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Abstract

Since October 2008 fixed rates for interest rate swaps with a thirty year maturity

have been mostly below treasury rates with the same maturity. Under standard as-

sumptions this implies the existence of arbitrage opportunities. This paper presents a

model for pricing interest rate swaps where frictions for holding bonds limit arbitrage.

I show analytically that negative swap spreads should not be surprising. In the cali-

brated model, swap spreads can reasonably match empirical counterparts without the

need for large demand imbalances in the swap market. Empirical evidence is consis-

tent with the relation between term spreads and swap spreads in the model. Keywords:

Swap spread, limited arbitrage, fixed income arbitrage (JEL: G12, G13).

1 Introduction

Interest rate swaps are the most popular derivative contracts. According to the Bank for

International Settlements, for the first half of 2015, the notional amount of such contracts

outstanding was 320 trn USD. In a typical interest rate swap in USD, a counterparty peri-

odically pays a fixed amount in exchange for receiving a payment indexed to LIBOR. Since

October 2008, the fixed rate on swaps with a thirty year maturity has typically been below

treasuries with the same maturity, so that the spread for swaps relative to treasuries has

been negative. What in 2008 may have looked like a temporary disruption related to the

most virulent period of the financial crisis has persisted for years, see Figure 1.

∗Comments from seminar and conference participants at Wharton, NYU Stern, Michigan Ross, the Fed-

eral Reserve Board, the NBER Asset Pricing Summer Institute, Minnesota Carlson and the University

of Chicago, as well as from Itamar Drechsler, Marti Subrahmanyam, Min Wei, Hiroatsu Tanaka, Andrea

Eisfeldt, Francis Longstaff, Frederico Belo and Tim Landvoigt are gratefully acknowledged. Email: jer-

mann@wharton.upenn.edu.
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Figure 1: Swap Spreads. Difference between fixed swap rate and treasury yield of same
maturity. Units are in basis points.

Negative swap spreads are challenging for typical asset pricing models as they seem to

imply a risk-free arbitrage opportunity. By investing in a treasury bond and paying the

lower fixed swap rate, an investor can generate a positive cash flow. With repo financing for

the bond, the investor would also typically receive a positive cash flow from the difference

between LIBOR and the repo rate. If the position is held to maturity, and if LIBOR remains

above repo, this represents a risk-free arbitrage. In reality, a shorter horizon exposes the

investor to the risk of an even more negative swap spread. Possible disruptions in the repo

funding can also make such an investment risky, and capital requirements can add costs.

While there seem to be good reasons for why arbitrage would be limited in this case, there

are so far no equilibrium asset pricing models that are consistent with negative swap spreads.

This paper develops a model for pricing interest rates swaps that features limited arbi-

trage. In the model, dealers invest in fixed income securities. A dealer can buy and sell

risk-less debt with different maturities, as well as interest rate swaps. Debt prices are ex-

ogenous, the model prices swaps endogenously. Without frictions, the price of a swap equals

its no-arbitrage value, and the swap spread has to be positive. When frictions limit the size

of the dealer’s fixed income investments, swaps cannot be fully arbitraged, and swaps are

priced with state prices that are not fully consistent with bond prices.
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My main finding is that with limited arbitrage, negative swaps spreads are not surprising

anymore, even without explicit demand effects. With frictions, dealers have smaller bond

positions and are less exposed to long-term interest rate risk. They require less compensation

for the exposure to the fixed swap rate and, therefore, the swap rate is lower. In the model,

in the limit as frictions become more extreme, the unconditional expectations of the swap

rate and LIBOR are equalized. With long-term treasury rates typically larger than LIBOR,

the swap spread would then naturally be negative. Equivalently, because the TED spread is

typically smaller than the term spread, the swap spread would be negative. Quantitatively,

with moderate frictions for holding long-term bonds, the model can produce thirty-year swap

spreads in the range observed since October 2008. Model extensions such as demand effects

and swap holding costs can affect swap rates in meaningful ways, but they are unlikely to

be the main drivers of recent negative swap spreads. Explicit leverage constraints or capital

requirements are shown to affect swap spreads similarly to holding costs for long-term bonds.

Another implication of the model is that, conditional on short-term rates, term spreads are

negatively related to swap spreads. Empirical evidence consistent with this regularity is

presented.

Practitioners have advanced a number of potential explanations for why swap spreads

have turned negative, the so-called swap spread inversion. Consistently among the main

reasons is the notion that stepped-up banking regulation in the wake of the global financial

crisis has made it more costly for banks to hold government bonds. For instance, Bowman

and Wilkie (2016) at Euromoney magazine write on this topic: "... there is little doubt

about the impact of regulation — primarily the leverage ratio and supplementary leverage

ratio — on bank balance-sheet capacity and market liquidity. ... The leverage ratio has made

the provision of the repo needed to buy treasuries prohibitively expensive for banks." As it

has become more costly for banks to hold treasuries, apparent arbitrage opportunities can

persist. In my model, it is costly for dealers to hold treasuries and this reduces the size

of their bond positions. This leads to the possibility that swaps are no longer priced in

line with treasuries. A key insight provided by my model is that with arbitrage limited in

this way, swap spreads should naturally be negative, even in the absence of explicit demand

effects. Banks have been required to disclose their supplementary leverage ratios starting

in 2015. Consistent with the model, as shown in Figure 1, empirical swap spreads declined

sharply in 2015. More generally, the anticipation of new capital requirements, as well as

other regulatory changes impacting dealer arbitrage trades between swaps and government

bonds following the financial crisis, motivate the frictions in the model that lead to negative

swap spreads.

A large literature has developed models with limited arbitrage where frictions faced by
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specialized investors can affect prices. For instance, Shleifer and Vishny (1997) consider

mispricing due to the limited capital of arbitrageurs, Dow and Gorton (1994) study the im-

pact of holding costs when traders have limited horizons. Other examples include Garleanu,

Pedersen and Poteshman (2009) on pricing options when risk-averse investors cannot hedge

perfectly, Gabaix, Krishnamurthy and Vigneron (2007) on the market for mortgage-backed

securities, and Vayanos and Vila (2009) who price long-term bonds with demand effects. Liu

and Longstaff (2004) analyze portfolio choice for arbitrageurs with collateral constraints, and

Tuckman and Vila (1992) with holding costs. For a survey of this literature, see Gromb and

Vayanos (2010). As in most of these papers, in my model specialized investors determine

the price of some security with other prices given exogenously. So far, this literature has not

considered interest rate swaps.1

Empirical studies have documented the drivers of swap spreads with factor models, in

particular Liu, Longstaff and Mandell (2006) and Feldhuetter and Lando (2008). More

recently, Hanson (2014) documents the relation between MBS duration and swap spreads.

Gupta and Subrahmanyam (2000) study swap prices relative to the prices of interest rate

futures, and Eom, Subrahmanyam and Uno (2002) the links between USD and JPY interest

rate swaps. Collin-Dufresne and Solnik (2001) focus on the impact of the LIBOR panel

selection for swap pricing. Johannes and Sundaresan (2007) theoretically and empirically

find an increase in swap rates due to collateralization. Studies that focus on the period

with negative swap spreads include Smith (2015) who analyzes the principal components in

swap spreads, and Klinger and Sundaresan (2016) who document a relation between pension

funds duration hedging and negative swap spreads. Boyarchenko, Gupta, Steele and Yen

(2018) present an example of how regulatory changes have affected the cost for supervised

institutions to enter interest swap spread trades.2

My paper contributes to the literature by developing a model that determines swap

spreads with limited arbitrage. It is shown analytically and quantitatively that the model

can plausibly explain negative swap spreads. The model is also shown to be consistent with

additional empirical evidence on the relation between swap spreads and term spreads. In my

model long-term debt and swaps are modelled with geometric amortization, a feature used

for tractability in models for corporate debt or sovereign debt, following Leland (1998). The

1Faulkender (2005) documents a relation between the term spread and interest swap usage for firms in

the chemical industry, suggesting market timing motivation. Jermann and Yue (2018) present a model of

nonfinancial firms’ swap demand. Both of these abstract from the swap spread.
2Duffie (2016) documents increased financial intermediation costs for U.S. fixed income markets due to the

tightening of leverage ratio requirements for banks. Du, Tepper and Verdelhan (2016) show that deviations

from covered interest parity have persisted since 2008 and relate these to increased banking regulation.

Andersen, Duffie and Song (2018) examine funding valuation adjustments in connection with violations of

arbitrage-based pricing relations.
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model remains challenging numerically because it includes a dynamic portfolio problem with

potentially large short and long positions in multiple securities with incomplete markets that

needs to be combined with the pricing of swap contracts with a long maturity. Only a global

solution seems to be able to offer the required numerical precision.

In the rest of the paper the model is first presented, followed by analytical characteriza-

tions of the arbitrage-free case and the case with frictions. Section 4 contains the model’s

quantitative implications and additional empirical evidence on swap spreads. Section 5 con-

cludes.

2 Model

A dealer with an infinite horizon invests in bonds and swaps. Bond prices are exogenous, the

swap price is endogenous. The model is driven by the exogenous prices for the bonds and

inflation. Long-term bonds and swaps have geometric amortization with a given maturity

parameter.

2.1 Available assets

The dealer chooses among three securities: short-term risk-free debt (which we can think of as

treasury or repo), long-term default-free debt (treasury bonds), and fixed-for-floating interest

rate swaps. The risk averse dealer takes prices as given and maximizes the lifetime utility of

profits. Prices for swaps are determined in equilibrium to clear the swapmarket. The demand

for swaps is assumed to come from endusers such as corporations and insurance companies.

Swap contracts are free of default risk, as they nowadays are mostly collateralized. The

fixed swap rate can differ from the long-term bond with the same maturity because the

floating leg pays LIBOR which typically exceeds the short-term treasury rate. A process for

the LIBOR rate is assumed. Because holding bonds is costly, the dealer cannot arbitrage

between securities in a frictionless way, and this creates an additional wedge between fixed

swap rates and rates for long-term bonds.

Short-term riskless debt pays one unit of the numeraire (the dollar) next period and has

a current price of

 () = exp (− ()) 
with  the log of the short rate. The exogenous  follows a finite-state Markov process.

LIBOR debt pays one unit of the numeraire next period. The price of LIBOR debt is

 () = exp (− ())
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with the log yield

 () =  () +  () 

We can think of  as the so-called TED ("Treasury Euro-Dollar") spread, where LIBOR

is referred to as the Euro-Dollar rate. Historically, 3-month TED spreads have never been

negative; the model will satisfy this property. The TED spread can be thought of as com-

pensating for some disadvantage of bank debt relative to the risk-free debt. This could

be reduced liquidity or higher default risk. Explicitly modelling the sources of this spread

would be conceptually straightforward, but would burden computations, without an obvious

benefit for the current analysis.

Long-term default-free debt pays

 + 

per period, where  is the coupon and  the amortization rate, implying an average

maturity of 1. In the next period the owner of the bond gets

 + + (1− ) 0 (
0) 

where 0 is the market price of the long-term bond next period. The price of this bond is

related to its yield to maturity, exp ( )− 1, which after solving for the infinite sum can be
written as

 () =
 + 

exp ( ())− 1 + 


Clearly, with the bond at par,  () = 1 , we have  = exp ( ())− 1. We model the
exogenous yield process as

 () =  () +  () 

with  () the stochastic term spread. Note that this relation between  and  is without

loss of generality;  and  are constants.

Swaps pay a constant coupon in exchange for LIBOR. The value of a swap, or its price,

is denoted by . This price captures mark-to-market gains and losses for the swap. In

particular, next period, the fixed rate receiver of the swap gets

 − ( 1

 ()
− 1) + (1− )0

with  the fixed coupon rate. The maturity parameter for the swap, , is the same as

for the long-term debt. This could easily be changed, but given our focus on the spreads

of swaps and bonds with the same maturity, does not seem useful. My way of modelling
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an interest rate swap with geometric amortization is inspired by Leland’s (1998) model for

long-term debt. As in this case, the advantage of this representation is that the swap does

not age, and the model does not require swaps with multiple maturities.

A newly minted swap has its coupon rate set so that the swap has a market value of zero,

 = 0. The coupon rate  for which the current price of the swap equals zero is called the

swap rate, . The swap spread is defined as

 − (exp ( )− 1) 

Empirically, swaps have zero initial value, and new swap contracts are continuously of-

fered with fixed coupon rates so that the contract value is zero. In the general model, where

the net demand facing the dealer,  () , is not zero, we can think that the model has only

one swap, whose coupon does not change but that is traded at its mark-to-market value.

The dealer then only trades the swap with this fixed coupon, and not new at-market swaps.

Having a new at-market swap every period would create an infinite dimensional state vari-

able, and make the model intractable. For the special case with a net demand of swaps

facing the dealer that is zero for all periods,  () = 0, the existence of swaps does not

affect the equilibrium. Therefore, new swaps, with normalized coupons can be continuously

introduced and priced, and a time-series of swap rates can be generated in the model. Given

this obvious advantage, most of the numerical analysis is focused on this special case.

Long or short positions for bonds are potentially costly to hold for the dealer. Specifically,

the cost for holding short-term debt is given by

 (0 ) =


2
(0 )

2
 (1)

The cost is incurred in the current period, with  ≥ 0 the cost parameter and 0 the

amount of the short-term bond bought this period and held into next period. Similarly, the

cost for long-term debt is

 (0 ) =


2
(0 )

2
 (2)

These costs capture financing and regulatory costs and create the frictions that limit perfect

arbitrage. The quantitative analysis below also considers capital requirements that can be

seen as contributing to bond holding costs.

It is straightforward to introduce a cost function for holding swaps. To keep the theo-

retical analysis focused, this is postponed to the quantitative section of the paper, and the

derivations are in the appendix. The costs and the consequences for equilibrium swap prices

depend to a large extent on the exogenous demand the dealer is facing.
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2.2 Maximization, equilibrium, and solution

The dealer maximizes lifetime utility of profits by selecting short and long bonds, swaps and

payouts. Specifically, the dealer solves

 ( ) = max
0


0


0
 () +  ( ) ( (0 0))

subject to

 =  − 0  ()− 0  ()− 0−  (0 )−  (0 )

and

0 =
0
(

0)+
0
(

0) [ + + (1− )  (
0)]+

0

(
0)

∙
 −

µ
1

 ()
− 1
¶
+ (1− )0

¸
+ (0) 

 (0) is the log inflation rate and  the amount of the swap. Other profits,  (), are included

for generality of the analytical analysis; in the computations they are set to 0. Payouts or

consumption  are valued with momentary utility  () = 1−
1− , and the discount factor is of

the Uzawa-Epstein type,  ( ) = (1 + ̄)−, with   0 and ̄ equilibrium consumption

which the dealer does not internalize. With this specification the dealer discounts the future

more when wealth and consumption/payouts are high. Relative to a constant discount factor,

wealth accumulation is favored when wealth is low and limited when wealth is high. This

helps make the model more tractable numerically, but does not directly produce pricing

frictions. This specification is popular for inducing stationarity in small open models with

incomplete markets, following Mendoza (1991) and Schmitt-Grohe and Uribe (2003).

In equilibrium

0 = − ()
where  () is the net market demand for the fixed receiver swap.

The state vector includes cash-at-hand (or the net asset position if  = 0) , and the

exogenous state that determines bond prices, inflation and possibly swap demand ( (),

 (),  (),  (),  (),  ()).

First-order conditions for bonds and swaps are given by

 () = 
1 (

0)
1 () (

0) − 1 (
0
 )  (3)

 () = 

µ
1 (

0)
1 () (

0) [ + + (1− )  (
0)]
¶
− 1 (

0
 )  (4)
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 = 

µ
1 (

0)
1 () (

0)

∙
 −

µ
1

 ()
− 1
¶
+ (1− )0

¸¶
 (5)

As is clear from the first-order conditions for short-term and long-term debt, holding costs

introduce a wedge in the dealer’s Euler equations. As a consequence, the price of the swap

— given in equation 5 — is typically not equal to its no-arbitrage value.

3 Analytical characterization

Several properties of the swap spread can be derived analytically. Analytical expressions

also help understand some of the quantitative findings. I focus on three cases. First, some

properties of the no-arbitrage case are reviewed. Second, it is shown how frictions for holding

short-term and long-term debt affect swap prices in general, and for the specific frictions

considered in my quantitative model. For the third case, it is shown how with very strong

frictions a negative swap spread should be expected.3

3.1 No-arbitrage case

In this subsection, the swap spread is characterized explicitly when arbitrage is ruled out,

and it is shown why a limited arbitrage approach is needed to produce a negative swap

spread. Specifically, ruling out arbitrage, this section establishes that if the TED spread

(three-month LIBOR minus three-month treasury) is constant, the swap spread is equal to

that constant value, and otherwise, if TED is nonnegative, the swap spread also needs to be

nonnegative.

Rewriting the dealer’s first-order condition for the swap for a more general state-price

process, explicit sequential time-indexing, and with an analytically more convenient additive

notation for the TED spread, the price of the swap is given as

 = 

µ
Λ+1

Λ

∙
 −

µ
1


− 1
¶
−  + (1− )+1

¸¶


Ruling out arbitrage implies that Λ prices not only swaps, but also short-term and long-term

debt. Under this assumption, and after some algebra (detailed in the appendix), the value

of the swap can be written as

 =
¡
 + 

¢
Ω ({1})− 1−Ω ({})  (6)

3In this section, yields are compounded per period, while in the rest of the paper they are continuously

compounded. This is for convenience. The notation does not explicitly aknowledge this difference.
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with

Ω ({}) =
∞X
=0

(1− ) 

Λ+1+

Λ

+

Ω is the present value of a sequence of geometrically declining, potentially random, payoffs

, that are paid out with a one period lag. Intuitively, the term Ω ({1}) captures the
annuity value of receiving the fixed coupon, while 1 − Ω ({1}) represents the value of a
floating rate note paying the risk-free short rate adjusted for the amortization payments.

The last term in (6) represents the present value of the sequence of TED spreads.

Defining the (at-market) swap rate  as

0 =
¡
 + 

¢
Ω (1)− 1−Ω ({}) 

implies

 =
1 + Ω ({})

Ω (1)
− 

Consider a long term-bond with the same amortization rate as the swap and whose price

can be written as

 = 

µ
Λ+1

Λ

£
 + + (1− ) +1

¤¶
=
¡
 + 

¢
Ω (1) 

Combined with the implicit definition of the yield from above,  = +
 +

,

 =
1

Ω (1)
− 

The swap spread then equals

 −  =
Ω ({})
Ω (1)

 (7)

As is clear from equation (7), if  = ,

 −  = 

If  ≥ 0,
 −  ≥ 0

To summarize these results, ruling out arbitrage, the swap spread equals the present value of

a TED annuity scaled by the present value of a constant annuity at 1. If TED is non-negative,

the swap spread is non-negative. If TED is constant, the swap spread equals the constant

TED spread. Clearly, without violation of arbitrage, the swap spread cannot be negative. In
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my model, arbitrage is limited by the holding costs for bonds. Instead of the geometrically

amortizing structures, the same argument can be made with standard swaps and bullet

bonds. In this subsection, there is no advantage of using the geometrically amortizing bond;

it is essential however for numerical tractability.

3.2 Bond holding frictions

I now assume that there are frictions for the one-period debt and for the long-term debt with

the same maturity as the swap. Note that this is more general than the quantitative model

presented in Section 2 because no assumptions are made about whether the dealer trades

bonds for other maturities and because the frictions can be more general.

As above, assume that the value of the swap satisfies

 = 

µ
Λ+1

Λ

∙
 −

µ
1


− 1
¶
−  + (1− )+1

¸¶


Contrary to the no-arbitrage case, the dealer’s marginal valuations, Λ, are now no longer

necessarily consistent with the prices of risk-free debt.

Assume that frictions for short-term debt affect the relation between the market price

and the dealer’s marginal valuations such that

 = 

µ
Λ+1

Λ

¶
− h

where h is a wedge coming from frictions of holding/selling short-term debt. For instance,

this could be the derivative of a convex holding cost function, as in my quantitative model

from the previous section, and h could be positive or negative. Alternatively, h could

be capturing the Lagrange multiplier of a borrowing constraint, in which case it would be

negative.

To achieve analytical tractability, I will now work with a first-order approximation of

1 around h = 0 and 1
¡
Λ0
Λ

¢
= 1. The price of the swap can then be written as

 = 

⎛⎝Λ+1

Λ

⎡⎣ − 1



³
Λ+1
Λ

´ + h + 1−  + (1− )+1

⎤⎦⎞⎠+ 

µ
h 

µ
Λ+1

Λ

¶¶


and, going forward, for notational ease, the approximation error will be omitted from the
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equations. After some algebra, the swap rate satisfies

 =
1 + Ω ({ + h})

Ω (1)
− 

Considering a pricing equation for the debt with the same maturity as the swap that is

similarly distorted

 = 

µ
Λ+1

Λ

£
 + + (1− ) +1

¤¶− j,
where j is the implied frictional marginal cost of holding one unit, which again can be

positive or negative.

After some algebra, the long-term yield can be written as

 =
1

Ω (1)− 1
(+)

Ω

³n
Λ

Λ+1
j

o´ − 

The frictional cost j is here multiplied by
Λ

Λ+1
to account for the fact that, unlike for the

other uses of Ω (), j is not lagged.

The swap spread now becomes

 −  =
Ω ({})
Ω (1)

+
Ω

³
{h}− 1



n
Λ

Λ+1
j

o´
Ω (1)

 (8)

highlighting its dependence on current and future frictional marginal costs of short-term and

long-term debt. Clearly, these frictional costs have the ability to produce negative swap

spreads.

If there are no frictions for these two types of debts,  and  , then the swap spread is

priced by the dealer’s valuations Λ implicit in the present value operator Ω ({}). Without
complete markets, the dealer’s valuations do not necessarily equal those of other market par-

ticipants. Through this channel, demand effects can also affect the price of the swap. How-

ever, such market incompleteness or segmentation cannot produce a negative swap spread as

long as  has a zero probability of becoming negative. To produce negative swap spreads,

the dealer needs to be subject to frictions either for the short rate or the long rate corre-

sponding to the maturity of the swap. The intuitive reason why this has to be the case is

that the payout of a swap can be replicated synthetically (except for the TED spread) with

a combination of these two types of debt, one-period debt and debt with the same maturity

as the swap.
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For additional insights, I am now specializing the frictional cost terms to replicate my

quantitative model. In this case,

h = 

+1, and j = 


+1

Marginal costs are linearly increasing in the size of the positions, and

 −  =
Ω ({})
Ω (1)

+
Ω

³


©

+1

ª− 


n
Λ

Λ+1

+1

o´
Ω (1)

 (9)

This equation shows that if the dealer has a long position in long-term bonds, an increase

in the frictional cost — every else equal — lowers the swap spread. Intuitively, the long-term

bond holding cost lowers the net-of-cost return of long-term bonds and the required return

on the fixed swap leg also declines. This connection is even more transparent for the special

case presented in the next subsection.

Equation (9) also illustrates the impact of an increase in the term spread, everything

else equal. In response, the dealer will increase the position on long-term debt and typically

reduce the position in short-term debt. Together, this will lead to a lower swap spread.

Terms other than 
+1 and 

+1 in the equation can change too, but they are not likely to

overturn this relation. In particular, as  declines, it also contributes to a lower swap

spread. Movements in the dealer’s valuations cannot change the sign of the effect, they

only reweigh the different periods’ effects. Possibly, the movement in Λ
Λ+1

multiplying the

position can go in the opposite direction. However, a higher term spread implies higher future

expected short rates, which on average lead to increases in the Λ
Λ+1

terms. The quantitative

model confirms this negative relation between term spreads and swap spreads.

Equation (9) also shows that if the dealer’s positions are smaller in absolute value, every-

thing else equal, the swap spread will be less distorted by holding costs. This will be the

case when the dealer’s equity is low.

3.3 Swap pricing with very strong frictions

To illustrate the main mechanism that allows the model to produce negative swap spreads, I

am now presenting an analytic characterization of the quantitative model for the case where

bond holdings costs are very large.

In the limit, as holding costs increase, the dealer will not hold any bonds. That is, as

 and  get larger, with  = 0 and constant endowment of other profits,  () = ,

consumption/payouts tend to equal endowment and be constant. In this limiting case, the
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price of the swap is given by

 = 

µ
1

1

£
 −  + (1− )+1

¤¶


The at-market swap rate for which  = 0 satisfies

 =

P∞
=1 

 (1− )−1

³
1


+−1

´
P∞

=1 
 (1− )−1

1


 (10)

In the quantitative model, inflation uncertainty does not play a big role. To get a sharper

characterization, consider the case with no inflation uncertainty,  = . Taking uncondi-

tional expectations,


¡


¢
=

∞X
=1


¡
+−1

¢


and


¡


¢
= 

¡


¢
= 

¡


¢
+ ()

because the weights, , implicitly defined by Equation 10, are constant with  =  and

add up to one. Therefore, in this case, the swap rate equals the unconditional expected value

of LIBOR, or equivalently, the unconditional expected short rate plus the TED spread.

For comparison, the unconditional mean of the long-term treasury yield can be written

as


¡


¢
= 

¡


¢
+ ( )

where  ( ) is the unconditional mean term spread. Combining the two, the unconditional

expectation of the swap spread equals


¡
 − 

¢
=  ()− ( )  (11)

Historically, based on time-series averages,  () = 06% in annualized terms, and  ( ) =

17%, so that


¡
 − 

¢
=  ()− ( ) = −11%

Therefore, in the limiting case for which very strong frictions prevent arbitrage, the expected

swap spread should be roughly −1%. Intuitively, the high holding costs drive down the
dealer’s bond positions and reduce the exposure to long-term interest rate risk. The swap is

perceived to be less risky, and the required fixed rate declines. Of course, this is an extreme

and unrealistic benchmark case. Nevertheless, it shows that in a world with limited arbitrage
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Symbol Parameter Value

̄ Short rate level 001156
̄ Term spread level 000429
̄ Inflation level 000938
̄ TED spread level 000158
 Risk aversion 2
 Discount elasticity 1
1 Maturity of long-term debt and swap 120

Table 1: Model Parameters.

possibilities one should not be surprised by low or negative swap spreads, even without strong

demand effects.

4 Quantitative analysis

In this section the model is calibrated and solved numerically. Quantitative model impli-

cations for swap prices are presented. I show that as bond holding costs are increased, the

swap spread declines away from its arbitrage-free benchmark. The calibrated model has

no difficulty generating negative swap spreads even without explicit demand pressure. The

section concludes with additional empirical evidence in support of the model.

4.1 Parameterization

Processes for bond prices and inflation are specified so that the model matches key empirical

facts. A period in the model is a quarter. The joint process for the short rate, the term

spread, inflation and the TED spread,

[ ()   ()   ()   ()] 

is based on an estimated first-order vector autoregression. The data is for U.S. treasuries

with 3-month and 30-year maturities and CPI inflation covering 1960-Q1 to 2015-Q3. TED

spreads are available from 1986-Q1 onwards. TED spreads do not significantly enter the

other three variables’ equations. Innovations in the TED spread have very low correlations

with the short rate and the term spread; I set these correlations to zero. The elements in

the transition matrix that are not statistically significant are set to zero and equations are

re-estimated with the zero restrictions.

As shown below, all series are quite persistent, and the only significant off-diagonal
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interaction terms go from lagged inflation to the short rate and from lagged inflation to the

TED spread. The transition matrix is⎡⎢⎢⎢⎢⎣
91 0 07 0

0 87 0 0

0 0 76 0

0 0 06 72

⎤⎥⎥⎥⎥⎦
and the covariance matrix for the innovations

10−6 ×

⎡⎢⎢⎢⎢⎣
51 −34 43 0

32 −26 0

248 −11
05

⎤⎥⎥⎥⎥⎦ 

The VAR is approximated by a finite-state Markov chain following Gospodinov and

Lkhagvasuren (2014) with a total of 34 = 81 possible realizations. Two sets of adjustments

are made to the Markov chain obtained in this way. First, it is made sure that there are no

arbitrage opportunities between the short-term and long-term bonds. This requires a slight

reduction in the term spread for the highest realization of the long-term yield. Second,

realizations for the TED spread are limited by a lower bound of 00003, which corresponds

to the lowest historical end-of-quarter value. This is to make sure that negative swap spreads

cannot come from negative TED spreads, which a linear VAR does not rule out. This requires

increasing negative TED realizations to 00003 and adjusting small positive realizations so

as to keep the unconditional expectation of the TED spread at the targeted (per quarter)

level of ̄ = 000158. Additional profits are set to  () = 0

The average maturity of the swap and long-term debt, 1, corresponds to 120 quarterly

periods, that is 30 years. For the benchmark case, risk aversion is set to 2. With this

value, the dealer has long/short positions about 80% of the time; for higher values, positive

positions for both bonds are more common. The discount elasticity parameter equals  = 1,

and the cost parameter for short term debt is set to  = 0. I consider several values for

the cost parameter for long-term debt  . Focusing on holding costs for long-term bonds as

the main friction is consistent with the example of a typical swap spread trade presented in

Boyarchenko et al (2018). The model is solved globally with an algorithm that shares features

with Judd (1992), Judd, Kubler and Schmedders (2002), and Stepanchuk and Tsyrennikov

(2015).
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E(30Y SS) Std(30Y SS) E( ) E(TED)

Data

71997− 92008 57 27 58
102008− 102015 −18 12 35

Model

 = 00001 62 8 21 63
κ= 00032 −18 61 102 63
 = 001 −54 89 119 63
Post 10/2008 TED level and  = 00014 −18 41 80 35

Higher risk aversion,  = 4 −36 66 119 63
recalibrated,  = 000195 −18 54 106 63

Lower discount elast.,  = 08 −26 67 106 63
recalibrated,  = 000255 −18 61 102 63

Short term debt cost,  = 00032 −15 82 110 63
Constant TED −24 68 102 63
Constant Inflation −27 64 115 63

Table 2: Swap Spreads in the Data and the Model. Units are annualized basis points (that

is multiplied by 40000). Unless indicated otherwise, the cost parameter for long-term bonds

 = 00032. ( ) is the mean marginal cost for holding long-term bonds.

4.2 Model properties

Swap spreads with a thirty-year maturity from the model are compared to their empirical

counterparts in Table 2. Unconditional expectations and standard deviations are presented

for a set of values for  , the holding cost parameter for the long-term debt, with short-term

debt costs at  = 0.

As  increases, arbitrage becomes more costly and the unconditional mean of the

swap spread goes from positive 62 basis points with a low cost of  = 0001 to negative

−54 basis points for the highest cost presented,  = 01. Clearly, the model has no

difficulty producing realistic negative values for swap spreads. The pattern shown in Table

2 is consistent with the analytical characterization for the high friction case: as arbitrage

becomes more costly, swap rates decline and spreads become negative. The mean level post-

2008 is matched with a cost parameter at  = 0032. The low cost case with  = 0001

produces a mean swap spread corresponding roughly to the pre-2008 average. Therefore,

with two different levels of the long-term bond cost parameter  , everything else equal,

the model can roughly match the swap spread levels of the periods before and after 2008,

respectively.

To get a sense of the magnitudes of the frictional costs implied by the long-term bond

cost parameters   we can consider the marginal cost implied in equilibrium. Given
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the quadratic cost function, the unconditional expectation of the marginal cost equals


¡

+1

¢
, with 

+1 the (endogenous) long-term bond position. Table 2 reports these

in units of annualized basis points, which are the same units as the swap spreads. For the

benchmark case with  = 0032 the marginal cost amounts to 102 basis points in annu-

alized terms and the swap spread has a mean of −18 basis points. Over the entire sample
period available for the TED spread, its mean is 63 basis points; for the post 10/2008 pe-

riod, the mean is lower, at 35 basis points. To get a tighter benchmark for the post 10/2008

period, I target the post 10/2008 level for the TED spread without changing its dynamics,

and search over the cost parameter  that can produce the post 10/2008 average swap

spread of −18 basis points. As shown in the table, a cost parameter of 0014 is required.

This corresponds to a mean marginal cost of 80 basis points.

As one of the holding costs for long-term bonds, large U.S. banks are subject to the

Supplementary Leverage Ratio (Bowman andWilkie (2016), Davis Polk (2014), Boyarchenko

et al (2018)) that requires them to hold 5% or 6% of tier 1 capital against total assets at the

holding or the bank level, respectively. Assuming a required return on equity of 10%, the

implied cost would be 5% × 10% = 50 or 60 basis points.4 Therefore, this requirement, if

binding, would have a cost not far from the magnitude needed for the model to match the

expected swap spread. Even if this capital requirement is not binding, banks would likely

want to consider a precautionary buffer. It is interesting to note that the steep decline in

the longer maturity swap spreads starting January 2015, see Figure 1, coincides with the

time banks were required to start publicly disclosing their SLR. There are several other

potential costs that have increased since the financial crises, including risk-weighted capital

requirements and FDIC insurance premiums, in addition to the restrictions due to the Volcker

rule.5 Overall, it appears that the extent of the friction in the model is empirically plausible.

As we show below, demand effects have the potential to further affect the swap spread in a

meaningful way.

Rearranging equation (9) for the case without short-term debt costs,  = 0, yields


¡
 − 

¢
=  −  · 

+1 · +
Ω

³
{ −}− 



n
Λ

Λ+1

¡

+1 −

+1

¢o´
Ω (1)



with  =

∙


Ω


Λ
Λ+1


 Ω(1)

¸
' 1. This highlights the key roles of the level of the TED spread,

4Whether it is reasonable to assume that equity is expensive is subject to debate. For it to matter in this

context it is sufficient that dealer banks consider it to be expensive.
5The Volcker rule has as its main objective to prohibit proprietary trading while allowing market making.

Practically, the distinction between the two activities is not always clearcut. The complexity of the rules

implementing the Volcker rule can itself be a source of friction.
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, and the expected marginal cost,  · 
+1 in determining the swap spread. The

last term captures corrections for risk in  and 
+1. For the cases reported in Table 2,

changes in the implied marginal cost are the main drivers of the swap spread. For instance,

when considering the high risk aversion case reported in the table, with  = 4, the swap

spread declines by −18 = −(36− 18) basis points relative to the benchmark case, while the
negative of the expected marginal cost, − ·

+1, changes by almost the same amount,

−17 = −(119− 102). When the bond holding cost parameter  is recalibrated to produce
the same mean swap spread as for the benchmark case, the implied marginal cost for the

high risk aversion case is very close to the benchmark case, differing by only 4 = 106− 102
basis points. Therefore, the main conclusion about the frictional costs required to produce

realistic post 10/2008 swap spreads is robust to changing risk aversion within a reasonable

range. With respect to the discount rate elasticity, the link between the swap spread and

the marginal cost is even more robust. Indeed, the case with a lower discount elasticity at

 = 08 — once recalibrated to produce the same mean swap spread as for the benchmark

calibration — implies the same mean marginal cost of 102 basis points as the benchmark case.

While the model can easily match empirical mean levels of swap spreads, it cannot also

simultaneously match the standard deviation of swap spreads. In particular, when the bond

holding cost parameter is raised to match post 10/2008 negative levels of swap spreads, the

volatility of swap spreads exceeds its empirical counterpart. The tightly parameterized model

offers limited degrees of freedom to more closely match this property of the data. As shown

in Table 2, increasing risk aversion can lower the standard deviation relative to the mean.

However, this also reduces the fraction of the time a dealer has long/short positions, so that

the investment behavior resembles less to that of a typical levered dealer the model aims

to represent. Dealers in the model have relatively modest amounts of leverage, as is more

explicitly discussed below when studying leverage constraints. To bring the model closer to

the data, a richer representation of the dealer’s objective function would be required. Table

2 includes two additional cases illustrating that risk in inflation and risk in the TED spread

have relatively moderate effects on the swap spread.

4.2.1 Demand effects and swap costs

While demand effects and swap costs are not necessary to produce realistic swap spreads,

I am considering here the potential impact, qualitatively and quantitatively, of extending

the model to include these features. Overall, these frictions have the potential to make

meaningful contributions to the determination of the swap rate, but they are not likely to

be able to explain on their own the decline in swap spreads since 2008.

Introducing demand effects, so that  () 6= 0, makes the equilibrium computation more
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Swap Demand LT bond Swap cost Marginal cost

rate sensitivity position impact for swap

Benchmark ( = 00032)
 = 0 608 105
 = 2 592 −99 114
 = 2  = 005 552 −4056 4000

Low friction ( = 00001)
 = 0 700 352
 = 2 699 −14 372
 = 2  = 005 658 −4056 4000

High friction ( = 001)
 = 0 567 46
 = 2 540 −128 51
 = 2  = 005 500 −4028 4000

Table 3: Demand Effects and Swap Costs. Units for rates and marginal costs are annualized

percentage points (that is multiplied by 400). The demand sensitivity measures the change

in basis points for a one percent change in the demand relative to the dealer’s net asset

position (which is set to the mean for the case with d = 0 ). The marginal cost for the swap

is computed as ×  .

complex. With  () = 0, the equilibrium swap price does not affect the dealer’s bond

investments, and the equilibrium computation can proceed recursively by first solving the

bond investment problem and then the swap pricing function. With  () 6= 0 the swap

price matters for the investment problem, and the investment problem and the swap pricing

function have to be solved jointly. To preserve numerical tractability, I am limiting the model

to one swap whose coupon is determined for an initial state of the model (0 0).

I am considering models with different levels of a fixed demand  () =  and compare

the resulting swap rates for the same initial state. Specifically, am solving for the swap rates

 (0 0  = 0) and  (0 0  = ) and compute the demand sensitivity measure

 (0 0) ≡ lim
→0

 (0 0  = )−  (0 0  = 0)

0


This measures the change in percentage points of the swap spread in response to a demand

change as a percent of the net asset position 0. I am setting 0 to its mean for the case

 () = 0 and 0 to the neutral shock that has all exogenous variables at their mean log

levels. For small values of 0, say 20% or less, the demand sensitivity measure does not

depend in a significant way on . Table 3 reports demand sensitivity measures for  () = 02
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which corresponds to 10− 20% of 0 depending on the case. For the benchmark case with

 = 0032 the computed demand elasticity is −99. This means that for a 1% increase in

demand as a share of the dealer’s net asset value 0, the swap rate (equivalently the swap

spread) declines by 99 of a basis point. As the table shows, this demand sensitivity depends

crucially on the extent of the friction for long-term bonds. In the model, even without bond

costs, the dealer cannot perfectly hedge the swap, but that effect is small. For the case with

a very low long-term bond cost of  = 0001, the demand sensitivity reported declines to

−14.
A non-zero swap demand creates a risk exposure for the dealer that can be partially

offset with long-term bonds. With a positive , the dealer becomes a net fixed rate payer

on the swap, and this exposure can be partially hedged by adding long exposure to long-

term bonds. As is shown in Table 3, the position in long-term bonds increases in each case

when  is increased. This implies an increase in the marginal bond holding cost, leading to a

lower swap rate. Very intuitively, an increase in the demand for receiving fixed rate payments

lowers the fixed payments to be received. There is no obvious empirical counterpart available

for the size of such demand effects. The results in the table suggest that while this type of

demand effect has the potential to be meaningful, for demand effects to play a major role in

driving swap spreads, the size of the demand imbalances would have to be very large relative

to dealers’ asset holdings, and the frictional costs should be nonnegligible. Remember also

that, as shown in Section 3.2, to get swap spreads to be negative at all some frictions are

needed.

Dealer holding costs for swaps represent another friction that has the potential to affect

swap rates. Assuming a quadratic cost function for swaps that parallels the bond cost

functions implies a marginal cost of 
0, and in equilibrium 0 = −. Extending the

decomposition from the previous section we have


¡
 − 

¢
= − ·

+1·1−·2+
Ω

³
{ −}− 



n
Λ

Λ+1

¡

+1 −

+1

¢o´
Ω (1)



(12)

with 1 = 
h
1+(1−)Ω(1)
 Ω(1)

i
' 1, 2 = 

1+(1−)Ω(1)
Ω(1)

' 1. The main effect of the swap

cost is straightforward. The dealer has to be compensated for the marginal holding cost,

, and this affects the swap rate essentially one for one. That is, one basis point in

marginal cost corresponds essentially to a one basis point change in the swap rate. The

swap rate increases or decreases depending on whether the exogenous demand is negative

or positive, respectively. For the examples in the table, the marginal cost in all cases is

exactly  = 0005× 02 = 001, in annualized terms (as in the table) this is 04%. The
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decline in the swap rate due to the introduction of the swap cost is reported to be very close

to this value as suggested by Equation (12) in all cases; for instance, 04052% for the case

with  = 00032. Recent regulation has likely also increased dealer’s swap holding costs.

However, these costs are unlikely to be in the same order of magnitude as for long-term

bonds, and it is unlikely that dealers face direct marginal costs for holding swaps that would

be large enough to be solely responsible for the decline in the swap rates since 2008. See for

instance the example in Boyarchenko et al (2018).

4.2.2 Leverage constraint

The quadratic bond holding cost functions used so far offer a tractable and parsimonious

way to quantify the costs induced by the multitude of regulatory changes since 2008. In this

subsection, the model is specialized to specifically study the impact of a leverage constraint or

capital requirement. Recent regulatory changes have tightened existing capital requirements

and introduced new ones (see for instance, Greenwood et al (2017) for a survey of these

changes), and these have likely contributed to increased costs for typical swap dealers.

The following constraint is added to the dealer’s problem

max (0  ()  0) + max (
0
  ()  0) ≤  · 

with the parameter   1, the leverage multiplier. With this constraint, a long bond position

needs to be supported by a minimal amount of dealer book equity, the net asset position,

. The Supplementary Leverage Ratio is an example of such a constraint. The constraint

could also account for the derivative exposure of the swap. Given the regulatory complexity

in that regard, and our analysis in the previous section suggesting that this is unlikely to be

quantitatively significant, this is abstracted from here.

With this constraint, the first-order conditions become

 ()

∙
1 +



1 ()
+ (0 )

¸
+ 1 (

0
 ) = 

½
1 (

0) + 0
1 ()

1

(
0)

¾
 (13)

 ()

∙
1 +



1 ()
+ (0 )

¸
+1 (

0
 ) = 

½
1 (

0) + 0
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1

(
0) [ + + (1− )  (

0)]
¾

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 = 

½
1 (

0) + 0
1 ()

1

(
0)

∙
 −

µ
1
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− 1
¶
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¸¾
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with  the multiplier on the constraint and + () an indicator function that equals 1 for
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Leverage multiplier E(30Y SS) Std(30Y SS) freq(SS0) freq(  0) freq(  0|  0)
 =∞ 62 8 0 0
 = 20 48 9 001 05 1
 = 10 19 24 20 14 1
 = 5 −25 53 66 29 90

Table 4: Model with Leverage Constraint. This is the benchmark model version with very

low long-term bond cost  = 00001, augmented to include the leverage constraint. 

is the long-term bond position,  is the multiplier on the constraint.

 ≥ 0, and 0 otherwise.6
As equation (14) shows, the current period multiplier, , can increase the dealer’s implicit

marginal cost for long-term bonds, just as the convex cost function 1 (
0
 ) does. This leads

to lower returns for long-term bonds and to a reduced swap rate in equilibrium, as discussed

for the benchmark model above. In addition, the leverage constraint can increase the implicit

cost for short-term bonds. The leverage constraint also affects the implied valuations directly

through 0 in each of the first-order conditions. But as discussed above, this type of distortion

cannot alone make swap spreads negative. To examine the overall effect and the quantitative

impact of this constraint, the computational algorithm is augmented to include features from

the approach presented in Judd, Kubler and Schmedders (2002).

Table 4 presents model properties for the benchmark calibration with very low bond

holding costs  = 00001 (with no costs for short term bonds and swaps) and compares

model versions with different constraint parameters .

The case without the leverage constraint, equivalently  =∞, is the low friction case seen
in Table 2 and Table 3. In this case, the swap spread has an unconditional expectation of

62 basis points and the swap spread never gets negative. As the table shows, tightening the

constraint lowers the mean swap spread and increases the frequency of swap spreads being

negative. The tightest constraint presented uses  = 5 and produces negative swap spreads

66% of the time and a mean swap spread of −25 basis points. As these results show, the
leverage constraint acts on the swap spread like the cost for long-term bonds (as suggested

by the first-order condition (14)).

From a quantitative perspective, to produce a negative mean swap spread would require

a leverage parameter smaller than  = 10, equivalently a leverage ratio 1 of more than

10%. Therefore the SLR requirement of 5% or 6% would not alone be sufficient to produce

6The constraint is not differentiable at 0 = 0 and 
0
 = 0. To have well-defined first-order conditions,

one can use smooth approximations of the max functions around the kink. Practically, with   1, the
constraint does not bind with either 0 or 

0
 close to 0, because to have the left hand side of the leverage

constraint exceed , the budget constraint, with   0 and  () = 0 would require that either 0 or 
0


be negative.
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negative swap spreads on average. This may not be too surprising as the model does not

include any of the features typically being thought of as rationalizing dealer banks’ views

that equity is expensive. If anything, it can seem surprising that the capital requirements

have such a significant impact on the swap price in this setting. As shown in the table,

the capital requirement mostly limits the size of the long position in long-term bonds. For

instance, with  = 10, the constraint binds 14% of the time, and in essentially 100% of

these cases, it is the long-term debt that is constrained. In the model, the dealer values the

ability to invest in long-term bonds when the term premium is high. The leverage constraint

limits this strategy. Overall, for a single leverage constraint alone to produce negative mean

swap spreads would require a constraint that is tighter than the SLR. However, a leverage

constraint can have a significant impact on swap prices even without explicitly including

model features that make equity expensive from a bank’s perspective.

4.3 Additional empirical evidence

A key model mechanism is the relation between the term spread and the swap rate. As shown

in Subsection 3.3, in the limiting case where the dealer holds no long-term bonds, the swap

spread declines one for one with the term spread, because the risk premium in long-term

bonds does not get incorporated into the price of the swap. In the time series dimension, in

the model, this relation is not very strong unconditionally. However, conditional on a given

level of the short rate, the term spread is robustly negatively related to the swap spread.

Figure 2 shows how term spreads and swap spreads are related conditional on given levels

of the short rate. In particular, each set of lines of a given color corresponds to a fixed level

of the short rate. The dealer’s equity, , is also a state variable, but its impact on the swap

rate is relatively less important. The figure shows swap spreads for the mean level of equity

for a given combination of the term spread, the short rate, inflation and TED. Inflation

and the TED spread do not significantly affect this relationship. Indeed, for a given color,

multiple lines represent different inflation rates and TED spreads; these lines are close to

each other. The rest of this section presents empirical evidence that is consistent with this

model property.

Table 5 displays the coefficients from regressing swap spreads with different maturities on

a number of factors one would expect to be relevant. As suggested by my model, this includes

the term spread between thirty-year and three-month treasuries, three-month treasuries

rates, and the TED spread. In line with Feldhuetter and Lando (2008) and Hanson (2014),

the duration of mortgage backed securities (MBSD) is included as it appears to capture

hedging demands for investors in MBS. To control for other factors that can affect swap
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Figure 2: Swap Spread as a Function of Term Spread Conditional on Short Rate. The holding

cost parameters equal  = 00032 and  = 0.

spreads, the market volatility index (VIX) is also included.

Table 5 covers the period 7/1997 to 5/2018. Regressions are based on monthly growth

rates for all the variables. Consistent with the model, the term spread, TERM, is negatively

related to the thirty-year swap spread and significant at the 1% level. Running the regression

without TERM produces an adjusted R2 of 008; including TERM boosts that value to 018.

The relationship is weaker for the shortest maturities, particularly 2 and 5 years.

As expected, the TED spread factors in positively. It is also not surprising that this effect

is weaker for longer maturities. As the swap spread is driven by the sequence of future TED

spreads over the period to maturity of the swap, the current TED spread should be relatively

less important for longer maturities. Consistent with the prior research cited above, MBSD

is positively related to the swap spread. VIX matters only for the shorter maturities.

Table 6 presents the same regression for the post-crisis sample. For the thirty-year

maturity there is again a negative effect from the term spread. Somewhat unexpectedly

TED now is significantly negatively related to the longer maturity swap spreads.

Large U.S. banks have been required to publicly disclose their Supplementary Leverage

Ratio starting 2015. As shown in Figure 1, this marks the beginning of a steep decline in

the swap spread that went on throughout 2015. Focusing on the period from 1/2015 until

5/2018, Table 7 shows a strong negative connection between the term spread and the thirty
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Regressor \ Swap Maturity 2 5 10 20 30
TERM −0036 −0044 −0157∗∗∗ −0128∗∗∗ −0205∗∗∗
TED 0220∗∗∗ 0089∗∗∗ 0025 0012 0007
MBSD 0030∗∗ 0043∗∗∗ 0088∗∗∗ 0058∗∗∗ 0104∗∗∗

3MTB 0012 0000 0083∗ −0096 −0100
VIX 0004∗∗∗ 0006∗∗∗ 0002 −0000 −0000
adj. R2 050 028 022 004 018
adj. R2 without TERM 049 027 012 000 008

Table 5: Swap Spread Regressions 7/1997 - 5/2018. All variables are in monthly growth

rates. TERM stands for the difference between the 30-year treasury rate minus the 3-month

rate, TED is the TED spread, and 3MTB the 3-month treasury rate, MBSD is the duration

of mortgage backed securities, VIX the market volatility index. Significance levels: *** 1 %,

** 5 %, * 10 %. The regressions are estimated by OLS with a constant, with Newey-West

standard errors.

Regressor \ Swap Maturity 2 5 10 20 30
TERM −0045∗∗ −0008 −0116∗∗∗ −0115∗ −0187∗∗
TED 0337∗∗∗ 0179∗∗∗ −0102∗ −0285∗∗∗ −0253∗∗
MBSD 0026∗∗∗ 0015 0067∗∗∗ 0065∗∗ 0100∗∗∗

3MTB 0151∗ 0154 −0011 0022 0036
VIX 0003 0003∗∗ 0002∗∗ 0000 −0001
adj. R2 056 038 028 032 031
adj. R2 without TERM 055 039 015 027 020

Table 6: Swap Spread Regressions 10/2008 - 5/2018. All variables are in monthly growth

rates. TERM stands for the difference between the 30-year treasury rate minus the 3-month

rate, TED is the TED spread, and 3MTB the 3-month treasury rate, MBSD is the duration

of mortgage backed securities, VIX the market volatility index. Significance levels: *** 1 %,

** 5 %, * 10 %. The regressions are estimated by OLS with a constant, with Newey-West

standard errors.

swap spread. However, given the short sample period, these results should be interpreted

with some caution.

5 Conclusion

Negative swap spreads are inconsistent with an arbitrage-free environment. In reality, ar-

bitrage is not costless. I have presented a model where specialized dealers trade swaps and

bonds of different maturities. Costs for holding bonds can put a price wedge between bonds

and swaps. I show a limiting case with very high bond holding costs, expected swap spreads

should be negative. In this case, no term premium is required to price swaps, and this results

in a significantly lower fixed swap rate. As a function of the level of bond holding costs,
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Regressor \ Swap Maturity 2 5 10 20 30
TERM 0030 −0052 −0169∗∗∗ −0238∗∗∗ −0455∗∗∗
TED 0310∗∗∗ 0146∗∗∗ −0076∗ 0050 0099∗

MBSD −0003 0013 0075∗∗∗ 0111∗∗∗ 0201∗∗∗

3MTB 0151 −0020 −0214∗∗∗ −0326∗∗∗ −0487∗∗
VIX −0001 0001 0001 0001 0000
adj. R2 036 008 009 010 026
adj. R2 without TERM 038 010 001 000 000

Table 7: Swap Spread Regressions 1/2015 - 5/2018. All variables are in monthly growth

rates. TERM stands for the difference between the 30-year treasury rate minus the 3-month

rate, TED is the TED spread, and 3MTB the 3-month treasury rate, MBSD is the duration

of mortgage backed securities, VIX the market volatility index. Significance levels: *** 1 %,

** 5 %, * 10 %. The regressions are estimated by OLS with a constant, with Newey-West

standard errors.

the model can move between this benchmark and the arbitrage-free case. The quantitative

analysis of the model shows that under plausible holding costs, expected swap spreads are

consistent with the values observed since 2008.

Demand effects operate in the model, but are not necessary for these results. As frictions

for bonds increase, the impact of demand effects becomes stronger. Quantitatively, demand

effects are shown to have the potential to affect swap spreads in a meaningful way. For

demand effects to play a major role in driving swap spreads, the size of demand imbalances

would have to be very large relative to dealers’ asset holdings.

My model can capture relatively rich interest rate and inflation dynamics. Conditional

on the short rate, the model predicts a negative link between the term spread and the swap

spread. The paper has presented some empirical evidence consistent with this property.

The objective of this paper has been to present a parsimonious derivative pricing model

for interest rate swaps that goes beyond the typical no-arbitrage requirement to be consistent

with the possibility of negative swap spreads. For most of the analysis, frictions have been

modelled with cost functions for bonds and swaps that can be interpreted as summarizing

the overall increase in costs of financial intermediation following various regulatory changes.

The model could be further extended to, for instance, include additional specific regulatory

measures, or to explicitly represent repo transactions. Another possibly fruitful extension

could be to embed the dealer’s optimization into a diversified financial institution with

additional frictions.

27



References

[1] Andersen, Leif, Darrell Duffie, and Yang Song, 2018, "Funding Value Adjustments,"

forthcoming Journal of Finance.

[2] Boyarchenko, Nina, Pooja Gupta, Nick Steele, and Jacqueline Yen, 2018, "Negative

Swap Spreads", FRB of NY.

[3] Bowman Louise, and Tessa Wilkie, 2016, "KfW $4 billion issue underscores new normal

of negative swap spreads", Euromoney, February 18.

[4] Collin-Dufresne Pierre and Bruno Solnik, 2001, "On the Term Structure of Default

Premia in the Swap and LIBOR Markets", The Journal of Finance, Vol. 56, No. 3

(Jun., 2001), pp. 1095-1115.

[5] Davis Polk, 2014, Supplementary Leverage Ratio (SLR),

https://www.davispolk.com/files/09.12.14.Supplementary_Leverage_Ratio.pdf

[6] Dow J, and Gorton G, 1994, "Arbitrage chains," Journal of Finance. 49:819-849.

[7] Duffie, Darrell, 2016, "Financial regulatory reform after the crisis: an assessment",

forthcoming Management Science, 45 pages.

[8] Du, Wenxin, Alexander Tepper and Adrien Verdelhan, 2016, "Deviations from covered

interest parity", unpublished manuscript.

[9] Eom, Y. H., M. Subrahmanyam and J. Uno, 2002, "The Transmission of Swap Spreads

and Volatilities in the International Swap Markets," Journal of Fixed Income, June,

6-28.

[10] Faulkender M., 2005, "Hedging or market timing? Selecting the interest rate exposure

of corporate debt," The Journal of Finance, 931-962.

[11] Feldhutter, P. and D. Lando, 2008, "Decomposing swap spreads", Journal of Financial

Economics 88 (2), 375—405.

[12] Gabaix X, Krishnamurthy A, Vigneron O., 2007, "Limits of arbitrage: theory and

evidence from the mortgage-backed securities market," J. Finance. 62:557-95.

[13] Garleanu Nicolau, Lasse Heje Pedersen and Allen Poteshman, 2009, "Demand-Based

Option Pricing", Review of Financial Studies, vol. 22, no. 10, pp. 4259-4299.

28



[14] Gospodinov, Nikolay and Damba Lkhagvasuren, 2014, "A Moment-Matching Method

for Approximating VAR Processes by Finite-State Markov Chains," Journal of Applied

Econometrics, 2014, Vol 29(5): 843—859.

[15] Gromb, Denis and Dimitri Vayanos, 2010, "Limits of Arbitrage", Annu. Rev. Financ.

Econ. 2010. 2:251—75.

[16] Greenwood, Robin, Samuel G. Hanson, Jeremy C. Stein, and Adi Sunderam, 2017,

"Strengthening and Streamlining Bank Capital Regulation," Brookings Papers on Eco-

nomic Activitiy Fall.

[17] Gupta, Anurag and Marti G. Subrahmanyam, 2000, “An empirical examination of the

convexity bias in the pricing of interest rate swaps”, Journal of Financial Economics,

239-279.

[18] Hanson Samuel G., 2014, "Mortgage convexity," Journal of Financial Economics 113

(2014) 270—299.

[19] Jermann, Urban J. and Yue, Vivian Z., 2018. "Interest rate swaps and corporate de-

fault," Journal of Economic Dynamics and Control, Elsevier, vol. 88(C), 104-120.

[20] Judd Kenneth L, 1992, "Projection methods for solving aggregate growth models,"

Journal of Economic Theory Volume 58, Issue 2, December, Pages 410—452

[21] Judd Kenneth L, F Kubler and K Schmedders, 2002, "A solution method for incomplete

asset markets wih heterogeneous agents," unpublished manuscript.

[22] Johannes Michael and Sundaresan Suresh, 2007, "The Impact of Collateralization on

Swap Rates,” with Michael , in the Journal of Finance, VOL. LXII, NO. 1 February.

[23] Klinger, Sven and Suresh Sundaresan, 2016, "An Explanation for Negative Swap

Spreads," unpublished manuscript.

[24] Leland Hayne E., 1998, Agency Costs, "Risk Management, and Capital Structure," The

Journal of Finance, Vol. 53, No. 4,

[25] Liu Jun and Francis A. Longstaff, 2004, "Losing Money on Arbitrage: Optimal Dynamic

Portfolio Choice in Markets with Arbitrage Opportunities". The Review of Financial

Studies, Vol. 17, No. 3 (Autumn, 2004), pp. 611-641.

29



[26] Liu J., F. Longstaff and R. Mandell, 2006, "The Market Price of Risk in Interest Rate

Swaps: The Roles of Default and Liquidity Risks", Journal of Business, 2006, vol. 79,

no. 5.

[27] Mendoza, E., 1991,"Real business cycles in a small-open economy," American Economic

Review 81, 797—818.

[28] Andrei Shleifer and Robert W. Vishny, 1997, "The Limits of Arbitrage," The Journal

of Finance, Vol. 52, No. 1 (Mar., 1997), pp. 35-55.

[29] Smith Josephine, 2015, "Negative Swap Spreads?", unpublished notes, NYU.

[30] Schmitt-Grohe Stephanie and Martin Uribe, 2003, " Closing small open economy mod-

els" ,Journal of International Economics 61, 163—185.

[31] Stepanchuk, S., Tsyrennikov, V., 2015, "Portfolio and welfare consequences of debt

market dominance" Journal of Monetary Economics. 74, 89—101.

[32] Tauchen George, 1986, "Finite state markov-chain approximations to univariate and

vector autoregressions", Economics Letters, Volume 20, Issue 2, 1986, Pages 177—181.

[33] Tuckman Bruce and Vila Jean-Luc, 1992, "Arbitrage With Holding Costs: A Utility-

Based Approach", The Journal of Finance, Vol. 47, No. 4 Sep, pp. 1283-1302.

[34] Vayanos Dimitri and Jean-Luc Vila, 2009, "A Preferred-Habitat Model of the Term

Structure of Interest Rates", National Bureau of Economic Research, w15487.

30



Appendix A: Swap value
Iterating on the different parts in the square brackets of
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

⎧⎪⎪⎨⎪⎪⎩
−1 +

³
Λ+1
Λ

´
− (1− ) Λ+1

Λ

+(1− ) Λ+2
Λ
− (1− )2 Λ+2

Λ

+(1− )2 Λ+3
Λ

 =

⎫⎪⎪⎬⎪⎪⎭


( −1− (1− ) Λ+1
Λ
− (1− )2 Λ+2

Λ


+
³
Λ+1
Λ

´
+ (1− ) Λ+2

Λ
+ (1− )2 Λ+3

Λ
 =

)



⎧⎨⎩ −1− (1− )
n

Λ+1
Λ
+ (1− )1 Λ+2

Λ
+ (1− )2 Λ+3

Λ

o

+
n

Λ+1
Λ
+ (1− )1 Λ+2

Λ
+ (1− )2 Λ+3

Λ

o
=

⎫⎬⎭
= −1 + Ω (1) 

And the third part



½
Λ+1

Λ

 + (1− )
Λ+2

Λ

+1 + (1− )2
Λ+3

Λ

+2

¾
=

X
=1

(1− )−1

Λ+

Λ

+−1 ≡ Ω ({}) 

31



Combining terms yields

 = Ω (1)− 1 + Ω (1)− Ω ({})
=

¡
 + 

¢
Ω (1)− 1− Ω ({}) 

Appendix B: Swap holding costs
With explicit holding costs for swaps, the pricing equation can be written as

 = 

µ
Λ+1

Λ

£
 −  + (1− )+1

¤¶− i
where i is the marginal cost from a cost function with a timing in line with the bond cost

functions used. This implies that

 = Ω (1)− 1 + Ω (1)−Ω

µ½
 +  +

Λ

Λ+1
i

¾¶


and the swap spread

 −  =
Ω ({})
Ω (1)

+
Ω

³
{}− 1



n
Λ

Λ+1


o´
Ω (1)

+
Ω

³n
Λ

Λ+1
i

o´
Ω (1)



The last term differentiates this from equation (8) in the main text. With a quadratic cost,

2
(+1)

2
, the marginal cost is i = +1, and the additional price wedge depends on the

process for current and future swap holdings.
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