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1 Introduction

One of the main objectives of empirical asset pricing is to understand how markets

value assets with risky cash flows. For instance, there is a large literature developing

models to account for the cross-section of expected returns. This literature typically

focuses the analysis on a particular return frequency (e.g., monthly or quarterly).

Thus, the problem is condensed to taking present values of single-horizon risky cash

flows, even though many real-life present-value problems involve risky cash flows at

multiple horizons.

In this paper we argue for using returns realized over multiple horizons jointly in tests

of asset pricing models. No-arbitrage implies that the h-period stochastic discount

factor (SDF) equals the product of the h corresponding single-period SDFs. It is

therefore straightforward to derive a model’s implication for returns at any horizon.

Thus, with multi-horizon returns (MHR) we are testing overidentifying restrictions

of the model.

Specifically, we make two key contributions. In the first, theoretical, contribution we

derive a set of MHR-based moment conditions in the context of GMM estimation.

Further, we show that these moments amount to testing conditional implications of

a model. This insight allows us to reduce the MHR-based moments to the familiar

single-horizon setting with the addition of managed portfolios. The portfolio weights

are represented by the returns over different horizons multiplied by matching SDFs.

There are important differences between the MHR-based conditioning information

and typical conditioning variables used in the literature. For one, in contrast to the

more popular conditioning variables, such as the dividend-price ratio or the term

spread, the MHR-based conditioning variables are endogenous to the model being

tested. Thus, the conditioning variables are not selected based on, say, their ex post

ability to predict returns, which could raise concerns about data mining. Also, we

differ from a well-established literature that uses past returns over a single horizon

as conditioning variables. Our approach relies on multiple horizons jointly for the

tests to have power. Further, these are not just returns, but returns multiplied by

the SDF.
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In the second, empirical, contribution we show that misspecification of the temporal

dynamics in state-of-the-art models of the SDF, as uncovered by MHR, indeed are

quantitatively large. In particular, we consider linear factor models that arguably

are the workhorse models for empirical risk-return modeling. We test the minimal

requirement that a model prices its own factors at multiple return horizons. We

consider eight models: the CAPM, a two-factor model related to Black, Jensen, and

Scholes (1972) (the market factor plus a betting-against-beta factor), the Fama and

French (1993) three-factor model, the Carhart (1997) four-factor model (the three

Fama-French factors plus momentum), the Fama and French (2015) five-factor model,

the Daniel, Mota, Rottke, and Santos (2019) five-factor model, the Stambaugh and

Yu (2017) four-factor model, and the Hou, Xue, and Zhang (2015) four-factor model.

As an example of the test results, consider the market factor in the Fama-French

model. The h-period gross return to this factor is simply the product of the one-period

gross returns from t to t+ h. The model trivially prices the one-period return to this

factor, but quickly generates a pricing error when we consider the model’s implications

for longer-period returns. At the four-year horizon, the model’s annualized pricing

error for the market factor is 7% – about the same as the market risk premium itself.

This example is not unique. The average annualized pricing error across all factors

and models is 4.5% when tested jointly on horizons of 1, 3, 6, 12, 24, and 48 months.

This is about the same magnitude as the average annualized factor risk premiums

the models where designed to explain in the first place. With the exception of the

CAPM, all models are rejected at the 5% level.

The reason the models are rejected is that the model-implied SDFs do not price the

test assets conditionally. If the SDF factor loadings are allowed to vary over time

there trivially exists loadings that allows each factor model to conditionally price its

own factors (there are then K free parameters at each time t to price K factors).

However, the presence of such non-constant loadings implies that the factors do not

span the unconditional mean-variance efficient frontier, which is the null hypothesis

of the factor models.

The evidence prompts us to investigate the reasons behind the conditional misspec-

ification. As a baseline, we note that if factor returns are i.i.d., a model that prices
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single-horizon returns will also price MHR. In the data, the factors in many cases

turn out to be surprisingly far from i.i.d. As a simple metric, we compute variance

ratios of the log gross return to the mean-variance efficient (MVE) combination of

the factors in each model. Variance ratios measure the cumulative autocorrelations

of log returns, where an i.i.d. process has a variance ratio of one at all horizons. For

the market portfolio, there is a well-known slight increase above one and then a sub-

sequent decline after the 15-month horizon. Many of the other models, however, have

much stronger patterns. For instance, the Daniel, Mota, Rottke, and Santos (2019)

model has a variance ratio that increases to about three at the four-year horizon.

Thus, there are strong persistent components in the returns to these factor portfolios.

In fact, i.i.d. returns is not the only scenario that delivers unconditional spanning by

the candidate factors. For ease of exposition, consider the SDF of a one-factor model,

Mt,t+1 = 1− b(Ft,t+1−E(Ft,t+1)), where F is a traded portfolio excess return. Under

the null of this model, F is unconditionally mean-variance efficient. This implies

that the conditional expected return to F is proportional to its conditional second

moment. Thus, while it is not true that the variance ratio of an unconditionally MVE

portfolio needs to be one at all horizons, the degree of persistence in returns that we

document is much higher than that typically estimated for return second moments.

To assess the economic implications of the factor dynamics, we first show that for

many models the annualized Sharpe ratio from investing in the model-implied MVE

portfolio is strongly decreasing in the investment-horizon. This occurs as the variances

increase faster than at the rate of the horizon due to the persistent components,

which makes these trading strategies less attractive as long-run investments than the

high single-horizon Sharpe ratios would imply. In fact, we find that buy-and-hold

investors with investment horizons of two to four years would pay between 5% and

20% of current wealth to avoid the time-dependence in these returns. In other words,

the returns to simple trading strategies that do not engage in factor timing are still

exposed to the factor dynamics as the investment horizon increases.

Next, we analyze the nature of the time variation in the factor loadings needed to

jointly price factor returns at different frequencies. Given our test assets, F does

span the conditional mean-variance efficient combination of the test assets for each
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model. Thus, there exists a time-varying SDF loading bt = V ar−1t (Ft,t+1)Et(Ft,t+1)

that prices the factor MHR. The evidence discussed above indicates that bt must

exhibit large and persistent time-variation to match the MHR data.

To assess this conclusion, we estimate the conditional means and covariance matrix of

the factors for each model to get estimates of bt. We find that bt’s indeed are strongly

time-varying. In particular, the average of the estimated bt across factors and models

at each time t is about ten, whereas the average standard deviation across models

is about four. For all but the Stambaugh-Yu model, the conditional factor models

implied by the estimated bt price the MHR in the sense that pricing errors are smaller

and the models are no longer rejected.

The implied prices of risk (maximal conditional Sharpe ratios, btV ar
1/2
t (Ft,t+1)) of

each model exhibit substantially different dynamics than those implied by the corre-

sponding constant bmodels. The average price of risk across all time-varying bt models

is significantly positively correlated with the dividend-price ratio and, surprisingly,

negatively correlated with conditional market variance and a recession variable (the

negative of industrial production growth). These dynamics, coming from returns to

factors that otherwise do well in accounting for the cross-section of single-horizon

stock returns, are hard to reconcile with the counter-cyclical price of risk implied by

standard asset pricing models.

Related literature. There are many papers that test conditional versions of factor

models. For instance, Boguth, Carlson, Fisher, and Simutin (2011), Ferson and Har-

vey (1999), Farnsworth, Ferson, Jackson, and Todd (2002), Jagannathan and Wang

(1996), Lettau and Ludvigson (2001), Lewellen and Nagel (2006), and Moreira and

Muir (2017). Our contribution relative to this literature is to show that MHR in

asset pricing tests effectively serve as conditioning variables endogenous to the model

and that, empirically, multi-horizon factor returns indeed are informative in terms of

uncovering novel conditional dynamics of prominent factor models. In contempora-

neous and independent work Haddad, Kozak, and Santosh (2019) and Linnainmaa

and Ehsani (2019) use different methods to study factor dynamics with a focus on

single-horizon returns.

Our paper makes a connection with a literature that seeks to characterize multi-
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horizon properties of “zero-coupon” assets, such as bonds, dividends strips, vari-

ance swaps, and currencies. Such work includes Belo, Collin-Dufresne, and Goldstein

(2015), van Binsbergen, Brandt, and Koijen (2012), Dahlquist and Hasseltoft (2013),

Dew-Becker, Giglio, Le, and Rodriguez (2015), Hansen, Heaton, and Li (2008), Koi-

jen, Lustig, and Nieuwerburgh (2017), Lustig, Stathopoulos, and Verdelhan (2013),

and Zviadadze (2017). A related strand of the literature considers multiple frequen-

cies of observations when testing models (e.g., Brennan and Zhang, 2018, Daniel and

Marshall, 1997, Jagannathan and Wang, 2007, Kamara, Korajczyk, Lou, and Sadka,

2016, Parker and Julliard, 2005), though none of these consider the implications of a

joint test across horizons.

Notation. We use E for expectations and V for variances (a covariance matrix if

applied to a vector). A t-subscript on these denotes an expectation or variance con-

ditional on information available at time t, whereas no subscript denotes an uncon-

ditional expectation or variance. We use double subscripts for time-series variables,

like returns, to explicitly denote the relevant horizon. Thus, a gross return on an

investment from time t to time t+ h is denoted Rt,t+h.

2 Linear factor models and multi-horizon returns

In this section we use linear factor models as a motivation for developing a general

asset pricing test based on MHR. We offer a reminder that a set of factors that is

valid at a single horizon does not necessarily extend to multiple horizons. Thus, we

introduce the SDF representation of linear factor models to facilitate derivation of a

model’s implications for different return horizons. We then give a simple example of

how MHR can reveal conditional model misspecification. We conclude by outlining

informally our MHR-based testing approach.
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2.1 Implications of linear factor models for multiple horizons

Consider first the standard factor models for expected returns:

E(Ri
t,t+1 −R

f
t,t+1) = β>i E(Ft,t+1), (1)

where Ri
t,t+1 is the gross one-period return to a portfolio or individual asset i, Rf

t,t+1

is the corresponding gross risk-free rate, and Ft,t+1 is a vector of factors representing

excess returns on some trading strategies. This model holds for all assets if the factors

span the unconditional MVE portfolio.

The model is commonly tested via a regression

Ri
t,t+1 −R

f
t,t+1 = αi + β>i Ft,t+1 + εit+1,

where, if Equation (1) holds, we have αi = 0. The question we ask here is whether

the model can also account for longer-horizon returns to the test assets.

Consider a model of a stochastic discount factor (SDF), Mt,t+1, that prices all excess

returns, including F itself, via

E(Mt,t+1(R
i
t,t+1 −R

f
t,t+1)) = 0.

An SDF of the form

Mt,t+1 = 1− b>(Ft,t+1 − E(Ft,t+1)), (2)

b = V −1(Ft,t+1)E(Ft,t+1). (3)

implies Equation (1). As an implication, b>Ft,t+1 is the unconditional MVE portfolio.

See Cochrane (2004) for an extensive dicussion of the relationship between linear

factor models and the SDF framework.

As is known from extant literature, see e.g., Grossman, Melino, and Shiller (1987),

Levhari and Levy (1977), and Longstaff (1989), a factor model does not apply across
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all horizons. To see this, consider the two-period SDF implied by Equation (2):

Mt,t+2 = Mt,t+1Mt+1,t+2 = (a− b>Ft,t+1)(a− b>Ft+1,t+2)

= a2 − ab>Ft,t+1 − ab>Ft+1,t+2 + b>Ft,t+1F
>
t+1,t+2b,

where a = 1 + b>E(Ft,t+1). This implies that the corresponding regression for the

two-period return Ri
t,t+2 will essentially feature a new set of factors even if the original

single-horizon model is correctly specified.

2.2 Extending to multiple horizons via SDFs

The SDF-based approach is a natural way to translate the model in Equation (1)

into its counterpart at any longer horizon h. Indeed, the multi-horizon SDF is simply

a product of single-horizon ones. Thus, we cast analysis in this paper in terms of

SDFs. Switching over to the SDF language means that the focus on the magnitude

of α changes to the focus on whether

E(Mt,t+hR
i
t,t+h) = 1. (4)

Simply put, in a correctly specified model the present value of any $1 investment is

indeed $1.

Returning to the original question of multi-horizon properties of R, we are now in

a position to explain the economic insight arising from considering Equation (4).

Consider the implication of this Equation for two-period gross returns:

1 = E(Mt,t+2 ·Ri
t,t+2)

= E(Mt,t+1Mt+1,t+2 ·Ri
t,t+1R

i
t+1,t+2)

= E(Mt,t+1R
i
t,t+1) · E(Mt+1,t+2R

i
t+1,t+2)

+ Cov(Mt,t+1R
i
t,t+1,Mt+1,t+2R

i
t+1,t+2).

If (4) holds at both one- and two-period horizons, then

Cov(Mt,t+1R
i
t,t+1,Mt+1,t+2R

i
t+1,t+2) = 0. (5)
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Thus, by considering MHR we introduce additional information about the dynamic

properties of the strategy returns and of the benchmark model. In particular, Equa-

tion (5) ensures that past “Euler equation errors” Mt,t+1R
i
t,t+1 do not predict future

“Euler equation errors” Mt+1,t+2R
i
t+1,t+2.

2.3 An example

We illustrate this point in a simple example. Assume that a single factor follows:

Ft,t+1 = µ+ εt+1,

where εt+1 is a mean-zero i.i.d. error term, and that the gross risk-free rate is constant

and equal to one. Equations (2) and (3) imply the SDF:

Mt,t+1 = 1− [V (εt+1)]
−1µ · εt+1.

Assume that the test asset’s return dynamics are:

Rt,t+1 = 1 + µt + βεt+1 + ut+1,

where ut+1 is independent of εt+1 and takes values δ > 0 and −δ with equal probabil-

ities. The conditional mean of the strategy, µt, takes values µH and µL depending on

whether ut is positive or negative, respectively. We also assume E(µt) = βµ so that

the SDF prices R unconditionally, E(Mt,t+1Rt,t+1) = 1.

Now, consider valuation of the two-period return

E(Mt,t+2Rt,t+2) = E(Mt,t+1Rt,t+1)E(Mt+1,t+2Rt+1,t+2)

+ Cov(Mt,t+1Rt,t+1,Mt+1,t+2Rt+1,t+2)

= 1 + Cov(ut+1, µt+1)

= 1 + (µH − µL)δ/2,

where the second equality follows from the independence between µt+1 and εt+1, and

the dynamics of µt+1. See Appendix A.1. As a result, multi-horizon returns on the
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strategy are mispriced unconditionally even if the single-horizon returns are priced

correctly unconditionally.

2.4 Conditional implications

The unconditional test of the model using the 2-period return can be viewed as

adding a test asset that is a managed position in the original asset in a one-period

return test. Let zt ≡ Mt−1,tRt−1,t and re-write the additional moment condition as

E(Mt,t+1ztRt,t+1) = 1. This takes us to a test of the conditional implications of the

model for one-period returns.

Continuing with the example of the previous section, the two-period mispricing, (µH−
µL)δ/2, is connected to the degree of predictability in R that the candidate SDF does

not price conditionally. Indeed, Et(Mt,t+1Rt,t+1) = 1 + µt − E(µt), which equals 1

only if µH = µL.

A test that uses zt has a number of important differences from the traditional con-

ditional tests of asset pricing models. For one, the managed portfolio weight zt is

endogenous to the model, in contrast to typical conditioning variables used in the

literature (e.g., the dividend-price ratio). As such they do not require an auxiliary

search for variables that predict returns, which raises concerns about data mining.

Also, the model implies that E(zt) = 1 and that zt is a function of the parameters in

the SDF.

If we had access to the full information set of the marginal investor, we could have

tested the SDF model conditionally using single-horizon returns (SHR). Our proposal

to focus on MHR arises from the lack of access to that full information set. Obviously,

MHR are not the only information subset that one could explore. The literature on

managed portfolios is addressing the same issue.

We find using MHR attractive because it represents a direct test of the model’s ability

to correctly take present values of streams of risky cash flows that accrue at different

horizons. Such present value problems are fundamental to many economic applica-

tions. Examples include consumption-savings and capital budgeting problems, as well

9



as venture capital and private equity valuations. Further, correct long-horizon risk-

adjustment is important to long-horizon investors. As the example in this section

shows, a strategy that has an alpha of zero at the one-period horizon may in fact

deliver nonzero risk-adjusted returns when evaluated at a longer horizon. A reason-

able requirement for a benchmark model is then that it can account for returns to

well-known trading strategies at longer horizons as well.

The next section develops our testing methodology which is applicable to any model

that respects the Law of One Price (LOOP) and to any set of test assets.

3 Testing asset pricing models using MHR

In this section, we develop a GMM-based test using MHR that is applicable to any

asset pricing model that satisfies LOOP. The latter implies

Et(Mt,t+1R
i
t,t+1) = 1,

for any asset i.

The SDF framework offers a natural way to propagate the model implications across

multiple horizons. The multi-horizon SDF and returns are simple products of their

single-horizon counterparts:

Mt,t+h =
h∏
j=1

Mt+j−1,t+j,

Ri
t,t+h =

h∏
j=1

Ri
t+j−1,t+j.

LOOP still holds, see Equation (4), or, for excess returns,

Et(Mt,t+h(R
i
t,t+h −R

f
t,t+h)) = 0, (6)
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where Rf
t,t+h is the h-period return to a reference asset, typically a “risk-free” asset like

a U.S. Treasury bill. See Appendix A.2. The unconditional version of this condition

can be easily tested jointly for multiple horizons h in a GMM framework.

We have discussed the informational content of adding MHR in Equation (5) for

the two-period case. A generalization to (h + 1)-period returns, under covariance-

stationarity, is

E(Mt−h,t+1R
i
t−1,t+1) = 1 +

h−1∑
j=0

Cov(Mt−h+j,tR
i
t−h+j,t,Mt,t+1R

i
t,t+1). (7)

If the model of the SDF is correctly specified, Equation (4) holds for any h. Therefore,

the sum of covariances in Equation (7) should equal zero. In other words, discounted

returns (Mt,t+1Rt,t+1) should not be predictable by lagged discounted returns of any

horizon.

The virtue of this representation is that it allows us to construct a test on the basis

of moment conditions whose residuals are not serially correlated. This improves the

small-sample performance of the test. See Hodrick (1992) for a similar argument.

Specifically, the moment conditions for test assets i = 1, ..., I that we consider are of

the form:

f it+1 =


Mt,t+1R

i
t,t+1 − 1

z
(h2)
i,t (Mt,t+1R

i
t,t+1 − 1)

...

z
(hn)
i,t (Mt,t+1R

i
t,t+1 − 1)

 , (8)

where the conditional variable is

z
(h)
i,t =

h−1∑
j=0

Mt−h+j,tR
i
t−h+j,t, (9)

and n is the number of horizons used in the test and {hj}nj=2 are the set of horizons

used in addition to the single-period horizon. in subsequent tests we use the horizons

3, 6, 12, 24, and 48 months in addition to the one-period (monthly) horizon. See

Appendix A.3. The null hypothesis is E(f it+1) = 0 for all i, and the test is thus an
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unconditional test of the conditional properties of the asset pricing model.

A common approach in the literature is to introduce conditioning information via

instrumental variables, such as dividend-price ratios (e.g., Hansen and Singleton,

1982, Hodrick and Zhang, 2001). Denoting such variables by z̃t, this strategy implies

that z̃t(R
i
t,t+1 − Rf

t,t+1) is just an excess return on another asset. Thus it could be

incorporated as a new test asset using the moments outlined in Equation (8). This

logic highlights the conceptual difference between the existing and our approaches.

While the former relies on exogenously selected conditioning variables, the latter is

using those dictated by a given model and set of test assets.

The test falls into the standard GMM framework, where:

gT (θ) =
1

T

T∑
t=1


f 1
t (θ)

f 2
t (θ)
...

f It (θ)

 ,

where θ are the parameters in the SDF to be estimated. The objective function is as

usual:

argmin
θ

gT (θ)>WgT (θ),

where W is an (I × n)× (I × n) positive definite weighting matrix (e.g., Hansen and

Singleton, 1982). Relevant test statistics and parameter standard errors can be found

using the usual GMM toolkit.

An important feature of the test is that the moment conditions, ft are uncorrelated

across time under the null of the model. Thus, when estimating the covariance matrix

of the moment conditions (the spectral density matrix, S) one does not need to

account for leads or lags, which implies that S(θ) = V (ft(θ)) .
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4 Testing linear factor models using MHR

In this section we apply the general methodology of the previous section to models

featuring linear SDFs. These models represent the mainstream approach towards

understanding the pricing of risk in the cross-section of returns.

4.1 Adopting the general test to linear models

We slightly re-write a K-factor model in Equation (2) as

Mt,t+1 = 1− b>(Ft,t+1 − µ),

to emphasize the need to estimate µ = E(Ft,t+1). Under the null hypothesis of

these models, b>Ft+1 is an unconditionally mean-variance efficient portfolio, which

implies that it prices excess returns to all assets both conditionally and uncondition-

ally (Hansen and Richard, 1987).

Guaranteeing that this SDF prices the risk-free rate conditionally requires adding

auxiliary assumptions that are not explicit in the settings that are traditionally used

for testing linear factor models. Because our goal is to assess the original models’ per-

formance, we make a slight adjustment to the moment conditions to ensure we do not

reject the models based on mispricing of the multi-period risk-free rates, something

that they were not designed to match.

Specifically, we note that predicting discounted gross returns, MRi, as in the covari-

ance condition in Equation (7), is equivalent to predicting discounted excess returns,

M(Ri − Rf ), if the model prices the risk-free asset. We therefore use the MHR

moment conditions:

f it+1 =


Mt,t+1(R

i
t,t+1 −R

f
t,t+1)

z
(h2)
i,t Mt,t+1(R

i
t,t+1 −R

f
t,t+1)

...

z
(hn)
i,t Mt,t+1(R

i
t,t+1 −R

f
t,t+1)

 .
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The resulting K + I × n GMM moments are:

gT (b, µ) =
1

T

T∑
t=1



Ft,t+1 − µ
f 1
t (b, µ)

f 2
t (b, µ)

...

f It (b, µ)


.

Note that the managed portfolio weights z
(h)
i,t in each f i are exactly the same as in

Equation (9), that is, they still depend on gross returns rather then excess ones.

We consider the factors themselves as the set of test assets. Because the factors

in the literature are designed as zero-investment long-short portfolios, we construct

Ri = Rf + F i for each factor i. The reason for this choice of test assets is three-fold.

First, in this case it is clear that the model can price these single-horizon excess returns

unconditionally. We will in fact estimate b such that the single-horizon returns to the

factors themselves are priced without error. That is in line with the standard Black,

Jensen, and Scholes (1972) regressions in Equation (2), as the regression imposes the

sample mean of the factors in the estimation of αi. Thus, any rejection must be due

to the joint test of the models’ pricing of longer-horizon returns. To achieve this, we

use the weighting matrix:

W
(K+I×n)×(K+I×n)

=



IK 0K×n 0n · · · 0n

0n×K Q 0n · · · 0n

0n 0n Q · · · 0n
...

...
...

. . .
...

0n 0n 0n · · · Q


,

where IK is the K ×K identity matrix, 0n is an n× n matrix of zeros, and

Q
(n×n)

=


1 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 .
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Second, the factors in these models are created from mechanical trading strategies in

order to price a documented empirical spread in the cross-section of expected returns.

Thus, a natural requirement for a well-specified model is that the model can price

these strategies at any horizon. As an example, in a factor model that uses the Fama

and French (1993) HML factor, the present value of a $1 investment in the risk-free

rate and a position in the HML (value) factor should be $1 regardless of the holding

period.

Third, this choice of test assets implies that there exists an SDF with time-varying

loadings bt instead of a constant b from Equation (3), that does price the returns at

any horizon. We discuss this alternative hypothesis in more detail in a later section.

4.2 Data

We select our models based on their historical importance, recent advancements,

and data availability. Specifically, we include the CAPM, CAPM combined with the

BAB factor (Frazzini and Pedersen, 2014, Black, Jensen, and Scholes, 1972, Novy-

Marx and Velikov, 2016), Fama and French 3- and 5-factor models, FF3 and FF5,

respectively (Fama and French, 1993, Fama and French, 2015), a version of the FF5

models with hedged unpriced risks (Daniel, Mota, Rottke, and Santos, 2019), FF3

and momentum (Carhart, 1997) and the four-factor models of Hou, Xue, and Zhang

(2015) and Stambaugh and Yu (2017).

The Fama-French 5-factor model includes the market factor (MKT), the value factor

(HML), the size factor (SMB), the profitability factor (RMW; see also Novy-Marx,

2013), and the investment factor (CMA; see also Cooper, Gulen, and Schill, 2008).

These data and the momentum factor MOM (Jegadeesh and Titman, 1993) are pro-

vided on Kenneth French’s webpage. The returns are monthly and the sample is from

July 1963 to June 2017.

The hedged versions of these factors studied by Daniel, Mota, Rottke, and Santos

(2019) (DMRS) are available on Kent Daniel’s webpage. The sample period is July

1963 to June 2017. The factors studied by Hou, Xue, and Zhang (2015) (HXZ)
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are MKT, SMB, I/A (investment-to-assets) and ROE (return on equity), and are

available on Lu Zhang’s website. The sample is from January 1967 to December 2017.

Stambaugh and Yu (2017) propose two factors intended to capture stock mispricing,

in addition to the existing MKT and SMB factors: PERF and MGMT. We denote this

four-factor model as SY. These data are available on Robert Stambaugh’s webpage.

The sample period for these factors starts January 1963 and ends December 2016.

Given the recent critique by Novy-Marx and Velikov (2016), we depart from the

BAB factor construction of Frazzini and Pedersen (2014). We use the value-weighted

beta- and size-sorted portfolios on Kenneth French’s webpage as the building blocks

for constructing this factor, following Fama and French (2015) and Novy-Marx and

Velikov (2016). Specifically, we construct four value-weighted portfolios: (1) small

size, low beta, (2) small size, high beta, (3) big size, low beta, and (4) big size,

high beta. The size cutoffs are the 40th and 60th NYSE percentiles. For betas, we

use the 20th and 80th NYSE percentiles. Denote these returns as Rs`, Rsh, Rb`, Rbh,

respectively, where s denotes small size, ` denotes low beta, b denotes big size, and

h denotes high beta. We also compute the prior beta for each of the four portfolios

and shrink towards 1 with a value of 0.5 on the historical estimate. We denote these

as βs`,t, βb`,t, βsh,t, and βbh,t. We construct these portfolios using the 25 size and

market beta sorted portfolio returns, as well as the corresponding market values and

60-month historical betas, given on Kenneth French’s webpage.

The factor return is then constructed as follows:

BABt,t+1 =
1

β`,t

(
1

2
Rs`,t,t+1 +

1

2
Rb`,t,t+1 −Rf,t,t+1

)
− 1

βh,t

(
1

2
Rsh,t,t+1 +

1

2
Rbh,t,t+1 −Rf,t,t+1

)
,

where β`,t = 1
2
βs`,t + 1

2
βb`,t, and βh,t = 1

2
βsh,t + 1

2
βbh,t. As a result, the conditional

market beta of BAB should be close to zero, as in Frazzini and Pedersen (2014).

Finally, we get the monthly risk-free rate from CRSP and create the real risk-free

rate by subtracting realized monthly inflation from the nominal rate. The inflation

data are from CRSP as well.
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4.3 MHR pricing errors and model tests

We start by computing annualized pricing errors for each factor in each model across

horizons. The pricing errors should be understood as the net present value of an

h-period $1 buy-and-hold investment in the gross factor return. Since the mod-

els are estimated to match one-period returns unconditionally, non-zero net present

values are due to mispricing of the conditional factor return. To facilitate com-

parison we annualize errors so that each reported number reflects the same period

irrespective of the horizon. Thus, the pricing error for a factor F i at horizon h is

12/h × ET (z
(h)
i,t Mt,t+1F

i
t,t+1). The horizons for reported errors range from 1 to 48

months.

Figure 1 displays the pricing errors for the first four factor models. The top left panel

shows that the pricing errors of the CAPM are small across horizons, always less than

1% annualized. Thus, for the market model, a constant b coefficient in the SDF works

well for pricing market returns at any horizon.

The top right panel shows the MKT+BAB model. In this case, pricing errors are much

larger for both factors. For the BAB factor, the annualized pricing error increases

with horizon (in absolute value) to almost 10% per year at the 48-month horizon.

That is about twice the average annualized monthly returns on this factor.

The bottom left panel shows the corresponding pricing errors for the FF3 model.

Here the pricing errors for the MKT and SMB factors are moderate, whereas the

pricing errors for the HML factor is about 5% p.a. at the 2- and 4-year horizons. The

bottom right plot shows the Carhart model (FF3+MOM), where the pricing errors

get very large, exceeding 50% p.a. for the 4-year MOM return.

Panel A of Table 1 gives the p-values of the J-test of each model. With the exception

of the CAPM, the models are rejected.1 We calculate the mean absolute pricing error

(MAPE) for each model as the mean of the absolute value of the annualized pricing

errors across the factors and horizons. For the CAPM, the MAPE is only 0.7%, for

1We would like to emphasize the meaning of failure to reject in this context. The MKT factor is
capable of pricing itself at multiple horizons. That does not imply, however, that the MKT model
is well-specified. As we know, it is easily rejected by a cross-section of equity returns.
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the CAPM+BAB it is 3%, for the FF3 it is 1.4%, and for the Carhart model it is

7.6%.

Figure 2 shows the pricing errors for the remaining four models. The top left panel

shows pricing errors for the FF5 model. Again pricing errors increase in absolute

value with horizon, which is natural as the models price one-period factor returns

perfectly. Three of the five factors (MKT, RMW, and CMA) have absolute pricing

errors in excess of 5% p.a. at the 4-year horizon.

A similar picture emerges in the top right panel for the FF5DMRS model. Its pricing

errors exceed 10% p.a. for two factors (their versions of the MKT and SMB factors)

and 5% for their version of the CMA factor. The two bottom plots show the pricing

errors for the SY and HXZ models. For these models, pricing errors are even larger,

with the largest pricing error exceeding 100% p.a. Longer-run returns are noisy, so

one should not overinterpret any one factor’s mispricing.

Overall, Table 1 shows that all the models are strongly rejected. We conclude from this

that the current benchmark models for risk-adjustment do a poor job accounting for

MHRs. The average MAPE across all eight models is 4.6%, which is about the same

as the annualized factor risk premiums that these models were originally designed to

match.

Table 1 also displays the annualized maximal Sharpe ratios, [E(F )>V (F )−1E(F )]1/2,

implied by each factor model. A higher Sharpe ratio implies that the factors are

closer to spanning the unconditional MVE portfolio. As is well-known, the Sharpe

ratio of the MKT factor is much lower than the maximal Sharpe ratios in more recent

multi-factor models. For instance, the SY model has an annualized Sharpe ratio of

1.7 compared to 0.4 for the CAPM.

Figure 3 shows each model’s MAPE plotted against the respective maximal Sharpe

ratios. Interestingly, there is a positive relation. The higher a model’s Sharpe ratio the

closer it should be to spanning the unconditionally mean-variance efficient portfolio

and thus the lower the pricing errors should be. The opposite being the case indicates

that the search for high Sharpe ratio models has increased the complexity of the

conditional dynamics, consistent with the findings in Haddad, Kozak, and Santosh
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(2019). Thus, there is a need for understanding the economic effects and drivers of

these dynamics.

4.4 Factor dynamics and long-horizon investment

In order to gain more intuition about the rejection results, we evaluate both statistical

and economic metrics that are relevant for long-horizon investors. Because we have

implemented formal inference in the previous section, we no longer test the models.

We rather highlight their properties that are responsible for the reported rejections.

We focus on the in-sample mean-variance efficient combination of each model’s factors

in order to facilitate cross-model comparison and to reduce the overall dimensionality

of the presentation. In particular, we calculate for each model the unconditional MVE

combination of the factors and scale the positions such that its volatility is the same

as the volatility of market returns. We denote (excess) returns on the MVE portfolio

by MVEt,t+1. The returns Rt,t+1 are computed by adding the gross-risk free rate.

Statistical assessment

The null hypothesis that the SDF in Equation (2) is correctly specified tells us some-

thing about dynamics of factors. Specifically, it implies that conditional mean of

factor returns is proportional to their conditional second moment. See Appendix

A.4. That our test rejects the models implies that this requirement does not hold in

the data.

One way to illustrate dynamics of returns is to compare variance ratios of MVE

returns across multiple horizons. We take logs of returns (r = logR). The h-horizon

variance ratio is then calculated as:

V R(h) =
V (rt,t+1 + rt+1,t+2 + ...+ rt+h−1,t+h)

h× V (rt,t+1)
.

For further intuition, note that the variance ratio can be written as a weighted average

of autocorrelations of log returns at lags up to horizon h. One benchmark for return

dynamics is that of i.i.d. In this case, the variance ratio is equal to 1 at any horizon.
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Figure 4 displays the variance ratios for each model. The market factor in the CAPM

displays familiar dynamics where the variance ratio increases slightly from 1 to almost

1.2 at the annual horizon and subsequently decreases towards 1 at the 4-year horizon.

The latter decrease is consistent with a long-run mean-reverting component in market

returns.

All the other models display markedly stronger stronger departures from the i.i.d.

baseline. To start with the most extreme cases, the FF5DMRS and the MKT+BAB

models have strongly increasing variance ratios exceeding 2 at 12 to 24 months. For

FF5DMRS, the 4-year variance ratio is about 3. That is, a 4-year investor holding

this portfolio is subject to, per unit of time, triple the variance of an investor with a

monthly holding period.

The variance ratio of the FF5 model peaks at about 1.8 at the 2-year horizon, while

the SY model has a variance ratio in excess of 2 at the 4-year horizon. The Carhart

and HXZ models have slowly increasing variance ratios that end up at about 1.6 at

the 4-year horizon. Only the CAPM and FF3 models have variance ratios that revert

to around 1 at the longer horizons.

The variance ratios indicate not only departures from i.i.d. but also very strong

persistent components in the returns of the model-implied MVE portfolios. This

observation is something that was not emphasized in the literature, to the best of our

knowledge.

Economic assessment

We offer another perspective on this conclusion by assessing the economic impact of

these dynamics for long-horizon investors. Specifically, we compute Sharpe ratios and

certainty equivalents for holding periods with different horizons. First, we calculate

the annualized Sharpe ratio by horizon for each of the MVE portfolios. Excess returns

at horizon h is the average h-period gross return minus the h-period gross risk-free

rate, where both of these are calculated by multiplying together h one-period gross

returns. The Sharpe ratio is then the mean excess return divided by the standard

deviation of excess returns. We annualize by multiplying with
√

12/h.
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To obtain a benchmark Sharpe ratio that corresponds to the null hypothesis, we

draw from the original MVE and risk-free returns with replacement 10, 000 artificial

histories of the same length as our sample. This procedure imposes i.i.d. dynamics on

the bootstrapped returns. The procedure retains the same unconditional distribution

of returns and does not impose normality.

Figures 5 and 6 display the Sharpe ratios for each model and their benchmarks un-

der the null. Across all models Sharpe ratios are declining in the horizon. As the

benchmark Sharpe ratios illustrate, the pattern in of itself is not surprising. What is

different for some models is much steeper decline than in the benchmark. The larger

steepness coincides with instances of strong increases in the variance ratio.

The persistent returns lead to higher long-run variance which depresses long-run

Sharpe ratios. The economic magnitude is particularly large for the four models in

Figure 6. For instance, in the case of the SY model the 4-year Sharpe ratio is half of

that in the benchmark.

These observations suggest a large economic loss to long-term investors who do not

account for the factor dynamics in their allocations. As a next step of our analysis,

we quantify the welfare costs of the conditional factor dynamics. Specifically, we ask

how much a CRRA agent with over end-of-period wealth would pay to get the i.i.d.

version of the MVE returns as opposed to the actual MVE returns. In particular, the

amount this agent would be willing to pay, for a given investment horizon h, out of

an initial wealth of $1 is found as:

wc(h) = 1−

(
ER1−γ

t,t+h

[ER1−γ
t,t+1]

h

) 1
1−γ

,

where γ is risk aversion. See Appendix A.5. Figure 7 gives these amounts for each

model as a function of the horizon when γ = 5. The peak value ranges between 5%

and 20% for the different models.

Overall the plots in Figures 5 - 7 indicate that investors who do not engage in factor

timing are nevertheless exposed to important dynamics in the SDF factor loadings

that strongly affect their utility of the investment. Next, we ask which conditional

dynamics enable the models to jointly account for the MHRs.
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5 Pricing factor MHR

The rejection of the models is a consequence of factor dynamics unaccounted for

in the linear SDF specification. In this section, we consider these dynamics. Full

accounting for the uncovered role of dynamics and proposing a convincing alternative

to each model is beyond the scope of this paper. We have a more modest objective

of providing an illustration of what accounting for these dynamics might entail and

to suggest a path for future research.

5.1 Estimating time-varying SDF loadings

Given that the test asset are the SDF factors themselves, there exists an SDF with

time-varying coefficients that prices MHR to these test assets:

Mt,t+1 = 1− b>t (Ft,t+1 − µt), (10)

where µt = Et(Ft,t+1). Here, bt and µt are K × 1 vectors.

Indeed, Equations (6) and (10) imply, when applied to the factors themselves, that:

bt = Vt(Ft,t+1)
−1µt.

Given this value of bt, the Euler equation errors Mt,t+1Rt,t+1 are not forecastable.

Thus, the SDF (10) prices MHR correctly per Equation (7).

Thus, in order to obtain bt, we explicitly estimate µt and Vt(Ft,t+1) for each model.

We emphasize that, because of the illustrative nature of our exercise, the estimation

is in-sample. We estimate the conditional monthly variance-covariance matrix of the

factor returns using the multivariate CCC-GARCH method of Bollerslev (1990). We

estimate conditional mean of each element k of the vector of factors F using a simple

regression model that is motivated by the uncovered strong dependencies in factor

returns:

F i
t,t+1 = βi,0 +

n∑
j=1

βi,hjx
(hj)
i,t + εit+1, (11)
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where x
(h)
i,t =

∑h
j=1 F

i
t−j,t−j+1. Note that the predictive variables x

(h)
i,t are different

from the conditioning variables z
(h)
i,t that we use in our GMM tests.

We use the post LASSO approach of Belloni and Chernozhukov (2013) to estimate the

regression (11) for each factor. That is, we use the LASSO to select strong predictive

variables and, because the LASSO yields biased return estimates, we next use OLS

with these selected regressors to get the conditional factor risk premium estimate, µit.

We select hj in Equation (11) to be 1, 3, 12, and 48 months for a total of four

predictive variables. The predictive variable set is chosen to account for persistent

components in returns with possibly multiple frequencies. We consider slightly fewer

horizons than in our GMM test to reduce the correlation between return predictors

in the LASSO.

5.2 Estimation results

Table 2 presents test results along with pricing errors and Sharpe ratios. The re-

sults suggest that, overall, our first cut at estimating bt delivers reasonable results.

Nevertheless, it can be improved, at least for certain models.

The p-values of our test now fail to reject at the 10% level with the exception of

the SY (p-value = 0.2%) and the HXZ (p-value = 9.1%) models. We note that our

inference does not account for estimation errors in µt and Vt thereby making the

reported p-values the lower bounds on the correct numbers. Thus, the only model

that is likely to be rejected is SY.2

Economically, we see improvements across the board. The pricing errors are smaller

as compared to the constant b case reported in Table 1. Their magnitude ranges

between 14% (FF3+MOM) to 82% (FF5) as a fraction of the original errors.

We next consider the Sharpe ratios of the model-implied unconditional MVE portfo-

lios. See Appendix A.6 for the derivation. Table 2 shows that the Sharpe ratios for

2To clarify, the rejection of SY in this setting suggests that the basic factor dynamics that we’ve
posited in order to estimate bt is not appropriate for that model. Still, there exists a bt that prices
the SY factors correctly. Given the illustrative nature of our exercise we do not perform extensive
modeling to find such a bt.
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the models with time-varying bt is generally higher than those from the constant b

versions of the models. For instance, the MKT+BAB and FF3 models have Sharpe

ratios that are about 1.3 times higher than in the constant b cases. Thus, the es-

timated time-variation in bt indeed leads to an improved pricing kernel also when

viewed from the standard single-horizon perspective.

The CAPM and the SY models are exceptions, with Sharpe ratios of the model-

implied unconditional MVE portfolios at about the same level as the case for the

constant b models. That is consistent with the lack of rejection in the constant b case

for the CAPM and rejection of the SY model with time-varying bt.

5.3 Sources of variation in bt

The estimation procedure delivers an estimate of bt for each factor in each model.

We have two related objectives regarding these estimates. First, we would like to

characterize general variation in bt that is required to price MHR successfully. Second,

we would like to check if bt is related to standard conditioning variables, such as the

dividend-price ratio.

To streamline the presentation we discuss variation in the average bt across factors

for each model. Table 3 presents main results. The mean of this average bt differs

across models due to the volatility of the pricing factors and their Sharpe ratios. The

cross-model average bt is about 10. Importantly, the time-variation in the average bt’s

are large, with a cross-model average of 4.3. The CAPM has the least time variation

in the estimated bt, consistent with the constant-b version of this model not being

rejected. The other models exhibit stronger time-variation with FF5DMRS having the

largest standard deviation of bt of 6.9.

The first column of Table 4 compresses the evidence further by averaging bt across

the models, thus focusing the common variation in bt across both factors and mod-

els. Nevertheless, there is still substantial time-variation in that bt, with a standard

deviation of 3.6. The annualized serial correlation of 0.4 translates into 0.93 at the

monthly frequency of the data. Thus, there is a highly variable and persistent com-

mon component in the bt’s across factors and models.
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Panel (A) of Figure 8, which displays the time series of that average bt, supports

this intuition showing a range from about 1 to 20. As seen from the shaded NBER

recession bars in the Figure, the common variation across factors and models in the

SDF loadings tends to be negatively associated with recessions.

There is a long tradition in the literature to model bt as a linear function of variables

that are related to aggregate discount rates. See, e.g., Ferson and Harvey (1999) for

an early example, and Moreira and Muir (2017) for a recent example. Motivated by

this work, we check if our estimate of bt is related to the market dividend-price ratio,

the term spread, market variance, and a recession variable (the negative of annual

industrial production growth, overlapping monthly observations).

We implement the analysis for bt. Also, in order to gain more transparent economic

interpretation of the results, we consider the associated prices of risk λt = btV
1/2
t

for each factor, a.k.a. maximal conditional Sharpe ratios. The results of the grand

average λt across factors and models are displayed in the second column of Table 4

and panel (B) of Figure 8.3

The price of risk is significantly negatively related to the recession variable and market

variance. This is striking and unexpected. We would venture to say most market

participants view recessions and spikes in volatility as bad times, but this is not

reflected in the prices of risk of these factor models. Either the factor models are

missing an important component of risk or investor expectations are not rational

and the price of risk dynamics we estimate in the data reflects investor expectational

errors in these bad times. For instance, investors could be persistently surprised by

the severity of recessions and/or volatility spikes, leading to lower expected returns

in bad times as prices initially under-react.

More reassuringly, the dividend-price ratio and the term spread are positively as-

sociated with fluctuations λt, as theory and intuition suggests should be the case,

albeit with weaker statistical significance. The overall adjusted R2 is 25%. Thus, the

lion’s share of the estimated common variation in the prices of risk in these models

is unexplained.

3Results for factor- and model-specific λt are available upon request.
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6 Conclusion

One of the principal goals of empirical asset pricing is to provide a stochastic discount

factor that appropriately takes the present-value of any risky cash flow accruing at

any future horizon. The main focus of the literature, however, has been on developing

models of single-horizon expected returns. That disparity motivates us to develop a

GMM-based test that uses multi-horizon returns (MHR) to evaluate the ability of

any asset pricing model to price risky cash flows that accrue at different horizons. We

argue that MHR are appealing also because the conditioning variables they imply are

endogenous to the model being tested.

The test rejects a set of prominent linear factor models, and we find that the av-

erage pricing errors are similar to the average factor risk premiums the models are

designed to explain in the first place. The reason the models do a poor job pricing

longer-horizon returns is that the implied conditional properties of risk pricing are

strongly at odds with dynamic properties of the factors associated with these models.

Because long-run investment entails exposure to conditional return dynamics even in

the absence of factor timing, these dynamics show up as large mispricing in longer-run

returns.

We find that the conditional risk prices in the SDFs that do price longer-horizon

factor returns are negatively correlated with those implied by the benchmark models.

Specifically, the models with time-varying SDF factor loadings imply that risk prices

are pro-cyclical and low when the conditional market return volatility is high. Further,

the variation in these factor loadings is substantial and not strongly connected to

existing conditional variables, even if ignoring the counterintuitive signs. This sort

of variation is puzzling. Future research should focus on understanding the economic

forces behind the evidence.
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Figure 1
Term structure of annualized factor pricing errors I
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0 10 20 30 40 50

Pricing horizon (months)

-0.1

-0.08

-0.06

-0.04

-0.02

0

P
ri
ci

n
g

 e
rr

o
r 

(a
n

n
u

a
liz

e
d

)

MKT
SMB
HML

0 10 20 30 40 50

Pricing horizon (months)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

P
ri
ci

n
g

 e
rr

o
r 

(a
n

n
u

a
liz

e
d

)

MKT
SMB
HML
MOM

The panels show factor pricing errors for various models at horizons 3, 6, 12, 24, and 48 months.

Annualized pricing errors at horizon h are 12/h×ET (z
(h)
i,t Mt,t+1F

i
t,t+1), where ET denotes the sample

average, z
(h)
i,t is the endogenous conditioning variable for factor i at horizon h described in the main

text, and F i
t,t+1 is the return to factor i. The population average of a correctly specified model is

zero. The sample is monthly, from 1963 to 2017.
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Figure 2
Term structure of annualized factor pricing errors II

(A) FF5 (B) FF5DMRS
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The panels show factor pricing errors for various models at horizons 3, 6, 12, 24, and 48 months.

Annualized pricing errors at horizon h are 12/h×ET (z
(h)
i,t Mt,t+1F

i
t,t+1), where ET denotes the sample

average, z
(h)
i,t is the endogenous conditioning variable for factor i at horizon h described in the main

text, and F i
t,t+1 is the return to factor i. The population average of a correctly specified model is

zero. The sample is monthly, from 1963 to 2017 for FF5 and FF5DMRS , 1963 to 2016 for SY, and
1967 to 2017 for HXZ.
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Figure 3
Max Sharpe ratio of single-horizon factor model vs.
multi-horizon pricing errors
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The figure plots the annualized maximal in-sample Sharpe ratio combination of the factors in each
model against the annualized mean absolute pricing error (MAPE) of the corresponding model, when
the model is estimated using one-period returns and tested on excess factor returns with horizons
1, 3, 6, 12, 24, and 48 months. The sample is monthly, from 1963 to 2017 for all models except SY,
which is 1963 to 2016, and HXZ, which is 1967 to 2017.
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Figure 4
Variance Ratios
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The figure plots variance ratios for the MVE portfolio from each factor model. In particular, for
each model we consider the in-sample MVE combination of the factors normalized to have the same
return volatility as the market factor. We then add the gross real risk-free rate to this factor return,
take logs and compute the variance ratio for each model from horizons 1 to 48 months. If the factor
returns are i.i.d., the variance ratio is 1 at all horizons. The variance ratio at horizon h is related
to the cumulative autocorrelations of the return series from horizons 1 through h. The sample is
monthly, from 1963 to 2017 for all models except SY, which is 1963 to 2016, and HXZ, which is 1967
to 2017.
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Figure 5
Term structure of Sharpe ratios I
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(C) FF3 (D) FF3+MOM
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The figure plots the annualized Sharpe ratio of each model’s MVE portfolio for different holding
periods. For each model we consider the in-sample MVE combination of the factors normalized to
have the same return volatility as the market factor. We then add the gross real risk-free rate to this
factor return and get h-period returns to this portfolio as Rt,t+h = Rt,t+1×Rt+1,t+2×...×Rt+h−1,t+h.
The h-period risk-free rate is found in the same way. We then calculate the h-period annualized
Sharpe ratio as

√
12/h×E(Rt,t+h−Rf

t,t+h)/V 1/2(Rt,t+h−Rf
t,t+h) for horizons 1 to 48 months (solid,

red line). The dashed, blue line gives the corresponding Sharpe ratios using a bootstrap approach
that creates i.i.d. factor returns. The sample is monthly, from 1963 to 2017 for all models.
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Figure 6
Term structure of Sharpe ratios II
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(C) SY (D) HXZ
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The figure plots the annualized Sharpe ratio of each model’s MVE portfolio for different holding
periods. For each model we consider the in-sample MVE combination of the factors normalized to
have the same return volatility as the market factor. We then add the gross real risk-free rate to this
factor return and get h-period returns to this portfolio as Rt,t+h = Rt,t+1×Rt+1,t+2×...×Rt+h−1,t+h.
The h-period risk-free rate is found in the same way. We then calculate the h-period annualized
Sharpe ratio as

√
12/h×E(Rt,t+h−Rf

t,t+h)/V 1/2(Rt,t+h−Rf
t,t+h) for horizons 1 to 48 months (solid,

red line). The dashed, blue line gives the corresponding Sharpe ratios using a bootstrap approach
that creates i.i.d. factor returns. The sample is monthly, from 1963 to 2017 for all models except
SY, which is 1963 to 2016, and HXZ, which is 1967 to 2017.
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Figure 7
A Measure of the Welfare Costs of the Factor Dynamics
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The figure plots what an h-period CRRA agent with utility over final period wealth would be willing
to pay as a fraction of initial wealth to get i.i.d. returns on each model’s MVE factor with the same
one-period return distribution as the actual factor. The factor for each model is the in-sample MVE
combination of the model’s factors normalized to have the same volatility as the market factor. We
then add the gross real risk-free rate to this factor return and get h-period returns to this portfolio
as Rt,t+h = Rt,t+1 × Rt+1,t+2 × ... × Rt+h−1,t+h. If the MVE factor is i.i.d. or the dynamics are
such that they do not impact the investors utility, the amount the agent would be willing to pay is
zero. The risk aversion is set to 5. The sample is monthly, from 1963 to 2017 for all models except
SY, which is 1963 to 2016, and HXZ, which is 1967 to 2017.
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Figure 8
Time series of average risk premiums
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Panel A plots the average bt across all models and factors, where bt is first averaged across the
factors in a model at each time t and then this quantity is averaged across models for each t. Panel
B shows the corresponding average of prices of risk, λt, across models. The yellow bars indicate
NBER recessions. The sample is monthly, from 1967 to 2016, reflecting the common sample across
all models.
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Table 1: MHR tests of linear factor models

Panel A: CAPM MKT+BAB FF3 FF3+MOM

p-value 0.186 0.039 0.002 0.026
MAPE 0.007 0.030 0.014 0.076
Sharpe Ratio 0.395 0.701 0.692 1.004

Panel B: FF5 FF5DMRS SY HXZ

p-value 0.004 0.001 0.001 0.011
MAPE 0.019 0.034 0.119 0.061
Sharpe Ratio 1.116 1.588 1.670 1.431

The first row of each panel gives the p-value from the GMM J-test given in Sections 3
and 4, where the linear factor models are estimated on the one-period factor returns
and tested on multi-horizon factor returns. The second row displays the annualized
mean absolute price error (MAPE) across the test assets. The returns horizons used
are 1, 3, 6, 12, 24, and 48 months. The table also reports the sample Sharpe ratio
of the in-sample MVE combination of each model’s factors. The sample is monthly,
from 1963 to 2017 for all models except SY, which is 1963 to 2016, and HXZ, which
is 1967 to 2017.
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Table 2: MHR tests of conditional linear factor models

Panel A: CAPM MKT+BAB FF3 FF3+MOM

p-value 0.810 0.783 0.692 0.715
MAPE(bt)/MAPE(b) 22.5% 26.9% 68.1% 14.5%
SR(bt)/SR(b) 100.3% 131.1% 130.5% 121.3%

Panel B: FF5 FF5DMRS SY HXZ

p-value 0.117 0.572 0.002 0.091
MAPE(bt)/MAPE(b) 82.5% 63.5% 43.3% 55.8%
SR(bt)/SR(b) 124.0% 114.3% 97.4% 111.8%

This table reports test statistics from the factor models with time-varying SDF
loadings bt, as opposed to the constant b model tests given in Table 1. The first row of
each panel gives the p-value from the GMM J-test (see Sections 3 and 5 for details).
The returns horizons used in the test are 1, 3, 6, 12, 24, and 48 months. The second
row gives the mean absolute pricing errors (MAPE) as a fraction of the MAPE
from the constant b version of the model from Table 1. The third row gives the
sample annualized Sharpe ratio of the unconditional MVE portfolio as implied by the
model with time-varying bt, reported as a fraction of the Sharpe ratio from the con-
stant b model’s unconditional MVE portfolio. The sample is monthly, from 1963 to
2017 for all models except SY, which is 1963 to 2016, and HXZ, which is 1967 to 2017.
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Table 3: Properties of time-varying SDF loadings

Panel A: CAPM MKT+BAB FF3 FF3+MOM

Mean(bt) 3.133 4.513 4.494 6.809
StDev(bt) 1.343 3.117 3.105 3.954
Auto(annual)(bt) 0.275 0.151 0.182 0.293

Beta 1 (dp) −0.291 1.170 0.918 1.526
(−1.328) (1.424) (1.253) (1.493)

Beta 2 (Term) 0.073 0.047 0.166 0.319
(0.968) (0.216) (0.856) (0.974)

Beta 3 (Mkt Var) −7.216∗∗∗ −10.204∗∗∗ −6.424∗∗∗ −10.122∗∗∗

(−5.708) (−6.042) (−3.816) (−3.789)
Beta 4 (-IP) −0.854 −13.756∗∗ −8.626∗∗ −19.477∗∗∗

(−0.446) (−2.460) (−1.989) (−2.919)
R2
adj 0.633 0.283 0.112 0.211

Panel B: FF5 FF5DMRS SY HXZ

Mean(bt) 9.257 21.122 13.259 13.649
StDev(bt) 4.583 6.890 5.609 5.755
Auto(annual)(bt) 0.293 0.376 0.336 0.518

Beta 1 (dp) 3.392∗∗∗ 6.581∗∗∗ 3.638∗∗∗ 1.917
(3.054) (3.370) (2.916) (1.019)

Beta 2 (Term) 0.510 1.014∗∗ 1.355∗∗∗ −0.354
(1.465) (2.066) (3.596) (−0.571)

Beta 3 (Mkt Var) −9.831∗∗∗ −23.972∗∗∗ −19.126∗∗∗ −19.674∗∗∗

(−3.315) (−7.339) (−6.506) (−3.836)
Beta 4 (-IP) −11.079 −25.238∗∗ −27.351∗∗∗ −17.415∗

(−1.423) (−1.974) (−2.787) (−1.660)
R2
adj 0.161 0.370 0.388 0.276

The table shows various sample statistics for bt computed as the average of a given
model’s SDF factor loadings across factors at each t. The first three rows of each
panel gives the mean, standard deviation, and annual autocorrelation. The next
rows give the regression coefficients of a regression of bt onto standard conditioning
variables: (1) the market log dividend-price ratio, (2) the difference between the
10-year Treasury bond yield and the 3-month Treasury bill yield (the term spread),
(3) the conditional market return variance estimated using EGARCH(1,1) (times 100
for scaling), and (4) the negative of annual log industrial production growth (IP).
Heteroskedasticity and autocorrelation adjusted t-statistics are given in parentheses.
The last row provides the adjusted R2 from these regressions. The sample is monthly,
from 1963 to 2017 for all models except SY, which is 1963 to 2016, and HXZ, which
is 1967 to 2017.
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Table 4: Properties of average time-varying SDF loadings and prices of risk

Average bt Average λt

Mean 10.443 1.180
StDev 3.603 0.155
Autocorr(annual) 0.444 0.204

Beta 1 (dp) 2.735∗∗∗ 0.024∗∗

(2.746) (2.310)
Beta 2 (Term) 0.437 0.004∗

(1.467) (1.673)
Beta 3 (Mkt Var) −14.193∗∗∗ −0.119∗∗∗

(−5.820) (−4.815)
Beta 4 (-IP) −17.563∗∗∗ −0.256∗∗∗

(−3.040) (−4.109)
R2
adj 0.433 0.253

The table reports the same statistics as those in Table 3. The first column, however,
gives these statistics for the average of bt across models. The last column gives
these statistics for the average annualized price of risk, λt, across the models. The
sample is monthly, from 1967 to 2016, reflecting the common sample across all models.
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A Derivations

A.1 Two-period valuation

The two-period valuation involves solving for the covariance:

Cov (Mt,t+1Rt,t+1,Mt,t+1Rt,t+1) = Cov

(
(1− σ−2ε µεt+1) (1 + µt + βεt+1 + ut+1) ,
(1− σ−2ε µεt+2) (1 + µt+1 + βεt+2 + ut+2)

)
= Cov

((
1− σ−2ε µεt+1

)
ut+1,

(
1− σ−2ε µεt+2

)
µt+1

)
= Cov (ut+1, µt+1) ,

where σ2
ε = V (εt+1). The second and third equalities follow as εt+1 is i.i.d. and

uncorrelated with ut+1 and, thus, with µt+1. Because Etut+1 = 0,

Cov (ut+1, µt+1) = E [ut+1µt+1]

= Pr {ut+1 = δ} δµH + Pr {ut+1 = −δ} (−δ)µL

=
δ

2
(µH − µL) ,

since ut+1 equals δ with probability 0.5 and −δ with probability 0.5, and since µt+1 =
µH if ut+1 = δ and µt+1 = µL if ut+1 = −δ.

A.2 Law of one price and MHR

It is immediate from the law of iterated expectations, that an SDF that prices a set
of single-horizon returns conditionally, that is,

Et[Mt,t+1Rt,t+1] = 1,

also prices multi-horizon returns to the same set of assets:

E[Mt−h,t+1Rt−h,t+1] = 1 for any h ≥ 1.

Indeed, that can be shown by recursively iterating on the following equation for
h = 1, 2, . . . :

E[Mt−h,t+1Rt−h,t+1] = E[Mt−h,tRt−h,tMt,t+1Rt,t+1]

= E[Mt−h,tRt−h,tEt[Mt,t+1Rt,t+1]] = E[Mt−h,tRt−h,t],

where the last equality follows if the model prices the single-horizon returns condi-
tionally.
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A.3 No serial correlation in residuals

That residuals are not autocorrelated follows from Equation (4). For simplicity, con-
sider one horizon, h. We have that

E(f it · f it+1) = E(f it · Et(f it+1)) = E(f it · z
(h)
i,t Et(Mt,t+1R

i
t,t+1 − 1)) = 0,

because, under the null, Et(Mt,t+1R
i
t,t+1 − 1) = 0 for all t.

A.4 Factor dynamics implied by constant SDF loadings

We apply the SDF in Equations (2) and (3) to conditional pricing of factors them-
selves, Et(Mt,t+1Ft,t+1) = 0. Denoting E(Ft,t+1) = µ and V (Ft,t+1) = Σ, we have

0 = Et((1 + µ>Σ−1µ− µ>Σ−1 · Ft,t+1)F
>
t,t+1).

Therefore,

Et(F
>
t,t+1) = (1 + µ>Σ−1µ)−1µ>Σ−1 · Et(Ft,t+1F

>
t,t+1).

A.5 Welfare cost

The expression is obtained by equalizing utilities under i.i.d. returns and the ones in
the data:

E[((1− wc(h))Ri.i.d.
t,t+h)

1−γ] = (1− wc(h))1−γ[E(R1−γ
t,t+1)]

h = E(R1−γ
t,t+h).

Here we exploit E[(Ri.i.d.
t,t+h)

1−γ] = [E((Ri.i.d.
t,t+1)

1−γ)]h. We also assume that the uncon-
ditional properties of one-period actual and hypothetical i.i.d. returns are the same.

A.6 Unconditional MVE with time-varying SDF factor load-
ings

Equation (10) implies that the SDF corresponding to the time-varying bt features a
time-varying intercept:

Mt,t+1 = (1 + b>t µt)− b>t Ft,t+1.
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This SDF is equivalent to one with a constant intercept. Consider

M̃t,t+1 = 1− (1 + b>t µt)
−1b>t Ft,t+1 ≡ 1− F̃t,t+1

= (1− E(F̃t,t+1))− (F̃t,t+1 − E(F̃t,t+1)) ∝ 1− b̃(F̃t,t+1 − µ̃),

where F̃t,t+1 = (1 + b>t µt)
−1b>t Ft,t+1, µ̃ = E(F̃t,t+1), and b̃ = (1− E(F̃t,t+1))

−1.

This representation of the SDF conditionally prices the same set of excess returns as
the original SDF Mt,t+1. This alternative formulation of a valid excess return SDF,
makes it clear that the return to b̃Ft,t+1 is perfectly conditionally and unconditionally
correlated with the SDF. Given the latter, it is an unconditional MVE return.

Armed with the unconditional MVE returns we can compute their Sharpe ratios using
the standard approach.
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