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1 Introduction

Specifying an asset-pricing model via the stochastic discount factor (SDF) is a pow-
erful analytical tool that encodes the risk-return trade-off across multiple assets and
across multiple horizons. The former set of implications has enjoyed virtually endless
amount of theoretical and empirical research. The focus is on finding, at a single
horizon, the maximum Sharpe ratio (SR) portfolio whose return is inversely related
to the SDF.

In this paper, we argue that there are important dynamics of the SDF that substan-
tially affects its multi-horizon empirical performance. Hence, evaluating SDFs using
multi-horizon returns (MHR) should feature more prominently in model selection.
We show that an MHR-based test amounts to a stringent evaluation of conditional
implications of a model.

Our approach is motivated by the fact that most economic decisions, such as, corpo-
rate investments, private equity, or consumption-savings plans, involve longer hori-
zons. For instance, Campbell and Viceira (2002), among many others, emphasize the
importance of return predictability for optimal long-term portfolios. By implication,
the multi-horizon SDF is an important framework for evaluating economic models.

Surprisingly, there is little research on evaluation of SDF models using MHR. The-
oretical work has developed tools allowing researchers to characterize properties of
equilibrium models at different horizons (e.g., Hansen and Scheinkman, 2009, Backus,
Chernov, and Zin, 2014). Empirical work highlights properties of MHR but does not
use them to explicitly test models of the SDF (e.g., Campbell, 2001, Kamara, Kora-
jczyk, Lou, and Sadka, 2016).

We make two key contributions. First, we show that MHR-based tests could be
interpreted as adding a set of instruments to standard single-horizon tests in the
context of GMM-based estimation. As a result, MHR serve as a natural guard against
persistent conditional misspecification.

Second, we show that misspecification of the temporal dynamics in state-of-the-art
models of the SDF, as uncovered by MHR, indeed are quantitatively large. In par-
ticular, we consider linear factor models of the form SDF = a− b>F , which arguably
are the workhorse models for empirical risk-return modeling. It is well-known that
such an SDF implies a linear beta-pricing model of expected returns (e.g., Cochrane,
2004). Under the null of these SDFs, the traded factors F span the unconditional
mean-variance efficient (MVE) portfolio. We impose the minimal requirement on a
factor model that it prices its own factors. The new idea in our approach is to impose
this requirement on factor returns at multiple horizons.
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We find that models deemed successful on the basis of single-horizon returns (thus
having factors that yield a high maximal SR) tend to do worse at long horizons, that
is, they have large MHR pricing errors. Further, we show that the dynamics of the
factors, as manifested by multi-horizon variance ratios, are grossly inconsistent with
the dynamics implied under the null of the factor model. In other words, current
state-of-the-art models of the risk-return trade-off, which are typically estimated at a
monthly or quarterly frequency, do a poor job accounting for the risk-return trade-off
at longer horizons.

The reason the models reject is that the model-implied SDFs do not price the test
assets conditionally. If conditional pricing errors are persistent (autocorrelated), they
may affect longer-horizon excess factor returns. Specifically, persistent pricing errors
that appear “small” at the monthly horizon can become large over multiple horizons
as they accumulate over time. This is the kind of misspecification MHR is detecting
when used as test assets.

An unconditionally MVE portfolio prices assets also conditionally (Hansen and
Richard, 1987). Thus, the rejection suggests that the factors do not unconditionally
span the MVE portfolio. However, because we evaluate the models using MHR to the
pricing factors themselves, it follows that there must exist time-varying a’s and b’s in
the SDF that do price MHR correctly. To assess the nature of the misspecification in
more detail, we model bt as a latent process and estimate it and the corresponding
at by including MHR in the set of test assets, thus asking the model to jointly price
returns at multiple horizons. The estimated factor loading has large variation and
little relation to the standard conditioning variables used in asset-pricing.

The evidence prompts us to investigate the economic origins of the time variation
in b. We hypothesize that the typical factor construction methodology, which uses
characteristics-based rank portfolios, is likely responsible for the persistent misspeci-
fication. When forming long-short portfolios, the decision to use decile extremes, or
the characteristic itself, or the specific type of a double-sort, are ad hoc. We show that
these decisions easily yield persistent misspecification in the scale of the portfolio. If
one can identify a time-varying bt reflecting the scale-misspecification, then one could
form a new factor F̃t+1 = b>t Ft+1 that would feature a constant (unitary) loading in
the SDF.

In practice, b is sometimes close to a constant and the model is not rejected. That
happens when F is comprised of the market excess returns and other factors from
the FF3 model (Fama and French, 1993), the value (HML) and size (SMB) factors.
But, in most cases, including betting against beta (BAB), profitability, investment,
momentum, and versions of the five Fama-French factors hedged for unpriced risks
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(see Daniel, Mota, Rottke, and Santos, 2018), the constant b hypothesis is strongly
rejected.

It may seem intuitive that as one adds more factors, there is more scope for com-
plicated dynamics that require time-varying b. Economically, however, this is not
so clear. As one considers models with increasingly higher short-run maximal SR,
and, presumably, gets closer to the MVE portfolio, it would be natural to expect less
evidence of time-variation in b. In this sense, our results are surprising.

In a robustness section, we run standard “alpha-regressions” and use Gibbons, Ross,
and Shanken, 1989 (GRS) to test whether instruments (managed portfolios) based
on MHR can deliver alpha in the standard, short-horizon setting. The models are
rejected with high maximal information ratios. That is also the case when considering
factors scaled by volatility and dividend-price ratio on the right-hand side. In sum,
standard observable instruments do not capture the effects that we find in this paper.

There are many papers that test conditional versions of factor models. For instance,
Jagannathan and Wang (1996) and Lettau and Ludvigson (2001) consider conditional
versions of the CAPM and the consumption CAPM using proxies for the conditioning
information related to aggregate discount rates, such as the dividend-price ratio, to
arrive at unconditional multi-factor models with constant factor loadings in the SDF.
Another example is Moreira and Muir (2017) who find that factors normalized by
their conditional variance outperform the original factors. That is equivalent to a b
that varies with the inverse of the conditional factor variance. Indeed, we find that
the estimated bt is significantly negatively related to the conditional factor variance
and significantly positively related to the dividend-price ratio. However, the R2 of a
regression of bt on these variables is low, indicating that most of the variation is due
to other sources.

Our paper makes a connection with a literature that seeks to characterize multi-
horizon properties of “zero-coupon” assets, such as bonds, dividends strips, vari-
ance swaps, and currencies. Such work includes Belo, Collin-Dufresne, and Goldstein
(2015), van Binsbergen, Brandt, and Koijen (2012), Dahlquist and Hasseltoft (2013),
Dew-Becker, Giglio, Le, and Rodriguez (2015), Hansen, Heaton, and Li (2008), Lustig,
Stathopoulos, and Verdelhan (2013), and Zviadadze (2017). There is also an earlier
literature that considers multiple frequencies of observations when testing models
(e.g., Brennan and Zhang, 2018, Daniel and Marshall, 1997, Jagannathan and Wang,
2007).

Notation. We use E for expectations and V for variances. A t-subscript on these
denotes an expectation or variance conditional on information available at time t,
whereas no subscript denotes an unconditional expectation or variance. We use dou-
ble subscripts for time-series variables, like returns, to explicitly denote the relevant
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horizon. Thus, a gross return on an investment from time t to time t+ h is denoted
Rt,t+h.

2 Testing asset pricing models using MHR

In this section, we evaluate the implications of jointly testing whether a proposed
model of the SDF can explain the empirical risk-return trade-off across horizons.
Intuitively, risks that appear very important at a short horizon may be less important
at longer-horizons relative to other, more persistent risks, and vice versa. Analysis of
such dynamics has received little attention in the previous work, despite the relevance
for theoretical models and investment practice.

2.1 Preliminaries

Let the one-period stochastic discount factor (SDF) from time t to t + 1 be Mt,t+1.
The Law of One Price (LOOP) then states that

Et(Mt,t+1Rt,t+1) = 1,

or

Et(Mt,t+1(Rt,t+1 −Rf,t,t+1)) = 0.

Here Rt,t+1 and Rf,t,t+1 are one-period gross return on a risky and the risk-free assets.
The overwhelming majority of empirical asset pricing papers are concerned with tests
of these relationships, where a period is typically a month or a quarter (e.g., Fama
and French, 1993, 2015).

2.2 The MHR Test

The framework offers a natural way to propagate the model implications across mul-
tiple horizons. The multi-horizon SDF and returns are simple products of their one-
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period counterparts:

Mt,t+h =
h∏

j=1

Mt+j−1,t+j,

Rt,t+h =
h∏

j=1

Rt+j−1,t+j,

Rf,t,t+h =
h∏

j=1

Rf,t+j−1,t+j.

LOOP still holds:1

Et(Mt,t+hRt,t+h) = 1, (1)

or, for excess returns,

Et(Mt,t+h(Rt,t+h −Rf,t,t+h)) = 0. (2)

The unconditional version of this condition can be easily tested jointly for multiple
horizons h in a GMM framework.

2.3 Interpretation

To see what MHR add to the evaluation of a candidate stochastic discount fac-
tor, assume the model unconditionally prices one-period returns correctly, i.e.,
E(Ms,s+1Rs,s+1) = 1 for any s. Applying the model to two-period returns from time
t− 1 to time t+ 1, we can write:

E(Mt−1,t+1Rt−1,t+1) = E(Mt−1,tRt−1,t) · E(Mt,t+1Rt,t+1)

+ Cov(Mt−1,tRt−1,t,Mt,t+1Rt,t+1).

Therefore, if (1) holds at both one- and two-period horizons,

Cov(Mt−1,tRt−1,t,Mt,t+1Rt,t+1) = 0.

1It is immediate from the law of iterated expectations, that an SDF that prices a set of one period
returns conditionally (i.e., Et[Mt,t+1Rt,t+1] = 1), also prices multi-horizon returns to the same set
of assets (i.e., E[Mt−h,t+1Rt−h,t+1] = 1 for any h ≥ 1). This can be seen by recursively iterating on
the following equation for h = 1, 2, ..., etc.: E[Mt−h,t+1Rt−h,t+1] = E[Mt−h,tRt−h,tMt,t+1Rt,t+1] =
E[Mt−h,tRt−h,tEt[Mt,t+1Rt,t+1]] = E[Mt−h,tRt−h,t], where the last equality follows if the model
prices the one-period returns conditionally.
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To appreciate the meaning of this restriction of the covariance, define one-period
pricing errors as Ms,s+1Rs,s+1 − Es(Ms,s+1Rs,s+1). Because R is a gross return, the
conditional expectation of its product with the SDF is equal to one. Thus, the
condition above that the covariance term equals zero implies that past pricing errors
cannot predict future pricing errors. This is the hallmark of a correctly specified
model.

A generalization to (h+ 1)-period returns, under covariance-stationarity, is

E(Mt−h,t+1Rt−1,t+1) = 1 +
h−1∑
j=0

Cov(Mt−h+j,tRt−h+j,t,Mt,t+1Rt,t+1).

Thus, adding information about MHR is a test of whether multi-horizon pricing errors
predict one-period pricing errors.

In general, lower-frequency returns can be thought of as applying a particular condi-
tioning instrument in the sense of Hansen and Richard (1987). In particular, consider
an instrument in investors’ information set, zt, and the returns to the managed port-
folio ztRt,t+1. LOOP implies:

E(Mt,t+1ztRt,t+1) = E(Mt,t+1Rt,t+1) · E(zt) + Cov(zt,Mt,t+1Rt,t+1).

Instruments allow for testing of the model’s conditional properties as they test,
through the term Cov(zt,Mt,t+1Rt,t+1), whether pricing errors are predictable.

In our case, instruments vary with horizon and we can define them as z
(h)
t =

Mt−h,tRt−h,t. The variable z
(h)
t is not a traditional instrument used in GMM tests

because it has to satisfy E(z
(h)
t ) = 1. This condition is tested implicitly when imple-

menting unconditional tests of (1) or (2).

The instrument-based interpretation of the tests connects to the optimal instruments
of Hansen (1985), see also Nagel and Singleton (2011). Optimal instruments are se-
lected to minimize the covariance matrix of parameter estimation error. In general,
one cannot implement the true optimal instrument because it entails computation of
the conditional expectation of the derivative of the moment with respect to parame-
ters. That makes it hard to directly compare them to z

(h)
t .

We view our approach as attractive and pragmatic complement to the optimal per-
spective. Our instruments are economically motivated, not data-mined, and straight-
forward to implement. The remaining issue is whether they are informative about the
candidate models. In contrast to optimal instruments, we cannot offer a mathemat-
ical result. Thus, instead, we will proceed with evaluating informativeness of these
instruments in the context of a specific application: linear factor models.
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2.4 Linear factor models

While our approach is applicable to any asset-pricing model featuring an SDF, we
consider cases where SDFs can be expressed as

Mt,t+1 = a− b>Ft,t+1, (3)

where Ft,t+1 is a vector of factor excess returns.

Our test assets are the factors themselves, as well as the risk-free rate. The SDF
coefficients, a and b, can be estimated using only one-period returns in an exactly-
identified unconditional GMM estimation of the model. We will be able to also test
the model by adding multi-horizon excess factor returns. Thus, we will be testing if
a one-period factor model can price the MHR of its factors when compounded to the
corresponding horizons. This is the minimal requirement one would want to impose
on a model in terms of MHR pricing. In order to test the condition (2), we construct
factor MHR via:

Rt,t+h =
h∏

j=1

(Ft+j−1,t+j +Rf,t+j−1,t+j).

Because the test assets are the SDF factors themselves, there exists an SDF with
time-varying coefficients,

Mt,t+1 = at − b>t Ft,t+1, (4)

that prices all test assets correctly.2 Equations (1) and (2) imply that

at = R−1f,t,t+1 + b>t Et(Ft,t+1), (5)

bt = [Rf,t,t+1Vt(Ft,t+1)]
−1Et(Ft,t+1). (6)

Our null hypothesis is at = a, and bt = b.

This null hypothesis is equivalent to saying that there exists a linear combination of
the factors that is perfectly negatively correlated with an SDF. Such a linear combi-
nation is the MVE portfolio (Cochrane, 2004). The large literature on unconditional
beta-pricing factor models (e.g., Carhart, 1997; Fama and French, 1993) is exactly

2If the SDF conditionally prices the factors and the risk-free rate correctly, it also prices any
trading strategy in these base assets correctly. As shown earlier, MHR can be viewed as trading
strategies in one-period returns. If LOOP holds, it is immediate that there exists some at and bt
such that this alternative SDF prices the base assets conditionally, as we have as many degrees of
freedom as we have moments at each time t.
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concerned with finding factors that unconditionally span the unconditional MVE
portfolio.

Note that the constant b does not imply constant factor risk premiums—it implies
that conditional factor risk premiums must be proportional to the conditional factor
variance multiplied by the conditional gross risk-free rate. A number of authors,
e.g., Campbell and Shiller (1988), Fama and French (1988), Haddad, Kozak, and
Santosh (2018), find strong return predictability in common pricing factors. These
predictability findings do not by themselves contradict our null hypothesis. Our tests
are, however, a test of whether the conditional factor risk premiums line up with the
conditional variance in the way Equation (6) prescribes.

Yet another perspective on our analysis arises from representing the SDF in terms
of prices of risk, λt, and innovations. Decompose the SDF into its conditional mean,
Et(Mt,t+1) = R−1f,t,t+1, and a shock:

Mt,t+1 = R−1f,t,t+1 − λ
>
t εt+1, (7)

where εt+1 is i.i.d., zero mean, and unit variance. Further, assume that the shocks to
the SDF also drive factor returns in the following manner:

Ft,t+1 = Rf,t,t+1V
1/2
t (Ft,t+1)λt + V

1/2
t (Ft,t+1)εt+1.

Then, we can represent the SDF in terms of F

Mt,t+1 = R−1f,t,t+1 +Rf,t,t+1λ
>
t λt − λ>t V

−1/2
t (Ft,t+1)Ft,t+1. (8)

Comparing Equations (4) and (8), we see that

bt = λ>t V
−1/2
t (Ft,t+1). (9)

The null hypothesis bt = b implies that prices of risk must line up with the amounts
of risk.

2.5 Results: a case of MKT + BAB

Our initial discussion is based on a two-factor case: excess return on the market
(MKT) and the betting against beta (BAB) strategy. The first factor corresponds
to the oldest factor model, the CAPM. The second factor corresponds to the oldest
anomaly: low (high) beta stocks have positive (negative) alphas (Jensen, Black, and
Scholes, 1972). Frazzini and Pedersen (2014) propose the BAB factor that exploits
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this anomaly while hedging the market risk. We later show that the issues highlighted
in this case are pervasive and hold for many factor models.

The model (3) specializes to

Mt,t+1 = a− bmMKTt,t+1 − bbabBABt,t+1, (10)

where MKTt,t+1 = Rm,t,t+1 − Rf,t,t+1 and BABt,t+1 is the (excess) return associated
with the BAB long-short strategy. The test assets are the 1-, 12-, and 24-month excess
returns to the factors in the model at hand, as well as the 1-month risk-free rate. The
sample is from July 1963 to June 2017. We implement the two-stage efficient GMM.
We also consider the unconditional CAPM by setting bbab = 0.

In addition to the GMM estimation results, we report mean absolute pricing errors
(MAPE). MAPE should be understood as the present value of a zero-investment
strategy with a notional of $1. Results are reported in Table 1.

The leftmost columns in the table show, as a reference, a “one-horizon test”, which
is simply the two models, MKT or MKT+BAB, estimated using one-month returns
to the factor(s) and the risk-free rate. The “multi-horizon test” reports the results of
estimation including the 12- and 24-month excess factor returns as test assets.

The SDF coefficient estimates for the unconditional CAPM, or the MKT factor,
are basically the same across the two estimations. The row labeled MAPE shows the
annualized mean absolute pricing error of the factors across the 1-, 12-, and 24-month
horizons for both single- and multi-horizon estimations. The annualized error is less
than 0.5% in both estimations and the J-test in the multi-horizon test does not reject.
The maximal annualized prices of risk of this model (the maximal SR), reported as√

12V
1/2
T (Mt,t+1)/ET (Mt,t+1), are equal to 0.383 and 0.365 in the single-horizon and

multi-horizon tests, respectively. In other words, for the MKT-model the assumption
of constant a and b is not rejected and the addition of multi-horizon returns in the
test therefore does not affect the results much.

For the MKT+BAB model, however, multi-horizon excess factor returns reveal sub-
stantial model misspecification. In particular, in the single-horizon case, the annual-
ized MAPE is 31%. Considering that the risk premium on these factors are in the
order of 6-8% p.a. the mispricing is economically very large. In the multi-horizon
test, the MAPE is reduced considerably to 4.4%, which is still economically a large
number. This reduction is achieved by strongly altering the coefficient estimates.
Most notably, the risk loadings bm and bbab are reduced from 3.0 and 8.2 in the single-
horizon case to 0.4 and 1.7 in the multi-horizon case, respectively. The estimated
maximal SR is reduced from 0.979 to 0.198. Put differently the SR is too low even
to account for the market itself.
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That the estimated parameters have changed substantially upon introduction of MHR
is a prima facie evidence of the model misspecification. The J-test confirms that,
rejecting the model at the 1% level. Hence, this factor model does not successfully
price its own factors both at short and long horizons. This is a startling fact. One
might have thought that it is innocuous to focus on short horizon returns. But that
is not the case. A model fit that does well at short horizons may do poorly at long
horizons, even when only pricing its own components. Clearly, it is important to
consider factor model fit across multiple horizons.

Figure 1 graphically conveys the same message. The panels report pricing errors (raw,
not annualized) for each factor at all horizons from 1 to 24 months. Panels A and C
show that MKT is pricing itself across horizons quite well in the MKT model, whether
the model is estimated using single- or multi-horizon returns. For the MKT+BAB
model, however, pricing errors increase strongly with horizon for both factors, and
especially for the BAB factor. Panel B shows that when estimating the model using
only 1-month returns, the 24-month pricing error is more than $1.6 in absolute value
– economically, an astonishing failure relative to the $1 scale of the zero-investment
strategy being tested. While estimating this model on multi-horizon returns reduces
the pricing errors substantially, the model is still rejected.

Note that the failure to reject the MKT-model should not be interpreted as this being
the “best” model. The non-rejection is a function of the test assets, which in this
case is only the risk-free rate and excess MKT returns at different horizons. Indeed,
the SDF loading on the BAB-factor bbab is statistically different from zero in both
estimations of the MKT+BAB model, thus rejecting the MKT model.

3 Dynamics implicit in a model specification

The MKT+BAB model rejection is a consequence of factor dynamics unaccounted
for by our model. In this section, we consider these dynamics.

3.1 Constant factor loadings

In order to frame the evidence, recall that our null hypothesis, at = a and bt = b,
implies that the portfolio return defined by

F̃t,t+1 = b>Ft,t+1 (11)

10



is the unconditionally MVE portfolio (Hansen and Richard, 1987). Equation (6)
implies for this MVE portfolio:

1 = [Rf,t,t+1Vt(F̃t,t+1)]
−1Et(F̃t,t+1).

Therefore, under the null bt = b, the portfolio dynamics can be written as

F̃t,t+1 = Rf,t,t+1Vt(F̃t,t+1) + ε̃t+1, (12)

where ε̃t+1 ≡ b>V
1/2
t (Ft,t+1)εt+1. Rejection of the null bt = b implies that true dy-

namics of the portfolio are different.

3.2 Variance ratios

Equation (12) implies that if F̃t,t+1 is the MVE portfolio, then the residuals ε̃ should
be uncorrelated over time. That is not the case in the data. To illustrate this point,
we use variance ratios of these residuals across multiple horizons. Variance ratios
have been used earlier to assess multi-horizon Euler equation errors (see, e.g., Flood,
Hodrick, and Kaplan, 1994).

Recall that the variance ratio at horizon h is:

V R(h) =
V
(∑h

j=1 ε̃t+j

)
h× V (ε̃t+1)

. (13)

As is well known, if ε̃ is uncorrelated over time, then V R(h) = 1 for any h. If ε̃ is
positively autocorrelated, then V R(h) > 1 , whereas if ε̃ is negatively autocorrelated,
then V R(h) < 1.

We use b estimated by GMM to construct F̃t,t+1 and estimate an EGARCH(1,1)

to obtain Vt(F̃t,t+1) under the maintained assumption that the two factors (MKT
and BAB) are uncorrelated. Continuing with the examples of section 2.5, we report
variance ratios for the shocks in the case of MKT and MKT+BAB in Figure 2.

Not surprisingly, there is not much of a departure from 1 in the case of the MKT
model. The variance ratios for MKT+BAB are much bigger than the null, however,
implying a strong degree of intertemporal dependence that is not accounted for by
the model with bt = b. The variance ratio in this case increases rapidly with horizon
and exceeds 3(!) at the 24-month horizon.

Thus, the MVE combination of the MKT and BAB portfolios is too highly auto-
correlated relative to what is implied by the model and the estimated conditional
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return variance.3 Time-variation in bt that prices MHR correctly would “undo” this
autocorrelation and create a residual with variance ratios equal to 1 at all horizons.

3.3 Time-varying factor loadings

The rejection of the model (10) prompts us to consider an alternative SDF

Mt,t+1 = at − bmMKTt,t+1 − bbab,tBABt,t+1.

To illustrate how much variation in bt we are missing, we use MHR to estimate the
SDF. We assume that bbab,t follows a latent AR(1) process:

bbab,t = (1− φ)b+ φbbab,t−1 + σεt.

While bm could be time-varying, we set it to a constant for simplicity as most of the
action is clearly emanating from the BAB factor. Further, we assume that the MKT
and BAB factors are conditionally uncorrelated. That is consistent with the BAB
factor construction, which weights the underlying stocks by the inverse of estimated
market betas to make the BAB factor’s forward-looking market beta approximately
zero.

The model is estimated via GMM using the same moment conditions as in the multi-
horizon test case. We use the Kalman filter to estimate bbab,t via the observation
equation:

[Rf,t,t+1Vt(BABt,t+1)]
−1BABt,t+1 = bbab,t + et+1

that is inferred from Equation (6). We infer the corresponding at using Equation (5).

Table 2 presents estimation results. The J−test fails to reject the model, and the
annualized MAPE is 0.013, which is more than three times smaller than that of the
model with a constant b, as estimated using MHR, and more than 20 times smaller
than the case with constant b estimated using only 1-month returns. Figure 3 displays
the pricing errors at each horizon. Consistent with MAPE, they are smaller than those
of the constant-b model. Also, they do not exhibit the horizon-related trend evident
in Figure 1D.

The estimated bbab,t is quite persistent with φ = 0.91 and volatile with unconditional
volatility of 6.04, which is large relative to its mean of 9.22. To get a more intuitive

3In unreported results, we find that it is the BAB factor itself that has a strongly increasing
variance ratio over time.
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interpretation for these numbers we can use Equation (9), which implies that the
price of risk (SR) associated with exposure to the BAB-shock, λbab,t, is equal to

bbab,tV
1/2
t (BABt,t+1). The annualized volatility of this price of risk is 0.66. This is

large compared to its mean of 0.91. Figure 4 displays the time-series of bbab,t and
λbab,t. Both variables appear to be related to business cycles, but it is clear that
there is much additional variation. This prompts the question if we could relate the
dynamics to standard observable instruments used in the literature.

Table 3 displays the results of regressing bbab,t and λbab,t on a recession indicator,
a beta decile spread, the conditional variances of the market and BAB returns as
estimated earlier, the log market dividend to price ratio, and the 10 year over 1 year
term spread. The beta decile spread is the spread between the high and low decile
market-beta sorted portfolios on Kenneth French’s webpage. The beta of the high
and low decile portfolio are the historical 5-year betas of the constituent firms. We
then shrink the betas towards 1, with a weight of 0.6 on the historical estimate and
0.4 on 1. We use the Kenneth French data in lieu of the beta spread in the actual
BAB portfolio as this is not available to us. The spread we use is likely to be highly
correlated with the beta-spread of the underlying stocks in the BAB portfolio.

The overall R2 is modest, in the 20-30% range with sporadic significance of some
of the variables. Notably, bbab,t is significantly negatively correlated with the NBER
recession indicator and the conditional variances of BAB and MKT. One may have
thought that in these periods, the SDF would load more heavily on the factor, but
that is not the case. Both bbab,t and λbab,t load positively and significantly on the beta
spread.

This evidence leaves us with a question of the driving forces behind the variability in
bt. Equation (9) says that there is going to be variation whenever factor prices of risk
and their variances are not proportional. In the case of MKT, the two objects appear
to line up close enough to fail to reject the null of constant bm. That is not the case
for BAB.

4 The impact of sorting on the factor dynamics

Our thesis is that the common characteristic-sort-based approach to construction of
factors often leads to persistent misspecification of the factors. In particular, in order
to construct factors that correspond to an SDF with a constant b, the sort needs
to deliver factors that have a conditional covariance matrix that lines up with the
conditional prices of risk of the underlying shocks, as in equation (9). It is unlikely
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that a characteristic-sort will deliver such a factor as there is no mechanism in the
sorting procedure that guarantees it.

4.1 An example: betting against beta

We specialize the SDF in (7) to

Mt,t+1 = R−1f,t,t+1 − λmεm,t+1 − λbab,tεbab,t+1, (14)

where the shocks are uncorrelated with each other and over time. Since the market
factor is not our focus, we assume the market shock’s price of risk is constant and let
excess market returns follow:

MKTt,t+1 = σmλm + σmεm,t+1. (15)

Further, consider a simplified version of the BAB factor of Frazzini and Pedersen
(2014) where there are only two underlying assets – a high market beta portfolio and
a low market beta portfolio with returns:

Rh,t,t+1 −Rf,t,t+1 = βh,tMKTt,t+1 + [(1− βh,t)λbab,t + (1− βh,t)εbab,t+1],

R`,t,t+1 −Rf,t,t+1 = β`,tMKTt,t+1 + [(1− β`,t)λbab,t + (1− β`,t)εbab,t+1].

Then, construct the BAB factor as in Frazzini and Pedersen (2014):

BABt,t+1 ≡ β−1`,t (R`,t,t+1 −Rf,t,t+1)− β−1h,t (Rh,t,t+1 −Rf,t,t+1)

= ∆tλbab,t + ∆tεbab,t+1, (16)

where

∆t ≡ (βh,tβ`,t)
−1(βh,t − β`,t)

is the “beta spread,” which measures the difference in the betas between the high
and low beta portfolios at each time t.

This beta spread is highly time-varying and persistent in the data. Figure 5 displays
the time-series of ∆t. The annual volatility of the beta spread is 0.57 and the annual
persistence is 0.79. Thus, the choice to weight the portfolios with the inverse of the
portfolio beta is potentially not innocuous – it induces persistent dynamics in the
conditional mean and volatility of BAB returns, per equation (16) and the observed
beta spread.
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Substitute Equations (15) and (16) into Equation (14) to express the SDF as a func-
tion of the MKT and BAB factors:

Mt,t+1 = R−1f,t,t+1 + λ2m + λ2bab,t − λmσ−1m MKTt,t+1 − λbab,t∆−1t BABt,t+1. (17)

That is a version of the general specification in (8). Note that the price of risk λbab,t
has to be proportional to ∆t for bbab to be constant. Our evidence is that this not the
case. Further, while the sorting procedure chooses ∆t, there is nothing explicit in the
sorting procedure that ensures that it lines up correctly with λbab,t.

Empirically, as shown in table 3A, the beta spread is positively and significantly
related to bbab,t. Thus, the price of risk for the BAB shock, λbab,t, must be varying
strongly with the beta spread so as to undo the effect of the inverse of the beta spread
present in the term multiplying BAB, λbab,t∆

−1
t .

One might think of constructing a new factor B̃ABt,t+1 = λbab,t∆
−1
t BABt,t+1 that

would lead to a constant b. However, one needs to know ex-ante both the conditional
price of risk λbab,t and the time-varying scale ∆t in order to accomplish that.

Our example is stylized and there could be other dynamics at play. For instance,
the BAB shock itself may have time-varying volatility that is not driven by the beta
spread. The main takeaway, however, is that there is no direct solution to this problem
by adjusting the time t sort based on the time t cross-section of the characteristic
itself. The argument we put forth in this paper is that MHR factor returns provide
informative moments to detect this type of misspecification.

4.2 General observations

Although we are using BAB as a specific example, the phenomenon that we are
describing is pervasive. Cross-sectional portfolio sorts may easily have drifting loading
on the true underlying risk factor. The two standard methods used in the literature for
constructing factors – Fama-MacBeth regressions of returns on lagged characteristics
and rank characteristic-sorts – both normalize the cross-section of the characteristics
at each t in particular ways that are likely to induce persistent misspecification.
To illustrate the mechanism we highlight in this paper, we consider Fama-MacBeth
regressions as the method for factor construction.

Assume the true SDF follows (3), where F is a vector of orthogonal factor excess
returns, and excess factor returns and the risk-free rate are priced by this SDF. Let
excess returns to assets follow a factor model

Ri,t,t+1 −Rf,t,t+1 = β>i,tFt,t+1 + εi,t+1,
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where residuals are uncorrelated across stocks i and time t. Assume there is a unit
mass of firms such that the idiosyncratic shocks are completely diversifiable, that
the cross-sectional distribution of factor betas is non-degenerate, and that R−1f,t,t+1 =
Et(Mt,t+1). If we knew the βi,t we could run a cross-sectional regression at each time
t+ 1 to retrieve the factors F :

Ri,t,t+1 −Rf,t,t+1 = γ0,t+1 + γ>1,t+1βi,t + εi,t+1, (18)

In this case, γ1,t+1 gives the vector of long-short factor excess returns, Ft,t+1. Typ-
ically, we don’t have these conditional betas and researchers instead use observable
characteristics, such as the book-to-market ratio.

Consider characteristics that have the following relation to betas:

Xi,t = δ0,t + δ1,tβi,t.

Thus, the characteristic is not unconditionally proportional to the true factor betas,
even if we allow for a time fixed effect.4 For ease of exposition, but without loss of
generality, assume that there is only one factor. The Fama-MacBeth cross-sectional
regression

Ri,t,t+1 −Rf,t,t+1 = γ̂0,t+1 + γ̂1,t+1Xi,t + εi,t+1,

then delivers the factor

γ̂1,t+1 =
Cov (δ1,tβi,t, βi,tFt,t+1)

V (δ1,tβi,t)
=
V (βi,t) δ1,tFt,t+1

δ21,tV (βi,t)
= δ−11,tFt,t+1,

where the variance and covariance are taken cross-sectionally across assets i at each
point in time. Thus, the factor used by researchers is

F̂t,t+1 = δ−11t Ft,t+1.

The intercept δ0,t cancels out in the long-short portfolio, but the proportional com-
ponent δ1,t does not. There is no control variable that naturally “cleans up” the
characteristic in the Fama-MacBeth regression.

4One way to motivate this relation is to consider the effect of time variation in prices of risk.
For simplicity, consider a one-factor model version of (18), which implies Et(Ri,t,t+1 − Rf,t,t+1) =
Et(γ1,t+1)βi,t. Next, consider a characteristics-based model of excess returns: Et(Ri,t,t+1 −
Rf,t,t+1) = δ0 + δ1Xi,t (e.g., Daniel and Titman, 1997). Setting the conditional expected returns
equal implies that Xi,t = δ0,t + δ1,tβi,t where δ0,t = −δ0/δ1 and δ1,t = Et(γ1,t+1)/δ1. In this case,
δ1,t will vary persistently if the conditional factor risk premium varies persistently.
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As a result, the standard approach identifies a conditionally correctly specified model,
but an unconditionally misspecified model. That is, researchers specify:

Mt+1 = â− b̂F̂t+1.

A conditional version of this model is true:

Mt+1 = a− btF̂t+1,

bt = bδ1t.

This is exactly the same issue that we have highlighted generally in equation (8) and,
specifically in the context of BAB, in equation (17). In sum, MHR, as test assets, are
likely to be useful for most factor models. The next section confirms this intuition.

5 Testing factor models

In order to demonstrate the breadth of our conclusions we implement the MHR-based
testing of a broad set of linear factor models. These are state-of-the-art specifications
that boast high single-horizon SR. In this section we describe what MHR reveal about
these models.

5.1 Additional factors

Our roster of models includes the Fama and French 3- and 5-factor models, FF3
and FF5, respectively (Fama and French, 1993, Fama and French, 2015), and
FF5+MOM+BAB, where MOM refers to the Momentum factor (Carhart, 1997, Je-
gadeesh and Titman, 1993) as given on Kenneth French’s webpage. The Fama-French
5-factor model includes the market factor (MKT), the value factor (HML), the size
factor (SMB), the profitability factor (RMW; see also Novy-Marx, 2013), and the in-
vestment factor (CMA; see also Cooper, Gulen, and Schill, 2008). The Fama-French
3-factor model only have the first 3 factors. We also consider versions of these mod-
els with unpriced risks hedged out from the five Fama-French factors as proposed by
Daniel, Mota, Rottke, and Santos (2018) (DMRS). All these models feature very high
short-run SR. Thus, the hope is that these models get us closer to the portfolio that
is perfectly negatively correlated with an SDF. Given Equation (3), such a portfolio
has constant a and b in the SDF and lies on the unconditional MVE frontier.

Table 4 reports the same GMM tests we have implemented for MKT, and MKT+BAB
(Table 1) for this roster of models. To help with comparison, we repeat the MAPE
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and J−tests for these two models. We see that all models, with the exception of FF3
(and MKT) are rejected. Out of the rejected models, the annualized MAPE in the
multi-horizon estimation ranges from 0.004 from the original MKT model to 0.047 for
the DMRS versions of the MKT+BAB and the FF5+MOM+BAB models. Again,
given that risk premiums on these factors is of the order of 4-8%, the MAPEs are also
economically large, with the exception of the non-rejected original MKT and FF3
models.

The table also reports maximum SR implied by the model (max. price of risk).
The one-period maximum SR – a dimension along which the candidate models are
optimized – appears to be positively related to MAPE corresponding to the MHR-
based tests. We demonstrate this observation by constructing a scatter plot of (log)
MAPE versus (log) maximum SR in Figure 6. While there is no ex-ante reason for
this relationship to hold, it is interesting that the pursuit of the maximum SR, or
equivalently, the MVE portfolio, takes us further away from a constant b. One might
have thought the opposite would be the case given that the factors in Equation (3)
span the unconditional MVE portfolio with a constant b in the SDF specification.

Recall that the multi-horizon test assets are the model factors themselves at longer
horizons. So, a failure to reject MKT or FF3 does not necessarily imply that these
models would be able to price the full cross-sections of assets at multiple horizons.
Nevertheless, the results are suggestive of the implicit dynamics of bt. It appears that
the time-varying volatility of MKT and FF3 factors do not have a dramatic impact
on bt for these two models as the prices of risk in these models line up reasonably well
with the conditional volatilities, as per equation (9).

Related, the price of risk for the remaining models, estimated using multi-horizon
returns, typically vary strongly from the prices of risk estimated using one-month
returns. Thus, when viewed through this lens, the rejection of the constant b models
is again economically large.

We investigate this further via variance ratios that follow Figure 2. Figure 7 reports
the patterns of variance ratios for all models. We observe variance ratios that de-
viate from 1 (the null hypothesis) for all models. The extreme pattern that we’ve
documented in the MKT+BAB case is also observed for the FF5+MOM+BAB, the
DMRS3, and the DMRS5 models. In these cases, variance ratios are well in excess of
2 from the 12-month horizon and on.

The FF3+MOM+BAB and FF5 models exhibit slowly increasing variance ratios,
ending at about 1.6 and 1.4, respectively, at the 60-month horizon, indicating small
but highly persistent misspecification. The MKT and FF3 models all have variance
ratios that increase relatively quickly, with maximal values around 1.3-1.4 at the 12-
to 24-month horizons. At longer horizons, these variance ratios revert towards 1.
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Thus, all the models exhibit too high autocorrelation of factor returns relative to
the volatility dynamics, and there is considerable variation in the strength of these
patterns. Interestingly, the early factor models (MKT and FF3) have substantially
smaller deviations from the null hypothesis of a variance ratio of 1 relative to the
DMRS versions of these models. It appears that the refinement of the original factors,
which yields higher short-run maximal SR, has come at a cost of introducing persistent
misspecification that shows up in MHR and the models’ variance ratios.

To summarize, we document pervasive, persistent misspecification in the current,
most successful factor models, as judged by their one-month maximal SR. This mis-
specification leads to large pricing errors over longer horizons. Thus, while these
models may do well in terms of characterizing the local, one-month, risk-return trade-
off, they do surprisingly poorly in terms of longer-horizon risk-return trade-offs. The
nature of our tests allow us to trace this misspecification to the current dominant pro-
cedure for factor construction that easily produces factors with the wrong conditional
scale.

5.2 Robustness checks

In this section we show that our results are robust to using shorter horizon excess
factor returns as test assets in the GMM. We also consider the standard monthly
return “alpha-regressions” in the literature with short-term factor returns managed
over time using instruments motivated by the MHR test. The results are robust also
to this restricted, but more familiar test. Furthermore, allowing for time-varying b’s
through standard instruments such as dividend-price ratios or realized variance in the
GRS tests does not fix the problem – the models are still rejected when using the
horizon-managed factor returns as test assets.

5.2.1 Alternative horizons

Table 5 reports the two-stage efficient GMM-results when using 1-, 2-, 6- and 12-
month excess factor returns in addition to the 1-month risk-free rate as test assets.
The shorter maximal horizon means there is less overlap in the data and give more
statistical power. The downside is that it is less likely to capture the most persistent
sources of misspecification. The models considered in Panel A are MKT, MKT+BAB,
FF3, FF5 and FF5+BAB+MOM. The p-values of the J-test shows that all models
except MKT are rejected at the 1 percent level, whereas the market has a p-value of
0.8. From Panel A we see that the MAPEs range from 0.007 for MKT to 0.115 for
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MKT+BAB. In Panel B we consider the same models with DMRS in place of MKT
and the FF factors. All models in Panel B are rejected at the 1 percent level and the
MAPE are generally larger, ranging from 0.014 for DMRS5 to 0.092 for the DMRS
version of MKT+BAB.

5.2.2 GRS test

An alternative to the GMM-tests presented so far is the GRS test of whether a given
set of one-period factor returns span the mean-variance frontier of a set of one-period
test asset returns. For our purposes, the test assets will be trading strategies in the
factors themselves. In particular, the test asset i = (k, h) is a strategy in factor k,
where the time-varying weights are given by lagged h-period discounted returns in
factor k, i.e.,

Re
i,t,t+1 ≡ z

(h)
k,t Fk,t,t+1,

where z
(h)
k,t = Mt−h,tRk,t−h,t and Rk,t−h,t =

∏h
s=1(Rf,t+s−1,t+s +Fk,t+s−1,t+s) is the gross

return on factor k from t − h to t.5 The M used in construction of the instrument
z
(h)
k,t is Mt,t+1 = a − b>Ft,t+1, where a and b are estimated by requiring the model to

match the sample means of risk-free rate and the factors.

In sum, we run the time-series regression

Re
i,t,t+1 = αi + β>i Ft,t+1 + εi,t+1

for each test asset i and report the joint (GRS) test that αi = 0 for all i.

Because the instruments z
(h)
k,t are constructed using the candidate SDF, which in turn

depends on the parameter estimates of a and b, we consider both in- and out-of-
sample instruments. The former use the entire sample to estimate the SDF, whereas
the latter use information only up to time t. We then test whether the factors F span
the mean-variance frontier of these managed portfolios.

Table 6 reports the results of GRS tests on a variety of factor models using lagged
discounted returns for horizons 2, 6, 12, and 24 months for each of the factors, i.e.,
four managed portfolios for each factor. In Panel A we consider MKT, MKT+BAB,
FF3, FF5 and FF5+BAB+MOM. Most models are strongly rejected regardless of
whether one uses the in-sample instruments (see p-value GRS test) or out-of-sample
instruments (p-value, out-of-sample instruments). The exceptions are the market

5The weights in a factor are unrestricted since the factors are excess returns.
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model and FF5, which both have p-values using in-sample instruments of about 0.05
but when using out-of-sample instruments these p-values goes up to 0.206 and 0.234
respectively.

Also reported are the annualized maximum information ratios (IR) from MacKinlay
(1995), which is the component of the maximum SR unexplained by the factors.6 To
get a sense of magnitudes, it is natural to compare the maximum IR to the SR of
the factors. In FF5, the maximum IR is 0.49 compared to a SR of the factors of
1.09. For all the other models, the maximum IR is even larger relative to the SR of
the corresponding factors. In other words, there seems to be a lot left on the table.
Panel B reports even stronger rejections for the DMRS models. Except for the out-
of-sample p-value of 0.05 for DMRS5+BAB+MOM, all p-values are below 1 percent.
Similarly, all maximum IRs are greater than 40 percent of the corresponding factor
SR.

The GRS test also serves an additional purpose as a robustness exercise. Throughout
the paper we have assumed there exists a set of excess return factors with a linear
combination that is perfectly correlated with the SDF, i.e., Equation (3). This may
not be the case as the linear space of asset returns is bigger than that of excess returns.
That is because the former additionally includes linear functions of the risk-free rate.

If the unconditional MVE portfolio based on excess returns, F̃t,t+1 = b>Ft,t+1 (see
Equation (11)), is not perfectly correlated with the projection of the SDF in the asset
payoff space, then the SDF can be represented Mt,t+1 = at(1−b>Ft,t+1). If the risk-free
rate is not used for estimation, at is not identified, and one can consider, equivalently,
Mt,t+1 = 1− b>Ft,t+1. By construction, the loading on Ft,t+1 is a constant.

Thus, if the GRS test rejects, it rejects that b is constant in this more general SDF
specification. That has the familiar interpretation of the proposed factors being un-
able to price all excess returns. In sum, our results in this section show that the
failure of the models to account for MHR is not driven by conditional mispricing in
the risk-free rate as we reject the models also with one-period, excess return GRS
tests.

5.2.3 Conditioning information

Models with time-varying SDF coefficients have been investigated in earlier literature
(e.g., Jagannathan and Wang, 1996, Farnsworth, Ferson, Jackson, and Todd, 2002,

6Recall, the squared monthly information ratio can be obtained from the regressions as α>Σ−1α,
where Σ is the covariance matrix of the regression residuals. MacKinlay (1995) provides a small-
sample adjustment to arrive at an unbiased estimate of this quantity.
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Lettau and Ludvigson, 2001). The time-variation is typically assumed to be linear
function of observable variables, motivated by the evidence of return and variance
predictability (e.g., Campbell and Shiller, 1988, Engle, 1982, Fama and French, 1988).
In this subsection, we in the same spirit add observable variables to allow for a
conditional model in the GRS test.

Assume there are K original factors. Then, let x
(k)
t be an L× 1 vector of observable

variables that predict returns or variance for factor k, as well as the number 1. We
then run:

Re
i,t,t+1 = αi +

K∑
k=1

β̃
(k)
i (F

(k)
t,t+1 ⊗ x

(k)
t ) + εi,t+1,

and test whether αi = 0 for all i for this expanded linear factor model. In this case,
β̃(k) is an 1 × L vector of factor loadings for each original factor k. The test assets
are the same as in the previous GRS tests – that is, the original factor excess returns
at horizons 1, 2, 6, 12, and 24.

We consider two common conditioning variables for each factor: the dividend-price
ratio (when sufficient data are available) and realized variance of each of the factors.
The dividend-price (dp) ratio of a factor is calculated as the difference between the
dp ratio of the long- and short leg of each factor. The realized variance (RV ) is the
variance of daily factor returns over the preceding month.

Table 7 reports the p-values of GRS tests of extended factor models using either
dp or RV as conditioning information for each factor, that is, x

(k)
t = [1 RV

(k)
t ]> or

x
(k)
t = [1 dp

(k)
t ]>. The models considered are MKT, FF3 and FF5 and their DMRS

counterparts. For the latter, only RV is used as conditioning information as DMRS
do not report both ex- and cum-dividend returns. For comparison, we also report the
results of the static models tested in Table 6.

Panel A shows results for the MKT factor. The baseline test, where simply xt = 1,
has a GRS test p-value of 4.9 percent. When conditioning on RV and dp the GRS
p-values are 8.2 and 4.0 percent, respectively. The maximum IRs are similar to that
of the baseline model, although, as a fraction of factor SR, they decline somewhat.
For the DMRS MKT model, we reject at the 1 percent level both in the baseline case
and when adding the RV managed factor. The IR increases relative to the baseline
case.

Panel B shows results for the FF3 model. The FF3 is rejected both when conditioning
on dp or RV, as well as in the benchmark case. The IRs are large, about the same
or larger than in the baseline case. The DMRS version of this model rejects at the
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1 precent level both in the baseline case and when we add the RV-managed factors,
with the IRs about the same as in the baseline case.

Panel C shows results for the FF5 model. In this case, the model is rejected at
the 1 percent level both in the baseline case and when conditioning on dpt. When
conditioning on RV, the p-value increases to 0.136 and we do not reject. In the DMRS
version of this model, we reject in both cases at the 1 percent level. The IRs are all
about the same magnitude.

In summary, the conditioning variables we consider here do not fix the problem. The
IRs remain high for the same set of test assets, despite adding factors managed using
RV or dp, and the significance levels are largely unchanged. Note that adding these
managed factors does help increase one-period return maximal SR. The test assets
reveal that the models still exhibit persistent misspecification. Thus, MHR can pro-
vide valuable information to a test that employs observable conditioning information
to the factors as well.

6 Conclusion

The literature typically characterizes the risk-return trade-off, or, equivalently, the
SDF, at a single horizon. This focus is somewhat surprising given that the multi-
horizon risk-return trade-off is an important input to a range of economic decisions.
We propose testing SDFs jointly across multiple horizons and analyze the implications
of these additional moments for a wide roster of the state-of-the-art empirical linear
factor models.

We show that tests employing multi-horizon returns (MHR) are highly informative
about asset-pricing models. MHR relate to familiar conditioning instruments that
are common in GMM-based tests. This new type of conditioning information allows
us to uncover large mispricing for a wide range of benchmark factor models when
faced with MHR. We identify the current practice of ad hoc portfolio sorts for factor
construction as a likely culprit for the persistent misspecification and argue that MHR
provides valuable additional moments that can help in the construction and testing
of asset pricing models.
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Figure 1
Term structure of pricing errors, E(M · (R−Rf))

(A) GMM 1: MKT (B) GMM 1: MKT + BAB
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(C) GMM 2: MKT (D) GMM 2: MKT + BAB
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The panels show multi-horizon factor pricing errors for two models: Mt = a− bm ·MKTt (left) and
Mt = a − bm ·MKTt − bbab · BABt (right). Pricing errors at horizon h are ET (Mt,t+h(Rt,t+h −
Rf,t,t+h)), where ET denotes the sample average, Rt,t+h is the gross factor return from month t
to t + h, and Rf,t,t+h is gross h-period return from rolling over the riskless bond. The population
average of a correctly specified model is 0. Panels A and B give pricing errors when the SDF is
estimated using 1-month returns (GMM 1), whereas Panels C and D give pricing errors when the
SDF is estimated also using the 12 and 24 month horizon excess factor returns (GMM 2). Note the
scale of the y-axis for Panel B relative to the other panels. Sample: July 1963 to June 2017.
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Figure 2
Variance ratios of factor return model-implied residuals
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The figure shows variance ratios for model-implied residuals to the estimated
linear combination of factors given by b>F across different horizons, where b is
taken from the SDF Mt = a − b>Ft estimated using multi-horizon returns, as in
the multi-horizon estimation in Table 1. The residuals equal b>Ft,t+1 − Et(b

>Ft,t+1),
where the model gives the conditional expectation. Under the null hypothesis that
the model correctly captures the conditional expected returns, the residuals should
not be autocorrelated and the variance ratios should therefore equal 1 at all horizons.
See the main text for the precise calculation behind the factor residuals. The sample
is monthly from July 1963 to June 2017.
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Figure 3
Pricing errors for model with latent bt
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The figure shows the pricing errors for the MKT and BAB factors vs. re-
turn horizon from the model Mt = at − bm ·MKTt − bbab,t · BABt (see main text
for details). Holding period h pricing errors are ET (Mt,t+h(Rt,t+h − Rf,t,t+h)), where
ET denotes the sample average. Rt,t+h is the gross factor return from month t to
t + h, and Rf,t,t+h is the h-period holding return for the (1-period) riskless bond.
The population average of a correctly specified model is 0. The SDF is estimated
using 1-month returns, as well as the 12 and 24 month horizon excess factor returns.
The sample is from July 1963 to June 2017.
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Figure 4
Time-series of bbab,t and the price of risk, λbab,t

(A) Time-series of bbab,t (B) Time-series of λbab,t
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Panel A shows the filtered time series of bbab,t (blue line) along with NBER recession in-
dicators (yellow bars) for the estimated modelMt+1 = at−bm·MKTt+1−bbab,t·BABt+1

(see main text for details), using long-run excess factor returns in the model estima-
tion. Panel B shows the annualized conditional price of risk (Sharpe ratio) of the
BAB shock, denoted λbab,t, where λbab,t = bbab,t ·

√
12 · Vt(BABt+1)). The sample is

from July 1963 to June 2017.
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Figure 5
Beta spread between the beta-sorted decile portfolios
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The figure shows the difference between the conditional market betas of the
top minus the bottom beta-sorted decile portfolios as defined in the main text
(∆t = (βh,tβ`,t)

−1(βh,t − β`,t)). The betas of the beta sorted portfolios are obtained
from Ken French’s website. For each portfolio, the conditional beta is the market
beta of the constituent firms estimated using the past 60-month monthly return
window, shrunk towards 1 (the value-weighted average beta) using a weight of 0.6
on the historical estimate and 0.4 on 1.
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Figure 6
Max Sharpe ratio of single-horizon factor model vs.
multi-horizon pricing errors
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The figure plots the log (annualized) maximal Sharpe ratio of commonly used models factor models
against the log of the (annualized) mean absolute pricing error (MAPE) of the corresponding model.
The max Sharpe ratios are calculated as the sample Sharpe ratio (annualized) of the monthly returns
to the mean-variance efficient combination of the factors in a given model. The MAPEs are computed
by evaluating the fit of the models estimated using only 1-month returns on the excess factor returns
at the 1-, 12-, and 24-month horizons (see the main text for details). The factor abbreviations
are: MKT (the market factor), BAB (the betting-against-beta factor), FF3 (the Fama-French 3-
factor model), FF5 (the Fama-French 5-factor model), MOM (the momentum factor). The DMRS
subscripts refer to the Daniel et al (2017) unpriced-risks-hedged versions of the original factors. The
sample is from July 1963 to June 2017.
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Figure 7
Variance ratios of excess returns, actual vs. theoretical. All
models
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The figure shows the variance ratio V R(h) =
V (

∑h
j=1 ε̃t+j)

h×V (ε̃t+1)
across horizons for

each models’ implied MVE portfolio return residuals, ε̃. The null hypothesis from
each model implies that variance ratios should equal 1 for all horizons. The factor
abbreviations are: MKT (the market factor), BAB (the betting-against-beta factor),
FF3 (the Fama-French 3-factor model), FF5 (the Fama-French 5-factor model),
MOM (the momentum factor). The DMRS subscripts refer to the Daniel et al (2017)
unpriced-risks-hedged versions of the original factors. The sample is from July 1963
to June 2017.
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Table 1: Multi-horizon GMM tests

Models with the Market and Betting-Against-Beta factors

Single-horizon estimation Multi-horizon estimation

F = MKT F = [MKT,BAB]> F = MKT F = [MKT,BAB]>

a 1.012∗∗∗ 1.082∗∗∗ 1.019∗∗∗ 0.995∗∗∗

(0.010) (0.041) (0.007) (0.007)

bm 2.506∗∗ 3.000∗∗∗ 2.386∗∗∗ 0.400
(1.080) (1.131) (0.842) (0.538)

bbab 8.226∗∗∗ 1.722∗∗∗

(2.474) (0.627)

p-value GMM J-test n/a n/a 0.663 0.000∗∗∗

Factor MAPE 0.005 0.310 0.004 0.044
Max. price of risk 0.383 0.979 0.365 0.198

The table gives results from two-stage GMM estimation of two factor models: the market model,
with excess returns to the market as the factor (MKT ), and the two-factor model with the Market
and Betting-Against-Beta (BAB) factors. The SDF is of the form Mt = a− b>Ft. “Single-horizon
estimation” means the model is estimated using only monthly returns to the factor(s) and the
risk-free rate. The “Multi-horizon estimation” additionally uses excess returns to the factor(s)
at the 12- and 24-month horizons. The estimated model parameters are given along with GMM
standard errors in parentheses. The maximal price of risk is the annualized standard deviation of the
estimated monthly stochastic discount factor divided by its mean. Factor MAPE is the annualized
mean absolute pricing error for the excess factor returns across horizons 1, 12, and 24 months. The
p-values are for the J-tests from the GMM estimation (n/a for the exactly identified “single-horizon
test” cases). The GMM procedure corrects for autocorrelation, cross-correlation, and heteroscedas-
ticity in the moments using the Newey-West method with lag length equal to 1.5 times the maximum
horizon or 12 months, whichever is larger. The sample is from July 1963 to June 2017. Three
asterisks denote statistical significance at the 1% level, two at the 5% level, and one at the 10% level.
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Table 2: Estimated Market and BAB factor model with time-varying SDF coefficient

Market SDF loading: bm 1.283
BAB SDF loading: bbab,t
- b̂ 9.222

- φ̂ 0.909
- σ̂ 2.520

J-test p-value 0.247
Factor MAPE 0.013

St.Dev. of bbab,t 6.042
Annualized mean of λbab,t 0.911
St.Dev. of annualized λbab,t 0.661

The table gives results from two-stage GMM estimation of the two-factor model with the market
(MKT) and Betting-Against-Beta (BAB) factors. The loading on the BAB factor, bbab,t, follows
a latent AR(1) process (bbab,t = (1 − φ)b + φ · bbab,t−1 + ηt). The test assets are the 1-, 12-,
and 24-month excess returns to the factors, as well as the short-term real risk-free rate. The
annualized conditional price of risk (Sharpe ratio) of the BAB shock is denoted λbab,t and equals

bbab,t ·
√

12 · Vt(BABt+1)). The table reports its mean and standard deviation. Factor MAPE is the
annualized mean absolute pricing error for the excess factor returns across horizons 1, 12, and 24
months. The p-values are for the J-tests from the GMM estimation. The GMM procedure corrects
for autocorrelation, cross-correlation, and heteroscedasticity in the moments using the Newey-West
method with lag length equal to 1.5 times the maximum horizon or 12 months, whichever is larger.
The sample is from July 1963 to June 2017.
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Table 3: Dynamics of time-varying BAB loading: Relation to standard instruments

Panel A: bbab,t regressed on Coefficient (std. error)

NBER recession dummy −3.483∗ (2.032)
Beta decile spread 1.462∗∗ (0.678)
Conditional variance of market return −10.777∗∗∗ (3.129)
Conditional variance of BAB return −10.071∗ (5.427)
Log market dividend-price ratio 5.007∗∗ (2.457)
Term Spread (10yr - 1yr) 0.708 (0.459)

R2 0.273

Panel B: λbab,t regressed on:

NBER recession dummy −0.091 (0.068)
Beta decile spread 0.050∗∗ (0.022)
Conditional variance of market return −0.417∗∗∗ (0.157)
Conditional variance of BAB return 0.332 (0.302)
Log market dividend-price ratio 0.187∗∗ (0.090)
Term Spread (10yr - 1yr) 0.026∗ (0.015)

R2 0.200

The table shows regressions of the time-varying SDF coefficient bbab,t and the price of risk for the

BAB-shock (λbab,t = bbab,t ×
√

12Vt(BABt+1)) regressed on common conditioning variables: an
NBER recession dummy, the spread in market beta between the top minus bottom decile portfolios
sorted on market beta, the conditional variance of market and BAB returns, the log market
price-dividend ratio, and the Treasury bond term spread. Standard errors are computed using the
Newey-West method with 12 lags. The sample is from July 1963 to June 2017. The statistical
significance of the parameters are given as follows: Three asterisks denote significance at the 1%
level, two at the 5% level, and one at the 10% level.
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Table 4: GMM tests of other benchmark factor models

Standard Factors
MKT+ FF5+

MKT BAB FF3 FF5 BAB+MOM

Panel A:

Single-horizon estimation:
Max. price of risk (annualized) 0.383 0.979 0.683 1.076 1.287
Factor MAPE (annualized) 0.005 0.310 0.012 0.013 0.131

Multi-horizon estimation:
Max. price of risk (annualized) 0.365 0.198 0.528 1.165 2.998
Factor MAPE (annualized) 0.004 0.044 0.006 0.038 0.021
p-value GMM J-test 0.663 0.000∗∗∗ 0.824 0.000∗∗∗ 0.000∗∗∗

DMRS Factors
MKT FF5+

MKT + BAB FF3 FF5 BAB+MOM

Panel B:

Single-horizon estimation:
Max. price of risk (annualized) 0.533 0.906 0.959 1.522 1.740
Factor MAPE (annualized) 0.055 0.378 0.056 0.020 2.929

Multi-horizon estimation:
Max. price of risk (annualized) 0.119 0.183 0.510 1.184 0.196
Factor MAPE (annualized) 0.036 0.047 0.012 0.023 0.047
p-value GMM J-test 0.000∗∗∗ 0.000∗∗∗ 0.063∗ 0.000∗∗∗ 0.000∗∗∗

The table gives the p-values from the J-tests from two-stage GMM estimation of the stochastic
discount factor implied by each factor model. The stochastic discount factor is assumed to be affine
in the excess factor returns. The test assets are excess returns to each factor in the model at hand
at horizons 1-, 12-, and 24-month horizons, in addition to the short-term real risk-free rate. Factor
MAPE is the annualized mean absolute pricing error for the factors in the model. The p-values
are from the J-tests from the GMM estimation. The GMM procedure corrects for autocorrelation,
cross-correlation, and heteroskedasticity in the moments using the Newey-West method with lag
length equal to 1.5 times the maximum horizon or 12 months, whichever is larger. The sample is
from July 1963 to June 2017. The statistical significance of the parameters and the J-tests are
given as follows: Three asterisks denote significance at the 1% level, two at the 5% level, and one
at the 10% level.
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Table 5: GMM tests of factor models using alternative horizons

Standard Factors
MKT+ FF5+

MKT BAB FF3 FF5 BAB+MOM

Panel A:

Factor MAPE (annualized) 0.007 0.115 0.012 0.010 0.033
p-value GMM J-test 0.800 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

DMRS Factors
MKT FF5+

MKT + BAB FF3 FF5 BAB+MOM

Panel B:

Factor MAPE (annualized) 0.028 0.092 0.026 0.014 0.024
p-value GMM J-test 0.000∗∗∗ 0.000∗∗∗ 0.003∗ 0.000∗∗∗ 0.001∗∗∗

The table gives the p-values from the J-tests from two-stage GMM estimation of the stochastic
discount factor implied by each factor model using shorter horizons relative to earlier results as
additional moments. The stochastic discount factor is assumed to be affine in the excess factor
returns. The test assets are excess returns to each factor in the model at hand at horizons 1-,
2-, 6-, and 12-month horizons, in addition to the short-term real risk-free rate. Factor MAPE
is the annualized mean absolute pricing error for the factors in the model. The p-values are
from the J-tests from the GMM estimation. The GMM procedure corrects for autocorrelation,
cross-correlation, and heteroscedasticity in the moments using the Newey-West method with lag
length equal to 1.5 times the maximum horizon or 12 months, whichever is larger. The sample is
from July 1963 to June 2017. The statistical significance of the parameters and the J-tests are
given as follows: Three asterisks denote significance at the 1% level, two at the 5% level, and one
at the 10% level.
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Table 6: Long-run factor mispricing as instruments for monthly factor returns: GRS
tests

Standard Factors
MKT FF5+

MKT + BAB FF3 FF5 BAB+MOM

Panel A:

Max Sharpe ratio of factors 0.388 0.995 0.690 1.089 1.308
Max Information ratio 0.329 0.722 0.576 0.491 0.781
p-value GRS test 0.049∗∗ 0.000∗∗∗ 0.005∗∗∗ 0.052∗ 0.008∗∗∗

p-value, out-of-sample instruments 0.206 0.001∗∗∗ 0.001∗∗∗ 0.234 0.009∗∗∗

DMRS Factors
MKT FF5+

MKT + BAB FF3 FF5 BAB+MOM

Panel B:

Max Sharpe ratio of factors 0.540 0.920 0.971 1.544 1.768
Max Information ratio 0.433 0.759 0.793 0.823 0.811
p-value GRS test 0.009∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.002∗∗∗

p-value, out-of-sample instruments 0.008∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.001∗∗∗ 0.050∗∗

The table gives the Gibbons-Ross-Shanken (GRS) test p-values from regressions of managed factor
returns, where the time-varying factor weights are based on lagged multi-horizon pricing errors.
The horizons considered are 2, 6, 12, and 24 months. For each factor model, the test assets are
managed positions in the factors of the factor model at hand. So, for the market model, the test
assets are four managed portfolios (corresponding to the four pricing error horizons) in the MKT
factor. “Out-of-sample instruments” means the pricing errors used as instrument are estimated
using only data up to time t, when considering time t+1 returns. Max. Information Ratio (IR)
refers to the square root of the max expected Sharpe ratio one can achieve when combining the test
assets and hedge out the unconditional factor exposures. See MacKinlay (1995) and the main text
for the formula leading to an unbiased estimate of this quantity. The sample is from July 1963 to
June 2017. Three asterisks denote significance at the 1% level, two at the 5% level, and one at the
10% level.
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Table 7: Long-run factor mispricing using observable conditioning information: GRS
tests

MKT DMRS MKT
Panel A: Baseline RV managed d/p managed Baseline RV managed

Max SR of model factors 0.388 0.438 0.410 0.540 0.656
Max Information Ratio 0.329 0.290 0.344 0.433 0.594
p-value GRS test 0.049∗∗ 0.082∗ 0.040∗∗ 0.009∗∗∗ 0.000∗∗∗

Fama-French 3-factor model DMRS 3-factor
Panel B: Baseline RV managed d/p managed Baseline RV managed

Max SR of model factors 0.690 0.752 0.780 0.971 1.040
Max Information Ratio 0.576 0.521 0.738 0.793 0.760
p-value GRS test 0.005∗∗∗ 0.014∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

Fama-French 5-factor model DMRS 5-factor
Panel C: Baseline RV managed d/p managed Baseline RV managed

Max SR of model factors 1.089 1.356 1.198 1.544 1.642
Max Information Ratio 0.491 0.395 0.525 0.823 0.863
p-value GRS test 0.052∗ 0.136 0.040∗∗ 0.000∗∗∗ 0.000∗∗∗

The table gives the results from GRS regressions of managed factor returns, where the time-varying
factor weights are based on lagged multihorizon pricing errors, on the given model’s factors.
The horizons considered are 2, 6, 12, and 24 months. For each factor model, the test assets are
managed positions in the factors of the factor model at hand. So, for the CAPM, the test assets
are four managed portfolios (corresponding to the four pricing error horizons) in the MKT factor.
The baseline case repeats the quantities found in Table 1, whereas the “RV managed” and “d/p
managed” cases refer to the use of additional managed factors in the factor model, as described
in the main text, to account for relevant conditioning information. “Out-of-sample instruments”
means the pricing errors used as instrument are estimated using only data up to time t, when
considering time t+1 returns. Max. Information Ratio (IR) refers to the square root of the
max expected Sharpe ratio one can achieve when combining the test assets and hedge out the
unconditional factor exposures. See MacKinlay (1995) and the main text for the formula leading to
an unbiased estimate of this quantity. The sample is from July 1963 to June 2017. Three asterisks
denote significance at the 1% level, two at the 5% level, and one at the 10% level.
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