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Abstract

Financial securities trade in a wide variety of market structures. This paper develops

a theory in which both the market structure of trade and the payoffs of the claims being

traded form endogenously. Financial intermediaries use the cash flows of an underlying

asset to design securities for investors. The demand for securities arises as investors

choose markets then trade using strategies represented by quantity-price schedules. We

find that intermediaries create increasingly riskier securities when facing deeper markets

in which investors trade more competitively. In turn, investors elicit safer securities

when they choose to trade in thinner, more fragmented markets. These findings reveal

a novel role for market fragmentation in the creation of safer securities. The model

is also informative about which investor classes trade which securities and how the

distributional properties of the underlying asset affect the relationship between security

design and market structure.
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1 Introduction

It has long been acknowledged that non-financial firms adjust product design in response

to market structure.1 In financial markets, persistent empirical regularities to this effect

are lacking. This is especially so when it comes to standardized securities whose payoffs are

not commissioned by any one investor. Different standardized securities trade in different

venues at any point in time, but historically the same claims have also traded in different

market structures. Do financial intermediaries also adjust product design in response to

market structure when creating securities to connect investors with markets? If so, what is

the relationship between types of claims and the markets in which they trade? Insights into

these questions would inform ongoing debates about the desirability of centralized trading

and shed light on whether financial regulators can successfully restructure markets and

improve effi ciency.

To study these issues, we build a tractable model in which both security design and

market structure are endogenously determined. We take seriously the fact that standardized

securities trade in a wide variety of market structures and the possibility that a wide variety

of market structures are supported as equilibria. We explore primitives that shape the

relationship between market liquidity and risk and analyze welfare implications of different

equilibrium market structures.

Our environment is one where financial intermediaries use the cash flows of an underlying

asset to design securities for investors. A security specifies a payoff for every realization of

the underlying asset. As in Ross (1976) and Allen and Gale (1994), we consider that

financial innovation arises in response to investors’demand. However, key to our model is

that the demand for securities is itself endogenous. This demand is modeled in two steps.

First, investors choose a market in which to trade. Second, once markets open and investors

can trade, their trading strategies are represented by quantity-price schedules, with each

investor understanding the impact of her trade on the price of the security.

A distinguishing feature of many investors in financial markets is that their valuations

are generally grounded in mean-variance analysis. We capture this most simply with mean-

variance preferences. Investors are ex-ante homogeneous but have different ex-post val-

1See Johnson and Myatt (2003), Johnson and Myatt (2006), and Bar-Isaac, Caruana, and Cuñat (2012).

2



uations of a security, which allows them to benefit from trading with each other. The

idiosyncratic valuations of investors are realized after securities have been designed and an

intermediary cannot commit to making payoffs contingent on these valuation shocks. The

securities that emerge in equilibrium are thus standardized.

Financial intermediaries are strategic when designing securities, taking into account de-

mand by investors in the markets in which the securities will be traded. Markets can be

thinner and more fragmented with investors trading more strategically, or deeper and less

fragmented with investors trading more competitively. Investors choose markets under-

standing that their choices will affect the market structure faced by financial intermediaries

and thus the design of the securities that will be traded.

There are two implicit frictions in the environment that are worth making explicit here.

First, investors cannot directly invest in the same assets as financial intermediaries. This

is realistic as financial intermediaries frequently create asset-backed securities that give

investors exposure to markets that they could not otherwise invest in. Mortgage-backed se-

curities are one such example.2 Second, intermediaries design securities bounded by limited

liability. That is, a security’s payoff cannot exceed the payoff of the asset that backs it in

any given state of the world. In practice, most securities are implicitly designed to respect

this constraint. In our set-up, limited liability is equivalent to the spanning constraint in the

financial innovation literature (Duffi e and Rahi (1995)) which requires that the securities a

financial intermediary issues span the payoff of the asset that backs them.

We obtain two major sets of results. The first set of results characterizes the security

that an intermediary finds optimal to offer taking as given the market structure. We show

that this security depends monotonically on the depth of the intermediary’s market. In

particular, we show (i) that the optimal security belongs to the family of debt contracts,

paying the lesser of a flat payoff and the full value of the underlying asset in every state of

the world, and (ii) that the state in which the security starts paying the flat payoff is higher

in markets with more investors. In other words, financial intermediaries design progressively

riskier asset-backed securities when facing investors that trade more competitively. In the

2Naturally, there are derivative securities, such as equity options, for which the investors can acquire both
the underlying asset (the equity security) and the derivative security (the equity option). These securities
are therefore not subject to the first friction in our environment.

3



limit, the security approaches the payoff of the underlying asset in all states, which we refer

to as equity in the spirit of the literature on security design.

The intuition for this first set of results is as follows. When choosing how to design a

security, the intermediary’s main incentive is to obtain a high price for it. The equilibrium

price at which the security is traded is increasing in its mean payoff and decreasing in

the variance of its payoffs across states. The intermediary thus faces a trade-off between

the mean and the variance of the security he designs, making a debt contract optimal as

debt has the least variance among all limited liability securities with the same expected

value. Importantly, though, the equilibrium price decreases less with the variance of the

security in deeper markets where investors have a lower price impact. Thus, the strength of

the mean-variance trade-off faced by the intermediary (and hence where on the spectrum

of debt contracts the security lies) depends on the depth of the market. The deeper the

market, the less pronounced the trade-off and the more equity-like the intermediary makes

his security.

The second set of results focuses on the equilibrium market structure. This is crucial

to ensure that the securities intermediaries design in a given market structure can indeed

be supported in equilibrium. If no investor benefits from trading in a particular market

structure, then we should not expect the corresponding securities to arise in equilibrium.

When choosing which market to trade in, an investor weighs the gains from trade with

other investors against the ability to influence the security that the intermediary designs.

An investor who trades in a thinner market will have a larger price impact. On one hand,

this amplifies the mean-variance trade-off in the intermediary’s security design problem and

delivers a less risky security. On the other hand, it also amplifies the extent to which the

investor will move the price of the security against herself when trading with other investors.

When investors expect to be relatively homogeneous in their valuations of the same secu-

rity, they anticipate limited benefits from trading with each other and are therefore willing

to accept a larger price impact in order to elicit a less variable security from the interme-

diary. In contrast, when investors expect to be relatively heterogeneous, they understand

that they may want to engage in large trades with each other so they seek to limit their

price impact by trading in a large market, albeit with a riskier security. Thus, an important
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outcome of our model is the following: controlling for the riskiness of the underlying asset,

less variable asset-backed securities are traded in thinner, more fragmented markets while

more variable asset-backed securities are traded in deeper, more concentrated markets.

To gain further insights into our question, we analyze a simpler version of the model

in which asset returns are uniformly distributed. The welfare implications are different for

financial intermediaries and investors. If heterogeneity among investors is low, then the

symmetric equilibrium that achieves the highest welfare for investors exists in the set of

equilibria where debt is traded in thinner, more fragmented markets. In contrast, inter-

mediaries are always better off designing a security for a large market than for a small

market. Investors thus benefit at the expense of intermediaries in any equilibrium where

debt is traded. In aggregate, however, the benefits to investors in an equilibrium where debt

is traded are outweighed by the losses to intermediaries, such that total welfare is higher

when markets are deeper, even though the security that emerges in these markets has more

variable payoffs.

Lastly, we explore the relationship between security design and market structure in

real world markets through the lens of our model. Our findings suggest that institutional

investors, who tend to have less dispersion in their preference shocks, are more likely to

trade safer securities in fragmented markets. In contrast, retail investors, who tend to be

more heterogeneous in their preference shocks, participate in larger markets where they

trade riskier securities. We also show that the trading of equity in a centralized market can

co-exist with financial intermediaries offering debt securities in fragmented markets, even

when securities are backed by the same underlying asset. Other important implications of

our model are that the origination of better underlying assets can eliminate the creation of

asset-backed securities with less variable payoffs and that the distributional properties of

the underlying asset can affect the relationship between market liquidity and the riskiness

of asset-backed securities.

Related Literature

This paper relates to several strands of literature. The most relevant studies are those on

security design and endogenous market structure.
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The literature on security design has been very prolific over recent decades. The classic

problem explored in these papers is that of a firm needing to raise funds from an investor

to finance an investment project. In exchange, the firm proposes a security to the investor.

A common result in this literature is that debt is the optimal security in the presence

of asymmetric information or moral hazard (e.g., Gale and Hellwig (1985), Gorton and

Pennacchi (1990), Nachman and Noe (1994), DeMarzo and Duffi e (1999), Biais and Mariotti

(2005), Yang (2017), Hébert (2018), Asriyan and Vanasco (2018)).3 We explore a variant

of the typical set-up. In particular, financial intermediaries issue securities which allow

investors to have exposure to assets in which they cannot directly invest. The family of

debt contracts is optimal even absent informational asymmetries, and, more importantly,

financial intermediaries offer low-variance debt only when investors trade in a thin market.

As the market gets deeper, the optimal security becomes equity.

Parallel to the literature on security design, there is a body of work on financial inno-

vation that studies the role of security issuances in completing markets. From the seminal

paper of Allen and Gale (1991) to the more recent contribution of Carvajal, Rostek, and

Weretka (2012), the main focus of this line of research is to analyze whether competition

among asset-holders affects their incentives to introduce new securities. Complimentary to

this literature, we study a model in which a financial intermediary’s decision to issue secu-

rities is affected by the strategic competition between investors when trading the securities

they are offered.

There is a young but growing literature on endogenous market structure. Babus and

Parlatore (2018), Cespa and Vives (2018), Dugast, Üslü, and Weill (2019), Lee and Wang

(2018), and Yoon (2018) provide models that seek to explain why trade takes places in a

variety of venues, centralized or decentralized. However, in these papers, the asset traded is

taken to be exogenous. We endogenize both the security design and the market participation

decision, which allows us to study the relationship between the type of security and the

market structure in which it is traded.

A small number of papers study the effect of market structure on security design. In a
3 In Malenko and Tsoy (2018), a mixture of debt and equity can be optimal when the investor faces

Knightian uncertainty about the underlying project’s returns. Other models of endogenous capital structure
instead assume transaction costs of security issuance as in Allen and Gale (1988); see, for example, Corbae
and Quintin (2019) on the cyclical properties of safe debt.
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set-up which assumes that investors are better informed about the prospects of the issuer

than the issuer himself, Axelson (2007) shows that debt is optimal if the degree of compe-

tition among investors is low. Rostek and Yoon (2018) analyze the role of market structure

for introducing non-redundant derivatives. In both of these papers, however, the market

structure is taken to be exogenous. In our paper, the market structure is endogenously

determined. This is important, as it ensures that the securities traded in a given market

structure can indeed be supported in equilibrium.

There is a lack of direct empirical work on the joint determination of security design

and market structure. However, Biais and Green (2018) provide a thorough documentation

of developments in the bond market in the 20th century. They find that when institutions

became more important in bond markets, bond markets became thinner. While our model

is inherently static (as it develops over three periods), it builds on ingredients that are

relevant for investigating these issues. For instance, changes in the dispersion in investors’

valuations or in the variance of the underlying asset over time could potentially account for

market structure dynamics.

The rest of the paper proceeds as follows: Section 2 introduces the model environment;

Section 3 defines and characterizes the equilibrium; Section 4 presents the welfare implica-

tions of our model; Section 5 discusses implications of our model for real world markets;

Section 6 analyzes some extensions of our model; and Section 7 concludes. All proofs are

collected in Appendix A.

2 The Model Set-Up

Our analysis focuses on how financial firms adjust the design of their securities in response

to the demand they face from investors. To capture the interactions between investors and

financial intermediaries in a simple setting, we adopt a standard security design framework

in which we allow investors to trade the security that intermediaries design. To this, we add

a market formation stage to capture how investors’demand arises. This is a key step to

ensure that the securities intermediaries design in response to investors’demand can indeed

be supported in equilibrium.
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We consider an economy with three dates, t = 0, 1, 2, and two types of agents, financial

intermediaries and investors. There are M ≥ 2 risk neutral, impatient financial intermedi-

aries indexed by m = 1, ...,M . Each intermediary has access to a risky asset Z. The asset

stands for loans originated to firms, or mortgages extended to households. We assume that

each unit of the asset Z yields a payoff z (s) ≥ 0 if the aggregate state s ∈ [0, S] is realized

at date t = 2. The cumulative distribution function for states is F (s), with F (·) continuous

and differentiable, and the probability density function is f (s). Without loss of generality,

we assume z′ (·) > 0.

A market m is associated with each financial intermediary m. In each market m, the

intermediary can issue a security Wm that pays wm (s) in state s at date t = 2. For this

reason, we can interchangeably refer to the intermediary as the (security) issuer. As in the

literature on the spanning role of securities (Duffi e and Rahi (1995)), the security payoff is

subject to the feasibility constraint

wm (s) ≤ z (s) , ∀s ∈ [0, S] . (1)

From (1), each unit of Wm is backed by one and only one unit of the asset Z. This is

consistent with an interpretation in which each intermediary issues an asset-backed security

based on a representative loan that he previously originated. To reduce notation, each

intermediary m supplies one unit per capita of the security Wm in his market. In our main

specification, we give intermediaries access to a suffi ciently large pool of the asset Z so

that constraint (1) is satisfied (instead endowing each intermediary with a fixed amount

of the asset Z and restricting him to supply a fixed amount of the security Wm can be

easily accommodated and does not affect the insights). We then consider an extension

where intermediaries optimally choose how many units of Z to acquire, subject to a cost

of procuring Z. This is consistent with an interpretation in which each intermediary buys

loans from a loan originator and then issues an asset-backed security. Section 6.1 discusses

the changes to (1) when intermediaries can choose how many units of Z back each unit of

Wm.

There are N ≥ 3 patient investors, indexed by i = 1, ..., N . Often in financial markets
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investor demand for securities is shaped by a mean-variance analysis. We work with the

simplest and most tractable specification that captures this, which is mean-variance pref-

erences. Each investor i is also subject to a preference shock θi that shifts her marginal

utility of consumption, as we describe in detail below. The heterogeneity that θi introduces

across investors can be interpreted as differences in liquidity needs, in the use of securities

as collateral, in technologies to repackage and resell cash flows, or in risk-management con-

straints, for example. The shock θi is independently distributed across investors according

to a distribution G (·) with mean µθ and standard deviation σθ. The realization of the shock

θi is also independent of the realization of the state s.

Investors do not have access to the asset Z. However, an investor who wants exposure

to Z can choose a market m in which she can trade and acquire some quantity of the

security Wm that intermediary m designs. In line with Ross (1976) and Allen and Gale

(1994), we take the approach that financial innovation is driven by investors’demand. For

this, we assume that intermediaries design securities after investors choose markets.4 At

the same time, our focus is on studying the issuance of standardized securities. For this, we

consider that intermediaries design securities before the preference shocks, θi, are realized.

Thus, a security cannot be customized to address the specific requirements of any particular

investor.

We model how investors’ demand for securities arises in two steps. First, investors’

choices at date t = 0 determine a market structure M. When an investor i chooses a

market m, we say that i ∈ m. We denote by nm the number of investors that choose

market m. We consider a market m to be active if and only if nm > 2. In this case, we say

that m ∈M. A market structureM is characterized by the number of active markets, M ′,

and by the number of investors in each market, {nm}M
′

m=1. We define a market structure to

be symmetric if each active market m has the same number of investors nm = n.

Second, when markets open, we model investors’ trading strategies as quantity-price

schedules, as in Kyle (1989) and Vives (2011). In particular, the strategy of an investor is

a map from her information set to the space of demand functions, as follows. The demand

function of an investor i ∈ m with preference shock θi is a continuous function Qim : R→ R
4 In Section 6.2, we discuss the robustness of our findings to an alternative timing in which we allow

investors to choose markets after intermediaries design securities.
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which maps the price pm of the security Wm in market m into a quantity qim she wishes to

trade

Qim
(
pm; θi

)
= qim.

An investor i who trades qim units of security Wm in market m at date t = 1 consumes Cim

at date t = 2, where

cim (s) = qimwm (s) , (2)

for each state s.

To summarize, the timing of events is as follows. At date t = 0, each investor chooses a

market m in which to trade. An investor can choose at most one market. However, multiple

investors can choose the same market. Next, the intermediary in market m designs the

security Wm. At date t = 1, each investor i learns her preference shock θi. After this, all

markets open and investors in each market m trade the security Wm. At date t = 2, the

state s is realized. Investors receive payoffs according their final holdings of the security.

Each intermediary m pays wm (s) and receives z(s) per capita. Consumption takes place.

That investors can choose at most one market and that the intermediaries can each

design only one security are assumptions we make to ensure tractability. While in reality

investors have the opportunity to trade in several markets and intermediaries can offer

multiple securities, our set-up is a first step to identify which forces are relevant in the

interaction between market structure and security design. Once these forces are understood,

many extensions, including but not limited to those in Section 6, are possible.5

Given a market structure M and a security Wm that intermediary m designs at date

t = 0, the expected payoff of an investor i in market m at date t = 1 as she engages in trade

is

V i
m = θiE1

(
Cim
)
− γ

2
V1
(
Cim
)
− pmqim, (3)

where V (·) is the variance operator. We use E1 (·) and V1 (·) to denote that expectations

are being taken over the state s, which is the only unknown at date t = 1. The price pm in

5 It is worth noting that investors may still choose to trade in one market despite having the opportunity
to trade in many markets. For instance, Boyarchenko, Costello, and Shachar (2018) provide evidence that
the majority of financial institutions participate in either the corporate bond market or the CDS market,
even though there exist bonds and CDSs issued on the same entities.
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Eq. (3) is the price at which local market m clears, given that intermediary m supplies nm

units of the security Wm. That is, pm is such that

∑
i∈m

Qim
(
pm; θi

)
= nm. (4)

Substituting Eq. (2) into Eq. (3), we obtain that investor i’s objective function at date

t = 1, before the uncertainty about the state of the world s has been resolved, is

V i
m =

[
θiE1 (Wm)− pm

]
qim −

γ

2
V1 (Wm)

(
qim
)2
, (5)

where E1 (Wm) ≡
∫ S
0 wm (s) dF (s) and V1 (Wm) ≡

∫ S
0 [wm (s)− E1 (Wm)]2 dF (s). In this

reformulation, the preference shock θi captures investor i’s valuation of the payoff she ex-

pects to obtain from one unit of the security Wm.

An intermediary m supplies nm units of the security Wm that he designs in market m,

and he receives the price pm per unit of the security. Aside from designing the security and

supplying it to the market, the intermediary is not directly involved in the trade between

investors at date t = 1. Given a market structureM and a security Wm that the interme-

diary designs in a market m with nm investors at date t = 0, intermediary m’s expected

payoff at date t = 1 is

Vm = [pm + βE1 (Z −Wm)]× nm,

where β ∈ [0, 1] is a discount factor that captures the impatience of intermediaries relative

to investors.

The trading protocol through which investors in market m acquire the security Wm

corresponds to a share auction as described by Wilson (1979). In particular, our set-up is

consistent with the interpretation that each intermediary m places the security Wm with

investors in his market by running the following auction. Each investor i in market m is a

bidder that submits a schedule indicating the quantity of the security she demands at each

price. The supply of the security is perfectly divisible and, in each market m, the security

is allocated at the clearing price, pm, which is the solution to the market clearing condition

(4). Each investor i receives a share qim of the security for which she pays pmqim.
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3 Equilibrium

In this section, we define and characterize the equilibrium. We start by solving for the

trading equilibrium in each market m at date t = 1, given a market structure M and the

securities Wm that intermediaries design at date t = 0. We then characterize the security

that each intermediary designs in equilibrium for his market m at date t = 0, given a

market structureM. Lastly, we analyze the market formation game which determines the

equilibrium market structureM at t = 0.

Definition 1 A subgame perfect equilibrium is a market structure M, a set of securities

{Wm}m∈M, and a set of demand functions
{
Qim
}
i∈m for investors in each active market

m such that:

1. Qim solves each investor i’s problem at date t = 1

max
Qim

{[
θiE1 (Wm)− pm

]
Qim

(
pm; θi

)
− γ

2

(
Qim

(
pm; θi

))2 V1 (Wm)
}

; (6)

2. Wm solves each financial intermediary m’s problem at date t = 0

max
Wm

{E0 (pm) + β [E1 (Z)− E1 (Wm)]} × nm, (7)

subject to the feasibility constraint (1);

3. No investor i benefits from deviating and joining a different local market at date t = 0,

i.e. the expected payoff an investor receives in market m is at least as large as the

expected payoff from deviating to market m′

E0
(
V i
m

)
≥ E0

(
V i
m′
)
for all i ∈ m and all m′ 6= m. (8)

Our notion of equilibrium market structure, described in the third bullet of Definition

1, is related to the concept of pairwise stability introduced in Jackson and Wolinsky (1996),

with the difference that we allow for deviations to be unilateral.
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It is important to note that all agents act strategically. This implies that each investor

i ∈ m takes into account her price impact in market m when submitting her demand.

Similarly, an intermediary understands how the security he designs at date t = 0 affects the

price at which investors trade it at date t = 1. At the market formation stage, each investor

also takes into account how her market choice shapes the security that the intermediaries

design, as well as the price at which trade takes place at date t = 1. To streamline the

exposition, we restrict our attention to equilibria in which the market structure is symmetric,

intermediaries design the same security, and agents have linear trading strategies.

The rest of this section characterizes the equilibrium. As mentioned earlier, we solve

first for the trading equilibrium conditional on a market structure and a set of securities

(Section 3.1), then for the equilibrium security conditional on a market structure (Section

3.2), and finally for the equilibrium market structure (Section 3.3).

3.1 The Trading Equilibrium

At date t = 1, after each investor i learns her preference shock θi, all active markets open

and trade takes place. In each market m, an investor chooses her trading strategy in order

to maximize her expected payoff, understanding that she has impact on the price pm. As is

standard in similar models, we simplify the optimization problem (6), which is defined over a

function space, to finding the functions Qim
(
pm; θi

)
pointwise. For this, we fix a realization

of the set of preference shocks,
{
θi
}N
i=1
. Then, we solve for the optimal quantity qim that

each investor i ∈ m demands in market m when she takes as given the demand functions of

the other investors in market m. Thus, we obtain investor i’s best response quantity qim in

market m for each realization of the preference shocks of the other investors in market m.

This gives us a map from prices to quantities, or the investor’s optimal demand function

point by point. We describe the procedure in detail below.

The first order condition for an investor i in market m is

θiE1 (Wm)− pm −
(
∂pm,−i
∂qim

+ γV1 (Wm)

)
qim = 0, (9)
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where pm,−i is the residual inverse demand of investor i implied by

qim +
∑

j∈m,j 6=i
Qjm

(
pm; θj

)
= nm. (10)

An investor i ∈ m chooses to trade a quantity qim of the security Wm so that her

marginal benefit equalizes her marginal cost of trading. The first term in the first order

condition (9) is the marginal benefit of increasing the final holdings of the security Wm

for investor i, which is given by the expected value of the security scaled by the investor’s

preference shock θi. The remaining terms in Eq. (9) represent investor i’s marginal cost

of increasing her demand. The second term represents the price that the investor pays to

acquire one unit of the security Wm. Investors also incur indirect costs, captured in the

last term in Eq. (9). First, since the investors trade strategically, increasing the quantity

demanded has an impact on the market clearing price. Second, investors are risk averse,

which maps into a holding cost of the security that increases proportionally to the variance

of Wm as the quantity demanded increases. The following proposition characterizes the

trading equilibrium in a market m.

Proposition 1 Given a market structureM and a set of securities {Wm}m∈M, there exists

a unique symmetric linear equilibrium that characterizes investors’trading strategies in each

market m, as follows. The equilibrium demand function of an investor i in market m is

Qim
(
pm; θi

)
=

1

(1 + λm) γV1 (Wm)

[
θiE1 (Wm)− pm

]
, (11)

where λ−1m ≡ (nm − 2) is an index of market depth. The equilibrium price in market m is

pm =

(
1

nm

∑
i∈m

θi

)
E1 (Wm)− (1 + λm) γV1 (Wm) . (12)

Proposition 1 shows that investor i buys or sells the security Wm depending on whether

her valuation θiE1 (Wm) of the security’s expected payoff is above or below the price pm

at which she can trade. However, as can be seen from the denominator of Eq. (11), the

investor will restrict the size of her trade for two reasons. First, she is risk averse and the
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security is risky. Thus, the more risk averse the investor is (as proxied by a higher γ),

the less she will trade. Similarly, the more risky the security is (as reflected in a higher

variance of payoffs across states), the less of it the investor trades, everything else constant.

Second, the investor has a price impact, ∂pm,−i/∂qim = λmγV1 (Wm), that decreases with

market depth, λ−1m . In other words, the larger the market is, the more the investor can

trade without moving the price against herself.

The equilibrium price in market m, characterized by Eq. (12), is the expected payoff of

the security Wm, scaled by the average valuation of the investors in market m, minus a risk

premium. The risk premium exists because investors are risk averse and, in expectation,

have to hold one unit of a risky security. Indeed, it is easy to check that the expected traded

quantity is E0
(
qim
)

= 1 for any i ∈ m.

Given a realization of investors’preference shocks,
{
θi
}N
i=1
, it follows from Eq. (12)

that the price of the security Wm is lower in a thinner market. The price of the security

also decreases with the variance of the security, everything else constant. However, the

price decreases less with the variance of the security as the market becomes deeper.6 These

effects arise because investors are strategic and dislike risk. In a smaller market, changes

in the demand of an individual investor have a larger impact on the price of the security.

Furthermore, the riskier the security is, the less of it a risk averse investor will demand. If

an investor demands less of the security, more will be available to other investors. The price

will then have to fall so that, on average, other investors are content with holding more of

the security. As the size of the market increases, the price impact of any one investor falls.

An increase in riskiness is thus met with a smaller decrease in price compared to a smaller

market where a strategic decrease in demand by one investor leads to a bigger price drop.

The effects of market depth and the variance of the security on the price are typical of

models in which investors strategically trade risky assets in positive net supply by submitting

demand functions. In contrast to standard models, however, in our model both the variance

of the security and the market depth are endogenous. In particular, the security is the choice

of the intermediaries, while the market structure, and implicitly the market depth, is the

6To verify this, consider the cross-partial derivative of the price pm with respect to the variance of the
security Wm and the number of investors in market m, holding everything else constant. This derivative is

given by ∂
∂nm

∂pm
∂V1(Wm)

∣∣∣
E1(Wm)=cst

= − ∂λm
∂nm

> 0.
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outcome of investors’choices. Our paper seeks to understand how these forces interact.

3.2 The Equilibrium Security

At the end of date t = 0, after the market structure is determined, each active intermediary

m designs a security Wm in response to investors’demand in his market. In particular,

an intermediary chooses the payoff wm (s) of the security for each state s to maximize his

expected profit in (7), subject to the feasibility constraint (1). The constraint (1) restricts

the intermediary to offer investors a security with a payoff that does not exceed what the

intermediary realizes on the asset Z in any state s. Alternatively, since the intermediary is

the residual claimant on the payoff of the asset Z, he is effectively designing two securities:

one that he offers to investors and one that he keeps for himself. Thus, the constraint (1)

simply requires that the two securities exhaust the returns to intermediary m’s asset, as is

commonly assumed in the financial innovation spanning literature.

Taking the expectation at date t = 0 of the price pm at which investors in market m

trade the security Wm (i.e., the price in Eq. (12)) and substituting it into (7), we obtain

that intermediary m designs the security Wm to maximize the following objective function:

E0 (Vm) = [βE1 (Z) + (µθ − β)E1 (Wm)− (1 + λm) γV1 (Wm)]× nm. (13)

It is transparent that the intermediary benefits from offering a security that pays well in

expectation, as the expected price at which investors trade is increasing in E1 (Wm).7 At

the same time, the intermediary increases his expected profit if he offers a security with low

variance, as the expected price at which investors trade is decreasing in V1 (Wm). In fact,

if he were unconstrained, the intermediary would offer a security with infinite mean and

zero variance. However, because the payoff of the security Wm cannot exceed the payoff of

the asset Z, the intermediary faces a trade-off between the mean and the variance of the

security he designs. Since the weight on the variance in the intermediary’s expected profit

in Eq. (13) depends on the depth λ−1m of the market in which the security is traded, how

exactly this trade-off is resolved will depend on the market structure.

7By the law of iterated expectations, E1 (Wm) = E0 (Wm).
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Proposition 2 Suppose µθ > β so that intermediaries find it profitable to design securities

for investors. In any market m with nm investors, intermediary m designs a security Wm

with payoffs

wm (s) =

 z (s) if s < sm

E1 (Wm) + µθ−β
2γ

nm−2
nm−1 if s ≥ sm

(14)

where the threshold state sm ∈ [0, S] is defined by

sm =

 z−1
(
E1 (Wm) + µθ−β

2γ
nm−2
nm−1

)
, ∀nm < nS

S, ∀nm ≥ nS
(15)

with nS finite if and only if the equation

nS − 2

nS − 1
=

2γ

µθ − β
[z (S)− E1 (Z)] (16)

has a solution nS ≥ 3.

Proposition 2 shows that intermediary m finds it optimal to design a security that will

pay the lesser of a flat payoff and the full value of the asset Z in every state of the world.

The security payoff depends on the market structure, the distribution of the underlying

asset Z, and the preferences of investors and intermediaries. We say that the security is

debt if it pays the flat payoff in at least some states (i.e., the security is debt if s̄m < S).

The flat payoff that is paid in states s ≥ s̄m represents the face value of the security. If

the security replicates the payoff of the asset Z in all states, then the intermediary sells

everything to the investors and passes through the payoffs of the underlying asset Z. For

convenience, we refer to the security that replicates the payoff of the asset Z in all states

as equity.8 In our model, equity is the limiting case of a debt security where the threshold

state above which the security pays a flat payoff is s̄m = S.

We have the following cases from Proposition 2. If 2γ
µθ−β

[z (S)− E1 (Z)] ≤ 1
2 , then the

intermediary finds it optimal to sell everything and offer equity in any market structure. If
2γ

µθ−β
[z (S)− E1 (Z)] ≥ 1, then the intermediary finds it optimal to design a debt security

8Typically, in the literature on security design, an equity security has a payoff that yields a fraction of
the underlying asset. We extend this definition to accommodate a fraction of 1.
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in any market structure, including in markets with infinitely many investors. These two

cases represent corner solutions of the intermediary’s optimization problem. If instead
2γ

µθ−β
[z (S)− E1 (Z)] ∈

(
1
2 , 1
)
, then intermediary m offers a debt security if the number of

investors nm in market m is below a threshold nS , otherwise he offers equity.

We provide the intuition for why debt is the security that the intermediary chooses from

the set of all possible security profiles. A debt security has the following property: there are

no two states, s′ and s′′, such that wm (s′) < z (s′) and wm (s′) < wm (s′′). In other words,

if the constraint (1) does not bind in either state s′ or state s′′, then the security yields the

same payoff in both states, and, if the constraint (1) binds only in one of the two states,

the payoff in that state must be smaller than in the flat part of the debt contract. Suppose

intermediary m chooses a security that does not have this property. Then a deviation which

increases the payoff of the security in state s′ by εs′ > 0 and decreases the payoff of the

security in state s′′ by εs′′ = f(s′)
f(s′′)εs′ decreases the variance of the security without changing

its mean. Since the intermediary’s expected profit in Eq. (13) is decreasing in the variance

of the security, it follows that such a deviation is profitable. Therefore, it cannot be optimal

for the intermediary to choose any security other than debt. This argument is similar to

the one Hébert (2018) uses to show that debt is the optimal contract in the presence of

moral hazard. Novel to our framework, however, is how the equilibrium security depends

on the market structure in which it is traded. The following proposition characterizes the

relationship between the market structure and the debt contract that the intermediary

chooses.

Proposition 3 Suppose that Eq. (16) has a finite solution nS ≥ 3. The threshold state

s̄m defined by (15) is increasing in the number of investors nm in market m as long as

nm ≤ nS.

Proposition 3 shows that when the intermediary designs a debt security, he will adjust

its payoff depending on the market in which the security is traded. In particular, the lowest

state in which a security Wm pays the flat payoff increases with the number of investors

in market m. In other words, conditional on designing a debt security, the intermediary

offers a higher face value in a larger market. At the same time, the larger the market, the

18



more variable the security that the intermediary designs. This property of the equilibrium

security extends automatically to the case when Eq. (16) does not have a finite solution

and the intermediary offers debt in markets of any size.

To understand Proposition 3, we appeal to the intuition developed at the end of Section

3.1 about the forces that affect the price of a securityWm. To start, consider a state s where

the security that intermediary m designs pays wm (s) < z (s). If the intermediary increases

wm (s) slightly, holding constant the payoffs in all other states, then he increases both the

mean and the variance of the security Wm. The increase in the mean of the security works

in favor of the intermediary because it increases the price he expects to receive, whereas

the increase in the variance of the security decreases the intermediary’s expected profit.

However, as we explained in Section 3.1, a higher variance has a greater impact on the

expected price in a small market than in a large market. In contrast, as we can see from

Eq. (13), the impact of a higher mean on the expected price does not depend on the size of

the market. Therefore, the marginal benefit to the intermediary of an increase in wm (s) is

independent of nm, while the marginal cost is decreasing in nm. Since a profit-maximizing

intermediary sets wm (s) to equate marginal benefit and marginal cost, it follows that he

will increase wm (s) by more in a large market than in a small market. Given that the

intermediary finds it optimal to issue a debt security, he can accomplish this by increasing

the threshold state above which the security pays a flat payoff. The next corollary formalizes

this discussion and follows immediately from Proposition 3.

Corollary 1 Suppose that Eq. (16) has a finite solution nS ≥ 3. The security Wm that the

intermediary designs in market m has the following properties:

1. ∂E1(Wm)
∂nm

> 0 for any nm ≤ nS;

2. ∂V1(Wm)
∂nm

> 0 for any nm ≤ nS.

Two polar securities can be of interest: riskless debt, which is a security that has a flat

payoff in all states of the world, and equity, which replicates the payoff of the asset Z in

every state. Proposition 2 allows us to understand whether these securities can be offered

by intermediaries in equilibrium. The results are collected in the following corollary.
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Corollary 2 Fix a market structureM.

1. In any market m ∈ M with nm ≥ nS investors, where nS ∈ [3,∞) and satisfies Eq.

(16), the intermediary offers a security that pays the payoff of the asset Z in every

state.

2. There is no market m ∈ M in which the intermediary offers a security that pays a

flat payoff in all states of the world.

The first part of Corollary 2 is a direct implication of Proposition 2 and the discussion

that follows it. Any intermediary with at least nS investors will find it optimal to sell

everything and offer equity. The second part of Corollary 2 says that intermediaries will

never offer riskless debt. Suppose to the contrary that there is a market size nm ≥ 3 for

which an intermediary would find it optimal to offer riskless debt. The variance of riskless

debt is zero so, from Eq. (13), it must be the case that the intermediary finds it optimal

to offer riskless debt for any market size, including in markets with at least nS investors.

This contradicts the first part of Corollary 2, hence the intermediary never finds it optimal

to offer riskless debt.

The results in this section characterize the security that an intermediary chooses to

design, taking as given the market structure. However, to show that a security can indeed

be supported in equilibrium, we need to verify that the market structure in which it trades

is also supported in equilibrium. We address this question in the next section.

3.3 The Equilibrium Market Structure

The goal in this section is to analyze whether there exist equilibrium market structures in

which the securities that intermediaries design can be traded. We focus on symmetric mar-

ket structures. In particular, we characterize market structures where each active market

m has the same number of investors nm = n and no investor has an incentive to deviate to

a different market at date t = 0. We discuss asymmetric equilibrium market structures in

Section 6.3.

To understand the incentives of investor i at date t = 0 when she chooses a market in

which to trade, we need to first evaluate her expected payoffE0
(
V i
m

)
from being in market
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m, given a market structureM. Substituting the equilibrium demand function Qim
(
pm; θi

)
from Eq. (11) and the equilibrium price pm from Eq. (12) into the expression for V i

m in Eq.

(5) then taking expectations at date t = 0, before the realization of θi is known, we obtain

E0
(
V i
m

)
=
σ2θ
2γ

nm − 1

nm

(
1− 1(

1 + λ−1m
)2
)

[E1 (Wm)]2

V1 (Wm)
+
γ

2

(
1 +

1

λ−1m

)2(
1− 1(

1 + λ−1m
)2
)
V1 (Wm) .

If we further substitute the market depth index λ−1m = nm − 2, investor i’s expected payoff

becomes

E0
(
V i
m

)
=
σ2θ
2γ

nm − 2

nm − 1

[E1 (Wm)]2

V1 (Wm)
+
γ

2

nm
nm − 2

V1 (Wm) . (17)

The expected payoff at date t = 0 of an investor who will trade the security Wm at date

t = 1 in a market with nm investors has two components. The first term in Eq. (17) is

proportional to the variance of the investors’preference shocks, σ2θ, and captures the gains

from trade with other investors. The larger σ2θ is, the more heterogeneous investors are in

how they value the mean payoff of the same security, and the more they benefit from trading

with each other. In fact, when σ2θ is small, investors are very similar in their valuation of

the security and the equilibrium holdings of each investor approaches 1, which is the per

capita supply offered by the intermediary in market m. In this case, an investor’s payoff is

mainly driven by the risk premium that she commands as compensation for holding a risky

security. The second term in Eq. (17) captures the part of the investor’s expected payoff

that comes from this compensation for risk.

Both the gains from trade and the compensation for risk depend on the depth of the

market in which the investor trades. For a given security Wm, the gains from trade term

in Eq. (17) increases with nm, both because the fundamental gains from trade, nm−1nm
σ2θ,

are increasing in the number of market participants (even though the asset supply scales

up linearly with the size of the market) and because the price impact of an investor is

smaller in a larger market. In contrast, the compensation for risk term is decreasing in

nm, for a given security Wm, because the investor’s price impact falls with the size of the

market. The security that intermediary m finds optimal to offer (see Proposition 2) also

changes with nm, affecting both terms in Eq. (17) through Wm. Investor i in market m

weighs all of these effects at date t = 0 when deciding whether to deviate from market
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m, which has (n− 1) other investors, to a deeper market m′, which has n other investors.

The following proposition provides suffi cient conditions for the existence of an equilibrium

market structure.

Proposition 4 Suppose that the asset Z satisfies z(k)−E1(Z|s≤k)√
V1(Z|s≤k)

<
√

2,∀k ∈ (0, S]. Con-

sider all n ∈ [3, N ] such that there exist integers M1 ∈ N+ and M2 ∈ N0 solving

M1 × n+M2 × (n+ 1) = N, (18)

with M1 +M2 ≤M . Then, there exists a scalar σ̄ > 0 such that:

1. For any σ2θ ≤ σ, any market structure with M1 intermediaries each getting n investors

and M2 intermediaries each getting n+ 1 investors is stable;

2. For any σ2θ > σ, there is at least one stable market structure with one active interme-

diary and all investors trading in the same market (n = N).

As explained above, we focus on equilibria in which the market structure is symmetric.

However, given a total number of investors N , a symmetric market structure in which each

active market contains n investors may not exist for every value of n. To address the non-

divisibility of investors, Proposition 4 extends the definition of a symmetric market structure

to allow for a distribution of investors across markets such that there are n investors in some

markets and (n+ 1) investors in others. Condition (18) specifies when such generalized

symmetric market structures exist.9

Proposition 4 shows that a variety of symmetric market structures can be supported in

equilibrium. This is important, as it informs us that a rich set of securities can be observed

in equilibrium. Using Proposition 2, we can infer that, when σ2θ ≤ σ, intermediaries offer

a debt security if n < nS and sell everything, i.e., offer equity, if n ≥ nS . Similarly, when

σ2θ > σ, the intermediary in the equilibrium with a single active market offers equity unless

N < nS . We study asymmetric equilibria, and hence the co-existence of different types of

securities, in Section 6.3.
9Consider N = 100. A market structure in which there are n = 8 investors in each market does not exist,

as it would require a fractional number of intermediaries. However, there exists a market structure in which
there are M1 = 8 markets each with n = 8 investors and M2 = 4 markets each with n = 9 investors.
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The multiplicity of security profiles that can be sustained in equilibrium when σ2θ ≤ σ

is consistent with the diverse universe of claims that investors can trade in financial mar-

kets. In practice, we observe a wide variety of market structures across time and space,

and historically the same claims traded in both centralized and decentralized markets. The

multiplicity of equilibria in our model arises when investors prefer to trade less variable

securities. In this case, if a symmetric market structure with M intermediaries is an equi-

librium, then a symmetric market structure with fewer than M intermediaries is also an

equilibrium. The multiplicity of equilibria would collapse if investors in different markets

could coordinate to move together to a new market or if each investor had to provide consent

for others to join her market. In either scenario, only the most fragmented market struc-

ture that achieves the global maximum of the investor value function would be supported

in equilibrium. Our assumption about lack of consent is grounded in features of many

real-world financial markets. That investors cannot coordinate is also standard, e.g., in the

literature on trade in OTC markets initiated by Duffi e, Gârleanu, and Pedersen (2005),

which precludes the possibility that agents can coordinate to alleviate search frictions.

In words, the results in Proposition 2 and 4 can be synthesized as follows. When in-

vestors’demand is fragmented, as is the case when investors are relatively homogenous,

financial intermediaries respond by designing debt securities. In consequence, debt securi-

ties are traded in a larger number of smaller, less liquid, markets.10 When investors’demand

is instead consolidated, as is the case when investors are relatively heterogeneous, financial

intermediaries respond by passing through the payoff of the underlying asset. Thus, equity

securities are traded in a smaller number of larger, more liquid, markets. Another, con-

sistent implication is that financial intermediaries that issue equity-like securities have a

higher market share than intermediaries that issue debt-like securities backed by the same

underlying asset. Note that in our model, by construction, the equilibrium security is al-

ways backed by the same underlying asset regardless of whether trade occurs in a more

fragmented or a more concentrated market structure.

Proposition 4 shows that the variance of investor preference shocks, σ2θ, helps determine

which market structures can be supported in equilibrium. When σ2θ is small, investors

10A market is liquid if the security can be traded with little impact on its price. We discuss this more
formally in Section 5.
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will not differ much in their valuations of the same security. The gains from trade are

therefore low and investors anticipate that they will trade little with each other. Given

this, investors are willing to trade in smaller markets, where they can use their larger

price impact to obtain from intermediaries a less variable security whose remaining risk is

well compensated. While the larger price impact also hurts the investor when she trades

the security with other investors in the same market, this concern is muted because she

anticipates trading little with other investors. In contrast, when σ2θ is large, the gains from

trade are also large. Investors understand that they may want to make large trades with

each other in order to reap these gains, hence they seek to minimize their price impact by

trading in a large market, albeit with a riskier security.

It is important to notice that investors’preferences shape the payoffs of the security

traded in equilibrium both directly and indirectly. First, because the expected price at

which a security Wm trades is increasing in the mean µθ of the investor preference shocks,

µθ directly enters the optimization problem of intermediary m and thus directly affects the

payoffs of the security that he finds optimal to design. Second, although the variance of the

investor preference shocks does not appear directly in the payoffs of the security derived

in Proposition 2, σ2θ plays an important role in determining which securities are traded

in equilibrium. The payoffs of the equilibrium security in market m depend directly on

the number of investors nm, and σ2θ affects an investor’s decision about which market to

trade in. Thus, as we discussed above, when σ2θ is high, investors value trading in deeper

markets, which induces the intermediary to offer riskier securities, while, when σ2θ is low,

investors prefer trading in thinner markets, which induces the intermediary to offer less

variable securities.

4 Welfare and Profits

In this section, our goal is to gain insights into welfare and expected profits by exploring some

simple examples. In particular, we are interested in which equilibrium market structure

yields the highest welfare for investors, which equilibrium yields the highest welfare for

intermediaries, and whether any of the equilibria coincide with the solution to a social
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planning problem.

As in Proposition 4, we consider equilibrium market structures with M1 intermediaries

each getting n investors and M2 intermediaries each getting (n+ 1) investors, such that

condition (18) is satisfied. In each active market, an investor obtains an expected profit

E0
(
V i
m

)
given by Eq. (17), while the intermediary receives an expected profit E0 (Vm) given

by Eq. (13). Aggregate welfare can then be defined as

W = n×M1 × E0
(
V i
m|nm=n

)
+ (n+ 1)×M2 × E0

(
V i
m|nm=n+1

)
+M1 × E0 (Vm|nm=n) +M2 × E0 (Vm|nm=n+1) .

To understand which driving forces determine aggregate welfare, it is useful to review the

profits of investors and intermediaries, paying special attention to how they depend on the

depth of the market.

Eq. (5) gives the profit of investor i after her preference shock θi is realized but before

the state s is known. Evaluated at the equilibrium demand function Qim
(
pm; θi

)
derived in

Proposition 1, Eq. (5) simplifies to

V i
m =

1 + 2λm

2γ (1 + λm)2

[
θiE1 (Wm)− pm

]2
V1 (Wm)

. (19)

Given a market depth λ−1m (in essence, a market size nm) and a security price pm, Eq. (19)

implies that, among all securities with the same mean payoff E1 (Wm), investor i would

prefer the security with the least variance V1 (Wm). In other words, investor i would prefer

debt.

Compare this to Eq. (17), which represents investor i’s expected profit when Eq. (5) is

evaluated at both the equilibrium demand function Qim
(
pm; θi

)
and the equilibrium price

pm derived in Proposition 1. Given a market depth λ−1m , Eq. (17) implies that, among all

securities with the same mean payoff E1 (Wm), an investor i who takes into account her

price impact would only prefer the security with the least variance V1 (Wm) if she expects

investors to have very disperse valuations. In other words, investor i would prefer debt if

σ2θ is high but equity if σ
2
θ is low.
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The endogeneity of market depth and its effect on security design reverses this preference.

A key feature of the equilibrium in our model is that investors take into account not only that

they have a price impact when they trade but also that their market choice affects market

depth and hence the payoffs of the securities that intermediaries design. Thus, an investor’s

expected profit in Eq. (17) depends on the depth of the market both directly and indirectly,

with the indirect effect coming through the equilibrium security Wm derived in Proposition

2. The two terms in Eq. (17) —the gains from trade term and the compensation for risk

term —can move in opposite directions as the market becomes deeper. For any underlying

asset Z satisfying the suffi cient conditions on z (·) in Proposition 4, the compensation for

risk term is decreasing in nm when evaluated at the equilibrium security.11 In contrast, the

gains from trade term is potentially increasing in nm, as shown in the next proposition.

Proposition 5 Consider an asset Z with payoffs z (s) = z (0) + sα, where z (0) ≥ 0 and

α > 0. Suppose that the state s is uniformly distributed according to f (·) = 1
S . Evaluating

an investor’s expected profit in Eq. (17) at the equilibrium security W ∗m ≡ W (nm) derived

in Proposition 2, an increase in nm:

1. Increases the gains from trade term,

G (nm) ≡ σ2θ
2γ

nm − 2

nm − 1

[E1 (W (nm))]2

V1 (W (nm))
,

for all nm ≥ 3 if z (0) is not too large;

2. Decreases the compensation for risk term,

R (nm) ≡ γ

2

nm
nm − 2

V1 (W (nm)) ,

for all nm ≥ 3 if
(
1+α
4α

µθ−β
γSα

) 1
1+α

> 2α−1
1+2α .

11See the proof of Proposition 4. We emphasize that these conditions on z (·) are suffi cient but not
necessary. For example, in the class of functions z (s) = z (0) + sα with a uniformly distributed aggregate
state f (s) = 1

S
:

z (k)− E1 (Z|s ≤ k)√
V1 (Z|s ≤ k)

=
√
2α+ 1

and, therefore, z(k)−E1(Z|s≤k)√
V1(Z|s≤k)

<
√
2 if and only if α < 1

2
. However, as shown in Proposition 5, the compen-

sation for risk term is also decreasing in nm if, for example, α = 1 and µθ−β
γS

> 2
9
.
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Consistent with Proposition 4 and the intuition developed at the end of Section 3.3, Propo-

sition 5 implies that investors will prefer equity if σ2θ is high but debt if σ
2
θ is low. This

constitutes a reversal in the types of securities preferred by investors (as a function of the

expected dispersion in their valuations) relative to the case where investors only take into

account the price impact of their trades for a given market depth.

Proposition 6 Consider z (·) and f (·) as in the statement of Proposition 5. Also suppose

N > nS with nS ∈ [3,∞). It follows that:

1. An active intermediary’s expected profit E0 (Vm) in Eq. (13) is increasing in nm when

Wm is the equilibrium security derived in Proposition 2.

2. If z (0) is not too large, then, for any value of σ2θ, the equilibrium in which all in-

vestors trade in a single market and the intermediary sells everything, or offers equity,

achieves the highest aggregate welfare.

The first part of Proposition 6 says that an intermediary is always better off designing

a security for a large market than for a small market. Investors have less price impact in

large markets, so the intermediary is able to command a higher price for whatever security

he designs. At the same time, Proposition 5 implies that an investor will be worse off

in a large market than in a small market when σ2θ is suffi ciently low. Therefore, investors

benefit at the expense of intermediaries in any equilibrium where debt is traded. Recall from

Proposition 4 that there exist multiple symmetric equilibria when σ2θ < σ. If the variance

of investor preference shocks is low enough, the symmetric equilibrium that achieves the

highest welfare for investors exists in the set of equilibria where investors trade in many

small markets in which financial intermediaries offer debt.

The second part of Proposition 6 says that the benefits to investors of an equilibrium in

which intermediaries offer debt are outweighed by the losses to intermediaries, at least in

environments where it is impossible to design a security that has high returns in all states

of the world (i.e., environments where z (0) is low). First, the expected, per-capita profit

of an active intermediary increases more quickly with nm than the expected profit of an

investor decreases with nm. Second, the non-linear relationship between market size and
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the price impact of investors means that total welfare across intermediaries is maximized

when there is only one active intermediary.

The results in the second part of Proposition 6 also characterize the solution to a fully

constrained social planning problem; that is, the problem of a social planner who chooses a

market structure, a set of securities, and a set of demand functions to maximize aggregate

welfare subject to the equilibrium conditions in Definition 1. However, as an alternative,

we can consider a social planner who: (i) opens M1 markets each with n investors and M2

markets each with n + 1 investors such that condition (18) holds; (ii) designs a security

Wm subject only to the feasibility condition (1); (iii) allocates to investor i in market m a

quantity qim of the security Wm after the realization of investor preference shocks, where∑
i∈m

qim = nm for each market m; and (iv) allocates to the intermediary in each market m

a quantity nm of the security (Z −Wm). The planner in this alternative planning problem

still seeks to maximize the aggregate welfare of intermediaries and investors, but he is no

longer constrained to choose among solutions that arise as a decentralized equilibrium.

In the alternative planning problem just described, it is straightforward to show that the

social planner opens a single market in which all investors trade a zero-variance security (i.e.,

riskless debt). We omit the proof for brevity, but the intuition is as follows. A security with

zero variance neutralizes the risk aversion of the investors. Maximum aggregate welfare is

then achieved by allocating unboundedly positive positions qim to investors whose realization

of θi exceeds the market average and unboundedly negative positions to the rest to satisfy∑
i∈N

qim = N . If the planner is restricted to design a positive-variance security, then he will

open a single market in which investors take large but finite positions on the closest possible

security to riskless debt.

The lesson from the alternative planning problem is that the planner can achieve higher

welfare by decoupling the security design choice from the market structure choice. In

particular, the planner would like to design a debt security for risk averse investors and he

would like all investors to trade this security in the same market in order to maximize the

gains from trade. The problem is that security design cannot be decoupled from market

structure in equilibrium. Intermediaries respond to market-based incentives when designing

a security for investors to trade. These incentives come from the price of the security, which
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is endogenously less sensitive to investors’risk aversion in a large market because the price

impact of an individual investor is decreasing in market size. Thus, when nS ∈ [3,∞), the

decentralized equilibrium supports either a fragmented market structure in which financial

intermediaries offer debt, or a consolidated, large market, in which a financial intermediary

sells the entire payoff of the underlying asset Z.

5 Comparative Statics and Real World Markets

In this section we seek to elucidate the relationship between security design and market

structure in real world markets through the lens of our model. We undertake three exercises.

First, we study the relationship between the type of security and the liquidity of the market

in which it is traded. Second, we explore the relationship between different classes of

investors and the securities they are trading. Third, we look at the role of the underlying

asset in determining the market structure in which a security is traded. Proofs are collected

at the end of Appendix A.

5.1 Liquidity

A natural measure of liquidity in our model is the price impact of an individual investor.

Specifically, a market is liquid if the security can be traded with little impact on its price.

Recall from Section 3.1 that the price impact of investor i in market m is ∂pm,−i/∂qim =

λmγV1 (Wm), where λ−1m ≡ (nm − 2) and, in equilibrium, Wm depends on nm as demon-

strated in Proposition 2. Under the conditions stated in Proposition 4, the total derivative

of ∂pm,−i/∂qim with respect to nm is negative.12 In other words, a larger market in our

model is also a more liquid market. Thus, our model suggests that securities with less

variable payoffs, controlling for the riskiness of the underlying asset Z and for investors’

preferences, trade in less liquid markets.

Some suggestive evidence in favor of our prediction comes from the work of Friewald,

Jankowitsch, and Subrahmanyam (2017). Within the set of mortgage-backed products,

they find that mortgage-backed securities (MBS) are much more liquid than collateralized

12This follows immediately from the proof of Proposition 4.
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mortgage obligations (CMO). Both products derive their cash flows from underlying pools of

mortgage loans, but MBS are characterized as “pass-through”securities, meaning that their

payoffs will be as variable as the payoffs of the underlying asset. The authors attribute only

part of the liquidity difference between MBS and CMO to differences in government guar-

antees, suggesting an interesting relationship between market liquidity and payoff structure

that is consistent with the predictions of our model.

At this stage it is worth noting that primary and secondary markets are one and the

same in our model. We believe this to be a reasonable simplification. While in practice we

distinguish between trade in primary and secondary markets, these markets are typically

tightly linked. In particular, a more liquid secondary market makes the primary market

more liquid as well. It would follow from our model that an individual investor has limited

price impact against the intermediary in a liquid primary market. Hence, the intermediary

can design a more variable security and investors will accept it (i.e., they will not leave the

primary market) because the security can be re-traded in a liquid secondary market after

the realization of preference shocks. In this way, liquidity of the secondary market supports

liquidity of the primary market.

5.2 Investor Classes

Our model also allows us to think about various types of investor classes.

The first dimension on which investors can be grouped into different investor classes is

the degree of heterogeneity in their preference shocks. Institutional investors, for example,

are likely to have lower σ2θ than retail investors. Our model implies that as σ
2
θ decreases,

more fragmented market structures become stable and these are precisely the market struc-

tures that support the issuance of securities with less variable payoffs. Increases in σ2θ have

the opposite effect, eliminating market structures that deliver less variable securities. Then,

under this interpretation, institutional investors are more likely to trade less variable secu-

rities in fragmented markets, while retail investors participate in larger markets where they

trade riskier securities. These findings align with the stylized facts documented by Biais

and Green (2018) about the 20th century corporate bond market.

Second, we can consider variation in investors’tolerance for risk. Risk aversion in our
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model is captured by the parameter γ, which is (proportional to) the investor’s marginal

disutility from variance. A decrease in γ increases the importance of the gains from trade

term relative to the compensation for risk term in the investor’s expected profit. A decrease

in γ also directly affects the payoffs of the security derived in Proposition 2, increasing the

mean and variance of the equilibrium security for a given market size nm ≤ nS , along with

decreasing the threshold market size nS at which the intermediary offers equity. The same

security will thus trade in smaller markets as risk aversion decreases. In practical terms,

an increase in investors’risk appetite decreases the liquidity of safer securities, consistent

with long-standing practitioner intuition. Whether smaller markets are stable depends on

other parameters, including σ2θ, as a decrease in γ amplifies both the rate at which the gains

from trade term increases with nm and the rate at which the compensation for risk term

decreases with nm.

Note that these are predictions based on comparative statics and not an equilibrium

analysis of different types of investors trading against each other. However, our model

provides a platform to explore such issues, and we leave it for future work.

5.3 The Underlying Asset

One of the main implications of our model is that, controlling for the riskiness of the un-

derlying asset Z, financial intermediaries design progressively riskier asset-backed securities

when facing deeper markets. We now explore how equilibrium in our model depends on

the characteristics of the underlying (original) asset, including how changes in the riski-

ness of this asset affect the relationship between market liquidity and the riskiness of the

asset-backed security designed by the intermediary.

We consider two exercises with respect to the distributional properties of Z. First, we

change only the mean of the distribution from which the payoff of the original asset Z is

drawn. Second, we change both the mean and the variance.

To conduct the first exercise, we consider the specification z (s) = z (0) + s for the

payoffs of the original asset Z, where s ∈ [0, 1] is uniformly distributed. The experiment

is to increase z (0), which has the effect of increasing the mean payoff of the original asset

without changing its variance. For a given market size nm, the equilibrium securityWm has
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the same shape as before (i.e., the mapping from nm to sm does not change). The variance

of Wm also does not change, but the mean payoff E1 (Wm) increases because the payoffs in

each state are shifted up by the constant z (0). It remains to check whether the set of stable

market structures changes. Consider µθ such that Eq. (16) has a finite solution nS ≥ 3,

which is to say there exists a stable market structure that supports equity. The increase

in z (0) has no effect on the compensation for risk term in the investor’s expected profit.

However, by increasing E1 (Wm) relative to V1 (Wm) for any market size nm ∈ [3, nS ], the

increase in z (0) amplifies the rate at which the gains from trade term increases with nm.

For moderate values of σ2θ, this can erode the stability of some fragmented market structures

and push towards equilibria where more variable securities are traded. In other words, when

there is moderate dispersion in investor preferences, the origination of a better asset Z by

financial intermediaries, as captured by a higher mean for the same variance, can eliminate

the creation of asset-backed securities with less variable payoffs.13

For the second exercise, we consider z (s) = κs, where s ∈ [0, 1] is still uniformly

distributed and κ > 0 is a parameter that affects both the mean and the variance of the

original asset Z. Specifically, the higher is κ, the higher are both the mean and the variance

of the original asset. For a given market structure, it follows that intermediaries will offer

less variable securities as κ decreases. However, when heterogeneity across investors, σ2θ, is

low and multiple equilibria are supported, less variable securities can be traded in larger,

more liquid, markets as κ changes. In particular, the security designed by an intermediary

whose underlying asset is less risky (as captured by lower κ) can be both less variable and

traded in a deeper market than the security designed by an intermediary whose underlying

asset is more risky (as captured by higher κ). This is consistent with the observation that

bonds issued for investment-grade firms are more liquid than those issued for high-yield

firms.
13For σ2θ suffi ciently low, the gains from trade term is of second-order importance in the investor’s market

choice, and, for σ2θ suffi ciently high, fragmented market structures are not stable to begin with, i.e., even at
z (0) = 0, before the increase in z (0).
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6 Robustness

This section considers alternative formulations of our model. We demonstrate that equilibria

where investors trade in many small markets in which financial intermediaries offer debt and

equilibria where all investors trade in a single market in which the financial intermediary

offers equity can be supported in all of these formulations.

6.1 Costly Supply

Up to this point, we have assumed that each intermediary m backs each unit of the security

Wm with one and only one unit of Z. This assumption allowed us to abstract from me-

chanical effects that arise from having a fixed supply of Z in each market, which would only

reinforce our results. We can relax this assumption and allow the intermediary to choose

how many units of Z back each unit of Wm, subject to a cost of procuring Z. In particular,

intermediary m incurs a cost c (Am) to acquire Am units of Z which he then uses to back

nm units of Wm. The cost function satisfies the standard conditions c (0) = 0 and c′ (·) > 0.

The intermediary now chooses Wm and Am subject to the feasibility constraint

nmwm (s) ≤ Amz (s) ,∀s ∈ [0, S] .

This constraint replaces (1). The rest of the model is as before.

Appendix B shows that the key insights of Propositions 2, 3, and 4 continue to hold.

The equilibrium security Wm is a debt security with threshold state sm ∈ [0, S]. As before,

sm is increasing in nm so that the face value ofWm increases and the security becomes more

equity-like as the market size increases. All investors trading in a single market in which

the financial intermediary offers equity is an equilibrium when the total number of investors

N is large. However, for the same N , there also exist equilibria where investors choose to

trade in many small markets in which financial intermediaries offer debt if heterogeneity in

investor preference shocks, σ2θ, is low.
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6.2 Timing

Another assumption in our set-up relates to the timing of events. Specifically, we have

assumed that at date t = 0 financial intermediaries design securities after investors choose

markets. An alternative is that at date t = 0 investors choose markets after intermediaries

design securities. Then, as before, each investor i learns her preference shock θi at date

t = 1, after which all markets open and investors in each market trade the security that the

corresponding intermediary has designed.

Under this alternative timing, investors still make their market choice before the realiza-

tion of preference shocks, and, hence, financial intermediaries issue standardized securities.

However, intermediaries can now compete for investors through security design. When

designing the security first, the intermediary commits to a particular payoff profile before

investors choose their markets. In other words, the intermediary designs a security whose

payoff profile is independent of the number of investors who show up. Nevertheless, the

intermediary is rational so the security design problem will take into account the best re-

sponses of investors.

We consider two financial intermediaries and study the existence of equilibria in which

the market structure is symmetric. As demonstrated in Appendix C, the trading equilibrium

is still characterized by Proposition 1. Moreover, we show that a symmetric market structure

is supported in equilibrium for σ2θ low and the equilibrium security has the same properties

as in our main specification. That is, the security that prevails in equilibrium is debt, and

the threshold state above which the security delivers a flat payoff is increasing in the number

of investors in each intermediary’s market.

Thus, even under the alternative timing considered here, a symmetric equilibrium with

two large markets will involve the trading of a more equity-like security than a symmetric

equilibrium with two small markets, consistent with the results in our main set-up.

6.3 Asymmetric Equilibrium

We conclude this section by discussing the existence of asymmetric equilibria. The trading

equilibrium in Section 3.1 and the intermediary’s security design in Section 3.2 were derived

for an arbitrary market size, but attention was restricted to symmetric equilibria —that is,
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equilibria where all markets were equally sized —when deriving stable market structures in

Section 3.3.

We now show that there are equilibria in the class of asymmetric market structures.

The investor’s expected profit, E0
(
V i (nm)

)
, in a market of size nm is still given by Eq.

(17), with Wm evaluated at the equilibrium security derived in Proposition 2. We write

E0
(
V i (nm)

)
rather than just E0

(
V i
m

)
to make explicit the dependence of the investor’s

expected profit on nm, both directly in Eq. (17) and indirectly through the dependence of

Wm on nm in Proposition 2.

Consider an asymmetric market structure with one market of size nB and (M ′ − 1)

markets of size nm, where nB > nm + 1 and nB + (M ′ − 1) × nm = N . This market

structure is stable if and only if

E0
(
V i (nB)

)
> E0

(
V i (nm + 1)

)
and

E0
(
V i (nm)

)
> max

{
E0
(
V i (nm + 1)

)
, E0

(
V i (nB + 1)

)}
.

In words, no investor in the large market nB wants to move to a smaller market (i.e., a

market that has nm other investors as opposed to nB − 1 other investors). Similarly, no

investor in a small market nm wants to move to a slightly larger market (i.e., a market that

has nm other investors as opposed to nm−1 other investors) or to a much larger market (i.e.,

a market that has nB other investors). Since there is only one market with nB investors,

it is not possible for one of them to move to an even larger market (i.e., a market that has

nB other investors as opposed to nB − 1), hence we do not need E0
(
V i (nB)

)
to exceed

E0
(
V i (nB + 1)

)
.

To fix ideas, consider the following parameterization: z (s) = s and f (s) = 1
S for all

s ∈ [0, S], with S = 1, µθ−βγ = 1.25, and σθ
γ = 0.275. This implies nS = 6 in Proposition

2, meaning that a financial intermediary offers equity in any market with six or more

investors. It is straightforward to verify that one large market with nB = 75 investors

trading equity and any number of small markets each with nm = 4 investors trading debt
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is a stable asymmetric equilibrium.14 Our model therefore admits asymmetric equilibria

and, in particular, asymmetric equilibria where some financial intermediaries issuing debt

securities and one intermediary issuing equity co-exist, even when securities are backed by

the same underlying asset Z.

7 Conclusion

This paper has developed a tractable model of financial innovation to address a critical

question: what is the relationship between the types of securities offered and the market

structures in which they trade? A central finding of our paper is that financial intermediaries

design progressively riskier securities when facing deeper, less fragmented markets in which

investors trade more competitively. Market fragmentation thus plays an important role in

the creation of safer securities.

The methodological novelty in our paper is that both security design and market struc-

ture are endogenously determined. This is important, as it ensures the securities created

for a given market structure are indeed supported in equilibrium. Financial intermediaries

design asset-backed securities taking into account investors’demand in the markets in which

the securities will be traded. Investors choose markets understanding that their choices will

affect market depth and thus the design of the securities that will be available for trade.

When choosing how to design a security, an intermediary’s main incentive is to obtain

a high price for it. As usual, the equilibrium price at which the security is traded is

increasing in its mean payoff and decreasing in the variance of its payoffs across states. The

intermediary thus faces a trade-off between the mean and the variance of the security he

designs, making a debt contract the optimal one. Importantly, we show that the equilibrium

price decreases less with the variance of the security in deeper markets where investors

have a lower price impact. Thus, the strength of the mean-variance trade-off faced by

the intermediary depends on the depth of the market. The deeper the market, the less

pronounced the trade-off and the higher the face value of the debt contract offered.

14The relevant expected profits for an investor are: E0
(
V i (4)

)
= 0.3151669 γ

2
; E0

(
V i (5)

)
= 0.3088872 γ

2
;

E0
(
V i (75)

)
= 0.3094256 γ

2
; and E0

(
V i (76)

)
= 0.3094356 γ

2
. Notice E0

(
V i (75)

)
> E0

(
V i (5)

)
and

E0
(
V i (4)

)
> max

{
E0
(
V i (5)

)
, E0

(
V i (76)

)}
, which are the stability conditions outlined above.
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When choosing a market in which to trade, an investor weighs the gains from trade with

other investors against the ability to influence the security that the financial intermediary

designs. An investor who trades in a thinner, more fragmented market will have a larger

price impact. On one hand, this amplifies the mean-variance trade-off in the intermediary’s

security design problem and delivers a less risky security. On the other hand, it also amplifies

the extent to which the investor will move the price of the security against herself when

trading with other investors.

As in Dugast, Üslü, and Weill (2019), investors’types play a key role in determining

the market structure in which trade occurs. However, in our model, investors’preferences

affect directly and indirectly the security that will be traded. When investors expect to be

relatively heterogeneous in their valuations of the same security, they understand that they

may want to engage in large trades with each other so they seek to limit their price impact

by trading in a large market, albeit with a riskier security. In contrast, when investors

expect to be relatively homogeneous in their valuations, they anticipate trading little with

each other and are thus willing to accept a larger price impact in thinner, more fragmented

markets in order to elicit less variable securities from financial intermediaries.

Through the lens of this model, we provide a novel perspective on the relationship

between security design and market structure in real world markets. Our findings suggest

that institutional investors, who tend to have less dispersion in their preference shocks,

are more likely to trade less variable securities in fragmented markets. In contrast, retail

investors, who tend to be more heterogeneous in their preference shocks, participate in

larger markets where they trade riskier securities. Other important implications of our

model are that the origination of better underlying assets can eliminate the creation of

asset-backed securities with less variable payoffs and that the distributional properties of

the underlying asset can affect the relationship between market liquidity and the riskiness

of asset-backed securities. Having developed a parsimonious framework at the intersection

of market structure and security design, our model provides a platform on which many

extensions can be considered and offers fruitful avenues for future work.
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Online Appendices

Appendix A —Proofs

Proof of Proposition 1

Rearrange the first order condition of investor i in Eq. (9) to isolate:

qim =
θiE1 (Wm)− pm
∂pm,−i
∂qim

+ γV1 (Wm)
(A.1)

for any i ∈ m. Use this expression to substitute out Qjm (·) from Eq. (10) for all investors

j 6= i in market m:

qim +
∑

j∈m,j 6=i

θjE1 (Wm)− pm
∂pm,−j
∂qjm

+ γV1 (Wm)
= nm (A.2)

We focus on symmetric linear equilibria in which the price impact ∂pm,−j
∂qjm

does not vary

across investors within the same market. This permits rearranging Eq. (A.2) to isolate:

pm =

∑
j∈m,j 6=i

θj

nm − 1
E1 (Wm)− nm − qim

nm − 1

(
∂pm,−j

∂qjm
+ γV1 (Wm)

)

which then implies:
∂pm,−i
∂qim

=
1

nm − 1

(
∂pm,−j

∂qjm
+ γV1 (Wm)

)
Invoking symmetry (∂pm,−i

∂qim
=

∂pm,−j
∂qjm

), we obtain:

∂pm,−i
∂qim

= λmγV1 (Wm) (A.3)

where λm ≡ 1
nm−2 . Substituting Eq. (A.3) into Eq. (A.1) delivers the equilibrium demand

function Qim
(
pm; θi

)
in Eq. (11). Substituting Eq. (11) into the market clearing condition∑

i∈m
Qim

(
pm; θi

)
= nm then delivers the equilibrium price pm in Eq. (12). �
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Proof of Proposition 2

Intermediary m designs a security Wm to maximize his expected payoff in Eq. (7), subject

to the state-by-state feasibility constraint (1).

Letting υ (s) ≥ 0 denote the Lagrange multiplier on the feasibility constraint for state

s, we can write the Lagrangian for intermediary m’s optimization problem as:

Lm = E0 (Vm) +

∫ S

0
υ (s) [z (s)− wm (s)] dF (s)

or, equivalently:

Lm = βE1 (Z)nm + (µθ − β)nm

∫ S

0
wm (s) dF (s)

−γnm (nm − 1)

nm − 2

[∫ S

0
(wm (s))2 dF (s)−

(∫ S

0
wm (s) dF (s)

)2]

+

∫ S

0
υ (s) [z (s)− wm (s)] dF (s)

where the intermediary is choosing wm (s) for each state s ∈ [0, S] taking as given the market

size nm. We restrict attention to nm ≥ 3 so that the trading equilibrium in Proposition 1

involves a well-defined equilibrium price for market m.

The first order condition with respect to wm (s) delivers:

υ (s)
sign
= E1 (Wm) +

µθ − β
2γ

nm − 2

nm − 1
− wm (s) (A.4)

where υ (s) ≥ 0 and wm (s) ≤ z (s) hold with complementary slackness.

If υ (s) > 0, then:

wm (s) = z (s)

and, invoking (A.4), we need:

z (s) < E1 (Wm) +
µθ − β

2γ

nm − 2

nm − 1

to confirm υ (s) > 0.
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If υ (s) = 0, then (A.4) pins down:

wm (s) = E1 (Wm) +
µθ − β

2γ

nm − 2

nm − 1

and we need:

z (s) ≥ E1 (Wm) +
µθ − β

2γ

nm − 2

nm − 1

to confirm wm (s) ≤ z (s).

The payoffs of the equilibrium security are therefore:

wm (s) =

 z (s) if z (s) < E1 (Wm) + µθ−β
2γ

nm−2
nm−1

E1 (Wm) + µθ−β
2γ

nm−2
nm−1 if z (s) ≥ E1 (Wm) + µθ−β

2γ
nm−2
nm−1

Suppose there exists an sm ∈ (0, S) solving:

z (sm) ≡ E1 (Wm) +
µθ − β

2γ

nm − 2

nm − 1
(A.5)

Then z′ (·) > 0 implies:

E1 (Wm) =

∫ sm

0
z (s) dF (s) +

∫ S

sm

z (sm) dF (s) (A.6)

and we can rewrite Eq. (A.5) as:

∫ sm

0
[z (sm)− z (s)] dF (s) ≡ µθ − β

2γ

nm − 2

nm − 1
(A.7)

The left-hand side of Eq. (A.7) is increasing in sm so there will be a unique solution

sm ∈ (0, S) if and only if:

z (S)− E1 (Z) >
µθ − β

2γ

nm − 2

nm − 1
(A.8)

The ratio nm−2
nm−1 is increasing in nm and asymptotes to 1 as nm →∞.

If the parameters satisfy z (S) − E1 (Z) ∈
[
µθ−β
4γ , µθ−β2γ

)
, then Eq. (16) has a unique

solution nS ∈ [3,∞). For any nm ∈ [3, nS), condition (A.8) holds and the equilibrium
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security is given by Eq. (14) with sm as defined in Eq. (A.5). For any nm ∈ [nS ,∞),

condition (A.8) does not hold, meaning that there is no sm ∈ (0, S) solving Eq. (A.5). The

equilibrium security is still given by Eq. (14) but with sm = S instead of Eq. (A.5).

If the parameters satisfy z (S) − E1 (Z) ≥ µθ−β
2γ , then condition (A.8) is true for any

nm ∈ [3,∞). The equilibrium security is thus given by Eq. (14) with sm as defined in

Eq. (A.5). Condition (A.8) being true for any nm ∈ [3,∞) means that there is no solution

nS ∈ [3,∞) to Eq. (16). Assigning nS =∞ here recovers Eq. (A.5) from Eq. (15) for any

nm ≥ 3.

If the parameters satisfy z (S) − E1 (Z) < µθ−β
4γ , then condition (A.8) is false for any

nm ∈ [3,∞). The equilibrium security is thus given by Eq. (14) with sm = S for all

nm ∈ [3,∞). Assigning nS = −∞ here recovers sm = S from Eq. (15) for any nm ≥ 3.

We have now shown that the solution to the intermediary’s F.O.C.s belongs to the family

of debt securities: Wm pays the entirety of the underlying asset Z up to some threshold

state sm, after which it pays a flat amount that does not vary with the state. A perturbation

argument similar to Hébert (2018) can be used to confirm the optimality of debt securities

in our environment. We sketch this argument in the main text (see the third paragraph

after the statement of Proposition 2) so do not reproduce it here. Instead, we confirm that

sm as defined by Eq. (A.7) satisfies the S.O.C. for a maximum in an auxiliary problem

where the intermediary chooses a threshold state s̃m to maximize his expected profit within

the family of debt securities.

The objective function for this auxiliary problem is:

L(A)m = (µθ − β)

[
z (s̃m)−

∫ s̃m

0
[z (s̃m)− z (s)] dF (s)

]

−γnm − 1

nm − 2

∫ s̃m

0
[z (s̃m)− z (s)]2 dF (s)−

(∫ s̃m

0
[z (s̃m)− z (s)] dF (s)

)2
The first derivative with respect to s̃m is:

∂L(A)m

∂s̃m
=

[
µθ − β − 2γ

nm − 1

nm − 2

∫ s̃m

0
[z (s̃m)− z (s)] dF (s)

]
[1− F (s̃m)] z′ (s̃m)
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If nm < nS , then Eq. (A.7) has a unique interior solution sm ∈ (0, S), which is also the

unique interior solution to ∂L(A)m
∂s̃m

= 0. The second derivative evaluated at this solution is:

∂2L(A)m

∂s̃2m

∣∣∣∣∣
s̃m=sm

= −2γ
nm − 1

nm − 2

(
z′ (sm)

)2
F (sm) [1− F (sm)] < 0

where the inequality follows from sm ∈ (0, S). Eq. (A.7) thus defines a local maximum and,

since there are no local minima, the local maximum is also the global maximum.

If nm > nS , then there is no solution sm < S to Eq. (A.7). The only solution to

∂L(A)m
∂s̃m

= 0 is therefore s̃m = S, in which case the second derivative is:

∂2L(A)m

∂s̃2m

∣∣∣∣∣
s̃m=S

= −
[
µθ − β − 2γ

nm − 1

nm − 2
[z (S)− E1 (Z)]

]
f (S) z′ (S)

This is negative if and only if nm−2nm−1 >
2γ

µθ−β
[z (S)− E1 (Z)] or, equivalently, nm > nS .

Notice that Eq. (A.7) is only defined if µθ > β. We now demonstrate that µθ > β

is necessary and suffi cient for the intermediary’s participation constraint to be satisfied.

The participation constraint requires that the intermediary’s maximized expected profit, as

given by E0 (Vm) in Eq. (7) when evaluated at the equilibrium security, must be at least as

large as βE1 (Z)× nm, which is what the intermediary could get by consuming nm units of

Z at date t = 2 instead of using these units to design the security for market m.

If nm ≥ nS , then the intermediary’s maximization problem yields Wm = Z and the

participation constraint simplifies to:

(µθ − β)E1 (Z) ≥ γnm − 1

nm − 2
V1 (Z) (A.9)

Assume µθ > β so that the left-hand side of (A.9) is positive. The right hand side of (A.9)

is decreasing in nm so (A.9) will hold for all nm ≥ nS if it holds for nm = nS . Evaluating

(A.9) at the definition of nS in Eq. (16), we get:

2z (S)E1 (Z) ≥ E
(
Z2
)

+ (E1 (Z))2

which is true because Z has the property z′ (·) > 0.
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If nm < nS , then sm ∈ (0, S) is defined by Eq. (A.7). The participation constraint

requires:

(µθ − β)E1 (Wm) ≥ γnm − 1

nm − 2
V1 (Wm) (A.10)

where E1 (Wm) is given by Eq. (A.6) and:

V1 (Wm) =

∫ sm

0
[z (sm)− z (s)]2 dF (s)−

(∫ sm

0
[z (sm)− z (s)] dF (s)

)2
(A.11)

Use Eq. (A.7) to rewrite (A.10) as:

2E1 (Wm)

∫ sm

0
[z (sm)− z (s)] dF (s) ≥ V1 (Wm)

then substitute in for E1 (Wm) and V1 (Wm) to get:

2z (sm)
1

F (sm)

∫ sm

0
z (s) dF (s) +

(
1

F (sm)
− 1

)[
(z (sm))2 − 1

F (sm)

∫ sm

0
(z (s))2 dF (s)

]
≥ 1

F (sm)

∫ sm

0
(z (s))2 dF (s) +

(
1

F (sm)

∫ sm

0
z (s) dF (s)

)2
which is again true because of z′ (·) > 0. �

Proof of Proposition 3

For any nm < nS , Eq. (15) simplifies to Eq. (A.7) from the proof of Proposition 2.

Differentiating Eq. (A.7) yields:

dsm
dnm

=
µθ − β

2γ

1

(nm − 1)2
1

z′ (sm)F (sm)
> 0

Therefore, dsmdnm
> 0 for any nm ∈ [3, nS) and lim

nm→n−S

dsm
dnm

> 0.

A corollary is that the same properties hold for the mean and variance of the equilibrium

security. To see why, differentiate Eq. (A.6) and (A.11) to get:

dE1 (Wm)

dsm
= z′ (sm) [1− F (sm)]
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and:
dV1 (Wm)

dsm
= 2z′ (sm) [1− F (sm)]

∫ sm

0
[z (sm)− z (s)] dF (s)

Both of these derivatives are strictly positive because nm < nS implies sm ∈ (0, S). It then

follows immediately that E1 (Wm) and V1 (Wm) increase with nm as sm increases with nm,

up until the point where nm = nS . �

Proof of Proposition 4

A market structure with one active intermediary and all investors trading in the same

market is always stable since there is no other active intermediary to which an investor can

deviate. The rest of this proof will therefore focus on symmetric market structures with

two or more active intermediaries.

A market structure where each active intermediary gets n investors is stable if and only

if:

E0
(
V i (n)

)
> E0

(
V i (n+ 1)

)
From Eq. (17), the expected profit of an investor in a market of size n is:

E0
(
V i (n)

)
=
σ2θ
2γ

n− 2

n− 1

[E1 (W (n))]2

V1 (W (n))
+
γ

2

n

n− 2
V1 (W (n)) (A.12)

where we write E0
(
V i (n)

)
to make explicit that we are evaluating the investor’s expected

profit at the equilibrium security derived in Proposition 2, denoted here by W (n) to make

explicit its dependence on the market size n.

We first show that the term n−2
n−1

[E1(W (n))]2

V1(W (n)) in Eq. (A.12) is bounded. The ratio n−2
n−1

is increasing in n with lim
n→∞

n−2
n−1 = 1. Therefore, we only need to show that [E1(W (n))]2

V1(W (n)) is

bounded. To do so, take the derivative with respect to n:

d

dn

(
[E1 (W (n))]2

V1 (W (n))

)
=
E1 (W (n))

V1 (W (n))

[
2
dE1 (W (n))

dn
− E1 (W (n))

V1 (W (n))

dV1 (W (n))

dn

]

If n ≥ nS , then W (n) = Z and this derivative is zero. If instead n < nS , then we can use
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the derivatives in the proof of Proposition 3 to write:

d

dn

(
[E1 (W (n))]2

V1 (W (n))

)
sign
= 1− E1 (W (n))

V1 (W (n))

∫ s

0
[z (s)− z (s)] dF (s)

and, with E1 (W (n)) as per Eq. (A.6) and V1 (W (n)) as per Eq. (A.11), we get:

d

dn

(
[E1 (W (n))]2

V1 (W (n))

)
sign
= −

∫ s
0 z (s) [z (s)− z (s)] dF (s)

V1 (W (n))
< 0

We can now conclude:
[E1 (W (n))]2

V1 (W (n))
≤ [E1 (W (3))]2

V1 (W (3))

where n = 3 is the smallest market size for which there can be a well-defined equilibrium

price in Eq. (12). If nS > 3, then Eq. (A.7) defines s ∈ (0, S) and hence E1 (W (3)) ∈ (0,∞)

and V1 (W (3)) ∈ (0,∞). In other words, [E1(W (3))]2

V1(W (3)) is bounded. If instead nS = 3, then
[E1(W (3))]2

V1(W (3)) = [E1(Z)]
2

V1(Z) which is also bounded.

Next, we show that the term nV1(W (n))
n−2 in Eq. (A.12) is decreasing in n if the payoffs of

the asset Z satisfy z(k)−E1(Z|s≤k)√
V1(Z|s≤k)

<
√

2,∀k ∈ (0, S]. Taking derivatives:

d

dn

(
nV1 (W (n))

n− 2

)
= −2V1 (W (n))

(n− 2)2
+

n

n− 2

dV1 (W (n))

dn

If n ≥ nS , then W (n) = Z and this derivative is negative. If instead n < nS , then we can

use the derivatives in the proof of Proposition 3 to write:

d

dn

(
nV1 (W (n))

n− 2

)
sign
= −V1 (W (n)) +

µθ − β
2γ

n (n− 2)

(n− 1)2
1− F (s)

F (s)

∫ s

0
[z (s)− z (s)] dF (s)

Using Eq. (A.7) and the expression for V1 (W (n)) in Eq. (A.11), we obtain the following

necessary and suffi cient condition for d
dn

(
nV1(W (n))

n−2

)
< 0 when n < nS :

∫ s

0
[z (s)− z (s)]2 dF (s) >

1

F (s)

(
1 +

1− F (s)

n− 1

)(∫ s

0
[z (s)− z (s)] dF (s)

)2
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This rearranges to:

z (s)− E1 (Z|s ≤ s)√
V1 (Z|s ≤ s)

<

√
n− 1

1− F (s)
(A.13)

where:

E1 (Z|s ≤ s) ≡ 1

F (s)

∫ s

0
z (s) dF (s)

and:

V1 (Z|s ≤ s) ≡ 1

F (s)

∫ s

0
(z (s))2 dF (s)−

(
1

F (s)

∫ s

0
z (s) dF (s)

)2
Since F (s) ∈ (0, 1) and n ≥ 3, a suffi cient condition for (A.13) is:

z (k)− E1 (Z|s ≤ k)√
V1 (Z|s ≤ k)

<
√

2, ∀k ∈ (0, S]

which is the condition in the statement of Proposition 4.

Invoking this condition, we can now conclude that there exists a bound σ > 0 such that
dE0(V i(n))

dn < 0 for all n ≥ 3 if σ2θ ≤ σ.

In words, any symmetric market structure is stable when σ2θ ≤ σ. For any integer

n ≥ 3 such that N
n is also an integer, the symmetric market structure involves N

n active

intermediaries each getting n investors. For any integer n ≥ 3 such that N
n is not an

integer, we can only consider n if there exist positive integers, M1 and M2, such that

M1 × n + M2 × (n+ 1) = N , in which case the symmetric market structure involves M1

active intermediaries each getting n investors and M2 active intermediaries each getting

n+ 1 investors.

To see what values of n will be consistent with the existence of such integers, consider

an arbitrary total number of active intermediaries M ′. If each active intermediary gets

n investors, then there are N − M ′ × n investors left to be allocated to the M ′ active

intermediaries. For a market structure where each of the M ′ active intermediaries gets

either n or n + 1 investors, we need N −M ′ × n ≥ 0 (so that no active intermediary gets

fewer than n investors) and N −M ′ × n ≤ M ′ (so that no active intermediary gets more

than n+ 1 investors). In other words, we need M ′ ∈
[
N
1+n ,

N
n

]
. We also need M ′ to be an

integer and hence we need an integer to exist between N
1+n and

N
n . This implies that we can

only consider n such that
⌊

N
n+1

⌋
<
⌊
N
n

⌋
, where the notation bXc means X is rounded down
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to the nearest integer. As long as N is not too low,
⌊
N
4

⌋
<
⌊
N
3

⌋
will be satisfied, meaning

that there will exist a stable market structure where M1 ∈ N+ active intermediaries get 3

investors each and M2 ∈ N0 active intermediaries get 4 investors each. �

Proof of Proposition 5

Taking derivatives:

G′ (nm)
sign
=

E1 (W (nm))

(nm − 1) (nm − 2)
+ 2

dE1 (W (nm))

dnm
− E1 (W (nm))

V1 (W (nm))

dV1 (W (nm))

dnm

and:

R′ (nm)
sign
= −

(
2V1 (W (nm))

nm (nm − 2)
− dV1 (W (nm))

dnm

)
If nm > nS , thenW (nm) = Z and thus dE1(W (nm))

dnm
= dV1(W (nm))

dnm
= 0, which further implies

G′ (nm) > 0 and R′ (nm) < 0. If instead nm ≤ nS , then Proposition 2 defines:

z (sm) = E1 (W (nm)) +
µθ − β

2γ

nm − 2

nm − 1

With z (s) = z (0) + sα and f (s) = 1
S , the equilibrium security has:

E1 (W (nm)) = z (0) + sαm

(
1− α

1 + α

sm
S

)

and:

V1 (W (nm)) =
α2

1 + α

s1+2αm

S

(
2

1 + 2α
− 1

1 + α

sm
S

)
where:

α

1 + α

s1+αm

S
=
µθ − β

2γ

nm − 2

nm − 1

The total derivatives of E1 (W (nm)) and V1 (W (nm)) with respect to nm are therefore:

dE1 (W (nm))

dnm
=

(
1− sm

S

)
µθ − β
2γ smS

1

(nm − 1)2

and:
dV1 (W (nm))

dnm
=

2α

1 + α

s1+αm

S

dE1 (Wm (nm))

dnm
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Substituting into the expressions for G′ (nm) and R′ (nm), we get:

G′ (nm)
sign
=

µθ − β
2γ smS

1

(nm − 1)2

sαm

[
2α
1+2α + 1−4α

1+2α
sm
S + α

1+α

(
sm
S

)2]− z (0)
[
2α
1+2α −

sm
S

]
αsαm

(
2

1+2α −
1

1+α
sm
S

)
and:

R′ (nm)
sign
= − 2α2

(1 + α)2
s1+2αm

S

[(
1+α
α

µθ−β
2γSα

nm−2
nm−1

) 1
1+α − 2(1+α)−nm

1+2α

]
nm (nm − 1) (nm − 2)

To help establish R′ (nm) < 0, notice that R′ (nm) < 0 for all nm ≥ 3 if and only if

R′ (3) < 0. Therefore,
(
1+α
4α

µθ−β
γSα

) 1
1+α

> 2α−1
1+2α is suffi cient for R′ (nm) < 0. To help

establish G′ (nm) > 0, define the function h (x) ≡ 2α
1+2α + 1−4α

1+2αx+ α
1+αx

2, where x ∈ [0, 1].

Notice h (0) > 0. Also notice h′′ (x) > 0 so any solution to h′ (x) = 0 is a minimum. If

α ∈
(
0, 14
]
, then there is no x0 ∈ [0, 1] solving h′ (x0) = 0, hence h (x) > 0 for all x ∈ [0, 1].

If instead α > 1
4 , then x0 = (1+α)(4α−1)

2α(1+2α) and h (x0) = 7α−1
4α(1+2α)2

> 0, where the inequality

follows from α > 1
4 . We again have h (x) > 0 for all x ∈ [0, 1]. Notice that h

(
sm
S

)
> 0

for all smS ∈ (0, 1] implies G′ (nm) > 0 when z (0) = 0 so, by continuity, G′ (nm) > 0 for

any z (0) below some positive upperbound. We can exclude sm = 0 when discussing h
(
sm
S

)
since nm ≥ 3 implies sm > 0. �

Proof of Proposition 6

Start with the intermediary’s expected payoff, E0 (Vm). Substituting λ−1m ≡ (nm − 2) into

Eq. (13):

E0 (Vm) =

[
βE1 (Z) + (µθ − β)E1 (W (nm))− nm − 1

nm − 2
γV1 (W (nm))

]
× nm

This expression for E0 (Vm) is increasing in nm holding constant the security Wm, implying

that E0 (Vm) is increasing in nm for nm > nS since the equilibrium security for any nm > nS

is simply Wm = Z. It only remains to check that E0 (Vm) is also increasing in nm for

nm ≤ nS when evaluated at the equilibrium security W (nm).

Using the expressions for E1 (W (nm)), V1 (W (nm)), and sm from the proof of Proposi-
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tion 5, we can write:

E0 (Vm) = Sα
[

β

1 + α
+
µθz (0)

Sα
+ (µθ − β)

(
sm
S

)α( 1 + α

1 + 2α
− α

2 (1 + α)

sm
S

)]
nm

for nm ≤ nS . It is easy to show that
(
sm
S

)α ( 1+α
1+2α −

α
2(1+α)

sm
S

)
is increasing in sm

S for

any sm
S ∈ [0, 1]. We also know from Proposition 3 that sm is increasing in nm. Therefore,

dE0(Vm)
dnm

> 0 for nm ≤ nS .

Turn now to total welfare. Ignore the integered nature of investors for the moment.

There are N investors, each getting the expected payoff E0
(
V i
m

)
in Eq. (17). There are

also N
nm
active intermediaries, each getting the expected payoffE0 (Vm) in Eq. (13). Inactive

intermediaries receive a payoff of zero. Total (expected) welfare at date t = 0 is then:

W = N × E0
(
V i
m

)
+

N

nm
× E0 (Vm)

where 1
nm
× E0 (Vm) is the expected, per-capita payoff of an active intermediary.

Substituting in Eq. (13) and (17):

W = N

(
βE1 (Z) + (µθ − β)E1 (Wm) +

σ2θ
2γ

nm − 2

nm − 1

[E1 (Wm)]2

V1 (Wm)
− γ

2
V1 (Wm)

)
(A.14)

Notice that the utility investors receive from the risk premium (i.e., compensation for risk

term) is outweighed by the negative effect of variance on the price that the intermediary

receives.

The expression for W is increasing in nm holding constant the security Wm. Therefore,

W is increasing in nm for nm > nS and it only remains to check that W is also increasing

in nm for nm ≤ nS when evaluated at the equilibrium security. Using the expressions for

E1 (W (nm)), V1 (W (nm)), and sm from the proof of Proposition 5, we can write:

W = β

(
z (0) +

Sα

1 + α

)
N + z (0)

µ̂θ +
1

α

σ̂2θ
µ̂θ

2
(

1− αx
1+α

)
+ z(0)

xαSα

2
1+2α −

x
1+α

 γSαN
+

µ̂θxα(1− αx

1 + α

)
+

1

α

σ̂2θ
µ̂θ

xα
(

1− αx
1+α

)2
2

1+2α −
x
1+α

− α2x1+2α

2 (1 + α)

(
2

1 + 2α
− x

1 + α

) γS2αN
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for nm ≤ nS , where x ≡ sm
S , µ̂θ ≡

µθ−β
γSα , and σ̂θ ≡

σθ
γSα . Taking derivatives:

dW
dx

=
σ̂2θ
µ̂θ

2
1+α

1
1+2α −

z(0)
x1+αSα

(
2α
1+2α − x

)
(

2
1+2α −

x
1+α

)2 γSαN

α
z (0)

+αxα−1

 σ̂2θ
µ̂θ

(
1− αx

1+α

)
h (x)

α2
(

2
1+2α −

x
1+α

)2 +

(
µ̂θ −

αx1+α

1 + α

)
(1− x)

 γS2αN
with the function h (x) > 0 as defined in the proof of Proposition 5. The expression for sm

from the same proof implies:
2αx1+α

1 + α
= µ̂θ

nm − 2

nm − 1

and hence:

µ̂θ −
αx1+α

1 + α
=

µ̂θnm
2 (nm − 1)

> 0

Therefore, the second line in the expression for dW
dx is positive. If z (0) = 0, then it follows

immediately that dW
dx > 0. If instead z (0) > 0, then the first line in the expression for dW

dx

is positive if and only if:

[
α (1− x)

x1+αSα
− 1

2xαSα

]
z (0) <

1

1 + α

A suffi cient condition is αz(0)
x1+αSα

< 1
1+α evaluated at x =

(
(1+α)µ̂θ
4α

) 1
1+α
, which is the lowest

possible x, specifically the x associated with nm = 3. In other words, z (0) < µ̂θS
α

4α2
is

suffi cient for dW
dx > 0. The fully constrained planner thus chooses nm = N and Wm = Z

when z (0) is not too large.

Return now to the integered nature of investors. Denote by W (nm) the right-hand side

of Eq. (A.14), where Wm ≡ W (nm) is the equilibrium security. In a market structure

satisfying condition (18), aggregate welfare is:

W = n×M1 ×
W (n)

N
+ (N − n×M1)×

W (n+ 1)

N
≤ W (n+ 1) ≤ W (N)

where the inequalities follow from the fact that W (n) is increasing in n when z (0) is not
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too large. Recalling thatW (N) is welfare when all investors trade in one market completes

the proof. �

Proofs for Section 5

1. Higher γ

From the expression for sm in the proof of Proposition 5, it is straightforward to see that

sm is decreasing in γ, all else constant. We can also see that E1 (Wm) and V1 (Wm) are

increasing in sm, with no direct dependence on γ. Therefore, E1 (Wm) and V1 (Wm) are

decreasing in γ, for any market size nm ≤ nS .

At z (0) = 0 and α = 1:

dG (nm)

dγ
= −sm

γ

σ2θ
µθ − β

(
1− sm

2

) [
1
3 + (1− sm)2

]
(
4
3 − sm

)2 < 0

dR (nm)

dγ
=
sm
2γ

µθ − β
4

nm
nm − 1

(
sm −

2

3

)
> 0

dG′ (nm)

dγ

sign
= −

[
sm −

2

3
+

3

2

(
4

3
− sm

)2
+

s2m
(
1− sm

2

)
(1− sm)

(
4
3 − sm

)] < 0

dR′ (nm)

dγ
=

(µθ − β)2

4γ2
1

(nm − 1)3

(
1 +

nm − 4

6sm

)
> 0

where the last three inequalities follow from sm ≥ 2
3 , which is itself implied by Eq. (16)

having a finite solution nS ≥ 3.

2. Higher z (0)

At α = 1, the mean and variance of the original asset are:

E1 (Z) = z (0) +
1

2

V1 (Z) =
1

12

hence dE1(Z)
dz(0) > 0 and dV1(Z)

dz(0) = 0.
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Using the expressions for E1 (Wm), V1 (Wm), and sm from the proof of Proposition 5:

E1 (Wm) = z (0) + sm

(
1− sm

2

)

V1 (Wm) = s3m

(
1

3
− sm

4

)

s2m =
µθ − β
γ

nm − 2

nm − 1

if nm ≤ nS . It is easy to see
dV1(Wm)
dz(0) = dsm

dz(0) = 0 and dE1(Wm)
dz(0) > 0 given the market size

nm.

Using the expressions for G (nm) and R (nm) from the statement of Proposition 5:

dG′ (nm)

dz (0)
=

2σ2θ
γ

s2m
3 + 2

(
sm − 2

3

)
z (0)

s3m
(
4
3 − sm

)2
(nm − 1)2

dR′ (nm)

dz (0)
= 0

Notice that z (0) has no effect on the compensation for risk. In general, the effect of z (0)

on the slope of the gains from trade term depends on the value of sm and thus the value of

nm, although
dG′(nm)
dz(0)

∣∣∣
z(0)=0

> 0 for the specific case where z (0) is increased from z (0) = 0.

A suffi cient condition for dG′(nm)
dz(0) > 0 regardless of the starting value of z (0) is sm ≥ 2

3 ,

which, from the expression for sm, is equivalent to
µθ−β
γ ≥ 4

9
nm−1
nm−2 ≥

8
9 , where the second

inequality follows from nm ≥ 3. Eq. (16) having a finite solution nS ≥ 3 requires µθ−βγ > 1,

hence the suffi cient condition for dG′(nm)
dz(0) > 0 is satisfied.

3. Lower κ

Consider the baseline example (z (0) = 0, α = 1, S = 1) but with z (s) = κs, where κ > 0

is a parameter to be varied. The equilibrium security is characterized by:

s2m =
µθ − β
γκ

nm − 2

nm − 1
−→ nm = 1 +

1

1− γκ
µθ−β

s2m

E1 (Wm) = κ

(
1− sm

2

)
sm
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V1 (Wm) = κ2
(

1

3
− sm

4

)
s3m −→ V1 (Wm) =

(
µθ − β
γ

nm − 2

nm − 1

)2(1

3

√
γκ

µθ − β
nm − 1

nm − 2
− 1

4

)
and the investor’s value function, expressed as a function of sm instead of nm, is:

E0
(
V i
)

= κ

µθ − β +
1

2

σ2θ
µθ − β

(
1− sm

2
1
3 −

sm
4

)2
− γκ

2
s2m

(1

3
− sm

4

)
sm

where:

dE0
(
V i
)

dsm
∝ σ2θ
µθ − β

(
1− sm

2

) (
1
3 −

sm
2

(
1− sm

2

))(
1
3 −

sm
4

)2 − γκ
[
1− sm +

nm − 1

nm − 2

(
sm −

2

3

)]
s2m

The first term in this derivative is positive for any sm ∈ [0, 1] and thus any nm ≥ 3. The

second term is positive for any nm ≥ 4; it is also positive for nm = 3 if µθ−βγκ > 2
9 , which is

the same condition as in the second part of Proposition 5 when κ = 1.

Take two assets, Z1 and Z2, with payoffs z1 (s) = s and z2 (s) = κs respectively, where

κ ∈ (0, 1). Consider µθ−β
γ > 2

9 and σ
2
θ low enough that

dE0(V i)
dsm

< 0 for all nm ≥ 3 when

the underlying asset is Z2. Then, the same σ2θ is low enough that
dE0(V i)
dsm

< 0 for all

nm ≥ 3 when the underlying asset is Z1. Any symmetric market structure is therefore

stable, regardless of whether the underlying asset is Z1 or Z2. Consider specifically n1

investors per market when the underlying asset is Z1 and n1 + ` investors per market when

the underlying asset is Z2, where ` ≥ 1. Then V1 (W1) > V1 (W2) if and only if:

κ <

(
1 + `

n1−1
1 + `

n1−2

)3 1 +
3

4

`
(n1−1)(n1−2)

(
2 + `

n1−2 + `
n1−1

)
(

1 + `
n1−1

)2√
γ

µθ−β
n1−1
n1−2


2

For any given values of n1 and `, there exists a κ ∈ (0, 1) such that this inequality holds. �
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Appendix B —Costly Supply

Given nm, intermediary m chooses a security Wm to supply in market m. He still supplies

one unit of Wm per capita but now he chooses the number of units Am of the asset Z

that back the nm units of Wm. Previously, we had assumed Am = nm. We now let the

intermediary choose Am at a cost c (Am), where c (0) = 0 and c′ (·) > 0. To fix ideas,

consider c (Am) = δ
2A

2
m.

Intermediary m’s expected payoff at date t = 1 is:

Vm = pmnm + βE1 (AmZ − nmWm)− δ

2
A2m

The equilibrium price pm is still given by Eq. (12) so:

E0 (Vm) =

[
(µθ − β)E1 (Wm)− nm − 1

nm − 2
γV1 (Wm)

]
nm + βE1 (Z)Am −

δ

2
A2m

The Lagrangian for the intermediary’s problem can then be written as:

L = (µθ − β)nm

∫ S

0
wm (s) dF (s) (B.1)

−γnm (nm − 1)

nm − 2

[∫ S

0
(wm (s))2 dF (s)−

(∫ S

0
wm (s) dF (s)

)2]

+βE1 (Z)Am −
δ

2
A2m +

∫ S

0
υ (s) [Amz (s)− nmwm (s)] dF (s) + υAAm

where υ (s) ≥ 0 is the Lagrange multiplier on the feasibility constraint for state s, and

υA ≥ 0 is the multiplier on Am ≥ 0.

The first order condition for wm (s) is:

υ (s) = µθ − β − 2γ
nm − 1

nm − 2
[wm (s)− E1 (Wm)] (B.2)

where υ (s) ≥ 0 and Amz (s) ≥ nmwm (s) hold with complementary slackness. This implies
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that the equilibrium security, conditional on nm, has payoffs:

wm (s) =

 Am
nm
z (s) if s < sm

Am
nm
z (sm) if s ≥ sm

where:

sm = arg min
k∈[0,S]

∣∣∣∣z (k)− nm
Am

(
E1 (Wm) +

µθ − β
2γ

nm − 2

nm − 1

)∣∣∣∣ (B.3)

and:

E1 (Wm) =
Am
nm

(
z (sm)−

∫ sm

0
[z (sm)− z (s)] dF (s)

)
(B.4)

The first order condition for Am is:

δAm = βE1 (Z) +

∫ S

0
υ (s) z (s) dF (s) + υA (B.5)

Using Eq. (B.2) with E1 (Wm) as defined in Eq. (B.4), we can rewrite Eq. (B.5) as:

δAm = µθE1 (Z) + υA (B.6)

−2γ
nm − 1

nm − 2

Am
nm

[
E1 (Z)

∫ sm

0
[z (sm)− z (s)] dF (s)−

∫ sm

0
z (s) [z (sm)− z (s)] dF (s)

]

Consider Am > 0 so that υA = 0:

1. If sm = S, then Eq. (B.6) reduces to:

Am =
µθE1 (Z)

δ + 2γ nm−1
nm(nm−2)V1 (Z)

which confirms Am > 0. To confirm that Eq. (B.3) delivers sm = S, we need:

z (S)− E1 (Z) <
µθ − β

2γ

nm
Am

nm − 2

nm − 1

Substituting in the solution for Am, the condition for sm = S simplifies to:

nm (nm − 2)

nm − 1
>

2γ

δ

µθ
[
E1 (Z) z (S)− E1

(
Z2
)]

+ βV1 (Z)

µθ − β
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The left-hand side of this inequality is increasing in nm and the right-hand side is

positive. Therefore, sm = S if nm is above some threshold.

2. If the solution to Eq. (B.3) is interior, then sm is defined by:

∫ sm

0
[z (sm)− z (s)] dF (s) ≡ µθ − β

2γ

nm
Am

nm − 2

nm − 1
(B.7)

and we can use Eq. (B.7) to simplify Eq. (B.6) to:

Am

(
δ − 2γ

nm − 1

nm (nm − 2)

∫ sm

0
z (s) [z (sm)− z (s)] dF (s)

)
= βE1 (Z) (B.8)

Using Eq. (B.8) to substitute Am out of Eq. (B.7), we can then rewrite Eq. (B.7) as:

βE1 (Z)

µθ − β

∫ sm

0
[z (sm)− z (s)] dF (s)+

∫ sm

0
z (s) [z (sm)− z (s)] dF (s) =

δ

2γ

nm (nm − 2)

nm − 1
(B.9)

which implies ∂sm
∂nm

> 0. Notice from Eq. (B.7) that Am > 0 and, to confirm sm < S,

we need nm below the threshold that delivered sm = S in the previous bullet.

We have now shown that the key insights of Propositions 2 and 3 continue to hold. If

small markets are stable, then debt will be traded in that market structure. If large markets

are stable, then equity will be traded in that market structure.

A market structure where all investors trade in the same market is trivially stable, so,

as long as N is large, there always exists an equilibrium where investors trade equity in

large markets.

It remains to show that the key insights of Proposition 4 also continue to hold. In

particular, we want to show that small markets are also stable if heterogeneity in investor

preference shocks, σ2θ, is suffi ciently low. The investor’s expected profit is still given by

Eq. (17) so we follow the steps in the proof of Proposition 4. Specifically, if we can show
dV1(Wm)
dnm

< 2V1(Wm)
nm(nm−2) for any nm where the equilibrium security is Wm 6= Z, then we can

conclude that small markets are stable when σ2θ is suffi ciently low.
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The variance of the equilibrium security derived above is:

V1 (Wm) =

(
Am
nm

)2 [∫ sm

0
[z (sm)− z (s)]2 dF (s)−

(∫ sm

0
[z (sm)− z (s)] dF (s)

)2]

where Am depends on sm and nm as per Eq. (B.7) and sm depends on nm as per Eq. (B.9).

Therefore:

dV1 (Wm)

dnm
=

2V1 (Wm)

Am

(
dAm
dnm

− Am
nm

)
+

2A2m
n2m

[1− F (sm)] z′ (sm)
dsm
dnm

∫ sm

0
[z (sm)− z (s)] dF (s)

where:

z′ (sm)
dsm
dnm

=

δ
2γ

n2m−2nm+2
(nm−1)2

βE1(Z)
µθ−β

F (sm) +
∫ sm
0 z (s) dF (s)

and:

dAm
dnm

=
Am
nm

n2m − 2nm + 2

(nm − 1) (nm − 2)

1−
δ Am
µθ−β

F (sm)

βE1(Z)
µθ−β

F (sm) +
∫ sm
0 z (s) dF (s)


The condition we want to check, dV1(Wm)

dnm
< 2V1(Wm)

nm(nm−2) , simplifies to:

[1− F (sm)] z′ (sm)
dsm
dnm

∫ sm

0
[z (sm)− z (s)] dF (s)

<
1

nm

[
nm − 1

nm − 2
− nm
Am

dAm
dnm

] [∫ sm

0
[z (sm)− z (s)]2 dF (s)−

(∫ sm

0
[z (sm)− z (s)] dF (s)

)2]

⇔

1+[1− F (sm)]
[z (sm)− E1 (Z|s ≤ sm)]2

V1 (Z|s ≤ sm)
<

δ
2γ

nm(nm−2)
nm−1

1
F (sm)

(
n2m − 2nm + 2

)[
βE1(Z)
µθ−β

+ E1 (Z|s ≤ sm)
]

[z (sm)− E1 (Z|s ≤ sm)]

⇔

[1− F (sm)]

(nm − 1)2
[z (sm)− E1 (Z|s ≤ sm)]2

V1 (Z|s ≤ sm)
< 1−

n2m−2nm+2
(nm−1)2

V1 (Z|s ≤ sm)[
βE1(Z)
µθ−β

+ E1 (Z|s ≤ sm)
]

[z (sm)− E1 (Z|s ≤ sm)]

It follows from z′ (·) > 0 that E1 (Z) ≥ E1 (Z|s ≤ sm) and [z (sm)− E1 (Z|s ≤ sm)] >
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V1(Z|s≤sm)
E1(Z|s≤sm) , so a suffi cient condition for

dV1(Wm)
dnm

< 2V1(Wm)
nm(nm−2) is:

[z (sm)− E1 (Z|s ≤ sm)]2

V1 (Z|s ≤ sm)
<
(
n2m − 2nm + 2

) β
µθ
− 1

The right-hand side is increasing in nm so, with nm ≥ 3, it will be enough to have:

z (k)− E1 (Z|s ≤ k)√
V1 (Z|s ≤ k)

<

√
5β

µθ
− 1,∀k ∈ (0, S]

with β > µθ
5 .
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Appendix C —Alternative Timing

Suppose the timing is such that intermediaries post securities first, then investors choose

markets. Market choice is still made before the realization of investor preference shocks,

but now intermediaries can compete for investors through security design. By posting

securities first, we mean that the intermediary commits to a particular payoff profile before

investors choose their markets. The intermediary is rational so his security design problem

will take into account the best responses of investors. However, the intermediary cannot

post a security whose payoff profile is contingent on the number of investors who show up.

That would constitute a customized contract, not a standardized contract. The focus of

our paper is on standardized contracts.

Consider two intermediaries, 1 and 2. Intermediary 1 offers a security W1 and attracts

n1 investors. Intermediary 2 offers a security W2 and attracts N − n1 investors.

The expected value to investor i of trading Wm in a market of size nm is still given by

E0
(
V i
m

)
in Eq. (17). In the extreme case of σ2θ = 0:

E0
(
V i
m

)
=
γ

2

nm
nm − 2

V1 (Wm) (C.1)

By a continuity argument, all results derived under σ2θ = 0 will extend to σ2θ ∈
(
0, σ
)
, where

σ is some positive upperbound.

Notice that nm
nm−2 in Eq. (C.1) is decreasing in nm. Also recall that Wm is no longer

responsive to nm at the stage where investors choose their markets. Eq. (C.1) says that in-

vestors want a more variable security when σ2θ is low. This is because the trading equilibrium

delivers a low enough price (or, equivalently, a high enough risk premium) to compensate

them for taking the risk. Investors also want to take this risk in very small markets, reflect-

ing the fact that the risk premium increases with an individual investor’s price impact.

Given the securities W1 and W2, investors will move around until they are indifferent

between the two intermediaries. We abstract from the integered nature of investors here to

avoid unnecessary algebra. The best response of investors then yields a market structure
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characterized by n∗1, where n
∗
1 solves:

n∗1
n∗1 − 2

V1 (W1) =
N − n∗1

N − n∗1 − 2
V1 (W2) (C.2)

Eq. (C.2) defines n∗1 as a function of
V1(W1)
V1(W2)

. Differentiate Eq. (C.2) to get:

dn∗1
dV1 (W1)

=
n∗1
2

1
1

n∗1−2
+

n∗1
(N−n∗1−2)(N−n∗1)

1

V1 (W1)

This derivative is positive. If intermediary 1 posts a more variable security than intermedi-

ary 2, then intermediary 1 will attract more investors.

Each intermediary seeks to maximize his expected profit subject to a state-by-state

feasibility constraint on the payoffs of the security he designs. He still offers one unit of the

security to each investor in his market and, as in Appendix B, pays a cost to procure the

assets that back this security. The Lagrangian for intermediary 1’s problem is thus given

by Eq. (B.1) but with n1 = n∗1, where n
∗
1 depends on W1 as per Eq. (C.2). The choice

variables are the payoffs w1 (s) for each state s ∈ [0, S] and the number of units A1 of Z

that will back the n∗1 units of W1.

The first order condition for w1 (s) is:

υ (s) = µθ − β −
γ

n∗1 − 2

2 (n∗1 − 1) +
(n∗1)

2 − 4n∗1 + 2

1 +
n∗1(n∗1−2)

(N−n∗1−2)(N−n∗1)

 [w1 (s)− E1 (W1)]

+
1

1
n∗1−2

+
n∗1

(N−n∗1−2)(N−n∗1)

w1 (s)− E1 (W1)

V1 (W1)

[
(µθ − β)E1 (W1)−

∫ S

0
υ (s)w1 (s) dF (s)

]

Multiply both sides by w1 (s) then integrate over s ∈ [0, S] to isolate:

∫ S

0
υ (s)w1 (s) dF (s) = (µθ − β)E1 (W1)−

γ

n∗1 − 2


2 (n∗1 − 1) +

(n∗1)
2−4n∗1+2

1+
n∗1(n∗1−2)

(N−n∗1−2)(N−n∗1)

1 + 1
1

n∗1−2
+

n∗1
(N−n∗1−2)(N−n∗1)

V1 (W1)

63



We can now rewrite the first order condition for w1 (s) as:

υ (s) = µθ − β −
γn∗1
n∗1 − 2

n∗1 − 2 +
2(n∗1−1)(n∗1−2)

(N−n∗1−2)(N−n∗1)

n∗1 − 1 +
n∗1(n∗1−2)

(N−n∗1−2)(N−n∗1)

[w1 (s)− E1 (W1)] (C.3)

The first order condition for A1 still takes the form of (B.5).

In a symmetric equilibrium, both intermediaries offer the same security W . Eq. (C.2)

implies n∗1 = N
2 which, when substituted into Eq. (C.3), implies:

υ (s) = µθ − β − γ
N2 − 8

N (N − 4)
[w (s)− E1 (W )]

for each s ∈ [0, S]. Therefore, the security that prevails in a symmetric equilibrium has

payoffs:

w (s) =

 2A
N z (s) if s < s

2A
N z (s) if s ≥ s

where the threshold s ∈ [0, S] is defined by:

s = arg min
k∈[0,S]

∣∣∣∣z (k)− N

2A

(
E1 (W ) +

µθ − β
γ

N (N − 4)

N2 − 8

)∣∣∣∣ (C.4)

and A solves:

A =
βE1 (Z) + (µθ − β)

∫ s
0 z (s) dF (s)

δ + 2γ(N2−8)
N2(N−4)

[∫ s
0 (z (s))2 dF (s)−

(∫ s
0 z (s) dF (s)

)2
−
∫ s
0 z (s) dF (s)

∫ S
s z (s) dF (s)

]
(C.5)

If the solution to Eq. (C.4) is interior, we can combine Eq. (C.4) and (C.5) to get:

βE1 (Z)

µθ − β

∫ s

0
[z (s)− z (s)] dF (s) +

∫ s

0
z (s) [z (s)− z (s)] dF (s) =

δ

2γ

N2 (N − 4)

N2 − 8

We then need:

δ <
2γ

µθ − β
[
µθ
[
z (S)E1 (Z)− E1

(
Z2
)]

+ βV1 (Z)
] N2 − 8

N2 (N − 4)
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for the solution to indeed be interior, in which case:

ds

dN
=

δ

2γ

N
(
N3 − 24N + 64

)
(N2 − 8)2

1

z′ (s)
∫ s
0

[
z (s) + βE1(Z)

µθ−β

]
dF (s)

> 0

where the inequality follows from N ≥ 6 to ensure N
2 ≥ 3. Therefore, the alternative timing

considered here does not change the result that debt is traded in smaller markets than

equity.
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