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1 Introduction

Financial securities are traded in a wide variety of market structures. Over-the-counter markets

facilitate the creation and trade of customized contracts, and exchanges are venues for many

standardized securities. Frequently, however, standardized contracts, such as covenant-lite debt

securities, are also traded in decentralized, fragmented market structures. While it is widely

acknowledged that the structure of the market affects the price and trading effi ciency of a

security, little has been studied about the properties of a security and the market structure

in which it is traded. Yet, regulators favor, for instance, shifting the trade of standardized

securities from fragmented markets to more centralized venues. Ensuring that such proposals

improve trade, or that they are at least innocuous, requires first answering a critical question:

Why do standardized securities trade in decentralized markets to begin with?

To address this question, we propose a model in which financial intermediaries issue se-

curities taking into account the markets in which the securities will be traded. Markets can

be thinner and more fragmented, or deeper and more concentrated. Securities are offered to

investors who strategically choose which market to participate in, understanding that their

choice affects the design of the security they will be trading. Thus, the novelty in our model is

that both the securities issued and the structure of the market are endogenously determined.

A central finding in our paper is that financial intermediaries have an incentive to issue debt

when markets are thinner and equity when markets are deeper. As in Hébert (2018), a debt

contract has the least variance among all limited liability securities with the same expected

value. The key insight of our model is that financial intermediaries issue debt only if investors

dislike variable payoffs more than they dislike impacting the price of a security when they trade

it strategically. This is the case when investors anticipate they will need to trade little. In

contrast, financial intermediaries issue equity when investors prioritize minimizing their price

impact over trading a risky security. This is the case when investors anticipate they may need

to take large positions. Even though investors are willing to trade risky securities, we show that

their welfare is not necessarily higher in deeper and larger markets. Financial intermediaries,

on the other hand, benefit when markets are deep. We also show that there exist equilibrium

market structures in which both debt and equity are traded.

Our model has three dates and finite numbers of issuers and strategic investors. Financial
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intermediaries can issue asset-backed securities, therefore we refer to them as issuers. A security

is a portion of an asset (or future cash flow) that is offered to investors. Issuers are risk neutral,

while investors have mean-variance preferences. Investors are ex-ante homogeneous but have

different ex-post valuations of the security they are offered. This allows investors to benefit

from trading with each other.

We consider that issuers choose which securities to design taking as given the market

structure in which securities will be trading, but not the idiosyncratic valuations of investors.

Indeed, in practice bookrunners that manage security offerings initially prospect the market

and probe the parties interested to determine demand. At the same time, the idiosyncratic

valuations of investors are realized after issuers design securities, and an issuer cannot customize

his security to address the specific requirements of any particular investor. The focus of our

paper is thus on standardized security issuances.

Initially, investors choose a market in which to trade. Each investor understands that her

choice affects the design of the security that will be offered in this market. Once markets open,

investors can trade given their idiosyncratic valuation shocks. While there is an increasingly

diverse set of trading protocols in practice, a key commonality is that market participants are

strategic and, in particular, that they exercise market power relative to other participants.

To capture this feature, we model investors’trading strategies as quantity-price schedules and

consider that each investor understands the impact of her trade on the price of the security.

Thus, investors act strategically both when markets form and when they trade.

In this environment, we consider two frictions. First, investors cannot directly invest in the

same assets as issuers. Indeed, financial intermediaries frequently issue asset-backed securities

which allow investors to gain exposure to markets that they could not otherwise invest in.

Mortgage-backed securities are such an example. Second, issuers design securities bounded by

limited liability. That is, a security’s payoff cannot exceed the payoff of the asset that backs it

in any given state of the world. In practice, most securities are implicitly designed to respect

this constraint. In our set-up, limited liability is equivalent to the spanning constraint in the

financial innovation literature (Duffi e and Rahi (1995)) which requires that the securities a

financial intermediary issues span the payoff of the asset that backs them.

We obtain two sets of results. The first set of results characterizes the security that an

issuer finds optimal to offer taking as given the market structure. We show that this security
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depends monotonically on the depth of the issuer’s market. In particular, we show (i) that

the optimal security belongs to the family of debt contracts, paying the lesser of a flat payoff

and the full value of the underlying asset in every state of the world, and (ii) that the state in

which the security starts paying the flat payoff is higher in markets with more investors. This

implies that, as the market deepens, the security approaches the payoff of the underlying asset

in all states, and thus becomes equity.

The intuition for this first set of results is as follows. When choosing how to design a

security, the issuer’s main incentive is to obtain a high price for it. As usual, the equilibrium

price at which the security is traded is increasing in its mean payoff and decreasing in the

variance of its payoffs across states. The issuer thus faces a trade-off between the mean and

the variance of the security he designs, making a debt contract the optimal one. Importantly,

though, the equilibrium price decreases less with the variance of the security in deeper markets

where investors have a lower price impact. Thus, the strength of the mean-variance trade-

off faced by the issuer (and hence where on the spectrum of debt contracts the security sits)

depends on the depth of the market. The deeper the market, the less pronounced the trade-off

and the more equity-like the issuer makes his security.

The second set of results focuses on the equilibrium market structure. This is crucial to

ensure that the securities issuers design in a given market structure can indeed be supported

in equilibrium. If no investor benefits from trading in a particular market structure, then we

should not expect the corresponding securities to arise in equilibrium. When choosing which

market to trade in, an investor weighs the gains from trade with other investors against the

ability to influence the security that the issuer designs. An investor who trades in a thinner

market will have a larger price impact. On one hand, this amplifies the mean-variance trade-off

in the issuer’s security design problem and delivers a less risky security. On the other hand,

it also amplifies the extent to which the investor will move the price of the security against

herself when trading with other investors. When investors expect to be relatively homogeneous

in their valuations of the same security, they anticipate limited benefits from trading with each

other and are therefore willing to accept a larger price impact in order to elicit a less variable

security from the issuer. In contrast, when investors expect to be relatively heterogeneous,

they understand that they may want to engage in large trades with each other so they seek to

limit their price impact by trading in a large market, albeit with a riskier security. Thus, an
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important outcome of our model is that debt is traded in thinner, more fragmented markets

while equity is traded in deeper, more concentrated markets.

To gain further insights into our question, we analyze a simpler version of the model in which

asset returns are uniformly distributed. The welfare implications are different for issuers and

investors. If heterogeneity among investors is not too high, then the symmetric equilibrium that

achieves the highest welfare for investors exists in the set of equilibria where debt is traded

in thinner, more fragmented markets. In contrast, issuers are always better off designing a

security for a large market than for a small market. Investors thus benefit at the expense of

issuers in any equilibrium where debt is traded. In aggregate, however, the benefits to investors

in an equilibrium where debt is traded are outweighed by the losses to issuers, such that total

welfare is higher when markets are deeper, even though the security that emerges in these

markets has more variable payoffs.

Related Literature

This paper relates to several strands of literature. The most relevant studies are those on

security design and endogenous market structure.

The literature on security design has been very prolific over recent decades. The classic

problem explored in these papers is that of a firm needing to raise funds from an investor to

finance an investment project. In exchange, the firm proposes a security to the investor. A com-

mon result in this literature is that debt is the optimal security in the presence of asymmetric

information or moral hazard. An incomplete list of papers includes DeMarzo and Duffi e (1999),

Biais and Mariotti (2005), Yang (2017), Asriyan and Vanasco (2018). Malenko and Tsoy (2018)

have shown recently that a mixture of debt and equity can be optimal when the investor faces

Knightian uncertainty about the underlying project’s returns. We explore a variation of the

typical set-up. In particular, financial intermediaries issue securities which allow investors to

have exposure to assets in which they cannot invest directly. We find that debt securities are

optimal, even in the absence of information asymmetries. In our model, this is because debt

optimizes a mean-variance trade-off that investors, and consequently financial intermediaries,

face. A similar channel explains why debt is the optimal security in Hébert (2018). Although

Hébert (2018) analyzes a moral hazard problem, he shows that the mean-variance trade-off is

key to the issuer’s security design problem. Our main contribution, however, is to show that
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a financial intermediary chooses to issue debt only when investors trade in a thin market. As

the market gets deeper, the optimal security becomes equity.

Parallel to the literature on security design, there is a body of work on financial innovation

that studies the role of security issuances in completing markets. From the seminal paper

of Allen and Gale (1991) to the more recent contribution of Carvajal, Rostek, and Weretka

(2012), the main focus of this line of research is to analyze whether competition among asset-

holders affects their incentives to introduce new securities. Complimentary to this literature,

we study a model in which a financial intermediary’s decision to issue securities is affected by

the strategic competition between investors when trading the securities they are offered.

There is a young but growing literature on endogenous market structure. Babus and Par-

latore (2018), Cespa and Vives (2018), Dugast, Uslu, and Weill (2018), Lee and Wang (2018),

and Yoon (2018) provide models that seek to explain why trade takes places in a variety of

venues, centralized or decentralized. However, in these papers, the asset traded is taken to

be exogenous. In contrast, both the security design and the market participation decision are

endogenous in our model.

A selected set of papers study the effect of market structure on security design. Axelson

(2007) shows that debt is optimal if the degree of competition among investors is low. The

driving force in his model is that investors are better informed about the prospects of the

issuer than the issuer himself. Rostek and Yoon (2018) analyze the role of market structure for

introducing non-redundant derivatives. In both of these papers, however, the market structure

is taken to be exogenous. In our paper, the market structure is endogenously determined.

There is a lack of direct empirical work on the joint determination of security design and

market structure. However, Biais and Green (2018) provide a thorough documentation of de-

velopments in the bond market in the 20th century. They find that when institutions became

more important in bond markets, bond markets became thinner. While our model is inher-

ently static (as it develops over three periods), it builds on ingredients that are relevant for

investigating these issues. For instance, changes in the dispersion in investors’valuations or in

the variance of the underlying asset over time could potentially account for market structure

dynamics.

The rest of the paper proceeds as follows: Section 2 introduces the model environment;

Section 3 defines and characterizes the equilibrium; Section 4 discusses the welfare implications
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of our model; Section 5 presents some extensions of our model; and Section 6 concludes. All

proofs are collected in the Appendix.

2 The Model Set-Up

We consider an economy with three dates, t = 0, 1, 2, and two types of agents, issuers and

investors. There are M ≥ 2 risk neutral, impatient issuers indexed by m = 1, ...,M . Each

issuer has access to an asset, Z, which yields a payoff z (s) ≥ 0 if the aggregate state s ∈ [0, S]

is realized at date t = 2. The cumulative distribution function for states is F (s), with F (·)

continuous and differentiable, and the probability density function is f (s). Without loss of

generality, we assume z′ (·) > 0. A market m is associated with each issuer m. In each market

m, the issuer can design a security Wm that pays wm (s) in state s at date t = 2. As in

the literature on the spanning role of securities (Duffi e and Rahi (1995)), we assume that the

security payoff is subject to the feasibility constraint

wm (s) ≤ z (s) , ∀s ∈ [0, S] . (1)

There are N ≥ 3 mean-variance, patient investors, indexed by i = 1, ..., N . Investor i is

subject to a preference shock θi that shifts her marginal utility of consumption, as we describe

in detail below. The heterogeneity that θi introduces across investors can be interpreted as

differences in liquidity needs, in the use of the asset as collateral, in technologies to repackage

and resell cash flows, or in risk-management constraints, for example. The shock θi is indepen-

dently distributed across investors according to a distribution G (·) with mean µθ and standard

deviation σθ. The realization of the shock θi is also independent of the realization of the state

s. Investors do not have access to the asset Z, but they can acquire the securities that issuers

design.

The timing of events is as follows. At date t = 0, investors choose a market m in which

to trade. An investor can choose at most one market. However, multiple investors can choose

the same market. Next, the issuer in market m designs the security Wm. We assume that the

issuer supplies one unit per capita of the security Wm in his market.1 At date t = 1, each

1The idea is that each unit of Wm is backed by one unit of the asset Z. For this, we assume that the issuer
has access to a suffi ciently large pool of the asset Z. The assumption that Z and Wm are scalable allows us to

7



investor i learns her preference shock θi. After this, all markets open and investors in each

market m trade the security Wm. At date t = 2, the state s is realized. Investors receive

payoffs according their final holdings of the security. Each issuer m pays wm (s) and receives

z(s) per capita. Consumption takes place.

There are two important aspects to the timing we use. First, the issuer designs the secu-

rity before the preference shocks, θi, are realized. Thus, a security cannot be customized to

address the specific requirements of any particular investor. This is our approach to model the

innovation of standardized securities. Second, the issuer designs the security after the mar-

ket structure is determined. While this timing does not allow investors to search and target

particular securities, it is in line with security offering practices in which bookrunners initially

prospect the market and track the parties interested to help determine demand.2

The investors’choices at date t = 0 determine a market structureM. When an investor i

chooses a market m, we say that i ∈ m. We denote by nm the number of investors that choose

market m. We consider a market m to be active if and only if nm > 2. In this case, we say

that m ∈ M. A market structure M is characterized by the number of active markets, M ′,

and by the number of investors in each market, {nm}M
′

m=1. We define a market structure to be

symmetric if each active market m has the same number of investors nm = n.

We model investors’trading strategies as quantity-price schedules, as in Kyle (1989) and

Vives (2011). In particular, the strategy of an investor is a map from her information set to

the space of demand functions, as follows. The demand function of an investor i ∈ m with

preference shock θi is a continuous function Qim : R → R which maps the price pm of the

security Wm in market m into a quantity qim she wishes to trade

Qim
(
pm; θi

)
= qim.

An investor i who trades qim units of security Wm in market m at date t = 1 consumes Cim at

date t = 2, where

cim (s) = qimwm (s) , (2)

abstract from any mechanical effects that would arise from having a fixed supply of Z in each market. Restricting
the supply of Z reinforces mechanically our results. In Section 5.1, we allow the issuer to optimally choose how
many units of Z back each unit of Wm, subject to a cost of procuring Z.

2 In Section 5.2, we discuss an alternative timing in which we allow investors to choose markets after issuers
design securities.
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for each state s. Given a market structureM and a security Wm that issuer m designs at date

t = 0, the expected payoff of an investor i in market m at date t = 1 as she engages in trade is

V i
m = θiE1

(
Cim
)
− γ

2
V1
(
Cim
)
− pmqim, (3)

where V (·) is the variance operator. We use E1 (·) and V1 (·) to denote that expectations are

being taken over the state s, which is the only unknown at date t = 1. The price pm in Eq.

(3) is the price at which local market m clears, given that issuer m supplies one unit of the

security per capita. That is, pm is such that

∑
i∈m

Qim
(
pm; θi

)
= nm.

Substituting Eq. (2) into Eq. (3), we obtain that investor i’s objective function at date t = 1,

before the uncertainty about the state of the world s has been resolved, is

V i
m =

[
θiE1 (Wm)− pm

]
qim −

γ

2
V1 (Wm)

(
qim
)2
, (4)

where E1 (Wm) ≡
∫ S
0 wm (s) dF (s) and V1 (Wm) ≡

∫ S
0 [wm (s)− E1 (Wm)]2 dF (s). In this

reformulation, the preference shock θi captures investor i’s valuation of the payoff she expects

to obtain from one unit of the security Wm.

An issuer m supplies nm units of the security Wm that he designs in market m, and he

receives the price pm per unit of the security. Aside from designing the security and supplying

it to the market, the issuer is not directly involved in the trade between investors at date t = 1.

Given a market structure M and a security Wm that the issuer designs in a market m with

nm investors at date t = 0, issuer m’s expected payoff at date t = 1 is

Vm = [pm + βE1 (Z −Wm)]× nm,

where β ∈ [0, 1] is a discount factor that captures the impatience of issuers relative to investors.
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3 Equilibrium

In this section, we define and characterize the equilibrium. We start by solving for the trading

equilibrium in each market m at date t = 1, given a market structureM and the securitiesWm

that issuers design at date t = 0. We then characterize the security that each issuer designs in

equilibrium for his market m at date t = 0, given a market structure M. Lastly, we analyze

the market formation game which determines the equilibrium market structureM at t = 0.

Definition 1 A subgame perfect equilibrium is a market structure M, a set of securities

{Wm}m∈M, and a set of demand functions
{
Qim
}
i∈m for investors in each active market m

such that:

1. Qim solves each investor i’s problem at date t = 1

max
Qim

{[
θiE1 (Wm)− pm

]
Qim

(
pm; θi

)
− γ

2

(
Qim

(
pm; θi

))2 V1 (Wm)
}

; (5)

2. Wm solves each issuer m’s problem at date t = 0

max
Wm

{E0 (pm) + β [E1 (Z)− E1 (Wm)]} × nm, (6)

subject to the feasibility constraint (1);

3. No investor i benefits from deviating and joining a different local market at date t = 0,

i.e. the expected payoff an investor receives in market m is at least as large as the expected

payoff from deviating to market m′

E0
(
V i
m

)
≥ E0

(
V i
m′
)
for all i ∈ m and all m′ 6= m. (7)

Our notion of equilibrium market structure, described in the third bullet of Definition 1, is

related to the concept of pairwise stability introduced in Jackson and Wolinsky (1996), with

the difference that we allow for deviations to be unilateral.

It is important to note that all agents act strategically. This implies that each investor i ∈ m

takes into account her price impact in market m when submitting her demand. Similarly, an

issuer understands how the security he designs at date t = 0 affects the price at which investors
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trade it at date t = 1. At the market formation stage, each investor also takes into account

how her market choice shapes the security that the issuers design, as well as the price at which

trade takes place at date t = 1. For tractability, we restrict our attention to equilibria in which

the market structure is symmetric, issuers design the same security, and agents have linear

trading strategies.

The rest of this section characterizes the equilibrium. As mentioned earlier, we solve first

for the trading equilibrium conditional on a market structure and a set of securities (Section

3.1), then for the equilibrium security conditional on a market structure (Section 3.2), and

finally for the equilibrium market structure (Section 3.3).

3.1 The Trading Equilibrium

At date t = 1, after each investor i learns her preference shock θi, all active markets open

and trade takes place. In each market m, an investor chooses her trading strategy in order

to maximize her expected payoff, understanding that she has impact on the price pm. As is

standard in similar models, we simplify the optimization problem (5), which is defined over a

function space, to finding the functions Qim
(
pm; θi

)
pointwise. For this, we fix a realization of

the set of preference shocks,
{
θi
}N
i=1
. Then, we solve for the optimal quantity qim that each

investor i ∈ m demands in market m when she takes as given the demand functions of the

other investors in market m. Thus, we obtain investor i’s best response quantity qim in market

m for each realization of the preference shocks of the other investors in market m. This gives

us a map from prices to quantities, or the investor’s optimal demand function point by point.

We describe the procedure in detail below.

The first order condition for an investor i in market m is

θiE1 (Wm)− pm −
(
∂pm,−i
∂qim

+ γV1 (Wm)

)
qim = 0, (8)

where pm,−i is the residual inverse demand of investor i implied by

qim +
∑

j∈m,j 6=i
Qjm

(
pm; θj

)
= nm. (9)

An investor i ∈ m chooses to trade a quantity qim of the security Wm so that her marginal
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benefit equalizes her marginal cost of trading. The first term in the first order condition (8) is

the marginal benefit of increasing the final holdings of the security Wm for investor i, which is

given by the expected value of the security scaled by the investor’s preference shock θi. The

remaining terms in Eq. (8) represent investor i’s marginal cost of increasing her demand. The

second term represents the price that the investor pays to acquire one unit of the security

Wm. Investors also incur indirect costs, captured in the last term in Eq. (8). First, since the

investors trade strategically, increasing the quantity demanded has an impact on the market

clearing price. Second, investors are risk averse, which maps into a holding cost of the security

that increases proportionally to the variance of Wm as the quantity demanded increases. The

following proposition characterizes the trading equilibrium in a market m.

Proposition 1 Given a market structure M and a set of securities {Wm}m∈M, there exists

a unique symmetric linear equilibrium that characterizes investors’ trading strategies in each

market m, as follows. The equilibrium demand function of an investor i in market m is

Qim
(
pm; θi

)
=

1

(1 + λm) γV1 (Wm)

[
θiE1 (Wm)− pm

]
, (10)

where λ−1m ≡ (nm − 2) is an index of market depth. The equilibrium price in market m is

pm =

(
1

nm

∑
i∈m

θi

)
E1 (Wm)− (1 + λm) γV1 (Wm) . (11)

Proposition 1 shows that investor i buys or sells the security Wm depending on whether

her valuation θiE1 (Wm) of the security’s expected payoff is above or below the price pm at

which she can trade. Eq. (10) implies that the investor will restrict the size of her trade for

two reasons. First, she is risk averse and the security is risky. Thus, the more risk averse the

investor is, the less she will trade. Similarly, the more risky the security is (as reflected in

a higher variance of payoffs across states), the less of it the investor trades, everything else

constant. Second, the investor has a price impact, ∂pm,−i/∂qim = λmγV1 (Wm), that decreases

with market depth. In other words, the larger the market is, the more the investor can trade

without moving the price against herself.

The equilibrium price in market m, characterized by Eq. (11), is the expected payoff of

the security Wm, scaled by the average valuation of the investors in market m, minus a risk
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premium. The risk premium exists because investors are risk averse and, in expectation, have

to hold one unit of a risky security. Indeed, it is easy to check that the expected traded quantity

is E0
(
qim
)

= 1 for any i ∈ m.

Given a realization of investors’preference shocks,
{
θi
}N
i=1
, it follows from Eq. (11) that the

price of the security Wm is lower in a thinner market. The price of the security also decreases

with the variance of the security, everything else constant. However, the price decreases less

with the variance of the security as the market becomes deeper.3. These effects arise because

investors are strategic and dislike risk. In a smaller market, changes in the demand of an

individual investor have a larger impact on the price of the security. Furthermore, the riskier

the security is, the less of it a risk averse investor will demand. If an investor demands less of

the security, more will be available to other investors. The price will then have to fall so that,

on average, other investors are content with holding more of the security. As the size of the

market increases, the price impact of any one investor falls. An increase in riskiness is thus

met with a smaller decrease in price compared to a smaller market where a strategic decrease

in demand by one investor leads to a bigger price drop.

The effects of market depth and the variance of the security on the price are typical of

models in which investors strategically trade risky assets in positive net supply by submitting

demand functions. In contrast to standard models, however, in our model both the variance

of the security and the market depth are endogenous. In particular, the security is the choice

of the issuers, while the market structure, and implicitly the market depth, is the outcome of

investors’choices.

3.2 The Equilibrium Security

At the end of date t = 0, after the market structure is determined, each active issuer m designs

a security Wm that investors can trade in market m at date t = 1. The issuer chooses the

payoff wm (s) of the security for each state s to maximize his expected profit in (6), subject

to the feasibility constraint (1). The constraint (1) restricts the issuer to offer investors a

security with a payoff that does not exceed what the issuer realizes on the asset Z in any state

3To verify this, consider the cross-partial derivative of the price pm with respect to the variance of the security
Wm and the number of investors in market m, holding everything else constant. This derivative is given by
∂

∂nm

∂pm
∂V1(Wm)

∣∣∣
E1(Wm)=cst

= − ∂λm
∂nm

> 0.
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s. Alternatively, since the issuer is the residual claimant on the payoff of the asset Z, he is

effectively designing two securities: one that he offers to investors and one that he keeps for

himself. Thus, the constraint (1) simply requires that the two securities exhaust the returns to

issuer m’s asset, as is commonly assumed in the financial innovation spanning literature.

Taking the expectation at date t = 0 of the price pm at which investors in market m trade

the security Wm (i.e., the price in Eq. (11)) and substituting it into (6), we obtain that issuer

m designs the security Wm to maximize the following objective function:

E0 (Vm) = [βE1 (Z) + (µθ − β)E1 (Wm)− (1 + λm) γV1 (Wm)]× nm. (12)

It is transparent that the issuer benefits from offering a security that pays well in expectation,

as the expected price at which investors trade is increasing in E1 (Wm).4 At the same time,

the issuer increases his expected profit if he offers a security with low variance, as the expected

price at which investors trade is decreasing in V1 (Wm). In fact, if he were unconstrained, the

issuer would offer a security with infinite mean and zero variance. However, because the payoff

of the security Wm cannot exceed the payoff of the asset Z, the issuer faces a trade-off between

the mean and the variance of the security he designs. Since the weight on the variance in

the issuer’s expected profit in Eq. (12) depends on the depth λ−1m of the market in which the

security is traded, how exactly this trade-off is resolved will depend on the market structure.

Proposition 2 Suppose µθ > β so that issuers find it profitable to design securities for in-

vestors. In any market m with nm investors, issuer m designs a security Wm with payoffs

wm (s) =

 z (s) if s < sm

E1 (Wm) + µθ−β
2γ

nm−2
nm−1 if s ≥ sm

(13)

where the threshold state sm ∈ [0, S] is defined by

sm =

 z−1
(
E1 (Wm) + µθ−β

2γ
nm−2
nm−1

)
, ∀nm < nS

S, ∀nm ≥ nS
(14)

4By the law of iterated expectations, E1 (Wm) = E0 (Wm).
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with nS finite if and only if the equation

nS − 2

nS − 1
=

2γ

µθ − β
[z (S)− E1 (Z)] (15)

has a solution nS ≥ 3.

Proposition 2 shows that issuer m finds it optimal to design a security that will pay the

lesser of a flat payoff and the full value of the asset Z in every state of the world. The security

payoff depends on the market structure, the distribution of the underlying asset Z, and the

preferences of investors and issuers. We say that the security is debt if it pays the flat payoff

in at least some states (i.e., the security is debt if s̄m < S). We say that the security is equity

if it replicates the payoffs of the asset Z in all states. In our model, equity can be seen as a

special case of debt, where the threshold state above which the security pays a flat payoff is

s̄m = S.

We have the following cases from Proposition 2. If 2γ
µθ−β

[z (S)− E1 (Z)] ≤ 1
2 , then the

issuer finds it optimal to offer equity in any market structure. If 2γ
µθ−β

[z (S)− E1 (Z)] ≥ 1,

then the issuer finds it optimal to offer debt in any market structure, including in markets with

infinitely many investors. These two cases represent corner solutions of the issuer’s optimization

problem. If instead 2γ
µθ−β

[z (S)− E1 (Z)] ∈
(
1
2 , 1
)
, then issuer m offers debt if the number of

investors nm in market m is below a threshold nS , otherwise he offers equity.

We provide the intuition for why a debt contract is the security that the issuer chooses

from the set of all possible security profiles. A debt contract has the following property: there

are no two states, s′ and s′′, such that wm (s′) < z (s′) and wm (s′) < wm (s′′). In other words,

if the constraint (1) does not bind in either state s′ or state s′′, then the security yields the

same payoff in both states, and, if the constraint (1) binds only in one of the two states, the

payoff in that state must be smaller than in the flat part of the debt contract. Suppose issuer

m chooses a security that does not have this property. Then a deviation which increases the

payoff of the security in state s′ by εs′ > 0 and decreases the payoff of the security in state

s′′ by εs′′ = f(s′)
f(s′′)εs′ decreases the variance of the security without changing its mean. Since

the issuer’s expected profit in Eq. (12) is decreasing in the variance of the security, it follows

that such a deviation is profitable. Therefore, it cannot be optimal for the issuer to choose

any security other than a debt contract. This argument is similar to the one Hébert (2018)
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uses to show that debt is the optimal contract in the presence of moral hazard. Novel to

our framework, however, is how the equilibrium security depends on the market structure in

which it is traded. The following proposition characterizes the relationship between the market

structure and the debt contract that the issuer chooses.

Proposition 3 Suppose that Eq. (15) has a finite solution nS ≥ 3. The threshold state s̄m

defined by (14) is increasing in the number of investors nm in market m as long as nm ≤ nS.

Proposition 3 shows that when the issuer designs a debt security, he will adjust its payoff

depending on the market in which the security is traded. In particular, the lowest state in

which a security Wm pays the flat payoff increases with the number of investors in market m.

Thus, the larger the market, the more state-contingent the security that the issuer designs.

This property of the equilibrium security extends automatically to the case when Eq. (15)

does not have a finite solution and the issuer offers debt in markets of any size.

To understand Proposition 3, we appeal to the intuition developed at the end of Section

3.1 about the forces that affect the price of a security Wm. To start, consider a state s where

the security that issuer m designs pays wm (s) < z (s). If the issuer increases wm (s) slightly,

holding constant the payoffs in all other states, then he increases both the mean and the

variance of the security Wm. The increase in the mean of the security works in favor of the

issuer because it increases the price he expects to receive, whereas the increase in the variance

of the security decreases the issuer’s expected profit. However, as we explained in Section 3.1,

a higher variance has a greater impact on the expected price in a small market than in a large

market. In contrast, as we can see from Eq. (12), the impact of a higher mean on the expected

price does not depend on the size of the market. Therefore, the marginal benefit to the issuer

of an increase in wm (s) is independent of nm, while the marginal cost is decreasing in nm.

Since a profit-maximizing issuer sets wm (s) to equate marginal benefit and marginal cost, it

follows that he will increase wm (s) by more in a large market than in a small market. Given

that the issuer finds it optimal to issue a debt contract, he can accomplish this by increasing

the threshold state above which the security pays a flat payoff. The next corollary formalizes

this discussion and follows immediately from Proposition 3.

Corollary 1 Suppose that Eq. (15) has a finite solution nS ≥ 3. The security Wm that the

issuer designs in market m has the following properties:
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1. ∂E1(Wm)
∂nm

> 0 for any nm ≤ nS;

2. ∂V1(Wm)
∂nm

> 0 for any nm ≤ nS.

Two polar securities can be of interest: riskless debt, which is a security that has a flat

payoff in all states of the world, and equity, which replicates the payoff of the asset Z in every

state. Proposition 2 allows us to understand whether these securities can be offered by issuers

in equilibrium. The results are collected in the following corollary.

Corollary 2 Fix a market structureM.

1. In any market m ∈M with nm ≥ nS investors, where nS ∈ [3,∞) and satisfies Eq. (15),

the issuer offers a security that pays the payoff of the asset Z in every state.

2. There is no market m ∈ M in which the issuer offers a security that pays a flat payoff

in all states of the world.

The first part of Corollary 2 is a direct implication of Proposition 2 and the discussion that

follows it. Any issuer with at least nS investors will find it optimal to offer equity. The second

part of Corollary 2 says that issuers will never offer riskless debt. Suppose to the contrary that

there is a market size nm ≥ 3 for which an issuer would find it optimal to offer riskless debt.

The variance of riskless debt is zero so, from Eq. (12), it must be the case that the issuer

finds it optimal to offer riskless debt for any market size, including in markets with at least nS

investors. This contradicts the first part of Corollary 2, hence the issuer never finds it optimal

to offer riskless debt.

The results in this section characterize the security that an issuer chooses to design, taking

as given the market structure. However, to show that a security can indeed be supported in

equilibrium, we need to verify that the market structure in which it trades is also supported in

equilibrium. We address this question in the next section.

3.3 The Equilibrium Market Structure

The goal in this section is to analyze whether there exist equilibrium market structures in which

the securities that issuers design can be traded. We focus on symmetric market structures. In

particular, we characterize market structures where each active market m has the same number
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of investors nm = n and no investor has an incentive to deviate to a different market at date

t = 0. We discuss asymmetric equilibrium market structures in Section 5.3.

To understand the incentives of investor i at date t = 0 when she chooses a market in which

to trade, we need to first evaluate her expected payoff E0
(
V i
m

)
from being in market m, given

a market structure M. Substituting the equilibrium demand function Qim
(
pm; θi

)
from Eq.

(10) and the equilibrium price pm from Eq. (11) into the expression for V i
m in Eq. (4) then

taking expectations at date t = 0, before the realization of θi is known, we obtain

E0
(
V i
m

)
=
σ2θ
2γ

nm − 1

nm

(
1− 1(

1 + λ−1m
)2
)

[E1 (Wm)]2

V1 (Wm)
+
γ

2

(
1 +

1

λ−1m

)2(
1− 1(

1 + λ−1m
)2
)
V1 (Wm) .

If we further substitute the market depth index λ−1m = nm − 2, investor i’s expected payoff

becomes

E0
(
V i
m

)
=
σ2θ
2γ

nm − 2

nm − 1

[E1 (Wm)]2

V1 (Wm)
+
γ

2

nm
nm − 2

V1 (Wm) . (16)

The expected payoffat date t = 0 of an investor who will trade the securityWm at date t = 1

in a market with nm investors has two components. The first term in Eq. (16) is proportional

to the variance of the investors’preference shocks, σ2θ, and captures the gains from trade with

other investors. The larger σ2θ is, the more heterogeneous investors are in how they value the

mean payoff of the same security, and the more they benefit from trading with each other.

In fact, when σ2θ is small, investors are very similar in their valuation of the security and the

equilibrium holdings of each investor approaches 1, which is the per capita supply offered by

the issuer in market m. In this case, an investor’s payoff is mainly driven by the risk premium

that she commands as compensation for holding a risky security. The second term in Eq. (16)

captures the part of the investor’s expected payoff that comes from this compensation for risk.

Both the gains from trade and the compensation for risk depend on the depth of the market

in which the investor trades. For a given security Wm, the gains from trade term in Eq. (16)

increases with nm, both because the fundamental gains from trade, nm−1nm
σ2θ, are increasing in

the number of market participants (even though the asset supply scales up linearly with the

size of the market) and because the price impact of an investor is smaller in a larger market. In

contrast, the compensation for risk term is decreasing in nm, for a given security Wm, because

the investor’s price impact falls with the size of the market. The security that issuer m finds
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optimal to offer (see Proposition 2) also changes with nm, affecting both terms in Eq. (16)

through Wm. Investor i in market m weighs all of these effects at date t = 0 when deciding

whether to deviate from market m, which has (n− 1) other investors, to a deeper market m′,

which has n other investors. The following proposition provides suffi cient conditions for the

existence of an equilibrium market structure.

Proposition 4 Suppose that the asset Z satisfies z(k)−E1(Z|s≤k)√
V1(Z|s≤k)

<
√

2,∀k ∈ (0, S]. Consider

all n ∈ [3, N ] such that there exist integers M1 ∈ N+ and M2 ∈ N0 solving

M1 × n+M2 × (n+ 1) = N, (17)

with M1 +M2 ≤M . Then, there exists a scalar σ̄ > 0 such that:

1. For any σ2θ ≤ σ, any market structure with M1 issuers each getting n investors and M2

issuers each getting n+ 1 investors is stable;

2. For any σ2θ > σ, there is at least one stable market structure with one active issuer and

all investors trading in the same market (n = N).

As explained above, we focus on equilibria in which the market structure is symmetric.

However, given a total number of investors N , a symmetric market structure in which each

active market contains n investors may not exist for every value of n. To address the non-

divisibility of investors, we extend our definition of a symmetric market structure to allow for

a distribution of investors across markets such that there are n investors in some markets and

(n+ 1) investors in others. Condition (17) specifies when such generalized symmetric market

structures exist.5

The main insight that follows from Proposition 4 is that a variety of market structures can

be supported in equilibrium. This is important, as it informs us about which securities are

indeed traded in equilibrium. Using Proposition 2, we can infer that when σ2θ ≤ σ, issuers offer

debt if n < nS and equity if n ≥ nS . Similarly, when σ2θ > σ, the issuer in the equilibrium with

a single active market offers equity unless N < nS . This implies the following properties of the

5Consider N = 100. A market structure in which there are n = 8 investors in each market does not exist,
as it would require a fractional number of issuers. However, there exists a market structure in which there are
M1 = 8 markets each with n = 8 investors and M2 = 4 markets each with n = 9 investors.
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equilibrium. (i) Debt securities are traded in a larger number of smaller, less liquid markets. In

this case, the market structure is more fragmented. (ii) Equity is traded in a smaller number

of larger, more liquid markets. In this case, the market structure is more concentrated.6

Proposition 4 shows that the variance of investor preference shocks, σ2θ, helps determine

which market structures can be supported in equilibrium. When σ2θ is small, investors will not

differ much in their valuations of the same security. The gains from trade are therefore low

and investors anticipate that they will trade little with each other. Given this, investors are

willing to trade in smaller markets, where they can use their larger price impact to obtain from

issuers a less variable security whose remaining risk is well compensated. While the larger price

impact also hurts the investor when she trades the security with other investors, this concern

is muted because she anticipates trading little with other investors. In contrast, when σ2θ is

large, the gains from trade are also large. Investors understand that they may want to make

large trades with each other in order to reap these gains, hence they seek to minimize their

price impact by trading in a large market, albeit with a riskier security.

It is important to notice that investors’preferences shape the payoffs of the security traded

in equilibrium both directly and indirectly. First, because the expected price at which a security

Wm trades is increasing in the mean µθ of the investor preference shocks, µθ directly enters

the optimization problem of issuer m and thus directly affects the payoffs of the security that

he finds optimal to design. Second, although the variance of the investor preference shocks

does not appear directly in the payoffs of the security derived in Proposition 2, σ2θ plays an

important role in determining which securities are traded in equilibrium. The payoffs of the

equilibrium security in market m depend directly on the number of investors nm, and σ2θ affects

an investor’s decision about which market to trade in. Thus, as we discussed above, when σ2θ

is high, investors value trading in deeper markets, which induces the issuer to offer riskier

securities, while, when σ2θ is low, investors prefer trading in thinner markets, which induces the

issuer to offer less variable securities.
6A market is liquid if the security can be traded with little impact on its price. We discuss this more formally

in Section 4.

20



4 Welfare, Profits, and Liquidity

In this section, we explore several implications of our model. In particular, our goal is to gain

insights into welfare, expected profits, and liquidity by exploring some simple examples.

We start by analyzing which equilibrium market structure yields the highest welfare for

investors, which equilibrium yields the highest welfare for issuers, and whether any of the

equilibria coincide with the solution to a social planning problem.

As in Proposition 4, we consider equilibrium market structures withM1 issuers each getting

n investors and M2 issuers each getting n + 1 investors, such that condition (17) is satisfied.

In each active market, an investor obtains an expected profit E0
(
V i
m

)
given by Eq. (16), while

the issuer receives an expected profit E0 (Vm) given by Eq. (12). Aggregate welfare can then

be defined as

W = n×M1 × E0
(
V i
m|nm=n

)
+ (n+ 1)×M2 × E0

(
V i
m|nm=n+1

)
+M1 × E0 (Vm|nm=n) +M2 × E0 (Vm|nm=n+1) .

To understand which driving forces determine total welfare, it is useful to review the profits

of the investors and issuers, paying special attention to how they depend on the depth of the

market. Eq. (4) gives the profit of investor i after her preference shock θi is realized but before

the state s is known. Evaluated at the equilibrium demand function Qim
(
pm; θi

)
derived in

Proposition 1, Eq. (4) simplifies to

V i
m =

1 + 2λm

2γ (1 + λm)2

[
θiE1 (Wm)− pm

]2
V1 (Wm)

. (18)

Given a market depth λ−1m (in essence, a market size nm) and a security price pm, Eq. (18)

implies that investor i would prefer to trade a security with the least variance V1 (Wm) among

all securities with the same mean payoffE1 (Wm). In other words, investor i would prefer debt.

Compare this to Eq. (16), which represents investor i’s expected profit E0
(
V i
m

)
when Eq. (4)

is evaluated at both the equilibrium demand function Qim
(
pm; θi

)
and the equilibrium price

pm derived in Proposition 1. Given a market depth λ−1m , Eq. (16) implies that, when investor i

takes into account her impact on the price, she would only prefer to trade the security with the
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least variance V1 (Wm) among all securities with the same mean payoff E1 (Wm) if she expects

investors to have very disperse valuations. In other words, investor i would prefer debt if σ2θ is

high but equity if σ2θ is low.

However, a key feature of the equilibrium in our model is that investors take into account

not only that they have a price impact when they trade but also that their market choice

affects market depth and hence the payoffs of the securities that issuers design. Thus, an

investor’s expected profit as given by Eq. (16) depends on the depth of the market directly but

also indirectly through the equilibrium security Wm derived in Proposition 2. In fact, the two

terms in Eq. (16) —the gains from trade term and the compensation for risk term —can move

in opposite directions as the market becomes deeper. For any underlying asset Z satisfying

the suffi cient conditions on z (·) in Proposition 4, the compensation for risk term is decreasing

in nm when evaluated at the equilibrium security.7 In contrast, the gains from trade term is

potentially increasing in nm, as shown in the next proposition.

Proposition 5 Consider an asset Z with payoffs z (s) = z (0) + sα, where z (0) ≥ 0 and

α > 0. Suppose that the state s is uniformly distributed according to f (·) = 1
S . Evaluating

an investor’s expected profit in Eq. (16) at the equilibrium security W ∗m ≡ W (nm) derived in

Proposition 2, an increase in nm:

1. Increases the gains from trade term, σ
2
θ
2γ

nm−2
nm−1

[E1(W (nm))]
2

V1(W (nm))
, if z (0) is not too large;

2. Decreases the compensation for risk term, γ2
nmV1(W (nm))

nm−2 , if
(
1+α
4α

µθ−β
γSα

) 1
1+α

> 2α−1
1+2α .

Proposition 5 implies that, when investor i takes into account the effect of her market choice

on issuers’security design, she prefers equity if σ2θ is high but debt if σ
2
θ is low. Naturally, this

result is consistent with Proposition 4 and the intuition we developed at the end of Section 3.3.

It also underscores the role of investors’preferences when the security payoff is endogenous.

In particular, comparing Proposition 5 to what one would conclude from Eq. (16) taking

7See the proof of Proposition 4. We emphasize that these conditions on z (·) are suffi cient but not necessary.
For example, in the class of functions z (s) = z (0) + sα with a uniformly distributed aggregate state f (s) = 1

S
:

z (k)− E1 (Z|s ≤ k)√
V1 (Z|s ≤ k)

=
√
2α+ 1

and, therefore, z(k)−E1(Z|s≤k)√
V1(Z|s≤k)

<
√
2 if and only if α < 1

2
. However, as shown in Proposition 5, the compensation

for risk term is also decreasing in nm if, for example, α = 1 and µθ−β
γS

> 2
9
.
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as exogenous the security Wm, we see a reversal in the type of security that investors prefer

as a function of the expected dispersion in their valuations. Interestingly, then, increasing

heterogeneity in investor preferences endogenously pushes towards trading equity in our model.

We can now proceed to characterize the welfare of investors and issuers.

Proposition 6 Consider an asset Z with payoffs z (s) = z (0)+sα, where z (0) ≥ 0 and α > 0.

Suppose that the state s is uniformly distributed according to f (·) = 1
S and that N > nS with

nS ∈ [3,∞). It follows that:

1. An active issuer’s expected profit E0 (Vm) in Eq. (12) is increasing in nm when Wm is

the equilibrium security derived in Proposition 2.

2. If z (0) is not too large, then, for any value of σ2θ, the equilibrium in which all investors

trade in a single market and the issuer offers equity achieves the highest aggregate welfare.

The first part of Proposition 6 says that an issuer is always better off designing a security

for a large market than for a small market. Investors have less price impact in large markets,

so the issuer is able to command a higher price for whatever security he designs. At the same

time, Proposition 5 implies that an investor will be worse off in a large market than in a small

market when σ2θ is suffi ciently low. Therefore, investors benefit at the expense of issuers in

any equilibrium where debt is traded. Recall from Proposition 4 that there exist multiple

symmetric equilibria when σ2θ < σ. If the variance of investor preference shocks is low enough,

the symmetric equilibrium that achieves the highest welfare for investors exists in the set of

equilibria where debt securities are traded in many small markets.

The second part of Proposition 6 says that the benefits to investors of an equilibrium where

debt is traded are outweighed by the losses to issuers, at least in environments where it is

impossible to design a security that has high returns in all states of the world (i.e., environments

where z (0) is low). First, the expected, per-capita profit of an active issuer increases more

quickly with nm than the expected profit of an investor decreases with nm. Second, the non-

linear relationship between market size and the price impact of investors means that total

welfare across issuers is maximized when there is only one active issuer.

The results in the second part of Proposition 6 also characterize the solution to a fully

constrained social planning problem; that is, the problem of a social planner who chooses a
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market structure, a set of securities, and a set of demand functions to maximize aggregate

welfare subject to the equilibrium conditions in Definition 1. However, as an alternative, we

can consider a social planner who: (i) opensM1 markets with n investors andM2 markets with

n + 1 investors such that condition (17) holds; (ii) designs a security Wm subject only to the

feasibility condition (1); (iii) allocates to investor i in market m a quantity qim of the security

Wm after the realization of investor preference shocks, where
∑
i∈m

qim = nm for each market m;

and (iv) allocates to the issuer in each market m a quantity nm of the security (Z −Wm). The

planner in this alternative planning problem still seeks to maximize the aggregate welfare of

issuers and investors, but he is no longer constrained to choose among solutions that arise as

a decentralized equilibrium.

In the alternative planning problem just described, it is straightforward to show that the

social planner opens a single market in which all investors trade a zero-variance security (i.e.,

riskless debt). We omit the proof for brevity, but the intuition is as follows. A security with

zero variance neutralizes the risk aversion of the investors. Maximum aggregate welfare is

then achieved by allocating unboundedly positive positions qim to investors whose realization

of θi exceeds the market average and unboundedly negative positions to the rest to satisfy∑
i∈N

qim = N . If the planner is restricted to design a positive-variance security, then he will

open a single market in which investors take large but finite positions on the closest possible

security to riskless debt.

The lesson from the alternative planning problem is that the planner can achieve higher

welfare by decoupling the security design choice from the market structure choice. In particular,

the planner would like to design a debt security for risk averse investors and he would like all

investors to trade this security in the same market in order to maximize the gains from trade.

The problem is that security design cannot be decoupled from market structure in equilibrium.

Issuers respond to market-based incentives when designing a security that investors want to

trade. These incentives come from the price of the security, which is endogenously less sensitive

to investors’risk aversion in a large market because the price impact of an individual investor

is decreasing in market size. Thus, when nS ∈ [3,∞), the decentralized equilibrium supports

equity in a large market or debt in small markets, but not debt in a large market.

We close this section by discussing liquidity. A natural measure of liquidity in our model is
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the price impact of an individual investor. Specifically, a market is liquid if the security can be

traded with little impact on its price. Recall from Section 3.1 that the price impact of investor

i in market m is ∂pm,−i/∂qim = λmγV1 (Wm), where λ−1m ≡ (nm − 2) and, in equilibrium, Wm

depends on nm as demonstrated in Proposition 2. Under the conditions stated in Proposition

4, the total derivative of ∂pm,−i/∂qim with respect to nm is negative.
8 In other words, a larger

market in our model is also a more liquid market. Thus, our model suggests that securities with

less variable payoffs, controlling for the riskiness of the underlying asset Z and for investors’

preferences, trade in less liquid markets.

5 Robustness

This section considers alternative formulations of our model. We demonstrate that the trading

of debt in small markets and the trading of equity in large markets exist as equilibria in all of

these formulations.

5.1 Costly Supply

Up to this point, we have assumed that each issuer m has access to a large pool of the original

asset Z and backs each unit of the securityWm with one unit of Z. This assumption allowed us

to abstract from mechanical effects that arise from having a fixed supply of Z in each market,

which would only reinforce our results. We can relax this assumption and allow the issuer

to choose how many units of Z back each unit of Wm, subject to a cost of procuring Z. In

particular, issuer m incurs a cost c (Am) to acquire Am units of Z which he then uses to back

nm units of Wm. The cost function satisfies the standard conditions c (0) = 0 and c′ (·) > 0.

The issuer now chooses Wm and Am subject to the feasibility constraint

nmwm (s) ≤ Amz (s) , ∀s ∈ [0, S] .

This constraint replaces (1). The rest of the model is as before.

Appendix B shows that the key insights of Propositions 2, 3, and 4 continue to hold.

The equilibrium security Wm is a debt contract with threshold state sm ∈ [0, S], where sm

is increasing in nm so that Wm becomes more equity-like as the market size increases. All
8This follows immediately from the proof of Proposition 4.
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investors trading equity in a single market is an equilibrium when the total number of investors

N is large, but, for the same N , there also exist equilibria where debt is traded in many small

markets if heterogeneity in investor preference shocks, σ2θ, is low.

5.2 Timing

Another assumption in our set-up relates to the timing of events. Specifically, we have assumed

that issuers design securities after investors choose markets. An alternative is that issuers design

securities before investors choose markets. While investors make their market choice before the

realization of their preference shocks, issuers can now compete for investors through security

design.

The trading equilibrium is still characterized by Proposition 1. In Propositions 2 to 4,

investors chose markets taking into account how their choices would affect security design,

while issuers designed securities taking as given the market structure. Now, it is issuers who

choose securities taking into account how their choices affect market structure, while investors

choose markets taking as given the securities.

Appendix C presents the details of this alternative formulation. We consider two issuers

and study the existence of symmetric equilibria where each issuer attracts half of the total

number of investors (i.e., each issuer attracts N2 investors). For σ
2
θ low, we find that (i) such an

equilibrium exists, (ii) the security that prevails is a debt contract, and (iii) the threshold state

above which the security delivers a flat payoff is increasing in N
2 . In other words, a symmetric

equilibrium with two large markets will involve the trading of a more equity-like security than a

symmetric equilibrium with two small markets. The result that debt is traded in small markets

while equity is traded in large markets thus continues to hold.

5.3 Asymmetric Equilibrium

We conclude this section by discussing the existence of asymmetric equilibria. The trading

equilibrium in Section 3.1 and the issuer’s security design in Section 3.2 were derived for an

arbitrary market size, but attention was restricted to symmetric equilibria —that is, equilibria

where all markets were equally sized —when deriving stable market structures in Section 3.3.

We now show that there are equilibria in the class of asymmetric market structures. The
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investor’s expected profit, E0
(
V i (nm)

)
, in a market of size nm is still given by Eq. (16), with

Wm evaluated at the equilibrium security derived in Proposition 2. We write E0
(
V i (nm)

)
rather than just E0

(
V i
m

)
to make explicit the dependence of the investor’s expected profit

on nm, both directly in Eq. (16) and indirectly through the dependence of Wm on nm in

Proposition 2.

Consider an asymmetric market structure with one market of size nB and (M ′ − 1) markets

of size nm, where nB > nm + 1 and nB + (M ′ − 1)× nm = N . This market structure is stable

if and only if

E0
(
V i (nB)

)
> E0

(
V i (nm + 1)

)
and

E0
(
V i (nm)

)
> max

{
E0
(
V i (nm + 1)

)
, E0

(
V i (nB + 1)

)}
.

In words, no investor in the large market nB wants to move to a smaller market (i.e., a market

that has nm other investors as opposed to nB − 1 other investors). Similarly, no investor in a

small market nm wants to move to a slightly larger market (i.e., a market that has nm other

investors as opposed to nm− 1 other investors) or to a much larger market (i.e., a market that

has nB other investors). Since there is only one market with nB investors, it is not possible for

one of them to move to an even larger market (i.e., a market that has nB other investors as

opposed to nB − 1), hence we do not need E0
(
V i (nB)

)
to exceed E0

(
V i (nB + 1)

)
.

To fix ideas, consider the following parameterization: z (s) = s and f (s) = 1
S for all

s ∈ [0, S], with S = 1, µθ−βγ = 1.25, and σθ
γ = 0.275. This implies nS = 6 in Proposition 2,

meaning that equity is traded in any market with six or more investors. It is straightforward

to verify that one large market with nB = 75 investors trading equity and any number of small

markets each with nm = 4 investors trading debt is a stable asymmetric equilibrium.9 Our

model therefore admits asymmetric equilibria and, in particular, asymmetric equilibria where

debt and equity coexist.

9The relevant expected profits for an investor are: E0
(
V i (4)

)
= 0.3151669 γ

2
; E0

(
V i (5)

)
= 0.3088872 γ

2
;

E0
(
V i (75)

)
= 0.3094256 γ

2
; and E0

(
V i (76)

)
= 0.3094356 γ

2
. Notice E0

(
V i (75)

)
> E0

(
V i (5)

)
and

E0
(
V i (4)

)
> max

{
E0
(
V i (5)

)
, E0

(
V i (76)

)}
, which are the stability conditions outlined above.
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6 Conclusion

In this paper, we developed a model of financial innovation to address a critical question: Why

do standardized securities trade in decentralized markets?

The novelty in our model is that both the securities issued and the structure of the market

are endogenously determined. We first characterized the security that an issuer finds optimal

to offer taking as given the market structure. We then characterized the set of stable market

structures to determine which securities can indeed be supported in equilibrium. Our focus

was primarily on symmetric market structures, but we explored asymmetric market structures

in an extension. We also verified the robustness of our main insights to an extension where

issuers are subject to a cost of procuring the assets that back their securities, and we discussed

an alternative timing in which investors choose markets after issuers have posted securities.

The security that an issuer finds optimal to design belongs to the family of debt contracts,

paying the lesser of a flat payoff and the full value of the underlying asset in every state of

the world. This is a consequence of the mean-variance trade-off that investors face and of the

fact that a debt contract has the least variance among all limited liability securities with the

same expected value. We also showed that the state in which the security starts paying the

flat payoff is higher in markets with more investors. Issuers respond to market-based incentives

when designing a security that investors want to trade. These incentives come from the price

of the security, which is endogenously less sensitive to investors’risk aversion in a large market

because the price impact of an individual investor is decreasing in market size. On one hand, a

lower price impact dulls the mean-variance trade-off that the issuer’s security design problem

inherits from investors’preferences, thus eliciting a riskier security. On the other hand, a lower

price impact also dulls the extent to which an investor will move the price of the security

against herself when trading with other investors.

As in Dugast, Uslu, and Weill (2018), investors’types play a key role in determining the

market structure in which trade occurs. However, in our model, investors’preferences impact

both directly an indirectly the security that will be traded. When investors expect to be

relatively heterogeneous in their valuations of the same security, they understand that they

may want to engage in large trades with each other so they seek to limit their price impact

by trading in a large market, albeit with a riskier security. In contrast, when investors expect
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to be relatively homogeneous in their valuations, they anticipate trading little with each other

and are thus willing to accept a larger price impact in smaller, more fragmented markets in

order to elicit less variable securities from issuers.

The trading of simple debt in decentralized markets thus emerges as an equilibrium outcome

in a model where both security design and market structure are endogenously determined.
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Appendix A —Proofs

Proof of Proposition 1

Rearrange the first order condition of investor i in Eq. (8) to isolate:

qim =
θiE1 (Wm)− pm
∂pm,−i
∂qim

+ γV1 (Wm)
(A.1)

for any i ∈ m. Use this expression to substitute out Qjm (·) from Eq. (9) for all investors j 6= i

in market m:

qim +
∑

j∈m,j 6=i

θjE1 (Wm)− pm
∂pm,−j
∂qjm

+ γV1 (Wm)
= nm (A.2)

We focus on symmetric linear equilibria in which the price impact ∂pm,−j
∂qjm

does not vary across

investors within the same market. This permits rearranging Eq. (A.2) to isolate:

pm =

∑
j∈m,j 6=i

θj

nm − 1
E1 (Wm)− nm − qim

nm − 1

(
∂pm,−j

∂qjm
+ γV1 (Wm)

)

which then implies:
∂pm,−i
∂qim

=
1

nm − 1

(
∂pm,−j

∂qjm
+ γV1 (Wm)

)
Invoking symmetry (∂pm,−i

∂qim
=

∂pm,−j
∂qjm

), we obtain:

∂pm,−i
∂qim

= λmγV1 (Wm) (A.3)

where λm ≡ 1
nm−2 . Substituting Eq. (A.3) into Eq. (A.1) delivers the equilibrium demand

function Qim
(
pm; θi

)
in Eq. (10). Substituting Eq. (10) into the market clearing condition∑

i∈m
Qim

(
pm; θi

)
= nm then delivers the equilibrium price pm in Eq. (11). �

Proof of Proposition 2

Issuer m designs a security Wm to maximize his expected payoff in Eq. (6), subject to the

state-by-state feasibility constraint (1).

Letting υ (s) ≥ 0 denote the Lagrange multiplier on the feasibility constraint for state s,
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we can write the Lagrangian for issuer m’s optimization problem as:

Lm = E0 (Vm) +

∫ S

0
υ (s) [z (s)− wm (s)] dF (s)

or, equivalently:

Lm = βE1 (Z)nm + (µθ − β)nm

∫ S

0
wm (s) dF (s)

−γnm (nm − 1)

nm − 2

[∫ S

0
(wm (s))2 dF (s)−

(∫ S

0
wm (s) dF (s)

)2]

+

∫ S

0
υ (s) [z (s)− wm (s)] dF (s)

where the issuer is choosing wm (s) for each state s ∈ [0, S] taking as given the market size

nm. We restrict attention to nm ≥ 3 so that the trading equilibrium in Proposition 1 involves

a well-defined equilibrium price for market m.

The first order condition with respect to wm (s) delivers:

υ (s)
sign
= E1 (Wm) +

µθ − β
2γ

nm − 2

nm − 1
− wm (s) (A.4)

where υ (s) ≥ 0 and wm (s) ≤ z (s) hold with complementary slackness.

If υ (s) > 0, then:

wm (s) = z (s)

and, invoking (A.4), we need:

z (s) < E1 (Wm) +
µθ − β

2γ

nm − 2

nm − 1

to confirm υ (s) > 0.

If υ (s) = 0, then (A.4) pins down:

wm (s) = E1 (Wm) +
µθ − β

2γ

nm − 2

nm − 1

and we need:

z (s) ≥ E1 (Wm) +
µθ − β

2γ

nm − 2

nm − 1
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to confirm wm (s) ≤ z (s).

The payoffs of the equilibrium security are therefore:

wm (s) =

 z (s) if z (s) < E1 (Wm) + µθ−β
2γ

nm−2
nm−1

E1 (Wm) + µθ−β
2γ

nm−2
nm−1 if z (s) ≥ E1 (Wm) + µθ−β

2γ
nm−2
nm−1

Suppose there exists an sm ∈ (0, S) solving:

z (sm) ≡ E1 (Wm) +
µθ − β

2γ

nm − 2

nm − 1
(A.5)

Then z′ (·) > 0 implies:

E1 (Wm) =

∫ sm

0
z (s) dF (s) +

∫ S

sm

z (sm) dF (s) (A.6)

and we can rewrite Eq. (A.5) as:

∫ sm

0
[z (sm)− z (s)] dF (s) ≡ µθ − β

2γ

nm − 2

nm − 1
(A.7)

The left-hand side of Eq. (A.7) is increasing in sm so there will be a unique solution sm ∈ (0, S)

if and only if:

z (S)− E1 (Z) >
µθ − β

2γ

nm − 2

nm − 1
(A.8)

The ratio nm−2
nm−1 is increasing in nm and asymptotes to 1 as nm →∞.

If the parameters satisfy z (S)−E1 (Z) ∈
[
µθ−β
4γ , µθ−β2γ

)
, then Eq. (15) has a unique solution

nS ∈ [3,∞). For any nm ∈ [3, nS), condition (A.8) holds and the equilibrium security is given

by Eq. (13) with sm as defined in Eq. (A.5). For any nm ∈ [nS ,∞), condition (A.8) does not

hold, meaning that there is no sm ∈ (0, S) solving Eq. (A.5). The equilibrium security is still

given by Eq. (13) but with sm = S instead of Eq. (A.5).

If the parameters satisfy z (S)− E1 (Z) ≥ µθ−β
2γ , then condition (A.8) is true for any nm ∈

[3,∞). The equilibrium security is thus given by Eq. (13) with sm as defined in Eq. (A.5).

Condition (A.8) being true for any nm ∈ [3,∞) means that there is no solution nS ∈ [3,∞) to

Eq. (15). Assigning nS =∞ here recovers Eq. (A.5) from Eq. (14) for any nm ≥ 3.

If the parameters satisfy z (S) − E1 (Z) < µθ−β
4γ , then condition (A.8) is false for any
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nm ∈ [3,∞). The equilibrium security is thus given by Eq. (13) with sm = S for all nm ∈ [3,∞).

Assigning nS = −∞ here recovers sm = S from Eq. (14) for any nm ≥ 3.

We have now shown that the solution to the issuer’s F.O.C.s belongs to the family of debt

securities: Wm pays the entirety of the underlying asset Z up to some threshold state sm, after

which it pays a flat amount that does not vary with the state. A perturbation argument similar

to Hébert (2018) can be used to confirm the optimality of debt securities in our environment.

We sketch this argument in the main text (see the second paragraph after the statement of

Proposition 2) so do not reproduce it here. Instead, we confirm that sm as defined by Eq.

(A.7) satisfies the S.O.C. for a maximum in an auxiliary problem where the issuer chooses a

threshold state s̃m to maximize his expected profit within the family of debt securities.

The objective function for this auxiliary problem is:

L(A)m = (µθ − β)

[
z (s̃m)−

∫ s̃m

0
[z (s̃m)− z (s)] dF (s)

]

−γnm − 1

nm − 2

∫ s̃m

0
[z (s̃m)− z (s)]2 dF (s)−

(∫ s̃m

0
[z (s̃m)− z (s)] dF (s)

)2
The first derivative with respect to s̃m is:

∂L(A)m

∂s̃m
=

[
µθ − β − 2γ

nm − 1

nm − 2

∫ s̃m

0
[z (s̃m)− z (s)] dF (s)

]
[1− F (s̃m)] z′ (s̃m)

If nm < nS , then Eq. (A.7) has a unique interior solution sm ∈ (0, S), which is also the unique

interior solution to ∂L(A)m
∂s̃m

= 0. The second derivative evaluated at this solution is:

∂2L(A)m

∂s̃2m

∣∣∣∣∣
s̃m=sm

= −2γ
nm − 1

nm − 2

(
z′ (sm)

)2
F (sm) [1− F (sm)] < 0

where the inequality follows from sm ∈ (0, S). Eq. (A.7) thus defines a local maximum and,

since there are no local minima, the local maximum is also the global maximum.

If nm > nS , then there is no solution sm < S to Eq. (A.7). The only solution to ∂L(A)m
∂s̃m

= 0
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is therefore s̃m = S, in which case the second derivative is:

∂2L(A)m

∂s̃2m

∣∣∣∣∣
s̃m=S

= −
[
µθ − β − 2γ

nm − 1

nm − 2
[z (S)− E1 (Z)]

]
f (S) z′ (S)

This is negative if and only if nm−2nm−1 >
2γ

µθ−β
[z (S)− E1 (Z)] or, equivalently, nm > nS .

Notice that Eq. (A.7) is only defined if µθ > β. We now demonstrate that µθ > β is nec-

essary and suffi cient for the issuer’s participation constraint to be satisfied. The participation

constraint requires that the issuer’s maximized expected profit, as given by E0 (Vm) in Eq. (6)

when evaluated at the equilibrium security, must be at least as large as βE1 (Z) × nm, which

is what the issuer could get by consuming nm units of Z at date t = 2 instead of using these

units to design the security for market m.

If nm ≥ nS , then the issuer’s maximization problem yields Wm = Z and the participation

constraint simplifies to:

(µθ − β)E1 (Z) ≥ γnm − 1

nm − 2
V1 (Z) (A.9)

Assume µθ > β so that the left-hand side of (A.9) is positive. The right hand side of (A.9) is

decreasing in nm so (A.9) will hold for all nm ≥ nS if it holds for nm = nS . Evaluating (A.9)

at the definition of nS in Eq. (15), we get:

2z (S)E1 (Z) ≥ E
(
Z2
)

+ (E1 (Z))2

which is true because Z has the property z′ (·) > 0.

If nm < nS , then sm ∈ (0, S) is defined by Eq. (A.7). The participation constraint requires:

(µθ − β)E1 (Wm) ≥ γnm − 1

nm − 2
V1 (Wm) (A.10)

where E1 (Wm) is given by Eq. (A.6) and:

V1 (Wm) =

∫ sm

0
[z (sm)− z (s)]2 dF (s)−

(∫ sm

0
[z (sm)− z (s)] dF (s)

)2
(A.11)
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Use Eq. (A.7) to rewrite (A.10) as:

2E1 (Wm)

∫ sm

0
[z (sm)− z (s)] dF (s) ≥ V1 (Wm)

then substitute in for E1 (Wm) and V1 (Wm) to get:

2z (sm)
1

F (sm)

∫ sm

0
z (s) dF (s) +

(
1

F (sm)
− 1

)[
(z (sm))2 − 1

F (sm)

∫ sm

0
(z (s))2 dF (s)

]
≥ 1

F (sm)

∫ sm

0
(z (s))2 dF (s) +

(
1

F (sm)

∫ sm

0
z (s) dF (s)

)2
which is again true because of z′ (·) > 0. �

Proof of Proposition 3

For any nm < nS , Eq. (14) simplifies to Eq. (A.7) from the proof of Proposition 2. Differenti-

ating Eq. (A.7) yields:

dsm
dnm

=
µθ − β

2γ

1

(nm − 1)2
1

z′ (sm)F (sm)
> 0

Therefore, dsmdnm
> 0 for any nm ∈ [3, nS) and lim

nm→n−S

dsm
dnm

> 0.

A corollary is that the same properties hold for the mean and variance of the equilibrium

security. To see why, differentiate Eq. (A.6) and (A.11) to get:

dE1 (Wm)

dsm
= z′ (sm) [1− F (sm)]

and:
dV1 (Wm)

dsm
= 2z′ (sm) [1− F (sm)]

∫ sm

0
[z (sm)− z (s)] dF (s)

Both of these derivatives are strictly positive because nm < nS implies sm ∈ (0, S). It then

follows immediately that E1 (Wm) and V1 (Wm) increase with nm as sm increases with nm, up

until the point where nm = nS . �
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Proof of Proposition 4

A market structure with one active issuer and all investors trading in the same market is always

stable since there is no other active issuer to which an investor can deviate. The rest of this

proof will therefore focus on symmetric market structures with two or more active issuers.

A market structure where each active issuer gets n investors is stable if and only if:

E0
(
V i (n)

)
> E0

(
V i (n+ 1)

)
From Eq. (16), the expected profit of an investor in a market of size n is:

E0
(
V i (n)

)
=
σ2θ
2γ

n− 2

n− 1

[E1 (W (n))]2

V1 (W (n))
+
γ

2

n

n− 2
V1 (W (n)) (A.12)

where we write E0
(
V i (n)

)
to make explicit that we are evaluating the investor’s expected

profit at the equilibrium security derived in Proposition 2, denoted here by W (n) to make

explicit its dependence on the market size n.

We first show that the term n−2
n−1

[E1(W (n))]2

V1(W (n)) in Eq. (A.12) is bounded. The ratio n−2
n−1 is

increasing in n with lim
n→∞

n−2
n−1 = 1. Therefore, we only need to show that [E1(W (n))]2

V1(W (n)) is bounded.

To do so, take the derivative with respect to n:

d

dn

(
[E1 (W (n))]2

V1 (W (n))

)
=
E1 (W (n))

V1 (W (n))

[
2
dE1 (W (n))

dn
− E1 (W (n))

V1 (W (n))

dV1 (W (n))

dn

]

If n ≥ nS , then W (n) = Z and this derivative is zero. If instead n < nS , then we can use the

derivatives in the proof of Proposition 3 to write:

d

dn

(
[E1 (W (n))]2

V1 (W (n))

)
sign
= 1− E1 (W (n))

V1 (W (n))

∫ s

0
[z (s)− z (s)] dF (s)

and, with E1 (W (n)) as per Eq. (A.6) and V1 (W (n)) as per Eq. (A.11), we get:

d

dn

(
[E1 (W (n))]2

V1 (W (n))

)
sign
= −

∫ s
0 z (s) [z (s)− z (s)] dF (s)

V1 (W (n))
< 0
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We can now conclude:
[E1 (W (n))]2

V1 (W (n))
≤ [E1 (W (3))]2

V1 (W (3))

where n = 3 is the smallest market size for which there can be a well-defined equilibrium price

in Eq. (11). If nS > 3, then Eq. (A.7) defines s ∈ (0, S) and hence E1 (W (3)) ∈ (0,∞)

and V1 (W (3)) ∈ (0,∞). In other words, [E1(W (3))]2

V1(W (3)) is bounded. If instead nS = 3, then
[E1(W (3))]2

V1(W (3)) = [E1(Z)]
2

V1(Z) which is also bounded.

Next, we show that the term nV1(W (n))
n−2 in Eq. (A.12) is decreasing in n if the payoffs of the

asset Z satisfy z(k)−E1(Z|s≤k)√
V1(Z|s≤k)

<
√

2, ∀k ∈ (0, S]. Taking derivatives:

d

dn

(
nV1 (W (n))

n− 2

)
= −2V1 (W (n))

(n− 2)2
+

n

n− 2

dV1 (W (n))

dn

If n ≥ nS , then W (n) = Z and this derivative is negative. If instead n < nS , then we can use

the derivatives in the proof of Proposition 3 to write:

d

dn

(
nV1 (W (n))

n− 2

)
sign
= −V1 (W (n)) +

µθ − β
2γ

n (n− 2)

(n− 1)2
1− F (s)

F (s)

∫ s

0
[z (s)− z (s)] dF (s)

Using Eq. (A.7) and the expression for V1 (W (n)) in Eq. (A.11), we obtain the following

necessary and suffi cient condition for d
dn

(
nV1(W (n))

n−2

)
< 0 when n < nS :

∫ s

0
[z (s)− z (s)]2 dF (s) >

1

F (s)

(
1 +

1− F (s)

n− 1

)(∫ s

0
[z (s)− z (s)] dF (s)

)2
This rearranges to:

z (s)− E1 (Z|s ≤ s)√
V1 (Z|s ≤ s)

<

√
n− 1

1− F (s)
(A.13)

where:

E1 (Z|s ≤ s) ≡ 1

F (s)

∫ s

0
z (s) dF (s)

and:

V1 (Z|s ≤ s) ≡ 1

F (s)

∫ s

0
(z (s))2 dF (s)−

(
1

F (s)

∫ s

0
z (s) dF (s)

)2
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Since F (s) ∈ (0, 1) and n ≥ 3, a suffi cient condition for (A.13) is:

z (k)− E1 (Z|s ≤ k)√
V1 (Z|s ≤ k)

<
√

2,∀k ∈ (0, S]

which is the condition in the statement of Proposition 4.

Invoking this condition, we can now conclude that there exists a bound σ > 0 such that
dE0(V i(n))

dn < 0 for all n ≥ 3 if σ2θ ≤ σ.

In words, any symmetric market structure is stable when σ2θ ≤ σ. For any integer n ≥ 3

such that N
n is also an integer, the symmetric market structure involves

N
n active issuers each

getting n investors. For any integer n ≥ 3 such that N
n is not an integer, we can only consider

n if there exist positive integers, M1 and M2, such that M1 × n+M2 × (n+ 1) = N , in which

case the symmetric market structure involves M1 active issuers each getting n investors and

M2 active issuers each getting n+ 1 investors.

To see what values of n will be consistent with the existence of such integers, consider an

arbitrary total number of active issuers M ′. If each active issuer gets n investors, then there

are N −M ′ × n investors left to be allocated to the M ′ active issuers. For a market structure

where each of the M ′ active issuers gets either n or n+ 1 investors, we need N −M ′ × n ≥ 0

(so that no active issuer gets fewer than n investors) and N −M ′ × n ≤M ′ (so that no active

issuer gets more than n+ 1 investors). In other words, we need M ′ ∈
[
N
1+n ,

N
n

]
. We also need

M ′ to be an integer and hence we need an integer to exist between N
1+n and

N
n . This implies

that we can only consider n such that
⌊

N
n+1

⌋
<
⌊
N
n

⌋
, where the notation bXc means X is

rounded down to the nearest integer. As long as N is not too low,
⌊
N
4

⌋
<
⌊
N
3

⌋
will be satisfied,

meaning that there will exist a stable market structure where M1 ∈ N+ active issuers get 3

investors each and M2 ∈ N0 active issuers get 4 investors each. �

Proof of Proposition 5

For ease of reference, define the gains from trade term in Eq. (16) as:

G (nm) ≡ σ2θ
2γ

nm − 2

nm − 1

[E1 (W (nm))]2

V1 (W (nm))
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and the compensation for risk term as:

R (nm) ≡ γ

2

nm
nm − 2

V1 (W (nm))

where we write W (nm) to make explicit the dependence of the equilibrium security Wm on the

market size nm in Proposition 2.

Taking derivatives, we get:

G′ (nm)
sign
=

E1 (W (nm))

(nm − 1) (nm − 2)
+ 2

dE1 (W (nm))

dnm
− E1 (W (nm))

V1 (W (nm))

dV1 (W (nm))

dnm

and:

R′ (nm)
sign
= −

(
2V1 (W (nm))

nm (nm − 2)
− dV1 (W (nm))

dnm

)
If nm > nS , then W (nm) = Z and thus dE1(W (nm))

dnm
= dV1(W (nm))

dnm
= 0, which further implies

G′ (nm) > 0 and R′ (nm) < 0. If instead nm ≤ nS , then Proposition 2 defines:

z (sm) = E1 (W (nm)) +
µθ − β

2γ

nm − 2

nm − 1

With z (s) = z (0) + sα and f (s) = 1
S , the equilibrium security has:

E1 (W (nm)) = z (0) + sαm

(
1− α

1 + α

sm
S

)

and:

V1 (W (nm)) =
α2

1 + α

s1+2αm

S

(
2

1 + 2α
− 1

1 + α

sm
S

)
where:

α

1 + α

s1+αm

S
=
µθ − β

2γ

nm − 2

nm − 1

The total derivatives of E1 (W (nm)) and V1 (W (nm)) with respect to nm are therefore:

dE1 (W (nm))

dnm
=

(
1− sm

S

)
µθ − β
2γ smS

1

(nm − 1)2

and:
dV1 (W (nm))

dnm
=

2α

1 + α

s1+αm

S

dE1 (Wm (nm))

dnm
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Substituting into the expressions for G′ (nm) and R′ (nm), we get:

G′ (nm)
sign
=

µθ − β
2γ smS

1

(nm − 1)2

sαm

[
2α
1+2α + 1−4α

1+2α
sm
S + α

1+α

(
sm
S

)2]− z (0)
[
2α
1+2α −

sm
S

]
αsαm

(
2

1+2α −
1

1+α
sm
S

)
and:

R′ (nm)
sign
= − 2α2

(1 + α)2
s1+2αm

S

[(
1+α
α

µθ−β
2γSα

nm−2
nm−1

) 1
1+α − 2(1+α)−nm

1+2α

]
nm (nm − 1) (nm − 2)

To help establish R′ (nm) < 0, notice that R′ (nm) < 0 for all nm ≥ 3 if and only if R′ (3) < 0.

Therefore,
(
1+α
4α

µθ−β
γSα

) 1
1+α

> 2α−1
1+2α is suffi cient for R

′ (nm) < 0. To help establish G′ (nm) > 0,

define the function h (x) ≡ 2α
1+2α + 1−4α

1+2αx + α
1+αx

2, where x ∈ [0, 1]. Notice h (0) > 0. Also

notice h′′ (x) > 0 so any solution to h′ (x) = 0 is a minimum. If α ∈
(
0, 14
]
, then there is

no x0 ∈ [0, 1] solving h′ (x0) = 0, hence h (x) > 0 for all x ∈ [0, 1]. If instead α > 1
4 , then

x0 = (1+α)(4α−1)
2α(1+2α) and h (x0) = 7α−1

4α(1+2α)2
> 0, where the inequality follows from α > 1

4 . We

again have h (x) > 0 for all x ∈ [0, 1]. Notice that h
(
sm
S

)
> 0 for all sm

S ∈ (0, 1] implies

G′ (nm) > 0 when z (0) = 0 so, by continuity, G′ (nm) > 0 for any z (0) below some positive

upperbound. We can exclude sm = 0 when discussing h
(
sm
S

)
since nm ≥ 3 implies sm > 0. �

Proof of Proposition 6

Start with the issuer’s expected payoff, E0 (Vm). Substituting λ−1m ≡ (nm − 2) into Eq. (12):

E0 (Vm) =

[
βE1 (Z) + (µθ − β)E1 (W (nm))− nm − 1

nm − 2
γV1 (W (nm))

]
× nm

This expression for E0 (Vm) is increasing in nm holding constant the security Wm, implying

that E0 (Vm) is increasing in nm for nm > nS since the equilibrium security for any nm > nS

is simply Wm = Z. It only remains to check that E0 (Vm) is also increasing in nm for nm ≤ nS
when evaluated at the equilibrium security W (nm).

Using the expressions for E1 (W (nm)), V1 (W (nm)), and sm from the proof of Proposition

5, we can write:

E0 (Vm) = Sα
[

β

1 + α
+
µθz (0)

Sα
+ (µθ − β)

(
sm
S

)α( 1 + α

1 + 2α
− α

2 (1 + α)

sm
S

)]
nm
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for nm ≤ nS . It is easy to show that
(
sm
S

)α ( 1+α
1+2α −

α
2(1+α)

sm
S

)
is increasing in sm

S for any sm
S ∈

[0, 1]. We also know from Proposition 3 that sm is increasing in nm. Therefore,
dE0(Vm)
dnm

> 0

for nm ≤ nS .

Turn now to total welfare. Ignore the integered nature of investors for the moment. There

are N investors, each getting the expected payoff E0
(
V i
m

)
in Eq. (16). There are also N

nm

active issuers, each getting the expected payoff E0 (Vm) in Eq. (12). Inactive issuers receive a

payoff of zero. Total (expected) welfare at date t = 0 is then:

W = N × E0
(
V i
m

)
+

N

nm
× E0 (Vm)

where 1
nm
× E0 (Vm) is the expected, per-capita payoff of an active issuer.

Substituting in Eq. (12) and (16):

W = N

(
βE1 (Z) + (µθ − β)E1 (Wm) +

σ2θ
2γ

nm − 2

nm − 1

[E1 (Wm)]2

V1 (Wm)
− γ

2
V1 (Wm)

)
(A.14)

Notice that the utility investors receive from the risk premium (i.e., compensation for risk term)

is outweighed by the negative effect of variance on the price that the issuer receives.

The expression for W is increasing in nm holding constant the security Wm. Therefore, W

is increasing in nm for nm > nS and it only remains to check thatW is also increasing in nm for

nm ≤ nS when evaluated at the equilibrium security. Using the expressions for E1 (W (nm)),

V1 (W (nm)), and sm from the proof of Proposition 5, we can write:

W = β

(
z (0) +

Sα

1 + α

)
N + z (0)

µ̂θ +
1

α

σ̂2θ
µ̂θ

2
(

1− αx
1+α

)
+ z(0)

xαSα

2
1+2α −

x
1+α

 γSαN
+

µ̂θxα(1− αx

1 + α

)
+

1

α

σ̂2θ
µ̂θ

xα
(

1− αx
1+α

)2
2

1+2α −
x
1+α

− α2x1+2α

2 (1 + α)

(
2

1 + 2α
− x

1 + α

) γS2αN
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for nm ≤ nS , where x ≡ sm
S , µ̂θ ≡

µθ−β
γSα , and σ̂θ ≡

σθ
γSα . Taking derivatives:

dW
dx

=
σ̂2θ
µ̂θ

2
1+α

1
1+2α −

z(0)
x1+αSα

(
2α
1+2α − x

)
(

2
1+2α −

x
1+α

)2 γSαN

α
z (0)

+αxα−1

 σ̂2θ
µ̂θ

(
1− αx

1+α

)
h (x)

α2
(

2
1+2α −

x
1+α

)2 +

(
µ̂θ −

αx1+α

1 + α

)
(1− x)

 γS2αN
with the function h (x) > 0 as defined in the proof of Proposition 5. The expression for sm

from the same proof implies:
2αx1+α

1 + α
= µ̂θ

nm − 2

nm − 1

and hence:

µ̂θ −
αx1+α

1 + α
=

µ̂θnm
2 (nm − 1)

> 0

Therefore, the second line in the expression for dW
dx is positive. If z (0) = 0, then it follows

immediately that dW
dx > 0. If instead z (0) > 0, then the first line in the expression for dW

dx is

positive if and only if: [
α (1− x)

x1+αSα
− 1

2xαSα

]
z (0) <

1

1 + α

A suffi cient condition is αz(0)
x1+αSα

< 1
1+α evaluated at x =

(
(1+α)µ̂θ
4α

) 1
1+α
, which is the lowest

possible x, specifically the x associated with nm = 3. In other words, z (0) < µ̂θS
α

4α2
is suffi cient

for dW
dx > 0. The fully constrained planner thus chooses nm = N and Wm = Z when z (0) is

not too large.

Return now to the integered nature of investors. Denote by W (nm) the right-hand side of

Eq. (A.14), where Wm ≡ W (nm) is the equilibrium security. In a market structure satisfying

condition (17), aggregate welfare is:

W = n×M1 ×
W (n)

N
+ (N − n×M1)×

W (n+ 1)

N
≤ W (n+ 1) ≤ W (N)

where the inequalities follow from the fact that W (n) is increasing in n when z (0) is not too

large. Recalling that W (N) is welfare when all investors trade in one market completes the

proof. �
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Appendix B —Costly Supply

Given nm, issuer m chooses a security Wm to supply in market m. He still supplies one unit

of Wm per capita but now he chooses the number of units Am of the asset Z that back the nm

units of Wm. Previously, we had assumed Am = nm. We now let the issuer choose Am at a

cost c (Am), where c (0) = 0 and c′ (·) > 0. To fix ideas, consider c (Am) = δ
2A

2
m.

Issuer m’s expected payoff at date t = 1 is:

Vm = pmnm + βE1 (AmZ − nmWm)− δ

2
A2m

The equilibrium price pm is still given by Eq. (11) so:

E0 (Vm) =

[
(µθ − β)E1 (Wm)− nm − 1

nm − 2
γV1 (Wm)

]
nm + βE1 (Z)Am −

δ

2
A2m

The Lagrangian for the issuer’s problem can then be written as:

L = (µθ − β)nm

∫ S

0
wm (s) dF (s) (B.1)

−γnm (nm − 1)

nm − 2

[∫ S

0
(wm (s))2 dF (s)−

(∫ S

0
wm (s) dF (s)

)2]

+βE1 (Z)Am −
δ

2
A2m +

∫ S

0
υ (s) [Amz (s)− nmwm (s)] dF (s) + υAAm

where υ (s) ≥ 0 is the Lagrange multiplier on the feasibility constraint for state s, and υA ≥ 0

is the multiplier on Am ≥ 0.

The first order condition for wm (s) is:

υ (s) = µθ − β − 2γ
nm − 1

nm − 2
[wm (s)− E1 (Wm)] (B.2)

where υ (s) ≥ 0 and Amz (s) ≥ nmwm (s) hold with complementary slackness. This implies

that the equilibrium security, conditional on nm, has payoffs:

wm (s) =

 Am
nm
z (s) if s < sm

Am
nm
z (sm) if s ≥ sm

45



where:

sm = arg min
k∈[0,S]

∣∣∣∣z (k)− nm
Am

(
E1 (Wm) +

µθ − β
2γ

nm − 2

nm − 1

)∣∣∣∣ (B.3)

and:

E1 (Wm) =
Am
nm

(
z (sm)−

∫ sm

0
[z (sm)− z (s)] dF (s)

)
(B.4)

The first order condition for Am is:

δAm = βE1 (Z) +

∫ S

0
υ (s) z (s) dF (s) + υA (B.5)

Using Eq. (B.2) with E1 (Wm) as defined in Eq. (B.4), we can rewrite Eq. (B.5) as:

δAm = µθE1 (Z) + υA (B.6)

−2γ
nm − 1

nm − 2

Am
nm

[
E1 (Z)

∫ sm

0
[z (sm)− z (s)] dF (s)−

∫ sm

0
z (s) [z (sm)− z (s)] dF (s)

]

Consider Am > 0 so that υA = 0:

1. If sm = S, then Eq. (B.6) reduces to:

Am =
µθE1 (Z)

δ + 2γ nm−1
nm(nm−2)V1 (Z)

which confirms Am > 0. To confirm that Eq. (B.3) delivers sm = S, we need:

z (S)− E1 (Z) <
µθ − β

2γ

nm
Am

nm − 2

nm − 1

Substituting in the solution for Am, the condition for sm = S simplifies to:

nm (nm − 2)

nm − 1
>

2γ

δ

µθ
[
E1 (Z) z (S)− E1

(
Z2
)]

+ βV1 (Z)

µθ − β

The left-hand side of this inequality is increasing in nm and the right-hand side is positive.

Therefore, sm = S if nm is above some threshold.

2. If the solution to Eq. (B.3) is interior, then sm is defined by:

∫ sm

0
[z (sm)− z (s)] dF (s) ≡ µθ − β

2γ

nm
Am

nm − 2

nm − 1
(B.7)
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and we can use Eq. (B.7) to simplify Eq. (B.6) to:

Am

(
δ − 2γ

nm − 1

nm (nm − 2)

∫ sm

0
z (s) [z (sm)− z (s)] dF (s)

)
= βE1 (Z) (B.8)

Using Eq. (B.8) to substitute Am out of Eq. (B.7), we can then rewrite Eq. (B.7) as:

βE1 (Z)

µθ − β

∫ sm

0
[z (sm)− z (s)] dF (s) +

∫ sm

0
z (s) [z (sm)− z (s)] dF (s) =

δ

2γ

nm (nm − 2)

nm − 1
(B.9)

which implies ∂sm
∂nm

> 0. Notice from Eq. (B.7) that Am > 0 and, to confirm sm < S, we

need nm below the threshold that delivered sm = S in the previous bullet.

We have now shown that the key insights of Propositions 2 and 3 continue to hold. If small

markets are stable, then debt will be traded in that market structure. If large markets are

stable, then equity will be traded in that market structure.

A market structure where all investors trade in the same market is trivially stable, so, as

long as N is large, there always exists an equilibrium where investors trade equity in large

markets.

It remains to show that the key insights of Proposition 4 also continue to hold. In particular,

we want to show that small markets are also stable if heterogeneity in investor preference shocks,

σ2θ, is suffi ciently low. The investor’s expected profit is still given by Eq. (16) so we follow the

steps in the proof of Proposition 4. Specifically, if we can show dV1(Wm)
dnm

< 2V1(Wm)
nm(nm−2) for any

nm where the equilibrium security is Wm 6= Z, then we can conclude that small markets are

stable when σ2θ is suffi ciently low.

The variance of the equilibrium security derived above is:

V1 (Wm) =

(
Am
nm

)2 [∫ sm

0
[z (sm)− z (s)]2 dF (s)−

(∫ sm

0
[z (sm)− z (s)] dF (s)

)2]

where Am depends on sm and nm as per Eq. (B.7) and sm depends on nm as per Eq. (B.9).

Therefore:

dV1 (Wm)

dnm
=

2V1 (Wm)

Am

(
dAm
dnm

− Am
nm

)
+

2A2m
n2m

[1− F (sm)] z′ (sm)
dsm
dnm

∫ sm

0
[z (sm)− z (s)] dF (s)
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where:

z′ (sm)
dsm
dnm

=

δ
2γ

n2m−2nm+2
(nm−1)2

βE1(Z)
µθ−β

F (sm) +
∫ sm
0 z (s) dF (s)

and:

dAm
dnm

=
Am
nm

n2m − 2nm + 2

(nm − 1) (nm − 2)

1−
δ Am
µθ−β

F (sm)

βE1(Z)
µθ−β

F (sm) +
∫ sm
0 z (s) dF (s)


The condition we want to check, dV1(Wm)

dnm
< 2V1(Wm)

nm(nm−2) , simplifies to:

[1− F (sm)] z′ (sm)
dsm
dnm

∫ sm

0
[z (sm)− z (s)] dF (s)

<
1

nm

[
nm − 1

nm − 2
− nm
Am

dAm
dnm

] [∫ sm

0
[z (sm)− z (s)]2 dF (s)−

(∫ sm

0
[z (sm)− z (s)] dF (s)

)2]

⇔

1+[1− F (sm)]
[z (sm)− E1 (Z|s ≤ sm)]2

V1 (Z|s ≤ sm)
<

δ
2γ

nm(nm−2)
nm−1

1
F (sm)

(
n2m − 2nm + 2

)[
βE1(Z)
µθ−β

+ E1 (Z|s ≤ sm)
]

[z (sm)− E1 (Z|s ≤ sm)]

⇔

[1− F (sm)]

(nm − 1)2
[z (sm)− E1 (Z|s ≤ sm)]2

V1 (Z|s ≤ sm)
< 1−

n2m−2nm+2
(nm−1)2

V1 (Z|s ≤ sm)[
βE1(Z)
µθ−β

+ E1 (Z|s ≤ sm)
]

[z (sm)− E1 (Z|s ≤ sm)]

It follows from z′ (·) > 0 that E1 (Z) ≥ E1 (Z|s ≤ sm) and [z (sm)− E1 (Z|s ≤ sm)] > V1(Z|s≤sm)
E1(Z|s≤sm) ,

so a suffi cient condition for dV1(Wm)
dnm

< 2V1(Wm)
nm(nm−2) is:

[z (sm)− E1 (Z|s ≤ sm)]2

V1 (Z|s ≤ sm)
<
(
n2m − 2nm + 2

) β
µθ
− 1

The right-hand side is increasing in nm so, with nm ≥ 3, it will be enough to have:

z (k)− E1 (Z|s ≤ k)√
V1 (Z|s ≤ k)

<

√
5β

µθ
− 1, ∀k ∈ (0, S]

with β > µθ
5 .
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Appendix C —Alternative Timing

Suppose the timing is such that issuers post securities first, then investors choose markets.

Market choice is still made before the realization of investor preference shocks, but now issuers

can compete for investors through security design. By posting securities first, we mean that the

issuer commits to a particular payoff profile before investors choose their markets. The issuer

is rational so his security design problem will take into account the best responses of investors.

However, the issuer cannot post a security whose payoff profile is contingent on the number

of investors who show up. That would constitute a customized contract, not a standardized

contract. The focus of our paper is on standardized contracts.

Consider two issuers, 1 and 2. Issuer 1 offers a securityW1 and attracts n1 investors. Issuer

2 offers a security W2 and attracts N − n1 investors.

The expected value to investor i of trading Wm in a market of size nm is still given by

E0
(
V i
m

)
in Eq. (16). In the extreme case of σ2θ = 0:

E0
(
V i
m

)
=
γ

2

nm
nm − 2

V1 (Wm) (C.1)

By a continuity argument, all results derived under σ2θ = 0 will extend to σ2θ ∈
(
0, σ
)
, where σ

is some positive upperbound.

Notice that nm
nm−2 in Eq. (C.1) is decreasing in nm. Also recall that Wm is no longer

responsive to nm at the stage where investors choose their markets. Eq. (C.1) says that

investors want a more variable security when σ2θ is low. This is because the trading equilibrium

delivers a low enough price (or, equivalently, a high enough risk premium) to compensate them

for taking the risk. Investors also want to take this risk in very small markets, reflecting the

fact that the risk premium increases with an individual investor’s price impact.

Given the securities W1 and W2, investors will move around until they are indifferent

between the two issuers. We abstract from the integered nature of investors here to avoid un-

necessary algebra. The best response of investors then yields a market structure characterized

by n∗1, where n
∗
1 solves:

n∗1
n∗1 − 2

V1 (W1) =
N − n∗1

N − n∗1 − 2
V1 (W2) (C.2)
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Eq. (C.2) defines n∗1 as a function of
V1(W1)
V1(W2)

. Differentiate Eq. (C.2) to get:

dn∗1
dV1 (W1)

=
n∗1
2

1
1

n∗1−2
+

n∗1
(N−n∗1−2)(N−n∗1)

1

V1 (W1)

This derivative is positive. If issuer 1 posts a more variable security than issuer 2, then issuer

1 will attract more investors.

Each issuer seeks to maximize his expected profit subject to a state-by-state feasibility

constraint on the payoffs of the security he designs. He still offers one unit of the security to

each investor in his market and, as in Appendix B, pays a cost to procure the assets that

back this security. The Lagrangian for issuer 1’s problem is thus given by Eq. (B.1) but with

n1 = n∗1, where n
∗
1 depends on W1 as per Eq. (C.2). The choice variables are the payoffs w1 (s)

for each state s ∈ [0, S] and the number of units A1 of Z that will back the n∗1 units of W1.

The first order condition for w1 (s) is:

υ (s) = µθ − β −
γ

n∗1 − 2

2 (n∗1 − 1) +
(n∗1)

2 − 4n∗1 + 2

1 +
n∗1(n∗1−2)

(N−n∗1−2)(N−n∗1)

 [w1 (s)− E1 (W1)]

+
1

1
n∗1−2

+
n∗1

(N−n∗1−2)(N−n∗1)

w1 (s)− E1 (W1)

V1 (W1)

[
(µθ − β)E1 (W1)−

∫ S

0
υ (s)w1 (s) dF (s)

]

Multiply both sides by w1 (s) then integrate over s ∈ [0, S] to isolate:

∫ S

0
υ (s)w1 (s) dF (s) = (µθ − β)E1 (W1)−

γ

n∗1 − 2


2 (n∗1 − 1) +

(n∗1)
2−4n∗1+2

1+
n∗1(n∗1−2)

(N−n∗1−2)(N−n∗1)

1 + 1
1

n∗1−2
+

n∗1
(N−n∗1−2)(N−n∗1)

V1 (W1)

We can now rewrite the first order condition for w1 (s) as:

υ (s) = µθ − β −
γn∗1
n∗1 − 2

n∗1 − 2 +
2(n∗1−1)(n∗1−2)

(N−n∗1−2)(N−n∗1)

n∗1 − 1 +
n∗1(n∗1−2)

(N−n∗1−2)(N−n∗1)

[w1 (s)− E1 (W1)] (C.3)

The first order condition for A1 still takes the form of (B.5).
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In a symmetric equilibrium, both issuers offer the same security W . Eq. (C.2) implies

n∗1 = N
2 which, when substituted into Eq. (C.3), implies:

υ (s) = µθ − β − γ
N2 − 8

N (N − 4)
[w (s)− E1 (W )]

for each s ∈ [0, S]. Therefore, the security that prevails in a symmetric equilibrium has payoffs:

w (s) =

 2A
N z (s) if s < s

2A
N z (s) if s ≥ s

where the threshold s ∈ [0, S] is defined by:

s = arg min
k∈[0,S]

∣∣∣∣z (k)− N

2A

(
E1 (W ) +

µθ − β
γ

N (N − 4)

N2 − 8

)∣∣∣∣ (C.4)

and A solves:

A =
βE1 (Z) + (µθ − β)

∫ s
0 z (s) dF (s)

δ + 2γ(N2−8)
N2(N−4)

[∫ s
0 (z (s))2 dF (s)−

(∫ s
0 z (s) dF (s)

)2
−
∫ s
0 z (s) dF (s)

∫ S
s z (s) dF (s)

]
(C.5)

If the solution to Eq. (C.4) is interior, we can combine Eq. (C.4) and (C.5) to get:

βE1 (Z)

µθ − β

∫ s

0
[z (s)− z (s)] dF (s) +

∫ s

0
z (s) [z (s)− z (s)] dF (s) =

δ

2γ

N2 (N − 4)

N2 − 8

We then need:

δ <
2γ

µθ − β
[
µθ
[
z (S)E1 (Z)− E1

(
Z2
)]

+ βV1 (Z)
] N2 − 8

N2 (N − 4)

for the solution to indeed be interior, in which case:

ds

dN
=

δ

2γ

N
(
N3 − 24N + 64

)
(N2 − 8)2

1

z′ (s)
∫ s
0

[
z (s) + βE1(Z)

µθ−β

]
dF (s)

> 0

where the inequality follows from N ≥ 6 to ensure N
2 ≥ 3. Therefore, the alternative timing

considered here does not change the result that debt is traded in smaller markets than equity.

51




