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Abstract. For at least three decades, the New-Keynesian representative agent model has
been the preferred vehicle for analyzing the interaction of fiscal and monetary policy with the
behavior of private agents in markets. We argue that the Overlapping Generations (OLG)
model is an attractive alternative and that a number of features of real world economies arise
naturally in a long-lived version of this model when it is calibrated to the U.S. income profile.
These features include 1) the transmission of monetary shocks to real quantities, 2) excess
volatility of real asset prices and 3) the existence of decade long periods with negative real
interest rates. We provide an example of a sixty-two generation OLG model where all of these
features arise in a dynamically efficient competitive equilibrium with complete markets in which
money has positive value. Our results hold even in the case in which both monetary and fiscal
policies are active in the sense of Leeper (1991).

1. Introduction

This paper is about the use of the overlapping generations model as a vehicle to understand

how fiscal and monetary policy interact with the choices of private agents to determine prices

and interest rates. We ask if well established results that hold in the workhorse representative

agent model (Leeper and Leith, 2016) can be transferred to an Overlapping Generations (OLG)

model that is calibrated with an income profile that matches real world data. Our main result

is that they do not.

Although we study a pure exchange economy, similar results to those we develop below

hold in economies with physical capital but inelastic labor supply. And the work of Reichlin

(1986) suggests that our results can be extended to models with variable labor supply and
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flexible prices. When a model with flexible prices displays multiple indeterminate equilibria, it

is a small step to appeal to negligible menu costs to select the equilibrium in which nominal

shocks have real effects in the short run. In this sense, we see our work as a complement to,

rather than a substitute for, the menu-cost approach to nominal-real interactions.

An extensive macroeconomics literature classifies monetary and fiscal policy regimes into

those that are active and those that are passive. The active-passive distinction was coined by

Leeper (1991) who suggested the following classification. If the central bank raises the interest

rate more than one-for-one in response to inflation, monetary policy is active. If the central

bank raises the interest rate less than one-for-one in response to inflation, monetary policy is

passive. If the fiscal authority borrows to finance an arbitrary path of expenditure and taxes,

fiscal policy is active. And if the fiscal authority adjusts its expenditures and the tax rate to

ensure fiscal solvency for all possible paths of the real interest rate, fiscal policy is passive.

The active-passive distinction leads to a simple policy prescription. Central banks and

national treasuries should coordinate on a policy mix in which one policy is active and the

other is passive. In simple representative agent models, policy mixes in this class lead to models

in which the price level and the real interest rate are each fully determined by fundamentals.

In overlapping generations model that is not the case and instead non-fundamental – in the

terminology of Cass and Shell (1983) – sunspot shocks – may influence the allocation of resources

between agents of different generations.

We are not the first to recognize that the overlapping generations model has very different

characteristics from that of the representative agent model. Beginning with Samuelson (1958),

the OLG model has been extensively used to analyze macroeconomic issues. The two-generation

OLG model was the vehicle adopted by Lucas Jr. (1972) to introduce rational expectations into

macroeconomics and multi-generation calibrated versions of the model have been studied by

Auerbach and Kotlikoff (1987) to study fiscal policy, Ŕıos-Rull (1996) to study business cycles

and Eggertsson et al. (2019) as a vehicle for understanding low-interest rate environments. All

of the OLG policy-oriented literature of which we are aware has focused on models with at most

two steady-state equilibria.

Monetary OLG models always contain at least two steady state equilibria. In one of these

equilibria, money has value, and in the other, it does not. Our contribution in this paper is to to

provide a robust example of an overlapping generations model in which the age-income profile is

calibrated to U.S. data and where there there exists an indeterminate steady-state equilibrium

where money has value. This equilibrium is dynamically efficient and yet the real interest rate
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and the initial price level are both indeterminate. Our result holds even when either fiscal or

monetary policy is active and the other policy is passive. When both policies are active, the

price level and the real interest rate are still indeterminate, but they can no longer be chosen

independently of each other.

Our example relies on a hump-shaped endowment profile with peak income occurring in

middle age. The existence of a hump-shaped profile gives rise to a tension between the wealth

effect and the substitution effect. At high rates of the real interest rate, there is a motive to

transfer income from middle-age to old-age. At low levels of the real interest rate this motive acts

in the opposite direction. We show that for values of the intertemporal elasticity of substitution

(IES) less than or equal to 1/2, the tension between the wealth effect and the substitution effect

leads to the emergence of multiple steady-state equilibria where money has no value and a single

monetary equilibrium in which neither the price level nor the real interest rate are pinned down

by fundamentals.

To explore the empirical relevance of our example, we construct a 62−generation overlap-

ping generations model in which we calibrate the endowment profile to U.S. micro data. We

show that, in this calibrated example, the same phenomenon emerges. When monetary pol-

icy is passive and fiscal policy is active, there exists a steady-state equilibrium that displays

two degrees of indeterminacy. It is not just the initial price level that remains unexplained by

economic fundamentals; our calibrated model also fails to uniquely determine the real interest

rate. If we assume that monetary and fiscal policy are both active, the degree of indeterminacy

is reduced from two to one. In this case a linear combination of the real interest rate and the

price level is determinate, but the model is still unable to uniquely determine the time path of

either of these variables as a function of economic fundamentals.

Our work has implications for the question of which fiscal and monetary policies are welfare

improving and which are not. Although our model is non-stochastic, it is well known that the

existence of indeterminate steady-state equilibria is associated with the emergence of stationary

stochastic equilibria driven by non-fundamental shocks.1 And although our paper is about the

existence of multiple equilibria in the overlapping generations model, similar results hold in

models with credit constraints or borrowing limits.2

1Azariadis (1981); Cass and Shell (1983); Farmer and Woodford (1997); Farmer (1999); Farmer and Guo
(1994).

2Woodford (1988); Schmitt-Grohé and Uribe (2020).
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Our results lead to novel explanations of a number of observed macroeconomic phenomena.

First, a prominent feature of empirical data is the transmission of nominal shocks to real vari-

ables Sims (1989). This observation is explained in the New Keynesian model by the existence

of price-adjustment costs. In our model sticky prices emerge endogenously as a property of

equilibrium.3

Second, there is an extensive literature, initiated by Shiller (1981) and Leroy and Porter

(1981) that examines excess volatility of asset prices. In a stochastic version of our model,

excessive volatility may arise as a consequence of the indeterminacy of the real interest rate

which permits fluctuations in asset prices driven by purely non-fundamental shocks.

Finally, the real interest rate has been declining for the past fifty years and for much of

this period it has been lower than the growth rate of GDP. In our 62-generation calibrated

model, adjustment dynamics are cyclical and extremely slow. As the real interest rate adjusts,

following a shock, there are decade-long periods in which the interest rate is either greater than

or less than the growth rate of GDP. And the adjustment path back to the steady state is

associated with big swings in the age-distribution of wealth as the calendar birth date of an age

cohort has a significant impact on its life-time earnings.

2. The Relationship of our Work to Previous Literature

The generic existence of multiple indeterminate steady-state equilibria was established by

Kehoe and Levine (1985) in the context of a two-period-lived model with multiple goods and

multiple agents.4 With the exception of this paper, most previous examples of indeterminate

equilibria in overlapping generations models have been restricted to two-generation or three-

generation models in which indeterminacy was purely monetary (Samuelson, 1958), the model

required negative money (Gale, 1973; Farmer, 1986), or was associated with unrealistic calibra-

tions generally considered to be empirically irrelevant Azariadis (1981); Farmer and Woodford

(1997); Kehoe and Levine (1983). Our paper is the first to provide a long-lived example of an

economy where the endowment profile is matched to U.S. micro data, and where there exists

an indeterminate steady-state equilibrium when both monetary and fiscal policy are active.

A branch of the multiple equilibrium literature studies bubbles in the overlapping gener-

ations model. A non-exhaustive list of papers, following Tirole’s seminal contribution (Tirole,

1985), would include Martin and Ventura (2011, 2012), Miao and Wang (2012), Miao et al.

3There is an extensive previous literature that makes this same point. See, for example, Farmer (2020) and
the reference cited therein.

4It follows from the results of Balasko and Shell (1981) that the two-period assumption is unrestrictive as
long as there are multiple agents and multiple goods.
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(2012) Miao (2016) and Azariadis et al. (2015). The model we develop here contains what

Tirole would call ‘bubbly equilibria’ but, unlike these papers, we develop our argument in the

context of a complete markets overlapping generations model without the credit constraints

introduced by these authors.

Benhabib et al. (2001) exploit the global indeterminacy of equilibrium to point out that

an active Taylor rule, may lead to unexpected results. In contrast, our results are not driven

by global or non-linear dynamics since we explicitly restrict attention to the properties of a

linearized system of equilibrium conditions around a monetary steady state. A number of

authors have studied the wealth distribution in stochastic overlapping generations models with

and without complete securities markets. One branch of this literature includes papers by Ŕıos-

Rull and Quadrini (1997) and Castañeda et al. (2003). Our work is peripherally related to that

literature but we study a different question.

Bassetto and Cui (2018) revisit the implications of fiscal policy for price level determination

in models in which assets differ in characteristics because of risk, or because debt provides

liquidity services. In contrast to their work, our results do not rely on dynamic inefficiency,

risk premia or liquidity effects. We show that both the price level and the real interest rate are

indeterminate in a model where the steady-state equilibrium is dynamically efficient and where

there are no frictions or rigidities of any kind other than the natural assumption that people

are born and die at different dates.

Eggertsson et al. (2019) study steady-state equilibria in a fifty-six generation overlapping

generations model with sticky prices. They use their model to discuss the idea that a negative

real interest rate may be inconsistent with full employment, a concept that they refer to as

‘secular stagnation’. In one section of their paper, Eggertsson et al. study the transition

path from one steady-state equilibrium to another. Their solution method assumes that this

transition path is unique. This is an assumption that is called into question by the analysis in

our paper.

Given the extensive existing literature that applies the OLG model to real world data,

a natural question is: why are we the first to draw attention to the possibility of multiple

indeterminate equilibria? There are two answers to that question. The first is that our results

hold only in monetary versions of the OLG model and the canonical calibrated models (Auerbach

and Kotlikoff, 1987; Ŕıos-Rull, 1996) do not contain fiat money. The second is that multiple

equilibria do exist in these models, but not for their authors’ preferred calibrations.
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All monetary OLG models contain at least two steady-state equilibria and in the absence

of deficit finance, money has value in only one of them. Researchers have typically ruled out

one equilibrium by omitting government debt entirely, as in Ŕıos-Rull (1996), or by modeling

debt as an obligation to repay real commodities, as in Auerbach and Kotlikoff (1987).

Even allowing for the absence of money however, the models developed by both Auerbach

and Kotlikoff (1987) and Ŕıos-Rull (1996) both allow for a hump-shaped income profile and the

results we develop in Section 5 imply that there exist parameter values for which a purely real

model possess three steady state equilibria.5 It follows that the uniqueness finding of Rios-Rull

that

“In all the cases studied, these functions turned out to be monotone- decreasing,

implying a unique steady state.” Ŕıos-Rull (1996, page 472).

is case specific and depends on the specific choice of parameters.

3. Fiscal and Monetary Policy

In this section we explain the relationship between private and government trade in the asset

markets. We construct a model in which the government purchases gt units of a consumption

good which it finances with dollar-denominated pure discount bonds and lump-sum taxes, τ t.

Let Bt be the quantity of pure-discount bonds each of which promises to pay one dollar at date

t + 1 and let Qt be the date t dollar price of a discount bond. Further, let pt be the date t

dollar price of a consumption good. Using these definitions, government debt accumulation is

represented by the following equation,

QtBt + ptτ t = Bt−1 + ptgt.

Define it to be the net nominal interest rate from period t to period t+ 1, and let Πt+1, be

the gross inflation rate. These variables are given by,

it ≡
1

Qt
− 1 and, Πt+1 ≡

pt+1

pt
.

Further, let

bt ≡
Bt−1
pt

,

5Although our results are developed in the context of an endowment economy, a simple extension of our
analysis applies to the model with capital.
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be the real value of government debt maturing in period t and define the real primary deficit as

dt ≡ gt − τ t,

where the negative of dt is the real primary surplus. Let Rt+1 represent the gross real return

from t to t+ 1, which from the Fisher-parity condition equals

Rt+1 ≡
1 + it
Πt+1

. (1)

We can combine these definitions to rewrite the government budget equation in purely real

terms

bt+1 = Rt+1(bt + dt), t = 1, . . . ,∞. (2)

Although Equation (2) is expressed in terms of real variables, the debt instrument issued by

the treasury is nominal. It follows that the real value of debt in period 1 is determined by the

period 1 price level through the definition

b1 ≡
B0

p1
.

Equations (2), one for each future date, have been interpreted in two different ways in the

literature on monetary and fiscal policy in representative agent models. According to advocates

of the Fiscal Theory of the Price Level (FTPL) these are not budget equations in the usual

sense; instead, when combined with a boundedness condition, they generate a debt valuation

equation. To understand this argument, let Qkt ,

Qkt ≡
k∏

j=t+1

1

Rj
, Qtt = 1,

be the relative price at date t of a commodity for delivery at date k. Now, iterate Equation (2)

forwards to write the current real value of debt outstanding as the present value of all future

surpluses,

B0

p1
= −

∞∑
t=1

Qt1dt + lim
T→∞

QT1 bT . (3)

The boundedness condition alluded to above, is the requirement that

lim
T→∞

QT1 bT ≤ 0, (4)
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which turns Eq. (3) into a constraint,

B0

p1
≤ −

∞∑
t=1

Qt1dt. (5)

Inequality (4), sometimes referred to as a no-Ponzi scheme condition, restricts the government

from borrowing from the infinite future and it follows naturally in representative agent economies

in which all agents are present at all points in time.6

If the government were to be treated in the same way as other agents, Inequality (5) would

act as a constraint on feasible paths for the sequence of surpluses, −{dt}∞t=1, that would be

required to hold for all paths of {Qt1}∞t=1 and all initial price levels, p1. If the government

behaves optimally, in the sense that all revenues are accounted for either to pay down debt or

to fund expenditure, this inequality will hold with equality,

B0

p1
= −

∞∑
t=1

Qt1dt. (6)

In New-Keynesian models in which the central bank sets an interest rate peg, the initial

price level would be indeterminate if the government were constrained to balance its budget

for all paths of {Qt1}∞t=1 and all initial price levels (McCallum, 2001). To resolve this apparent

indeterminacy of the price level, advocates of the FTPL argue that the government should be

treated differently from other agents in a general equilibrium model (Leeper, 1991; Woodford,

1994). When monetary policy is passive, Equation (6) should, they claim, be treated as a debt

valuation equation that determines the value of p1 as a function of the specific path of primary

surpluses −{dt}∞t=1 chosen by the treasury. All initial price levels other than the specific value

of p1 that satisfies Equation (6) are infeasible since they lead to paths of government debt that

eventually become unbounded. In contrast, in the OLG model neither the price level nor the

real interest rate are pinned down uniquely and Equation (6) may hold for more than one value

of the price level p1. It follows that the logic behind the fiscal theory of the price level cannot

be extended to the overlapping generations model.

4. A Three-Generation Example

Before introducing the T−period model, we introduce our main ideas in a 3-generation

example. For this special case, the preferences of people born in period 2 and later are given

6It does not, however, follow from the equilibrium conditions of an OLG economy and the failure of this
condition is associated with the existence of bubbles (Tirole, 1985).
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by the following utility function;

U t = U(ctt, c
t
t+1, c

t
t+2). (7)

We index generations by superscripts and calendar time by subscripts. Thus, ctτ is the consump-

tion of generation t in period τ . We refer to the people born in period T −1 and later as generic

generations and we distinguish them from a set of non-generic generations. The non-generic

generations are people alive in periods 1 through T − 2 who live for less than T periods. In the

3−generation model there are 2 non-generic generations; the initial middle-aged and the initial

old.

The generic generations maximize utility subject to three budget constraints, one for each

period of life,

ctt + stt+1 ≤ ω̃1, ctt+1 + stt+2 ≤ Rt+1s
t
t+1 + ω̃2, ctt+2 ≤ Rt+2s

t
t+2 + ω̃3, (8)

where {ω̃1, ω̃2, ω̃3} is the after-tax endowment profile of a generic generation and stτ is the

demand for claims to τ + 1 consumption goods by generation t in period τ . The subscript on

the term ω̃j indexes age and we assume throughout, that ω̃j does not depend on calendar time.

The solution to this problem is fully characterized by a pair of asset demand functions

stt+1(Rt+1, Rt+2), stt+2(Rt+1, Rt+2),

together with the requirement that the three budget constraints characterized in (8) hold with

equality.

Let the aggregate demand for assets by all agents alive at date t be defined by the function

f(Rt, Rt+1, Rt+2) ≡ st−1t (Rt, Rt+1) + stt(Rt+1, Rt+2).

For this three-generation example, f(·) adds up the asset demand of the newborns, this is the

term stt(·) and the asset demands of the middle-aged, this is the term st−1t (·). Equilibrium in

the asset markets requires that

f(Rt, Rt+1, Rt+2) = R−1t+1bt+1, (9)

where R−1t+1bt+1 is the public sector borrowing requirement in period t and the dynamics of

public borrowing are given by the equation,

bt+1 = Rt+1(bt + dt). (10)
9



We refer to equations (9) and (10) as the generic market clearing equations. Beginning with

period 2, non-stationary equilibria are characterized by bounded sequences of real interest rates

and debt that satisfy these equations and are consistent with a set of initial conditions that

arise from the behavior of the initial generations.

To complete the description of equilibrium in the three-generation model, we must describe

the equilibrium conditions in period 1. In this period there is one generic generation, the

newborns, and two non-generic generations, the middle-aged and the old. We refer to the initial

middle-aged as generation 0 and to the initial old as generation −1. Generation −1 consume

their wealth and they do not contribute to the demand for period 1 assets. Generation 0

maximize the function

U0 = U(c01, c
0
2), (11)

subject to the two budget constraints,

c01 + s02 ≤ λ0
B0

p1
+ ω̃2, c02 ≤ R2s

0
2 + ω̃3, (12)

where B0 is the dollar value of the initial government debt liability, p1 is the dollar price of

a commodity in period 1 and λ0 is the share of the initial government debt liability held by

generation 0. The remaining share, 1−λ0, is held by the initial old. The solution to the problem

of the initial middle-aged is characterized by the asset demand function

s02

(
R2, λ0

B0

p1

)
, (13)

and the requirement that the two budget constraints, (12), hold with equality.

The asset market clearing condition in period 1 is given by the expression

s02

(
R2, λ0

B0

p1

)
+ s12(R2, R3) = R−12 b2, (14)

and the government debt equation is

b2 = R2
B0

p1
. (15)

We refer to equations (14) and (15) as the non-generic market clearing equations. For given

values of λ0 and B0, equations (14) and (15) determine R3 and b2 as functions of the initial

conditions, R2 and p1. In period 2 and later, equations (9) and (10) determine Rt+2 and bt+1

as functions of bt, Rt+1 and Rt.
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A steady-state equilibrium is a non-negative real number R and real number b such that

f(R,R,R) = R−1b, (16)

b = R(b+ d). (17)

When d = 0, inspection of Eqn. (17) shows that there are at least two steady-state equilibria;

one in which b = 0 and one in which R = 1. Following Gale (1973), an equilibrium in which

b = 0 is called an autarkic steady-state and an equilibrium in which R = 1 is called a golden

rule steady-state.7

Kehoe and Levine (1983) provide a calibrated three-generation example in which there is

one golden rule and there are three autarkic steady-states. In their example, the golden rule

is associated with a real value of government debt that is strictly positive and that displays

two degrees of indeterminacy. The fact that the real value of nominal government liabilities is

strictly positive at the golden-rule steady-state equilibrium implies that the sequence of money

prices, defined by the equations

pt+1 = pt

(
1 + ī

R

)
, pt=1 = p1,

and the sequence of nominal debt obligations, defined by the equation,

Bt = bpt,

remain strictly positive.

What does it mean for the golden rule steady state to be locally indeterminate? Consider

all pairs of initial values

b1 ≡
B0

p1
, R2,

that are close to the steady state values of b and R at the golden rule. If there is a unique pair,

{b1, R2}, such that the trajectory that starts from this pair converges to the steady state, the

golden rule steady state is said to be locally determinate. If there is a one dimensional manifold

of values – defined by a function b1 = φ(R2) – such that all solutions to equations (9) and (10)

that begin on this manifold converge to the steady state; the golden rule steady state is said

to display one degree of indeterminacy. If there is a two dimensional manifold – containing

7When d 6= 0, a continuity argument establishes that there is an open set d ∈ (dL, dU ), which contains d = 0,
for which the number of steady-state equilibria and the determinacy properties of each steady-state equilibrium
is the same as the case where d = 0. It follows that, as long as the primary budget deficit is not too large, our
analysis of the properties of equilibria for the case of d = 0 carries over to the case where the treasury runs a
primary deficit or a primary surplus.
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the golden rule steady state – such that all solutions to equations (9) and (10) that begin on

this manifold converge to the steady state; the steady state is said to display two degrees of

indeterminacy.

It is a remarkable feature of the Kehoe-Levine calibration that the golden rule steady state

displays two degrees of indeterminacy and that the real value of government debt and the price

level are both positive at this steady state. For the Kehoe-Levine calibration the length of life is

3, the endowment pattern is {3, 15, 2}, the preference weights on each period of life are equal to

{2, 2, 1} and the intertemporal elasticity of substitution is equal to 1/6. We show in this paper,

that the existence of a steady-state equilibrium with these properties is robust to increasing

the length of life, the introduction of constant discounting, different values of the intertemporal

elasticity of substitution and the calibration of the income profile to match U.S. micro data.

The degree of indeterminacy of equilibrium in the Kehoe-Levine example depends on the

actions of the monetary and fiscal authorities. The assumption of a constant interest rate implies

that monetary policy is passive and the fact that dt is not responsive to variations in the value

of outstanding debt implies that fiscal policy is active.8 It follows that the finding of two-degrees

of indeterminacy at the golden rule steady-state holds for a passive-active policy mix for which

equilibrium, in a representative agent economy, would be determinate. In Section 9 we relax

the assumption of a passive monetary policy and we show that the golden rule equilibrium still

displays one degree of indeterminacy, even for the case in which monetary and fiscal policy are

both active.

5. Understanding the Mechanism

The three-generation example we provided in Section 4 relies on a hump-shaped income

profile and a relatively low value of the elasticity of substitution. In this section, we provide ana-

lytical results for the three-generation case that illustrate the tension between the intertemporal

elasticity of substitution and the peak of the income distribution. We begin with a base-line

three-generation model for which the representative agent maximizes the following constant

elasticity of substitution utility function

U t =
(ctt)

α
+ β(ctt+1)

α
+ β2(ctt+2)

α

α
, α ≤ 1, α 6= 0, (18)

U t = log(ctt) + β log(ctt+1) + β2 log(ctt+2), α = 0, (19)

8Arguably, this is the relevant policy mix in the current environment in which the interest rate is at or near
zero and is unresponsive to realized inflation and where national treasuries are pursuing unrestrained spending
programs that, at least in the near future, do not appear responsive to growing debt to GDP ratios.
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subject to the constraint (
ctt − 1

)
1

+

(
ctt+1 − λη

)
Rt+1

+

(
ctt+2 − λ2η

)
Rt+1Rt+2

≤ 0, (20)

where 0 < β < 1 and 0 < λ ≤ 1. The intertemporal elasticity of substitution, η, is equal to

η =
1

1− α
,

and we focus here on the case where α ≤ 0 which implies an intertemporal elasticity of substitu-

tion between 0 and 1. We chose an income profile of ωλ ≡ {1, λη, λ2η} in which the endowment

process is related to the preference parameter η in order to simplify the numerical calculations

of our example and nothing of substance hinges on this assumption. For this choice of the

endowment process, the autarkic equilibrium interest factor is easy to compute and occurs at

R = λ/β.

To explore the role of a humped shaped endowment, define a new income profile ω̃ ≡

{w1, w2, w3} that obeys the following two constraints,

w1 + w2 + w3 = 1 + λη + λ2η, (21)

w1 +
w2β

λ
+
w3β

2

λ2
= 1 +

ληβ

λ
+
λ2ηβ2

λ2
. (22)

Equation (21) ensures that the aggregate endowment is the same with the new hump-shaped

endowment profile as with the initial flat endowment profile and Equation (22) ensures that the

endowment is redistributed across the age-profile in a way that preserves the present value of

the endowment of a newborn agent at the steady state interest rate R = λ/β. For any given

value of,

w2 ≤ 1 + λη + λ2η,

we can solve equations (21) and (22) to find two functions w1 = w1(w2) and w3 = w3(w2) which

redistribute the endowment in a way that preserves R = λ/β as a steady state equilibrium.

An autarkic steady state equilibrium is characterized by a positive number R̄ and an

aggregate savings function fω(R) such that

fω(R̄) ≡ stt+1(R̄;ω) + stt+2(R̄;ω) = 0.

Here the subscript ω on the function fω(R) signifies the dependence of the aggregate savings

function on the endowment profile and stt+1(R̄;ω) and stt+2(R̄;ω) are the steady-state savings

functions of the young and middle-aged that satisfy the utility maximization problem of a
13



representative household with endowment profile ω = {w1, w2, w3}. For the endowment profile

ωλ = {1, λη, λ2η}, the autarkic equilibrium is given by R̄ = λ/β.

By picking a new endowment profile, ω̃, that satisfies equations (21) and (22) we guarantee

that

fω̂

(
λ

β

)
= fωλ

(
λ

β

)
= 0.

This equality means that the interest rate R = λ/β is a steady state equilibrium interest rate

in the perturbed economy. But although the new savings profile is chosen so that fωλ and fω̂

coincide at the steady state, they will not in general coincide anywhere else.

To understand the mechanism that leads to multiple equilibria, consider the special case

of the model in which λ = β = 1. For this case the income and consumption profiles are flat

and the golden rule and autarkic steady states coincide. In this steady state equilibrium, R = 1

and every generation consumes its endowment in each period of life.

To explore the interplay between the endowment profile and the intertemporal elasticity

of substitution, in Appendix A we derive an explicit expression for the slope of the aggregate

savings function, evaluated at R̄ = λ/β, and show that when β = λ = 1 this expression is given

by
∂fω̂
∂R

∣∣∣∣
R=1

=
1− w2 + 4η

2
. (23)

When η = 1, the utility function is logarithmic. And since w2 < 3, it follows that for

logarithmic preferences the aggregate savings function slopes up at the autarkic steady-state.

This is not true for other values of η. By rearranging Eq. (23) one can show that for values of

η <
w2 − 1

4
, (24)

the savings function changes sign from positive to negative at the autarkic steady steady equi-

librium. One can also show that fω̃ is continuous, negative for low values of R and positive

for high values. It follows from these three facts that if fω̃ crosses zero with a negative slope

at the autarkic equilibrium there must be at least two other state state equilibria. The upper

bound on w2 is 3 and by inspecting Inequality (24) we see that the intertemporal elasticity of

substitution must be strictly less than 1/2 for multiple steady states to arise.

Figure 1 plots the savings function for three different values of the intertemporal elasticity

of substitution. In each case, ω̃ = {0.33, 2.33, 0.34}, and β = λ = 1, a parameterization for

which the golden rule equilibrium and the autarkic equilibrium coincide. By rearranging the

endowment across the age profile we highlight the wealth effect which provides an incentive to

14



Figure 1. The Aggregate Savings Function for Three Different Values of η

move the endowment between periods to smooth consumption. By reducing the intertemporal

elasticity of substitution, we dampen the substitution effect which provides an incentive to

increase savings at the R = β/λ steady state.

The three sub-panels in Figure 1 are drawn for decreasing values of the intertemporal

elasticity of substitution. For the top panel, η = 2/5. For this value of η the savings function

15



is increasing at the autarkic stationary equilibrium value, R = λ/β. For the middle panel,

η = 1/3. At this value of η the slope of the savings function is zero at the autarkic steady-state

equilibrium. For the lower panel, η = 2/7 and, for this value the function fω̂(R) is decreasing

at the autarkic steady state and two new steady states emerge, one greater than 1 and one

smaller.

Figure 2. Aggregate Savings and the Excess Demand for Goods for Two Dif-
ferent Values of λ and β

Figure 2 explores the role of different values of λ and β. All four panels are drawn for the

same endowment profile as Figure 1 and for a value of η = 2/7. The left two panels of Figure

2 are drawn for β = 1 and λ = 0.85. The right two panels depict the case when β = 0.85 and

λ = 1. In each case, the upper panel depicts the aggregate savings function and the lower panel

represents the aggregate excess demand for goods.

Although there are three intersections in each upper panel and four intersections in each

lower panel, we have truncated the x-axis to depict only one intersection of the savings function
16



and two intersections of the excess demand for goods in order to draw attention to the magnitude

of asset holdings at the golden rule steady state. The golden rule in our example corresponds to

a value of log(R) = 0 and from the two upper panels we see that as we vary the parameterization

from λ = 0.85 and β = 1 to β = 0.85 and λ = 1, the sign of asset holdings in the golden-rule

steady state changes from negative to positive.

Because a hump-shaped income profile is the norm in the real world, we infer from this

analysis that the Kehoe-Levine example is not just a theoretical curiosity. It is a case that

merits further analysis as a potential vehicle for understanding asset market equilibria in real

world economies. To explore that possibility further, in Section 6 we extend the three-generation

model to the case of T−period lives and in Section 7 we calibrate a 62−period model using a

realistic income profile that we fit to U.S. data.

6. The General T−Period Case

This section describes the generalization of the 3−generation example to a model with

T−generations. The main complication that arises for this case is associated with the existence

of additional non-generic generations in the first T − 2 periods of the model and the technical

arguments needed to deal with this complication are dealt with in Appendix C.2. The reader

who is interested in the implications of our argument for the 62-generation calibrated example

can skip ahead to Section 7.

In the T−generation case, generation t has a utility function defined over consumption in

periods t through t+ T − 1 and the members of generation t solve the problem

max
{ctt,...,ctt+T−1}

U t(ctt, c
t
t+1, . . . , c

t
t+T−1),

such that

ctt + stt+1 ≤ ω̃1, ctt+1 + stt+2 ≤ Rt+1s
t
t+1 + ω̃2, . . . ctt+T−1 ≤ Rt+T−1stt+T−1 + ω̃T . (25)

The solution to this problem is characterized by a set of T − 1 savings functions, one for each

of the first T − 1 periods of life

stk(Rt+1, . . . , Rt+T−2, Rt+T−1), k = t, . . . , t+ T − 2, (26)

together with the requirement that the T budget constraints (25) hold with equality. In Appen-

dix B, Section B.1. we characterize the solution to this problem for the case of CES preferences
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and we find an explicit formula for the aggregate asset demand function,

f(Rt−T+3, Rt−T+4, . . . , Rt+T−2, Rt+T−1) = R−1t+1bt+1, (27)

where f(·) is the sum of the savings functions, defined in Equation (26). As in the three-period

model, government borrowing follows the equation,

bt+1 = Rt+1(bt + dt). (28)

In Appendix C.1 we show that dynamic equilibria can be described by a difference equation

F (Xt, Xt−1) in a vector

Xt ≡ [Rt+T−1, Rt+T−2, . . . , Rt−T+4, bt]
>, (29)

and we find a linear approximation to that difference equation around a steady state of the form

X̃t = JX̃t−1 (30)

where X̃ is a vector of deviations from the steady state and J is constructed from the partial

derivatives of F (·) evaluated at the steady state.

The analysis in Appendix C.1 establishes that the order of the difference equation that

characterizes equilibrium sequences of real interest rates, Eq. (27), is equal to 2T − 3. And the

generalization of the non-generic equations in Appendix C.2 establishes that there are T−1 non-

generic equations which characterize equilibria in periods 1 through T − 2. Using these results,

in Appendix, D we prove the following proposition which is based on the work of Blanchard

and Kahn (1980).

Proposition 1 (Blanchard-Kahn). Let K denote the number of eigenvalues of J with modulus

greater than 1.

• If K > T − 1 there are no bounded sequences that satisfy the equilibrium conditions in

the neighbourhood of X̄. In this case equilibrium does not exist.

• If K = T −1 there is a unique bounded sequence that satisfies the equilibrium equations.

Further, this sequence converges asymptotically to the steady state
(
R̄, b̄

)
. In this case

the steady state equilibrium
(
R̄, b̄

)
is determinate.

• If K ∈ {0, . . . , T − 2} there is a T − 1 − K dimensional subspace of initial conditions

that satisfy the equilibrium equations. All of these initial conditions are associated with
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sequences that converge asymptotically to the steady state
(
R̄, b̄

)
. In this case the steady

state equilibrium
(
R̄, b̄

)
is indeterminate with degree of indeterminacy equal to T−1−K.

It follows from this proposition that we can compute the degrees of determinacy around a

given steady-state equilibrium by comparing the roots of the matrix J , with T − 1, where T is

the number of generations. In the simulations presented in Section 7, we use this proposition

to compute the eigenvalues of J in the neighbourhood of each of the four steady states and we

simulate non-stationary paths by iterating a linear approximation to the function F (·) around

the golden-rule steady state.9

In our model fiscal policy is active but monetary policy is passive. According to the FTPL

this policy mix should lead to a unique initial price level. In Section 7 we provide an example of

an economy with a steady-state equilibrium where money has value and where the FTPL fails

to hold. In this example, it is not only the initial price level that is indeterminate; it is also the

initial real interest rate.

7. A Sixty-Two Generation Example

In this section we construct a sixty-two generation model where each generation begins its

economic life at age 18 and in which a period corresponds to one year. To see if this model

might provide a plausible explanation of a real-world economy we assume that the members of

generation t maximize the utility function,

u
(
ctt, . . . , c

t
t+61

)
=

62∑
i=1

βi−1
(

[ctt+i−1]
α − 1

α

)
,

and we calibrated the income profile of a representative generation to U.S. data. We provide

explicit formulas for the excess demand functions for this functional form in Appendix B.

We graph our calibrated income profile in Figure 3. Our representative generation enters the

labour force at age 18, retires at age 66, and lives to age 79. We chose the lifespan to correspond

to current U.S. life expectancy at birth and we chose the retirement age to correspond to the age

at which a U.S. adult becomes eligible for social security benefits. For the working-age portion

of this profile we use data from Guvenen et al. (2021) which is available for ages 25 to 60. The

working-age income profiles for ages 18 to 24 and for ages 61 to 66, were extrapolated to earlier

and later years using log-linear interpolation. For the retirement portion we used data from the

U.S. Social Security Administration.

9The code used to generate all of our results is available online and is documented in an accompanying online
document “Numerical Recipes”. Our code also replicates the findings reported in Kehoe and Levine (1983).
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Figure 3. Normalized Endowment Profile. U.S. Data in Solid Red: Interpo-
lated Data in Dashed Blue.

U.S. retirement income comes from three sources; private pensions, government social se-

curity benefits, and Supplemental Security Income. We treat private pensions and government

social security benefits as perfect substitutes for private savings since the amount received in

retirement is a function of the amount contributed while working. To calibrate the available re-

tirement income that is independent of contributions, we used Supplementary Security Income

which, for the U.S., we estimate at 0.137% of GDP.10

For the remaining parameters of our model we chose a primary budget deficit of dt = 0, an

annual discount rate of 0.953 and an elasticity of substitution of 0.17. The qualitative features

of the equilibria are robust to the existence of a positive primary deficit with an upper bound

that depends on the discount rate. For the calibrated income profile depicted in Figure 3 and

for this choice of parameters, our model exhibits four steady-state equilibria. In Section 8 we

explore the robustness of the properties of our model to alternative choices for the discount

parameter and for the elasticity of substitution parameter.

10From Table 2 of the March 2018 Social Security Administration Monthly Statistical Snapshot we learn that
the average monthly Supplemental Security Income for recipients aged 65 or older equalled $447 (with 2,240,000
claimants), which implies that total monthly nominal expenditure on Supplemental Security Income equalled
$1,003 million. This compares to seasonally adjusted wage and salary disbursements (A576RC1 from FRED) in
February 2018 of $8,618,700 million per annum, or $718,225 million per month. Back of the envelope calculations
suggest that Supplemental Security Income in retirement equalled 0.137% of total labour income.
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Figure 4. Steady States in the Sixty-Two Generation Model

In Figure 4 we graph the steady-state equilibria of our model. The upper panel of this

figure plots the logarithm of the gross real interest rate on the horizontal axis and the steady-

state excess demand for goods on the vertical axis. The lower panel plots government debt as

a percentage of GDP at the steady state. We see from the upper panel that the excess demand

function crosses the horizontal axis four times. And we see from the lower panel that three

of these crossings are associated with steady-state equilibria in which steady-state government

debt is equal to zero.

The three steady-state equilibria in which debt equals zero are autarkic. In these equilibria

there is no trade with future unborn generations. The fourth steady-state equilibrium is the

golden-rule. This steady-state equilibrium always exists in OLG models and in models with

population growth it has the property that the real interest rate equals the rate of population

growth. But although the golden-rule steady-state equilibrium always exists, it is not true that

the golden-rule value of b̄ is always non-negative.

The golden-rule steady state occurs when the logarithm of the real interest factor equals

zero. By inspecting the lower panel of Figure 4, it is apparent that government debt is positive

at the golden rule steady-state and, since debt is denominated in dollars, the price level is

also positive in the golden-rule steady-state equilibrium. This is important because it is the
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empirically relevant case in most western democracies. For example, in the United States,

government debt in the first quarter of 2019 exceeded $22 trillion.

The values and properties of all four steady-state equilibria are reported in Table 1. We

refer to the autarkic steady-state equilibria as Steady-State A, Steady-State C and Steady-State

D and to the golden-rule steady-state equilibrium as Steady-State B. We see from this table

that Steady-States B, C and D are associated with a non-negative interest rate and are therefore

dynamically efficient. Steady-State A is associated with a negative interest rate of −47.5% and

is therefore dynamically inefficient.11

Equilibrium Real Interest Rates
Type Value Value # Unstable # Free Initial Degree of

of R̄ of b̄ Roots Conditions Indeterminacy
Steady-State A 0.525 0 60 61 1
Steady-State B 1 53.7% of GDP 59 61 2
Steady-State C 1.022 0 60 61 1
Steady-State D 1.13 0 61 61 0

Table 1. Steady States of the Sixty-Two Generation Model

The sixty-two generation model with a calibrated income profile is similar in many respects

to Kehoe-Levine’s (1983) three generation model. In both examples, the golden-rule steady-

state equilibrium displays second degree indeterminacy. And in both examples, the steady-state

price level is positive and the initial price level is indeterminate even when fiscal policy is active.

Importantly, because the monetary steady-state is second-degree indeterminate, indeterminacy

of the price level can hold even when both monetary and fiscal policy are active.

In Figure 5 we show the result of an experiment in which we perturb the initial value of b1

by 3% and we perturb the real value of the initial wealth of all of the non-generic generations

by the same amount. We refer to this perturbation as a 3% shock to the initial price level.

We restrict R2 to equal its steady state value but all other elements of the vector of initial

conditions are allowed to respond to the shock to keep the path of interest rates and debt on a

convergent path back to the steady state. Figure 5 demonstrates that the return to the steady

state from an arbitrary initial condition is extremely slow.12

We also see from Figure 5 that our model can endogenously generate prolonged periods

of negative real interest rates. The upper panel of this figure plots the path by which the real

interest rate returns to its steady-state value and the lower panel plots the return path of the

11See Cass (1972) for a definition and characterization of the conditions for dynamic efficiency.
12Note that our choice of 3% is entirely arbitrary and that this is one of many admissible equilibrium paths.

In particular, since we endow the non-generic cohorts with steady state asset shares, therefore the steady state
equilibrium with ∀t ≥ 1 : bt ≡ b̄ and Rt+1 ≡ R̄ would have also been feasible.
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Figure 5. The Impact of the Initial Price Level Exceeding Its Steady State
Value by 3%

real value of government debt expressed as a percentage of GDP. The figure demonstrates that

small deviations of initial conditions from the steady state can have long-lasting effects, and

that during the convergence process the real interest rate may be negative for periods well in

excess of ten years.

One may question whether the high degree of real interest rate persistence implied by our

model is excessive. Have such long swings in real interest rates actually ever been observed?

To address this question, Figure 6, reproduced from Yi and Zhang (2017), compares long run

real interest rates in the G7 and documents that low-frequency real rate cycles, similar to those

generated by our model, have characterized the evolution of real interest rates in all of these

economies.13

8. Robustness to Different Calibrations

To explore the robustness of our findings to alternative calibrations, in Table 2 we record

the properties of our model for different values of the annual discount rate and the intertemporal

elasticity of substitution. The example we featured in Section 7 had two degrees of indetermi-

nacy and positive valued debt at the monetary steady state. Table 2 demonstrates that this

property is not particularly special.

13See Yi and Zhang (2017) for a discussion of why long-run moving averages are likely to characterize trends
in fundamental forces underlying real interest rates.
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Evidence on long-run real interest rates

Here we present our estimates of long-run real interest rates for (up to) 20 countries between 1955 and the 
present.6 The list of countries (given in the appendix) comprises the largest economies in the world as 
measured by gross domestic product (GDP) in 2014 dollars.7 We broadly follow the approach used in 
Hamilton et al. (2015) to compute real interest rates. Wherever possible, we use the policy interest rate as 
our measure of the short-run nominal interest rate, and we use the then-current inflation rate as our measure 
of the expected inflation rate the following year to derive the short-run real interest rate (details are in the 
appendix). To compute long-run real interest rates, we calculate 11-year centered moving averages of 
annual real interest rates.8 Hereafter, we will refer to the 11-year centered moving averages of annual real 
interest rates as long-run real interest rates. Economists are typically interested in long-run real interest 
rates because they reflect the trends in the fundamental forces underlying them. Indeed, movements in real 
interest rates owing to frictions such as “sticky” prices and wages9 and to short-run shifts in productivity, oil 
prices, monetary or fiscal policy, and other forces “wash out” over long periods of time, leaving only trends 
in the fundamentals driving real interest rates over the long run.

Figure 1 presents long-run real interest rates for the G7 (Group of Seven) countries—namely, Canada, France, 
Germany, Italy, Japan, the United Kingdom, and the United States. Two patterns are apparent. First, G7 real 
rates are quite close to one another, especially in recent years. Second, broad trends in long-run real rates 
are discernible during three subperiods of the sample: 1) a decline from the early 1960s until the mid-1970s, 
followed by 2) an increase until the late 1980s and then 3) another decline through the present day.10

Figure 2 shows the median of the long-run real interest rates across our full sample of 20 countries for 
each year.11 It also presents the interquartile range of these rates across our full sample (that is, the range 

	
	

	

Notes: G7 means the Group of Seven. Long-run real interest rates are 11-year centered moving averages of annual 
real interest rates. (See the appendix for further details on the construction of the real interest rates.)
Sources: Authors’ calculations based on data from the International Monetary Fund, International Financial 
Statistics; and Haver Analytics.
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Figure 6. G7 Long-Run Real Interest Rates. Long-Run Real Interest Rates
are 11-Year Centered Moving Averages of Annual Real Interest Rates.
Source: Figure 1 in Yi and Zhang (2017)

Annual Discount Factor
0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98

IES

IES =

1/5

# Steady States 4 4 4 4 4 2 2 2
Degree of Indeterminacy 1 1 1 1 1 2 0 0
Value of Debt -2.8 -2.2 -1.5 -0.8 -0.2 0.5 1.1 1.8

IES =

1/6

# Steady States 4 4 4 4 4 4 2 2
Degree of Indeterminacy 1 1 1 1 2 2 0 0
Value of Debt -1.9 -1.3 -0.7 -0.2 0.4 0.9 1.5 2.0

IES =

1/7

# Steady States 3 3 3 3 3 3 1 1
Degree of Indeterminacy 1 1 1 2 2 0 0 0
Value of Debt -1.2 -0.7 -0.2 0.3 0.8 1.2 1.7 2.2

IES =

1/8

# Steady States 3 3 3 3 3 3 3 1
Degree of Indeterminacy 1 1 2 2 2 0 0 0
Value of Debt -0.6 -0.2 0.2 0.6 1.0 1.5 1.9 2.3

IES =

1/9

# Steady States 3 3 3 3 3 3 3 3
Degree of Indeterminacy 1 2 2 2 2 0 0 0
Value of Debt -0.2 0.1 0.5 0.9 1.3 1.6 2.0 2.4

Table 2. Robustness of Indeterminacy to Alternative Calibrations, Focusing
Only on Steady States with R̄ ∈ [0.5, 1.5]

The table provides 40 different parameterizations of our model with intertemporal elasticity

of substitution parameters ranging from 1/9 to 1/5 and discount rates ranging from 0.91 to 0.98.

In all of these parameterizations we maintained the calibrated income profile illustrated in Figure

3. For each calibration Table 2 displays the number of steady-state equilibria in the interval
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R̄ ∈ [0.5, 1.5], and the number of degrees of indeterminacy at the golden-rule steady-state

equilibrium. There are fifteen parameterizations in which the golden-rule steady state displays

one degree of indeterminacy and twelve in which it displays two degrees of indeterminacy. In

all twelve of these parameterizations, debt has positive value in the steady state.

In Section 7, we showed that when β = 0.953 and η = 1/6, the golden-rule steady state

displays two degrees of indeterminacy. An example with this property is interesting because it

is not only the price level that is free to be determined by the beliefs of market participants;

it is also the real rate of interest. We want to reiterate, however, that only one degree of

indeterminacy is required for violations of the fiscal theory of the price level. And that occurs

more frequently in our model than second degree indeterminacy.14

9. Fiscal and Monetary Policy

In this section we discuss what happens when we relax either the assumption that fiscal

policy is active or the assumption that monetary policy is passive. We first show that passive

fiscal policy makes indeterminacy more likely. We then demonstrate that ensuring bounded

inflation under an active Taylor rule imposes an additional restriction on the set of equilibrium

paths. This additional restriction reduces the degree of indeterminacy by one.

Consider first what happens when fiscal policy is passive. To model a passive fiscal policy

we assume that the treasury raises taxes, τ t, in proportion to the real value of outstanding debt

to ensure that the primary deficit dt satisfies the equation

dt = −δbt,

where δ ≥ 0 is a debt repayment parameter. Combining this assumption with the definition of

the government debt accumulation equation leads to the following amended debt accumulation

equation,

bt+1 = [Rt+1 − δ]bt.

14If we hold constant the intertemporal elasticity of substitution and increase the discount rate, the number
of unstable eigenvalues decreases initially from 60 to 59 and then changes abruptly to 61. We see this behaviour
in Table 2 by moving along a typical row and observing that we pass from one degree of indeterminacy to two
degrees of indeterminacy and then jump abruptly to 0 degrees of indeterminacy. At this last transition, a pair
of complex roots crosses the unit circle, a phenomenon associated with a Hopf Bifurcation and the creation of a
limit cycle. See Guckenheimer and Holmes (1983) for a discussion of the Hopf Bifurcation. We have not explored
the phenomenon in this paper, but it is likely that for discount rates close to 1, this model displays endogenous
limit cycles that are second-degree indeterminate.
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For values of [R̄− δ] < 1 the effect of making fiscal policy passive is to introduce an additional

stability mechanism that increases the degree of indeterminacy at each of the four steady states

whenever δ is large enough. Passive fiscal policy makes indeterminacy more likely.

We next assume that fiscal policy is active and the central bank follows a Taylor rule

(Taylor, 1999),

1 + it =

(
R̄

Π̄φπ

)
Π

1+φπ
t , t = 1, ...∞. (31)

Because this equation begins at date 1, the nominal interest rate in period 1 depends on p0

through the definition, Π1 = p1/p0. We treat p0 as an initial condition that has the same status

as the initial value of nominal debt, B0. In Eq. (31), Π̄ is the inflation target, R̄ is the steady

state real interest rate and φπ is the response coefficient of the policy rate to deviations of

inflation from target. The Taylor Rule is passive if −1 ≤ φπ ≤ 0 and active if φπ > 0.

When the central bank follows a Taylor Rule, the real interest rate and the real value

of government debt continue to be determined by the bond market clearing equation and the

debt accumulation equation. It follows that the conditions we have characterized in previous

sections continue to ensure that the real interest rate and the real value of government debt

remain bounded.

When the central bank follows a passive Taylor Rule, (see Appendix E.1) the following

equation characterizes the asymptotic behaviour of the future inflation rate,

lim
T→∞

Π̃T+1 = lim
T→∞

(1 + φπ)T Π̃1 − lim
T→∞

T∑
s=1

(1 + φπ)T−s R̃T+1, (32)

where κ ≡ Π̄/R̄ and the tilde denotes deviations from the steady state. The limit of the first

term on the right side of Equation (E2) is zero because 1 +φπ < 1 and the second term is finite

as a consequence of the boundedness of Rt. It follows that inflation is bounded whenever Rt is

bounded. This is a generalization of the argument we made for the boundedness of the inflation

rate when the central bank follows an interest rate peg and it does not impose any additional

restrictions on the equations of the model for an equilibrium to be determinate.

When the central bank follows an active Taylor Rule, (see Appendix E.2), the initial price

level is determined by the forward-looking equation

p1 = p0

(
Π̄ + κ

+∞∑
s=1

(
1

1 + φπ

)s (
R1+s − R̄

))
. (33)
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Importantly, this restriction on the set of equilibrium paths is additional to the restriction

p1 =
B0

b1
,

that we used to generate the equilibrium sequence of interest rates. It follows that we are

no longer free to pick R2 and p1 independently of each other. This establishes that an active

monetary policy eliminates one degree of indeterminacy.

If a model has one degree of indeterminacy when the policy combination is passive-active,

an active-active policy combination would now admit a unique solution. When the steady-state

equilibrium displays second-degree indeterminacy, as in our sixty-two generation example, it is

not just the initial price level that is indeterminate; it is also the initial real interest rate.

For any given choice of the initial interest rate, R2, active monetary policy removes nominal

indeterminacy. Crucially, however, active monetary policy does not remove real indeterminacy

and there continue to be many possible choices for the initial real interest rate, each of them

associated with a different initial price level and a different equilibrium path for all future real

interest rates and all future inflation rates.

10. So What?

How should the reader react to our finding that a particular example of an OLG economy

displays indeterminate steady state equilibria? One possible reaction is that the real world is

demonstrably determinate in the sense that a general equilibrium theorist would use that term.

An advocate of this position might claim that the profession has rejected the OLG model after

careful consideration and that the new-Keynesian version of the representative agent model has

been demonstrated through careful empirical work to be a much better fit to time series and

cross-section data. We do not think this argument holds water. The OLG model fell from favor

as the preferred vehicle for understanding monetary and fiscal policy for theoretical reasons,

not because it failed a series of empirical tests.15

Perhaps the analysis we have presented is only possible because of the restrictive assump-

tion of an endowment economy. That turns out not to be the case. We have known since the

work of Diamond (1965) that models with capital possess monetary equilibria as well as autar-

kic equilibria and a simple extension of the argument in Section 5 establishes that calibrated

15The model went out of favor, in part because a subset of influential macroeconomists considered the existence
of indeterminacy in the model to be a shortcoming rather than a strength of the approach (Cherrier and Saidi,
2018). For summary of recent research that uses indeterminacy as a positive aspect of DSGE models see Farmer
(2020).
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examples of the model with capital preserve the feature of the existence a monetary steady state

equilibrium with two degrees of indeterminacy at the steady state.16

A second reason that macroeconomists abandoned the OLG model is because Aiyagari

(1985) demonstrated that, under some circumstances, the set of equilibria in the OLG model

converges to that of the representative agent model as the length of life is increased. Importantly,

for our argument, the Aiyagari (1985) result requires the endowments of agents to be bounded

away from zero and there are many interesting models where that property does not apply. It

might be argued that we have dealt with the finite-lived case and that in the real world people are

connected by operative chains of bequests and they effectively have an infinite horizon (Barro,

1974). But Pietro Reichlin (1992) has shown that the perpetual youth model of Blanchard

(1985) displays multiple sets of indeterminate steady-state equilibria even when people may live

forever.

A further argument that might be levelled against indeterminate steady-state equilibria

is that they are unlearnable. According to this argument, people are adaptive learners and

a rational expectations equilibrium accurately describes the properties of an economy after

learning has taken place. Proponents of this argument claim that determinate steady-state

equilibria are often stable under learning and that this is a good reason to select these equilibria

when a model has multiple steady state equilibria (McCallum, 2003, 2007). This would be a

persuasive argument if it were always true that indeterminate steady-states are unstable under

learning, but exhaustive enquiries into the stability of adaptive learning schemes have found

that both determinate and indeterminate steady-state equilibria may be stable under plausible

adaptive learning schemes (Evans and Honkapohja, 2001). And the non-stationary equilibria of

a monetary model in which artificially intelligent agents use deep reinforcement learning – an

algorithm similar to the one that was used by Deep Blue (Hsu et al., 2018) to beat world chess

grand masters – has been shown to converge to the Pareto superior equilbria in a monetary

model with two equilibria, even when that equilibrium is indeterminate (Chen et al., 2021).

So what impression do we hope to have left with the reader? We consider the example in our

paper to be a proof of concept that, we hope, will encourage other researchers to explore further

the properties of the OLG model as a vehicle for understanding how shocks are propagated

through the asset markets. The indeterminacies we have showcased here are features, not just

of overlapping generations models, but also of models with credit constraints and borrowing

16Because the model with capital raises additional questions, not least of which is the reason for employment
fluctuations in a market economy, we have chosen not to include that analysis in this paper.
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limits (Woodford, 1988). If, as we believe, the indeterminacies we have focused on are prevalent

in the real world, the policy prescriptions of new-Keynesian representative agent economies, if

followed by central banks and national fiscal authorities, may have unintended consequences.

In our view, relative price indeterminacy is not just a theoretical curiosity; it is a feature of the

real world.
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Appendix A. The Hump-shaped Profile and the IES

In this Appendix we derive an expression for the slope of the steady state savings function

evaluated at the steady state R = λ/β for the parameter values λ = β = 1. Define the functions

W (R) and φ(R)

W (R) = ω1 +
ω2

R
+
ω3

R2
, (A1)

φ(R) = 1 +
(βR)η

R
+

(βR)2η

R2
. (A2)

Applying the solution to the T -generation maximizing problem with CES preferences from

Appendix B we have the following steady-state consumption demand functions

c1(R) =
W (R)

φ(R)
, c2(R) = (βR)η

W (R)

φ(R)
, c3(R) = (βR)2η

W (R)

φ(R)
, (A3)

where subscripts indicate age. Define the steady-state savings functions of the young and

middle-aged as

s1(R) = ω1 − c1(R), s2(R) = Rs1(R) + ω2 − c2(R). (A4)

Next, we seek expressions for the functions ω1(ω2) and ω3(ω2) which solve the equations

w1 + w2 + w3 = 1 + λη + λ2η, (A5)

w1 +
w2β

λ
+
w3β

2

λ2
= 1 +

ληβ

λ
+
λ2ηβ2

λ2
. (A6)

These are given by the expressions

ω1(ω2) = 1 +
β
λλ

η(
1 + β

λ

) − β
λω2(

1 + β
λ

) , (A7)

ω3(ω2) =
λη(

1 + β
λ

) + λ2η − ω2(
1 + β

λ

) . (A8)

Define the function

ψ(R) =
W (R)

φ(R)
, (A9)

33



and note that aggregate savings in a steady state equilibrium, fω̃(R), defined as the sum of

S1(R; ω̃) and S2(R; ω̃) is given by the expression,

fω̃(R) =

(
ω1(ω2)− ψ(R)

)
+R

(
ω1(ω2)− ψ(R)

)
+ ω2 − ψ(R)

(
βR

)η
. (A10)

Rearranging terms, this leads to the equation

fω̃(R) = ω1(ω2)

(
1 +R

)
+ ω2 − ψ(R)

(
1 +R+ (βR)η

)
. (A11)

We seek an expression for the derivative of fω̃(R) evaluated at λ = β = 1. For these parameter

values the functions ω1(ω2), W (R) and φ(R) are given by the following formulae

ω1(ω2) =
3− ω2

2
, W (R) = 1 +

1

R
+

1

R2
, φ(R) = 1 +Rη−1 +R2(η−1). (A12)

Evaluating each term at R = λ/β = 1 gives

W (1) = 3, φ(1) = 3, from which it follows that ψ(1) = 1. (A13)

The partial derivatives of W (R) and φ(R) are given by

∂W

∂R
= − 1

R2
− 2

R3
,

∂φ

∂R
= (η − 1)Rη−2 + 2(η − 1)R2η−3, (A14)

which when evaluated at R = λ/β = 1 gives

∂W

∂R

∣∣∣∣
R=1

= −3,
∂φ

∂R

∣∣∣∣
R=1

= 3(η − 1). (A15)

We seek an expression for the partial derivative of fω̃(R) evaluated at the steady state R =

λ/β = 1. Using the chain rule, this is equal to

∂fω̃
∂R

∣∣∣∣
R=1

= ω1(ω2)− ψ(1)

(
1 + η

)
− 3

∂ψ

∂R

∣∣∣∣
R=1

. (A16)

A further application of the chain rule to the function ψ(R) leads to the expression

∂ψ

∂R

∣∣∣∣
R=1

=
φ(1) ∂W

∂R

∣∣
R=1
−W (1) ∂φ

∂R

∣∣∣
R=1

W (1)2
=
−9− 9(η − 1)

9
= −η. (A17)

Putting all these pieces together gives

∂fω̂
∂R

∣∣∣∣
R=1

=
3− ω2

2
− (1 + η) + 3η =

1− ω2 + 4η

2
, (A18)
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which is Eq. (23) in the body of the paper.

�

Appendix B. Analytic Solutions for Excess Demand

B.1. The generic optimization problem. Consider a person with CES preferences who lives

for T periods and has perfect foresight of future prices. This person solves the problem,

Problem 1.

max
{ctt,ctt+1,...,c

t
t+T−1}

a1(c
t
t)
α + a2(c

t
t+1)

α + . . .+ aT (ctt+T−1)
α

α
, (B1)

subject to the lifetime budget constraint

T∑
i=1

Qt−1+i

t ct−1+i =
T∑
i=1

Qt−1+i

t w̃i. (B2)

Here, cts is consumption in period s of a person born in period t, i ∈ 1, . . . T is age, and

w̃i is after-tax endowment. The parameters ai are utility weights and α ≤ 1 is a curvature

parameter which is related to intertemporal substitution, η, by the identity

η ≡ 1

1− α
. (B3)

The term Qkt , defined by the expression

Qkt ≡
k∏

j=t+1

1

Rj
, Qtt = 1, (B4)

is the relative price at date t of a commodity for delivery at date k.

This optimization problem includes the case of a constant discount factor β for which

[a1, a2 . . . , aT ] =
[
1, β, . . . , βT−1

]
(B5)

and logarithmic preferences which is the limiting case when α → 0. We permit the discount

factor to vary with age to nest the Kehoe and Levine (1983) example which we use to cross-check

our results.

Proposition 2. The solution to Problem 1 is given by

ĉtt−1+k =
aηk
∑T

i=1

(
Qt−1+it w̃i

)(
Qt−1+kt

)η∑T
i=1

(
Qt−1+it

)1−η
aηi

, k = 1, . . . , T. (B6)

where ĉtt−1+k denotes the consumption, at time t− 1 + k, of an agent born at time t.
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Proof. The result follows directly from substituting the first-order conditions into the budget

constraint and rearranging terms. �

B.2. Non-generic optimization problems. Let j be an index that runs from 1 to T − 1.

Consider a non-generic person born in period 1− j with real assets ν1−j ≡ λ1−jb1 who lives for

T − j periods. This person solves Problem 2

Problem 2.

max
{c1−j1 ,...,c1−j1−j+T−1}

aT−j+1(c
1−j
1 )α + aT−j+2(c

1−j
2 )α + . . .+ aT (c1−j1−j+T−1)

α

α
, j = 1 . . . , T − 1

(B7)

subject to the lifetime budget constraint

(1−j)+T−1∑
k=1

Qk1
(
c1−jk − w̃k−(1−j)+1

)
≤ λ1−jb1, (B8)

Proposition 3. Let k ∈ {1, . . . , T − j}. The solution to Problem 2 is given by

ĉ1−jk =
aηk+j

(
ν1−j +

∑T−j
i=1 Qitw̃j+i

)
(
Qt+k−1t

)η∑T−j
i=1

(
Qit
)1−η

aηj+i

, k = 1 . . . 1− j + T − 1. (B9)

Proof. The problem above is identical to a generic one solved by an agent who has T −j periods

to live, whose endowments are {w̃j+1 + ν1−j , w̃j+2, . . . , w̃T }, and whose preference parameters

in the utility function are {aj+1, aj+2, . . . , aT }. �

Appendix C. Equilibrium as the Solution to a Difference Equation

In Section 4 we showed that equilibria of the 3−generation model can be characterized as

the solution to a difference equation, determined by the behaviour of the generic generations,

together with set of initial conditions determined by the behavior of the on-generic generations.

In this Appendix we generalize our analysis to the T−generation model.

C.1. Generic Equilibrium Conditions for the T−Generation Case. A steady-state equi-

librium is a non-negative real number R̄ and a (possibly negative) real number b̄ that solve the

equations,

f(R̄, R̄, . . . , R̄) = b̄+ d, b̄ (1− R̄) = R̄ d. (C1)

Let {R̄, b̄} be a steady state equilibrium and let

R̃t ≡ Rt − R̄, and b̃t ≡ bt − b̄, (C2)
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represent deviations of bt and Rt from their steady state values. Define a vector

Xt ≡ [Rt+T−1, Rt+T−2, . . . , Rt−T+4, bt]
>, (C3)

of length 2T − 3 and a function F (·),

F (Xt, Xt−1) ≡

 f(Rt−T+3, Rt−T+4, . . . , Rt+T−2, Rt+T−1) − bt + dt

bt − Rt(bt−1 + dt−1)

 , (C4)

and let J1 and J2 represent the partial derivatives of this function with respect to Xt and Xt−1.

Using this notation, the local dynamics of equilibrium sequences close to the steady state can

be approximated as solutions to the linear difference equation

J1X̃t = J2X̃t−1, t = T − 1, . . . (C5)

with initial condition

X̃T−2 = X̄T−2. (C6)

The local stability of these equations depends on the eigenvalues of the matrix

J ≡ J−11 J2. (C7)

If one or more roots of the matrix J is outside the unit circle there is no guarantee that

sequences of interest factors and government debt generated by Equation (C5) will remain

bounded. To ensure stability, we must choose initial conditions that place X̃T−2 in the linear

subspace associated with the stable eigenvalues of J . The initial conditions are determined by

the non-generic equilibrium conditions which we turn to next.

C.2. Non-Generic Equilibrium Conditions for the T−Generation Case. Asset market

equilibrium in periods 1 through T − 2 is characterized by a family of functions, gTt (·), one

family for each value of T . These functions are different at each date t, because the asset

demand functions of the non-generic generations depend on the initial wealth distribution and

the initial price level as well as on real interest rates. To cut down on notation, we have

suppressed the dependence of gTt (·) on L.

To understand the structure of non-generic asset demand equations it helps to build intu-

ition by considering the case of T = 4. This is the simplest example where we must keep track
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of the debt-accumulation equations in the T − 2 initial periods. For the case of T = 4, there

are two non-generic asset demand equations and one non-generic debt accumulation equation.

These equations are described by the expression

G4(Z4
0 ) ≡


g41 (R2, R3, R4, b1) − (b1 + d)

g42 (R2, R3, R4, R5, b1) − (b2 + d)

b2 − R2 (b1 + d)

 = 0, (C8)

where the vector Z4
0 , is a set of variables that are determined, in equilibrium, by asset market

clearing and government asset accumulation in the initial T − 2 periods of the model. For the

case of T = 4, the equation G4(·) = 0 places 3 restrictions on the 6 elements of Z4
0 .

Z4
0 ≡ [R5, R4, R3, R2, b2, b1]

> ≡ [XT−2, YT−2]
>, (C9)

where YT−2 is the vector

YT−2 ≡ [b1]
>, (C10)

and XT−2 is a vector of initial conditions to the vector-valued difference equation characterized

by equations (27) and (2).

This example can be generalized. For the T -generation model, ZT0 contains 3T−6 elements,

equal to the union of the terms in the over-braces of the following expression,

ZT0 ≡ [

2T−3︷ ︸︸ ︷
R2T−3, R2T−4, . . . , R2, bT−2,

T−3︷ ︸︸ ︷
bT−3, . . . , b2, b1]

> ≡ [XT−2, YT−2]
>. (C11)

The function G(·) contains 2T − 5 rows,

GT (ZT0 ) ≡



gT1 (R2, . . . , R1+T−2, R1+T−1, b1) − (b1 + d)
...

...

gTT−2 (R2, . . . , R2T−4, R2T−3, b1) − (bT−2 + d)

b2 − R2 (b1 + d)
...

...

bT−2 − RT−1 (bT−3 + d)


= 0, (C12)

and the equation GT (·) = 0 places 2T − 5 restrictions on the 3T − 6 elements of the unknown

vector ZT0 . Subtracting the number of these restrictions from the number of initial variables

leaves T − 1 non-predetermined elements of XT−2. In Appendix D we describe how the non-

generic equilibrium equations may be combined with the assumption that equilibrium sequences
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must remain bounded to characterize the determinacy properties of equilibria.

�

Appendix D. Proof of Proposition 1

To determine the conditions for local uniqueness of equilibrium close to a given steady-state

equilibrium we seek a relationship between the roots of the matrix J and the number of initial

conditions. We begin by describing the construction of J .

Proof. To find conditions under which equilibrium sequences remain bounded, we exploit the

properties of the Jordan decomposition of J , which we write as

J = QΛQ−1, (D1)

where the matrix J = J−11 J2 and,17

J1Xt ≡

J1︷ ︸︸ ︷

ft+T−1 ft+T−2 · · · ft+1 · · · ft−T+5 ft−T+4 −1

0 1 · · · 0 · · · 0 0 0
...

...
. . .

...
...

...
...

...

0 0 · · · 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 · · · 0 · · · 1 0 0

0 0 · · · 0 · · · 0 1 0

0 0 · · · 0 · · · 0 0 1



X̃t︷ ︸︸ ︷

R̃t+T−1

R̃t+T−2
...

R̃t+1

...

R̃t−T+5

R̃t−T+4

b̃t



, (D2)

J2Xt−1 ≡

J2︷ ︸︸ ︷

0 · · · 0 · · · 0 −ft−T+3 0

1 · · · 0 · · · 0 0 0
...

. . .
...

...
...

...
...

0 · · · 1 · · · 0 0 0
...

...
. . .

...
...

...
...

0 · · · 0
. . .

... 0 0

0 · · · 0 · · · 1 0 0

0 · · · b̄+ d · · · 0 0 R̄



X̃t−1︷ ︸︸ ︷

R̃t+T−2

R̃t+T−3
...

R̃t
...

R̃t−T+4

R̃t−T+3

b̃t−1



, (D3)

17An updated solution method for rational expectations models that allows either J1 or J2 or both to be
singular can be found in Sims (2001). Solution methods for models with indeterminacy are provided in Farmer
et al. (2015).
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where fk is the partial derivative of the function f with respect to Rk evaluated at the steady

state {R̄, b̄}.

The matrix Λ is an upper triangular matrix with the eigenvalues of J on the diagonal

and Q is the matrix of left eigenvectors of J . The restrictions that prevent Xt from becoming

unbounded are found by premultiplying X̃T−2 by the rows of Q−1 associated with the unstable

eigenvalues of J and equating the product to zero. We refer to the matrix that contains these

rows as Q−1u .18

Let K be the number of eigenvalues of J that lie outside the unit circle. The requirement

that equilibrium sequences remain bounded places K linear restrictions on the initial vector

XT−2 which we express with the matrix equation

Q−1u XT−2 = 0, (D4)

where Qu is a K × 2T − 3 matrix.

Next, we turn to the non-generic generations which we index by their date of birth, mea-

sured by an index 1 − j where j runs from 1 to T − 1. We represent the financial wealth of

generation 1− j by a real number λ1−j which may be positive or negative and that represents

the share, owned by generation 1− j, of the period 1 dollar-valued government debt.

ν1−j ≡ λ1−j
B0

p1
. (D5)

We refer to the vector of shares as L ≡ {λ0, λ−1, . . . , λ2−T }. These shares sum to 1 as a

consequence of asset market clearing.19 In Appendix B

To determine the number of restrictions that come from the non-generic equilibrium con-

ditions, we turn to the function GT (·) derived in Appendix C.2. This function depends on ZT0

and on the initial nominal wealth distribution L. To ensure that our local analysis remains

valid we first compute the steady state distribution of wealth from the equation20

ν1−j = R̄s2−j1 (R̄, R̄, . . . , R̄), j = 1, . . . , T − 1, (D6)

18In practice, the Jordan decomposition is numerically unstable but there are several good computational
methods to compute Q−1

u that are implemented in all modern programming languages. The reader is referred to
Golub and VanLoan (1996) for a description of the algorithms used to solve problems of this kind and to Farmer
(1999) for an accessible introduction to solution methods for rational expectations models with indeterminate
equilibria.

19We require B0 6= 0 for the shares λ to be well-defined. See Niepelt (2004) for a discussion of a conceptual
issue associated with non-zero values of B0.

20Here, s1−j1 is the savings function defined in Equation (26) evaluated at the steady state sequence of real
interest rates.
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and we use the identity,

λ1−j ≡
ν1−j

b̄
, (D7)

to recover the steady-state values of λ1−j . In what follows we set the initial asset shares to

these steady state values.

Let GX , GY be the Jacobians of the function GT (·) with respect to XT−2 and YT−2 eval-

uated at the steady-state equilibrium {R̄, b̄} and let X̃T−2, ỸT−2 be deviations of these vectors

from their steady-state values. Using this notation, the predetermined equilibrium conditions

place the following 2T − 5 restrictions on the 3T − 6 unknowns ZT0 ≡ [XT−2, YT−2].

GXX̃T−2 +GY ỸT−2 = 0. (D8)

The uniqueness of equilibrium then comes down to the question of the number of solutions

to the equations
(2T−5+K)×(3T−6) GX GY

Q−1u 0


(3T−6)×1 X̃T−2

ỸT−2

 =

(2T−5+K)×(3T−6) Ḡ

0

 , (D9)

where Ḡ 6= 0 represents the perturbations of the initial wealth distribution L from its steady-

state value. It follows immediately that a sufficient condition for the existence of a unique

equilibrium is that the matrix

M≡

 GX GY

Q−1u 0

 , (D10)

is square and non singular.

If K > T − 1 then M has more rows than columns and, except for the special case where

the rows of M are linearly dependent, Equation (D9) has no solution.

If K = T − 1 thenM is square. IfM also has full row rank, there exists a unique solution

to this equation given by the expression XT−2

YT−2

 =M−1
 Ḡ

0

 . (D11)

Finally, if K ≤ T − 1 then M has fewer rows than columns. In this case we are free to

append a (T − 1−K)× (3T − 6) matrix of linear restrictions to Equation (D9). For example,

if T − 1−K = 1 we can append a row that sets b1 = b̄1. �
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Appendix E. Inflation Under a Taylor Rule

In this Appendix we derive equations that characterize the behaviour of the inflation rate

when the Taylor Rule is passive and when it is active.

E.1. The case of a passive Taylor Rule. Using the Taylor rule to substitute for 1 + it in

the Fisher parity condition yields the following difference equation for inflation

Πt+1 =

(
R̄

Rt+1

)(
Πt

Π̄

)φπ
Πt, for all t = 1, . . .∞ (E1)

which we linearize around a steady state to obtain

Π̃t+1 = (1 + φπ) Π̃t − κR̃t+1, for all t = 1, . . . ,∞. (E2)

Here, κ ≡ Π̄/R̄ and the tilde denotes deviations from the steady state. Iterating Equation (E2)

we obtain

lim
T→∞

Π̃T+1 = lim
T→∞

(1 + φπ)T Π̃1 − lim
T→∞

T∑
s=1

(1 + φπ)T−s R̃T+1. (E3)

This is Equation (32) in Section 9.

E.2. The case of an active Taylor Rule. To find conditions under which inflation is bounded

when the Taylor Rule is active, we use Equation E2 to write the inflation rate at date t as a

function of all future real interest rates and all future inflation rates,

Π̃t = κ
+∞∑
s=1

(
1

1 + φπ

)s
R̃t+s + lim

T−→∞

(
1

1 + φπ

)T
Π̃t+T . (E4)

If inflation is bounded, and if the Taylor Rule is active, the second term on the right side of

Equation (33) is zero. Evaluating Equation (E4) at t = 1, we arrive the following expression

for the initial gross inflation rate.

Π̃1 ≡
(

Π̃1 − Π̄
)

= κ

+∞∑
s=1

(
1

1 + φπ

)s
R̃1+s (E5)

Using the definition of inflation in period 1, Equation (E5) places the following restriction on

the initial price level,

p1 = p0

(
Π̄ + κ

+∞∑
s=1

(
1

1 + φπ

)s (
R1+s − R̄

))
. (E6)

This is Equation (33) in Section 9.

�
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