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ABSTRACT

We employ a unique hand-collected dataset and a novel methodology to examine systemic risk 
before and after the largest U.S. banking crisis of the 20th century. Our systemic risk measure 
captures both the credit risk of an individual bank as well as a bank’s position in the network. We 
construct linkages between all U.S. commercial banks in 1929 and 1934 so that we can measure 
how predisposed the entire network was to risk, where risk was concentrated, and how the failure 
of more than 9,000 banks during the Great Depression altered risk in the network. We find that 
the pyramid structure of the commercial banking system (i.e., the network’s topology) created 
more inherent fragility, but systemic risk was nevertheless fairly dispersed throughout banks in 
1929, with the top 20 banks contributing roughly 18% of total systemic risk. The massive 
banking crisis that occurred between 1930–33 raised systemic risk per bank by 33% and 
increased the riskiness of the very largest banks in the system. We use Bayesian methods to 
demonstrate that when network measures, such as eigenvector centrality and a bank’s systemic 
risk contribution, are combined with balance sheet data capturing ex ante bank default risk, they 
strongly predict bank survivorship in 1934.
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1 Introduction

The Global Financial Crisis (GFC) focused attention on the importance of understanding the

connections between financial institutions, which have been seen as a means for propagating distress

(Allen and Gale, 2000; Elliott et al., 2014; Acemoglu et al., 2015; Allen et al., 2010; Freixas et al.,

2000; Dasgupta, 2004; Caballero and Simsek, 2013). Researchers and policymakers have sought

a better understanding of the characteristics that predispose financial systems to systemic risk as

well as the potential negative macroeconomic externalities when “systemically important” financial

institutions suspend or fail.1

In response, researchers have developed new analytical measures aimed at quantifying institu-

tional as well as aggregate risk.2 These tools provide new insights into the interpretation of systemic

risk, although researchers continue to explore their properties and utility for policy makers. To date,

studies have largely focused on the period around the GFC. This is somewhat surprising, given the

well-documented challenges of measuring connections between the “shadow banking system” and

the regulated sector of the 2000s, a need to understand the “out of sample” properties of these

tools, and the benefits from comparing the GFC to earlier crises.3

To shed further light on these issues, we analyze how the largest financial crisis of the 20th

century – the Great Depression – altered the network of financial institutions in the United States.

To do so, we construct network measures using a new data set of correspondent banking relation-

ships for all commercial banks and trusts in the United States in 1929 and 1934. In contrast to

most recent approaches that estimate financial linkages from financial flow data, our measure of

connectedness for 1929 and 1934 uses stated bank correspondent relationships based on historical

bank records.4

We then develop tools to compute individual bank risk and systemwide risk to measure the

exposure of the entire commercial banking network to risk before the Great Depression began, and

1The Dodd Frank Act (2010) defines a systemically important financial institution (SIFI) as one that is large,
complex, linked to other financial institutions and “critical,” providing services that may have few close substitutes.
For an example of a model linking systemic risk externalities to measurement of it, see Acharya et al. (2017).

2For a survey of methodologies, see Bisias et al. (2012).
3Research is now beginning to explore them in the context of earlier periods. For example, see Brownlees et al.

(2017), which tests a variety of empirical measures of systemic risk on a small subset of commercial banks. By
contrast, our research models the connections across an entire network and for a particular crisis.

4For example, Billio et al. (2012) construct networks of financial institutions using bivariate Granger causality
regressions based on inferences from asset returns. Exceptions are Burdick et al. (2011); Brunetti et al. (2017), which
examine the properties of “physical connectedness” for U.S and European banks, respectively, during the 2007-8
crisis.
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analyze where and how much risk was concentrated in individual banks within the network. We

assess whether the pyramid-like structure of the banking system that existed prior to the Great

Depression concentrated risk, and how counterfactual failures or interventions to rescue systemically

important banks would have changed overall systemic risk. We examine how the failure of nearly

9,000 banks between 1930–33 altered risk within the system. Finally, we test whether the 1929

network measures of connectedness and risk are useful in predicting subsequent failure. The pyramid

topology, geographical distribution of risk, and various network positions of the thousands of bank

failures make studying the Great Depression a useful contribution to the systemic risk literature.

These features are unlike the recent crisis and are important for understanding the impact of crises

on networked systems.

We find network features can quantify the predisposition of financial systems to risk. In par-

ticular, we show that, even within the class of “scale-free” networks, a particular topology can

amplify risk. Relative to a “random graph” topology, the pyramid-like structure of the commercial

banking system that existed in 1929 increased fragility and the propensity for risk to spread by

concentrating banking interactions to particular nodes in the network. That said, systemic risk was

fairly dispersed in 1929, with the top 20 banks contributing roughly 18% of total systemic risk.

Because our risk measure can be decomposed to show an individual bank’s contribution to

systemic risk, we assess if network features are helpful in predicting whether individual banks

failed or merged during the severe banking crisis of the early 1930s. Using marginal likelihood

computations, we show that when network measures such as eigenvector centrality and a bank’s

systemic risk contribution are combined with balance sheet data that capture ex ante bank default

risk, they strongly predict bank survivorship in 1934. Banks more central to the system or with

higher ex ante default risk were more likely to subsequently fail. On the other hand, we find that

a bank’s individual contribution to systemic risk positively impacts survivorship, an interesting

result in light of the large-scale intervention by the Reconstruction Finance Corporation to rescue

banks beginning in 1932 and perhaps the wellspring of American “too big to fail” banking policy.

Bayesian model selection and in-sample hit rates dramatically favor a specification when network

measures are included, suggesting network-based systemic risk measures may have considerable

utility for policy makers wanting to understand where risk lies in the system and the implications

of that risk.

Having identified where risk resided in 1929, we show that, of the 20 systemically riskiest banks
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prior to the Depression, only one of them subsequently failed, raising overall systemic risk per

bank by 1.59%. This result is largely because the systemically riskiest banks, while central to

the network, had below average credit risk going into the Depression. They flexed, in response to

massive withdrawals of deposits, but for the most part, did not break. Had all 20 of them instead

failed, systemic risk would have risen by over 50%. Bank failures in the early 1930s were largely

concentrated in smaller– and medium–sized institutions, and the 30 largest realized bank suspen-

sions of the Great Depression were not central to the correspondent network system, accounting

for only 8.33% of aggregate systemic risk in 1929. We also find that the massive banking crisis of

the early 1930s reshaped the network and redistributed risk: it raised systemic risk per bank by

33% and increased the riskiness of the 20 largest banks in the system by 5 percentage points. The

distribution of risk thus became more concentrated at the top of the system.

2 Data

To construct network measures and to compute individual bank risk and systemwide risk, we

use information on the correspondent relationships for all commercial banks and trusts in the

United States in 1929 and 1934. Institutional linkages, as used here, report on observed network

relationships rather than those inferred from data, although, like many other network measures for

banks, the data cannot quantify the intensive margin (i.e., we lack information on the precise size of

the balance sheet connections between financial institutions). Correspondent relationships initially

arose to service the needs of customers conducting business in larger cities and the financial centers

of the United States in the 19th century, and were later reinforced by banks that met mandated

regulatory reserve requirements by maintaining balances in larger city banks.

We collected data on correspondent relationships for the entire banking system in 1929 (roughly

26,000 banks) and in 1934 so that we could analyze how the system changed as a result of the bank-

ing crisis of 1930-33.5 These data, as well as information on each bank’s balance sheet and other

characteristics (location, population of city or town, date of first charter, Federal Reserve mem-

bership, etc.), were hand collected from Rand McNally Bankers Directory (July 1929, September

1934). On the liabilities side, the publication lists four items: paid-up capital, surplus and profits,

deposits, and other liabilities. Rand McNally also records four categories on the asset side of the

ledger: loans and discounts, bonds and securities, miscellaneous assets, and cash and exchanges

5Foreign correspondents exist for some large city banks in locations such as New York and San Francisco. These
are excluded from our analysis.
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Figure 1: Illustrating correspondent relationships.

(due from banks). In describing directional relationships within the network, a “respondent” is

defined as a bank that initiates a business relationship with another bank for its customers or

itself (i.e., to satisfy reserve requirements by holding interbank deposits at a bank in a large city).

A “correspondent” bank is the bank that satisfies those business needs. Because Rand McNally

reports these precise correspondent relationships, we initially coded the relationships direction-

ally, as illustrated in Figure 1. Dexter State Bank located in Dexter, Iowa, lists two banks as

its correspondents in 1929: Iowa National Bank (Des Moines, IA) and Continental Illinois Bank

and Trust (Chicago, IL). The correspondent bank Iowa National Bank in turn lists First National

Bank (Chicago, IL), Continental Illinois Bank and Trust, Midland National Bank (Minneapolis,

MN), and Guaranty Trust Company (New York) as its correspondents. Since we lack data on the

intensive margin, we follow other analyses of financial networks and treat linkages equally in the

data (i.e., no adjustments are made for differences in flow).

3 The 1929 Network

We begin by describing the contours of the network just prior to the Great Depression. In July

1929, 26,671 respondent banks and 4,204 unique correspondent banks existed. Our data set shows

the complete list of relationships between these financial institutions. After removing rows and

columns in which correspondent banks did not have a relationship with a respondent bank, we are

left with 25,144 rows (respondents) and 3,602 columns (correspondents) for 1929. This matrix is

“sparse” since many of the elements are zeros.

In 1929, there are 3, 062 banks that were both correspondents and respondents. Hence, the

number of banks having at least one relationship with another bank is 25, 684 (= 25, 144 + 3, 602−

3, 062); this determines the number of nodes n in the network graph. Correspondent banks that
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Figure 2: Respondent banks in red and correspondent banks in blue, sized by relative degree of each bank.
Respondent banks place money with correspondent banks. Correspondent banks are plotted in blue and
have points that are two times 1 plus the natural logarithm of the node’s degree.

are not also listed as respondents are typically non-depository institutions and international banks,

for which we do not have balance sheet data. Finally, the relationship between respondent and

correspondent banks is a many-to-many relationship, meaning each respondent bank may be related

to more than one correspondent bank, and vice versa.

The adjacency matrix for the network is defined as A(i, j), i, j = 1, 2, ..., n, where n = 25, 684

for 1929. A(i, j) = 1 if respondent bank i has a relationship with correspondent bank j, else

A(i, j) = 0. The total number of links in the network is 70,679. Examining their distribution, most

respondent banks have very few correspondents. On the other hand, correspondent networks can

be very large – in the thousands – a fixture that has implications for the shape of the network.

Figure 2 plots the locations of correspondent and respondent banks in 1929. If a bank is both a

respondent and correspondent, it is plotted as a correspondent bank. The size of the point for

correspondent banks is proportional to 1 plus the natural logarithm of the degree of the node and

is plotted in blue color. Respondents are in red.

Correspondent banks are clearly more connected. Country banks, the term used to describe

banks located in small towns and cities, are close to their correspondents, which explains the

widespread geographical coverage by correspondent banks. Nevertheless, correspondent banks ap-

pear to be located in larger cities.
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3.1 Network Statistics

To better understand the structure of the commercial bank network prior to the Depression, we

compute a variety of common network statistics. We first examine the density of the network.

Clusters, defined here as the number of disjoint connected components, describe one aspect of

network connectivity. In 1929, there were 31 such disjoint groups. Of these, there is one extremely

large connected component of 25,576 banks (out of a total of 25,684). Therefore, the banking

network is almost fully connected. The remaining 30 components have sizes of 22, 12, 9, 6, and the

rest have four nodes or less.

The number of links that a node has is known as its degree, and the computation of degree

is directionless. That is, even though our network is directed, degree only depends on a node’s

links, regardless of the directional linkage (i.e., respondent to correspondent or correspondent to

respondent). For 1929, the mean degree of nodes in the network is 5.50 with a standard deviation

of 49.60.6 The median degree in the network is 3.0 in 1929.

The “degree distribution” of the nodes is shown in Figure 3. The left plot shows nodes with

degree less than 50 while the right plot shows nodes with degree greater than 50. The distribution is

extremely skewed with a large number of nodes with low degree and a few nodes of very high degree.7

We can also examine this feature by plotting the (log) number of nodes against the (log) number

of links (degree). Figure 4 shows the expected quasi-linear and negative relationship characteristic

of a log-log plot of a network, where we have excluded extreme nodes with degree greater than 50.

The data on bank nodes exhibit the usual power law distribution that is characteristic of social

networks (Barabasi, 2002; Barabasi and Bonabeau, 2003; Gabaix et al., 2003). The power law

coefficient α = −1.65.

Understanding which nodes have the greatest influence in the network, i.e., which nodes are the

most critical, is also of interest, especially for policymakers who might want to identify “too big to

fail” or systemically important institutions (SIFIs). Although there are many ways to capture this

mathematically, we use several variants of the most common measure, centrality. First, centrality

can simply be measured by the number of connections a node has, i.e., its degree; this is known as

degree centrality. Of course, degree centrality ignores the fact that a node with few connections may

6Note that the number of links per node is the number of links divided by the number of nodes, i.e., 70679/25684 =
2.75. Since each link connects two nodes, it accounts for two degrees. Therefore, the mean degree of the network is
twice 2.75, i.e., 5.50.

7This is characteristic of a scale-free network. For a full exposition, see http://barabasi.com/f/623.pdf. See
also Barabasi and Bonabeau (2003).
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Figure 3: Degree distribution in 1929. The left panel plots nodes with degree less than 50 while the right
panel plots nodes with degree greater than 50.

Figure 4: Log-log plot of the degree distribution in 1929 excluding extreme nodes with degree greater than
50. We plot log degree on the x-axis and log of the density function on the y-axis. For power-law densities,
the function is f(d) = d−α. Taking logs we have ln[f(d)] = −α ln(d). The power law coefficient is α = −1.65.
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still have a huge influence if it is connected to a node with many connections.8 Degree centrality

may be varied by computing degree to a chosen depth, say three levels deep, a parameter chosen

at the discretion of the modeler. The top banks by degree centrality in 1929 are shown in Table 1.

A more general formulation is eigenvalue centrality (Bonacich, 1987; Bonacich and Lloyd, 2001),

where centrality (ci) of a node is defined as a function of the centrality of the nodes to which it

is connected, through the network matrix, A. This leads to a circular system of n simultaneous

equations:

ci =
n∑

j=1

Aijcj , ∀i = 1, 2, ..., n. (1)

This system of equations may be written in matrix form such that:

λc = A · c (2)

where λ is a scalar quantity, c is a vector of size n, and as before, A ∈ Rn×n. Equation (2) is

an eigensystem, and one solution to this system of equations is the principal eigenvector in an

eigenvalue decomposition of adjacency matrix, A. This is known as the centrality vector, which

contains n components, ci, i = 1, 2, ..., n. Eigenvalue centrality is equivalent to degree centrality

computed with infinite degree depth. The banks with the most eigenvalue centrality are also shown

in Table 1.

As shown in Table 1, Continental Illinois Bank and Trust (Chicago) has the most linkages

in the network, with 4,474 in 1929. Chase National Bank is second (in both degree centrality

and eigenvalue centrality) with 2,982 linkages. Eight of the top 15 banks with the highest degree

centrality are located in the financial centers of New York City and Chicago. In 1929, these were

known as central reserve cities since non-Fed member banks could satisfy their state-mandated

reserve reserve requirements by holding reserves in banks located in these cities. The other seven

are in reserve cities of the Federal Reserve system. Combined, these locations give rise to the

pyramid structure analyzed in the next section.

A third measure for determining the importance of nodes is betweenness centrality, which assigns

importance to a node in a network if it sits at the intersection of paths between other nodes. In this

context, a node has importance because it acts as an information “broker.” Betweenness centrality

is calculated as the number of shortest paths in the graph that pass through a given node. Following

8For example, in a social network, one may have very few friends, but if one of them is Mark Zuckerberg, then
one still has a lot of influence.
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Table 1: Top 15 banks by 1929 eigenvalue centrality (normalized), along with their degree.

Bank Name and Location Centrality Degree

Continental Illinois Bank and Trust (Chicago, IL) 1.000 4,474
Chase National Bank (New York City, NY) 0.440 2,982
Central Hanover Bank and Trust (New York City, NY) 0.283 2,710
First National Bank of Chicago (Chicago, IL) 0.279 1,715
National City Bank (New York City, NY) 0.265 1,778
Guaranty Trust Company (New York City, NY) 0.226 1,652
First National Bank in St. Louis (St. Louis, MO) 0.181 1,113
Philadelphia National Bank (Philadelphia, PA) 0.181 1,127
Mercantile Commerce Bank and Trust (St. Louis, MO) 0.148 813
Union Trust Company (Cleveland, OH) 0.146 629
First Wisconsin National Bank (Milwaukee, WI) 0.140 741
First National Bank (Minneapolis, MN 0.139 1,090
National Park Bank (New York City, NY) 0.125 1,370
First National Bank (St. Paul, MN) 0.123 736
Irving Trust Company (New York City, NY) 0.109 1,107

Table 2: Top ten banks by betweenness centrality (1929).

Bank Name and Location

First National Bank of Chicago (Chicago, IL)
Security First National Bank of Los Angeles (Los Angeles, CA)
Union Trust Company (Cleveland, OH)
American Trust Company (San Francisco, CA)
Citizens National Trust & Savings Bank (Los Angeles, CA)
Mississippi Valley Merchants State Trust Company (St. Louis, MO)
Mercantile Commerce Bank and Trust Company (St. Louis, MO)
Fifth Third Union Trust Company (Cincinnati, OH)
Mellon National Bank (Pittsburgh, PA)
The Philadelphia National Bank (Philadelphia, PA)
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Freeman (1977), betweenness centrality for a node v is defined as follows:

bv =
∑
i,j

g(i, v, j)

g(i, j)
(3)

where g(i, v, j) is the number of shortest paths from node i to node j that pass through node v, and

g(i, j) is the number of shortest paths from node i to node j. The summation is taken over all (i, j)

where i 6= j 6= v and i 6= v. Centrality is normalized, with the highest scoring (most important)

bank being set equal to one and others set relative to this value.

Interestingly, the results differ when considering betweenness centrality. Only one of the top 10

banks using this measure are located in the central reserve cities of New York and Chicago (versus

the majority of banks for the two other measures). As Table 2 shows, using betweenness centrality,

the most influential connector nodes are coast-to-coast and geographically dispersed.

3.2 The Pyramid Structure of the 1929 Network

Financial historians provide us with some priors about the general topology of the network in 1929

– features that evolved out of the evolution of correspondent banking. Their descriptions point

toward a network topology resembling a pyramid, where banks in cities, such as New York and

Chicago, had the greatest number of connections; those in other large cities, such as St. Louis,

Philadelphia, and San Francisco, had fewer linkages; and banks in small towns and cities had the

least. In this section, we explore the extent to which their priors are confirmed by the data, and

examine the degree to which the topology of the network predisposes the system to risk.

The structure of the correspondent banking network that existed on the eve of the Depression

had evolved over the course of the nineteenth century, especially after the Civil War and the

establishment of nationally chartered banks. As the nation grew and population moved westward,

banks located in smaller towns and cities sought correspondent linkages with financial centers to

carry out business on behalf of their customers as well as on their own account. Further, the

National Banking Act of 1864 led to increased circulation of bank drafts as a national payments

instrument (James and Weiman, 2010). It had the effect of solidifying the importance of New

York correspondent banks at the apex of an emerging pyramid-shaped correspondent network as

these centrally-located banks could mediate payments of bank drafts between parties regardless of

their location (Redenius, 2007; James and Weiman, 2011). The national banking acts of the 1860s

further required “country banks” (those located in the hinterlands) with national bank charters to

meet legal reserve requirements by keeping a portion of their reserves as cash in their vaults and
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the remainder (originally up to three-fifths) in correspondent banks in “reserve” or “central reserve

cities” (larger cities dispersed throughout the country). State laws (applying to those banks that

received charters to operate from state banking authorities) reinforced the need for correspondent

relationships by also requiring state-chartered banks to split their reserves between vault cash and

interbank balances kept in the larger city banks.

Thus, as a result of the growth of a national payments system and regulations, interbank deposits

were particularly concentrated in reserve and central reserve cities, and fostered a pyramid-like

structure in terms of correspondent relationships.9 The Federal Reserve Act altered the structure

of reserves, with framers imagining a system whereby banking panics (not uncommon in the late

19th century) would be reduced by consolidating deposits in one of the Fed’s 12 regional reserve

banks instead of being scattered among hundreds of commercial banks in scores of reserve cities.10

The Federal Reserve Act, as amended in 1917, required national and state-member banks to meet

their reserve requirements entirely by holding deposits at their regional Federal Reserve Bank.

By 1929, however, only 10% of state-chartered commercial banks had joined the Federal Reserve

System.

Since roughly 90% had declined to join, much of the reserve pyramid remained in place in 1929

(Mitchener and Richardson, 2019). Non-member banks continued to meet their state-mandated

reserve requirements by holding interbank deposits at banks in one of the 63 reserve cities as well

as Chicago and New York – the central reserve cities. They also held their excess reserves in these

reserve-city banks, which they used to manage liquidity and offer a broader array of services to

their clientele.11 To a large degree, then, this pyramid structure was a relic of the national banking

era (when regulations allowing reserve requirements to be met by holding them in larger-city banks

were first imposed (Anderson et al., 2018a), and the subsequent failure of the Federal Reserve

System to convince all state-chartered banks to switch their charters and join the system after 1914

9This reserve pyramid proved ineffective during large financial crises of the nineteenth century, when reserves
became difficult, and at times impossible, to access. When faced with widespread demands for cash and credit,
reserve city banks hoarded funds for their own defense and left country banks to fend for themselves. As a result,
banking panics periodically shut down the payments system (Kemmerer, 1922; Sprague, 1910). The pyramid structure
was thus more effective at satisfying needs arising around the payments system than it was at providing liquidity to
distressed institutions.

10For a detailed analysis of the interbank network and 19th century crises, see Calomiris and Carlson (2017). For
additional research on how the founding of the Federal Reserve influenced the interbank market, see Carlson and
Wheelock (2016) and Carlson and Wheelock (2018).

11Federal Reserve member banks also deposited excess reserves at correspondent banks in reserve and central reserve
cities, since commercial correspondent accounts paid a higher interest rate (typically 2%) than Federal Reserve Banks
(typically 0%). This was particularly true of reserve-city banks, which deposited their excess reserves in money-center
banks in New York and Chicago. In June 1929, member banks held 93% of all interbank deposits in the United States.
Nonmember banks held only 7%.
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(Anderson et al., 2018b).

To examine the properties of this particular network topology, and in particular how they relate

to systemic risk, we compare the diameter and fragility of our network to a random graph network.

Diameter is defined as the maximal shortest path between any pair of nodes in the cluster for a

non-directional network. It is the max-min measure over all paths between all pairs of nodes. This

is a measure of how many banks it takes for a financial flow to spread from one edge of the network

to the other, thus giving us some insight into how quickly “contagion” could occur. The bigger

the diameter, the less likely that a local financial shock will become a global event in a banking

system. We define the concept of “system fragility” as the Herfindahl index normalized by dividing

by mean degree: R = E(d2)/E(d), where d is degree of each node. Fragility takes concentration

more explicitly into consideration than diameter because a highly-concentrated network tends to

have a greater risk of transmission. If a highly central node is compromised, the propensity for risk

to spread to the other nodes is high, which is captured by fragility.

We begin with an example that illustrates the differences between a pyramid structure and a

random graph. Pyramid graphs are mostly tree-like, even though they are not directed acyclic

graphs (or DAGs). Panel A of Figure 5 displays an undirected graph of 10 nodes, where a principal

node 1 is connected to nodes 2, 3, and 4. Node 2 is then connected to nodes 1, 5 and 6, node

3 is connected to 1, 6, 7, 8, and node 4 is connected to 1, 9, 10. This looks like a tree but the

specification of node 1 at the top of the tree is artificially imposed – one can just as easily “pick

up” any other node and make it the root of the tree (or the apex of the pyramid). Topologically,

pyramid graphs are likely to have degree (connections) concentrated in a few nodes, and are within

the class of scale-free networks (Barabasi and Bonabeau, 2003; Barabasi, 2002). The graph in

Figure 5 (Panel A) has mean degree of 2.2 connections per node. For comparison, we also generate

a random graph of 10 nodes with mean degree 2.2 (Panel B of Figure 5). Even though both graphs

have the same mean number of connections per node, the concentration of connections in a few

nodes is higher in the former. A measure of node importance is “centrality,” analytically described

earlier. The normalized mean centrality for the pyramid network is 0.65 versus 0.60 for the random

network.

The diameter of the pyramid network as well as the random network is 4, whereas fragility is

equal to 2.91 for the pyramid and 2.64 for the random network. These results suggest that, all

else equal, contagion will spread faster in the pyramid network because its connections are more
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Figure 5: Panel A is a depiction of a pyramid graph with 10 nodes. Note that the graph when laid out does
not necessarily look like a tree. The mean degree is 2.2. Panel B is a depiction of a random graph with 10
nodes and mean degree 2.2. Repeated simulations confirm the stability of this result.

concentrated.

Having considered how topology matters for risk, we now turn to examining the actual network

for 1929. The 1929 network contained 25,684 nodes and mean degree of 5.5. For comparison, we

generated a random network with the same number of nodes and mean degree.12 The pyramid

network has a diameter of 13 (average shortest path length was 3.31) and fragility of 453, whereas

the random network has a diameter of 12 and a fragility of 6.5. The pyramid structure in existence

prior to the banking distress of the Great Depression made the network inherently more fragile

than a random network by increasing the centrality of particular nodes and concentrating risk.

4 Systemic Risk

4.1 Risk Scoring

We now turn to measuring systemic risk. We develop measures of both individual bank credit risk

as well as aggregate system-wide risk that incorporate the interconnectedness of banks noted in the

previous section. In order to construct the systemic risk score, we needed to quantify the credit

quality of all commercial banks. Since credit ratings were non-existent for the tens of thousands

of banks that were too small to be listed on the NYSE, we employ financial ratios to develop a

composite measure of credit risk, a product of inverse profitability and transformed leverage. We

combine this with the network matrix to create a systemic risk per bank.

We begin with bank-level balance sheet and income data to derive bank-specific measures of

12We generated several random networks and the results align with the presented case.
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risk and define and/or compute the following financial ratios:

1. Assets – the sum of loans and discounts, miscellaneous assets, bonds and securities, and cash

and exchanges;

2. Equity – the sum of paid-up capital plus surplus and profits;

3. Leverage – assets divided by equity;

4. Buffer stock of retained earnings (BUF) – stock of retained earnings (surplus and profits

divided by equity).13

We convert profitability into a risk score (C) using the following function of BUF, i.e., an inverse

profitability risk score:

C = a+
1

1 +BUF
· b (4)

where a = −8 and b = 18. We can see that C ∈ (1, 10) because BUF ∈ (0, 1). An increasing score

implies greater risk. The mean credit risk score is 5.02 (median 4.90), with a standard deviation

of 1.92. The minimum and maximum scores are 1 and 10. The largest ten banks ranked in terms

of equity are shown in Table 3 alongside their credit risk scores and leverage ratios. Interestingly,

all of the largest banks have risk scores below the mean in 1929. Additionally, the most connected

banks in Table 1 have below average credit risk scores. Much of the balance sheet risk in the system

resided in medium to smaller sized banks.

We also transformed our leverage ratio in Table 3 to deal with an artificial right skew arising

from positive outliers in the data, i.e., banks with very low equity. Leverage-based risk (L) is thus

calculated as the following transformed value:

L = ln(1 +Assets/Equity). (5)

Leverage-based risk has a mean of 2.10 and a standard deviation of 0.38.

Finally, we compute a composite risk score, R, which combines the inverse of profitability

measure, C, and transformed leverage, L, such that:

R = C × L. (6)

13This is close to a bank’s return on equity, however, because we do not observe dividends paid out, it is not
identical to it. It was nevertheless used by banks to expand operations or write off losses relative to the book value
of net worth. See Carlson and Rose (2015).
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Table 3: Credit Risk and Leverage for the 10 largest banks (as measured by equity).

Bank Credit Risk Leverage

National City Bank (New York City, NY) 3.750 8.783
Guaranty Trust Company (New York City, NY) 3.086 8.366
Chase National Bank (New York City, NY) 3.443 7.811
Continental Illinois Bank and Trust (Chicago, IL) 4.242 7.660
Irving Trust company (New York City, NY) 3.115 5.655
Bank of Italy Nat. Tr. & Sav. Assn. (San Francisco, CA) 3.769 8.016
First National Bank (New York City, NY) 1.447 5.208
Bankers Trust Co. (New York City, NY) 2.221 6.686
Central Hanover Bank & Trust Co. (New York City, NY) 2.054 6.031
Manufacturers Trust Co. (New York City, NY) 2.757 5.851

In the ensuing analysis of systemic risk, we focus on R since this metric has appealing properties.

For example, because it is possible for firms with a high BUF to have low equity (and consequently

high leverage), these firms would be quite risky, yet the measure C would not assign them as such.

Multiplying C by L compensates for this possibility. R has a mean value of 10.52 and a standard

deviation of 4.27.

The risk measure, R, is analogous to modern credit-scoring methods such as the probability of

default which, for example, is computed using the Merton (1974) model. This model defines the

distance to default (an input to computing probability of default) as a leverage-adjusted measure of

volatility, providing the connection to our risk model here, where R is a leverage-adjusted measure

of inverse profitability. We use R since there are no measures of asset volatility available for all

banks in 1929.

4.2 Systemic Risk

We combine the network adjacency matrix A (described above) with the composite risk score for

each bank in the vector R to create a single measure of systemic risk per bank. We extend and

modify the metrics proposed in Das (2016) and Das et al. (2019). Our approach allows one to

empirically estimate “exposure” despite not knowing everything we might want about the financial

financial network. (For example, data on balance-sheet linkages between financial institutions is

often opaque or incomplete, both historically and today.) Systemic risk per bank, S, is thus defined

as:

S =
1

n
·
√
R> ·A ·R (7)
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=

√
R

n

>
·A · R

n
(8)

=
√
Q> ·A ·Q (9)

where n, as noted before, is the number of banks in the system, and superscript > denotes the

transpose of a vector or matrix. (Recall that R is an n-vector and A is a n×n matrix. Thus, Q is an

n-vector.) Division by n is a normalization used to measure systemic risk per financial institution

and to account for the fact that the banking crises of the early 1930s drastically reduced the number

of financial institutions in the network by 1934 – the year we use for post-crisis network comparison

later in the paper. Equation (8) implies that systemic risk, as denoted by scalar quantity S, increases

if the elements of R (individual bank risk) increase, holding n and A constant. Likewise, ceteris

paribus, if the elements of A (interconnectedness of banks) increase, systemic risk per bank also

increases. Note also that since the elements of R and A are all non-negative, S is also non-negative.

The systemic risk measure, S, may be thought of as a network, modified measure of composite

credit risk in the banking system. We note that it can be decomposed into two components: (1)

the amount emanating from individual bank risk and (2) that from network effects. If we replace

the network matrix, A, with the identity matrix and recompute S, i.e., S′ =
√∑n

i=1R
2
i then this

measures composite emanating risk from individual bank risk only. The ratio S/S′ ≥ 1 is a measure

of systemic risk arising from network effects.

Plugging the values from the 1929 data into these equations, we find that the total systemic risk

per bank, S, is 0.104. The ratio S/S′ = 1.46, suggesting that the network effect amplifies systemic

risk by a factor of 1.46. By itself, the value carries little meaning, but since it can computed at

different points in time (e.g. 1929 and 1934), the metric will allow us to examine how overall risk

in the system changes as a result of the banking crises of the Great Depression. To understand

where risk was concentrated prior to the Depression, we begin by breaking down systemic risk into

the risk contribution of each bank in 1929. This decomposition of the scalar function S(R,A) is

possible because the function is linear homogeneous in vector Q = [Q1, Q2, ..., Qn]>, the normalized

value of R. We can apply Euler’s homogenous function theorem and obtain the risk decomposition

equation:

S =
∂S

∂Q1
·Q1 +

∂S

∂Q2
·Q2 + . . .+

∂S

∂Qn
·Qn. (10)

Each partial derivative Sj = ∂S
∂Qj

multiplied by Qj is the risk contribution of bank j. We can
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Table 4: Top 20 banks by percentage contribution to systemic risk, 1929.

Bank Name and Location Percentage Risk

Continental Illinois Bank and Trust (Chicago, IL) 3.228
Chase National Bank (New York City NY) 1.557
The National Bank of the Republic of Chicago (Chicago, IL) 1.206
First National Bank of Chicago (Chicago, IL) 1.191
Commerce Trust Company (Kansas City, MO) 1.054
National City Bank (New York City, NY) 1.043
First National Bank (Minneapolis, MN) 0.969
First National Bank in St. Louis (St. Louis, MO) 0.845
Central Hanover Bank & Trust Company (New York City, NY) 0.762
Guaranty Trust Company (New York City, NY) 0.744
First National Bank of St. Paul (St. Paul, MN) 0.627
First Wisconsin National Bank (Milwaukee, WI) 0.619
National Stock Yards National Bank (National Stock Yards, IL) 0.606
National Park Bank (New York City, NY) 0.600
Mercantile Commerce Bank & Trust Company (St. Louis, MO) 0.594
Fletcher American National Bank (Indianapolis, IN) 0.457
Northwestern National Bank (Minneapolis, MN) 0.452
Union Trust Company (Cleveland, OH) 0.451
Fidelity National Bank and Trust Company (Kansas City, MO) 0.419
Drovers National Bank (Chicago, IL) 0.414

calculate all derivatives Sj in closed form using the following vector derivative:

∂S

∂Q
=

1

2S
[A ·Q+A> ·Q] ∈ Rn (11)

which gives an n-vector of derivatives Sj . Once we know the amount of risk that is contributed

by each node, we can pinpoint the riskiest banks in the network in terms of their contribution to

overall systemic risk.

Computing this for the 1929 data, we calculate each bank’s contribution to S. Table 4 shows the

percentage of systemic risk contributed by each of the top 20 risk contributing banks. Comparing

it to Table 1, we can see there is a considerable correspondence between the banks exhibiting the

most systemic risk prior to the Great Depression and the banks showing the greatest centrality.

However, an important additional feature of the 1929 network is that systemic risk is dispersed

across the entire network. Taken together, the top 10 banks account for 12.6% of the total systemic

risk and the top 20 banks account for 17.8%.

We also recomputed the risk score in equation (6) using size weights based on bank assets, i.e.,

we redefined R = C×L×w, where w is an asset-based weight, such that if the bank was in the top
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Figure 6: Respondents and Correspondents, 1934.

size decile by assets, then w = 3, and if it was between the 40th and 90th percentile, it was given a

weight of w = 2. All banks below the 40th size percentile had weight w = 1. We recomputed the

results in Table 4 and noticed no material changes. Therefore, the systemic risk measure is robust

to size-weighting of individual bank risk.

5 The Impact of the Financial Crisis on the Network

5.1 Network Features

As has been well documented by economic historians, waves of banks failures between 1930–1933

irrevocably altered the US financial system.14 Distress occurred throughout the country, but es-

pecially in rural areas and smaller towns. Using the 1934 data, we explore how the more than

9,000 banks that exited the system altered the structure of the network. Between 1929 and 1934,

the number of respondent banks declined by 36% (from 25,144 to 16,126) while the number of

correspondents fell by 41% (from 3,602 to 2,134). The number of banks in the network declined by

36%, from 25,684 in 1929 to 16,446 in 1934, and the total number of links in the network fell by

41%, from 70,583 in 1929 to 41,313. Comparing Figures 2 and 6 illustrates these changes spatially,

showing a substantial amount of thinning in both red and blue dots.

The number of clusters (disjoint groups) fell from 31 to 27, but the system still retained one

large connected component with 16,380 nodes out of a total of 16,446. The mean degree of nodes in

the network declined slightly between 1929–1934, from 5.50 to 5.02. Other than the median degree

14For example, see Friedman and Schwartz (1963) and Wicker (1996).
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Figure 7: Degree distribution for the banking network in 1934. The left plot shows the distribution for
nodes of size 1-50, and the right plot shows the distribution for nodes of size greater than 50.

in the network falling from 3 in 1929 to 2 in 1934 (reflecting the disappearance of many smaller

banks from the system), the frequency plots of the degree of nodes for 1929 and 1934 look quite

similar: the 1934 system still exhibits the usual power law distribution (power coefficient α = 1.60)

with the bulk of mass at low nodes and just a few banks having extremely large numbers of nodes

(Figure 7).

Table 5 displays the most central banks in 1934. Because Chicago experienced two pronounced

banking panics in 1931–32, Continental Illinois lost several thousand of its respondents to failure

(Friedman and Schwartz, 1963; Calomiris and Mason, 1997), and thus slipped from being the bank

with the highest degree centrality in 1929 to second overall in 1934. Chase National Bank gained

a few hundred connections. Table 6 shows that for betweenness centrality, the top banks change

considerably in comparison to 1929, with only four from that year remaining in the top 10 (with

new entrants shown in italics in Table 6). The greater degree of temporal change in betweenness

centrality, relative to the other measures, likely reflects the fact that the banking crisis knew no

geographical limits. That is, even in 1929, many of the most influential banks were located outside

of the central reserve cities.

We can also compare how the diameter and fragility of the network changed over time. As a

point of reference, we discuss these two measures in relation to those for the recent GFC. Between

1929 and 1934, the diameter remained the same at 13. The average shortest path length in 1934 was

3.25, similar to the 3.31 of 1929. Between 2005 and 2009, diameter remained quite stable, decreasing

from 5 to 4 as the network shrank because of bank exits (see Burdick et al. (2011)). Therefore,

the network was much wider in 1929 and 1934 compared to the recent financial crisis in the US.
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Table 5: Top ten banks by eigenvalue centrality (1934), along with their degree. Centrality scores are
normalized.

Bank and Location Centrality Degree

Chase National Bank (New York City, NY) 1.000 3,154
Continental Illinois Bank and Trust (Chicago, IL) 0.630 2,275
First National Bank of Chicago (Chicago, IL) 0.367 1,230
National City Bank (New York City, NY) 0.258 1,140
Philadelphia National Bank (Philadelphia, PA) 0.247 890
Central Hanover Bank and Trust (New York City, NY) 0.245 1,618
Guaranty Trust Company (New York City, NY) 0.237 1,004
First National Bank in St. Louis (St. Louis, MO) 0.230 683
Mellon National Bank (Pittsburgh, PA) 0.191 582
Commerce Trust Company (Kansas City, MO) 0.161 691

Table 6: Top 10 Banks in Betweenness Centrality, 1934. Banks in the top 10 in 1934 and not in 1929 are
shown in italics.

Bank Name

First National Bank of Chicago (Chicago, IL)
Security First National Bank (Los Angeles, CA)
First National Bank in St. Louis (St. Louis, MO)
The Pennsylvania Company (Philadelphia, PA)
Republic National Bank and Trust (Dallas, TX)
Mellon National Bank (Pittsburgh, PA)
Mercantile Commerce Bank and Trust Company (St. Louis, MO)
The Boatmen’s National Bank (St. Louis, MO)
Harris Trust and Savings Bank (Chicago, IL)
City National Bank and Trust Company (Chicago, IL)
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Table 7: Credit Risk Scores and Leverage for the 10 largest banks (as measured by equity) in 1934.

Bank Credit Risk Leverage

Guaranty Trust Company (New York City, NY) 3.124 5.354
Chase National Bank (New York City, NY) 5.225 7.717
National City Bank (New York City, NY) 6.167 8.354
Irving Trust Company (New York City, NY) 3.468 5.141
Bankers Trust Company (New York City, NY) 2.432 8.496
Continental Illinois Bank and Trust (Chicago, IL) 7.285 8.086
First National Bank (New York City, NY) 1.457 5.068
Bank of America Nat. Tr. & Sav. Assn. (San Francisco, CA) 3.994 10.207
Central Hanover Bank and Trust (New York City, NY) 2.445 8.282
Manufacturers Trust Company (New York City, NY) 5.158 6.147

In 1934, fragility fell by roughly one-fifth, from 453 to 354, suggesting that the system displayed

much more concentrated risk before the banking distress of the early 1930s. These numbers are

much higher than in 2005 when fragility was 138 (see Burdick et al. (2011)). Fragility in 2006 rose

to 172 and then dropped to 35 by 2009. While this was still high, system fragility during the GFC

was smaller by orders of magnitude than in the Great Depression. This difference may be driven

by the fact that analyses on 2005-2009 are performed on a small number of financial institutions.15

Table 7 displays how our risk measures changed as a result of the crisis. The mean credit risk

score rose from 5.02 in 1929 to 5.65 (with an SD of 2.05) in 1934. Whereas all of the largest banks

had risk scores below the mean in 1929, circumstances had changed this by 1934: both National

City Bank of New York (6.17) and Continental Illinois (7.28) exceeded the mean of 5.65. Leverage-

based risk (L) shrunk slightly from 2.11 in 1929 to 1.93 in 1934 (with an SD of 0.39). Using the

composite risk score R = C ·L, we can see that by 1934, the banking crises had raised the average

riskiness of banks, from a mean of 10.54 in 1929 to 10.76 (with as SD of 4.29).

Because overall connectivity decreased between 1929 and 1934 (with the mean degree falling)

and balance-sheet risk, R, increased, the change in systemic risk S is not immediately clear. Using

the A matrix and R vector from the 1934 data, we recompute S. In comparison to 1929 (0.104),

total systemic risk per bank rose to 0.138. We thus find that the financial panics of the early

1930s increased systemic risk per bank by 33% – a dramatic change in a span of only 4.5 years.

15Comparing the Great Depression with the GFC is not precise by any means. The construction of networks in
both periods uses quite different variables and there are differences also in the measure of bank credit quality, as
different credit risk variables were developed and employed in modern times. Therefore, these comparisons should
not be taken literally, but more as indicative of how financial crises change the structure of the banking system.
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Table 8: Top 20 Systemically Riskiest Banks in 1934.

Bank Name Percentage Risk

Continental Illinois Bank and Trust, (Chicago, IL) 4.21
Chase National Bank (New York City, NY) 3.68
First National Bank of Chicago (Chicago, IL) 2.16
National City Bank (New York City, NY) 1.60
Commerce Trust Company (Kansas City, MO) 1.22
First National Bank in St. Louis (St. Louis, MO) 1.06
Northwestern National Bank and Trust (Minneapolis, MN) 0.97
Central Hanover Bank & Trust Company (New York City, NY) 0.91
First National Bank and Trust Co. (Minneapolis, MN) 0.76
First Wisconsin National Bank (Milwaukee, WI) 0.74
Mercantile Commerce Bank & Trust Company (St. Louis, MO) 0.71
Omaha National Bank (Omaha, NE) 0.63
National Stock Yards National Bank (National Stock Yards, IL) 0.63
Guaranty Trust Company (New York City, NY) 0.55
First National Bank of St. Paul (Minneapolis, MN) 0.51
Fifth Third Union Trust Co. (Cincinnati, OH) 0.51
Philadelphia National Bank (Philadelphia, PA) 0.49
City National Bank and Trust Co. (Chicago, IL) 0.49
First National Bank (Kansas City, MO) 0.46
First National Bank (Boston, MA) 0.45

Given connectivity and balance sheet risk are moving in opposite directions, this number shows

that increased balance sheet risk more than offset the decline in connectivity. Note, however, that

the measure S/S′, the network multiplier, is marginally higher at 1.53 than in 1929 (=1.46).

To investigate how the banking distress of the early 1930s redistributed risk, we can decompose

our systemic risk measure and examine it bank-by-bank. Table 8 shows the percentage of systemic

risk contributed by the 20 systemically riskiest banks in 1934. Comparing these figures to those

from 1929 (Table 4) reveals that the banking crises of the early 1930s caused the concentration of

risk in the network to rise. In 1934, the 10 systemically riskiest banks contributed 17% to overall

risk (versus 13% in 1929), while the top 20 contribute to 23% of the overall systemic risk (versus

18% in 1929). Additionally, while Continental Illinois lost thousands of connections, its balance

sheet risk increased enough so that it remains the systemically riskiest bank. These findings are

important from a modern regulator’s perspective because the network topology and number of

failures are unlike the GFC and thus provide additional perspective on understanding systemic

risk.
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5.2 Counterfactuals and Realized Suspensions

An important question from a regulator’s perspective is how overall systemic risk changes if some-

thing happens to one of the systemically riskiest banks? In this section, we discuss methods for

considering counterfactuals and present the changes to systemic risk due to the largest realized

suspensions that occurred during the Great Depression.

Our model allows us to consider the effects of two types of counterfactuals that affect systemic

risk: (1) when banks are removed from the system (perhaps through supervisory action) and (2)

when banks fail. We begin by noting that the risk contributions, such as those shown in Table

4, have a useful mathematical property. They approximate the percentage reduction in per bank

systemic risk that occurs when any bank exits the system for some reason other than failure, e.g.,

ownership decides to voluntarily liquidate; it is correctly quantified by the risk contribution of

the bank. For example, if Continental Illinois Bank and Trust, the top risk contributor in 1929,

were to exit the banking network, then the per bank systemic risk metric, S, would decline by

approximately 3.2%. Therefore, when a bank exits, system-wide risk falls by approximately the

same amount that the bank contribute to overall systemic risk.

Given this insight, it follows that our analytic solution also permits direct measurement of the

percentage reduction in systemic risk achieved if a bank were “quarantined.” In this counterfactual,

a bank is quarantined if it remains in the network, but is not allowed to fail. Such a situation could

arise if a regulatory authority chooses to intervene during a crisis, perhaps if a bank is viewed as

systemically important or “too big to fail.” We can simulate this by setting the risk score, R,

for the bank equal to zero (i.e., the government backstop), leaving it in the network, and then

recalculating S. It turns out that this has the same effect as removing the bank from the network

altogether. Therefore, if Continental Illinois were quarantined, risk falls by 3.2%. Even when a

collection of banks is quarantined, the same result is realized. For example, if we allow the 10

riskiest banks in 1929 to be quarantined, the reduction in systemic risk is 13.5% and the sum total

of their individual risk contributions is 12.7%.

The second counterfactual of interest considers how the hypothetical failure of an ex ante

systemically important bank affects overall systemic risk. In our model, when a bank fails, risk in

the system rises through its relationship to other banks in the adjacency matrix. We can simulate

the failure of the of the 10 systemically riskiest banks by setting their risk score, R, equal to

the maximum risk score across all banks in 1929. Table 9 displays the results of this simulation.
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Table 9: The percentage increase in systemic risk if any one of the top 10 banks by percentage contribution
to systemic risk fails.

Bank Name and Location % Change S

Continental Illinois Bank and Trust (Chicago, IL) 12.939
Chase National Bank (New York City, NY) 8.139
The National Bank of the Republic of Chicago (Chicago, IL) 1.967
First National Bank of Chicago (Chicago, IL) 5.120
Commerce Trust Company (Kansas City, MO) 2.452
National City Bank (New York City, NY) 4.729
First National Bank (Minneapolis, MN) 3.742
First National Bank in St. Louis (St. Louis, MO) 3.105
Central Hanover Bank and Trust (New York City, NY) 8.093
Guaranty Trust Company (New York City, NY) 4.360

Clearly, systemic risk changes drastically if the riskiest bank, Continental Illinois Bank and Trust,

fails: overall systemic risk S increases by approximately 13%. Chase National’s bankruptcy would

lead to over an 8% increase in S. The simultaneous failure of all 10 of the top contributors would

raise systemic risk by over 50%, even without considering dynamic risk to the network (how it

changes other banks’ risks in the A matrix).

We now turn to the results for realized distress. In general, banks identified as the systemically

riskiest prior to the start of the banking crises of the 1930s did not fail. Only one of the top 20

banks identified as the systemically riskiest in 1929 (Table 4), Union Trust Company (Cleveland,

OH), failed, increasing systemic risk by 1.59%. Four others experienced suspended payments and

subsequently experienced “distressed” mergers: National Park Bank (NYC), The National Bank of

the Republic of Chicago, Fidelity National Bank and Trust Company (Kansas City), and Fletcher

American National Bank (Indianapolis). The survival of most of the 20 ex ante systemically riskiest

banks was buttressed by the fact that, on average, these banks had lower than average composite

risk, R, in 1929. While they were central to the network, and thus “systemically important,” their

better financial position prior to the crisis allowed them to bend, but not break. Additionally,

there was a large-scale bank rescue program that was implemented after the banking crises of the

Great Depression had begun to ravage the country’s financial system. The Reconstruction Finance

Corporation (RFC) was established in early 1932. It initially offered collateralized loans to banks

in need of assistance and later was given the authority to recapitalize them through preferred stock

purchases. An interesting point is that about 70% of the 1929 top risk contributors received a large

capital injection from the RFC. This suggests that regulators, even then, implicitly understood the
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Table 10: Top 10 banks (by total assets) that suspended after 1929 and their contribution to systemic risk.

Bank Names Loans (1000s) % Change in S

Union Trust Company (Cleveland, OH) 189,563 1.586
The Bank of United States (NY) 213,403 0.028
First National Bank in Detroit (MI) 379,788 0.938
Guardian Trust Company (Cleveland, OH) 122,038 0.259
Guardian National Bank of Commerce (Detroit, MI) 109,856 0.438
Baltimore Trust Company (Baltimore, MD) 57,832 0.112
Ohio Savings Bank & Trust Co. (Toledo, OH) 44,261 0.155
The Bank of Pittsburgh N. A. (Pittsburgh, PA) 58,426 0.667
Hibernia Bank & Trust Co. (New Orleans, LA) 47,535 0.477
National Bank of Kentucky (Louisville, KY) 37,721 0.651

nature of risk in networked financial systems.16

Thus far, we have highlighted the risk contributions of the systemically riskiest banks before and

after the crisis. However, our empirical design also allows us to examine how actual commercial bank

suspensions occurring during the period of the banking panics (1930-33) altered systemic risk. We

focus on the 30 largest realized suspensions, as measured by total loans and investments.17 These

include some of the most notorious banks failures during the Depression, such as the Bank of the

United States, First National Bank of Detroit, Guardian National Bank of Commerce, and the two

largest banks from the Caldwell chain of banks (National Bank of Kentucky and Central Bank and

Trust Company).18 These 30 suspensions accounted for a total of $1.8 billion or 25% of the nation’s

loans and investments in suspended commercial banks.19 The top 10 suspensions by total assets

and their contribution to systemic risk are shown in Table 10. Although the Great Depression

wiped out an inordinate number of banks, systemic risk arising from the realized suspensions of

the 30 largest banks increased by 8.33% – considerably less than if the ex ante systemically riskiest

bank in 1929, Continental Illinois, had failed (a resulting 13% increase).

6 Network Features and Bank Survivorship

16RFC assistance is not the same as the bank being “quarantined.” Even Union Trust Company (Cleveland) failed
despite receiving RFC assistance.

17Board of Governors (1936) (Table 18, p.36) provides data on the largest bank suspensions between 1929-33.
18See Heitfield et al. (2017) for an analysis of the banks that did business with Caldwell and Company.
19The mean size of bank failures for 1930-33 falls from $954,000 to $714,000 if these 30 banks are excluded. (Board of

Governors (1936), p.34).
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6.1 Predicting Bank Survivorship for the Entire Network

Because our underlying analysis is based on firm-level data, we can also analyze whether systemic

risk measures improve prediction of subsequent banking distress – something that has been lacking

in the literature on systemic risk. In this section, we use the sample of all banks operating in 1929

to predict bank survivorship in 1934. The outcome variable, yi, thus equals 1 if bank i survives and

appears in 1934 and equals 0 otherwise (i.e., we coded 0 as a bank failure).20 62% of the sample

survives and the remainder exits.21

We consider two latent-variable models:

M1 : y∗i = x>i1 · β1 + εi (12)

and

M2 : y∗i = x>i1 · β1 + x>i2 · β2 + εi. (13)

For both, the mapping from the latent to the observed data is yi = 1{y∗i > 0} and εi ∼ N(0, 1),

i.e., a probit model. The covariates in the vector xi1 include standard balance sheet measures,

Federal Reserve membership, location information, and county characteristics for bank i in 1929.22

The covariates in the vector xi2 include systemic risk measures for bank i in 1929, namely, composite

risk score (R), eigenvalue centrality, and percent contribution to systemic risk. The specifications

are purposefully parsimonious to offer simple interpretations and to help us examine the predictive

power of our network measures. Other variables may also be important for modeling the causes of

bank failures, but since our primary goal is to shed light on the predictive properties of network

features, our benchmark model relies on bank specific characteristics, institutional features of the

Federal Reserve system, and location controls.

The models are estimated by both maximum likelihood and Bayesian Markov chain Monte

Carlo (MCMC) methods. The estimation results are similar across both methods; however, the

Bayesian results permit us to compute marginal likelihoods and posterior model probabilities.

Although the parameter estimates are interesting, again, our focus is on the predictive fit of our

new measure - whether network features provide improved prediction. Thus, a fully Bayesian

20Banks are matched between 1929 and 1934 based on their name and routing number. Routing numbers are a
useful matching tool for banks that have gone through name changes or charter changes.

21In this section, we do not differentiate between failures and mergers; however, in the following subsection, we
disentangle failures and mergers.

22County information includes county population, manufacturing establishments, and acres of cropland. The data
were collected from the 1930 U.S. Census of Population, Manufacturing, and Agriculture.
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Table 11: Posterior means and standard deviations (in parenthesis) are presented for M1 and M2.

M1 M2

Intercept -1.469 (0.166) -0.347 (0.177)
Loans/Deposits -0.001 (0.003) -0.004 (0.003)
Bonds/Assets 1.068 (0.052) 1.032 (0.054)
ln(Assets) 0.222 (0.008) 0.188 (0.009)
Eigenvalue Centrality -5.887 (1.292)
Composite Risk Score -0.061 (0.002)
SysRisk Percentage 2.196 (0.417)
Fed Member 0.051 (0.018) 0.060 (0.019)
Central Reserve City -1.314 (0.082) -1.089 (0.085)
Reserve City -0.454 (0.040) -0.311 (0.040)
ln(County Pop) -0.083 (0.014) -0.115 (0.014)
ln(County Manufacturing) -0.011 (0.010) -0.006 (0.010)
ln(County Cropland) -0.039 (0.007) -0.011 (0.007)

approach is implemented. Specifically, the Accept-Reject Metropolis-Hastings (ARMH) algorithm

is used to estimate the model (Tierney, 1994; Chib and Jeliazkov, 2001). The priors on β are

centered at 0 with a variance of 25 and the results are based on 10,000 MCMC draws with a burn

in of 1,000. We begin by discussing the parameter estimates, then move on to prediction and model

comparison.

The estimated coefficients shown in Table 11 demonstrate that bank size (measured by log (as-

sets)), the ratio of bonds/assets, and Federal Reserve membership are positively associated with

bank survival – findings that hold across both models. As shown in M2, both eigenvalue cen-

trality (measuring the importance of a bank’s position in the network) and composite risk score

(bank-specific risk) have a negative impact on bank survival. The negatively-signed coefficient on

composite risk is quite intuitive and aligns with results found in numerous studies on bank sur-

vivability. The finding that a bank’s position and importance in the network negatively influences

survival is also intriguing. It aligns with Mitchener and Richardson (2019), which finds that, dur-

ing the banking panics of the early 1930s, banks in reserve cities and central reserve cities faced

significant withdrawal pressure from correspondent banks located in the hinterland. As shown

above, centrality was concentrated in the major money centers: Chicago, New York, Kansas City,

Minneapolis, St. Louis, St. Paul, Milwaukee, Philadelphia, and Cleveland. Thus, during pan-

ics, a prominent position in the network meant exposure not only to time and demand deposits

withdrawals, but also interbank withdrawals, raising the probability of liquidity-induced suspen-
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sions. Lower probabilities of survivorship are also associated with the indicator variables for central

reserve city and reserve city as well as county population.

Interestingly, the coefficient for a bank’s ex ante contribution to systemic risk is positive and

statistically different from zero. While individual bank risk and position in the network have a

negative effect, higher systemic risk for a bank in 1929 increases the probability of bank survival.

This finding is interesting in light of the RFC’s recapitalization program. Jesse Jones, Chairman

of the RFC, noted that the bank-rescue agency paid particular attention to large institutions

in deciding which banks to grant assistance (Jones, 1951) and, as mentioned previously, of the

systemically riskiest banks in 1929 (shown in Table 4), 70% of them received RFC assistance. The

result for systemic risk may point to the beginnings of the too-big-to-fail approach to banking crisis

in the US.

The new measures employed in this paper not only provide us with interesting results, but offer

inferential advantages over other systemic risk measures. Importantly, the measures developed in

this paper are constructed from the raw data, as opposed to being the predicted outcome of a

regression. Hence, we do not have additional layers of uncertainty in the model and we do not need

to conduct any inferential adjustments. Other systemic risk measures, such as CoVAR and SRISK,

are developed from regression output. And using such measures as covariates in a separate model

would lead to generated regressor issues and require standard-error adjustments.

For model comparison and prediction, we focus on marginal likelihoods (ln f(y|M1) versus

ln f(y|M2)) and posterior model probabilities. Given that we are using ARMH, we can use the

building blocks of that algorithm to compute marginal likelihoods, which follows from Chib and

Jeliazkov (2001). The marginal likelihood for model k is given by

m(y|βk,Mk) =

∫
f(y|βk,Mk)π(βk|Mk)dβk (14)

and is crucial for comparing models. An advantageous property of marginal likelihoods is that

they provide a measure of sequential out-of-sample predictive fit, where the fit of observation i is

measured with respect to the posterior density based on data up to i, without conditioning on

observations after i (Choudhary et al., 2017). This feature allows the researcher to overcome the

complications associated with conditioning on the entire data set or using subsets of the data for

in-sample and out-of-sample analyses.

Table 12 presents the model comparison and prediction results, and shows overwhelming evi-

dence in favor of M2. In particular, the specification has a posterior model probability of nearly
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Table 12: Model Comparison and Prediction Results for M1 and M2.

M1 M2

Log-Marginal Likelihood -15543.84 -15114.64
Posterior Model Probability 3.99× 10−187 ≈ 1
Hit rate 64.57% 66.79%

1 in comparison with M1. The data heavily support the specification with the three additional

measures (Eigenvalue Centrality, Composite Risk Score, and SysRisk Percentage). Additionally,

the model strongly out performs M1 at predicting the probability of bank failure.

While the marginal likelihood is the superior measure for out-of-sample prediction, the in-

sample hit rates give us straightforward and intuitive numbers. M1 has a hit rate of 66.79%,

whereas M2 has a hit rate of 64.57%. With the inclusion of network and composite bank risk

measures, outcomes for 548 additional banks are correctly predicted. Overall, these new variables

constructed from bank correspondent networks have immense explanatory power when it comes

to specifying the probability of bank failure during the Depression. Further, these results point

to the importance of including network variables and risk characteristics in analyses aimed at

understanding bank survivorship during crises and support recent research in modeling systemic

risk. Even ignoring the predictive ability of the model, the probit analysis shows that network

position was an important determinant of bank failure in the crisis.

6.2 Robustness Check using National Bank Sample

To obtain results for our full sample, we coded exits as both mergers and failures, but these are

clearly different outcomes. We lack this type of detailed information on survival outcomes of state

banks; however, for national banks, we are able to further distinguish between types of exits using

data from the Annual Report of the Comptroller of the Currency (1929-1934).

To do so, we again use two models with covariates that are the same as M1 and M2 in the

previous section. However, the outcome variable is now ordered and defined as:

yi =


3 Bank Survives
2 Bank Merges
1 Bank Fails,

(15)

and ε ∼ N(0, σ2), i.e., an ordered probit model.23 Location and scaling restrictions of this model

23The analysis was also completed with four ordered outcome categories – survive, merger/consolidation, distressed
merger (bank absorbed or succeeded), failure – and the results do not vary from the presented case.

30



Table 13: Estimation, Model Comparison, and Prediction Results for the ordered probit models M1 and M2

with the sample of national banks. Posterior means and standard deviations (in parenthesis) are presented.

M1 M2

Intercept 0.178 (0.087) 0.275 (0.088)
Loans/Deposits -0.065 (0.037) -0.170 (0.044)
Bonds/Assets 0.925 (0.105) 0.740 (0.110)
ln(Assets) 0.175 (0.014) 0.122 (0.016)
Eigenvalue Centrality -5.950 (2.417)
Composite Risk Score -0.069 (0.003)
SysRisk Percentage 2.398 (0.601)
Central Reserve City -1.132 (0.160) -0.925 (0.167)
Reserve City -0.342 (0.079) -0.153 (0.082)
ln(County Pop) -0.045 (0.027) -0.064 (0.027)
ln(County Manufacturing) 0.006 (0.019) -0.001 (0.020)
ln(County Cropland) -0.030 (0.012) -0.016 (0.012)
Log-Marginal Likelihood -7961.50 -7664.31
Posterior Model Probability 1.03× 10−129 ≈ 1

are done by fixing the cutpoints, which are the parameters that relate the observed outcomes to the

unobserved latent utility scale. The models are estimated by Gibbs sampling methods (Algorithm

3 in Jeliazkov et al. (2008)), and the MLE parameter estimates align. The priors on β are centered

at 0 with a variance of 25 and the results are based on 10,000 MCMC draws with a burn in of

1,000. Marginal likelihood calculations follow from Chib (1995) and Jeliazkov et al. (2008).

Table 13 shows that the coefficients for our network measures are similar to those for the full

sample; we observe negatively-signed effects that are statistically different from zero for eigenvalue

centrality and composite risk score, and a positively-signed effect for a bank’s contribution to

systemic risk. Again, by comparing the marginal likelihoods, we see overwhelming support for M2,

with a posterior model probability of nearly 1. These results align with the previous section and

point to an additional important implication: a specification including our new measures not only

improves the prediction of bank failures, but also those for bank mergers, an important observed

outcome in most financial crises.

7 Conclusion

Using a new, hand-collected data set of correspondent linkages for all commercial banks, we analyze

systemic risk and network features on the eve of the Great Depression. We then assess how the
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largest banking crises of 20th century altered banking network properties and the concentration

of risk. Systemic risk is modeled as a function of the interconnectedness and the credit quality of

financial institutions in the system, which we combine to produce a single measure of systemic risk.

We show that the pyramid-shape of the interbank network concentrated risk in particular nodes

and made the banking system in 1929 more fragile and prone to contagion risk. We find that the

resulting failure of over 9,000 banks increased systemic risk by 33%. Further, the banking crises

caused risk to become more concentrated. The 10 systemically-riskiest banks increased their share

of overall risk by 5 percentage points between 1929 and 1934.

Our analysis of the Great Depression also shows how much more damaging the crisis would

have been if more systemically-important banks had failed. For example, if the 10 systemically

riskiest banks in existence in 1929 subsequently failed, systemwide risk would have risen by more

than 50%. On the one hand, the system showed some resiliency. Failures were concentrated in

small and medium-sized banks. Centrally-located banks in the network had a higher predicted

probability of failure, but the most systemically important banks were able to weather heavy

depositor withdrawals during panic periods. They entered the Great Depression relatively healthy

– with below average credit risk. They flexed but, in general, did not break (fail). Of the 20

systemically riskiest banks in 1929, only one failed, increasing systemic risk by only 1.59%. On the

other hand, the Fed’s reluctance to act as a Lender of Last Resort (Friedman and Schwartz, 1963)

and the pyramid-shape of the banking system, meant that the largest and most central banks in

the system (those in New York City and Chicago) met heavy depositor withdrawals during panic

periods by contracting lending, leading to a more severe decline in economic activity during the

early 1930s (Mitchener and Richardson, 2019).

The findings from our micro analysis of the Great Depression suggest that modeling banking

networks has the potential to improve our understanding of where risk is concentrated before a

crisis occurs and to predict where subsequent distress might center. Using bank-level data for the

entire commercial banking system in 1929, we are able to identify useful predictors of subsequent

financial distress. Bayesian model comparison and prediction show that bank-specific network

centrality, composite risk, and a measure for the bank’s contribution to systemic risk significantly

enhance a probit and ordered probit model’s ability to predict bank failures and bank mergers;

we capture over 500 more survivals/failures occurring between 1930–33 when these variables are

included. Both position in the network and composite risk are negatively related to bank survival.
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However, a bank’s systemic risk contribution appears to have increased survivorship. Given the

RFC’s intervention into the banking system in 1932, this finding points to perhaps early use of

too-big-to-fail policies to influence financial institution survivorship in the U.S. financial system.

Finally, our research sheds light on similarly-motivated research on the GFC. By investigating a

historical crisis and modeling network importance, we complement existing work in showing where

risk may lie in the network. SRISK models (see Acharya et al. (2012); Brownlees and Engle (2017)),

emphasize common risks across financial institutions’ balance sheets, such as housing-sector assets

during the GFC, as a source of risk. Our findings suggest that bank specific idiosyncratic risk and

network position are also important variables of systemic risk and that they determine subsequent

survivorship. In terms of our methodology, this is reflected in the fact that model selection places

substantial weight on individual bank composite risk and centrality, which mattered because smaller

banks relied on more central banks for business services and for satisfying regulatory requirements

on reserves (e.g., interbank deposits). Our results for the Great Depression therefore complement

the properties of SRISK in the GFC.

A large macro shock may have different effects on the financial system depending on the struc-

ture of network connections. Brunetti et al. (2017) examine correlation and physical networks

of banks in Europe through the GFC and find that increases in correlation network connectivity

presage financial crises and increases in physical network connectivity forecast liquidity problems.

Our work using physical bank networks complements these findings for the Great Depression, and

also show that physical network metrics are able to predict bank failure. Therefore, the uniqueness

of the network during the Great Depression and the geographical dispersion of bank failures offer

new insights into the analysis of systemic risk during crises, especially as the number of financial

institutions in the Great Depression was far higher than that exists in recent times. The nature

of economic crises may change over decades, but the value of network analysis in measuring and

predicting systemic risk and its fallout remain robust across time.
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