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Abstract. The Fiscal Theory of the Price Level (FTPL) is the claim that, in a popular class of
theoretical models, the price level is sometimes determined by fiscal policy rather than monetary
policy. The models where this claim has been established assume that all decisions are made
by an infinitely-lived representative agent. We present an alternative, arguably more realistic
model, populated by sixty-two generations of people. We calibrate our model to an income
profile from U.S. data and we show that the FTPL breaks down. In our model, the price level
and the real interest rate are indeterminate, even when monetary and fiscal policy are both
active. Our findings challenge established views about what constitutes a good combination of
fiscal and monetary policies.

1. Introduction

New Keynesian economists classify monetary and fiscal policies as active or passive. If the

central bank raises the interest rate more than one-for-one in response to inflation, monetary

policy is said to be active. If the central bank raises the interest rate less than one-for-one

in response to inflation, monetary policy is said to be passive. If the fiscal authority borrows

to finance an arbitrary path of expenditure and taxes, fiscal policy is said to be active. If the

fiscal authority adjusts its expenditures and the tax rate to ensure fiscal solvency for all possible

paths of the real interest rate, fiscal policy is said to be passive.1

In the New Keynesian (NK) model, uniqueness of equilibrium requires either that monetary

policy is active and fiscal policy is passive, or that monetary policy is passive and fiscal policy

† Farmer: Professor of Economics: University of Warwick, Research Director: National Institute of Economic
and Social Research and Distinguished Emeritus Professor: University of California Los Angeles.
‡ Zabczyk: Senior Financial Sector Expert: Monetary Policy Modeling Unit, Monetary and Capital Markets
Department, International Monetary Fund.

∗ The paper’s findings, interpretations, and conclusions are entirely those of the authors and do not nec-
essarily represent the views of the International Monetary Fund, its Executive Directors, or the countries
they represent. We are grateful to Leland E. Farmer, C. Roxanne Farmer, Giovanni Nicolò, Patrick Pintus,
Konstantin Platonov, Herakles Polemarchakis, Thomas Sargent, Jaume Ventura and Jerzy Zabczyk, along with
conference participants at the Bank of England, Czech National Bank, International Monetary Fund, London
School of Economics, National Bank of Poland, Society for Economic Dynamics and University of Warwick, for
their comments and suggestions. An earlier version of the paper with the title “The Fiscal Theory of the Price
Level in Overlapping Generations Models” appeared as CEPR Discussion Paper 13432 and NBER Working
paper 25445. Farmer reserves a special thanks for Costas Azariadis, who suggested that he work on this problem
more than thirty years ago. Any remaining errors are those of the authors.

1The terminology of active and passive policies originated with Leeper (1991).
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is active. The fact that a passive monetary policy in combination with an active fiscal policy

leads to a unique price level is referred to as the fiscal theory of the price level (FTPL).

After the 2008 financial crisis, the Federal Reserve System, the European Central Bank and

the Bank of England, maintained passive interest rate policies with a constant nominal interest

rate peg for more than a decade. When the central bank pegs the interest rate, standard

economic theory predicts that the price level is indeterminate (Sargent and Wallace, 1975;

McCallum, 1981). Advocates of the FTPL claim that the price level is nevertheless uniquely

determined even when the interest rate is pegged. Their argument rests on a reinterpretation

of the government’s debt accumulation equation which is seen, not as a budget constraint, but,

as a debt valuation equation. The fact that interest rates have been characterized by a peg at

or close to zero for a decade or more in many developed economies is one reason why the FTPL

has received considerable attention in recent years.2

The FTPL argument for price-level uniqueness is typically made in the context of an

infinitely-lived, representative agent (RA) model.3 In this paper, we study the implications of

the FTPL in the Overlapping Generations (OLG) model. We provide an algorithm to construct

the steady-state equilibria of a class of T-period OLG models and we study the local properties

of dynamic equilibria around the steady-states of these models. The OLG model is known to

possess an indeterminate steady-state equilibrium where money has value (Samuelson, 1958;

Gale, 1973). Although indeterminacy of a monetary steady-state equilibrium could theoreti-

cally be of arbitrary degree, previous known examples of this phenomenon have been widely

considered to be unrealistic.

We provide an example of a sixty-two generation OLG model, where people are endowed

with an income profile calibrated to fit U.S. data. We show that our model possesses a steady-

state equilibrium where money has positive value. When monetary policy is passive and fiscal

policy is active, this steady state equilibrium displays two degrees of indeterminacy. It is not

just the initial price level that remains unexplained by economic fundamentals; our sixty-two

generation calibrated model also fails to uniquely determine the real interest rate. If we assume

that monetary and fiscal policy are both active, the degree of indeterminacy is reduced from

two to one. In this case a linear combination of the real interest rate and the price level is

2The FTPL began with papers by Leeper (1991), Sims (1994) and Woodford (1994), and it has been promoted
by Cochrane (2005, 2018, 2019) as a theory of price level determination. Prominent critics of the FTPL include
Buiter (2002, 2017), McCallum (1999, 2001, 2003) and Niepelt (2004).

3Bennett McCallum and Edward Nelson, (2005) survey this literature.
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determinate, but the model is still unable to uniquely determine the price level as a function of

economic fundamentals.

Our model has implications for the constraints placed on the fiscal authority by the dictates

of fiscal sustainability. It is often argued that government should spend less or tax more in a

recession. Proponents of this argument claim that failure to adjust the deficit in response to

endogenous fluctuations in tax revenues could lead to an exploding and unsustainable level of

government debt. In our calibrated example, a fiscal policy that does not respond to endogenous

fluctuations in debt can be pursued without leading to an exploding debt level.4

In Section 2 we review related literature and in Section 3 we explain the idea behind

the FTPL. In Sections 4 and 5 we establish the conditions for price-level and interest rate

determinacy in the T -generation OLG model and in Section 6 we develop a calibrated sixty-two

generation example. Our example contains a locally stable and dynamically efficient equilibrium

in which government debt converges to a positive number for arbitrary values of the initial price

level and the initial real interest rate.5

Sections 4 and 5 study the case of an active fiscal policy and a passive monetary policy.

This corresponds to the OLG model with fiat money. In Section 7 we check the robustness of

our results to alternative calibrations for the discount rate and the coefficient of risk aversion

and in Section 8 we explain how our results would change if monetary policy and fiscal policy

were both passive or both active. Finally, in Section 9 we present a brief conclusion.

2. The Relationship of our Work to Previous Literature

Our argument rests on the fact that in OLG models, the local dynamics of prices close to

any given steady-state may be indeterminate of arbitrary degree. This result was established

by Kehoe and Levine (1985) in the context of a two-period-lived model with multiple goods

and multiple agents.6 To map the Kehoe-Levine results into the literature on the FTPL, we

4Within limits that depend on the parameters of the model, a fiscal authority can increase its expenditure
without raising taxes. This is possible in the OLG model because a higher level of initial debt redistributes
resources to current generations from future generations and is associated with a different equilibrium path
of real interest rates. In Farmer and Zabczyk (2018) we showed how this mechanism operates in a tractable
two-generation example. This paper extends our previous analysis to a more realistically calibrated sixty-two
generation model.

5An equilibrium in which the interest rate is greater than or equal to the growth rate is said to be dynamically
efficient. A steady-state equilibrium in which the interest rate is less than the growth rate is said to be dynamically
inefficient. In the representative agent model, dynamically inefficient equilibria cannot exist because they imply
that the wealth of the representative agent is unbounded. But in the OLG model, dynamically inefficient equilibria
are common, and, in many examples of OLG models, dynamic inefficiency is associated with indeterminacy. In
our sixty-two generation model however, there exist indeterminate equilibria that are dynamically efficient.

6It follows from the results of Balasko and Shell (1981) that the two-period assumption is unrestrictive as
long as there are multiple agents and multiple goods.
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study instead, a model with a single good in each period and a single type of person who lives

for T -periods and discounts the future at a constant rate. We also depart from Kehoe-Levine’s

assumption that the outside asset is a fixed stock of money. We assume instead that the

government issues an interest-bearing nominal liability and we allow the government to create

more of this liability to pay interest on outstanding debt as well as to purchase goods.

Previous examples of indeterminate equilibria in overlapping generations models have been

restricted to two-generation or three-generation models in which indeterminacy was associated

with the absence of money (Samuelson, 1958), negative money (Gale, 1973; Farmer, 1986),

or unrealistic calibrations generally considered to be empirically irrelevant Azariadis (1981);

Farmer and Woodford (1997); Kehoe and Levine (1983). Our paper is the first to provide a

long-lived example of an economy where the endowment profile is matched to U.S. micro data,

and where there exists an indeterminate steady-state equilibrium when both monetary and fiscal

policy are active. In contrast to Benhabib et al. (2001), our results are not driven by global

or non-linear dynamics since we explicitly restrict attention to the properties of a linearized

system of equilibrium conditions around a monetary steady state.

An extensive literature uses OLG models to answer questions of political economy (Auer-

bach, 2003; Auerbach and Kotlikoff, 1987; Ŕıos-Rull, 1996), but almost all of it either ignores

the possibility of indeterminacy or calibrates models to explicitly rule it out. We suspect this

oversight may be related, at least in part, to an influential paper by Aiyagari (1985) who showed

that, under some assumptions, the OLG model becomes close to the RA model as the length of

life increases. Even though average life expectancy has increased significantly we consider the

limiting case of immortality a theoretical curiosity.7

A number of authors have studied the wealth distribution in stochastic overlapping gen-

erations models with and without complete securities markets. One branch of this literature

includes papers by Ŕıos-Rull and Quadrini (1997), Castañeda et al. (2003) and Kubler and

Schmedders (2011). Our work is peripherally related to that literature but we study a differ-

ent question. A second branch of this literature investigates the existence of non-fundamental

equilibria in overlapping generations models. A non-exhaustive list of papers, following Tirole’s

seminal contribution (Tirole, 1985), would include Martin and Ventura (2011, 2012), Miao and

Wang (2012), Miao et al. (2012) and Azariadis et al. (2015). The model we develop in this

paper contains what Tirole would call ‘bubbly equilibria’ but, unlike these papers, we develop

7Importantly, the Aiyagari (1985) result requires the endowments of agents to be bounded away from zero.
Pietro Reichlin (1992) has shown that, when one drops that assumption, OLG models display very rich behaviours
even when people live potentially forever, but face a probability of death each period as in Blanchard (1985).
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our argument in the context of a complete markets overlapping generations model without the

credit constraints introduced by these authors.

Bassetto and Cui (2018) revisit the implications of the FTPL in models in which assets

differ in characteristics because of risk, or because debt provides liquidity services. In contrast

to their work, our results do not rely on dynamic inefficiency, risk premia or liquidity effects.

We show that the price level is indeterminate in a model where the steady state equilibrium is

dynamically efficient and where there are no frictions or rigidities of any kind other than the

natural assumption that people are born and die at different dates.

Eggertsson et al. (2019) study steady-state equilibria in a fifty-six generation overlapping

generations model with sticky prices. They use their model to discuss the idea that a negative

real interest rate may be inconsistent with full employment, a concept that they refer to as

‘secular stagnation’. In one section of their paper, Eggertsson et al. study the transition

path from one steady-state equilibrium to another. Their solution method assumes that this

transition path is unique. This is an assumption that is called into question by the analysis in

our paper.

3. The Fiscal Theory of the Price Level

In this section we outline the idea behind the Fiscal Theory of the Price Level and we

explain why it fails to hold in the overlapping generations model.

3.1. The debt accumulation equation. The government purchases gt units of a consumption

good which it finances with dollar-denominated pure discount bonds and lump-sum taxes, τ t.

Let Bt be the quantity of pure-discount bonds each of which promises to pay one dollar at date

t + 1 and let Qt be the date t dollar price of a discount bond. Further, let pt be the date t

dollar price of a consumption good. Using these definitions, government debt accumulation is

represented by the following equation,

QtBt + ptτ t = Bt−1 + ptgt.

Define it to be the net nominal interest rate from period t to period t+ 1, and let Πt+1, be

the gross inflation rate. These variables are given by,

it ≡
1

Qt
− 1 and, Πt+1 ≡

pt+1

pt
.
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Further, let

bt ≡
Bt−1
pt

,

be the real value of government debt maturing in period t and define the real primary deficit as

dt ≡ gt − τ t,

where the negative of dt is the real primary surplus. Let Rt+1 represent the gross real return

from t to t+ 1, which from the Fisher-parity condition equals

Rt+1 ≡
1 + it
Πt+1

. (1)

We can combine these definitions to rewrite the government budget equation in purely real

terms

bt+1 = Rt+1(bt + dt). (2)

Although Equation (2) is expressed in terms of real variables, the debt instrument issued by

the treasury is nominal. It follows that the real value of debt in period 1 is determined by the

period 1 price level through the definition

b1 ≡
B0

p1
.

Advocates of the FTPL argue that Equation (2) is not a budget equation in the usual

sense; it is a debt valuation equation. To understand their argument, let Qkt ,

Qkt ≡
k∏

j=t+1

1

Rj
, Qtt = 1,

be the relative price at date t of a commodity for delivery at date k. Now, iterate Equation (2)

forwards to write the current real value of debt outstanding as the present value of all future

surpluses,

B0

p1
= −

∞∑
t=1

Qt1dt + lim
T→∞

QT1 bT . (3)

If the government were to be treated in the same way as other agents, Equation (3) would

act as a constraint on feasible paths for the sequence of surpluses, −{dt}∞t=1, that would be

required to hold for all paths of {Qt1}∞t=1 and all initial price levels, p1. In New-Keynesian

models, in which the central bank follows a passive monetary policy, the initial price level

would be indeterminate if the government were constrained to balance its budget in this way.

Advocates of the FTPL argue that government should be treated differently from other agents
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in a general equilibrium model. When monetary policy is passive, Equation (3) should, they

claim, be treated as a debt valuation equation that determines the value of p1 as a function of

the specific path of primary surpluses −{dt}∞t=1 chosen by the treasury. All initial price levels,

other than the specific value of p1 that satisfies Equation (3), are infeasible since they lead to

paths of government debt that eventually become unbounded.

In contrast, in the example we construct in Section 6, equilibrium real interest rates are

not pinned down uniquely. It follows that Equation (3) may hold for more than one value of

the price level p1. Our example implies that the logic behind the FTPL cannot be extended to

the overlapping generations model and it suggests that indeterminacy may be more prevalent

in realistically calibrated models than previously believed.

4. Equilibria in the T-Generation Overlapping Generations Model

Sections 4 and 5 contain our theoretical results. The reader who is interested in the

practical application of our work is invited to skip ahead to Section 6 where we provide a

sixty-two generation model that illustrates our key findings.

We study a T-generation overlapping generations model in which the government issues

a nominal liability, Bt, which it uses to finance a real budget deficit, dt, and to pay interest

rate on outstanding debt at a constant rate, ī. The inflation rate can be recovered from the

equilibria of our model through the Fisher-parity condition which implies that,

pt+1

pt
=

1 + ī

Rt+1
, t = 1, . . .∞.

The fact that dt is not responsive to variations in the value of outstanding debt implies that

fiscal policy is active. The fact that the interest rate is constant implies that monetary policy

is passive.

To characterize equilibria we derive two sets of equations. The first set, which we refer

to as generic equations, characterizes market clearing in period T − 1 and in all later periods.

The second set, which we refer to as non-generic equations, characterizes market clearing in the

first T − 2 periods. In period 1, the model is populated by the members of a young generic

generation who live for T periods and by the members of T − 1 non-generic generations with

horizons that vary from 1 period to T − 1 periods.

The non-generic generations are people born before the first period of the model. For

example, in a three-generation OLG model there is a generic young person who lives for three

periods, a non-generic middle-aged person who lives for two periods and a non-generic old

7



person who lives for one period. The T -generation model generalizes this concept and, in

the T -generation overlapping generations model, there are T − 1 non-generic generations. The

existence of non-generic generations gives rise to a set of non-generic equations that characterize

equilibrium in the first T − 2 periods. The non-generic generations begin life with dollar-

denominated financial assets or liabilities. The behaviour of these people is constrained by their

initial wealth positions which influences the market clearing equations in periods 1 through

T − 2.

T − 1 is the first period in which all market participants are generic. For periods T − 1 and

later we characterize equilibrium as the solution to a difference equation in a vector of economic

variables that includes 2(T − 2) interest rates and the real value of government debt. The non-

generic equations in periods 1 to T −2 provide the initial conditions for this difference equation

and the issue of determinacy comes down to the question: Do the non-generic equilibrium

conditions in periods 1 through T − 2 provide enough initial conditions to determine a unique

convergent path for the economic variables, close to the steady state?

4.1. The generic consumer’s problem. We refer to a person born in period t as generation

t and we use a superscript on a variable to denote generation and a subscript to denote calendar

time. For example, ctτ is consumption of generation t in period τ . We assume that after-tax

endowments, denoted by ω̃τ−t+1, are independent of calendar time and we index them by age. If

τ is generation and t is calendar time, then age is related to t and τ by the identity age ≡ τ−t+1.

Generation t has a utility function defined over consumption in periods t through t+T − 1

and the members of generation t solve the problem

max
{ctt,...,ctt+T−1}

U t(ctt, c
t
t+1, . . . , c

t
t+T−1),

such that
t+T−1∑
k=t

Qkt (ctk − w̃k−t+1) ≤ 0.

The solution to this problem is characterized by a set of T excess demand functions, one for

each period of life

x̃tk(Rt+1, . . . , Rt+T−2, Rt+T−1) ≡ ĉtk − w̃k−t+1, for k ∈ {t, . . . , t+ T − 1}.

We provide an explicit solution to this problem for the case of Constant Elasticity of Substitution

Preferences (CES), in Appendix A, Section A.1.

8



To smooth their consumption, the members of generation t trade in the asset markets by

buying or selling one-period dollar-denominated government bonds. Corresponding to the T

excess demand functions there are T − 1 savings functions {stk}, k ∈ {t, . . . , t+ T − 2} which

are computed recursively from the excess demand functions using the following expressions,

stt = −x̃tt,

stk+1 = Rk+1s
t
k − x̃tk+1, k = t, . . . , t+ T − 3.

(4)

There are T − 1, rather than T of these savings functions because we assume no bequest

motive and hence the optimal amount to save in the T ’th period of life is zero. We express the

dependence of the savings functions on the sequence of interest factors by the notation,

stk(Rt+1, . . . , Rt+T−2, Rt+T−1), k = t, . . . , t+ T − 2. (5)

4.2. The non-generic consumers’ problem. We index the non-generic generations by their

date of birth which we measure by an index 1− j where j runs from 1 to T − 1. The financial

wealth of generation 1 − j is represented by a real number λ1−j which may be positive or

negative and which represents the share, owned by generation 1 − j, of the period 1 dollar-

valued government debt.

ν1−j ≡ λ1−j
B0

p1
.

We denote initial government debt by a positive number, B0, and we refer to the vector of

shares as L ≡ {λ0, λ−1, . . . , λ2−T }. These shares sum to 1 as a consequence of asset market

clearing.8

The non-generic generations solve the problem,

max
{c1−j

1 ,...,c1−j
1−j+T−1}

U1−j
(
c1−j1 , c1−j2 , . . . , c1−j1−j+T−1

)
,

such that
(1−j)+T−1∑

k=1

Qk1
(
c1−jk − w̃k−(1−j)+1

)
≤ λ1−jb1,

where k − (1 − j) + 1 is the age of a member of generation 1 − j in period k. The solution

to this problem is characterized by a set of excess-demand functions, one for each generation

and each period. In Appendix A, Section A.2, we derive explicit functional forms for these

excess-demand functions for the case of CES preferences.

8We require B0 6= 0 for the shares λ to be well-defined. See Niepelt (2004) for a discussion of a conceptual
issue associated with non-zero values of B0.
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In Section 4.3 we use the generic asset demand functions to characterize equilibria as

solutions to a vector valued difference equation in a vector of economic variables. These variables

include 2(T − 2) real interest rates and the value of government debt. In Section 4.4, we use

the non-generic asset demand functions to derive a set of initial conditions to this equation.

4.3. The generic equilibrium equations. There are two components to the difference equa-

tion that characterizes equilibrium sequences. The first component is an expression for asset

market equilibrium. The second component is the government’s debt-accumulation equation.

We characterize asset market clearing by defining a function f(·) that we equate to gov-

ernment borrowing in period t,

f(Rt−T+3, Rt−T+4, . . . , Rt+T−2, Rt+T−1) = R−1t+1bt+1. (6)

f(·) is the sum of the savings functions, defined in Equation (5), of generations 1 to T − 1.

This is equated to the term R−1t+1bt+1 which represents the government borrowing requirement

at date t. Government borrowing is financed by issuing discount bonds bt+1 that sell for price

R−1t+1 in units of current consumption.

The second component to the equilibrium equation is government asset accumulation, which

we reproduce below,

bt+1 = Rt+1(bt + dt). (2)

4.4. The non-generic equilibrium equations. Asset market equilibrium in periods 1 through

T − 2 is characterized by a family of functions, gTt (·), one family for each value of T . These

functions are different at each date t, because the asset demand functions of the non-generic

generations depend on the initial wealth distribution and the initial price level as well as on real

interest rates. To cut down on notation, we have suppressed the dependence of gTt (·) on L.

To understand the structure of non-generic asset demand equations it helps to build intu-

ition by considering the case of T = 4. This is the simplest example where we must keep track

of the debt-accumulation equations in the T − 2 initial periods. For the case of T = 4, there

are two non-generic asset demand equations and one non-generic debt accumulation equation.

These equations are described by the expression

G4(Z4
0 ) ≡


g41 (R2, R3, R4, b1) − (b1 + d)

g42 (R2, R3, R4, R5, b1) − (b2 + d)

b2 − R2 (b1 + d)

 = 0,
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where the vector Z4
0 , is a set of variables that are determined, in equilibrium, by asset market

clearing and government asset accumulation in the initial T − 2 periods of the model. For the

case of T = 4, the equation G4(·) = 0 places 3 restrictions on the 6 elements of Z4
0 .

Z4
0 ≡ [R5, R4, R3, R2, b2, b1]

> ≡ [XT−2, YT−2]
>,

where YT−2 is the vector

YT−2 ≡ [b1]
>,

and XT−2 is a vector of initial conditions to the vector-valued difference equation characterized

by equations (6) and (2).

This example can be generalized. For the T -generation model, ZT0 contains 3T−6 elements,

equal to the union of the terms in the over-braces of the following expression,

ZT0 ≡ [

2T−3︷ ︸︸ ︷
R2T−3, R2T−4, . . . , R2, bT−2,

T−3︷ ︸︸ ︷
bT−3, . . . , b2, b1]

> ≡ [XT−2, YT−2]
>.

The function G(·) contains 2T − 5 rows,

GT (ZT0 ) ≡



gT1 (R2, . . . , R1+T−2, R1+T−1, b1) − (b1 + d)
...

...

gTT−2 (R2, . . . , R2T−4, R2T−3, b1) − (bT−2 + d)

b2 − R2 (b1 + d)
...

...

bT−2 − RT−1 (bT−3 + d)


= 0, (7)

and the equation GT (·) = 0 places 2T − 5 restrictions on the 3T − 6 elements of the unknown

vector ZT0 . Subtracting the number of these restrictions from the number of initial variables

leaves T −1 non-predetermined elements of XT−2. In Section 5 we describe how the non-generic

equilibrium equations may be combined with the assumption that equilibrium sequences must

remain bounded to characterize the determinacy properties of equilibria.

5. The Determinacy Properties of Equilibria

Blanchard and Kahn (1980) derived a set of conditions on linear rational expectations

models that guarantee the uniqueness of a solution. In this section we derive these conditions

for our model in the neighbourhood of a steady-state equilibrium.
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5.1. Steady state equilibria. A steady-state equilibrium is a non-negative real number R̄ and

a (possibly negative) real number b̄ that solve the equations,

f(R̄, R̄, . . . , R̄) = b̄+ d, b̄ (1− R̄) = R̄ d.

This system of non-linear equations has at least two solutions and in the important special

case when d = 0, one of these solutions is given by R̄ = 1 and the others are solutions to the

equation f(R̄, R̄, . . . , R̄) = 0. Following Gale (1973) we refer to the first of these solutions as

the golden-rule and to the others as autarkic.

5.2. Local dynamic equilibria. Let {R̄, b̄} be a steady state equilibrium and let

R̃t ≡ Rt − R̄, and b̃t ≡ bt − b̄,

represent deviations of bt and Rt from their steady state values. Define a vector

Xt ≡ [Rt+T−1, Rt+T−2, . . . , Rt−T+4, bt]
>,

and a function F (·),

F (Xt, Xt−1) ≡

 f(Rt−T+3, Rt−T+4, . . . , Rt+T−2, Rt+T−1) − bt + dt

bt − Rt(bt−1 + dt−1)

 ,
and let J1 and J2 represent the partial derivatives of this function with respect to Xt and Xt−1.

Using these definitions, consider the following matrix expressions,

J1Xt ≡

J1︷ ︸︸ ︷

ft+T−1 ft+T−2 · · · ft+1 · · · ft−T+5 ft−T+4 −1

0 1 · · · 0 · · · 0 0 0
...

...
. . .

...
...

...
...

...

0 0 · · · 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 · · · 0 · · · 1 0 0

0 0 · · · 0 · · · 0 1 0

0 0 · · · 0 · · · 0 0 1



X̃t︷ ︸︸ ︷

R̃t+T−1

R̃t+T−2
...

R̃t+1

...

R̃t−T+5

R̃t−T+4

b̃t



,
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J2Xt−1 ≡

J2︷ ︸︸ ︷

0 · · · 0 · · · 0 −ft−T+3 0

1 · · · 0 · · · 0 0 0
...

. . .
...

...
...

...
...

0 · · · 1 · · · 0 0 0
...

...
. . .

...
...

...
...

0 · · · 0
. . .

... 0 0

0 · · · 0 · · · 1 0 0

0 · · · b̄+ d · · · 0 0 R̄



X̃t−1︷ ︸︸ ︷

R̃t+T−2

R̃t+T−3
...

R̃t
...

R̃t−T+4

R̃t−T+3

b̃t−1



,

where fk is the partial derivative of the function f with respect to Rk evaluated at the steady

state {R̄, b̄}. Using this notation, the local dynamics of equilibrium sequences close to the steady

state can be approximated as solutions to the linear difference equation

J1X̃t = J2X̃t−1, t = T − 1, . . . (8)

with initial condition

X̃T−2 = X̄T−2. (9)

The local stability of these equations depends on the eigenvalues of the matrix

J ≡ J−11 J2.

If one or more roots of the matrix J is outside the unit circle there is no guarantee that se-

quences of interest factors and government debt generated by Equation (8) will remain bounded.

To ensure stability, we must choose initial conditions that place X̃T−2 in the linear subspace

associated with the stable eigenvalues of J . In Appendix B we derive the conditions that guar-

antee local boundedness of equilibrium sequences and we combine them with the non-generic

market clearing equations to find a set of conditions under which an equilibrium is determinate.

Our results can be summarized in the following proposition.9

Proposition 1 (Blanchard-Kahn). Let K denote the number of eigenvalues of J with modulus

greater than 1.

9 An updated solution method for rational expectations models that allows either J1 or J2 or both to be
singular can be found in Sims (2001). Solution methods for models with indeterminacy are provided in Farmer
et al. (2015).
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• If K > T − 1 there are no bounded sequences that satisfy the equilibrium conditions in

the neighbourhood of X̄. In this case equilibrium does not exist.

• If K = T −1 there is a unique bounded sequence that satisfies the equilibrium equations.

Further, this sequence converges asymptotically to the steady state
(
R̄, b̄

)
. In this case

the steady state equilibrium
(
R̄, b̄

)
is determinate.

• If K ∈ {0, . . . , T − 2} there is a T − 1 − K dimensional subspace of initial conditions

that satisfy the equilibrium equations. All of these initial conditions are associated with

sequences that converge asymptotically to the steady state
(
R̄, b̄

)
. In this case the steady

state equilibrium
(
R̄, b̄

)
is indeterminate with degree of indeterminacy equal to T−1−K.

Proof. See Appendix B. �

In our model fiscal policy is active but monetary policy is passive. According to the FTPL

this policy mix should lead to a unique initial price level. In Section 6 we provide an example

of an economy with a steady-state equilibrium where money has value and where the FTPL

fails to hold. In this example, it is not only the initial price level that is indeterminate; it is

also the initial real interest rate. In Section 7 we show that our example is robust to alternative

parameterizations and in Section 8 we discuss the behaviour of our model under alternative

monetary and fiscal policy regimes.

6. A Sixty-Two Generation Example

In this section we construct a sixty-two generation model where each generation begins its

economic life at age 18 and in which a period corresponds to one year. Our sixty-two generation

example is inspired by Kehoe and Levine (1983) who provide a three-generation OLG model

with CES preferences, an endowment profile of [3, 15, 2] and utility weights on the three periods

of life of [2, 2, 1]. Their example displays four steady-state equilibria, two of which display one

degree of indeterminacy, one of which is determinate and one of which displays two degrees of

indeterminacy.10

To see if the Kehoe-Levine example might provide a plausible explanation of a real-world

economy, we calibrated the income profile of a representative generation to U.S. data and we

modified the preference weights to allow for a constant discount rate. We found that the key

features of their example are the hump-shaped income profile and a coefficient of relative risk

aversion of 6 which is well within the bounds of calibrated models in the macro-finance literature.

10The code used to generate all of our results is available online and is documented in an accompanying online
document “Numerical Recipes”. Our code also replicates the findings reported in Kehoe and Levine (1983).
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In our sixty-two generation example, people maximize the utility function,

u
(
ctt, . . . , c

t
t+61

)
=

62∑
i=1

βi−1
(

[ctt+i−1]
α − 1

α

)
.

Explicit formulas for the excess demand functions for this functional form are provided in

Appendix A.

We graph our calibrated income profile in Figure 1. Our representative generation enters the

labour force at age 18, retires at age 66, and lives to age 79. We chose the lifespan to correspond

to current U.S. life expectancy at birth and we chose the retirement age to correspond to the age

at which a U.S. adult becomes eligible for social security benefits. For the working-age portion

of this profile we use data from Guvenen et al. (2015) which is available for ages 25 to 60. The

working-age income profiles for ages 18 to 24 and for ages 61 to 66, were extrapolated to earlier

and later years using log-linear interpolation. For the retirement portion we used data from the

U.S. Social Security Administration.
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Figure 1. Normalized Endowment Profile. U.S. Data in Solid Red: Interpo-
lated Data in Dashed Blue.

U.S. retirement income comes from three sources; private pensions, government social se-

curity benefits, and Supplemental Security Income. We treat private pensions and government

social security benefits as perfect substitutes for private savings since the amount received in
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retirement is a function of the amount contributed while working. To calibrate the available re-

tirement income that is independent of contributions, we used Supplementary Security Income

which, for the U.S., we estimate at 0.137% of GDP.11

For the remaining parameters of our model we chose a budget deficit of dt = 0, an annual

discount rate of 0.953 and an elasticity of substitution of 0.17. This corresponds to α = −5 and

a corresponding measure of Arrow-Pratt risk aversion of 6. For the calibrated income profile

depicted in Figure 1 and for this choice of parameters, our model exhibits four steady-state

equilibria. In Section 7 we explore the robustness of the properties of our model to alternative

choices for the discount parameter and for the risk aversion parameter.
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Figure 2. Steady States in the Sixty-Two Generation Model

In Figure 2 we graph the steady-state equilibria of our model. The upper panel of this

figure plots the logarithm of the gross real interest rate on the horizontal axis and the steady-

state excess demand for goods on the vertical axis. The lower panel plots government debt as

a percentage of GDP at the steady state. We see from the upper panel that the excess demand

function crosses the horizontal axis four times. And we see from the lower panel that three

11 From Table 2 of the March 2018 Social Security Administration Monthly Statistical Snapshot we learn that
the average monthly Supplemental Security Income for recipients aged 65 or older equalled $447 (with 2,240,000
claimants), which implies that total monthly nominal expenditure on Supplemental Security Income equalled
$1,003 million. This compares to seasonally adjusted wage and salary disbursements (A576RC1 from FRED) in
February 2018 of $8,618,700 million per annum, or $718,225 million per month. Back of the envelope calculations
suggest that Supplemental Security Income in retirement equalled 0.137% of total labour income.
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of these crossings are associated with steady-state equilibria in which steady-state government

debt is equal to zero.

The three steady-state equilibria in which debt equals zero are examples of what Gale

(1973) refers to as autarkic steady-state equilibria. In these equilibria there is no trade with

future unborn generations. The fourth steady-state equilibrium is what Gale refers to as the

golden-rule. This steady-state equilibrium always exists in OLG models and in models with

population growth it has the property that the real interest rate equals the rate of population

growth. But although the golden-rule steady-state equilibrium always exists, it is not true that

the golden-rule value of b̄ is always non-negative.

The golden-rule steady state occurs when the logarithm of the real interest factor equals

zero. By inspecting the lower panel of Figure 2, it is apparent that government debt is positive

at the golden rule steady-state and, since debt is denominated in dollars, the price level is

also positive in the golden-rule steady-state equilibrium. This is important because it is the

empirically relevant case in most western democracies. For example, in the United States,

government debt in the first quarter of 2019 exceeded $22 trillion.

The values and properties of all four steady-state equilibria are reported in Table 1. We

refer to the autarkic steady-state equilibria as Steady-State A, Steady-State C and Steady-State

D and to the golden-rule steady-state equilibrium as Steady-State B. We see from this table

that Steady-States B, C and D are associated with a non-negative interest rate and are therefore

dynamically efficient. Steady-State A is associated with a negative interest rate of −47.5% and

is therefore dynamically inefficient.

Equilibrium Real Interest Rates
Type Value Value # Unstable # Free Initial Degree of

of R̄ of b̄ Roots Conditions Indeterminacy
Steady-State A 0.525 0 60 61 1
Steady-State B 1 53.7% of GDP 59 61 2
Steady-State C 1.022 0 60 61 1
Steady-State D 1.13 0 61 61 0

Table 1. Steady States of the Sixty-Two Generation Model

The sixty-two generation model with a calibrated income profile is similar in many respects

to Kehoe-Levine’s (1983) three generation model. In both examples, the golden-rule steady-

state equilibrium displays second degree indeterminacy. And in both examples, the steady-state

price level is positive and the initial price level is indeterminate even when fiscal policy is active.
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Importantly, because the monetary steady-state is second-degree indeterminate, indeterminacy

of the price level can hold even when both monetary and fiscal policy are active.
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Figure 3. The Impact of the Initial Price Level Exceeding Its Steady State
Value by 3%

In Figure 3 we show the result of an experiment in which we perturb the initial value of b1

by 3% and we perturb the real value of the initial wealth of all of the non-generic generations

by the same amount. We refer to this perturbation as a 3% shock to the initial price level. We

restrict R2 to equal its steady state value but all other elements of Z0 are allowed to respond

to the shock to keep the path of interest rates and debt on a convergent path back to the

steady state. Figure 3 demonstrates that the return to the steady state from an arbitrary initial

condition is extremely slow.12

We also see from Figure 3 that our model can endogenously generate prolonged periods

of negative real interest rates. The upper panel of this figure plots the path by which the real

interest rate returns to its steady-state value and the lower panel plots the return path of the

real value of government debt expressed as a percentage of GDP. The figure demonstrates that

small deviations of initial conditions from the steady state can have long-lasting effects, and

that during the convergence process the real interest rate may be negative for periods well in

excess of ten years.

12Note that our choice of 3% is entirely arbitrary and that this is one of many admissible equilibrium paths.
In particular, since we endow the non-generic cohorts with steady state asset shares, therefore the steady state
equilibrium with ∀t ≥ 1 : bt ≡ b̄ and Rt+1 ≡ R̄ would have also been feasible.
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Evidence on long-run real interest rates

Here we present our estimates of long-run real interest rates for (up to) 20 countries between 1955 and the 
present.6 The list of countries (given in the appendix) comprises the largest economies in the world as 
measured by gross domestic product (GDP) in 2014 dollars.7 We broadly follow the approach used in 
Hamilton et al. (2015) to compute real interest rates. Wherever possible, we use the policy interest rate as 
our measure of the short-run nominal interest rate, and we use the then-current inflation rate as our measure 
of the expected inflation rate the following year to derive the short-run real interest rate (details are in the 
appendix). To compute long-run real interest rates, we calculate 11-year centered moving averages of 
annual real interest rates.8 Hereafter, we will refer to the 11-year centered moving averages of annual real 
interest rates as long-run real interest rates. Economists are typically interested in long-run real interest 
rates because they reflect the trends in the fundamental forces underlying them. Indeed, movements in real 
interest rates owing to frictions such as “sticky” prices and wages9 and to short-run shifts in productivity, oil 
prices, monetary or fiscal policy, and other forces “wash out” over long periods of time, leaving only trends 
in the fundamentals driving real interest rates over the long run.

Figure 1 presents long-run real interest rates for the G7 (Group of Seven) countries—namely, Canada, France, 
Germany, Italy, Japan, the United Kingdom, and the United States. Two patterns are apparent. First, G7 real 
rates are quite close to one another, especially in recent years. Second, broad trends in long-run real rates 
are discernible during three subperiods of the sample: 1) a decline from the early 1960s until the mid-1970s, 
followed by 2) an increase until the late 1980s and then 3) another decline through the present day.10

Figure 2 shows the median of the long-run real interest rates across our full sample of 20 countries for 
each year.11 It also presents the interquartile range of these rates across our full sample (that is, the range 

	
	

	

Notes: G7 means the Group of Seven. Long-run real interest rates are 11-year centered moving averages of annual 
real interest rates. (See the appendix for further details on the construction of the real interest rates.)
Sources: Authors’ calculations based on data from the International Monetary Fund, International Financial 
Statistics; and Haver Analytics.
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Figure 4. G7 Long-Run Real Interest Rates. Long-Run Real Interest Rates
are 11-Year Centered Moving Averages of Annual Real Interest Rates.
Source: Figure 1 in Yi and Zhang (2017)

One may question whether the high degree of real interest rate persistence implied by our

model is excessive. Have such long swings in real interest rates actually ever been observed?

To address this question, Figure 4, reproduced from Yi and Zhang (2017), compares long run

real interest rates in the G7 and documents that low-frequency real rate cycles, similar to those

generated by our model, have characterized the evolution of real interest rates in all of these

economies.13

7. Robustness to Different Calibrations

We have presented an example of a sixty-two generation OLG model in which there is a

golden-rule steady-state equilibrium with two degrees of indeterminacy. To explore the robust-

ness of our findings to alternative calibrations, in Table 2 we record the properties of our model

for different values of the annual discount rate and the coefficient of relative risk aversion. The

example we featured in Section 6 had two degrees of indeterminacy and positive valued debt at

the monetary steady state. Table 2 demonstrates that that property is not particularly special.

13 See Yi and Zhang (2017) for a discussion of why long-run moving averages are likely to characterize trends
in fundamental forces underlying real interest rates.
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Annual Discount Factor
0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98

Risk Aversion

RA = 5
# Steady States 4 4 4 4 4 2 2 2
Degree of Indeterminacy 1 1 1 1 1 2 0 0
Value of Debt -2.8 -2.2 -1.5 -0.8 -0.2 0.5 1.1 1.8

RA = 6
# Steady States 4 4 4 4 4 4 2 2
Degree of Indeterminacy 1 1 1 1 2 2 0 0
Value of Debt -1.9 -1.3 -0.7 -0.2 0.4 0.9 1.5 2.0

RA = 7
# Steady States 3 3 3 3 3 3 1 1
Degree of Indeterminacy 1 1 1 2 2 0 0 0
Value of Debt -1.2 -0.7 -0.2 0.3 0.8 1.2 1.7 2.2

RA = 8
# Steady States 3 3 3 3 3 3 3 1
Degree of Indeterminacy 1 1 2 2 2 0 0 0
Value of Debt -0.6 -0.2 0.2 0.6 1.0 1.5 1.9 2.3

RA = 9
# Steady States 3 3 3 3 3 3 3 3
Degree of Indeterminacy 1 2 2 2 2 0 0 0
Value of Debt -0.2 0.1 0.5 0.9 1.3 1.6 2.0 2.4

Table 2. Robustness of Indeterminacy to Alternative Calibrations, Focusing
Only on Steady States with R̄ ∈ [0.5, 1.5]

Table 2 provides 40 different parameterizations of our model with risk aversion parameters

ranging from 5 to 9 and discount rates ranging from 0.91 to 0.98. In all of these parameteriza-

tions we maintained the calibrated income profile illustrated in Figure 1. For each calibration

Table 2 displays the number of steady-state equilibria in the interval R̄ ∈ [0.5, 1.5], and the

number of degrees of indeterminacy at the golden-rule steady-state equilibrium. There are

fifteen parameterizations in which the golden-rule steady state displays one degree of indeter-

minacy and twelve in which it displays two degrees of indeterminacy. In all twelve of these

parameterizations, debt has positive value in the steady state.

In Section 6, we focused on the golden-rule steady where β = 0.953 and ρ = 6. An example

with two-degrees of indeterminacy is interesting because it is not only the price level that is

free to be determined by the beliefs of market participants; it is also the real rate of interest.

We want to reiterate, however, that only one degree of indeterminacy is required for violations

of the FTPL. And that occurs more frequently in our model than second degree violations.14

14If we hold constant the degree of risk aversion and increase the discount rate, the number of unstable
eigenvalues decreases initially from 60 to 59 and then changes abruptly to 61. We see this behaviour in Table 2
by moving along a typical row and observing that we pass from one degree of indeterminacy to two degrees of
indeterminacy and then jump abruptly to 0 degrees of indeterminacy. At this last transition, a pair of complex
roots crosses the unit circle, a phenomenon associated with a Hopf Bifurcation and the creation of a limit
cycle. See Guckenheimer and Holmes (1983) for a discussion of the Hopf Bifurcation. We have not explored the
phenomenon in this paper, but it is likely that for discount rates close to 1, this model displays endogenous limit
cycles that are second-degree indeterminate.
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8. Fiscal and Monetary Policy

In Sections 4 and 5, we characterized conditions under which the real interest rate and

the real value of government debt remain stable when fiscal policy is active and the monetary

authority operates an interest rate peg. While the assumption of active fiscal policy played a

key role in our argument, the assumption of an interest rate peg was used only to show that

inflation remains bounded. The boundedness of inflation follows directly from the Fisher parity

condition,

lim
T→∞

ΠT = lim
T→∞

1 + ī

RT
=

1 + ī

R̄
.

In this section we discuss what would happen if we were to relax either the assumption

that fiscal policy is active or the assumption that monetary policy is passive. We first show

that passive fiscal policy makes indeterminacy more likely. We then demonstrate that ensuring

bounded inflation under an active Taylor rule requires an additional restriction on the set of

equilibrium paths. This additional restriction reduces the degree of indeterminacy by one.

8.1. Passive fiscal policy. Consider first what happens when fiscal policy is passive. To model

a passive fiscal policy we assume that the treasury raises taxes, τ t, in proportion to the real

value of outstanding debt to ensure that the primary deficit dt satisfies the equation

dt = −δbt,

where δ ≥ 0 is a debt repayment parameter. Combining this assumption with the definition of

the government debt accumulation equation leads to the following amended debt accumulation

equation,

bt+1 = [Rt+1 − δ]bt.

For values of [R̄− δ] < 1 the effect of making fiscal policy passive is to introduce an additional

stability mechanism that increases the degree of indeterminacy at each of the four steady states

whenever δ is large enough. Passive fiscal policy makes indeterminacy more likely.

8.2. The case of a Taylor Rule. We next assume that fiscal policy is active and the central

bank follows a Taylor rule (Taylor, 1999),

1 + it =

(
R̄

Π̄η

)
Π1+η
t , t = 1, ...∞. (10)

Because this equation begins at date 1, the nominal interest rate in period 1 depends on p0

through the definition, Π1 = p1/p0. We treat p0 as an initial condition that has the same status
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as the initial value of nominal debt, B0. Π̄ is the inflation target, and R̄ is the steady state real

interest rate: the Taylor Rule is passive if −1 ≤ η ≤ 0 and active if η > 0.

When the central bank follows a Taylor Rule, the real interest rate and the real value

of government debt continue to be determined by the bond market clearing equation and the

debt accumulation equation. It follows that the conditions we have characterized in previous

sections continue to ensure that the real interest rate and the real value of government debt

remain bounded.

8.2.1. A passive Taylor Rule. When the central bank follows a passive Taylor Rule, (see Appen-

dix C.1) the following equation characterizes the asymptotic behaviour of the future inflation

rate,

lim
T→∞

Π̃T+1 = lim
T→∞

(1 + η)T Π̃1 − lim
T→∞

T∑
s=1

(1 + η)T−s R̃T+1, (11)

where κ ≡ Π̄/R̄ and the tilde denotes deviations from the steady state. The limit of the first

term on the right side of Equation (C2) is zero because 1 + η < 1 and the second term is finite

as a consequence of the boundedness of Rt. It follows that inflation is bounded whenever Rt is

bounded. This is a generalization of the argument we made for the boundedness of the inflation

rate when the central bank follows an interest rate peg and it does not impose any additional

restrictions on the equations of the model for an equilibrium to be determinate.

8.2.2. An active Taylor Rule. When the central bank follows an active Taylor Rule, (see Ap-

pendix C.2), the initial price level is determined by the forward-looking equation

p1 = p0

(
Π̄ + κ

+∞∑
s=1

(
1

1 + η

)s (
R1+s − R̄

))
. (12)

Importantly, this restriction on the set of equilibrium paths is additional to the restriction

p1 =
B0

b1
,

that we used to generate the equilibrium sequence of interest rates. It follows that we are

no longer free to pick R2 and p1 independently of each other. This establishes that an active

monetary policy eliminates one degree of indeterminacy.

If a model has one degree of indeterminacy when the policy combination is passive-active,

an active-active policy combination would now admit a unique solution. When the steady-state

equilibrium displays second-degree indeterminacy, as in our sixty-two generation example, it is

not just the initial price level that is indeterminate; it is also the initial real interest rate.
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For any given choice of the initial interest rate, R2, active monetary policy removes nominal

indeterminacy. Once we have specified the initial real interest rate, the initial price level cannot

be freely chosen. If we seek an equilibrium path in which inflation is bounded then p1 is uniquely

determined by the formula in Equation 12. Crucially, however, active monetary policy does not

remove real indeterminacy and there continue to be many possible choices for the initial real

interest rate, each of them associated with a different initial price level and a different equilibrium

path for all future real interest rates and all future inflation rates.

9. Conclusions

We have demonstrated an important difference between the infinitely lived representative

agent model and the overlapping generations model. In the RA model, government debt is both

an asset and a liability of the representative agent. Because these two aspects exactly offset

each other, the representative agent is indifferent about the quantity of debt she holds and in

the simplest case the real interest rate in the corresponding model reflects time preferences and

the evolution of the endowment.

In the OLG model, the situation is different. When the stock of government debt is not

paid off during the lifetime of any single generation, the assets and liabilities of the treasury

do not cancel each other out as they would in the representative agent model. As a conse-

quence, changes in real interest rates are redistributive across generations, and they may lead

to fluctuations in the demand for government bonds that are self-stabilizing. It is because of

these underlying wealth effects that the golden-rule steady-state equilibrium of our calibrated

model can be both dynamically efficient and second-degree indeterminate. Since wealth effects

can be very persistent, the propagation mechanism of our model generates prolonged periods

of negative real interest rates, similar to those we have observed in recent data.

Our findings challenge established views about what constitutes a good combination of fiscal

and monetary policies. Our agents are rational and have rational expectations. Nevertheless, the

price level and the real interest rate are not uniquely determined by what most economists would

recognize as economic fundamentals, even when the central bank pursues an active monetary

policy and the treasury pursues an active fiscal policy. These features of our model lead to

very different conclusions from those of the representative agent model. If the FTPL holds, a

benevolent monetary policy maker who pursues an interest rate peg might rely on fiscal policy

to anchor the price level. In the OLG model we study here that is no longer possible.
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Our model also leads to non-standard advice to fiscal policy makers. In an RA model,

when monetary policy is active, the fiscal policy maker must raise taxes or lower expenditures

in response to recessions, however they are caused. In Farmer and Zabczyk (2018) we showed,

in a two-generation OLG model, that equilibrium debt dynamics can be self-stabilizing. In this

paper we have extended our previous analysis to a calibrated sixty-two generation OLG model.

We have shown that an active fiscal policy can safely be pursued without the fear of causing

explosive debt dynamics even when monetary policy is active.
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Appendix A. Analytic Solutions for Excess Demand

A.1. The generic optimization problem. Consider a person with Constant Elasticity of

Substitution (CES) preferences who lives for T periods and has perfect foresight of future

prices. This person solves the problem,

Problem 1.

max
{ctt,ctt+1,...,c

t
t+T−1}

a1(c
t
t)
α + a2(c

t
t+1)

α + . . .+ aT (ctt+T−1)
α

α
, (A1)

subject to the lifetime budget constraint

T∑
i=1

Qt−1+i

t ct−1+i =
T∑
i=1

Qt−1+i

t w̃i. (A2)

Here, cts is consumption in period s of a person born in period t, i ∈ 1, . . . T is age, and

w̃i is after-tax endowment. The parameters ai are utility weights and α ≤ 1 is a curvature

parameter which is related to intertemporal substitution, η, by the identity

η ≡ 1

1− α
.

The term Qkt , defined by the expression

Qkt ≡
k∏

j=t+1

1

Rj
, Qtt = 1,

is the relative price at date t of a commodity for delivery at date k.

This optimization problem includes the case of a constant discount factor β for which

[a1, a2 . . . , aT ] =
[
1, β, . . . , βT−1

]
and logarithmic preferences which is the limiting case when α → 0. We permit the discount

factor to vary with age to nest the Kehoe and Levine (1983) example which we use to cross-check

our results.

Proposition 2. The solution to Problem 1 is given by

ĉtt−1+k =
aηk
∑T

i=1

(
Qt−1+it w̃i

)(
Qt−1+kt

)η∑T
i=1

(
Qt−1+it

)1−η
aηi

, k = 1, . . . , T. (A3)

where ĉtt−1+k denotes the consumption, at time t− 1 + k, of an agent born at time t.

Proof. The result follows directly from substituting the first-order conditions into the budget

constraint and rearranging terms. �
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A.2. Non-generic optimization problems. Let j be an index that runs from 1 to T − 1.

Consider a non-generic person born in period 1− j with real assets ν1−j ≡ λ1−jb1 who lives for

T − j periods. This person solves Problem 2

Problem 2.

max
{c1−j

1 ,...,c1−j
1−j+T−1}

aT−j+1(c
1−j
1 )α + aT−j+2(c

1−j
2 )α + . . .+ aT (c1−j1−j+T−1)

α

α
, j = 1 . . . , T − 1

(A4)

subject to the lifetime budget constraint

(1−j)+T−1∑
k=1

Qk1
(
c1−jk − w̃k−(1−j)+1

)
≤ λ1−jb1, (A5)

Proposition 3. Let k ∈ {1, . . . , T − j}. The solution to Problem 2 is given by

ĉ1−jk =
aηk+j

(
ν1−j +

∑T−j
i=1 Qitw̃j+i

)
(
Qt+k−1t

)η∑T−j
i=1

(
Qit
)1−η

aηj+i

, k = 1 . . . 1− j + T − 1. (A6)

Proof. The problem above is identical to a generic one solved by an agent who has T −j periods

to live, whose endowments are {w̃j+1 + ν1−j , w̃j+2, . . . , w̃T }, and whose preference parameters

in the utility function are {aj+1, aj+2, . . . , aT }. �

Appendix B. Conditions for local uniqueness of equilibrium

To find conditions under which equilibrium sequences remain bounded, we exploit the

properties of the Jordan decomposition of J , which we write as

J = QΛQ−1, (B1)

where Λ is an upper triangular matrix with the eigenvalues of J on the diagonal and Q is the

matrix of left eigenvectors of J . The restrictions that prevent Xt from becoming unbounded are

found by premultiplying X̃T−2 by the rows of Q−1 associated with the unstable eigenvalues of

J and equating the product to zero. We refer to the matrix that contains these rows as Q−1u .15

Let K be the number of eigenvalues of J that lie outside the unit circle. The requirement

that equilibrium sequences remain bounded places K linear restrictions on the initial vector

15 In practice, the Jordan decomposition is numerically unstable but there are several good computational
methods to compute Q−1

u that are implemented in all modern programming languages. The reader is referred to
Golub and VanLoan (1996) for a description of the algorithms used to solve problems of this kind and to Farmer
(1999) for an accessible introduction to solution methods for rational expectations models with indeterminate
equilibria.
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XT−2 which we express with the matrix equation

Q−1u XT−2 = 0, (B2)

where Qu is a K × 2T − 3 matrix.

The function GT (·) depends not only on ZT0 but also on the initial nominal wealth dis-

tribution L. To ensure that our local analysis remains valid we first compute the steady state

distribution of wealth from the equation16

ν1−j = R̄s2−j1 (R̄, R̄, . . . , R̄), j = 1, . . . , T − 1, (B3)

and we use the identity,

λ1−j ≡
ν1−j

b̄
, (B4)

to recover the steady-state values of λ1−j . In what follows we set the initial asset shares to

these steady state values.

Let GX , GY be the Jacobians of the function GT (·) with respect to XT−2 and YT−2 eval-

uated at the steady-state equilibrium {R̄, b̄} and let X̃T−2, ỸT−2 be deviations of these vectors

from their steady-state values. Using this notation, the predetermined equilibrium conditions

place the following 2T − 5 restrictions on the 3T − 6 unknowns ZT0 ≡ [XT−2, YT−2].

GXX̃T−2 +GY ỸT−2 = 0. (B5)

The uniqueness of equilibrium then comes down to the question of the number of solutions

to the equations
(2T−5+K)×(3T−6) GX GY

Q−1u 0


(3T−6)×1 X̃T−2

ỸT−2

 =

(2T−5+K)×(3T−6) Ḡ

0

 , (B6)

where Ḡ 6= 0 represents the perturbations of the initial wealth distribution L from its steady-

state value. It follows immediately that a sufficient condition for the existence of a unique

equilibrium is that the matrix

M≡

 GX GY

Q−1u 0

 , (B7)

is square and non singular.

16Here, s1−j
1 is the savings function defined in Equation (5) evaluated at the steady state sequence of real

interest rates.
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If K > T − 1 then M has more rows than columns and, except for the special case where

the rows of M are linearly dependent, Equation (B6) has no solution.

If K = T − 1 thenM is square. IfM also has full row rank, there exists a unique solution

to this equation given by the expression XT−2

YT−2

 =M−1
 Ḡ

0

 . (B8)

Finally, if K ≤ T − 1 then M has fewer rows than columns. In this case we are free to

append a (T − 1−K)× (3T − 6) matrix of linear restrictions to Equation (B6). For example,

if T − 1−K = 1 we can append a row that sets

b1 = b̄1. (B9)

�

Appendix C. Appendix: Inflation Under a Taylor Rule

In this Appendix we derive equations that characterize the behaviour of the inflation rate

when the Taylor Rule is passive and when it is active.

C.1. The case of a passive Taylor Rule. Using the Taylor rule to substitute for 1 + it in

the Fisher parity condition yields the following difference equation for inflation

Πt+1 =

(
R̄

Rt+1

)(
Πt

Π̄

)η
Πt, for all t = 1, . . .∞ (C1)

which we linearize around a steady state to obtain

Π̃t+1 = (1 + η) Π̃t − κR̃t+1, for all t = 1, . . . ,∞. (C2)

Here, κ ≡ Π̄/R̄ and the tilde denotes deviations from the steady state. Iterating Equation (C2)

we obtain

lim
T→∞

Π̃T+1 = lim
T→∞

(1 + η)T Π̃1 − lim
T→∞

T∑
s=1

(1 + η)T−s R̃T+1. (C3)

This is Equation (11) in Section 8.2.

C.2. The case of an active Taylor Rule. To find conditions under which inflation is bounded

when the Taylor Rule is active, we use Equation C2 to write the inflation rate at date t as a
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function of all future real interest rates and all future inflation rates,

Π̃t = κ
+∞∑
s=1

(
1

1 + η

)s
R̃t+s + lim

T−→∞

(
1

1 + η

)T
Π̃t+T . (C4)

If inflation is bounded, and if the Taylor Rule is active, the second term on the right side of

Equation (12) is zero. Evaluating Equation (C4) at t = 1, we arrive the following expression

for the initial gross inflation rate.

Π̃1 ≡
(

Π̃1 − Π̄
)

= κ
+∞∑
s=1

(
1

1 + η

)s
R̃1+s (C5)

Using the definition of inflation in period 1, Equation (C5) places the following restriction on

the initial price level,

p1 = p0

(
Π̄ + κ

+∞∑
s=1

(
1

1 + η

)s (
R1+s − R̄

))
. (C6)

This is Equation (12) in Section 8.2.

�
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