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1 Introduction

A central implication of the literature on financial contracting is that agents should structure con-
tracts to share risk as efficiently as possible. In many financial markets, standard contracts are
simple and do not include risk-sharing arrangements that condition payments on publicly avail-
able indices. A leading example of this phenomenon is the mortgage market. In this market,
homeowners are exposed to the risk that their homes will decline in value. Lenders are arguably
better equipped to bear this risk and could insulate homeowners against declines in house prices
by making mortgage repayment terms contingent on a house-price index. These types of mortgage
contracts have been widely proposed as a solution to problems facing the mortgage market, such
as the subprime default crises of 2007,1 but have failed to supplant the standard mortgage. Two
common explanations for this type of market failure are that either the space of feasible contracts
is incomplete (Hart and Moore [1988]) or that implementing risk-sharing contracts entails high
transaction costs. Neither explanation applies when there are indices available that would allow
agents to share risk efficiently and appear almost costless to contract upon.

In this paper, we develop a model in which the failure to condition on indices and thus effi-
ciently share risk is an equilibrium outcome resulting from asymmetric information. In our model,
an agent, whom we call the borrower, seeks financing from a set of lenders. This financial con-
tract must be written in view of potential conflicts of interest between the lender and the borrower
related to an “internal”, or idiosyncratic, state. For example, this internal state could represent the
hidden ability of a mortgage borrower to make payments to the lender. At the same time, there are
potential risk sharing benefits between lenders and the borrower over some imperfectly measured
state (e.g. local area house prices). We call this state “external” to indicate that it is unaffected by
the actions of the lenders and the borrower. The external state is not directly observable, and to
realize any risk sharing benefits, contracts must condition on some potentially imperfect measure-
ment of the state which we call an index (e.g. a house price index). Lenders know the true joint
distribution of the index and the external state, i.e. the quality of the index, while the borrower
does not. In effect, the borrower faces an adverse selection problem over basis risk when lenders
offer an indexed contract.

At least two equilibria can arise in the model. In the first type of equilibrium, which we call the
1See, for example the “Shared Responsibility Mortgage” proposed in Mian and Sufi [2015] in which interest and

principal payments are contingent upon local house price indices or the “Shared-Equity Mortgage” proposed by Caplin
et al. [2007] in which a borrower receives a second mortgage where payment is only due upon sale of the house and is
contingent on house value.
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full-information optimal contracts equilibrium, all lenders offer a contract featuring the optimal
amount of insurance conditional on the true quality of the index. The full-information optimal
contracts equilibrium always exists when there is competition between lenders, and features no loss
in efficiency due to asymmetric information about the index. In the second type of equilibrium,
which we call the non-contingent contracts equilibrium, all lenders offer a contract that does not
condition on the index. To see why such an equilibrium can arise, consider the borrower’s response
when a single lender deviates and offers a contingent contract. To at least break even on such
a contract, the lender must charge the borrower an insurance premium. At the same time, the
borrower will be concerned that the index is in fact uncorrelated with the risk she is aiming to
insure, i.e., the basis risk for the contract is too high to justify the premium. Lenders that know
the basis risk is high are happy to offer insurance and charge a high premium since the insurance
is cheap for them to provide (precisely because the basis risk is high). As a result, the borrower
will reject the indexed contract in favor of a standard non-contingent contract. We note that the
non-contingent-contracts equilibrium exists even though the contracting space allows the use of an
index, there are no transactions costs, and lenders make competing offers.

To illustrate the intuition behind these two equilibria, suppose there are just two equally likely
external states, “good” and “bad.” Now suppose a borrower receives offers of 1 dollar of financing
from several competing lenders. The borrower is risk-averse with respect to the external state,
meaning that her expected marginal value of a dollar is 1/2 in the good state and 3/2 in the bad
state. The lenders are also risk averse, but less so than the borrower. Their expected marginal
value of a dollar is 3/4 in the good state and 5/4 in the bad state. Lenders can offer contracts
that are contingent upon some index but not upon the true external state directly. The index can
be “high quality,” in which case it is perfectly correlated with the true underlying state, or “low
quality,” in which case it is entirely independent of the true state and hence unrelated to the either
the borrower’s or lender’s preferences. The borrower believes these two cases are equally likely,
but the lenders observe the quality of the index before making their offers. Finally, lenders cannot
offer contracts that specify positive transfers from the lender to the borrower.

Suppose that lenders make the following offers, depending on the quality of the index. If the
index is high quality, they offer a contract that calls for the borrower to repay 8/3 dollars if the
realization of the index indicates the good state and nothing otherwise. If the index is low quality,
they offer a contract that calls for the borrower to repay 1 dollar regardless of the realization of the
index. These offers constitute what we call a full-information optimal contracts equilibrium. To
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see why they can constitute an equilibrium, note that all lenders are earning weakly positive profits
and could not possibly earn more by making different offers. Moreover, given that all lenders have
common information, the borrower can perfectly infer the quality of the index by observing the
contract that the lenders offer. In other words, it is not possible for a single lender to convince
the borrower the index is high quality if all the other lenders offer a non-contingent contract. This
same intuition carries over to the second type of equilibrium we describe above.

Now suppose that all lenders offer a contract that calls for the borrower to repay 1 dollar
regardless of whether the index is high-quality or low-quality. These offers constitute what we
call the non-contingent-contracts equilibrium. Can a single lender gain by deviating and offering
the best contingent-contract? Again the answer is no. If a single lender deviates by offering a
contingent contract, then she will have to charge a premium for it to at least break even. In the
case of the best contingent contract, that premium is 1/6, or the difference between the net present
value of the payment (4/3) and the amount financed (1). If the index is low quality, this premium is
pure profit because in that case, the realization of the index is unrelated to the lender’s preferences
and the lender is thus risk neutral with respect to the index. As a result, the lender would be at least
as willing to make such an offer given a low quality index as given a high quality one, and as such,
standard belief refinements imply that the borrower can believe that the index is low quality after
observing this deviation. Given these beliefs, the borrower is strictly better off accepting one of
the offers of a non-contingent contract. The failure of the agents to share risk in this case is closely
related to the classic lemons market breakdown of Akerlof [1970].

Two elements are essential to the existence of the non-contingent contracts equilibrium in the
simple example above. First, the lenders are risk averse with respect to expected payoffs across
external states, and second, the borrowers are even more risk averse, meaning that it is efficient for
the lender to insure the borrower. The first element means that deviating from the non-contingent
contracts equilibrium requires that a lender charge a premium for a contingent contract, which
makes such a deviation more attractive when the index is low quality. We discuss the example and
these two key conditions in section §2.

Our general model encompasses settings in which there is an additional security design prob-
lem concerning payoffs given idiosyncratic states. These security design problems are important
for our results in that they determine the borrower’s and lenders’ indirect utility over securities and
external states and thus the potential gains from indexation. In our mortgage example (section §3),
the borrower needs incentives to repay the lender across idiosyncratic states. In that example, con-
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ditional on a particular external state, standard debt contracts are optimal. In principle, these debt
contracts could allow for risk sharing over the external states by having a higher face value in a
good external state than a bad one. However, the face value of a debt contract is not equivalent
its expected payoff; put differently, promises are not payoffs. A lender can prefer a higher debt
level in a good external state simply because the debt is more likely to be repaid in good external
states. At the same time, the lender has a lower marginal utility in the good external state. The
key condition to generate a non-contingent contracts equilibrium becomes a tradeoff between the
lender’s decreasing marginal utility and the increasing value of promises as the external state im-
proves. If the latter force dominates, then the lender will not need to charge a premium to insure the
borrower against bad external states, and the non-contingent contracts equilibrium does not exist.
A key condition for the existence of the non-contingent contracts equilibrium is that the lender be
sufficiently “risk averse over promises,” a notion we formalize in our general model (sections §4,
§5, and §6).

There is an important distinction between the type of adverse selection problem we consider
and one in which lenders have information about the external state itself. In our model, lenders do
not have better information about the distribution of the external state, only about the relationship
between the index and the external state. In contrast, much of the literature on adverse selection
(following Akerlof [1970]) assumes there is asymmetric information about something that is di-
rectly relevant to payoffs. For example, in the context of mortgages, lenders might know that local
house prices are more likely to appreciate in the future than the borrower expects. In an extension
of our model (section §7), we show that under our assumptions, the non-contingent contracts equi-
librium does not exist if the index is known to be perfectly correlated with the external state, and
the adverse selection is only about the distribution of the external state itself.

Our work is related to the literature on incomplete contracts, surveyed by Tirole [1999]. Papers
focusing on incomplete contracts and asymmetric information include Spier [1992], Allen and
Gale [1992], and Aghion and Hermalin [1990], among others.2 Our model differs from most of
this literature in several respects. First, our model emphasizes competitive markets, rather than
bilateral negotiation. Second, our model is focused on asymmetric information about the quality
of the index, rather than the “fundamentals.” This second difference is what allows us to generate
non-contingent contracts in equilibrium without relying on transaction costs of using the index or

2Papers that endogenize contractual incompleteness, but do not emphasize asymmetric information, include Ander-
lini and Felli [1994], Battigalli and Maggi [2002], Bernheim and Whinston [1998], Dewatripont and Maskin [1995],
Kvaløy and Olsen [2009], Tirole [2009].
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arguing that the index is manipulable. Like some, but not all, of the incomplete contracts literature,
we focus on equilibria with no indexation at all (as opposed to explaining why agents might use
the index but not achieve perfect risk-sharing).

More significantly, our model differs from the incomplete contracts literature in its assumptions
about what is contractible and what is observable. In the risk-sharing extension of Hart and Moore
[1988], the agents can renegotiate after observing a non-verifiable state. A subsequent literature
(Green and Laffont [1992], Dewatripont and Maskin [1995], Segal and Whinston [2002]) has found
that, by altering the outside options or other aspects of the renegotiation process, the agents can
share risks and perhaps even achieve first-best risk sharing despite their inability to contract on
the state. In contrast, in our model, the index is both observable and verifiable, whereas the true
external state is not observed by the agents until the end of the game, when renegotiation is no
longer possible.3

Formally, our model is similar in some respects to Allen and Gale [1992], although the focus of
that paper is the manipulability of the index. One can also view our model as related to models of
insurance, in the vein of Rothschild and Stiglitz [1976] or more recently Hendren [2013]. The key
difference between our model and those models is that our model places the information advantage
and the competition on the same side of the market (with lenders), rather than on opposite sides of
the market. Loosely speaking, the key intuition in our model is that the insurance itself might be a
“lemon,” in the sense of Akerlof [1970].

A closely related paper to ours is Spier [1992]. Spier [1992] shows that asymmetric information
can amplify the effect of transaction costs on the ability of agents to write contracts that condition
on relevant information. In Spier [1992], an informed and risk-averse principal contracts with an
uninformed and risk-neutral agent. If the principal offers a contract that insulates herself from risk,
she must also signal her private information, which in turn reduces the benefits of risk sharing. This
effect lowers the level of transaction costs needed to destroy risk sharing in equilibrium. However,
in Spier [1992], if transaction costs are close enough to zero, asymmetric information alone does
not eliminate risk sharing. In contrast, in our model, asymmetric information can lead to zero risk
sharing without transaction costs. Another related paper is Asriyan [2015]. He shows that concern
for future liquidity and dispersed private information can lead market participants to write very
simple contracts. This intuition is that if the holder of a contract must liquidate at some future

3Relatedly, the Maskin and Tirole [1999] critique of the incomplete contracts literature applies when the agents are
aware of the payoff-relevant states before actions are taken, and for this and other reasons is not directly applicable to
our model.
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date, she will want hold a contract that is as informationally insensitive as possible. In contrast, we
emphasize situations in which there are risk-sharing failures associated with simple contracts. In
other words, the value of simple contracts is informationally sensitive in our model, and only by
using the index could the agents minimize information sensitivity.

We also employ a general space of states and contracts. As a result, there is a great deal of scope
for signaling, in contrast with the previous literature (in Spier [1992] and Aghion and Hermalin
[1990], the contract space has one or two dimensions). As a consequence of this ability to signal,
to generate our results, borrowers must be somewhat “suspicious,” in the sense that they place non-
zero probability on the index being irrelevant. Belief in this possibility, however unlikely, creates
at least some chance that the index is not useful (and in this sense is reminiscent of the conditions
of the Myerson and Satterthwaite [1983] theorem).

The failure of risk-sharing in our model can be thought of as a coordination failure, in the
sense that there are multiple, Pareto-ranked equilibria. In the context of mortgages, we view this
multiplicity as a feature. Mortgage contracts differ substantially across countries in ways that
are difficult to explain with “fundamentals.” Relatedly, our model considers only a single index,
but could naturally be extended to consider multiple indices (interest rates and house prices, for
example). In this case, we expect that “partial indexing” equilibria (e.g. indexing to interest rates
but not home prices, like an adjustable rate mortgage) exist. As a result of this multiplicity, there
is the potential for policy to improve welfare in our model by ruling out undesirable equilibria.
Our model does not feature any externalities as a result of this risk-sharing failure; the existence of
such externalities (which are emphasized by Campbell et al. [2011], among others) would provide
an additional motivation for policy interventions.

Our motivating example is the mortgage market, although our most general model is abstract
and could easily apply to other settings. In the context of home ownership, as noted by Sinai and
Souleles [2005], purchasing a house hedges a homeowner against changes in future rents. Never-
theless, homeowners are exposed to both price and rent risks, and these could be hedged through
the mortgage contract. Of course, as discussed by Case et al. [1995] and Shiller [2008], home-
owners could also hedge these risks through other financial markets, although this almost never
occurs in practice. This failure to hedge might be explained by limited access to such markets, or
by the sophistication required to hedge in this manner. However, these arguments suggest that it
would be profitable for a financial intermediary to provide hedging services, and mortgage lenders
appear to be ideally situated to do this as part of mortgage contracts. Campbell et al. [2018] pro-
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pose that mortgages that provide optional payment reductions during recessions increase financial
stability. Mortgages that have a more equity-like claim on house value have been proposed (see,
for example, Caplin et al. [2007]). Some of these early proposals made mortgage payments con-
tingent on the sale price of the house, which clearly induces moral hazard for the borrower. More
recent studies have pointed out that conditioning mortgage payments on an index of house prices
avoids this problem. Piskorski and Tchistyi [2017] develop an equilibrium model of housing and
mortgage markets and show that under many circumstances, the optimal mortgage design hedges
the borrower against house price risk. Greenwald et al. [2018] provides a quantitative analysis of
the general equilibrium effects of house priced indexed mortgage and show that using a local house
price index improves financial stability. Proposals for mortgage reform after the recent financial
crisis (e.g. Mian and Sufi [2015]) have advocated this approach. Although rare, shared apprecia-
tion mortgages are legal in the United States and used, for example, by Stanford University faculty
who borrow from Stanford to purchase a house.4 We develop a stylized model of mortgage bor-
rowing, building on Hart and Moore [1998], and show that the conditions of our general theorem
apply in this model and thus can explain the lack of prevalence of shared appreciation mortgages
by appealing to asymmetric information over the quality of house price indices.

We begin in section §2 by using the example given above to illustrate the two key assumptions
required for non-contingent contracts to be an equilibrium. Next, in section §3, we discuss a
more complicated example, focused on mortgages, and show how these key assumptions must be
adapted in a setting in which default is possible. We then being describing our general model,
discussing the market for loans, the asymmetric information problem, and the equilibrium concept
in section §4. In section §5, we discuss the zero-profit condition that arises from competition in our
model, and characterize the “best” equilibria, which features contingent contracts. In section §6,
we discuss our most general results, which describe assumptions under which risk-sharing fails and
non-contingent contracts arise in equilibrium. In section §7, we describe a number of variations
and extensions to our basic framework. We conclude in section §8.

4Stanford mortgages are indexed to an appraisal, rather than a local house price index, and involve renegotiation
when the homeowner makes major investments.
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2 Non-Contingent Equilibrium: A Simple Example

We begin by elaborating on the example in our introduction. In this example, there are two possible
“external” states, bad and good. We call these states external to emphasize that they are outside the
control of the borrower and lenders. Let A = {ab,ag} be the set of possible external states. There
are also two possible index realizations, high and low. Let Z = {zl,zh} be the set of possible index
realizations. The two external states are equally likely, P(a = ab) = P(a = ag) = 1/2, as are the
two index values, P(z = zl) = P(z = zh) = 1/2. The index might be “perfect,” in which case z = zh

if and only if a = ag, and z = zl if and only if a = ab. The index might also be “uninformative,” in
which case the realizations of z 2 Z and a 2 A are independent.

Recall in our example that the borrowers’ marginal value of a dollar is 1/2 if a = ag and 3/2
if a = ab, whereas the lender’s marginal value of a dollar is 3/4 if a = ag and 5/4 if a = ab. We
considered two contracts, a contingent (on z 2 Z) contract and a non-contingent contract. The
contingent contract required that the borrower pay d = 8/3 if z = zh and d = 0 if z = zl , whereas
the non-contingent contract required that the borrower pay d = 1 regardless of the value of z.

The initial investment required by the lender is K = 1. As a result, the non-contingent contract
is break-even for the lender regardless of whether the index is perfect or uninformative, and the
contingent contract is break-even for the lender if the index is perfect. However, the contingent
contract is positive net present value for the lender if the index is uninformative. As a result, the
lender has the greatest incentive to deviate from a non-contingent equilibrium when the index is
uninformative.

We concluded that using the non-contingent contract is an equilibrium. If the borrower was ex-
pecting to be offered the non-contingent contract, and was offered the contingent contract instead,
she could (and perhaps should) assume that the index is uninformative, because a lender with an
uninformative index has the most to gain by deviating to the contingent contract. In this case, the
lender’s gain is the borrower’s loss, since the lender is not providing insurance that is useful to the
borrower, and consequently the borrower should reject this deviation.

This conclusion depended on two key assumptions. First, the borrower and lender agree on
which states have high/low marginal values of a dollar. If instead the lender’s marginal value of
a dollar were 5/4 if a = ag and 3/4 if a = ab (reversing the order for the lender), the contingent
contract that breaks even for the lender with a perfect index is d = 8/5 if z = zh and d = 0 if z = zl .
A lender with an uninformative index would not offer this contract, since it has a net present value
less than one with an uninformative index, and as a result the non-contingent equilibrium could
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not exist. We conclude that agreement about which states have high/low marginal values is critical
for the existence of a non-contingent equilibrium.

The second key assumption is that the borrower should be buying insurance from the lender,
and not vice-versa. Suppose that we switch the marginal values between the borrower and lender,
so that the borrowers’ marginal value of a dollar is 3/4 if a = ag and 5/4 if a = ab, and the lender’s
marginal value of a dollar is 1/2 if a = ag and 3/2 if a = ab. In this case, the best contingent
contract that breaks even for the lender with a perfect index is d = 0 if z = zh and d = 4/3 if
z = zl . In other words, the lender is buying insurance from the borrower using this contingent
contract. We find again that a lender with an uninformative index would not offer this contract,
since it has a net present value less than one with an uninformative index, and as a result the non-
contingent equilibrium could not exist. We conclude that the borrower being “more sensitive” to
the external state a than the lender, in the sense that the lender should be insuring the borrower and
not vice-versa, is critical for the existence of a non-contingent equilibrium.

Looking ahead, these two assumptions correspond exactly to the key assumptions in our general
model. Intuitively, if the lender can insure the borrower at a negative insurance premium, or if the
lender should be buying insurance from the borrower and can offer a high price for that insurance,
the lender can prove that the index is perfect. But if the lender should be insuring the buyer, and
requires a (weakly) positive insurance premium to do so, the non-contingent equilibrium can exist.
Moreover, the non-contingent equilibrium exists even though, if the index is in fact perfect, both
the lender and borrower can be made better-off by using the index.

This example is constructed to clearly illustrate the key requirements for the existence of a
non-contingent equilibrium. In particular, the example is simple because both the borrower and
lender have constant marginal utility within each external state a. While this might make sense
for a lender (for example, if the stochastic discount factor of the lender is a function of a, and this
transaction is small relative to the size of the lender), it often does not make sense as a model of
borrowers. In the context of mortgages, we would prefer to assume that borrowers have concave
utility. We would also like to incorporate the possibility that the borrower defaults instead of
repaying the promised value d. For this reason, before describing our general model, we introduce
a simple model of a mortgage borrower and lender. We will show how the two key assumptions of
“agreement on marginal values” and “lender should insure the borrower” can be understood in this
context.
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3 Non-Contingent Equilibrium: A Mortgage Example

In this section, we discuss a simple model of mortgage lending that illustrates the key conditions
necessary for a non-contingent contracts equilibrium.

3.1 The setup

There are two dates. At date zero, a borrower receives take-it-or-leave-it offers from |L| mortgage
lenders to finance the purchase of a house for K dollars. The borrower promises repayment at date
one, collateralized by the house. The borrower can accept one offer and occupies the house until
the start of date one, at which point she liquidates it and consumes her final wealth. The value of
the house at date one is x2 {0,xh} with K < xh.5 As in the previous example, there are two external
states, A = {ab,ag}, and two possible index values, Z = {zl,zh}. The external state a 2 A affects
the likelihood of a high house price and both agents’ other sources of income. The external state
could represent the aggregate component of house prices in a local area containing the borrower’s
house or a broader economic variable that affects house prices and the agent’s other sources of
income. The index z 2 Z can therefore be thought of as either a house price index or a broader
economic index.6

The realization of the index z is publicly observable, while the realizations of the house price
x and external state a are not. The marginal distributions of a and z are common knowledge, and
for simplicity we assume as in the previous example that P(a = ag) = P(z = zh) = 1/2. The joint
distribution of x and a, P(x = xh|a) = p(a), is also common knowledge, with high house prices
being more likely in good states, p(ab)< p(ag).

The lenders all privately observe the joint distribution of a and z, given by q(a,z) where

q(ag,zh) = q(ab,zl) =
1
4
+r,

q(ab,zl) = q(ag,zh) =
1
4
�r,

for some r 2 [0, r̄].7 We refer to r as the quality of the index. The borrower does not know r , and
has a prior with full support on r 2 [0, r̄]. After the borrower observes the contracts offered by the

5The assumption that the liquidation value is either high or zero simplifies the exposition considerably.
6This example is too simple to draw a distinction between these two types of indices.
7If r̄ = 1

4 , a perfect index is possible. However, our assumptions require only that r̄ > 0.
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various lenders, she may update her beliefs about r .
To motivate the use of debt (which can be non-contingent or contingent on the index z), we

assume that the borrower privately observes the value of her house at date t = 1 and can make a
report x̃ to her lender. While the lender cannot observe the value of the house, she can implement
a foreclosure rule conditional on the borrower’s report. For simplicity, we assume that foreclosure
results in liquidation value of x = 0 and that the lender cannot randomize foreclosure.8 As a result,
any feasible outcome can be implemented by debt with face value d(z) that depends on the index
realization z, such that if the borrower fails to repay the face value, the lender forecloses on the
house. Assuming d(z) xh, the borrower will default if x = 0 and repay if x = xh.

In addition to her position in the house, the borrower also has a non-pledgeable endowment
yB(a), with yB(ab) < yB(ag), available at date one. Consequently, the borrower’s final wealth is
W = yB(a)+xh�d if x = xh and the borrower owes d to the lender, and W = yB(a) otherwise. The
borrower has CRRA expected utility E[uB(W )] over final wealth, where

uB(W ) =
W 1�gB �1

1� gB
.

We summarize the payoffs for a borrower that owes d in external state a using the indirect
utility function

fB(d,a) = p(a)uB(yB(a)+ xh �d)+(1�p(a))uB(yB(a)).

If the borrower does not purchase the house, she receives uB(yB(a)) in external state a. We have
assumed, for simplicity, that defaulting and never purchasing the house are identical from the
borrower’s perspective, so the borrower’s participation constraint will never bind.

All lenders have an existing portfolio of assets (e.g., other mortgages) with value yL(a), again
with yL(ab) < yL(ag). Conditional on making the loan, a lender’s total asset value is R = yL(a)+
d �K if the borrower repays d, and R = yL(a)�K otherwise. Lenders derive CRRA expected
utility E[uL(R)] of their total payoff R, where

uL(R) =
R1�gL �1

1� gL
.

We assume that this particular borrower is small relative to the lender, meaning that d and K
8This is a simplified costly state verification model (Townsend [1979], Gale and Hellwig [1985]).
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are small relative to yL(a). We also normalize the lender’s indirect utility function, fL(d,a), by
subtracting the lender’s expected utility if the lender the does not make a loan to this borrower. As
a result, using a first-order Taylor expansion, if a lender is owed d in external state a, the lender
has indirect utility

fL(d,a) = p(a)u0L(yL(a))(d �K)� (1�p(a))u0L(yL(a))K.

Note that u0L(yL(a)) can be interpreted as a stochastic discount factor.
We now impose assumptions on the endowments and preferences of the lenders and the bor-

rower that will ensure agreement on marginal values and that the lender should insure the borrower.
First, we assume that lenders’ endowment and risk aversion satisfy

gL log
✓

yL(ag)

yL(ab)

◆
� log

✓
p(ag)

p(ab)

◆
, (1)

and the borrower’s endowment and risk aversion satisfy

gB log
✓

yB(ag)+ xh

yB(ab)+ xh

◆
� log

✓
p(ag)

p(ab)

◆
. (2)

The conditions in equations (1) and (2) state that the percentage change in marginal utility between
ab and ag is greater than the percentage change in the default probability. As a result, both the
borrower and the lenders having decreasing (between ab and ag) marginal utilities with respect to
payments that only occur if the borrower does not default. That is, they agree that there is a high
marginal value of such payments in external state ab and a low value in ag.

Next, we assume that the borrower faces a greater cost of bearing the risk of her endowment
than the lender, conditional on no-default. That is,

gB log
✓

yB(ag)+ xh

yB(ab)+ xh

◆
> gL log

✓
yL(ag)

yL(ab)

◆
. (3)

Equation (3) implies that under full information, it is efficient for the lender to insure the borrower.9

Briefly, an equilibrium of this market is given by a set of offers dl(z), for each lender l, such
that lenders maximize their expected utility, a borrower belief function that maps the set of possible
offers to a posterior belief about the quality of the index and is consistent with Bayes’ rule where

9Note that equations (3) and (1) imply equation (2). An analogous result appears in our general model.
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possible, and an acceptance rule that that maximizes the borrowers utility conditional on her beliefs
about the quality of the index. We describe the market structure and equilibrium definition more
thoroughly in our general model.

3.2 Analysis

Equations (1) and (2) ensure that both the borrower and lender agree that the marginal value of a
promise (a payment conditional on no-default) is higher in the bad external state. In other words,
they are both risk averse with respect to promises. This kind of risk-aversion is related to, but
not identical to, having a risk-averse utility function. For example, because the loan under con-
sideration is small relative to the lender’s other income, the lender is effectively risk-neutral with
respect to the borrower’s idiosyncratic outcome, but the lender can still be risk-averse with respect
to promises, because the lender’s stochastic discount factor is a function of the external state a 2 A.

This type of risk aversion for the lender can arise for at least three reasons. First, the lender can
be thought of as another agent in the economy, with her own CRRA preferences and other sources
of income. Second, suppose that the lenders are intermediaries subject to regulatory or financial
constraints and that yL is the cash flow on the lender’s portfolio of other mortgages.10 When the
external state is good (bad) because the aggregate component of house prices is high (low), the
cash flow from the lender’s mortgage portfolio is higher (lower), and repayment of one individual
loan has a smaller (larger) effect on the health of lender’s balance sheet. Third, suppose the lenders
are integrated with financial markets, in which case yL is the representative agent’s consumption
and gL is the representative agent’s relative risk aversion. In this case, the external state affects
broader economic conditions. When the economy is good (bad), the lender’s stochastic discount
factor is lower (higher).

There are two competing forces that will determine whether the lender is risk averse with
respect to promises. First, the lender is risk averse with respect to the external state, meaning that
the lender has higher marginal utility in the bad external state. Second, promises are more likely
to be paid in the good external state (p(ah) > p(al)). Equation (1) implies that the first of these
forces weakly dominates the second, so that the lender has a higher marginal value of promises in
bad states, meaning

∂
∂d

fL(d,a) = p(a)u0L(yL(a)) (4)

10In this case, the CRRA preferences should be understood as proxy for the curvature induced by the financial or
regulatory constraints.
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is decreasing in a. Note that Equation (1) is equivalent to assuming that the lender’s stochastic
discount factor is more volatile than mortgage default probabilities.

As with the lender, there are two competing forces that determine whether the borrower is risk
averse with respect to promises. The borrower is risk averse, and hence will have higher marginal
utility in the bad state because of her non-pledgeable income. At the same time, in the bad state
promises are less likely to be repaid, and hence are less costly to make. Equation (2) implies that
the first of these forces dominates the second, so that

∂
∂d

fB(d,a) =�p(a)u0B(yB(a)+ xh �d) (5)

is increasing in a. Note that, unlike the lender, the marginal cost of a promise for the borrower de-
pends on the size of the promise. If the borrower is risk averse with respect to promises ( ∂

∂d fB(d,a),
which is negative, is increasing in a) at d = 0, she will be risk averse with respect to promises at
all higher debt levels.11

As we discussed in section §2, that the borrower and lender agree on which external state
has a higher marginal benefit/cost of promises is not sufficient to guarantee the existence of a non-
contingent equilibrium. We also need to ensure that the lender should be insuring the borrower, and
not vice-versa. Intuitively, which agent should be providing insurance and which agent should be
receiving insurance depends on the ratio of the marginal values of promises. Equation (3) implies
the borrower’s marginal value of a promise is more sensitive to the external state than the lenders’,
and in particular that this property to holds at d = 0,

∂
∂d fB(d,ag)|d=0
∂

∂d fB(d,ab)|d=0
<

∂
∂d fL(d,ag)|d=0
∂

∂d fL(d,ab)|d=0
. (6)

Equation (6) also implies that if the index is related to the external state (r > 0), then the first-best
contract features promised face value payments that increase with the index, d(zl)< d(zh).

We now give a heuristic argument that the asymmetric information between the lenders and
borrower over the quality of the index can lead to the use of non-contingent contracts. Suppose
that L � 1 lenders offer the same non-contingent contract d⇤. Can the the L-th lender offer a
contingent contract d0, with d0(zl)< d0(zh), to exploit the risk sharing benefits that such contracts
offer? If the borrower accepts the offer of d0, the lower the index quality (lower r), the higher the

11This follows from u000B (·)> 0, and we prove it in the proof of proposition 1.
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profit for the lender. That is,

∂
∂r

E[fL(d0(z),a)] = (fL(d0(zh),ag)� (fL(d0(zl),ag))� ((fL(d0(zh),ab)� (fL(d0(zl),ab))< 0,

by the definition of r and the lenders’ risk-aversion with respect to promises. Intuitively, the
higher the index quality, the more variation in d0(z) is correlated with lenders’ endowment, and
consequently the more costly it is for the lender to offer this insurance. Therefore, if the borrower
is offered d0, it is reasonable for the borrower to believe that the index has the lowest quality. Given
this belief, the borrower will reject any d0 that the L-th lender would be willing to offer. What if
the L-th lender offered a contingent contract that was decreasing in z, d0(zl)> d0(zh)? In this case,
the lender is purchasing insurance from the borrower, which is inefficient. As a result, if the lender
is willing to offer a decreasing contract, the borrower is not willing to accept it. This logic leads to
the following proposition:

Proposition 1. There exists a K̄ > 0 such that, for all K < K̄, there exists an equilibrium in which
non-contingent contracts are used regardless of the type q .

Proof. See the appendix, section B.1.

The requirement that K < K̄ is needed to, among other things, guarantee that is possible to
finance the house with a non-contingent contract.12 It is vacuous if the level of the debt d⇤ that
breaks even for the lender with loan size K̄ is greater than the maximum possible debt level, xh.
However, to keep the analysis simple, we do not analyze whether this is indeed the case.

In this mortgage example, we have illustrated the distinction between promises and payments,
and what it means to be risk-averse with respect to promises. We now turn to the general version
of the model, which treats the indirect utility functions fB and fL as primitives. We provide a set of
assumptions (assumptions 2 and 3 below) that generalize equations (1) and (3). These assumptions
ensure that both lenders and the borrower are risk averse with respect to promises, and that it is
efficient for the lender to insure the borrower. We then prove a general result, proposition 3,
that shows that so long as these assumptions are satisfied, there exists an equilibrium with non-
contingent contracts. The model of mortgage lending we have described in this section satisfies

12K must be sufficiently small to ensure that the mortgage example satisfies the assumptions of our general model.
However, the assumptions of our general model are sufficient but not necessary; in the mortgage example, it is possible
to show that the non-contingent equilibrium exists regardless of the value of K, as long as a non-contingent contract
can satisfy both participation constraints.
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the assumptions of our general model, meaning that proposition 1 is consequence of our general
result, proposition 3.

4 The General Model

In this section, we setup our general model. At date zero, a borrower wishes to raise K > 0 dollars
to pursue a project (e.g. purchasing a home). If the borrower accepts a contract offer by a lender,
the borrower will initiate the project, and then at date one, payoffs will be determined.

We now describe each component of the model in more detail. First, we introduce the external
states a 2 A and index z 2 Z that are the key exogenous random variables in the model. Second, we
describe the contracting environment and the indirect utility functions that summarize the payoffs
for the borrower and lender from using a particular contract. Third, we introduce the “types” in
our model, which describe the index quality– that is, the relationship between the external state
and the index. Fourth, we discuss the market structure, and lastly define equilibrium in the context
of our model.

4.1 The States and the Index

After the borrower and lender agree to a contract and initiate the project, at date one an index z 2 Z
is determined. This index is observable and verifiable, and related to the true external state a 2 A.
The true external state a is what enters the agents’ indirect utility functions; they have no particular
concern for the value of the index.

The index z 2 Z should be thought of an index based on the external state a 2 A. For simplicity,
we will assume that both A and Z are totally ordered sets. We will write a � a0 to denote the idea
that the external state a 2 A is “better than” the external state a0 2 A, and use the same notation
for the index values. In the context of mortgages, the external state a 2 A might influence house
prices, borrower income, and/or the cost of capital for lenders. The index z 2 Z is an index that,
perhaps imperfectly, measures these things, such as a local area house price index, a wage index,
or an interest rate. We assume that A and Z are finite sets.

The external state a 2 A influences the distribution of the borrower’s idiosyncratic outcomes,
i 2 I. For a mortgage borrower, idiosyncratic outcomes could include the borrower’s particular
house price or income. The idiosyncratic outcomes may or may not be observable or contractible,
and might be influenced by the borrower’s behavior.
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4.2 The Indirect Utility Functions and Contract Space

A contract is a function s : I ⇥ Z ! R+ that takes the idiosyncratic outcome i and index z and
determines a payment from the borrower to the lender. We use the notation sz : I ! R+ to refer to
the “conditional contract,” which is the contract for a particular value of the index.

We require that conditional contracts are “ex-post efficient,” appealing to notions of renegotiation-
proofness after the index z2 Z has been revealed. We further assume that the set of ex-post efficient
contracts, which we denote as SD, can be indexed by a number, d 2 D ⇢ R. We assume that D is
a convex subset of the real line whose minimum is d = 0.13 For example, if the ex-post efficient
contract is a debt contract, as in many optimal contracting models (e.g. Hart and Moore [1998],
Innes [1990], Townsend [1979], Hébert [2018]), d is the face value of the debt claim. For this
reason, we refer to the parameter d as a “promise.” We use the notation sd 2 SD to indicate an
ex-post efficient contract with a promise of d. The set of feasible contracts S is the set of contracts
such that, for each z 2 Z, sz 2 SD.

The “primitives” of our model are the indirect utility functions of the borrower and lender.
Given a particular state a 2 A and ex-post efficient contract sd ,14 the borrower’s indirect utility
function is fB(sd,a). We refer to this as an indirect utility function because it summarizes the
borrower’s payoff, given some underlying relationship between the external state a, contract sd , and
the distribution of idiosyncratic outcomes. Similarly, we denote the lender’s payoff (including the
cost of the initial investment K) as fL(sd,a). In both cases, these functions should be understood
as expected utilities conditional on a, and do not necessarily imply that the borrower or lender
perfectly knows a.

We treat the indirect utility functions as primitives that satisfy several properties. First, we
assume that fL(sd,a) is lower semi-continuous on d 2 D for all a 2 A.15 Second, we assume
that fL(sd,a) is negative for d = 0. We set the lender’s outside option to zero, so this property
implies that the lender is not willing to make the loan in exchange for a promise of zero. Third,
the borrower’s utility function satisfies a monotonicity property: if d0 > d for some d,d0 2 D,
then fB(sd0 ,a)  fB(sd,a) for all a 2 A. Intuitively, if the borrower makes a larger promise to the

13In our mortgage example (section §3), d is the face value of the debt claim, and it is natural to restrict attention to
D 2 [0,xh].

14These indirect utility functions are naturally defined over all conditional contracts, not just ex-post efficient ones,
but ex-post inefficient contracts play no role in our analysis.

15Inefficient foreclosure/liquidation can generate downward jumps in the lender’s payoff in certain examples, which
is why we assume lower semi-continuity instead of continuity.
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lender, she is worse off. For the lender, this property does not necessarily hold; promises will not
necessarily be paid, and demanding excessive repayment can result in lower expected utility for
the lender.

We use debt as our leading example, but these conditions can describe other families of secu-
rities as well. Examples include the set of fixed payments of varying size, the set of 100% equity
claims less a fixed payment of varying size, and the set of equity shares of varying percentages.
The first two of these examples could be motivated by risk-sharing type problems, and the third by
security design problems resulting in equity as the optimal security design.

Our simple example (section §2) and mortgage example (section §3) provide examples of in-
direct utility functions fL and fB that satisfy our assumptions. We provide another example in the
appendix, based on costly state verification models (section §A).

4.3 Types

We define q(a,z) as the joint distribution of the external state and the index. This joint distribution
is common knowledge amongst the lenders, but is not known to the borrower; it is the type in our
adverse selection problem. The types q are drawn from a set Q, which we define as the set of all
joint distributions that have the same marginal distributions for a 2 A and z 2 Z, which we denote
p(a) and q(z), respectively. Without loss of generality, we assume these marginal distributions
have full support over A and Z, respectively. Let q0(a,z) = p(a)q(z) denote an “uninformative
type” (the type with an index that is independent of the external state).

The borrower’s prior belief over these types is µ0. In effect, the borrower is uncertain about
the relationship between the index and the external state. A homeowner, for example, might not be
certain how the S&P Case-Shiller index for his metro area is related to the price of his particular
house. We assume that the borrower is aware of the marginal distributions, to abstract from the
problems generated by that type of asymmetric information and focus on the borrower’s doubt
about the relevance of the index (we revisit this in our extensions, section §7). We do not require
that the beliefs µ0 have full support on Q, but will impose assumptions on the support, which we
describe below. In particular, we do not require that the type space contains a perfectly informative
index, although our results apply if such a type exists.

Having defined the type space, we next describe the market for loans.
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4.4 The Market for Loans

Let L denote the set of lenders, with |L| � 3, each of whom can post a contract. After these
lenders post contracts, the borrower can pick whichever one she prefers, or choose to forgo the
investment opportunity. The outside options for the lenders are normalized to zero. Note that,
from the borrower’s perspective, lenders are perfect substitutes.

Let SL = (s1,s2, . . . ,s|L|) be the menu of contracts offered by the lenders at date zero. From
lender l’s perspective, the expected utility of offering a contract sl 2 S, when the other lenders offer
contracts S�l , the resulting menu is SL = (sl,S�l), and the common type is q , is

s(sl,SL) Â
a2A,z2Z

q(a,z)fL(sl
z,a), (7)

where s(sl,SL) is the probability that the buyer accepts the contract sl , given the menu of contracts
posted. This notation implicitly assumes that the buyer’s decision does not depend on the identity
of the lender, only on the contract that the lender offers. We will assume this in the equilibria we
study, and note that it is consistent with the assumption that the borrower’s utility does not depend
on the lender she chooses, only on the design of the contract.

Assuming the borrower chooses to borrow, his expected payoff for contract s is (abusing sum-
mation notation)

Â
q 02Q,a2A,z2Z

µ(q 0;SL)q 0(a,z)fB(sz,a), (8)

where µ(q 0;SL) denotes the borrower’s beliefs about the distribution of the lender’s common type
q 0 after observing the menu SL. The beliefs µ(q 0;SL) are central to our theory. The borrower does
not observe the lender’s common type q ; initially, she has prior µ0 over the set of types Q, but might
refine these beliefs based on the menu of securities offered. It is important to note that, because the
type q is common across lenders, an optimal mechanism could allow the borrower to solicit this
information and then negotiate a contract (Cremer and McLean [1988]). The market structure we
impose, which we believe is realistic in many contexts, prevents the buyer from conducting this
sort of auction.16

Having discussed the basic structure of the model, we next describe the equilibrium concept
and the refinements for off-equilibrium beliefs that we employ.

16The mechanism of Cremer and McLean [1988] also requires commitment, and hence is inconsistent with our
ex-post efficiency assumption.
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4.5 Equilibrium Definition

The basic equilibrium concept we use is perfect Bayesian. Given the strategies of the other lenders
(S�l⇤) and the borrower (s⇤), and the common type q , we require that lender l posts

sl 2 argmax
s2S

s⇤(s,(s,S�l⇤)) Â
a2A,z2Z

q(a,z)fL(sl
z,a), (9)

if that strategy yields weakly positive expected utility, and otherwise does not participate. That is,
each lender’s choice of contract maximizes her utility, given the strategies of the other lenders and
borrower.

If the borrower is offered any contracts, she must choose a strategy s(sl,SL) such that, given
posterior beliefs µ(·;SL), if s(sl,SL)> 0, then

sl 2 argmax
s2SL Â

q 02Q,a2A,z2Z
µ(q 0;SL)q 0(a,z)fB(sz,a), (10)

and

Â
q 02Q,a2A,z2Z

µ(q 0;SL)q 0(a,z)fB(sl
z,a)� f̄B, (11)

where f̄B denotes the borrower’s payoff if she does not accept any contract. In words, the borrower
must maximize his utility given the menu of contracts being offered.

The equilibrium strategies of the lenders create a function S⇤(q) that describes the menu of
securities that might be offered, given the common type. If the borrower observes a menu SL for
which there exists a type q 0 such that SL = S⇤(q 0), then she must update her beliefs according to
Bayes’ rule:

µ(q ;SL) =
µ0(q)1(SL = S⇤(q))

Âq 02Q µ0(q 0)1(SL = S⇤(q 0))
. (12)

This does not, of course, pin down what the borrower believes when he observes some menu
SL that could not have been generated from the equilibrium strategies S⇤(q), for any q 2 Q with
µ0(q) > 0. For the purpose of determining if a conjectured set of strategies is an equilibrium, we
only need to consider menus SL that differ from a menu S⇤(q 0) for a single lender.

The result we are building towards is that there are many equilibria. This would be expected
in the absence of refinements for off-equilibrium beliefs. Without refinements, the borrower can
in effect dictate the contract by forming pessimistic beliefs when offered any other contract, jus-
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tifying rejection. For this reason, we employ two refinements. The first refinement requires that
the borrower believe the minimal number of lenders have deviated from equilibrium play. For
concreteness, suppose the true common type is q , and that all but one of the lenders offer an equi-
librium contract for that type. The other lender deviates by offering another security that is not
offered by type q in equilibrium. Moreover, suppose the resulting menu could not have arisen
from the equilibrium strategies of any type. Absent this refinement, the borrower could believe
that multiple lenders have deviated. Imposing our refinement, and using the fact that there are at
least three lenders, the borrower must instead correctly identify the deviating lender.

The second refinement we employ is the D1 equilibrium refinement (Banks and Sobel [1987]).
This refinement captures the intuition that, if confronted with a “deviating” contract, the borrower
should believe the lender is of a type that would benefit from this deviation. Under our first refine-
ment, the borrower is able to identify the deviating lender (when there is only a single deviating
lender), and it is to the security offered by this lender that we apply the D1 refinement. We believe
our results are robust to using other refinements (aside from D1) that provide a similar intuition.

We use the standard definition of D1, and think of the borrower’s “strategy” as consisting of
an acceptance probability x . A lender of type q offering contract s0, instead of the equilibrium
contract s, would benefit, given that the buyer accepts the deviating contract with probability x , if

x Â
a2A,z2Z

q(a,z)fL(s
0
z,a)� s⇤(s,S⇤(q)) Â

a2A,z2Z
q(a,z)fL(sz,a). (13)

The types for whom the set of x 2 [0,1] satisfying this condition is maximal are the types with
positive support in the buyer’s beliefs following this deviation.

Looking ahead, we will show that in equilibrium, lender expected utility is equal to their outside
option of zero due to the effects of competition. As a result, the D1 refinement will simply state that
the buyer must place the support of her beliefs on types that would weakly profit from offering the
deviating contract, if that contract were accepted and such a type exists. The buyer cannot believe
the deviating lender is of a type such that the lender would lose money if the buyer accepted the
deviating contract, unless every lender type would lose money if the contract were accepted (and
in this case, the deviating contract would never be offered).

Our analysis will focus on a particular set of equilibria, symmetric pure-strategy equilibria.
These equilibria are pure strategy equilibria and symmetric in the sense, for all types q 2 Q, either
all of the lenders offer the same security with certainty, s(q), or none of the lenders offer a security.
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They are also symmetric in the sense that the borrower, faced with a menu of identical securities,
chooses each lender with probability |L|�1.

5 Preliminary Analysis

We begin our analysis by focusing on the effects of competition. Consider a symmetric pure-
strategy equilibrium, and imagine that the lenders’ profits from offering the contract s(q) are
strictly positive. Intuitively, this could not be an equilibrium. Suppose a lender offered a devi-
ating contract s0 2 S such that, for each index value z 2 Z, the associated promise d0

z was less than
the promise associated with the original contract, dz. The buyer would be better off regardless
of her beliefs, and therefore accept the contract with probability one. The lender, by sacrificing
some profit, would capture the entire market, and be better off. Because of the monotonicity prop-
erty of the buyer’s indirect utility function and the lower semi-continuity property of the lender’s
indirect utility function, standard Bertrand competition effects apply, and profits must be zero in
equilibrium.

Lemma 1. In any symmetric pure-strategy equilibrium, lender expected utility is zero.

Proof. See the appendix, section B.2.

We next introduce an assumption to ensure that there are contracts which can satisfy both the
lender and borrower’s participation constraints.

Assumption 1. There exists a contract s 2 SD that offers sufficient utility to the borrower, while
satisfying the lender’s participation constraint. That is, the problem

max
s2SD

Â
a2A,z2Z

q0(a,z)fB(s,a)

subject to the constraint Âa2A,z2Z q0(a,z)fL(s,a) = 0 is feasible and has a solution weakly greater
than the borrower’s outside option f̄B.

Because we have assumed that the marginal distributions are the same for all types q 2 Q, this
assumption is sufficient to ensure that for any type, there is a contract that both the borrower and
lender would be willing to accept under full information.
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Next, we discuss the existence of a “best” equilibrium. Consider a symmetric, pure-strategy
equilibrium, described by an offer of the contract s(q). Suppose that the mapping between types
q and securities s(q) is one-to-one. In this case, in equilibrium, the borrower knows the lenders’
common type. Define a full-information optimal contract as

s̄(q) 2 argmax
s2S Â

a2A,z2Z
q(a,z)fB(sz,a), (14)

subject to the constraint that Âa2A,z2Z q(a,z)fL(sz,a) = 0. By assumption 1, the solution to the
above maximization can offer the buyer a higher payoff than her outside option for all types q 2 Q.

A set of full-information optimal contracts is on the Pareto frontier for all q , and offers the
lender zero expected utility. As a result, for any deviating contract a lender might be willing to
offer, if the borrower correctly inferred the lenders’ true type, the borrower would weakly prefer
the full-information optimal contract being offered. The D1 refinement in our model allows the
borrower to make this inference, and the presence of a competing lender allows the borrower to
choose the equilibrium full-information optimal contract instead of the deviating contract. The
following proposition summarizes this logic:

Proposition 2. Under assumption 1, the pure-strategy symmetric equilibrium s(q) = s̄(q) exists.

Proof. See the appendix, section B.3.

The above proposition describes a “best” pure-strategy symmetric equilibrium, in which a full-
information optimal contract is offered.17 Our main results describe the conditions under which
another type of pure-strategy symmetric equilibrium exists. This alternative equilibrium is notable
because it uses a non-contingent contract, is a pooling equilibrium, and is Pareto-inferior to the
“best” equilibrium, from an ex-ante perspective.

We say a contract is “non-contingent” if sz = sz0 for all z,z0 2 Z; that is, the contract does
not make use of the index. We will consider the existence of a non-contingent contract pooling

17Note that there is a tension between the existence of the best equilibrium, which uses indexed (contingent on
z 2 Z) contracts, and the assumption that the lender’s indirect utility function depends only on the external state and
not directly on the index. For example, if the lender made a number of other indexed loans, the lender’s marginal
utility might be a function of both a 2 A and z 2 Z. Because the focus of our analysis is the existence of an equilibrium
without indexation, we do not discuss this issue in more detail.
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equilibrium, in which, for all q 2 Q with µ0(q)> 0,

sz(q) = s⇤ 2 argmax
s2SD

Â
a2A

p(a)fB(s,a), (15)

subject to Â
a2A

p(a)fL(s,a) = K.

By assumption 1, this contract can offer the buyer a higher payoff than her outside option for
all types q 2 Q. Note also that this equilibrium is at least weakly Pareto-inferior to the “best”
equilibrium, and strictly inferior if the non-contingent contract s⇤ is sub-optimal for any type q
under full information.

6 Risk-Sharing Failure in Equilibrium

In this section, we provide sufficient conditions for the existence of a “non-contingent” equilibrium.
This equilibrium will exist despite its ex-ante Pareto-inferiority to the “best” equilibrium discussed
above.

Our second assumption states that the value of a larger promise to the lender is higher in bad
external states than in good external states. In other words, the lender is risk-averse with respect to
promises.

Assumption 2. For all d0,d 2 D with d0 > d, fL(sd0 ,a)�fL(sd,a) is weakly decreasing on a 2 A.

From the lender’s perspective, it is preferable to receive larger promises in worse states. In
other words, fL(sd,a) is sub-modular in (d,a). This is what we mean by the idea that “lenders are
risk-averse with respect to promises.”

Our third assumption is defined using the variable l ⇤, which is the Pareto-weight associated
with the non-contingent contract s⇤:

s⇤ 2 argmax
s2SD

Â
a2A

p(a)U(s,a;l ⇤). (16)

The Pareto-weight l ⇤ > 0 is also the multiplier on the constraint in equation (15), and hence s⇤

causes the lender to receive zero expected utility.
Our assumption requires that the marginal social value of a promise to lender is lower in bad

external states than in good external states. In other words, it is efficient to the lender to insure the
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borrower.

Assumption 3. For all d,d0 2 D with d0 > d, U(sd0 ,a;l ⇤)�U(sd,a;l ⇤) is weakly increasing on
a 2 A.

The social welfare function is super-modular in (d,a), implying, among other things, that the
borrower’s indirect utility function, fB(sd,a), is super-modular in (d,a). That is, this assumption
implicitly embeds the assumption that the borrower is also “risk-averse with respect to promises.”

These two assumptions can be understood as consisting of several claims. The first claim is
that the “marginal benefit of debt” to the lender, fL(sd0 ,a)�fL(sd,a), is monotone in the aggregate
state, regardless of the levels of debt involved. The first part of this claim can be thought of as
defining the order on the aggregate states– up to this point, nothing has depended on that order.
The second part (“regardless of the level of debt”) is the key point. The second claim is that
the “marginal cost of debt” to the borrower, fB(sd,a)� fB(sd0 ,a), is monotone and increases in
the same direction as the marginal benefit of debt to the lender. In other words, states in which
the lender would really like larger promises are also states in which the borrower would really
prefer not to make larger promises. The third claim is that the borrower is “more risk averse” than
the lender in this sense. That is, in states in which the lender would really like a large promise,
and the borrower would really prefer a small promise, the latter effect dominates, and under the
Pareto weight l ⇤, it is more efficient to have smaller promises when both “marginal cost” and
“marginal benefit” are high. In other words, the optimal contract would involve the lender insuring
the borrower, and because preferences are aligned, this is costly for the lender.

As suggested by this description, our results do not really depend on the ordering over the
external states. That is, the proof of proposition 3 below would hold almost unchanged if we
imposed, instead these two assumptions, that fL(sd,a) was super-modular and that U(sd,a;l ⇤)

was sub-modular.
Our last assumption requires that the set of possible types (the support of the prior µ0) be

sufficiently rich, in the sense that there is always a “less interrelated” type. There are a variety of
ways of defining “less interrelated” in the context of joint probability distributions with identical
marginal distributions. For two variables (i.e. a 2 A and z 2 Z), many of these orders are equivalent
(Meyer and Strulovici [2012]). One intuitive way of measuring interrelatedness is the greater weak
association relation defined by Meyer and Strulovici [2012]. A definition, in our context, follows.

Definition 1. A type q 2 Q has greater weak association than a type q 2 Q, q ⌫GWA q 0, if, for all
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non-decreasing functions h : A ! R and g : Z ! R,

Covq (h(a),g(z))�Covq 0
(h(a),g(z)).

Put another way, the type q 0 has less correlation than the type q , regardless of how the external
states a and index values z are mapped to real numbers. One particular consequence of q ⌫GWA q 0

is that (again, from Meyer and Strulovici [2012]),

Â
a2A,z2Z

(q(a,z)�q 0(a,z)) f (a,z)� 0

for all super-modular functions f . We can also relate greater weak association to the more familiar
notion of first-order stochastic dominance. If q ⌫GWA q 0, then for all z0 2 Z, the conditional dis-
tribution q(a|z ⌫ z0) first-order stochastically dominates q 0(a|z ⌫ z0), and q 0(a|z � z0) first-order
stochastically dominates q(a|z � z0). That is, if q ⌫GWA q 0, higher values of the index are more
strongly associated with better external states under q than under q 0.

We assume that every type q in the support of µ0 has greater weak association than the unin-
formative type q0 (i.e. all q 2 Q are weakly associated). The key part of our assumption is that “it
can always be worse.” That is, for any type q that is possible (µ0(q) > 0), every type that is less
interrelated is also possible, including in particular the uninformative type.

Assumption 4. For all q 2 Q in the support of µ0, q ⌫GWA q0, and if µ(q) > 0, then µ(q 0) > 0
for all q 0 2 Q such that q ⌫GWA q 0 ⌫GWA q0.

This assumption ensures that for any type, there is a rich set of less informative types, which
limits the lender’s ability to simultaneously signal her type and capture risk-sharing benefits.

Before proving our main result, we note that we have made assumptions 2 and 3 weak so that
they are easy to satisfy. In this spirit, we have also imposed relatively little structure on the indirect
utility functions fL and fB. As a consequence, although it is guaranteed that the full-information
optimal contract is weakly better than the non-contingent contract, we have not assumed enough to
show that it is strictly better. We provide the following lemma to show that stronger versions of our
assumptions are sufficient, but not necessary, to ensure that the full-information optimal contract
is strictly better.

Recall that both the full-information optimal contract s̄(q) and the non-contingent optimal
contract s⇤ are designed to ensure the lender earns zero expected utility.
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Lemma 2. Let d(s⇤) denote the value of d 2D associated with the non-contingent optimal contract
s⇤, and suppose it is in the interior of D. If fB(sd,a) and fL(sd,a) are both differentiable with
respect to d at d(s⇤) and

∂
∂d

U(sd,a;l ⇤)|d=d⇤(s)

is strictly increasing on a 2 A , then for all types q 2 Q such that q ⌫GWA q0, except q0 itself, the
full-information optimal contract is strictly Pareto-superior to the non-contingent contract,

Â
a2A,z2Z

q(a,z)fB(s̄z(q),a)> Â
a2A,z2Z

q(a,z)fB(s⇤,a).

Proof. See the appendix, section B.4.

The stronger assumptions of this lemma rule out things like the possibility that the full-information
optimal contract is non-contingent due to some kind of boundary or discontinuity, or that there are
really no risk-sharing benefits. In the examples we have constructed, these issues do not arise
except in pathological cases, and the full-information optimal contract is indeed better than the
non-contingent contract for almost all q in the support of µ0. This sets up the “puzzle” in our
model: can the non-contingent equilibrium exist even though the best equilibrium is ex-ante strictly
Pareto-superior? Our main result answers this question in the affirmative:

Proposition 3. Under assumptions 1, 2, 3, and 4, there exists a symmetric pure-strategy equilib-
rium in which s(q) = s⇤.

Proof. See the appendix, section B.5. The proof relies on results from Meyer and Strulovici
[2015].

This proposition establishes that the assumptions given above are sufficient for the existence of
a non-contingent equilibrium. Intuitively, if it is not efficient for the borrower to insure the lender,
the deviations necessary to separate from the uninformative type are never welfare-improving. Our
conditions are designed to ensure that this is the case.

Having presented the main result, we briefly comment on the importance of each of our as-
sumptions. Assumption 1 ensures that both the full-information optimal contract and the non-
contingent optimal contract are feasible from a participation constraint perspective. However,
because the full-information optimal contract can strictly Pareto-dominate the non-contingent con-
tract for many types, under an alternative assumption it is possible to have the full-information
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optimal contract feasible for some types, while the non-contingent contract is infeasible. In this
case, there could not be a non-contingent equilibrium. However, the proof of proposition 3 could
be adapted to prove that a “no trade” equilibrium exists in this case, despite the possibility of gains
from trade for some types.

Assumption 2, lender risk-aversion with respect to promises, is essential to the result. If the
lender were risk-seeking with respect to promises while the borrower remained risk-averse with
respect to promises, lenders with a more accurate index could separate from the uninformative
type by paying higher prices to provide insurance. Assumption 3, which implies that it is efficient
for the lender to insure the borrower and not vice versa, is essential for similar reasons. If it
were instead optimal for the lender to purchase insurance from the borrower, a lender with a more
accurate index could separate from the uninformative type by paying a high price for insurance.18

Assumption 4 is essential to rule out non-monotone (in z) security designs. If the security were
required to be monotone in z (but allowed to be either increasing or decreasing), the possibility of
the uninformative type q0 would be sufficient to generate the non-contingent equilibrium. Using
non-monotone securities potentially allows a lender to purchase insurance over some subset of Z
at a high price, separating from the uninformative type, while providing insurance over another
subset of Z, perhaps generating enough gains from trade to make such a deviation worthwhile.
The richness of the type space allows the borrower to be suspicious of such an offer, thinking that
the index is likely to work well over the subset of Z for which the lender is buying insurance but
poorly over the subset for which the borrower is buying insurance.

Assumptions 1, 2, and 3 are properties of the indirect utility functions fB and fL, and the
required funds K. As a result, they can be checked in the context of a specific model, such as
the mortgage model presented previously. For another example, using a costly state verification
model, see appendix section §A.

Having presented our main result, we next turn to variations and extensions of the model.

7 Variations and Extensions

In this section, we discuss modifications and extensions to the model. We begin by discussing a
model with positive profits for lenders, that nevertheless retains the competition between lenders.

18We do not mean to imply that our assumptions are necessary; they are only sufficient, and we speculate that our
result could be proven under modified versions of these assumptions.
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In this case, our results go through essentially unchanged. We then discuss what would happen
with a single, monopoly lender. We will see that there is no “full-information optimal contracts”
equilibrium with a monopoly lender, but there is still a non-contingent equilibrium. Finally, we
will discuss how to extend our results to settings in which there is adverse selection about the
marginal distribution of the index (q), or only about the distribution of the external states and not
about the index quality.

7.1 Profitable Lending

In this extension, we describe a model in which lenders make positive profits, that is, recieve
expected utility greater than their outside option, in equilibrium, but nevertheless face competition.
We introduce profits into the economy by assuming that each lender faces a convex cost in the
number of loans she makes, and that there is a unit mass of borrowers.19 Let Ql be the number
of loans made by lender l. Suppose that a lender of type q who makes Q loans using contract s
receives utility

P(s,Q,q) = Q{ Â
a2A,z2Z

q(a,z)fL(sz,a)}�C(Q), (17)

where C(Q) is a convex, twice differentiable function with C0(|L|�1) = 0.
With this quasi-linear functional form and the normalization that C0(|L|�1) = 0, a lender that

considers a deviation in which the lender offers a single, marginal borrower a different contract
faces a problem that is identical to the one considered in our general model. In this case, the D1
refinement is the same as in our main analysis, because (in equilibrium) the marginal profit of each
lender is zero.

However, if the lender contemplates a deviation in which he offers a deviating contract to all
borrowers, then substantial profits could be at stake, because the average profits of lenders are
positive. In this case, the D1 refinement requires that the borrower place her beliefs on the lender
type that would break-even under the smallest amount of the demand for the deviating contract.
This is equivalent to saying that the borrower must believe the lender is of a type for whom the
difference between the marginal profit of the deviating contract and the marginal profit of the
equilibrium contract is maximal.

Surprisingly, perhaps, our non-contingent equilibrium exists under the same conditions in this
model. The intuition comes from the proof description in section §6. When a lender with a

19Introducing profits in this way is an old idea, described in the textbook of Tirole [1988].
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“good” index offers a contract that insures the borrower, the lender requires a higher expected value
of repayments to be indifferent between the deviating contract and the non-contingent contract.
However, a lender with an irrelevant index could offer the same deviating contract at a profit, and
therefore (in the case of profitable lending) the borrower must believe that the lender is of this type,
or of a type that is even worse from the perspective of the borrower.

7.2 Monopoly Lending

In this extension, we consider what type of equilibrium can exist when the lender has monopoly
power. Specifically, we assume that a single lender can make a take it or leave it offer to the
borrower and that if the borrower rejects this offer, she receives her outside option. Neither the full-
information optimal contract nor the non-contingent contract defined in section §5 are equilibria,
because both offer positive surplus to the borrower and zero surplus to the lender.

To study the monopoly case, we parameterize both the full-information optimal contract and
the non-contingent contract by the required investment. Suppose that there exists a K̄ > K such
that the full-information optimal contract, s̄(q , K̄), results a payoff for the borrower equal to her
outside option. Likewise, suppose that there exists a K⇤ > K such that the non-contingent contract,
s⇤(K⇤), also results in a payoff for the borrower equal to her outside option. In this sub-section, we
will ask whether there exist equilibria with the contracts s̄(q , K̄) and s⇤(K⇤). We will continue to
impose the D1 refinement on off-equilibrium contract offers.

The answer is no for the full-information contract, and yes for the non-contingent contract.
The existence of the non-contingent contracts equilibria follows from the proof of proposition 3–
nothing in that proof depended on a specific value for K. The only effect of competition was to
allow the borrower to choose a contract from another lender. Although the type q is common to all
lenders, because the non-contingent contract’s payoff for the borrower does not depend on q , the
borrower’s inference about q does not change the appeal of the non-contingent contract. It is as if
the borrower had a fixed outside option instead, which is what is assumed in the monopoly case.

However, for the full-information contract, competition is essential. For the uninformative type
(q0), the full-information contract is identical to a non-contingent contract. For many other types
(by lemma 2), the full-information contract is contingent and, due to lender risk-aversion over
promises (assumption 2), offers a higher payoff to the uninformative type than the non-contingent
contract. As a result, the uninformative type is tempted to deviate. When there are other lenders,
the borrower can use their offers to determine the common type, and avoid being “tricked” by this
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deviation. With a monopoly lender, this is not possible, and as a result there is no full-information
contract equilibrium. In summary, competition is necessary for the existence of the best equilib-
rium, but the non-contingent equilibrium always exists.

Note that this result offers a hysteresis-based explanation for why we might expect the non-
contingent equilibrium to occur despite the presence of competition. If, in the beginning of the
market, there was only one lender, the non-contingent contract would be used. This might anchor
borrower expectations, so that as other competing lenders entered, the non-contingent contract
would continue to be employed. Entry of lenders would still benefit the borrower, due to better
pricing (the difference between K⇤ and K described above), but would not achieve the full benefit
of allowing for contingent contracts.

7.3 Adverse Selection about Marginal Distributions

Throughout the paper, we have assumed that the set Q contained only joint distributions of the ex-
ternal state and index with marginal distributions p(a) and q(z). Suppose we relax this, and require
only that the marginal distribution over external states, p(a), be the same for all types. Under this
assumption, there is no adverse selection about the true external state, only about the index, as in
the main part of the paper. Intuitively, adding additional dimensions of adverse selection cannot
improve the situation, and should only reinforce the non-contingent contracts equilibrium.

Formally, let q(z;q) denote the marginal distribution of the index associated with type q , and
let Q(q) be the set of all joint distributions with marginals q(z) and p(a), satisfying the monotone
likelihood ratio property for the conditional distribution of a given z. Let Q be the set of all
marginal distributions for the index, and let Q be the union of all Q(q) for each q 2 Q. Modify our
condition 4 (rich type space) so that it applies to each Q(q) such that µ(q)> 0 for some q 2 Q(q).
In other words, there is a “rich” type space and an opportunity for risk-sharing for each possible
marginal distribution of the index. Under this condition, the proof of proposition 3 is essentially
unchanged, and the result holds.

7.4 Adverse Selection on External States

In this extension, we modify the model of the main text to consider the case in which the index is
known to be perfect, but there is adverse selection about the marginal distribution of the aggregate
state. This sort of adverse selection is closer to the problems studied in the literature (e.g. Spier
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[1992], Asriyan [2015]). We build on the notation used in the previous extension. We assume
that the set Z is identical to the set A, and that each Q(q) is a singleton, containing only the joint
distribution

q(a,z) = d (a,z)q(z), (18)

where d (a,z) is one if a = z and zero otherwise. Adverse selection occurs because, in this context,
there are types in Q with different values of q(z;q).

In this setting, the “rich type space” condition (condition 4) is irrelevant. We continue to impose
our feasibility assumption (assumption 1) for each Q(q). Our result in this section does not depend
on detailed assumptions about risk-sharing (like assumptions 2 and 3), and therefore we will not
discuss how to adapt them to this setting. We will assume instead the result of lemma 2: that the
full-information optimal contract is contingent for all q in the support of µ0 and generates strictly
higher payoffs than any non-contingent contract. We discuss how to weaken these assumptions
below. We will also assume that both fL and fB are continuous in d.

For technical reasons, we assume that the support of the prior beliefs µ0(·) is a closed set,
which was not required in the main text. We also assume that all types q 2 Q for which µ0(q)> 0
are associated with marginal distributions that have full support. In other words, q(z;q) > 0 for
all z 2 Z and q 2 Q such that µ0(q)> 0. This generalizes the full support assumption of the main
text.

Define the mapping Q⇤(q) as a set-valued function

Q⇤(q) = {q 0 2 arg max
q 002Q:µ0(q 00)>0

Â
a2A,z2Z

q 00(a,z)fL(s̄z(q),a)}, (19)

where s̄z(q) is the full-information optimal contract associated with the type q . The set Q⇤(q) is
the set of types in the support of µ0(·) that would earn the highest payoff from offering the security
s̄z(q).

The following lemma (which is based on standard fixed-point arguments) states that there is a
fixed point to this mapping.

Lemma 3. There exists a q ⇤ such that q ⇤ 2 Q⇤(q ⇤). For any such q ⇤, for all q 0 2 Q⇤(q ⇤), s̄(q 0) =

s̄(q ⇤).

Proof. See the appendix, section B.6.

This type, q ⇤, can essentially “prove itself” by offering its full-information optimal contract.
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When a lender of type q ⇤ offers the contract s̄(q ⇤), it breaks even. All other types either recover
less than the initial investment K, or also break even and have an identical full-information optimal
contract. Hence, under the D1 refinement, the borrower must believe that she is being offered a
full-information optimal contract.

By assumption, every full-information optimal contract is not equal to a non-contingent con-
tract. By the Pareto-optimality of the full-information optimal contract, the borrower must be will-
ing to accept this contract. Therefore, there cannot be an equilibrium in which a non-contingent
contract is employed.20

What makes this setting different than the one studied in the main text? The key is that there
is no type for which the full-information optimal contract is equal to the non-contingent contract.
When there is adverse selection about the distribution of external states, this makes sense; the
only way a non-contingent contract could be optimal is if some type of lender knew with certainty
what the ex-post “fair” level of debt was. In contrast, in the case emphasized in the main text, a
non-contingent contract can be optimal so long as it is possible that the index is irrelevant; perfect
foresight about the external state is not required for a non-contingent contracts equilibrium.

In some sense, this result can be viewed as pointing to the necessity of an assumption like
condition 4 in the main text. If borrower knew the index was at least somewhat relevant, the type
with the least relevant index could “prove herself” and eliminate the non-contingent equilibrium.
In this case, an equilibrium with a minimal (and ex-ante sub-optimal) level of indexing would
exist. Non-contingency could be restored in this case by, following Spier [1992], by introducing a
fixed cost of using the index in addition to asymmetric information. In this case, a non-contingent
equilibrium would exist so long as the “worst” type was sufficiently bad, relative to the fixed cost.

Note also that, consistent with the Hirshleifer effect (Hirshleifer [1971]), with adverse selection
on external states, risk-sharing will generally be reduced relative to the case in which the lenders
shared the borrower’s prior. That is, although one type can “prove itself,” most types will not be
able to, and the equilibrium will likely involve less risk-sharing than if the lenders were uninformed
and shared the borrower’s prior. Our point is that this reduction in risk-sharing is, under our
assumptions, never enough to generate a non-contingent contracts equilibrium. In contrast, adverse
selection about the relationship of the index and the external state, as studied in the main part of

20This argument does not really depend on every full-information optimal contract being contingent, only that the
type which can prove itself has a contingent full-information optimal contract. To formalize the argument, we would
need to use continuity to show that a lender can deviate to a contract close to the full information contract, but with a
tiny profit, and that the borrower cannot reject such a contract.
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the paper, can generate a non-contingent contracts equilibrium.

8 Conclusion

We have introduced a theory to explain the widespread lack of indexation observed in contracts.
Intuitively, when a borrower is offered a contract that includes insurance, she is concerned that the
insurance is not actually relevant for the risks she faces. Under the conditions described in our
model, this effect is strong enough to cause the borrower to reject that offer, and choose instead
a contract without insurance from a different lender. As a result, equilibria that feature little or
no risk-sharing can arise, even though they are ex-ante Pareto-dominated by equilibria that feature
full risk-sharing.
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A Costly State Verification Example

In this appendix section, we provide a numerical example under which a version of the costly state
verification model (Townsend [1979], Gale and Hellwig [1985], and others) satisfies the conditions
of our main theorem, in particular assumptions 2 and 3. We introduce some functional forms in
order to apply the results of our general model as simply as possible. The key modifications to
the standard CSV model are the introduction of an external state, risk-aversion for the borrower,
and the existence of non-verifiable income for borrower. Better external states induce a better
(in a monotone-likelihood-ratio property sense) distribution of both verifiable and non-verifiable
income. The presence of the non-verifiable income, when combined with risk-aversion, implies
that the borrower has low expected marginal utility in good external states, as in our mortgage
example (section §3).
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We now describe the specific modifications we make to the standard CSV model. The id-
iosyncratic state (as opposed to external state) for the borrower is a triple (x,y,y0), where x is the
borrower’s non-verifiable income, y is the borrower’s verifiable income, and y0 represents the bor-
rower’s report of her verifiable income, all of which are weakly positive reals. The conditional
contract s(y,y0) can depend on both the true verifiable income and the report.21 The borrower’s
utility is

u(x+ y� s(y,y0)),

where u(·) is the borrower’s strictly increasing, twice-differentiable, concave utility function. Our
numerical example will use CARA utility for the borrower. We will not analyze the borrower’s
participation constraint– making an assumption that the project is sufficient valuable from the
borrower’s perspective is always sufficient to ensure that the participation constraint is satisfied.

We assume there are two external states, A= { 9
10 ,

11
10}, which are equally likely, and two equally

likely index values, Z = {zl,zh}, as in our two examples in the main text. We assume that the quality
of the index (r , see section §3) is at most 1

8 .22

Let f (y|a) denote the distribution of y given a, and suppose it has the following functional
form:

f (y|a) = q(y)exp(a ln(y)�y(a)),

where q(y) = f (y|0) is a measure on the positive reals. In other words, the distributions f (·|a) are
an exponential family whose sufficient statistic is the expected log verifiable income. The function
y(a) ensures that each f (y|a) integrates to one. In our numerical calculations, we assume that q(y)
is Gamma-distributed with shape parameter 4 and scale parameter 1

2 . As a result, the distributions
f (y|a = 9

10) and f (y|a = 11
10) are also Gamma-distributed, with the same scale parameter and shape

parameters slightly below and above 5, respectively. We choose the Gamma distribution because
it generates tractable expressions for the integrals that define marginal utility, and has a “hump”
shape.

We suppose (for tractability) that the non-verifiable income x is equal to

x = cay,
21It is without loss of generality to assume that it does not depend on a report of the borrower’s non-verifiable

income, since the borrower would also report the non-verifiable income level that minimized her repayment.
22The maximum value of r matters only when determining the largest debt level that must be considered.
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where c is a positive constant. In our numerical exercise, we set c = 1, meaning roughly half
of the borrower’s income is non-verifiable. We have in mind, for example, future labor income.
Under our assumptions, the expected total pledgeable and non-pledgeable income is five, and the
standard deviation of the total income is roughly half this value. The expected total income is
about 15% higher the good external state than the bad external state. We set the cost of project, K,
to one.

One consequence of our assumptions is that the borrower, observing x and y, can infer the true
external state a. This implication is by no means necessary– we could add noise to the value of x
and prevent the borrower from inferring a, at the cost of having a more complicated example.

We now turn to the lender. The lender is risk-neutral within each external state (i.e. with respect
to the borrower’s idiosyncratic state), but risk-averse with respect to the external state. Let M(a)
denote the lender’s marginal utility given the external state. We use the notation M(a) to emphasize
that this can be interpreted as the lender’s stochastic discount factor. We use the functional form
M(a) = M̄a�

1
2 , setting M̄ so that the expected value of M(a) is equal to one. Interpreting M(a) as

an SDF, this is setting the risk-free rate to zero.
If the conditional (on z 2 Z) contract differs depending on the true value, for a given value

of the report, there is a verification cost paid by the lender. Let c(y0;s) = c̄ > 0 if there exists a
y1,y2 such that the conditional contract s offers different payments for (y1,y0) and (y2,y0), and zero
otherwise. In our numerical calculation, we use c̄ = 10%, recalling that we have normalized the
project size to one.

We next describe the general forms of the indirect utility functions. Let w(y0|y,x) denote a
(possibly mixed) reporting strategy by the borrower, and let w⇤(y0|y,x) be the optimal reporting
strategy. The indirect utility functions are

fB(s,a) = max
w(y0|y,x)2W(s)

ˆ •

0

ˆ •

0
u(cay+ y� s(y,y0))w(y0|y,cay) f (y|a)dy0dy,

fL(s,a) = M(a)
ˆ •

0

ˆ •

0
(s(y,y0)� c(y0;s)�K)w⇤(y0|y,cay) f (y|a)dy0dy,

where W(s) denotes the constraints in the reporting strategy, which we describe next. We impose
limited liability, meaning that, for all reports y0, either s(y1,y0) = s(y2,y0) for all y1,y2 and 0 
s(y0,y0)  y0 (the non-verification case), or 0  s(y,y0)  y for all y (the verification case). We
restrict the reporting strategies w(y0|y,x) to place support only on y0 for which the reports are
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feasible, meaning that if s(y1,y0) = s(y2,y0) for all y1,y2, then w(y0|y,x) = 0 if y < s(y0,y0). In
words, for reports that do not trigger verification, the borrower must have the funds to repay the
loan.

Although this model is slightly different from Townsend [1979] and Gale and Hellwig [1985],
the arguments for the optimality of a debt contract are essentially unchanged. Fixing some dis-
tribution over external states p(a), and taking the expected value of the indirect utility functions,
it is immediately apparent that the model is exactly that of Townsend [1979], except with non-
verifiable income. However, the argument for the optimality of debt depends only on non-satiation
and that utility at zero verifiable income net debt repayments is not infinite. Therefore, with either
u0(0) > �• or x > 0 with probability one, debt will be optimal for all p(a). It follows that debt
is “ex-post optimal” in the sense assumed in the main text, and therefore we restrict attention to
contracts that are (possibly indexed on z 2 Z) debt contracts.

The set of feasible debt levels is D= [0, d̄]. The level of d̄ is determined by the smallest promise
such that, if the promise for the other value of z 2 Z is zero, all lender types at least break even.
Any promise larger than this will necessarily generate profits for all lender types, and can therefore
be rejected by the borrower. The value of d̄ is determined by the fL function and our assumption
on the set of possible index qualities; we omit the details for brevity.

Specializing the indirect utility functions to a debt contract, which induces truthful reporting,

fB(sd,a) =
ˆ •

d
u((1+ca)y�d) f (y|a)dy

+

ˆ d

0
u(cay) f (y|a)dy,

and

fL(sd,a) = M(a)
ˆ •

d
(d �K) f (y|a)dy

+M(a)
ˆ d

0
(y�K � c̄) f (y|a)dy.

We note that these indirect utility functions satisfy the assumption we have imposed. In particular,
they are both differentiable (and hence continuous) in d and the lender’s indirect utility function is
zero when the level of debt is zero. The derivative of the borrower’s indirect utility function with
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respect to the level of debt is

fB,d(sd,a) =�
ˆ •

d
u0((1+ca)y�d) f (y|a)dy,

and hence is strictly negative, satisfying our monotonicity requirement. The derivative of the
lender’s indirect utility function is

fL,d(sd,a) =�M(a) f (d|a)c̄+M(a)
ˆ •

d
f (y|a)dy.

As in the mortgage example of section §3, there are several key forces that will determine
whether assumptions 2 and 3 are satisfied. Loosely speaking, lender risk-aversion (decreasing
M(a)) must outweigh the increasing likelihood of not being repaid in bad states, and borrower
risk-aversion with respect to promises must sufficiently dominate lender risk-aversion with respect
to promises.

We now turn to our numerical analysis. The table below summarizes our functional form and
parameter assumptions. Under these functional forms and assumptions, we have verified using
Mathematica that assumptions 3 and 4 are satisfied for all a 2 { 9

10 ,
11
10} and d 2 [0, d̄].

Table 1: Parameters of CSV Example
Function/Parameter Functional Form Value

Utility u(·) CARA 1
Marginal Utility bL(a) M(a) = M̄a�

1
2 M̄ = [1

2(
9
10)

� 1
2 + 1

2(
11
10)

� 1
2 ]�1

PDF q(y) Gamma(k,q) k = 4,q = 1
2

Verification cost c̄ 1
10

N.V. Income Function µ(y,a) µ(y,a) = cya c = 1
Required Funds K 1
External States A { 9

10 ,
11
10}

Probabilities p(a) (1
2 ,

1
2)
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B Proofs

B.1 Proof of proposition 1

We first show that assumption 2, lender sub-modularity is satisfied. Sub-modularity, in a differen-
tiable context, is

fL,d(sd,a) = p(a)u0L(yL(a))

decreasing on a 2 A. With two states, and CRRA, this is

yL(agood)
�gLp(agood) yL(abad)

�gLp(abad)

and therefore by equation (1) lender sub-modularity holds.
Social welfare super-modularity (assumption 3) requires that

Ud(sd,a;l ⇤)

be increasing in a. We can write

Ud(sd,a;l ⇤) = fB,d(sd,a)+l ⇤fL,d(sd,a).

The definition of l ⇤ is (by Equation (16), noting that an interior solution is guaranteed for K (and
hence d⇤) sufficiently small)

Â
a2A

p(a)Ud(s⇤,a;l ⇤) = 0,

which is
l ⇤ =�

fB,d(s⇤,ag)+fB,d(s⇤,ab)

fL,d(s⇤,ag)+fL,d(s⇤,ab)
.

The denominator is positive by l ⇤ > 0. To have super-modularity, we must have

Ud(sd,a;l ⇤)(fL,d(s⇤,ag)+fL,d(s⇤,ab))
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increasing in a, which is

fB,d(sd,ag)[fL,d(s⇤,ag)+fL,d(s⇤,ab)]�fL,d(sd,ag)[fB,d(s⇤,ag)+fB,d(s⇤,ab)]�

fB,d(sd,ab)[fL,d(s⇤,ag)+fL,d(s⇤,ab)]�fL,d(sd,ab)[fB,d(s⇤,ag)+fB,d(s⇤,ab)].

We can rewrite this as

[fB,d(sd,ag)�fB,d(sd,ab)][fL,d(s⇤,ag)+fL,d(s⇤,ab)]�

[fL,d(sd,ag)�fL,d(sd,ab)][fB,d(s⇤,ag)+fB,d(s⇤,ab)],

Observe that, for all d,d0 2 D,
fL,d(sd,a) = fL,d(sd0 ,a).

We have
fB,d(sd,a) =�p(a)u0B(yB(a)+ xh �d)

and therefore
ln(

�fB,d(sd,ag)

�fB,d(sd,ab)
) = ln(

p(ag)

p(ab)
)� gB ln(

yB(ag)+ xh �d
yB(ab)+ xh �d

).

It follows that the bound is tightest at d = 0,

[fB,d(s0,ag)�fB,d(s0,ab)][fL,d(s0,ag)+fL,d(s0,ab)]�

[fL,d(s0,ag)�fL,d(s0,ab)][fB,d(s⇤,ag)+fB,d(s⇤,ab)],

Observe now that �fB,d(sd,a) is increasing in d and that, by sub-modularity, fL,d(s0,ag) fL,d(s0,ab).
Consequently, the easiest version of the bound to satisfy is if s⇤ = s0, the security associated with
d = 0.

The debt level associated with s⇤, d⇤, is determined by the lender’s break-even condition,

0 = Â
a2A

p(a){p(a)u0L(yL(a))(d⇤ �K)� (1�p(a))u0L(yL(a))K},

which is
d⇤ = K Âa2A p(a)p(a)u0L(yL(a))

Âa2A p(a){p(a)u0L(yL(a))+(1�p(a))u0L(yL(a))}
.
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Consequently, holding all other parameters fixed,

lim
K!0

d⇤(K) = 0.

It follows by the continuity of fB,d(sd,a) in d that if

[fB,d(s0,ag)�fB,d(s0,ab)][fL,d(s0,ag)+fL,d(s0,ab)]>

[fL,d(s0,ag)�fL,d(s0,ab)][fB,d(s0,ag)+fB,d(s0,ab)],

there exists a K̄ such that for all K < K̄, the required inequality holds. This condition can be
simplified to

fB,d(s0,ag)fL,d(s0,ab)�fB,d(s0,ab)fL,d(s0,ag)>

�fB,d(s0,ag)fL,d(s0,ab)+fB,d(s0,ab)fL,d(s0,ag),

which further simplifies to
�fB,d(s0,ag)

�fB,d(s0,ab)
<

fL,d(s0,ag)

fL,d(s0,ab)
.

Plugging in functional forms, this is

(yB(ag)+ xh)
�gB

(yB(ab)+ xh)�gB
<

(yL(ag))�gL

(yL(ab))�gL
,

or
gB ln(

yB(ag)+ xh

yB(ab)+ xh
)> gL ln(

yL(ag)

yL(ab)
),

as assumed by equation (3)
To verify assumption 1, we require

Â
a2A

p(a){p(a)uB(yB(a)+ xh �d)+(1�p(a))uB(yB(a))}� Â
a2A

p(a)uB(yB(a)),

which is always be satisfied.
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B.2 Proof of lemma 1

First, note that, for any values of q for the which the lenders do not offer a security, expected utility
is zero.

Proof by contradiction: suppose that there exists a symmetric pure-strategy equilibrium such
that, for some values of q 2 Q, the security s(q) is offered and equilibrium lender expected utility
is strictly positive.

Let q 0 and s0 = s(q 0) denote the equilibrium type and security for which lender expected utility
is strictly positive. In this equilibrium, each lender earns

|L|�1 Â
a2A,z2Z

q 0(a,z)fL(s0z,a)> 0.

Let d0(z) be the function satisfying s0z = sd0(z) for all z 2 Z. Consider a deviation by some lender
to the security s00z = sd00(z), where d00(z) = ad(z) from some a 2 (0,1). By assumption, s00 2 S. By
the monotonicity property of the borrower’s indirect utility function, fB(sd,a), in d, we have

Â
a2A,z2Z

q(a,z)fB(s00z ,a)> Â
a2A,z2Z

q(a,z)fB(s0z,a)

for all q 2 Q. It follows that, regardless of the beliefs the borrower forms off-equilibrium, she will
accept security s00 if offered, for any value of a 2 [0,1).

The change in expected utility for the deviating lender is

Â
a2A,z2Z

q 0(a,z)(fL(s00z ,a)� |L|�1fL(s0z,a)).

By the lower semi-continuity of fL in d and the fact that |L|> 1, there exists an a 2 (0,1) such that
this quantity is positive. It follows that an equilibrium where lenders earn strictly positive expect
utility cannot exist.

B.3 Proof of proposition 2

By assumption 1, this equilibrium delivers sufficient utility for the borrower. Therefore, the bor-
rower is willing to participate, and lenders earn zero profits (by the construction of s̄(q)) and
therefore are also willing to participate.
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Now consider a deviation by a single lender: suppose some lender of type q offers security s0

instead of s̄(q), and would weakly profit from doing so if the security was accepted. Because the
lender can weakly profit from offering this deviation, the borrower is free to place the full support
of her beliefs on the lender’s true type, if the security s0 is not an offer of any type in equilibrium.
If the security s0 is offered in equilibrium by some type other than q , by the existence at least three
lenders, the borrower can infer the true common type. Because the security s̄(q) is on the Pareto-
frontier, and offers zero profit to lenders, it follows that the borrower must be weakly worse off
using security s0, and therefore would prefer the security s̄(q). Because there are multiple lenders,
the borrower can choose a non-deviating lender and reject the deviating security. Given that the
security will be rejected, the lender does not profit from offering it, and therefore s(q) = s̄(q) is an
equilibrium.

B.4 Proof of lemma 2

First, observe by the definition of the full-information optimal security that, for all q 2 Q,

Â
a2A,z2Z

q(a,z)fB(s̄z(q),a)� Â
a2A,z2Z

q(a,z)fB(s⇤,a).

Proof by contradiction: suppose the full-information optimal security is non-contingent. The
full-information optimal security solves, for some value of l > 0,

max
{d(z)2D}z2Z

Â
a2A,z2Z

q(a,z)U(d(z),a;l ).

Suppose that the optimal d0(z) = d(s⇤) for all z 2 Z, with d⇤(s) in the interior of D. In this case,
l = l ⇤ and by the differentiability of fB and fL at that point, we must have, all z 2 Z,

Â
a2A

q(a,z)Ud(d(s⇤),a;l ⇤) = 0.

Because q ⌫GWA q0, it also dominates it in the super-modular stochastic order (Meyer and
Strulovici [2012]). It follows by Meyer and Strulovici [2015] that q can be expressed using those
authors’ “elementary transformations” t 2 T . That is,

q = q0 + Â
t2T

att,
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for some constants at � 0. For all q 6= q0, there must exist at least one at > 0.
Consequently, there exists some z0 2 Z such that

Â
a2A,z2Z

(q(a,z)�q0(a,z))h(a)1(z ⌫ z0)> 0

for any strictly increasing function h(a), and in particular Ud(d(s⇤),a;l ⇤), contradicting the re-
quirement that

Â
a2A

q(a,z)Ud(d(s⇤),a;l ⇤) = 0

for all z 2 Z.

B.5 Proof of proposition 3

The non-contingent security s⇤ = sd⇤ has payoffs that do not depend on the index. As a result, it
offers zero expected utility for the lender, regardless of the lender’s type, by the assumption that all
q 2 Q have the same marginal distribution with respect to the external state. By assumption 1, sd⇤

can deliver sufficient utility to the borrower, and therefore the participation constraints are satisfied
in this equilibrium. It is sufficient to rule out deviations in which a single lender offers security s0

instead of sd⇤ , when the common type is q 0, to demonstrate that this is an equilibrium.
The security s0 2 S, s0z = sd0(z) with must offer strictly positive utility for the lender of type q 0

(if accepted) to break the equilibrium:

Â
a2A,z2Z

q 0(a,z)fL(sd0(z),a)> 0.

Define q̄ as a type that would profit the most from offering the security s0:

q̄ 2 arg max
q2Q:µ0(q)>0

Â
a2A,z2Z

q(a,z)fL(sd0(z),a)

Consider the set of “elementary transformations” t 2 T defined by Meyer and Strulovici
[2015], and suppose that for some z0,z00 2 Z that are adjacent in the order on Z (with z00 � z0),
d(z00)> d(z0). By Meyer and Strulovici [2015], we can write

q̄ = q0 + Â
t2T

att,
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for some constants at � 0. If there exists a t 2 T with support on z0 and z00 such that at > 0, then
by the richness of the type space (assumption 4), there exists a type q̂ = q̄ �b t, for some b > 0,
such that q̃ is in the support of µ0. By the sub-modularity of fL (assumption 2),

Â
a2A,z2Z

q̂(a,z)fL(sd0(z),a)� Â
a2A,z2Z

q̄(a,z)fL(sd0(z),a).

Therefore, it is without loss of generality to assume that the security d0(z) is weakly decreasing
between adjacent pairs z0,z00 such that at > 0 for some elementary transformation with support on
those pairs.

By this result and the super-modularity of the social welfare function with Pareto-weight l ⇤

(assumption 3), we must have

Â
a2A,z2Z

q̄(a,z)U(sd0(z),a;l ⇤) Â
a2A,z2Z

q0(a,z)U(sd0(z),a;l ⇤).

By the Pareto-optimality of the non-contingent security s⇤ under q0,

Â
a2A,z2Z

q0(a,z)U(sd0(z),a;l ⇤) Â
a2A,z2Z

q0(a,z)U(s⇤,a;l ⇤).

Therefore,

Â
a2A,z2Z

q̄(a,z)fB(sd0(z),a)+l ⇤ Â
a2A,z2Z

q̄(a,z)fL(sd0(z),a)

Â
a2A,z2Z

q0(a,z)fB(s⇤,a)+l ⇤ Â
a2A,z2Z

q0(a,z)fL(s⇤,a).

It follows by

Â
a2A,z2Z

q̄(a,z)fL(sd0(z),a)> 0 = Â
a2A,z2Z

q0(a,z)fL(s⇤,a)

that

Â
a2A,z2Z

q̄(a,z)fB(sd0(z),a)< Â
a2A,z2Z

q0(a,z)fB(s⇤,a),

and by the non-contingency of s⇤,

Â
a2A,z2Z

q̄(a,z)fB(sd0(z),a)< Â
a2A,z2Z

q̄(a,z)fB(s⇤,a).
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By the D1 refinement, the borrower can place the support of her beliefs entirely on the type q̄ .
Consequently, if there exists a q 0 for which the deviation is profitable, the borrower can believe she
is worse off and reject the deviation.

B.6 Proof of lemma 3

By definition, the set Q is bounded, by assumption it is closed, and therefore it is compact. It
follows that Q⇤(q) is non-empty. By the linearity of

Â
a2A,z2Z

q 00(a,z)fL(s̄z(q),a)

in q 00, Q⇤(q) is convex.
By the assumption of ex-post efficiency, s̄z(q) = sd(z,q) for some d(z,q) 2 D. By definition,

d(z,q) = arg max
{d(z)2D}z2Z

Â
a2A,z2Z

q(a,z)fB(sd(z),a)

subject to

Â
a2A,z2Z

q(a,z)fL(sd(z),a)� 0.

By assumption, fL(sd,a) and fB(sd,a) are continuous in d, and hence it follows that d(z,q) is
continuous in q and that

Â
a2A,z2Z

q 00(a,z)fL(s̄z(q),a)

is jointly continuous in (q ,q 00). Therefore by Berge’s theorem (the theorem of the maximum),
Q⇤(q) is upper semi-continuous.

It follows that Kakutani’s fixed point theorem holds, and therefore that there exists a q ⇤ such
that

q ⇤ 2 Q⇤(q ⇤),

as claimed.
Now suppose there is another q 0 2 Q⇤(q ⇤). We must have

Â
a2A,z2Z

q 0(a,z)fL(sd(z,q),a) = 0.
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Because the index and the external state are perfectly correlated, we can rewrite this as

Â
a2A,z2Z

q(z;q 0)d (a,z)fL(sd(z,q),a) = 0,

where q(z;q 0) is the marginal distribution associated with q 0.
By the definition of s̄(q), for all z 2 Z (by the full support assumption, q(z;q ⇤)> 0),

fB(sd(z;q⇤),a)+lfB(sd(z;q⇤),a)� fB(sd0 ,a)+lfB(sd0 ,a)

for all d0 2D and some multiplier l > 0. It follows that the optimality would also hold if d(z;q 0) =

d(z;q ⇤), and feasibility is satisfied, and therefore

s̄(q 0) = s̄(q ⇤),

as required.
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