. The bottom panel of Figure 2

depicts the resulting adjacency matrix between all 893 cities, where color of the links indicate

the average amount of traffic over the link (blue indicates little traffic, red indicates large

amounts of traffic). For each link, we recover the time of travel from the HERE API using

the georoute Stata command by Weber and Péclat (2017).

Finally, to compare the benefits of improving each link of the U.S. highway system to

the cost of doing so, we estimate the cost of improving each link by its local topography.

In particular, we classify every point in the continental U.S. as belonging to one of four

categories: urban, rural-flat (with a slope of less than 5%), rural-rolling (with a slope between

5% and 15%), and rural-mountainous (with a slope greater than 15%). From Exhibit A-1 of

(FHA), the construction cost per lane-mile is $5.598 million in urban areas, $6.492 million in

rural-mountainous areas, $2.085 million in rural-rolling areas, and $1.923 million in rural flat-

15The choice of 25 nearest neighbors was made to balance Type I and Type II error; ensuring that nearly
all nearby cities were connected without identifying as adjacent city pairs whose shortest route skirt around
cities in between. However, the discernible reader will note that the resulting adjacency matrix does not
perfectly reflect the actual U.S. highway network; such small errors are unavoidable in any easily replicable
process that constructs an adjacency matrix from a road network with many nodes and edges.
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areas. For every link, we calculate the average per lane-mile cost by weighting each of these

four categories by the percentage of the link traveling over that category. Finally, assuming

a (linear) 20 year depreciation (as in Appendix C of Office of the State Auditor (2002)) and

a 5% cost of capital, the construction cost is also equal to the annualized construction plus

maintenance cost of constructing ten lane-miles along each link. Panel A of Figure 7 depicts

this estimated cost, overlaid against the raster identifying the classification of each point of

land; as is evident, construction costs are highest in urban segments and on longer stretches

near the Rocky Mountains.

4.2 Estimation

To estimate the welfare impact of improving the U.S. highway system, we need to have

values for the trader shape parameter θ, the parameter mapping travel time to trade cost

κ, the congestion parameters {δ0, δ1, δ2}, the trade elasticity σ − 1, and the strength of

productivity and amenity externalities, α and β. While there exists a substantial trade

and economic geography literature estimating the trade elasticity and the productivity and

amenity externalities (upon which we will rely), we will estimate the remaining parameters.

One limitation of using such a detailed representation of the U.S. Highway network be-

tween all U.S. cities with more than 50,000 people is that bilateral trade flows between these

cities are unobserved. However, traffic flowing along each link of the highway is readily

observed. The basic idea of our estimation procedure is to find parameters such that the

model predicted value of trade flowing over each segment of the highway network most closely

matches the observed traffic on that segment. In order to do so, we assume that the observed

traffic over a particular link (measured in vehicles) is proportional to the underlying value

of trade on that link:

Ξij = λ× trafficij,

where λ > 0. This assumption – while strong – is perhaps weaker than it first appears.

For example, one might think that this assumption is violated if a greater fraction of traffic

within cities is due to commuting rather than the movement of goods. However, we can

interpret the act of commuting as a trade from the locations of a worker’s residence to her

workplace, as the model is silent about whether a worker trades her labor directly or just the

good she produced with her labor.16 Similarly, the act of an individual driving to a store to

go shopping can be interpreted as trade flowing from the location of the store to the worker’s

16Adao, Costinot, and Donaldson (2017) discuss formally an equivalence of an exchange economy to a
Ricardian production economy. Our model features externalities and the formal equivalence of our exchange
economy with agglomeration and dispersion effects to a Ricardian production economy with externalities is
discussed in Adao, Arkolakis, and Esposito (2017).
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residence. We verify below the validity of our assumption by comparing the predicted trade

flows of our model (estimated using traffic flows) to actual commodity trade flows from the

Commodity Flow Survey.

Given this assumption, we first estimate the congestion parameters using observed travel

times and traffic flows. Assume that unimpeded traffic can travel seventy miles per hour over

each link of the U.S. highway system, i.e. δ0 = 70. Rearranging equation (24) then yields:

log

(
timeij
distij

− 1

70

)
= ln

(
δ1λ

δ2
)

+ δ2 log

(
trafficij

distij × lanesij

)
, (26)

where trafficij is the observed average annual daily traffic along each link. Figure 3 shows

that this log-linear relationship in equation (26) fits the observed relationship between speed

of travel and traffic exceedingly well: a local polynomial non-parametric regression is very

close to the assumed log-linear relationship, with an estimated δ2 = 0.4415 (and a t-statistic

of 119).

With an estimated δ2, we now turn to estimating the three (composite) parameters :

c1 ≡ θ× κ, c2 ≡ σ−1
θ

, and c3 ≡ θ× κ× δ1 which, together with the traffic matrix Ξ, allow us

to estimate the bilateral trade costs
{
τ 1−σ
ij

}
using equation (25).

For intuition in how the procedure works, consider first the case where c3 = 0 so that

there is no congestion and equation (25) offers an explicit equation for bilateral trade costs{
τ 1−σ
ij

}
. Given the observed income Yi in each city i ∈ {1, ..., N}, and a matrix for

{
τ 1−σ
ij

}
,

it is straightforward to show using the results of Allen, Arkolakis, and Li (2014) there exists

a unique set of prices, pi = wi/Ai, (to-scale) in each location that ensures markets clear and

trade is balanced, i.e. equations (10), (11), and (12) hold, given (9). As a result, there exists

a unique set of trade flows {Xij} (normalized so that world income is equal to one) consistent

with observed incomes {Yi}, market clearing conditions, and the trader optimization. Finally,

from equation (22), this implies that there exists a unique traffic matrix of goods flows; write

this traffic matrix as Ξ ({c1, c2} ; {distkl} , {laneskl} , {Yk}). Note that Ξ does not depend

on the chosen values of the trade elasticity or the agglomeration forces α and β, as these

parameters do not affect the recovery of the bilateral trade flows given observed incomes and

the trade cost matrix
{
τ 1−σ
ij

}
. This discussion proves the following Proposition:

Proposition 3. Assume that c3 = 0. Then for any given pair {c1, c2} and for given observed

data on incomes {Yi}, distance {distkl}, and lanes {laneskl}, there is a unique traffic matrix

that rationalizes those observed data.

When there is congestion – i.e. c3 6= 0 – the same argument can be made above given

any initial guess for traffic Ξ(0), i.e. there exists a unique traffic matrix that rationalizes the
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observed data given that initial guess. This allows us to iterate on the procedure to find a

fixed point where the equilibrium traffic is consistent with the (implicit) function equation

(25), the equilibrium conditions, and observed income, distance, and lanes:

Ξ ({c1, c2, c3} ; {distkl} , {laneskl} , {Yk}) = lim
k→∞

Ξ(k+1)
(
{c1, c2, c3} ; {distkl} , {laneskl} , {Yk} ;

{
Ξ(k)

})
,

where we refer to each element as Ξij ({c1, c2, c3}) for brevity.17 We can then estimate c1,c2,

and c3 using our assumption that observed traffic flows are proportional to model predicted

value of trade traveling along a link by minimizing the difference between the observed and

predicted traffic, where both are logged and de-meaned to difference out the unknown scalar

λ:

{c∗1, c∗2, c∗3} = arg min
c1,c2,c3

∑
i,j

(
ln Ξ̃ij ({c1, c2, c3})−

(
ln ˜trafficij

))2

,

where the tildes indicate that each has been de-meaned by its sample means.

Figure 4 presents the results of the estimation procedure. In the top panel, we constrain

c3 = 0 (i.e. there is no congestion). Even without congestion, the model predicted traffic

flows correlate strongly with observed traffic flows (a correlation of 0.48). Our estimates

are c∗1 = 16.6 and c∗2 = 0.0394. With a trade elasticity of eight (i.e. σ = 9) as in (Allen

and Arkolakis, 2014), this implies θ = 203 and κ = 0.08, indicating very little heterogeneity

across traders (i.e. most traders take the shortest route when traveling). As an illustration,

Figure 6 depicts the probability a trader traveling from Seattle, WA to Manhattan borough

in New York, NY uses each link; as is evident, all links except for those on the shortest (or

nearly shortest) route have virtually zero probability of being used. A κ = 0.08 implies that

a one hour travel time incurs an ad-valorem equivalent trade cost of 8% (or a 4 hour trip

from New York, NY to Washington D.C. an ad valorem equivalent trade cost of 37%).

In the bottom panel of Figure 4, we allow for congestion. While the estimates of c∗1 and

c∗2 did not change much (c∗1 = 11.9 and c∗2 = 0.0455, implying θ = 175.8 and κ = 0.07 with a

trade elasticity of eight), the data strongly reject no congestion, with c∗3 = 103. Moreover, the

introduction of congestion substantially improves the fit of the model, reducing the distance

between observed and predicted trade flows by more than 30% and improving the correlation

between observed and predicted trade flows to 0.56. In what follows, we use the estimates

with congestion as our preferred estimates.

As mentioned above, an advantage of our estimation approach is that it relies on readily

available traffic data rather than difficult to obtain bilateral trade data between the 893

U.S. cities in our sample. Indeed, a by-product of our estimation procedure is the full

17In practice, the fixed point is found after very few iterations.
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matrix of estimated city-to-city level bilateral trade flows.18 As a final test of our estimation

procedure, we aggregate these city-to-city predicted trade flows up to the state-to-state level

and compare them to the publicly available 2012 Commodity Flow Survey (CFS) data (CFS,

2012). Note that these bilateral commodity trade flows were not used as inputs or otherwise

targeted in our estimation procedure. Figure 5 shows that the model’s predicted trade flows

match well with the flows reported in the CFS, with a correlation (in logs) of intra-state

trade flows 0.73 and a correlation (in logs) of inter-state trade flows of 0.47 (the correlations

in levels are even higher).19

4.3 The welfare effects of improving the U.S. National Highway

System

Finally, we estimate the welfare effects of improving the U.S. National Highway System. To

do so, for each link, we calculate the percentage increase in aggregate welfare from adding ten

additional lane-miles. We then convert this percentage welfare increase to a dollar amount

using a compensating variation approach, i.e. how much would the the annual U.S. real

GDP have to increase (in millions of chained 2012 U.S. dollars) holding prices constant to

achieve the same welfare increase we estimate.

Note that the direct impact of adding additional lane-miles is to speed up travel by

reducing congestion on a particular link (see equation (24)), thereby reducing trade costs on

that link (see equation (24)). This reduction in congestion will result in traders endogenously

altering which route they choose to get from an origin to a destination; moreover, by changing

prices, wages, and where people reside, the amount of trade between each pair of locations

will also change. The results that follow incorporates the entirety of this complex feedback

process.

The bottom panel of Figure 7 depicts the welfare gains of adding ten additional lane-miles

to each highway segment in the U.S., assuming an elasticity of substitution, σ, of nine, a

productivity spillover α = 0.1, and a amenity spillover β = −0.3. As is evident, the gains

are both large and heterogeneous. Adding 10 lane-miles to any of the bottom bottom half

of highway segments would result in welfare gains equivalent to $10.2 - $12.2 million a year.

Benefits for the third quartile range from $12.2 million to $19 million. However, the best

quartile of links, the estimated welfare impacts are much much larger, exceeding $500 million

18This dataset is available for download on Allen’s website.
19This strong correlation is not only driven by the predicted trade flows matching the observed city level

incomes: the partial R2 of a regression of observed (log) state-to-state trade flows from the CFS on the
model predicted (log) state-to-state trade flows with origin-state and destination-state fixed effects is 0.49,
indicating that the model captures roughly half of the residual variation in observed bilateral trade flows
even after conditioning on total exports from each origin and total imports from each destination.
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annually in two cases in the New York City metropolitan area.20

For all highway links, the benefits of adding additional lane-miles substantially exceed

the annualized costs of construction, which we estimate are between $1.9 and $5.6 million

per year, depending on the local topography (see panel A). Where is the biggest bang for

the buck? Figure 9 depicts the estimated rate of return for each link, measured as the log

ratio of annualized benefit to annualized cost. Several patterns emerge. Given the large

estimated welfare impacts for within greater metropolitan areas, these links also have the

highest rates of return. For longer routes, however, the benefits are the largest if there are

not many alternative routes or if the link connects major economic centers; for example,

the gains of adding additional lanes to highway segments in Indiana are in the top decile of

rates of returns (therefore justifying its slogan“the cross roads of America”). Consistent with

these patterns, Table 1 list the ten highway segments with the greatest returns of investment:

seven of the top 10 are in the New York City area, one is in the Los Angeles area, and two

are in Indiana.

How does incorporating externalities and traffic congestion affect our estimates of how to

best improve existing infrastructure? The top panel of Figure 8 takes our estimated parame-

ters without congestion and compares the welfare elasticities of infrastructure improvements

with and without externalities; the extremely high correlation indicates that including ex-

ternalities without congestion does not substantially impact which highway links have the

greatest welfare impact. The bottom panel of Figure 8 compares the welfare impacts with

and without congestion (in both cases allowing for externalities). While there is a clear pos-

itive relationship in the estimates, there is also substantial disagreement on which links are

most important. Hence, incorporating congestion not only improves the model fit as we saw

above, it also has important implications on how to best target infrastructure improvements.

5 Conclusion

We have presented a tractable approach that combines elements of graph theory with gen-

eral equilibrium spatial analysis to tackle three main challenges of evaluating infrastructure

investment: the characterization of the routing problem of how infrastructure investment

between any two locations affects the trade cost between all locations, the derivation of the

elasticity of equilibrium welfare with respect to changes in trade costs, and the analytical

characterizations of traffic congestion, which creates a critical – albeit tractable – feedback

loop between the routing problem and the general equilibrium economic system. Our ap-

20North Hempstead to Queens on 495W ($719m annually) and White Plains to Greenburgh on 287W
($510m annually).
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proach allows the quantitative analysis of infrastructure investments to scale: we evaluated

the welfare implications of changing thousands of links of the US National Highway Sys-

tem connecting hundreds of major US cities. Our approach has used a specific general

equilibrium framework and it was oriented towards applied policy but focused on small in-

frastructure changes. However, the tools we have developed can be used to derive the first

order necessary conditions of a global optimum in more generalized frameworks. We see it

as an extremely fruitful future research avenue to apply these results to characterize globally

optimal transportation networks in the presence of externalities.
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Tables and Figures

Figure 1: An Example Geography

Example Graph
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Notes : This figure provides an example geography. The top left frame depicts the graph of
the connections between each of the 25 locations, where all connections are assumed to incur
an equal cost. The top right depicts the probability of traveling along each connection when
beginning at location 1 (bottom left) and traveling to location 25 (top right). The bottom
left frame also depicts the probability of traveling along each connection when beginning at
location 1 (bottom left) but now traveling to location 15 (top center). Finally, the bottom
right figure depicts the elasticity of aggregate welfare to an improvement in each of the
connections.
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Figure 2: The U.S. National Highway Network

Panel A: The Observed U.S. National Highway Network
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Panel B: A Graphical Representation of the U.S. National Highway Network
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1658 - 14960

14970 - 25140

25150 - 36740

36750 - 50710

50720 - 67970

67980 - 87810

87820 - 113300

113400 - 145600

145700 - 185100

185200 - 232200

U.S. city population
!( 50073 - 78426
!( 78427 - 114756
!( 114757 - 162320

!( 162321 - 233136
!( 233137 - 361710
!( 361711 - 595047
!( 595048 - 1000000

!( 1000001 - 1600000
!( 1600001 - 4000000

!( 4000001 - 8500000

Notes : This figure depicts the U.S. highway network. Panel A shows the observed Na-
tional Highway Network along with all cities with populations greater than 50,000 within 10
kilometers from the highway network. Panel B depicts the graphical representation of the
constructed adjacency matrix between cities along the highway system. Two cities are con-
sidered connected if the fastest route between the locations along the highway system does
not pass through another city. The color of the links indicates the traffic between connected
cities, with blue indicating a less traffic and red indicating greater traffic. The size of the
city circle indicates its population, with larger sizes indicating greater population.
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Figure 3: Traffic and Speed

-1
0

-8
-6

-4
-2

Lo
g(

in
ve

rs
e 

sp
ee

d 
- 1

/7
0)

(h
ou

rs
 p

er
 m

ile
 m

or
e 

th
an

 n
o 

tra
ffi

c)

0 2 4 6 8 10
Log traffic

(Vehicles per lane-mile)

Data Non-parametric regression
Log-linear relationship

Notes : This figure plots the relationship between the (log) average traffic per lane-mile and
the observed (log) additional time it takes to travel an additional mile relative to the time
it would have taken going seventy miles per hour. The observed time of travel is calculated
using API. The traffic data by ( (US)). The green line is a log-linear regression fit over the
data and the red line is a local non-parametric regression with an Epanechnikov kernel and
a 0.25 bandwidth. The coefficient of the linear regression is 0.4415, with a t-statistic of 119.
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Figure 4: Model Fit
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Notes : This figure depicts the ability of the model to match the observed traffic data. The
top panel reports the relationship between the (log) predicted value of trade flowing on each
network link and the (log) observed traffic along each link when there is no traffic congestion.
The bottom panel shows how the same figure changes when there is congestion, i.e. the cost
of traveling along a link is allowed to endogenously increase in response to increased trade.
With congestion, the model fit (measured as the norm between the de-meaned log traffic and
log predicted trade flows) improves by more than 30% and the correlation between observed
traffic flows and predicted trade flows increases from 0.48 to 0.56.
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Figure 5: Predicted Versus Observed Trade Flows
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Notes : This figure shows the relationship between the predicted state-to-state bilateral trade
flows from the model (calculated by aggregating up from the predicted city-to-city bilateral
trade flow data) and the observed state-to-state bilateral trade flows from the 2012 Commod-
ity Flow Survey (CFS). Note that the CFS data was not used in the estimation procedure
(the predicted trade flows were estimated by instead matching observed traffic flows.)
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Figure 6: Probability of Using Different Highways from Seattle to Manhat-
tan

!(

!(

!(
!(!(

!(

!(

!(
!(

!(

!(

!( !(

!(

!( !(

!(

!( !(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(
!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(

!(
!(

!(

!(

!(

!(

!(

!( !(

!(

!(!(

!(

!(

!(

!(

!(
!(

!(

!(!(

!(!(

!(!(!(!(

!(

!(
!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!( !(

!(

!(

!(

!(

!(

!(

!(

!(

!(
!(

!(

!(

!(

!(

!(

!(

!( !(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(
!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(!(
!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(!(

!(
!(

!(

!(

!(

!(

!(
!(

!(

!(

!(
!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(!(
!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(

!(
!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(
!(

!(

!(

!(

!(

!(

!(
!(
!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!( !(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(
!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(
!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!( !(

!(!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(

!( !(

!(

!(

!(

!(

!(

!(

!(

!( !(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!( !(

!(

!(

!(

!(

!(

!(

!(
!(

!(

!(

!(

!(

!(
!(

!(

!(

!(

!(

!(!(

!(

!(

!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!( !(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(
!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(!(

!(

!(

!(

!(

!(
!(

!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!( !(
!(

!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(
!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(!(

!(

!(!(

!(

!(

!(

!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(
!(

!(

!(

!(
!(

!(

!(

!(

!(

!(

!(

!(

!(

!(
!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(
!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(
!(

!(

!(

!(

Probability of using link
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0.9 - 1.0

Notes : This figure depicts the probability of a trader going from Seattle, WA to Manhattan
Borough in New York, NY using each particular connection of the National Highway Network
(without congestion). This is equivalent to the elasticity of trade costs from Seattle to
Manhattan to a change in the cost of traveling over each highway segment.
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Figure 7: The Costs and Benefits of Transportation Infrastructure Improve-
ments

(a) Estimated annualized cost of ten additional lane-miles ($m)
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(b) Estimated annualized benefit of ten additional lane-miles ($m)
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Gains from an additional 10 lane-miles
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30.1 - 50.0

50.1 - 100.0

100.1 - 719.5

Notes : Panel A reports the estimated annual cost (in millions of chained 2012 U.S. dollars)
of adding ten additional lane-miles to each segment of the highway system; the background
color indicates the cost of constructing a highway on each pixel. See the text for details of this
calculation). Panel B reports the estimated annual value (in millions of chained 2012 U.S.
dollars) of adding ten additional lane-miles to the highway system; this effect incorporates
the endogenous response to congestion across all links, the optimal routing of all traders, and
the general equilibrium response of wages and population in all cities. The color of a link
indicates its cost (top panel) or benefit (bottom panel), with red indicating a higher value
and blue indicating a lower value.
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Figure 8: The Effect of Externalities and Congestion on the Welfare Impacts
of Infrastructure Improvements
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Notes : This top panel of this figure depicts the relationship between the imputed value of
trade traveling over each segment of the U.S. Highway System and the estimated welfare
elasticity in the presence of spillovers. Note that in the absence of spillovers, the welfare
elasticity should be exactly equal to the value of trade traveling over a segment; hence,
the only reason the correlation is not perfect is due to market inefficiencies caused by the
presence of spillovers. The bottom panel compares the imputed value of trade to the wel-
fare gains (measured in millions of 2012 U.S. dollars) to adding ten additional lane-miles;
this correlation is not perfect due to market inefficiencies arising both from the presence of
spillovers and from congestion externalities.
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Figure 9: The Rates of Return on Transportation Infrastructure Improve-
ments
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Rates of return for an additional 10 lane-miles
Log(Annual benefit / Annual cost)

0.62 - 1.00

1.01 - 1.10

1.11 - 1.25

1.26 - 1.50

1.51 - 1.75

1.76 - 2.00

2.01 - 3.00

3.01 - 5.00

Notes : This figure reports the rate of return (calculated as the log ratio of benefits to costs)
of improving each segment of the highway system. The color of each link indicates its rate
of return, with red indicating a higher value and blue indicating a lower value.
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6 Appendix

6.1 Proof of Proposition 1

We have that

τij (ν) = min
p∈PK ,K≥0

τ̃ij (p) εij (p, ν) .

where we have defined

τ̃ij (p) =
K∏
k=1

tpk−1,pk .

Replacing in the formula we need to compute

d ln τij
d ln tkl

=
d ln

(
Eminp∈PK ,K≥0

(∏K
k=1 tpk−1,pk

)
εij (p, ν)

)
d ln tkl

Notice that we can split the set Pk into elements that include paths passing through kl

(indicated as PK∩kl) and ones that do not (PKrkl). Thus,

d ln τij
d ln tkl

=

d(Eminp∈PK∩kl,K≥0(
∏K
k=1 tpk−1,pk)εij(p,ν)+Eminp∈PKrkl,K≥0(

∏K
k=1 tpk−1,pk)εij(p,ν))

dtkl

τij
tkl.

By definition the derivative of the second term is zero, and thus,

d ln τij
d ln tkl

=
Eε

(
minp∈PK∩kl,K≥0

(∏K
k=1 tpk−1,pk

)
εij (p, ν)

)
τij

,

which is indeed the cost of the routes from i to j passing through kl versus the expected cost

of i to j.

6.2 Proof of Proposition 2

First note that this elasticity is equal to the elasticity of an element of the route cost matrix

to a change in the element of the weighted adjacency matrix A:

∂ ln τij
∂ ln tkl

=
∂ ln

(
cb
− 1
θ

ij

)
∂ ln

(
a
− 1
θ

kl

) =
∂ ln bij
∂ ln akl

.
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To calculate this elasticity, we parameterize the weighted adjacency matrix as a function of

a variable t follows:

Akl (t) =

aij if k 6= i or l 6= j

t if k = i and l = j
,

i.e. changing t just increases akl. By defining Ckl (t) ≡ I−Akl (t), we have:

∂ ln bij
∂ ln akl

=

[
dCkl (t)

−1

dt

]
ij

× akl
bij

(27)

Using the familiar expression for the derivative of an inverse of a parameterized matrix (see

e.g. Weber and Arfken (2003)), we have:

dCkl (t)
−1

dt
= −Ckl (t)

−1 dCkl (t)

dt
Ckl (t)

−1 .

Note that dCkl(t)
dt

=

0 if k 6= i or l 6= j

−1 if k = i and l = j
and Ckl (t)

−1 = B so the derivative becomes:

dCkl (t)
−1

dt
= BEklB,

where Ekl is an N × N matrix equal to one at (k, l) and zeros everywhere else. The (i, j)

component of this inverse is hence:[
dCkl (t)

−1

dt

]
ij

= [BEklB]ij =

[∑
n

∑
m

bimE
kl
mnbnj

]
ij

= bikblj, (28)

so combining equations (27) and (28) and using the relationships akl = t−θkl and τij = cb
− 1
θ

ij

yields expression (7).

We now derive the probability of using link kl along the path from i to j. Given the

extreme value distribution, the probability of taking any particular path p of length K can

be written as:

πij (p) =
τij (p)−θ∑∞

K=0

∑
p′∈Pij,K τij (p′)−θ

.
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πij (p) =
τij (p)−θ∑∞

K=0

∑
p′∈Pij,K τij (p′)−θ

⇐⇒

πij (p) =
1

bij

K∏
k=1

apk−1,pk , (29)

where the second line used the definition of τij (p) from equation (1) and the derivation for

equation (5). As a result, we can calculate the probability of using link tkl when traveling

from i to j by summing across all paths from i to j that use the link tkl:

πklij =
1

bij

∞∑
K=0

∑
p∈Pklij,K

K∏
k=1

apk−1,pk ,

where P kl
ij,K is the set of all paths from k to l of length K that use link tij.

Note that for any p ∈ P kl
ij,K , there must exist some length B ∈ [1, 2, ..., K − 1] at which

the path arrives at link tkl so that this can be written as:

πklij =
1

bij

∞∑
K=0

K−1∑
B=0

 ∑
p∈Pik,B

B∏
k=1

apk−1,pk

× akl ×
 ∑
q∈Pkj,K−B−1

K−B−1∏
k=1

aqk−1,qk


As above, we can then explicitly enumerate all possible paths from i to k of length B and

all possible paths from l to j of length K −B − 1:

πklij =
1

bij

∞∑
K=0

K−1∑
B=0

 N∑
k1=1

· · ·
N∑

kB−1=1

ai,k1 × . . .× akB−1,k

×akl×
 N∑
k1=1

· · ·
N∑

kK−B−1=1

al,k1 × . . .× akK−B−1,j

 ,

which again can be expressed more simply as elements of matrix powers of A :

πklij =
1

bij

∞∑
K=0

K−1∑
B=0

ABik × akl × AK−B−1
lj

This is where it gets a little more difficult. Recall from matrix calculus that the derivative

of the power of a matrix can be written as:

DSK (A) C =
K−1∑
B=0

ABCAK−B−1, (30)

44



where SK (A) = AK and C is an arbitrary matrix. Furthermore, recall from above that the

geometric series of a power of matrices can be written as:

∞∑
K=0

AK = (I−A)−1 .

Hence, we can right multiply both sides of equation (30) by C and differentiate to yield:

∞∑
K=0

DSK (A) C = DT (A) C,

where T (A) ≡ (I−A)−1. Recall from matrix calculus (see e.g. Weber and Arfken (2003))

that DT (A) C = (I−A)−1 C (I−A)−1 so that we have:

∞∑
K=0

K−1∑
B=0

ABCAK−B−1 = (I−A)−1 C (I−A)−1 . (31)

Define C to be an N ×N matrix that takes the value of akl at row k and column l and zeros

everywhere else. Using equation (31) we obtain our result:

πklij =
bikaklblj
bij

.

6.3 Proof of Theorem 1

Define the auxiliary variables

xi = (W
1−σ

α(σ−1)+β(σ−1)Li)
β(σ−1)+1wσi ,

yi = (W
1−σ

α(σ−1)+β(σ−1)Li)
α(σ−1)w1−σ

i ,

so that

wi = x
α

β(σ−1)+1+ασ

i y
−1
σ−1

β(σ−1)+1
β(σ−1)+1+ασ

i .

Also, define

ρ ≡ 2 + α− β
1 + (σ − 1) β + ασ
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for convenience. Given those definitions the two equation system given by equations (10)-

(11)can be transformed into

x
α+1

β(σ−1)+1+ασ

i (yi)
−β+1

β(σ−1)+1+ασ =
N∑
j=1

Kijyixj,

x
α+1

β(σ−1)+1+ασ

i (yi)
−β+1

β(σ−1)+1+ασ =
N∑
j=1

Kjixiyj.

We chose to impose normalization condition wN = 1, We now proceed to solve for the

comparative statics d lnxi
d ln τkl

, d ln yi
d ln τkl

from the following system (Dln τklG = 0: 2N equations,

2N unknown) by replacing the last equation with the linearized version of the normalization

condition

G1
1 = ln

N∑
j=1

K1jy1xj −
α + 1

β (σ − 1) + 1 + ασ
lnx1 −

−β + 1

β (σ − 1) + 1 + ασ
ln y1

......

G1
N = ln

N∑
j=1

KNjyNxj −
α + 1

β (σ − 1) + 1 + ασ
lnxN −

−β + 1

β (σ − 1) + 1 + ασ
ln yN

G2
1 = ln

N∑
j=1

Kj1y1xj −
α + 1

β (σ − 1) + 1 + ασ
lnx1 −

−β + 1

β (σ − 1) + 1 + ασ
ln y1

......

G2
N−1 = ln

N∑
j=1

KjN−1y1xj −
α + 1

β (σ − 1) + 1 + ασ
lnxN−1 −

−β + 1

β (σ − 1) + 1 + ασ
ln yN−1

G2
N =

α

β (σ − 1) + 1 + ασ
lnxN −

1

σ − 1

β (σ − 1) + 1

β (σ − 1) + 1 + ασ
ln yN

The last row of DG matrix needs to be slightly modified.

DG =

[
σ(β+α)

β(σ−1)+1+ασ
I µ− α+1

β(σ−1)+1+ασ
I

λ′ − 1−β
β(σ−1)+1+ασ

I (σ−1)(β+α)
β(σ−1)+1+ασ

I

]
−

[
0 0

λ1N ... λN−1,N λNN + β
α

0

]
.

Taking total derivative of this system we can solve for the following

∂ ln yi
∂ ln τkl

=

(σ − 1)
[
(DG)−1

y,ik,1 µkl + (DG)−1
x,il,1 λkl

]
if l 6= N

(σ − 1) (DG)−1
y,ik,1 µkl if l = N

.
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Similarly,

∂ lnxi
∂ ln τkl

=

(σ − 1)
[
(DG)−1

y,ik,2 µkl + (DG)−1
x,il,2 λkl

]
if l 6= N

(σ − 1) (DG)−1
y,ik,2 µkl if l = N

.

We can expression the derivative of welfare in terms of these derivatives

d lnW

d ln τkl
= −

(
2− ρ

2σ − 1

)∑
i

Li
L̄

[
d lnxi
d ln τkl

+
σ

σ − 1

d ln yi
d ln τkl

]
,

and substituting in:

d lnW

d ln τkl
=


− (2− ρ)

(
σ−1
2σ−1

)
µkl

(∑
i
Li
L̄

(
(DG)−1

y,ik,2 + σ
σ−1

(DG)−1
y,ik,1

))
−

(2− ρ)
(
σ−1
2σ−1

)
λkl

(∑
i
Li
L̄

(
(DG)−1

x,il,2 + σ
σ−1

(DG)−1
x,il,1

))
if l 6= N

− (2− ρ)
(
σ−1
2σ−1

)
µkl

(∑
i
Li
L̄

(
(DG)−1

y,ik,2 + σ
σ−1

(DG)−1
y,ik,1

))
. if l = N

To proceed with further characterizing this expression we make the following definitions:

− (1 + κk) = (2− ρ) σ̃

(∑
i

Li
L̄

(
(DG)−1

y,ik,2 +
σ

σ − 1
(DG)−1

y,ik,1

))
1

Yk
⇐⇒

(
1− σβ − α (σ − 1)

1 + (σ − 1) β + ασ

)
σ̃

(∑
i

Li
L̄

(
(DG)−1

y,ik,2 +
σ

σ − 1
(DG)−1

y,ik,1

))
1

Yk
= 1 + κk,

and

−νk = (2− ρ) σ̃

(∑
i

Li
L̄

(
(DG)−1

x,ik,2 +
σ

σ − 1
(DG)−1

x,ik,1

))
1

Ek
⇐⇒

(
1− σβ − α (σ − 1)

1 + (σ − 1) β + ασ

)
σ̃

(∑
i

Li
L̄

(
(DG)−1

x,ik,2 +
σ

σ − 1
(DG)−1

x,ik,1

))
1

Ek
= νk,

which gives us expressions (18) and (19), where

DG =

[
σ(β+α)

β(σ−1)+1+ασ
I µ− α+1

β(σ−1)+1+ασ
I

λ′ − 1−β
β(σ−1)+1+ασ

I (σ−1)(β+α)
β(σ−1)+1+ασ

I

]
−

[
0 0

λ1N ... λN−1,N λNN + β
α

0

]
.

Thus, we finally arrive to the expression of the Theorem,

d lnW

d ln τkl
=

Xkl (1 + κk + νl) if l 6= N

Xkl (1 + κk) if l = N
,

with the corresponding definitions of κk and νl.
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