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ABSTRACT
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Focusing largely on binary outcomes, treatment-preference probability treatment effects (PTEs) 
are defined and are seen to correspond to familiar average treatment effects in the single-outcome 
case. The paper suggests seven possible characterizations of treatment preference appropriate to 
multiple-outcome contexts. Under standard assumptions about unconfoundedness of treatment 
assignment, the PTEs are shown to be point identified for three of the seven characterizations and 
set identified for the other four. Probability bounds are derived and empirical approaches to 
estimating the bounds—or the PTEs themselves in the point-identified cases—are suggested. 
These empirical approaches are straightforward, involving in most instances little more than 
estimation of binary-outcome probability models of what are commonly known as composite 
outcomes. The results are illustrated with simulated data and in analyses of two microdata 
samples. Finally, the main results are extended to situations where the component outcomes are 
ordered or categorical.
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1. Introduction 

 Obtaining a clear picture of the effect of a treatment or intervention on a single outcome of 

interest can be daunting. Familiar challenges include treatment-effect heterogeneity, confounded or 

endogenous treatment assignment, and generalization from experimental to population 

circumstances. Many now-familiar strategies to mitigate the estimation biases that can arise from 

such challenges have been developed, and still more are evolving.1 

 The challenges proliferate when multiple outcomes are of interest. Even if the obstacles 

noted above are absent, the simple notion of what is meant by "a treatment effect" is no longer 

obvious when two or more outcomes are of concern. This paper's main goals are to develop an 

integrated framework for understanding treatment effects with multiple outcomes, to determine 

how features of the population distribution of such treatment effects might be identified, and to 

suggest empirical approaches to learning from data about these features. 

 

Multiple Outcomes 

 The existing literature on treatment effects (TEs) offers only limited guidance for 

understanding multiple outcomes. Abadie and Cattaneo, 2018, note that "in practice, researchers 

may be interested in a multiplicity of treatments and outcomes," but then conduct their analysis 

treating both treatment (their W) and outcome (their Y) as scalar random variables. Athey and 

Imbens, 2017, recognize explicitly multiple-outcome contexts, but do so largely with regard to 

multiple-testing problems.2 Manski and Tetenov, 2018, consider optimizing clinical trial sizes when 

multiple outcomes are of interest. Athey et al., 2016, assess how multiple surrogate outcomes can 

inform understanding of treatment effects. 

 Such limited scope is unfortunate as considerations of multiple outcomes arise broadly in 

empirical work. In health and clinical research multiple outcomes are often commonplace when 

measuring some population's health status or health behaviors, or when attempting to understand 

their determinants. Buttorff et al., 2017, consider how chronic conditions vary across the U.S. adult 

population. Hoynes et al., 2015, explore how public policies affect multiple infant-health outcomes. 

Ludwig et al., 2011 and 2013, use data from the Moving to Opportunity experiment to assess how 

residential changes affect physical and mental health outcomes. Pesko et al., 2016, consider how 

regulations may affect use of cigarettes, e-cigarettes, and nicotine replacement therapy. 

																																								 																					
1 See Imbens and Wooldridge, 2009, for a valuable review. 
2 While some research has considered TEs in multiple-treatment contexts (e.g. Angrist and Imbens, 
1995), this is unrelated to the multiple-outcome contexts considered here. That said, Appendix B 
considers briefly extensions of this paper's results to contexts involving more than two treatments. 
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 Multiple outcomes are also frequently involved in studies of clinical populations.3 Prominent 

in cardiovascular and diabetes research, for instance, are clinical trials that focus on multiple 

outcomes such as mortality, stroke, myocardial infarction, and hospital readmission, often 

aggregated into composite outcomes (e.g. Look AHEAD Research Group, 2013; Parving et al., 

2012; Rosenfield et al., 2016).4 Beyond serving as primary or secondary outcomes in such clinical 

research, multiple outcomes are often studied in the form of treatment-specific adverse events. For 

example, Parving et al., 2012, report the rates of 21 adverse events potentially affecting subjects in 

the two arms of their study of diabetes treatments. In some instances a study may examine a single 

primary outcome and a single adverse event or safety outcome, as such examining data having a 

multiple-outcome character. In their study of transcatheter mitral-valve repair, for instance, Stone 

et al., 2018, focus on hospitalization for heart failure within 24 months of follow-up as their 

primary outcome and device-related complications at 12 months as their main safety outcome. 

 Healthcare quality measurement is another research and policy area where consideration of 

multiple outcomes is of central interest. For example Cebul et al., 2011, consider how clinical 

practices' electronic health record use is related to four measures of care-process quality and five 

measures of patient outcomes (see also IOM, 2006, and Shwartz et al., 2015). 

 Beyond health and health care, considerations of multiple outcomes arise in contexts as 

diverse as welfare and poverty (e.g. multiple deprivations, Nolan and Whelan, 2010), education 

(e.g. school accountability, Loeb and Figlio, 2011; teacher quality, Jackson, 2018), nutrition (e.g. 

food security, Coleman-Jensen et al., 2018), finance (e.g. financial-institution soundness, FDIC, 

1997), and many others. 

 For the most part the wide array of data structures mentioned in the preceding paragraphs 

falls within this paper's scope. While the strategies proposed here will not necessarily be suited for 

understanding treatment effects related to all multiple-outcome contexts they will likely be 

applicable to many, even if the study of such outcomes has not traditionally been approached in 

the manner suggested below. While in many instances the focus of a multiple-outcomes analysis 

will be on subjects whose relevant outcomes at a point in time are summarized by an M-component 

vector, the analytics described here accommodate other multiple-outcome contexts. For example, 

the M outcomes may also be a univariate outcome characterizing each subject over M time 

periods,5 or an M'-dimension outcome for each subject over T time periods with   T×M' = M , i.e. 

																																								 																					
3 See Manski, 2018, for an assessment of medical decisionmaking under uncertainty. 
4 Composites are considered in section 5 and in an in-progress companion paper (Mullahy, 2018b). 
5 For example, in their study of treatments for episodic migraine Stauffer et al., 2018, use a binary 
"migraine headache day" outcome, a univariate outcome measured daily over the follow-up period. 
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multiple-outcome panel data (see also footnote 26). The key in any case is that outcomes can be 

imagined arising under alternative treatments, interventions, or policies. 

 

Understanding Treatment Effects with Multiple Outcomes—Existing Approaches 

 Given such outcome data some questions naturally arise, perhaps most prominent being: 

How does one conceptualize a TE, or perhaps a set of TEs, when studying multiple outcomes? 

 To provide context for the paper's main analysis, suppose one observes M binary outcomes 

    
y = y1,…, yM
⎡
⎣⎢

⎤
⎦⎥  and a vector of covariates 

   
x = xT,xoth
⎡
⎣⎢

⎤
⎦⎥ , where 

 
xT  measures exogenous scalar 

treatment and 
  
xoth  are other exogenous covariates.6 With such data at least three analytical 

strategies for estimation of average treatment effects (ATEs) have been prominent in practice. 
 In the first,7 separate ATEs are estimated for each of the M components 

 
ym  of y based on 

estimates of some parametric or nonparametric probability model 

 

 
   
Pr ym = 1 x( ) = pm x( ) ,   m=1,…,M.

       
(1) 

 

Strategies like this result in estimates of M separate ATEs.8 

 A second approach9 treats the sum 
   
sy = wmymm=1

M∑  as a continuous, ordered, or count 

outcome, and considers parametric or nonparametric models for its conditional mean 

 

 
   
E sy x⎡
⎣⎢
⎤
⎦⎥
= µs x( )  

         
(2) 

 

and/or conditional probability structure 

 

																																								 																					
6 The notation will be formalized in sections 2 and 3. 
7 See, e.g., Sarma et al., 2015. Only sometimes are multiple testing issues addressed; see Romano et 
al., 2010, and Dmitrienko and D'Agostino, 2018. 

8  That the effects may be heterogeneous due to 
  
xoth  and to unobservables is in general an 

important consideration but one that will be ignored in this paper. 
9 See, e.g., Dodge et al., 2014, Hanssen et al., 2014, Jackson, 2018, Khan et al., 2008, Siebert et al., 
2016, and Walitt et al., 2016, for a sampling of approaches that have been used. These include 
linear and ordered-outcome regression, count-data models (e.g. Poisson, negative binomial), and 
others. Note that the weighted-sum construct includes approaches like principal components. 
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Pr sy = n x( ) = ps n,x( ) .         (3) 

 

This approach might yield a single ATE estimate or a set of ATE estimates across the values of n. 

 A third approach10—one that will be seen in section 5 to be of particular interest in this 

paper—is in essence a coarsening of 
  
sy  into a binary outcome, i.e. 

   
1 sy ≥ t( ) , where t is some 

relevant threshold or cut point. Binary measures like this are encountered often in health and 

clinical research as one form of so-called composite outcomes. Two important cases are t=1 ("any") 

and t=M ("all").11 To understand such outcomes analysts typically specify and estimate some 

parametric or nonparametric conditional probability model 

 

    
Pr sy ≥ t x( ) = pc x( )

         
(4) 

 

on which estimates of ATEs are based.12,13 

 To anticipate some of what follows, it is useful to consider specifically how one would use 

ATE estimates like those described in the preceding paragraphs to arrive at a conclusion that one 
treatment (

 
xT ) is "better than" or "preferable to" a comparator treatment (

 
xT' ). When an 

approach like (1) is used, the analyst must consider how to draw a conclusion or inference from M 

separate estimates that have been obtained. When an approach like (2) is used, the analyst may 

determine that any particular conclusion about treatment superiority could depend on the manner 

in which the outcomes are weighted (or on the fact that they are implicitly weighted the same 
when all the 

 
wm  are the same). When an approach like (4) is used, the analyst might recognize 

that conclusions depend on the particular threshold that is selected. The strategies pursued in this 

paper will be seen, for the most part, to circumvent these concerns. 

																																								 																					
10 See, e.g., Geronimus et al., 2006, and Fleishman et al., 2014. 
11 Many of the studies summarized in the previous subsection use some form of composite outcome 
(see U.S. FDA, 2017, Mullahy, 2018b, and the discussion in this paper's section 5).  
12 A fourth approach is to consider simultaneously the entire portfolio of outcomes y, model its 

joint probability structure 
   
Pr y x( ) , and estimate ATEs corresponding to some or all of its  2

M  

particular values 
   
Pr y = q x( ) . Investigation of this approach is underway. 

13 In each of the cases described here the ATE would often be estimated by something akin to the 
difference between the estimated conditional-on-x probability or moment model evaluated at two 

different values of 
 
xT  and then averaged over 

  
xoth . 
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This Paper's Strategy 

 The paper's main strategy is to adapt for and adopt in multiple-outcome settings an 

underappreciated interpretation of familiar ATEs from the single-outcome context. While not 

typically invoked, this interpretation turns out to be fundamental to standard ATE definitions in 

the single-binary-outcome case. It is generalized here to provide a unified framework for considering 

population treatment effects when multiple outcomes are considered. 

 For any M≥1, the approach suggested here results in population-level statements about 

TEs akin to how ATEs in the single-outcome context summarize individual TEs across a 

population. It will be shown that the TE parameter proposed here, termed a treatment-preference 

probability treatment effect, or PTE, is essentially no different in the multiple-outcome and single-

outcome contexts except that—under unconfounded treatment assignment—the PTE is point 

identified in the single-outcome case whereas in the multiple-outcome case some characterizations 

permit point identification while for others only partial or set identification is possible. 

 The approach proposed here for the multiple-outcome case has several attractive features. 

Except for a benchmark case that is developed as a link to some existing empirical practice, this 

paper's strategies require neither any across-outcome measurement comparability14 nor any relative 

weighting of the outcomes; indeed, no equal or differential weighting of the outcomes is implied. 

More generally, the approach proposed here requires no aggregation of outcomes per se. If inference 

is of concern (the paper's focus is largely on definition and identification, although see footnote 37), 

no issues of multiple testing arise since the relevant parameters are ultimately scalar. Finally, once 

the relevant parameters are point or set identified computation is straightforward in most 

instances, with empirical computation generally requiring nothing more than specification and 

estimation of binary-outcome probability models (defined and discussed in section 5). 

 A cost of this approach is that decisionmakers must adopt one or more characterizations of 

treatment preference, an exercise akin to specifying what loss or value function is germane for the 

decision at hand. Seven such characterizations are suggested here, although others are imaginable. 

It is shown in section 2 that a particular notion of treatment preference is implied in considerations 

of ATEs in the single-outcome case. As such the demand that the decisionmaker adopt such a 

standard in the multiple-outcome case does not seem unreasonable even though, because of its 

simplicity, the decisionmaker is not explicitly confronted with such a decision when M=1. 

 While the focus here is largely on empirical issues the paper's emphases on treatment 

																																								 																					
14 Comparability of measures in the binary-outcome case might seem, and indeed might be, trivially 
satisfied (although see footnote 20). Such considerations are more salient in the ordered-outcome 
cases considered in section 7. 
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preference necessitate consideration of the nature of preferences in multiple-outcome settings. At a 

practical level the considerations involve determining what outcomes matter to decisionmakers (e.g. 

patients or patient-provider teams, a fundamental concern in efforts to deliver high-value health 

care; see Lynn et al., 2015; Manski, 2018). At a theoretical level, the framework proposed by 

Manski, 2004, provides essential guidance for considering treatment preference for outcomes of 

arbitrary dimension. The particular notions of treatment preference described in section 3 are 

offered to be both potentially reasonable characterizations of what outcomes might actually 

concern decisionmakers as well as simple enough to serve as the basis of treatment-effect definitions 

that can be described and implemented empirically in a straightforward manner. 

 

Plan for This Paper 

 Section 2 reviews treatment-effect analysis in the single-outcome context and develops a 

notion of treatment preference that is seen to be a feature, albeit one not typically recognized, of 

standard treatment-effect analysis in the one-outcome case. Using this idea, treatment-preference 

probability treatment effects (PTEs) are defined and are seen to correspond to familiar average 

treatment effects in the single-outcome case. In section 3 the focus turns to multiple-outcome 

settings. Focusing on binary outcomes, seven characterizations of treatment preference appropriate 

to multiple-outcome contexts are proposed, their corresponding probabilities and PTEs are derived, 

and the seven characterizations are compared and contrasted. Under standard assumptions about 

unconfoundedness of treatment assignment, section 4 shows that the corresponding PTEs are point 

identified for three of the characterizations and set identified for the other four, for which cases 

bounds are derived. Section 5 considers empirical approaches to bounds estimation, or the PTEs 

themselves in the point-identified cases. The results are illustrated with simulated data and, in 

section 6, in analyses of two microdata samples. Section 7 generalizes the binary-outcome case to 

consider treatment effects with multiple ordered outcomes, and suggests how that framework might 

be used to address some questions involving multiple continuous outcomes. Section 8 summarizes. 

While a fair amount of elementary probability algebra is used to derive results, the paper's main 

ideas as well as their empirical implementation turn out to be quite straightforward. 

 Ultimately if this paper accomplishes nothing more than stimulating readers to reassess 

their approaches to understanding multiple outcomes and how treatments and interventions effect 

them, it will have served some valuable purpose. 
 
2. Treatment Preference and Treatment Effects with One Outcome 
 This section reviews standard TE analytics for the one-outcome case when the potential 

outcomes are binary, and then considers an interpretation of this setting's ATE that provides the 

foundation for the analysis of multiple-outcome treatment effects considered subsequently. 
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Potential Outcomes, Treatment Preference, and Treatment Effects When M=1  
 The setup is standard for M=1. There are two possible treatments, 

 
Tj  and 

 
Tk , one of 

which will be assigned or administered. The treatments' features are summarized in observable 

vectors 
  
x j  and 

  
xk , which often have just one element. A single (M=1) potential outcome, 

 
yj  or 

 
yk , is observed given treatment 

 
Tj  or 

 
Tk . 

  
y•  is the generic 

 
yj  or 

 
yk . 

   
Y = yj,yk

⎡
⎣⎢

⎤
⎦⎥
 denotes the 

  1×2  vector of potential outcomes, only one of which will be observed. The TE is 
  
yk − yj . 

 Until section 7 the focus is on binary15 outcomes, with 1 and 0 indicating "bad" (e.g. 

unhealthy) and "good" (e.g. healthy) outcomes, respectively. 16  As such 
  
TE ∈ −1,0,1{ } . Let 

treatment preference be characterized simply as preferring a "good" outcome to a "bad" outcome. 

Using "C" to denote this characterization of treatment preference, 
 
Tj  is preferred to 

 
Tk  

(
  
Tj ≻C Tk ) 

if   TE =−1 , 
 
Tk  is preferred to 

 
Tj  (  

Tk ≻C Tj ) if   TE = 1 , and the preference is neutral (
  
Tj ∼C Tk ) 

if   TE = 0 .17 This obvious point about treatment preference plays a central role in what follows. 

 The probability structure of the binary potential-outcome data is summarized in exhibit 1's 
contingency table, in which the 

 
π••  and 

 
π•  denote joint and marginal probabilities: 

 

Exhibit 1 

  
yj  

 
0 1 

 
yk  

0   
π00  

  
π10    

1−πk  

1   
π01  

  
π11    

πk  

   
1−π j     

π j  1 

 

From this information the ATE can be expressed in three equivalent ways:  

 

 
  
ATE =  E yk − yj

⎡
⎣⎢

⎤
⎦⎥
 =  πk −π j  =  π01−π10 .      (5) 

																																								 																					
15 Section 7 considers the case of ordered outcomes. Brief considerations of continuous outcomes 
appear in several places in what follows. 
16 For concreteness, in health contexts one might think of "bad" binary outcomes along the lines of 
mortality, chronic illness diagnosis or onset, 30-day readmission, substance abuse, etc. 
17  It will become evident in section 3 why the "C" subscript—indicating a particular 

characterization of "bad" and "good" outcomes—is used alongside the preference indicator (
  
"≻C " ). 
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Treatment-Preference-Probability Treatment Effects 

 When conceiving an ATE with binary outcomes it is natural to focus on the difference in 

marginal means or marginal probabilities, 
  
πk −π j  in (5). For this paper's purposes, however, the 

rightmost expression in (5), 
  
π01−π10 , plays the central role. In light of the treatment-preference 

characterization noted above, 
  
π01 = Pr yj = 0∧ yk = 1( ) and 

  
π10 = Pr yj = 1∧ yk = 0( ) , correspond 

respectively to the probabilities that 
 
Tj  

is preferred to 
 
Tk  

(
   
Pr Tj ≻C Tk( ) ) and that 

 
Tk  

is preferred 

to 
 
Tj  (   

Pr Tk ≻C Tj( )).18 These are henceforth called "treatment-preference" probabilities. Thus the 

ATE (5) can be expressed as the difference in treatment-preference probabilities, 

 

    
ATEj≻k,C = Pr yj ≻C yk( )−Pr yk ≻C yj( ) .      (6) 

 

From ATEs to PTEs 

 While the expression in (6) is algebraically little more than one summary of the information 

in exhibit 1, it is of fundamental importance for this paper's main goals. Specifically, the difference 

in treatment-preference probabilities expressed in (6) is the basis of the paper's strategy for 

characterizing population-level treatment effects when M>1, an idea developed in section 3. It is 

proposed that, for any M, such treatment effects can be meaningfully defined by the difference in 

treatment-preference probabilities as in (6), given some suitable characterization   C •  of what it 

means for one treatment to be preferred to another, i.e. 
   
Tj ≻C• Tk  and 

   
Tk ≻C• Tj . When M=1 and 

the outcomes are binary there is only one logical characterization of treatment preference, as 

suggested above. When M>1, however, there is no single unambiguous characterization of what it 

means for one treatment to be preferred to another. 

 For any M≥1 and any characterization of treatment preference, the events 
   
Tj ≻C• Tk  and 

   
Tk ≻C• Tj  have probabilities 

   
Pr Tj ≻C• Tk( )

 
and 

   
Pr Tk ≻C• Tj( ) , whose difference in turn defines a 

treatment-preference-probability treatment effect, or "PTE": 

 

    
PTEj≻k,C• = Pr Tj ≻C• Tk( )−Pr Tk ≻C• Tk( ) ,      (7) 

 
where the subscript "  j≻ k " signifies the ordering of the minuend and subtrahend in (7). That is, it 

																																								 																					
18 Note that the preference "events" 

  
Tj ≻C Tk  and 

  
Tk ≻C Tj  

are stochastic as they depend on Y. 

Standard notation is used: " ∧ " denotes "and" (intersection), " ∨ " denotes "or" (union). 
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is suggested that quantity used to summarize individual-level TEs across the population is the 

PTE, regardless of M. As such the sign and magnitude of 
   
PTEj≻k,C•  are proposed as standards for 

assessing treatment success, clinical significance, etc., for any value of M. Its interpretation is 

natural since it is exactly the familiar ATE in cases where M=1 and the outcomes are binary. 

 Rather than writing out repeatedly 
   
Pr Tj ≻C• Tk( ) , the shorthand 

    
Pj≻k,C•  will be used 

henceforth.19 As such, 

 

 
    
PTEj≻k,C• = Pj≻k,C•−Pk≻j,C• .       (8) 

 

When M=1 the PTE (8) is identical to the ATE (6).20 When M>1 the task is to determine 

decision-relevant characterizations   C •  of what is meant by "treatment preference" since 

comparisons of vector outcomes is less straightforward than comparison of scalar outcomes. Yet 

once   C •  is selected to characterize treatment-preference and define a corresponding PTE, the 

problem of defining a treatment effect in the M-dimension context is reduced to decisionmaking in 

a one-dimension context. The paper turns now to formal development of this idea.  
																																								 																					
19  For M=1 essentially the same idea can be applied to continuously distributed univariate 
outcomes—e.g. measures where "larger" corresponds to "better" like survival time—for which 

    
Pj≻k,C• = Pr yj > yk( )  (Mullahy, 2018a). Since there are no ties, 

  
Pr yj > yk( ) = 1−Pr yk > yj( )  so 

that 
    
PTEj≻k,C• = 2Pj≻k,C•−1 . Mapping continuous outcomes into binary representations when 

M>1 (e.g., Alkire and Foster, 2010) permits analyses to be conducted within this paper's 
framework albeit at the cost of potential information waste. See section 7 for additional discussion. 
20  Endowing a nominal- or ordinal-scale binary-outcome measure with ratio- or interval-scale 
properties may be questionable when computing quantities like an ATE. The restriction to the 

particular 
  
0,1{ }  measure is easily loosened: Let the two possible outcome values be arbitrary 

values 
  
a,b{ }  and rewrite the vector of joint probabilities as 

  
πaa,πab,πba,πbb
⎡
⎣⎢

⎤
⎦⎥ . Then 

 
  
ATE =  E yk − yj

⎡
⎣⎢

⎤
⎦⎥
 =  b−a( )× πk −π j( ) =  b−a( )× πab −πba( ),  

a rescaled version of the ATE in (5). Whether the notion of an  ATE  is meaningful in such a 
binary-outcome context may depend on an application's structure and decisionmaker's objectives. 

Note that the ATE's expression in terms of 
  
πk −π j  arises from the ATE's averaging of the 

outcomes, not as a direct assertion of what constitutes a population-level TE. Yet without 

appealing at all to an ATE one might simply assert that 
  
πk −π j  or, equivalently, 

   
PTEj≻k,C•  is an 

appropriate TE; this circumvents concerns about measurement properties of the binary outcomes 
and whether these may or shouldn't lend themselves to numerical averaging as in (5). 
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3. Treatment Preference and Treatment Effects with Multiple Outcomes 
 The previous section showed that when M=1 it is straightforward to characterize what it 

means for one treatment to be preferred to another and to define—at least conceptually—the 

probability of such preference. Observation of the single outcome arising under each of the 

treatments reveals—at least conceptually—the relevant information. Considerations of 

identification are taken up in sections 4 and 5, but in anticipation it is useful to note that when 

M=1 
   
Pj≻k,C  and 

   
Pk≻j,C  will not generally be point identified even under the best circumstances—

e.g. unconfounded treatment assignment—although the 
  
PTEj≻k,C  they define would be. 

 With multiple outcomes a first-order concern not arising when M=1 is how to determine 

whether one treatment is preferred to another from a comparison of the M>1 potential outcomes 

arising from competing treatments. This issue has attracted surprisingly little attention in the 

health evaluation literature, particularly since samples containing and studies using data on 

multiple health outcomes are commonplace. While the empirical literature has handled ad hoc such 

data structures in a variety of ways (as noted in section 1), consideration of how to conceive of 

treatment preference and treatment effects in the multiple-outcome case is largely absent. 

 This section explores such issues and offers a set of criteria or characterizations by which 

one might assess the extent to which one treatment is preferred to another when treatments result 

in M>1 outcomes of interest. Not surprisingly matters are more complicated when M>1, but 

managing such complications should be a small price to pay for an integrated structure within 

which questions about multiple-outcome treatment effects can be explored. 

 

Definitions 

 For M≥1 let 
    
yj = yj,1 … yj,M

⎡
⎣⎢

⎤
⎦⎥
 and 

    
yk = yk,1 … yk,M

⎡
⎣⎢

⎤
⎦⎥  

be M-vectors of binary potential 

outcomes, and let 
   
Y = yj,yk

⎡
⎣⎢

⎤
⎦⎥
 (  1×2M ). 

  
y•  denotes the generic version of either 

  
yj  or 

  
yk .21 Let 

   
Pr Y( )  and 

   
Pr y•( )  denote the joint and joint-marginal probabilities of the potential outcomes. Let 

    
Q = q qm ∈ 0,1{ },  m = 1,…,M{ }  be the set of all  2

M  possible values of the potential outcomes 
  
y• . 

For arbitrary vectors a and b let   a > b  denote element-by-element strict inequality (
  
am > bm  for 

all m, or weak monotonicity) and let   a ≥ b  denote element-by-element weak inequality with at 

least one strict inequality (strong monotonicity). In what follows the 
  
y•  are assumed to have a 

																																								 																					
21  The components of the 

  
y•  are considered fixed, but their particular specification is a key 

consideration in practice. For example, much effort is devoted to defining core outcome measures 
and standardized outcome sets (Porter et al., 2016; Williamson et al., 2017). See Mullahy, 2018b. 
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"multivariate" but not "multinomial" structure; that is, for all m 
   
Pr y•,m = 1 y•,−m = 0( )≠ 1 , where 

   
y•,−m  denotes 

  
y•  without its m-th element. Boldface fonts denote vectors. 

 Using various characterizations   C •  of treatment preference, the main objective here is to 

define the treatment preferences, 
   
Tj ≻C• Tk  and 

   
Tk ≻C• Tj , the corresponding treatment-preference 

probabilities, 
    
Pj≻k,C•  and 

    
Pk≻j,C• , and the implied 

   
PTEj≻k,C•  as in (8) that, in the multiple-

outcome context, correspond to those quantities described in section 2 for M=1. After these 

definitions are provided, the discussion compares the properties of the various characterizations.22 

While the characterizations offered are hopefully both intuitive and reasonable, two considerations 

might be noted: first, other reasonable characterizations can be advanced; second, any standard for 

what it means for 
 
Tj  to be preferred to 

 
Tk  should be linked ideally to decisionmakers' values. 

 

Characterization 1 (C1) 
 An intuitively obvious way to compare 

  
yj  and 

  
yk  when M>1 is to consider the events 

   
yk ≥ yj  and 

   
yj ≥ yk . In this instance there is no single standard—i.e. no particular value(s) of the 

  
y•—defining a "good" or "bad" outcome. Instead the focus is on the set of inequality relationships 

that may obtain between 
  
yj  and 

  
yk  across the  2

2M  possible values of Y. In light of how "good" 

and "bad" are defined for each of the M component outcomes, 
   
yk ≥ yj  may be a reasonable and 

natural characterization of 
 
Tj  being preferred to 

 
Tk  (and symmetrically, 

   
yj ≥ yk  

a reasonable 

characterization of 
 
Tk  being preferred to 

 
Tj ). 

 Formally 
 
Tj  is preferred to 

 
Tk  by characterization C1, denoted 

  
Tj ≻C1 Tk , if and only if 

   
yk ≥ yj . In essence this corresponds to standard formal notions of strongly monotonic (decreasing) 

preferences. It follows that the probability that 
 
Tj  is preferred to 

 
Tk  under C1 is 

 

 
     
Pj≻k,C1 = Pr yk ≥ yj( ) ,         (9) 

																																								 																					
22 An obvious way to conceive of treatment preference is via treatment-specific utility. That is, one 

might consider a utility function 
   
V …( )  and the expected utilities associated with treatments 

 
Tj  

and 
 
Tk , 

   
EU• = V y•( )y•∈Q

∑ ×Pr y•( ) , where Q is the set of all  2
M  possible outcomes. Under 

expected utility, 
  
Tj ≻C,EU Tk  when 

  
EUj > EUk . Specifying 

   
V …( )  determines how the elements of 

the 
  
y•  are weighted; see Manski and Tetenov, 2018, for an example with M=2. 



 12 

where this probability is necessarily defined from the full joint probability 
   
Pr Y( ) . Define 

     
Yj≻k,C1 = Y yk ≥ yj{ }  so that 

      
Pj≻k,C1 = Pr Y ∈ Yj≻k,C1( ) . As such 

    #Yj≻k,C1 = 3M −2M (oeis.org, 

A001047), so that there are 
  
22M −2 3M −2M( )  values among the  2

2M  possible values of Y
 
for 

which 
  
Tj ∼C1 Tk . The PTE corresponding to (9) is 

 

 
     
PTEj≻k,C1 =  Pj≻k,C1−Pk≻j,C1 =  Pr yk ≥ yj( ) −  Pr yj ≥ yk( ) .   (10) 

 

Characterization 2 (C2) 

 Characterization C2, which turns out to be a special case of C1, specifies that a "good" 

outcome is one where 
  
y• = 0  whereas a "bad" outcome is any outcome where 

  
y• ≠ 0 . That is, a 

treatment failure or bad outcome is one where at least one bad component outcome occurs. As 

such, 
  
Tj ≻C2 Tk  if and only if 

   
yj = 0∧ yk ≠ 0 , that is, when 

 
Tj  results in no bad component 

outcome while 
 
Tk  results in at least one bad component outcome. It follows that 

 

 
     
Pj≻k,C2 = Pr yj = 0∧ yk ≠ 0( )

        
(11) 

 

For C2 a neutral treatment preference occurs when 
   
yj = 0∧ yk = 0  or when 

   
yj ≠ 0∧ yk ≠ 0 . 

Define 
     
Yj≻k,C2 = Y yj = 0,yk ≠ 0{ } . Then 

    #Yj≻k,C2 = 2M −1  so that 
  
22M −2 2M −1( )  values of Y

 
result in 

  
Tj ∼C2 Tk . The PTE corresponding to (11) is 

 

 
     
PTEj≻k,C2  =  Pj≻k,C2−Pk≻j,C2  =  Pr yj = 0∧ yk ≠ 0( ) −  Pr yj ≠ 0∧ yk = 0( ) . (12) 

 

Characterization 3 (C3) 

 The third characterization considered here, C3, is the mirror image of C2 and is also a 

special case of C1. Here a "good" outcome is one where 
  
y• ≠ 1  while a "bad" outcome occurs when 

  
y• = 1 . That is, a "bad" outcome under C3 is one where all component outcomes are "bad"; if any 

component is not "bad" then the overall outcome is "good." Thus 
  
Tj ≻C3 Tk  if and only if 

   
yj ≠ 1∧ yk = 1 , that is, when 

 
Tj  results in at least one "good" component outcome while 

 
Tk  

results in no "good" component outcome. It follows that  

 

      
Pj≻k,C3 = Pr yj ≠ 1∧ yk = 1( )

        
(13)
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A neutral treatment preference with C3 occurs when 
   
yj = 1∧ yk = 1  or when 

   
yj ≠ 1∧ yk ≠ 1 . 

Define 
     
Yj≻k,C3 = Y yj ≠ 1,yk = 1{ } . Then as with C2 

    #Yj≻k,C3 = 2M −1  so that 
  
22M −2 2M −1( )  

values of Y
 
result in 

  
Tj ∼C3 Tk . The PTE corresponding to (13) is 

 

 
     
PTEj≻k,C3  =  Pj≻k,C3−Pk≻j,C3  =  Pr yj ≠ 1∧ yk = 1( ) −  Pr yj = 1∧ yk ≠ 1( ).

 

(14) 

 

Characterization 4 (C4) 

 C4 is the union of C2 and C3. There is no single "good" or "bad" outcome. Rather treatment 

preference is determined as 
  
Tj ≻C4 Tk  if and only if either 

   
yj = 0∧ yk ≠ 0( )  or 

   
yj ≠ 1∧ yk = 1( ) . 

  
Tj ≻C4 Tk  

if 
 
Tj  results in no "bad" component outcome while 

 
Tk  results in at least one "bad" 

component outcome, or if 
 
Tk results in all "bad" component outcomes while 

 
Tj  results in at least 

one "good" component outcome. For health outcomes, C4 means "perfect" health is better than 

"imperfect" health and partially "imperfect" health is better than completely "imperfect" health. 

Thus 

 

      
Pj≻k,C4 = Pr yj = 0∧ yk ≠ 0( )∨ yj ≠ 1∧ yk = 1( )( ) .     (15) 

 

Neutral treatment preference occurs if 
   
yj = yk = 0  or 

   
yj = yk = 1  or if neither 

  
yj  nor 

  
yk  is in 

   
0,1{ } . Let 

 

      
Yj≻k,C4  =  Y yj = 0∧ yk ≠ 0( )∨ yj ≠ 1∧ yk = 1( ){ }  =  Yj≻k,C2 ∪ Yj≻k,C3 .  (16) 

 

    #Yj≻k,C4 = 2M+1−3  so that   2
2M −2M+2 + 6  among the  2

2M  possible values of Y result in 

  
Tj ∼C4 Tk . The PTE corresponding to (15) is  

 

 

     

PTEj≻k,C4  =  Pj≻k,C4 −Pk≻j,C4  =  Pr yj = 0∧ yk ≠ 0( )∨ yj ≠ 1∧ yk = 1( )( ) −

                                                 Pr yj ≠ 0∧ yk = 0( )∨ yj = 1∧ yk ≠ 1( )( )
 (17) 

 

Characterization 5 (C5) 

 C5 is the intersection of C2 and C3. A "good" outcome occurs when 
  
y• = 0  while a "bad" 

outcome occurs when 
  
y• = 1 . Treatment preference is determined as 

  
Tj ≻C5 Tk  if and only if 
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yj = 0∧ yk = 1 . That is, 

  
Tj ≻C5 Tk  

if and only if 
 
Tj  results in no "bad" component outcome while 

 
Tk  results in all "bad" component outcomes. With binary outcomes this is equivalent to 

   
yk > yj , 

corresponding to weakly monotonic preferences.  For health outcomes, C5 suggests that "perfect" 

health is better than "worst possible" health, and otherwise does not adjudicate. Here 

 

      
Pj≻k,C5 = Pr yj = 0∧ yk = 1( ) .       (18) 

 

A neutral treatment preference under C5 occurs in all cases except 
   
yj = 0∧ yk = 1 . Define 

 

 
     
Yj≻k,C5  =  Y yj = 0∧ yk = 1{ }  =  Yj≻k,C2 ∩ Yj≻k,C3 .    (19) 

 

    #Yj≻k,C5 = 1  so that   2
2M −2  values of Y result in 

  
Tj ∼C5 Tk . The PTE corresponding to (18) is 

  

 
     
PTEj≻k,C5  =  Pj≻k,C5−Pk≻j,C5  =  Pr yj = 0∧ yk = 1( ) −  Pr yj = 1∧ yk = 0( ) . (20) 

 

Characterization 6 (C6) 

 C6 is a generic characterization that will be seen to have important commonalities with 

characterizations C2 and C3 when considerations of identification are raised in sections 4 and 5. 

Define the set   Z⊂Q  and its complement in Q as  Z
c . For C6 "good" outcomes are those where 

   
y• ∈ Z  while "bad" outcomes occur when 

   
y• ∈ Zc .23 As such, treatment preference is determined as 

																																								 																					
23 C6 is offered to encompass various multiple-outcome settings encountered in practice. In applied 

health research, criteria beyond ones based simply on 
   
Z = 0{ }  or 

   
Zc = 1{ }  are used to define 

composite outcomes (U.S. FDA, 2017). Consider two such cases. In the first a "good" outcome is 
one where no more than z<M component outcomes are "bad", i.e. a "bad" outcome requires at least 
z+1 "bad" component outcomes (e.g., metabolic syndrome (M=5, z=2); U.S. NHLBI, 2018); which 
particular component outcomes are "bad" doesn't matter, only that at least z+1 of them are. In the 
second a "bad" outcome is one where w particular component(s) and at least z other components be 
"bad", otherwise the outcome is "good" (e.g., DSM-V narcolepsy (M=4, w=1, z=1); Ruoff and Rye, 
2016). In the extreme, w components may represent outcomes particularly important to a 
decisionmaker so that a "good" outcome is any outcome where these w outcomes are "good" (akin to 
"essential factors," Färe and Svensson, 1980). Treatment preference depends here only on the 
essential component(s) (i.e. z=0); in effect M=w. This encompasses so-called primary and 
secondary outcomes (U.S. FDA, 2017). In technology evaluations (e.g. RCTs) outcomes are 
sometimes prioritized as primary or secondary and the technology is deemed successful if the 

(cont.) 
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Tj ≻C6(Z) Tk  if and only if 

   
yj ∈ Z∧ yk ∈ Zc . Thus, 

 

      
Pj≻k,C6(Z) = Pr yj ∈ Z∧ yk ∈ Zc( ) .       (21) 

 

A neutral treatment preference under C6 occurs when 
   
yj ∈ Z∧ yk ∈ Z  or when 

   
yj ∈ Zc ∧ yk ∈ Zc . 

Define 
     
Yj≻k,C6(Z) = Y yj ∈ Z∧ yk ∈ Zc{ } . The PTE corresponding to (21) is 

 

     
     
PTEj≻k,C6(Z) =  Pj≻k,C6(Z)−Pk≻j,C6(Z) =  Pr yj ∈ Z∧ yk ∈ Zc( ) −  Pr yj ∈ Zc ∧ yk ∈ Z( ) .    (22) 

 

Outcome Counts: A Benchmark Characterization (C0) 

 Each of the characterizations C1-C6 provides an unambiguous basis for comparing the 

outcome vectors 
  
yj  and 

  
yk , and does so in a way that relates treatment preference to a particular 

interpretation of what it means for one binary vector to be element-by-element "better" than 

another. Some potentially relevant characterizations of treatment preference, though, will not be 

based on such vector relationships. One such characterization is both obvious—since its empirical 

counterparts are encountered frequently in applications—and provides a benchmark against which 

properties and implications of other characterizations might be assessed. 

 Specifically, with M>1 binary outcomes a prominent data-aggregation or dimension-

reduction approach used in practice is based on the count of "bad" outcomes (see Khan et al., 2008, 

for one example). Let 
  
sj = yj,mm=1

M∑  and likewise define 
 
sk . Like C1, characterization C0 does 

not involve a particular standard for 
  
y•  of what constitutes a "good" or "bad" outcome, but relies 

on a comparison of 
 
sj  and 

 
sk  wherein 

  
Tj ≻C0 Tk  if and only if 

  
sk > sj . It follows that 

 

     
Pj≻k,C0 = Pr sk > sj( ) .         (23) 

 

                                                                                                                                       
(cont.) 
primary outcomes are all "good" regardless of the secondary components' outcomes. For illustration, 

let M=3, w=1, and z=1. With 
  
y•,1  being the essential component, the two scenarios correspond to 

 
  
Z = 0,0,0⎡

⎣⎢
⎤
⎦⎥ , 1,0,0⎡
⎣⎢

⎤
⎦⎥ , 0,1,0⎡
⎣⎢

⎤
⎦⎥ , 0,0,1⎡
⎣⎢

⎤
⎦⎥{ } , 

  
Zc = 1,1,0⎡

⎣⎢
⎤
⎦⎥ , 1,0,1⎡
⎣⎢

⎤
⎦⎥ , 0,1,1⎡
⎣⎢

⎤
⎦⎥ , 1,1,1⎡
⎣⎢

⎤
⎦⎥{ } , and 

 
  
Z = 0,0,0⎡

⎣⎢
⎤
⎦⎥ , 1,0,0⎡
⎣⎢

⎤
⎦⎥ , 0,1,0⎡
⎣⎢

⎤
⎦⎥ , 0,0,1⎡
⎣⎢

⎤
⎦⎥ , 0,1,1⎡
⎣⎢

⎤
⎦⎥{ } , 

  
Zc = 1,1,0⎡

⎣⎢
⎤
⎦⎥ , 1,0,1⎡
⎣⎢

⎤
⎦⎥ , 1,1,1⎡
⎣⎢

⎤
⎦⎥{ } . 
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Define 
     
Yj≻k,C0 = Y sk > sj{ } . 

    
#Yj≻k,C0 = 22M−1− (2M−1)!

M!(M−1)!
;  (2M)! (M!)2  values of Y result in 

  
Tj ∼C0 Tk .24 The PTE corresponding to (23) is  

 

 
    
PTEj≻k,C0  =  Pj≻k,C0 −Pk≻j,C0  =  Pr sk > sj( )−Pr sj > sk( ) .   (24) 

 

Comparing the Treatment-Preference Characterizations 

 The treatment-preference characterizations are summarized in exhibit 2. 

 

Exhibit 2: Summary of 
   
Tj ≻C• Tk  Characterizations 

    
Tj ≻C• Tk  

C0   
sk > sj   

C1    
yk ≥ yj   

C2    
yj = 0∧ yk ≠ 0   

C3    
yj ≠ 1∧ yk = 1  

C4    
yj = 0∧ yk ≠ 0( )∨ yj ≠ 1∧ yk = 1( )  

C5    
yj = 0∧ yk = 1  

C6    
yj ∈ Z∧ yk ∈ Zc  

 

 Using the definitions of the 
    Yj≻k,C•  above, it is straightforward to show that for M>2 

 

 

    

Yj≻k,C5  ⊂  
Yj≻k,C2

Yj≻k,C3

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫

⎬
⎪⎪⎪

⎭
⎪⎪⎪

 ⊂  Yj≻k,C4  ⊂  Yj≻k,C1 ⊂  Yj≻k,C0     (25) 

 

(for M=2 
    Yj≻k,C0 = Yj≻k,C1 = Yj≻k,C4 ). C1 is more restrictive than C0 (for M>2) since the set of 

events 
   
yk ≥ yj  is a subset of all events for which 

  
sk > sj . In turn C2 and C3 are more restrictive 

than C1 since inequalities 
   
yk ≥ yj  with 

   
yj = 0  or with 

   
yk = 1

 
are a subset of all possible 

   
yk ≥ yj  

inequalities (as for C1); C2 and C3 are more restrictive than C4 since 
    Yj≻k,C4 = Yj≻k,C2 ∪ Yj≻k,C3 . 

Similarly C4 is more restrictive than C1 since all Y in 
   Yj≻k,C4  satisfy 

   
yk ≥ yj  but some Y with 

																																								 																					
24 See oeis.org, entries A000346 and A000984. 
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yk ≥ yj  are not in 

   Yj≻k,C4 . C5 is more restrictive than either C2 or C3 since it is the intersection 

of those characterizations. C2-C5 are all special cases of the 
   
yk ≥ yj  

inequalities that define C1. C2 

and C3 are special cases of C6. 

 

Exhibit 3: Y Values Relevant in C2-C5 Characterizations 

   
yj  

   
yj = 0  

   
yj ≠ 0∧ yj ≠ 1  

   
yj = 1  

  
yk  

   
yk = 0  

  Y0,0  
   Y∼,0  

  Y1,0  

   
yk ≠ 0∧ yk ≠ 1  

   Y0,∼  
   Y∼,∼  

   Y1,∼  

   
yk = 1  

  Y0,1  
   Y∼,1  

  Y1,1  

 

In exhibit 3's cells the 
   Y•,•  represent sets of Y values corresponding to the particular margin 

definitions (e.g. 
    
Y0,0 = Y yj = 0∧ yk = 0{ } ). Thus 

   
Tj ≻C• Tk  is determined by: 

 
 C2: 

   
yj = 0∧ yk ≠ 0 ,   i.e. 

     Y ∈ Y0,∼ ∪ Y0,1   

C3: 
   
yj ≠ 1∧ yk = 1 ,   i.e. 

     Y ∈ Y0,1 ∪ Y∼,1  

 C4: 
   
yj = 0∧ yk ≠ 0( )∨ yj ≠ 1∧ yk = 1( ) , i.e. 

     Y ∈ Y0,∼ ∪ Y0,1 ∪ Y∼,1  

 C5: 
   
yj = 0∧ yk = 1( ) ,   i.e. 

    Y ∈ Y0,1  

 

If one imagines the entries in the exhibit as a   3×3  array, then C2-C5 are different ways of 

asserting that outcomes represented in its lower off-diagonal elements are ones where 
   
Tj ≻C• Tk . 

 Ignoring for the moment C0 and C6, another perspective recognizes that C1 and C5 bracket 

C2, C3, and C4 in the sense that C1 is defined by weakest possible vector inequality 
   
yk ≥ yj  while 

C5 is defined by the the strictest vector inequality 
   
yk > yj . C2, C3, and C4 fall in-between, more 

structured than C1 but less stringent than C5. Since C1 and C5 correspond to strongly and weakly 

monotone preference structures, C2-C4 are thus special cases of strongly monotone preferences. For 

illustrative purposes table 1 shows relationships among the   C •  for M=3. 

 

[table 1 about here] 
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 From (25) it follows that25 

 

 

    

Pj≻k,C0  ≥  Pj≻k,C1 ≥  Pj≻k,C4  ≥  
Pj≻k,C2

Pj≻k,C3

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫

⎬
⎪⎪⎪

⎭
⎪⎪⎪

 ≥  Pj≻k,C5 ,    (26) 

 

with weak inequalities accommodating the possibility that the probabilities of the particular joint 

events that define the differences among the 
    Yj≻k,C•  sets may be zero. 

 Finally since 
    
Pj≻k,C• , 

   
PTEj≻k,C• , or both might be of interest in particular contexts, the 

following section considers identification of each. 

 
4. Identifying 

    
Pj≻k,C•  and 

   
PTEj≻k,C•  

 The treatment-preference probabilities discussed in section 3 are defined by features of the 

full joint distribution 
   
Pr Y( ) . As such, while point identifying one or more of the 

    
Pj≻k,C•  and the 

corresponding PTEs may be desirable, this will not always be possible. Nonetheless, partial or set 

identification is generally possible so long as the joint marginals 
   
Pr y•( )  are identified, and for 

three of the characterizations described in the previous section point identification of the 

   
PTEj≻k,C•  is possible. This section explores these identification questions. 

 The standard sense of identification is used here, i.e. that the parameters of interest are 

uniquely determined by the (joint) distribution of observable/observed data (Hansen, 2018, section 

2.33). This conveys notions of both conceptual (population) as well as empirical (sample) 

identification. Treatment assignment is assumed exogenous, i.e. unconfoundedness is assumed, so 

point or set identification of this paper's key parameters is broadly straightforward: using analog 

principles, features of conditional-on-treatment distributions of observed outcomes will generally 

suffice to estimate consistently the corresponding features of treatment-specific potential-outcome 

distributions. It is assumed that the joint marginals 
   
Pr y•( )  are knowable and accessible, which will 

typically be the case.26 If covariates beyond treatment-status indicators are relevant, they are 

assumed to be benign and can innocuously condition probability statements. 

 With unconfounded treatment assignment, 
   
Pr y•( )  will generally be nonparametrically 

																																								 																					
25 It can be shown that 

    Pj≻k,C2 !Pj≻k,C3  as 
    
Pr yk ∉ 0,1{ }( )!Pr yj ∉ 0,1{ }( ) . 

26 Note that the empirical joint marginals may be obtained from two arms of a randomized trial or 
even from two separate samples (e.g. repeated cross sections, synthetic cohorts). The key in any 
case is that the samples represent the same population, however that population be defined. 
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identified and estimable from observable data as 
    
Pr! y x = x

•( )  (section 5). As seen below this will 

typically suffice to set identify 
    
Pj≻k,C•  and 

    
Pk≻j,C• , and then estimate bounds thereon. It is also 

shown that point identification of the 
   
PTEj≻k,C•  is possible for C2, C3, and C6. 

 

Probability Bounds: General Results and Results for M=1 

 The approach described by Boole, 1854 (chapter XIX), and others27 is used to determine the 

probability and PTE bounds. In general Boole's upper bounds (UB) and lower bounds (LB) are 

straightforward to derive given knowledge of the joint marginal probabilities. For the most part the 

required bounds will be seen to be those on conjunction probabilities ("intersection," "and").28 

 To illustrate, consider first the M=1 case discussed in section 2. With reference to exhibit 1, 

consider 
    
Pj≻k,C = Pr yj = 0∧ yk = 1( ) = π01 . (The results are shown here for 

    
Pj≻k,C• ; switching 

subscripts gives the results for 
    
Pk≻j,C• .) While 

  
π01  cannot be point identified it can be bounded by 

using the identified marginal distribution probabilities 
  
π j  and 

  
πk  as 

  

 
    
UB Pj≻k,C( ) =  min Pr yj = 0( ),Pr yk = 1( ){ }  =  min 1−π j,πk{ }

   
(27) 

and 

 
    
LB Pj≻k,C( ) =  max Pr yj = 0( )+ Pr yk = 1( )−1,0{ }  =  max πk −π j,0{ } .  (28) 

 

For nondegenerate cases the UB is always informative (i.e. less than one) while the LB may or may 

not be informative (i.e. exceed zero).29 

 Even though 
   
Pj≻k,C  and 

   
Pk≻j,C  are not themselves point identified, the corresponding 

																																								 																					
27 Although such bounds are often referred to as Fréchet or Fréchet-Hoeffding bounds, Boole's 1854 
treatise was published before either Fréchet or Hoeffding was born. 

28 For N events 
 
en  jointly distributed in the population as 

   
Pr e1 ∧…∧ eN( ) , the general result is 

  

   

UB Pr e1 ∧…∧ eN( )( ) =  min Pr e1( ),…,Pr eN( ){ }  ≥  Pr e1 ∧…∧ eN( ) ≥  

                                    max Pr en( )− N−1( ),0n=1
N∑{ }  =  LB Pr e1 ∧…∧ eN( )( )

 

29  For the M=1 continuous-outcome case discussed in footnote 19, the bounds on the PTE 

  
2Pr y1 > y0( )−1  are (using notation in Mullahy, 2018a, eq. (21)): 

 
  
UB 2Pr y1 > y0( )−1( ) = 1−2D10    and   

  
LB 2Pr y1 > y0( )−1( ) = 2D01−1 
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PTEj≻k,C  is point identified by the ATE in (6) under unconfounded treatment assignment, i.e. 

 

     
PTEj≻k,C  =  Pj≻k,C−Pk≻j,C  =  π01−π10  =  πk −π j  =  E yk − yj

⎡
⎣⎢

⎤
⎦⎥
.  (29) 

 

Bounding (Set Identification of) 
    
Pj≻k,C•  and 

    
Pk≻j,C•  with M>1 

 For M>1, consider first C2, C3, C5, and C6 as these characterizations' preference-

probability and PTE bounds are straightforward to obtain. For these   C •  there are only two 

marginal events to consider in obtaining bounds on the treatment-preference probabilities. Using 

(11), (13), (18), and (21), for each of these   C •  the marginal events represent the "good" and "bad" 

outcomes corresponding to each treatment. Thus, 

 

     
UB Pj≻k,C2( ) = min Pr yj = 0( ),1−Pr yk = 0( ){ }

     
(30) 

     
LB Pj≻k,C2( ) = max Pr yj = 0( )−Pr yk = 0( ),0{ }

     
(31) 

     
UB Pj≻k,C3( ) = min 1−Pr yj = 1( ),Pr yk = 1( ){ }

     
(32) 

     
LB Pj≻k,C3( ) = max Pr yk = 1( )−Pr yj = 1( ),0{ } .     (33)

     
UB Pj≻k,C5( ) = min Pr yj = 0( ),Pr yk = 1( ){ }

      
(34) 

     
LB Pj≻k,C5( ) = max Pr yj = 0( )+ Pr yk = 1( )−1,0{ } .     (35) 

     
UB Pj≻k,C6(Z)( ) = min Pr yj ∈ Z( ),Pr yk ∈ Zc( ){ }

     
(36) 

     
LB Pj≻k,C6(Z)( ) = max Pr yj ∈ Z( )+ Pr yk ∈ Zc( )−1,0{ } .    (37) 

 

Exhibit 3 allows one to visualize how the quantities (30)-(37) bound 
    
Pj≻k,C•  for C2, C3, and C5. 

Note that for both C2 and C3 one of the lower bounds 
    
LB Pj≻k,C•( )  or 

    
LB Pk≻j,C•( )  will necessarily 

be positive while the other will be zero (assuming no ties). 

 Since it is defined by a disjunction of conjunctions one approach to computing bounds on 

   
Pj≻k,C4  involves, in essence, bounding the bounds. Several approaches could be used along these 

lines, not all of which will result in identical numerical results (see footnote 32 below).30 For the LB 

																																								 																					
30 Corresponding to footnote 28, Boole's upper and lower bounds for probabilities 

   
Pr e1 ∨…∨ eN( )  

of disjunctions of possibly non-disjoint events or sets 
 
en  are: 

(cont.) 
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a direct approach based on this idea gives 

 

          
LB Pj≻k,C4( ) = max max Pr yj = 0( )−Pr yk = 0( ),0{ },  max Pr yk = 1( )−Pr yj = 1( ),0{ }{ } .   (38) 

 

For 
    
UB Pj≻k,C4( )  reference to exhibit 3 suggests an alternative approach that generally gives a 

bound at least as tight if not tighter than Boole's generic UB, specifically:31 

 

 
     
UB Pj≻k,C4( ) = min Pr yj = 0( )+ Pr yk = 1( ),  1−Pr yj = 1( ),  1−Pr yk = 0( ){ } . (39) 

 

Each term in braces in (39) is a legitimate UB, so the best UB is the smallest of the three. 

 For C2-C5 note that only the probabilities involving the joint marginal distributions 

evaluated at 0 and/or 1 are required to define the bounds since in each instance the treatment-

preference characterization is binary (C2 and C3) or based on two binary characterizations (C4 and 

C5). For C6 the relevant probabilities in (36) and (37) are the sums of the probabilities of the 

elements of the particular Z and  Z
c  definitions being used, i.e. 

   
Pr y• ∈ Z( ) = Pr y• = q( )q∈Z∑ . 

 Computation is more complicated for C0 and C1, for which each treatment-preference 

probability is the sum of the probabilities of disjoint events. Unlike C2-C6 wherein "good" and 

"bad" outcomes are defined by particular values of the 
  
y• , C0 and C1 rely on comparisons across 

all  2
2M  values of Y to determine treatment preference; as noted earlier, 

  
22M−1− (2M−1)!

M!(M−1)!
 values of 

Y correspond to 
   
Pj≻k,C0 , while   3

M −2M
 values of Y correspond to 

   
Pj≻k,C1 . Bounding these 

probabilities entails computing the relevant upper and lower bounds at each such Y value and then 

aggregating those bounds in some manner across relevant values of Y. As discussed by Boole, 1854 

                                                                                                                                       
(cont.) 

 

   

UB Pr e1 ∨…∨ eN( )( ) =  min Pr en( )n=1
N∑ ,1{ }  ≥  Pr e1 ∨…∨ eN( ) ≥

                                    max Pr e1( ),…,Pr eN( ){ }  =  LB Pr e1 ∨…∨ eN( )( )
 

31 In the notation of exhibit 3, the set whose probability is to be bounded is 
   Y0,∼ ∪ Y0,1 ∪ Y∼,1 . The 

expression in (39) thus translates to 

     

    

min Pr Y0,0 ∪ Y0,∼ ∪ Y0,1( ) +  Pr Y0,1 ∪ Y∼,1 ∪ Y1,1( ),{  Pr Y0,0 ∪ Y∼,0 ∪ Y0,∼ ∪ Y∼,∼ ∪ Y0,1 ∪ Y∼,1( ),
       Pr Y0,∼ ∪ Y∼,∼ ∪ Y1,∼ ∪ Y0,1 ∪ Y∼,1 ∪ Y1,1( )}  
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(chapter XIX), to avoid double-counting aggregation is more complicated than simply adding up 

the respective upper and lower bounds of the 
   
Pr Y( )

 
across the relevant Y. Although the C0 and 

C1 bounds are computable, simple representation as in (30)-(39) is not possible. See Appendix A. 

 For C0 and C1 it should also be noted that computation of the bounds using the joint 

marginal distributions at the relevant 
  
y•  

values requires that each of these joint marginal 

probabilities be identified by the available data. While in principle not a concern for identification, 

empirical implementation may encounter sparse data where some—or, in the case of large M, 

possibly many—of the joint outcomes are not observed in the sample. Empirically these would be 

zero-probability events by method-of-moments or analog principles (see section 5).32 

 Finally, with reference to (26) note that a legitimate LB on any of the terms in the 

inequality chain will be a legitimate LB on any terms leftward of that term, whereas a legitimate 

UB on any of the terms in the inequality chain will be a legitimate UB on any terms rightward of 

that term. In some instances this result may be helpful as a computational shortcut. 

 

Point and Set Identification of the 
   
PTEj≻k,C•  

 Once the bounds on 
    
Pj≻k,C•  and 

    
Pk≻j,C•  are defined for any of the   C •  it is straightforward 

to obtain bounds on the corresponding PTEs as: 

 

 
    
UB PTEj≻k,C•( ) = UB Pj≻k,C•( )−LB Pk≻j,C•( )

      
(40) 

and 

 
    
LB PTEj≻k,C•( ) = LB Pj≻k,C•( )−UB Pk≻j,C•( ) .      (41) 

 
 While (40) and (41) hold generally, for C2, C3, and C6 point identification of 

   
PTEj≻k,C•  is 

possible given knowledge of 
   
Pr y•( )  at 0 (C2), at 1 (C3), or over Z (C6). Referring to exhibit 1, 

note that for C2 
   
1 y• ≠ 0( )  plays the same role as does 

  
y•  when M=1, for C3 

   
1 y• = 1( )  plays that 

role, and for C6 
   
1 y• ∈ Zc( )  plays that role. Thus, analogous to 

  
E yk − yj
⎡
⎣⎢

⎤
⎦⎥
 in (5) one has for C2 

 

																																								 																					
32 Actual computation of the UBs and LBs may result in bounds that do not obey the ordering 
relationships in (26). While the respective probabilities must obey the ordering in (26), formulae 
used to compute those bounds are not necessarily so ordered since in some cases there are multiple 
legitimate ways to compute the bounds. Obtaining tightest bounds in such cases would require a 
search across the set of legitimate bounds; such considerations are beyond this paper's scope. 
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E 1 yk ≠ 0( )−1 yj ≠ 0( )⎡
⎣⎢

⎤
⎦⎥
 =  E 1−1 yk = 0( )( ) −  1−1 yj = 0( )( )⎡

⎣⎢
⎤
⎦⎥

                                  =  E 1 yj = 0( )−1 yk = 0( )⎡
⎣⎢

⎤
⎦⎥

                                   = Pr yj = 0∧ yk = 0( )+ Pr yj = 0∧ yk ≠ 0( )( ) −

                                         Pr yj = 0∧ yk = 0( )+ Pr yj ≠ 0∧ yk = 0( )( )
                                   = Pr yj = 0∧ yk ≠ 0( )−Pr yj ≠ 0∧ yk = 0( )
                                   = Pr Tj ≻C2 Tk( )−Pr Tk ≻C2 Tj( ) =  PTEj≻k,C2

   (42) 

 

while symmetrically for C3 and C6 (skipping the middle steps used in (42)): 

 

 
    
E 1 yk = 1( )−1 yj = 1( )⎡
⎣⎢

⎤
⎦⎥
 =  Pr Tj ≻C3 Tk( )−Pr Tk ≻C3 Tj( ) =  PTEj≻k,C3   (43) 

and 

 
    
E 1 yk ∈ Zc( )−1 yj ∈ Zc( )⎡
⎣
⎢

⎤
⎦
⎥  =  Pr Tj ≻C6(Z) Tk( )−Pr Tk ≻C6(Z) Tj( ) =  PTEj≻k,C6(Z)    (44) 

 

Thus even though their component probabilities 
    
Pj≻k,C•  and 

    
Pk≻j,C•  are not separately point 

identified, the 
   
PTEj≻k,C•  are point identified for C2, C3, and C6. This is because their outcome-

probability structures are essentially the same binary one seen in exhibit 1. It does not appear that 

the 
   
PTEj≻k,C•  can be point identified for C0, C1, C4, and C533 so set identification must suffice.34 

 

Signing 
   
PTEj≻k,C•  

 Among the questions of concern to a decisionmaker, a prominent one might be the sign of a 

particular 
   
PTEj≻k,C•  and whether the data are sufficiently informative to determine that one 

																																								 																					
33 

   
PTEj≻k,C4 + PTEj≻k,C5  is point identified since 

   
PTEj≻k,C4 + PTEj≻k,C5=PTEj≻k,C2 + PTEj≻k,C3 . 

However it is not obvious that such a quantity is likely to be of much interest. 

34 Based on (2), a different TE one might consider with outcomes 
 
sj  and 

 
sk  is 

  
sk − sj . With 

unconfounded treatment assignment the ATE 
  
E sk − sj
⎡
⎣⎢

⎤
⎦⎥
 is identifiable. However, since it is defined 

by 
 
sj  and 

 
sk  this ATE elicits the same concerns about across-outcome measurement comparability 

and (implied) weighting as does 
  
PTEj≻k,C0 . These notwithstanding, estimation of regression 

models 
   
E sy x = x j
⎡
⎣⎢

⎤
⎦⎥
 and 

   
E sy x = xk
⎡
⎣⎢

⎤
⎦⎥
 as in (2) can be used to consistently estimate 

  
E sk − sj
⎡
⎣⎢

⎤
⎦⎥
. 
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treatment is unambiguously superior or not inferior to another. With PTE point identification (C2, 

C3, and C6) this is trivial. When only set identification is possible, knowing that 

   
LB PTEj≻k,C•( ) > 0  or 

   
UB PTEj≻k,C•( ) < 0  suffices to sign that PTE, up to sampling error. 

 Two figures illustrate what is involved for some specific cases. Figure 1a shows for the case 

of C2 the gains from point versus set identification when the question of interest concerns the sign 

of 
  
PTEj≻k,C2 . In the figure, all combinations of 

   
Pr yj = 0( )  and 

   
Pr yk = 0( )

 
below the 45-degree 

line are consistent with 
   
PTEj≻k,C2 ≥ 0 . Alternatively, determining whether 

   
PTEj≻k,C2 ≥ 0

 
by 

reference to whether 
   
LB PTEj≻k,C2( )≥ 0  relies on only those combinations of the 

   
Pr y• = 0( )  that 

figure into the LB computation in (31). These combinations are shown in the darker shaded area. 

 Figure 1b depicts the combinations of the 
   
Pr y• = 0( )  consistent with 

   
LB PTEj≻k,C5( ) = 0 , 

using 
   
LB PTEj≻k,C2( )  from figure 1a as a baseline reference. Since the C5 bounds involve the 

marginal probabilities at both 0 and 1, the picture is drawn holding the 
   
Pr y• = 1( )  at specific 

values (shown in the figure's legend) and then tracing out the 
   
Pr y• = 0( )

 
combinations consistent 

with 
   
LB PTEj≻k,C5( ) = 0  at those values. Combinations of the 

   
Pr y• = 0( )

 
southeast of the 

positively-sloped line segments are ones where the C2 and C5 
   
LB PTEj≻k,C•( )  are strictly positive. 

 

[figures 1a and 1b about here] 

 

A Parametric Example 

 To see how the bounds described above perform numerically, true probabilities and 

corresponding bounds are computed under several different assumptions about the degree of cross-

component correlation of the elements of Y and about the PTE magnitudes. The calculations 

assume that the 
  
y•  have elements 

  
y•,m = 1 y•,m

* > 0( )  with 
     
Y* ∼MVN µ j,µk

⎡
⎣⎢

⎤
⎦⎥
,R( ) . For all m 

  
µ j,m = Φ−1 .1( ) , so that 

  
Pr yj,m = 1( ) = .1 . 

  
µk,m = Φ−1 Pr yk,m = 1( )( ) , with 

  
Pr yk,m = 1( ) = .2  and 

  
Pr yk,m = 1( ) = .5  giving "small" and "large" TEs, respectively. R is a   2M×2M  correlation matrix 

with all off-diagonal elements equal to  ρ , which is either 0 or .5 in this exercise. The results for 

M=2, M=3, and M=4 are displayed in tables 2a-2c.35 In each cell appears the true joint probability 

(which would be unknowable from observable data) as well as the corresponding LB and UB 

(which under unconfoundedness would be identifiable in applications from the joint marginal 

																																								 																					
35 The probabilities are generated using Mata's mvnormal simulator in Stata's version 15.1. 
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probabilities) or, in the case of the 
   
PTEj≻k,C•  for C2 and C3, the point-identified true values. 

 

[tables 2a, 2b, 2c about here] 

 

 Several results are noteworthy. First, as a consequence of the particular parameters 

specified for this exercise the 
    
LB Pj≻k,C•( ) and 

    
LB Pk≻j,C•( ) are the same for C0, C1, C2, and C4. 

Also, in light of the discussion in the previous subsection, note that in some instances the 

   
LB PTEj≻k,C•( )  exceed zero so that one can conclude that the PTE is positive even though its 

specific magnitude is not identifiable. Finally, unlike the probability orderings among the 
    
Pj≻k,C•  

and 
    
Pk≻j,C•  from (26), there is no such necessary ordering among the 

   
PTEj≻k,C• . So while all the 

results in tables 2a-2c numerically satisfy 

 

 

   

PTEj≻k,C0  ≥  PTEj≻k,C1 ≥  PTEj≻k,C4  ≥  
PTEj≻k,C2

PTEj≻k,C3

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫

⎬
⎪⎪⎪

⎭
⎪⎪⎪

 ≥  PTEj≻k,C5 , (45) 

 

this is not a general result but owes rather to the particular probability structures assumed here. 

 

5. Estimating Bounds using Composite Outcomes Measures 
What Are Composite Outcomes? 

 Composite outcomes or endpoints are used widely as health status measures in clinical 

evaluations, and are particularly prominent in studies involving cardiovascular disease outcomes. 

For example, in a recent three-arm clinical trial comparing cardiovascular health effects of different 

Mediterranean diets, the primary outcome studied by Estruch et al., 2018, is "a composite of 

myocardial infarction, stroke, and death from cardiovascular causes." Occurrence of any or all of 

the three outcomes over the study period indicates treatment failure while experiencing none of the 

three implies treatment success. While particular components vary across studies, the Estruch et 

al. approach is typical. Indeed composite-outcome measures are used broadly in clinical and social 

science research even though such measures might not actually be dubbed composite outcomes in a 

particular study's report. For instance, a standard measure of chronic obstructive pulmonary 

disease (COPD) is the presence of emphysema and/or chronic bronchitis. While this corresponds 

formally to a composite outcome, COPD is often not explicitly referred to as such. 

 One might define a composite outcome in various ways (U.S. FDA, 2017). In a typical 
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application there is a set36 of M>1, often binary, components outcomes across which the composite 

outcome is deemed to be a success or represent a "good" outcome only when all of its components 

are "good" outcomes. Defined thusly, composite outcomes have an all-or-nothing character. 

 As is standard, let the observed outcome data be determined by the potential outcomes and 

the assigned treatment as 

 

 
   
y = 1 x = x j( )×yj +1 x = xk( )×yk ,       (46) 

 

where x denotes a k-vector of exogenous covariates characterizing treatment that will take on one 

of two possible values, 
  
x j  or 

  
xk , corresponding to the treatments 

 
Tj  and 

 
Tk . For immediate 

purposes it suffices to consider a generic scalar composite outcome 
   
1 y ∈ Zc( )  where as above   Z⊂Q  

is a set containing particular values of y that correspond to a "good" outcome. 

 

Using Composite Model Estimates to Compute Bounds and Point-Identified PTEs 

 Recall from section 1 and eq. (4) that one general approach to estimation in the presence of 

multiple outcomes is to define some measure that effectively collapses an M-dimension outcome 

into a one-dimension outcome. This common empirical strategy is relevant for purposes at hand. 

Specifically in this case one specifies and estimates a parametric or nonparametric composite-

outcome conditional probability model 

 

    
Pr y ∈ Z x( ) = pc x( ) .

         
(47) 

 

With unconfounded treatment assignment (exogenous x), estimation of (47) yields 

 

     
Pr! y ∈ Z x = x•( )→ Pr y• ∈ Z( )        (48) 

 

Recall the bounds for treatment-preference characterizations C2-C5 derived in section 4. For these 

characterizations the corresponding UBs and LBs are defined in terms of the estimands in (48), 

each for 
   
Z = 0{ }  and/or 

   
Zc = 1{ } . As such, for C2-C5 standard estimation of particular composite-

outcome models yields the information required to estimate the bounds on 
    
Pj≻k,C•  and 

   
PTEj≻k,C•  

																																								 																					
36 While M=3 or M=4 are common, there are interesting cases where M is as small as two or much 
larger than four. 
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so long as treatments are assigned exogenously. Such estimates also provide the information to 

point identify the PTEs for C2 and C3 as described in section 4. (Note that the composite-outcome 

PTEs for a "good" outcome 
   
Z = 0{ }  (i.e. C2) and a "bad" outcome 

   
Zc = 1{ }

 
(i.e. C3) correspond to 

the boldface entries in tables 2a-2c.) While such composite-outcome model estimates may be of 

interest in their own right in capturing some notions of "treatment effect"—perhaps explaining their 

prominence in applications—a previously unappreciated attribute is that they provide information 

essential to point identify or set identify PTEs of the sort proposed here. 

 For C0 and C1, the same basic ideas apply although a potentially large number of Z 

definitions may be required to estimate the components of the bounds (see section 4). Beyond the 

algebraic complexities involved in computation of these bounds, a practical issue is whether the 

available data are sufficiently rich to yield useful estimates 
    
Pr! y ∈ Z x = x•( ) for each Z defining an 

estimand (48) that is, in turn, involved in such computations. In particular, note that the 

estimated probabilities associated with particular Z that are not represented in the available data 

equal zero by method-of-moments or analog principles.37  

 

6. Two Empirical Examples 
Moving to Opportunity 

 Data from the prominent Moving to Opportunity (MTO) experiment provide an illustrative 
																																								 																					
37 While inference is not a main concern here, it might be noted that for the point-identified PTEs 

nonparametric inference is straightforward. Letting 
   
I•,•  be observation index sets defined in an 

obvious manner, analog PTE estimates for C2 (
   
Z = 0{ } ) and C3 (

   
Zc = 1{ }) are given by 

   

     

PTE! j≻k,C•  =  1
#I2,k

1 yn ∈ Zc( )n∈I2,k
∑  −  1

#I2,j

1 yn ∈ Zc( )n∈I2,j
∑

                =  Pr# y ∈ Zc x = xk( )−Pr# y ∈ Zc x = x j( ) =  p•,k −p•, j

 

with the corresponding binomial variance estimates given by 

 

    

var! PTE! j≻k,C•( ) =
p•, j 1−p•, j( )

#I•, j

+
p•,k 1−p•,k( )

#I•,k

. 

Large-sample results can be used to compute CIs from these 
   
var! …( ) . With set identification 

inference is also possible but more complicated (see Imbens and Manski, 2004, and Chernozhukov 
et al., 2013). Imbens and Manski, 2004, note that "researchers face a substantive choice whether to 
report intervals that cover the entire identification region or intervals that cover the true 
parameter value with some fixed probability…Which CI is of interest depends on the application." 
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example. These data and the experiment's results are reported in Ludwig et al., 2011 and 2013. The 

experiment consisted of two intervention groups and a control group, but for simplicity only the 

low-poverty voucher and control groups are considered here. The public-use "pseudo-individual" 

sample, consisting of N=3,273 observations and described at www.nber.org/mtopuf, is used here. 

After deleting observations with missing data the remaining sample contains N=2,120 subjects, 

N=1,178 in the intervention group (
 
Tj ) and N=942 in the control group (

 
Tk ).

Two exercises are conducted here. In the first, M=2 with binary outcomes obesity 

(BMI≥40) and diabetes (HbA1c≥6.5); these were the outcomes considered in Ludwig et al., 2011. 

In the second, M=4 with binary outcomes obesity, diabetes, hypertension (SBP≥140 and/or 

DBP≥90), and depression (DSM-IV major depressive episode in the past year); this is a subset of 

the outcomes considered in Ludwig et al., 2013. The results are summarized in table 3a. For these 

data the bounds on the set-identified PTEs are seen to be rather broad, and in no instance 

unambiguously informative about the sign of any of the PTEs. For C2 the point-identified 

  
PTEj≻k,C2  indicate a positive (i.e. beneficial) effect of the intervention for both the M=2 and M=4

outcome definitions, whereas for C3 the results of the treatment are less clear. 

[table 3a about here] 

Multiple Chronic Conditions 

A sample of N=887,309 adults ages 18-64 from the 2011, 2013, and 2015 Behavioral Risk 

Factors Surveillance System (BRFSS) surveys is used to explore the determinants of adult chronic-

condition outcomes. The observed outcomes y are seven binary chronic-condition indicators: 

cardiovascular disease, arthritis, depression, chronic lower-respiratory disease, cancer, diabetes, and 

kidney disease. For this exercise an age "treatment" and a schooling "treatment" are considered 

separately (for purposes of this brief illustrative exercise the paper won't dwell on whether 

unconfoundedness is reasonable here). For age, 
 
Tj  and 

 
Tk  correspond to ages 18-44 and ages 45-

64; for schooling, 
 
Tj  and 

 
Tk  correspond to not being versus being a college graduate.

The estimated bounds are reported in table 3b. The age PTEs for C2-C4 all suggest 

unambiguously younger age as the preferred treatment, while for C0 and C1 the width of the PTE 

bounds interval exceeds one. For the schooling PTEs, all the bound intervals straddle zero, while 

the point-identified results for C2 and C3 suggest college graduation as the preferred treatment.38 

38 Stata code and data used to generate the results in tables 2a-3b and figure 1 are available in a 
1.6MB .zip file, https://uwmadison.box.com/temo.zip.  The readme file in the main directory 
provides details. 

https://uwmadison.box.com/s/6zk18xjt7u6r32gagih9nkg4tmdp4798
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[table 3b about here] 

 

7. Treatment-Preference Characterizations, Probabilities, and PTEs with Multiple 
Ordered Outcomes 

 Instead of binary outcome measurement suppose each component of the 
  
y•  is measured in 

an ordered, categorical manner. That is, each of the M components can assume one of G possible 

values in 
   
0,1,…,G−1{ } . 39 In keeping with the ordering used previously, larger values of the 

components of the 
  
y•  correspond to increasingly undesirable outcomes. One prominent example in 

a health-outcome context is the EQ-5D system describing M=5 dimensions of health: mobility, self-

care, usual activities, pain/discomfort and anxiety/depression (Devlin et al., 2018). The specific 

dimensions are measured in G=3 (EQ-5D-3L) or G=5 (EQ-5D-5L) ordered levels. Among other 

uses, EQ-5D data provide the foundation for a variety of health-related quality of life measures. 

Determining values associated with the   3
5 = 243 (3L) or   5

5 = 3125  (5L) possible health states 

described by EQ-5D is a major aspect of EQ-5D-related research.40 

 

Treatment-Preference Characterizations 

 Analysis of treatment-preference and PTEs for ordered outcomes can proceed along 

essentially the same lines as with binary outcomes, albeit with a few additional considerations. Let 

  C •*  denote characterizations of treatment preference relevant in a multiple ordered-outcome 

context. While various characterizations might be proposed only variants of the   C •  

characterizations already examined are considered here. Specifically let C0*, C1*, C2*, and C6* 

correspond exactly to C0, C1, C2, and C6 as defined earlier. C3 is redefined to be C3* wherein 

  
Tj ≻C3* Tk  if and only if 

   
yj ≠ G−1( )( )∧ yk = G−1( )( ) , where G is an M-vector whose elements all 

equal G. That is, in C3* a "good" outcome is one where not all components are at their worst 

possible levels while a "bad" outcome is one where each component is at its worst possible level. 

C4* is defined such that 
  
Tj ≻C4* Tk  if and only if 

   
yj = 0∧ yk ≠ 0( )∨ yj ≠ G−1( )∧ yk = G−1( )( ) , 

and C5* is defined such that 
  
Tj ≻C5* Tk  if and only if 

   
yj = 0∧ yk = G−1( ) . The sets 

    
Yj≻k,C•*  and 

																																								 																					
39 Of course the binary case considered heretofore is just the special case G=2. Only for notational 
simplicity is it assumed that each component assumes the same number of possible categorical 
values; the logic of what follows in no way relies on this. 
40 Another example is the Apgar score, used for assessment of neonates' health (American Academy 
of Pediatrics, 2006; Hoynes et al., 2015). Apgar scores use M=5 components measured across G=3 
categories with larger values representing better health. 
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Yk≻j,C•*  are defined in an obvious manner consistent with their definitions in section 3. 

 Apart from C0* these characterizations do not require across-component measurement 

comparability for coherence. That is, any particular value among the G categories of (say) the m-

th and m'-th components of 
  
yj  and 

  
yk  need not represent equivalence between those components. 

Since C1*-C6* rely only on element-by-element comparisons between each of the M components of 

the 
  
yj  

and 
  
yk  but not on comparisons across the M components of each 

  
y• , the M components' G 

categories may be measured in any manner deemed relevant. For C1*-C6* each component's 

measure can be changed from 
   
0,…,G−1{ }  to different values 

   
v0,m,…, vG−1,m{ } ; the same 

probability and PTE results obtain if the ordering of the 
  
v•  respects the 

   
0,…,G−1{ }  ordering 

and if references to 0 and G-1 in the C2*-C5* definitions become references to 
 
v0,m  and 

  
vG−1,m . 

 With C0*, however, the sums 
 
sj  and 

 
sk  entail some degree of cross-component 

comparability just as when the the 
  
y•  

are binary. Whether it is reasonable to endow what are 

essentially ordered component outcomes with interval- or ratio- scale properties will depend on an 

application's particulars. In any event the summands defining 
 
sj  and 

 
sk  

are typically apples and 

oranges. While it may sometims be frowned upon, computing indexes, scores, or scales from sums 

of unlike components—whether the components are binary or ordered—is longstanding practice in 

psychometric and clinical settings. Without defending this approach it is discussed here as a 

benchmark because of its prominence in such fields: despite its apples-oranges character the 

approach is used widely and sometimes rationalized explicitly.41 

 For concreteness table 4 provides an example of the   C •*  characterizations for M=2 and 

G=3. There are   G
2M = 81  possible values of the   1×4  vector of potential outcomes Y. Of these 81 

possible values, 31 correspond to values of Y for which 
   
Tj ≻C•* Tk  for at least one of the   C •* . 

 

[table 4 about here] 

 

Bounding 
    
P

j≻k,C•∗
 and 

   
PTE

j≻k,C•∗
 with Multiple Ordered Outcomes 

 Once a particular   C •*  has been selected, conceptualizing 
    
Pj≻k,C•* , 

    
Pk≻j,C•* , and 

   
PTEj≻k,C•*  and computing their corresponding bounds proceeds in essentially the same manner as 

in the binary case. The relevant joint probabilities are determined and the observed data are 

consulted to estimate the corresponding probability and PTE bounds. The same probability 

																																								 																					
41 Kahneman, 2011, chapter 21, offers an interesting assessment of such measurement issues. 
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ordering as described in (26) obtains here for 
    
Pj≻k,C•*  with reference to   C •*  instead of   C • . 

 As before identification depends on the assumption of unconfounded or exogenous 

treatment assignment. Analogous to the binary case, 
    
Pj≻k,C•*  is point identified for C2*, C3*, and 

C6*. As G increases the number of possible Y outcomes grows rapidly. However, in deriving the 

relevant UBs and LBs (or point-identified PTEs), the concern is not with the entire Y vector but 

rather with the particular 
  
y•  whose probabilities enter the bound definitions. As noted earlier, the 

relevant joint marginal probabilities may be technically identified even though small empirical cell 

sizes may be of concern regarding the data's ability to deliver useful estimates. To frame these 

issues, define the sets 
     
J j≻k,C•* = yj yj ∈ Yj≻k,C•*{ }  and 

     
K j≻k,C•* = yk yk ∈ Yj≻k,C•*{ } . Table 5 

displays for several values of M and G the number of elements in the sets 
    Yj≻k,C•*  and 

    J j≻k,C•* . 

    #J j≻k,C•*  and, symmetrically, 
    #K j≻k,C•*  increase rapidly with G and with M. 

 

[table 5 about here] 

 

Some Implications for Multiple Continuous-Outcome Measures 

 Suppose the component outcomes in the 
  
y•  

are measured continuously. Such measurements 

can be coarsened into G ordered, categorical measures, sometimes known as interval measurement: 

 

 	

   

yj,m
coarse =

0
!

G−1

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

 ↔  yj,m ∈

−∞,  t0,m( ⎤
⎦⎥

!

t(G−2),m,  ∞( )

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪

 ,	 	 	 	 (49) 

 

where the 
 
tg,m  are component-specific thresholds or cut points. 

 Once coarsened, PTEs for the 
 
yj,m

coarse  can be considered using the strategies discussed 

above. Selecting a useful degree of coarsening (G) involves trading off information loss against 

computational complexity. It might be noted that coarsened continuous measures are in fact used 

in multiple-outcome applications. Two examples are composite-outcome component failure times 

coarsened to binary N-month survival indicators, and continuously-measured allostatic load 

components coarsened to binary threshold-crossing indicators (Gruenwald et al., 2006).42 

																																								 																					
42 Though bounds computation may be challenging, one might tackle directly analysis of continuous 
multiple outcomes in, say, a multivariate-normal framework. Using coarsened continuous outcomes 

(cont.) 
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8. Summary 
 This paper has suggested strategies for defining, identifying, and estimating treatment 

effects in contexts where understanding determinants of multiple outcomes is the goal. Notions of 

treatment preference and their corresponding probability structures and PTEs have been proposed 

as organizing principles within which questions regarding multiple outcomes might be integrated 

and pursued. While the paper has suggested seven characterizations of treatment preference 

appropriate to multiple-outcome contexts, more can be imagined and this should prove a useful 

research agenda. Regardless of the preference characterization chosen for a particular analysis, that 

choice should be made before the data are revealed: Scientific fairness forbids "preference mining." 

 In at least three other areas future research might prove valuable. First is the extension to 

the multiple-outcome case of methods to handle confounded or endogenous treatment assignment. 

Second is a consideration in multiple-outcome contexts of strategies to enhance the informativeness 

of set identification, i.e. tighten the bounds (e.g. Frandsen and Lefgren, 2018, Manski and Pepper, 

2000). Third is the fundamental consideration of why in applications outcome vectors are specified 

in the manner they are, i.e. how do particular specifications of Y or 
  
y•  more or less well describe 

the outcomes that actually matter to decisionmakers. 

 Returning in closing to a statement from section 1, it is hoped this paper has stimulated 

readers to assess with new perspectives their approaches to understanding multiple outcomes and 

their determinants. If the paper accomplishes only this, it will have served some valuable purpose.  
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Appendix A: Computing Bounds on 
    
Pj≻k,C1  and 

    
Pj≻k,C0  

 This appendix considers approaches to computing lower and upper bounds on 
   
Pj≻k,C1 . The 

same basic logic can be used to obtain bounds on 
   
Pj≻k,C0 , so those details will not be considered 

here. In either case the results for bounds on 
    
Pk≻j,C•  follow symmetrically. Combined, these bounds 

can then be used to obtain bounds on the corresponding 
   
PTEj≻k,C•  as in section 4. 

 Using the notation of section 3, (10) can be written as 

 
      
Pj≻k,C1 =  Pr yk ≥ yj( ) =  Pr Y ∈ Yj≻k,C1( ) =  Pr Y( )Y∈Yj≻k,C1

∑ .   (A.1) 

This follows since the events 
     Y ∈ Yj≻k,C1  are disjoint events. The computations for 

    
UB Pj≻k,C1( )  

and 
    
LB Pj≻k,C1( )

 
are more complicated than those for C2-C5 shown in section 4. Well-defined 

bounds can be obtained, although they may or may not turn out to be informative. 

 

Computing Upper Bounds on 
   
Pj≻k,C1  

 From Boole's general approach, an upper bound on the probability of the union of N 
arbitrary and possibly non-disjoint events 

 
en  is given by 

 
   
UB Pr enn=1

N∪⎛⎝⎜⎜
⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟= min Pr en( )n=1

N∑ ,1{ } .      (A.2) 

To be useful, information on the marginal probabilities 
  
Pr en( )  must be available. This general 

approach can be used to compute a legitimate upper bound on 
   
Pj≻k,C1  as 

         
UB Pj≻k,C1( ) =  min min Pr yj( ),Pr yk( ){ }Y∈Yj≻k,C1

∑⎛⎝⎜⎜⎜
⎞
⎠
⎟⎟⎟,1

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪
 ≥  min Pr Y( )Y∈Yj≻k,C1

∑ ,1{ }.
    

(A.3) 

This follows since the   3
M −2M  events 

     Y ∈ Yj≻k,C1  that jointly define 
   
Pj≻k,C1 , though themselves 

mutually disjoint, are not fully observable. As such their respective upper bounds 

 
   
UB Pr Y( )( ) = min Pr yj( ),Pr yk( ){ } , for each 

     Y ∈ Yj≻k,C1 ,    (A.4) 

are required to determine an overall 
    
UB Pj≻k,C1( ) . 

 However (A.4) will generally result in an unnecessarily large 
    
UB Pj≻k,C1( ) . Drawing on 

Boole (1854, chapter XIX), if any single marginal event probability 
   
Pr y•( )  appears more than once 

in the sum 
     
SY = min Pr yj( ),Pr yk( ){ }Y∈Yj≻k,C1
∑  in the RHS of (A.3) then that sum should be 

redefined as a different sum, say    S
!

Y , that includes that particular marginal event probability as a 
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summand only once, thus resulting in a smaller (i.e. tighter) upper bound.43 

 Such considerations are relevant here since the probabilities of the marginal events 
  
y•  for 

each 
     Y ∈ Yj≻k,C1  

may appear multiple times in 
  
SY . Consider for concreteness the seven cells in the 

C1 column of table 1 corresponding to the seven Y events that involve the marginal event 

   
yk = 1,1,1⎡

⎣⎢
⎤
⎦⎥  (rows 1-7 of the table). If 

   
Pr yk( )  is less than the corresponding 

   
Pr yj( )  for two or 

more of those seven events then that 
   
Pr yk( )  should appear only once as a summand in    S

!
Y . 

Indeed, that 
   
Pr yk( )  will appear in the sum    S

!
Y  that defines 

    
UB Pj≻k,C1( )

 
either exactly once (if it 

is smaller than any one or more of the seven corresponding 
   
Pr yj( )) or not at all (if it is larger than 

all the corresponding 
   
Pr yj( )). 

 Thus to compute the UB, let  
 

   
aY  =  min Pr yj( ),Pr yk( ){ }  =  UB Pr Y( )( ) ,   for each 

     Y ∈ Yj≻k,C1 .  (A.5) 

Define 
   
AY = aY{ } , 

   
A• = y• Pr y•( )∈AY{ } . Importantly the standard definition of a set as a 

collection of distinct objects44 is used in defining 
 
Aj  and 

 
Ak . Then, supposing there are no ties 

where 
   
Pr yj( ) = Pr yk( ) ,45 

 
     
UB Pj≻k,C1( ) = min Pr yj( )yj∈Aj

∑ + Pr yk( )yk∈Ak
∑⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟,1

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

.    (A.6) 

 

Computing Lower Bounds on 
   
Pj≻k,C1  

 In the general case where events may or may not be disjoint an 
    
LB Pj≻k,C1( )  is given by 

 
      
LB Pj≻k,C1( ) = maxY∈Yj≻k,C1

max Pr yj( )+ Pr yk( )−1,0{ }{ } .    (A.7) 

When the events Y are known to be disjoint a lower bound at least as tight if not tighter than 

(A.7) is obtained as 

       
LB Pj≻k,C1( ) = max Pr yj( )+ Pr yk( )−1,0{ }Y∈Yj≻k,C1

∑ .    (A.8) 

 Given the particular structure of the outcomes examined here, however, a still-tighter LB is 

possible to obtain without requiring any additional assumptions. The motivation for this approach 
																																								 																					
43 Discerning this result from Boole's mid-nineteenth-century prose was, for the author of this paper 
at least, a challenging exercise. 

44 Formally 
  
2,2,1,3{ }  and 

  
b,c,a,c{ }  are not sets but 

  
2,1,3{ }  and 

  
b,c,a{ }  are. 

45 Ties can be handled at the cost of additional computations. 
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is that in applications—particularly where M is large—it may be found that all the summands 

   
max Pr yj( )+ Pr yk( )−1,0{ }  in (A.8) are zero thus resulting in the uninformative 

    
LB Pj≻k,C1( ) = 0 . 

 To circumvent this, note that there are   2
M+1−3  events Y in 

   Yj≻k,C1  where 
   
yj = 0  or 

   
yk = 1  or both; let this subset of 

   Yj≻k,C1  be denoted 
   Yj≻k,C1

A . For the Y in 
   Yj≻k,C1

A  the 

corresponding inequality events 
   
yk ≥ yj  can be aggregated across the elements of 

   Yj≻k,C1
A  to define 

two disjoint sets 
     
Yj≻k,C1

A1 = Y yj = 0∧ yk ≠ 0{ }  and 
     
Yj≻k,C1

A2 = Y yj ≠ 0∧ yk = 1{ }  with 

    Yj≻k,C1
A1 ∪ Yj≻k,C1

A2 = Yj≻k,C1
A

 
(note that 

   Yj≻k,C1
A1  coincides with 

   Yj≻k,C2 ). In the M=3 example, for 

instance, in the C1 column of table 1 
   Yj≻k,C1

A1  corresponds to rows 1 plus 8-13 while 
   Yj≻k,C1

A2
 

corresponds to rows 2-7. The LBs on the probabilities of these aggregated events are 

 

     

LB Pr Y ∈ Yj≻k,C1
A1( )( ) = LB Pr yj = 0∧ yk ≠ 0( )( )

                            = max Pr yj = 0( )+ Pr yk ≠ 0( )−1,0{ }
                            = max Pr yj = 0( )−Pr yk = 0( ),0{ }

    

(A.9) 

 

     

LB Pr Y ∈ Yj≻k,C1
A2( )( ) = LB Pr yj ≠ 0∧ yk = 1( )( )

                            = max Pr yj ≠ 0( )+ Pr yk = 1( )−1,0{ }
                            = max Pr yk = 1( )−Pr yj = 0( ),0{ }

    

(A.10) 

Thus 

 

      

LB Pj≻k,C1( ) =  LB Pr Y ∈ Yj≻k,C1
A1( )( ) +  LB Pr Y ∈ Yj≻k,C1

A2( )( ) +

                         max Pr yj( )+ Pr yk( )−1,0{ }Y∈Yj≻k,C1\Yj≻k,C1
A∑

   

(A.11) 

The formulation in (A.11) will be no smaller than (A.8) but in some instances will be larger, i.e. 

the bound in (A.11) will be at least as tight as the bound in (A.8).46  

																																								 																					
46 It should be noted that aggregations other than those used to define 

 
e1  and 

 
e2  are possible and 

potentially more informative. The particular 
 
e1  and 

 
e2  aggregations described here were selected 

because they are informative with respect to the data structures described in section 4 and 
summarized in tables 2a-2c. 
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Appendix B: Treatment-Preference Characterizations, Probabilities, and PTEs with 
Multiple Binary Outcomes and More than Two Treatments 

 The relevant comparison of multiple treatment outcomes sometimes involves more than two 

treatments. In a study of diet-related cardiovascular disease prevention Estruch et al., 2018, 

consider three alternative treatments: Mediterranean diet supplemented with extra-virgin olive oil; 

Mediterranean diet supplemented with mixed nuts; and control diet (advice to reduce dietary fat). 

Nissen et al., 2016, compare in a three-arm trial the cardiovascular safety profiles of celecoxib, 

ibuprofen, and naproxen for patients with osteoarthritis or rheumatoid arthritis.47 In both studies, 

composite cardiovascular endpoints are of primary interest. 

 This appendix considers briefly extensions of the results in sections 3 and 4 to such 

treatment settings, focusing on the three-treatment case for simplicity. Extending the treatment 

preference characterizations from section 3 to the three-treatment case is largely straightforward. 

 

Treatment Preference and PTEs with More than Two Treatments 

 To show the results generically, let 
   
j, k, ℓ ∈ 0,1,2{ } ,    j≠ k ≠ ℓ ≠ j , index the three distinct 

treatments, 
  
Tj,  Tk,  and Tℓ , and corresponding potential outcomes, 

   
yj,  yk,  and yℓ , so that the 

  1×3M  vector of potential outcomes is 
    
Y = yj yk yℓ

⎡
⎣
⎢

⎤
⎦
⎥ . Characterizations   C •+

 correspond to the 

  C •  in defined in section 3: 

 

    

P
j≻{k,ℓ},C0+ = Pr Tj ≻C0 Tk( )∧ Tj ≻C0 Tℓ( )( )

               = Pr sk > sj( )∧ sℓ > sj( )( )
      

(B.1) 

 

     

P
j≻{k,ℓ},C1+ = Pr Tj ≻C1 Tk( )∧ Tj ≻C1 Tℓ( )( )

               = Pr yk ≥ yj( )∧ yℓ ≥ yj( )( )
       (B.2) 

 

     

P
j≻{k,ℓ},C2+ = Pr Tj ≻C2 Tk( )∧ Tj ≻C2 Tℓ( )( )

               = Pr yj = 0( )∧ yk ≠ 0( )∧ yℓ ≠ 0( )( )
     

(B.3) 

 

     

P
j≻{k,ℓ},C3+ = Pr Tj ≻C3 Tk( )∧ Tj ≻C3 Tℓ( )( )

               = Pr yj ≠ 1( )∧ yk = 1( )∧ yℓ = 1( )( )
     

(B.4) 

 

     

P
j≻{k,ℓ},C4+ = Pr Tj ≻C4 Tk( )∧ Tj ≻C4 Tℓ( )( )

               = Pr yj = 0( )∧ yk ≠ 0( )∧ yℓ ≠ 0( )( )∨ yj ≠ 1( )∧ yk = 1( )∧ yℓ = 1( )( )( )
 

(B.5)
 

																																								 																					
47 See Mullahy, 2018a (p. 158) for a related discussion in the M=1 case with continuous outcomes. 
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P
j≻{k,ℓ},C5+ = Pr Tj ≻C5 Tk( )∧ Tj ≻C5 Tℓ( )( )

               = Pr yj = 0∧ yk = 1( )∨ yj = 0∧ yℓ = 1( )( )
    

(B.6) 

 

     

P
j≻{k,ℓ},C6(Z)+ = Pr Tj ≻C6(Z) Tk( )∧ Tj ≻C6(Z) Tℓ( )( )

                  = Pr yj ∈ Z∧ yk ∈ Zc( )∨ yj ∈ Z∧ yℓ ∈ Zc( )( )
    

(B.7) 

In (B.1)-(B.7), 
    
P

j≻{k,ℓ},C•+  is shorthand for "the probability that treatment 
 
Tj  is preferred to both 

treatment 
 
Tk  and treatment 

  
Tℓ  given characterization   C •+ ." Analogous to (26) it can be shown 

that  

     

P
j≻{k,ℓ},C0+  ≥  P

j≻{k,ℓ},C1+  ≥  P
j≻{k,ℓ},C4+  ≥  

P
j≻{k,ℓ},C2+

P
j≻{k,ℓ},C3+

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

 ≥  P
j≻{k,ℓ},C5+

 

(B.8)

 
 How to characterize PTEs in these cases is not immediately evident. Specifically, given the 

characterizations of treatment preference   C •+ , what are the relevant comparators or contrasts? In 

the two-treatment case the appropriate contrast is obvious, but when three or more treatments are 

involved several options might reasonably be considered.48 Two possible PTE definitions based on 

(B.1)-(B.7) are discussed here, but others might certainly be considered; in any event the 

specification of any particular PTE should be tied to the evaluation question or treatment decision 

at hand. 

 In the first the PTE is defined by the difference between any of (B.1)-(B.7) and the 

probability that both 
 
Tk  and 

  
Tℓ  are preferred to 

 
Tj  given characterization   C •+ . This latter 

probability is given by 

 
    
P

{k,ℓ}≻j,C•+ = Pr Tk ≻C• Tj( )∧ Tℓ ≻C• Tj( )( ) ,      (B.9) 

so that 

 

    

PTE
j≻{k,ℓ},C•+
A = Pr Tj ≻C• Tk( )∧ Tj ≻C• Tℓ( )( )−Pr Tk ≻C• Tj( )∧ Tℓ ≻C• Tj( )( )

                    = P
j≻{k,ℓ},C•+ −P

{k,ℓ}≻j,C•+

 

(B.10) 

The second PTE definition is given by the difference between any of (B.1)-(B.7) and the 
probability that 

 
Tk  and/or 

  
Tℓ  is preferred to 

 
Tj  under   C • . This latter probability is 

 
   
Pr Tk ≻C• Tj( )∨ Tℓ ≻C• Tj( )( )

        
(B.11) 

so that 

 
    
PTE

j≻{k,ℓ},C•+
B = P

j≻{k,ℓ},C•+ −Pr Tk ≻C• Tj( )∨ Tℓ ≻C• Tj( )( )
    

(B.12) 

																																								 																					
48 For instance, Nissen et al., 2016, consider pairwise comparisons. 
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Bounds on Treatment-Preference Probabilities and PTEs 

 With three or more treatments, computing bounds for the   C0+  and   C1+  characterizations 

is quite complicated and won't be pursued here. For   C2+−C6+
 the bounds are straightforward to 

derive and, under unconfoundedness, estimate. These are derived here for   C2+  but the same logic 

applies directly for   C3+  (a mirror image of   C2+ ),   C5+ ,   C6+ , and (with a bit more algebra) for 

  C4+ . (Unlike the two-treatment setting, the PTEs for   C2+ ,   C3+ , and   C6+
 are no longer point 

identified.) 

 From (B.3), the probability to be bounded is 
    
Pr yj = 0( )∧ yk ≠ 0( )∧ yℓ ≠ 0( )( ) . Using 

Boole's general results, it follows that 

     

UB P
j≻{k,ℓ},C2+( ) = min Pr yj = 0( ),Pr yk ≠ 0( ),Pr yℓ ≠ 0( ){ }

                      = min Pr yj = 0( ),1−Pr yk = 0( ),1−Pr yℓ = 0( ){ }
   

(B.13) 

and 

     

LB P
j≻{k,ℓ},C2+( ) = max Pr yj = 0( )+ Pr yk ≠ 0( )+ Pr yℓ ≠ 0( )−2,0{ }

                      = max Pr yj = 0( )− Pr yk = 0( )+ Pr yℓ = 0( )( ),0{ }
  

(B.14) 

Whether the LBs are informative and, if so, how such information could be used to discern the 

preferred treatment are, of course, relevant questions in applications.49 In practice one can compute 
these bounds for the permutations of   j, k, ℓ  based (as in section 5) on estimates of the composite-

outcome probabilities 
   
Pr y = 0 x = x•( )  under unconfoundedness assumptions and given observed 

outcome data 
    
y = 1 x = x j( )yj +1 x = xk( )yk +1 x = xℓ( )yℓ . 

 Bounds on the PTEs defined in (B.10) and (B.12) follow from (B.13)-(B.14) and from 

bounds on the subtrahends in (B.10) and (B.12). The latter are: 

     

UBA = UB P
{k,ℓ}≻j,C2+( ) = UB yj ≠ 0( )∧ yk = 0( )∧ yℓ = 0( )( )

                                = min 1−Pr yj = 0( ),Pr yk = 0( ),Pr yℓ = 0( ){ }
  

(B.15) 

     

LBA = LB P
{k,ℓ}≻j,C2+( ) = LB yj ≠ 0( )∧ yk = 0( )∧ yℓ = 0( )( )

                               = max Pr yk = 0( )+ Pr yℓ = 0( )−Pr yj = 0( )−1,0{ }
  

(B.16) 

																																								 																					
49 For any of the   j, k, ℓ  arrangements, it is straightforward to see that at most one of the three LBs, 

    
max Pr yj = 0( )− Pr yk = 0( )+ Pr yℓ = 0( )( ),0{ } , can be nonzero. 
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UBB = UB Pr Tk ≻C2 Tj( )∨ Tℓ ≻C2 Tj( )( )( )
      = min Pr yk = 0( )+ Pr yℓ = 0( ),1−Pr yj = 0( ){ }

    

(B.17) 

    

LBB = LB Pr Tk ≻C2 Tj( )∨ Tℓ ≻C2 Tj( )( )( )
      = max max Pr yk = 0( ),Pr yℓ = 0( ){ }−Pr yj = 0( ),0{ }

    

(B.18) 

It follows that: 

    
UB PTE

j≻{k,ℓ},C2+
A( ) = min Pr yj = 0( ),1−Pr yk = 0( ),1−Pr yℓ = 0( ){ }−LBA

 
(B.19) 

    
LB PTE

j≻{k,ℓ},C2+
A( ) = max Pr yj = 0( )− Pr yk = 0( )+ Pr yℓ = 0( )( ),0{ }−UBA

 
(B.20) 

    
UB PTE

j≻{k,ℓ},C2+
B( ) = min Pr yj = 0( ),1−Pr yk = 0( ),1−Pr yℓ = 0( ){ }−LBB

 
(B.21) 

    
LB PTE

j≻{k,ℓ},C2+
B( ) = max Pr yj = 0( )− Pr yk = 0( )+ Pr yℓ = 0( )( ),0{ }−UBB

 
(B.22) 

All terms in these bounds can be identified and estimated given estimates of the relevant 

composite-outcome joint probabilities.  
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Figure 1a: 
   
Pr yj = 0( )  and 

   
Pr yk = 0( )  Combinations Consistent with 

   
PTEj≻k,C2 ≥ 0 — 

Point Identification (light and dark shading) and 
   
LB PTEj≻k,C2( )≥ 0  (dark shading) 

 

 
 
 

Figure 1b: 
   
Pr yj = 0( )  and 

   
Pr yk = 0( )  Combinations Consistent with 

   
LB PTEj≻k,C2( ) = 0  

and 
   
LB PTEj≻k,C5( ) = 0  at Selected Values of 

   
Pr yj = 1( )  and 

   
Pr yk = 1( )  
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Table 1: Comparison across   C •  of Y Values Consistent with 
   
Tj ≻C• Tk , M=3 

(22 of   2
2M = 64  possible Y values correspond to 

   
Tj ≻C• Tk  for at least one   C • )	

 

 
   
Y = yj yk

⎡
⎣⎢

⎤
⎦⎥  

   
Tj ≻C• Tk  

C0 C1 C2 C3 C4 C5 

1   0 0 0 1 1 1[ ]  ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ 

2   1 0 0 1 1 1[ ] ⦁ ⦁  ⦁ ⦁  

3   0 1 0 1 1 1[ ] ⦁ ⦁  ⦁ ⦁  

4   0 0 1 1 1 1[ ] ⦁ ⦁  ⦁ ⦁  

5   1 1 0 1 1 1[ ]  ⦁ ⦁  ⦁ ⦁  

6   1 0 1 1 1 1[ ]  ⦁ ⦁  ⦁ ⦁  

7   0 1 1 1 1 1[ ]  ⦁ ⦁  ⦁ ⦁  

8   0 0 0 1 0 0[ ]  ⦁ ⦁ ⦁  ⦁  

9   0 0 0 0 1 0[ ]  ⦁ ⦁ ⦁  ⦁  

10   0 0 0 0 0 1[ ]  ⦁ ⦁ ⦁  ⦁  

11   0 0 0 1 1 0[ ]  ⦁ ⦁ ⦁  ⦁  

12   0 0 0 1 0 1[ ]  ⦁ ⦁ ⦁  ⦁  

13   0 0 0 0 1 1[ ]  ⦁ ⦁ ⦁  ⦁  

14   1 0 0 1 1 0[ ]  ⦁ ⦁     
15   0 1 0 1 1 0[ ]  ⦁ ⦁     
16   1 0 0 1 0 1[ ]  ⦁ ⦁     
17   0 0 1 1 0 1[ ]  ⦁ ⦁     
18   0 1 0 0 1 1[ ]  ⦁ ⦁     
19   0 0 1 0 1 1[ ]  ⦁ ⦁     
20   0 0 1 1 1 0[ ]  ⦁      
21   0 1 0 1 0 1[ ]  ⦁      
22   1 0 0 0 1 1[ ]  ⦁      
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Table 2a: 
    
Pj≻k,C• , 

    
Pk≻j,C•  and 

   
PTEj≻k,C• : True Values and Boole Bounds, M=2 

(Cell Entries: True Probability {LB, UB}; 
   
PTEj≻k,C•  are Point Identified for C2 and C3) 

 

 ρ     
Pr yk,m = 1( )    C • 	     

Pj≻k,C•  
    
Pk≻j,C•  

   
PTEj≻k,C•   

0 

.2 

C0 .30 {.17, .36} .12 {0, .19} .17 {-.02, .36} 

C1 .30  {.17, .36} .12 {0, .19} .17 {-.02, .36} 

C2 .29 {.17, .36} .12 {0, .19} .17 

C3 .04 {.03, .04} .01 {0, .01} .03 

C4 .30 {.17, .36} .12 {0, .19} .17 {-.02, .36} 

C5 .03 {0, .04} .01 {0, .01} .03 {-.01, .04} 

.5 

C0 .65 {.56, .93} .05 {0, .19} .60 {.37, .93} 

C1 .65 {.56, .93} .05 {0, .19} .60 {.37, .93} 

C2 .61 {.56, .75} .05 {0, .19} .56 

C3 .25 {.24, .25} .01 {0, .01} .24 

C4 .65 {.56, .75} .05 {0, .19} .60 {.37, .75} 

C5 .20 {.06, .25} .003 {0, .01} .20 {.05, .25} 

.5 

.2 

C0 .23 {.15, .45} .07 {0, .17} .17 {-.02, .45} 

C1 .23 {.15, .45} .07 {0, .17} .17 {-.02, .45} 

C2 .20 {.15, .31} .05 {0, .17} .15 

C3 .07 {.06, .09} .02 {0, .03} .06 

C4 .23 {.15, .31} .07 {0, .17} .17 {-.02, .31} 

C5 .04 {0, .09} .005 {0, .03} .03 {-.03, .09} 

.5 

C0 .60 {.50, .80} .01 {0, .17} .58 {.33, .80} 

C1 .60 {.50, .80} .01 {0, .17} .58 {.33, .80} 

C2 .51 {.50, .67} .01 {0, .17} .50 

C3 .31 {.30, .33} .004 {0, .03} .30 

C4 .60 {.50, .67} .01 {0, .17} .58 {.33, .67} 

C5 .22 {.17, .33} .004 {0, .03} .22 {.13, .33} 

 
(cont.) 
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(cont.) 
 

Note to table 2a: For m=1,…,M the calculations assume that: the 
  
yj  and 

  
yk  

M-vectors have 

elements 
  
yj,m = 1 yj,m

* > 0( ) , 
  
yk,m = 1 yk,m

* > 0( ) , with 
     
Y* = yj

* yk
*⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
∼MVN µ j µk

⎡
⎣
⎢

⎤
⎦
⎥ ,R

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ ; 

  
µ j,m = Φ−1 .1( ) , so that 

  
Pr yj,m = 1( ) = .1 ; 

  
µk,m = Φ−1 Pr yk,m = 1( )( ) , with the specific values given 

in the table; and  R  is a   2M×2M  correlation matrix with all off-diagonal elements equal to  ρ . 

  
Pr yk,m = 1( ) = .2  and 

  
Pr yk,m = 1( ) = .5  represent "small" and "large" TEs, respectively. LBs for 

    
Pj≻k,C•  

for C2 and C3, shown in bold, correspond to corresponding point-identified 
   
PTEj≻k,C• . For 

all entries UB>True Probability>LB, although these strict inequalities may be obscured by 
rounding.  
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Table 2b: 
    
Pj≻k,C• , 

    
Pk≻j,C•  and 

   
PTEj≻k,C• : True Values and Boole Bounds, M=3 

(Cell Entries: True Probability {LB, UB}; 
   
PTEj≻k,C•  are Point Identified for C2 and C3) 

 

 ρ     
Pr yk,m = 1( )    C • 	     

Pj≻k,C•  
    
Pk≻j,C•  

   
PTEj≻k,C•   

0 

.2 

C0 .38 {.22, .49} .15 {0, .27} .23 {-.05, .49} 

C1 .37 {.22, .49} .15 {0, .27} .23 {-.05, .49} 

C2 .36 {.22, .49} .14 {0, .27} .22 

C3 .01 {.01, .01} .001 {0, .001} .01 

C4 .36 {.22, .49} .14 {0, .27} .22 {-.05, .49} 

C5 .01 {0, .01} .001 {0, .001} .01 {-.001, .01} 

.5 

C0 .76 {.60, 1} .04 {0, .27} .72 {.33, 1} 

C1 .73 {.60, 1} .04 {0, .27} .69 {.33, 1} 

C2 .64 {.60, .73} .03 {0, .13} .60 

C3 .13 {.12, .13} .001 {0, .001} .12 

C4 .67 {.60, .85} .03 {0, .13} .64 {.48, .85} 

C5 .09 {0, .13} .0001 {0, .001} .09 {-.001, .13} 

.5 

.2 

C0 .29 {.17, .44} .07 {0, .22} .22 {-.05, .44} 

C1 .28 {.17, .44} .07 {0, .22} .21 {-.05, .44} 

C2 .22 {.17, .39} .05 {0, .22} .17 

C3 .04 {.03, .05} .01 {0, .02} .03 

C4 .25 {.17, .39} .06 {0, .22} .19 {-.05, .39} 

C5 .01 {0, .05} .001 {0, .02} .01 {-.02, .05} 

.5 

C0 .70 {.53, .95} .01 {0, .22} .69 {.31, .95} 

C1 .68 {.53, .95} .01 {0, .22} .68 {.31, .95} 

C2 .54 {.53, .75} .01 {0, .22} .53 

C3 .24 {.23, .25} .002 {0, .02} .23 

C4 .65 {.53, .75} .01 {0, .22} .64 {.31, .75} 

C5 .12 {.03, .25} .00001 {0, .02} .12 {.02, .25} 

   
  Note: See note to table 2a. 
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Table 2c: 
    
Pj≻k,C• , 

    
Pk≻j,C•  and 

   
PTEj≻k,C• : True Values and Boole Bounds, M=4 

(Cell Entries: True Probability {LB, UB}; 
   
PTEj≻k,C•  are Point Identified for C2 and C3) 

 

 ρ     
Pr yk,m = 1( )    C • 	     

Pj≻k,C•  
    
Pk≻j,C•  

   
PTEj≻k,C•   

0 

.2 

C0 .44 {.25, .59} .16 {0, .34} .28 {-.10, .59} 

C1 .42 {.25, .59} .15 {0, .34} .26 {-.10, .59} 

C2 .39 {.25, .59} .14 {0, .34} .25 

C3 .002 {.002, .002} .0001 {0, .0001} .002 

C4 .39 {.25, .59} .14 {0, .34} .25 {-.10, .59} 

C5 .001 {0, .002} .0004 {0, .0001} .001 {-.0001, .002} 

.5 

C0 .83 {.59, .99} .04 {0, .11} .80 {.48, .99} 

C1 .75 {.59, .99} .03 {0, .11} .72 {.48, .99} 

C2 .62 {.59, .66} .02 {0, .06} .59 

C3 .06 {.06, .06} .0001 {0, .0001} .06 

C4 .64 {.59, .72} .02 {0, .06} .62 {.53, .72} 

C5 .04 {0, .06} .00001 {0, .0001} .04 {-.0001, .06} 

.5 

.2 

C0 .34 {.19, .53} .08 {0, .26} .26 {-.07, .53} 

C1 .30 {.19, .53} .07 {0, .26} .24 {-.07, .53} 

C2 .24 {.19, .44} .05 {0, .26} .19 

C3 .03 {.02, .03} .004 {0, .01} .02 

C4 .26 {.19, .44} .06 {0, .26} .21 {-.07, .44} 

C5 .004 {0, .03} .0001 {0, .009} .004 {-.01, .03} 

.5 

C0 .76 {.54, 1} .01 {0, .26} .75 {.28, 1} 

C1 .73 {.54, 1} .01 {0, .26} .72 {.28, 1} 

C2 .55 {.54, .74} .01 {0, .20} .54 

C3 .19 {.19, .20} .001 {0, .01} .19 

C4 .67 {.54, .80} .01 {0, .21} .66 {.33, .80} 

C5 .07 {0, .20} .0000003 {0, .009} .07 {-.01, .20} 

   
  Note: See note to table 2a. 
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Table 3a: Estimated Bounds on 
    
Pj≻k,C• , 

    
Pk≻j,C• , and 

   
PTEj≻k,C• —MTO Sample 

(
 
Tj  is intervention, 

 
Tk  is control; 

   
PTEj≻k,C•  is point identified for C2 and C3); 

 

  C •   
 

M=2 
(Obesity, Diabetes) 

M=4 
(Obesity, Diabetes, Depression, Hypertension) 

    
Pj≻k,C•  

    
Pk≻j,C•  

   
PTEj≻k,C•  

    
Pj≻k,C•  

    
Pk≻j,C•  

   
PTEj≻k,C•  

C0 {.02, .62} {0, .59} {-.57, .62} {.02, .85} {.004, .95} {-.93, .85} 

C1 {.02, .62} {0, .59} {-.57, .62} {.02, .85} {.004, .95} {-.93, .85} 

C2 {.01, .37} {0, .36} .01 {.02, .23} {0, .21} .02 

C3 {.02, .13} {0, .10} .02 {0, .03} {.004 .03} -.004 

C4 {.02, .49} {0, .46} {-.44, .49} {.02, .26} {.004, .24} {-.22, .25} 

C5 {0, .13} {0, .10} {-.10, .13} {0, .03} {0, .03} {-.03, .03} 

 
 
 

Table 3b: Estimated Bounds on 
    
Pj≻k,C• , 

    
Pk≻j,C• , and 

   
PTEj≻k,C• —BRFSS Sample (M=7) 

(Age and Schooling treatments; 
   
PTEj≻k,C•  is point identified for C2 and C3) 

 

  C •   
 

Age 

(
 
Tj =18-44; 

 
Tk =45-64) 

Schooling 

(
 
Tj =Not college grad.; 

 
Tk =college grad.) 

    
Pj≻k,C•  

    
Pk≻j,C•  

   
PTEj≻k,C•  

    
Pj≻k,C•  

    
Pk≻j,C•  

   
PTEj≻k,C•  

C0 {.29, 1} {0, .64} {-.35, 1} {0, .89} {.05, 1} {-1, .84} 

C1 {.29, .97} {0, .56} {-.26, .97} {0, 75} {.05, .88} {-.88, .70} 

C2 {.29, .51} {0, .22} .29 {0, .32} {.05, .37} -.05 

C3 {.0005, .001} {0, .0001} .0005 {0, .0002} {.0003, .0005} -.0003 

C4 {.29, .51} {0, .22} {.08, .51} {0, .32} {.05, .37} {-.37, .26} 

C5 {0, .0006} {0, .0001} {-.0001, .0006} {0, .0002} {0, .0005} {-.0005, .0002} 
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Table 4: Comparison across   C •*  of Y Values Consistent with 
   
Tj ≻C• Tk , M=2, G=3 

(31 of   G
2M = 81  possible Y values correspond to 

   
Tj ≻C• Tk  for at least one   C •* )	

	

 
   
Y = yj yk

⎡
⎣⎢

⎤
⎦⎥      

Tj ≻C•* Tk  
C0* C1* C2* C3* C4* C5* 

1   0 0 0 1[ ]   ⦁	 ⦁	 ⦁	 	 ⦁	  

2   0 0 0 2[ ]   ⦁	 ⦁	 ⦁	 	 ⦁	  

3   0 0 1 0[ ]   ⦁	 ⦁	 ⦁	 	 ⦁	  

4   0 0 1 1[ ]   ⦁	 ⦁	 ⦁	 	 ⦁	  

5   0 0 1 2[ ]   ⦁	 ⦁	 ⦁	 	 ⦁	  

6   0 0 2 0[ ]   ⦁	 ⦁	 ⦁	 	 ⦁	  

7   0 0 2 1[ ]   ⦁	 ⦁	 ⦁	 	 ⦁	  

8   0 0 2 2[ ]   ⦁	 ⦁	 ⦁	 ⦁	 ⦁	 ⦁ 

9   0 1 0 2[ ]   ⦁	 ⦁	 	 	 	 	

10   0 1 1 1[ ]   ⦁	 ⦁	 	 	 	 	

11   0 1 1 2[ ]   ⦁	 ⦁	 	 	 	 	

12   0 1 2 0[ ]   ⦁	 	 	 	 	 	

13   0 1 2 1[ ]   ⦁	 ⦁	 	 	 	 	

14   0 1 2 2[ ]   ⦁	 ⦁	 	 ⦁	 ⦁	  

15   0 2 1 2[ ]   ⦁	 ⦁	 	 	 	 	

16   0 2 2 1[ ]   ⦁	 	 	 	 	 	

17   0 2 2 2[ ]  ⦁	 ⦁	 	 ⦁	 ⦁	  

18   1 0 0 2[ ]   ⦁	 	 	 	 	 	

19   1 0 1 1[ ]   ⦁	 ⦁	 	 	 	 	

20   1 0 1 2[ ]   ⦁	 ⦁	 	 	 	 	

21   1 0 2 0[ ]   ⦁	 ⦁	 	 	 	 	

22   1 0 2 1[ ]   ⦁	 ⦁	 	 	 	 	

23   1 0 2 2[ ]   ⦁	 ⦁	 	 ⦁	 ⦁	  

24   1 1 1 2[ ]  ⦁	 ⦁	 	 	 	 	

25   1 1 2 1[ ]  ⦁	 ⦁	 	 	 	 	

26   1 1 2 2[ ]  ⦁	 ⦁	 	 ⦁	 ⦁	  

27   1 2 2 2[ ]  ⦁	 ⦁	 	 ⦁	 ⦁	  

28   2 0 1 2[ ]   ⦁	 	 	 	 	 	

29   2 0 2 1[ ]   ⦁	 ⦁	 	 	 	 	

30   2 0 2 2[ ]  ⦁	 ⦁	 	 ⦁	 ⦁	  

31   2 1 2 2[ ]  ⦁	 ⦁	 	 ⦁	 ⦁	  
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Table 5: 
    #Yj≻k,C•*  and 

    #J j≻k,C•*  for 
  
M ∈ 2,3,4,5{ }  and 

  
G∈ 2,3,4{ }  

 

 

G 

2 3 4 

 G
2M       

#Yj≻k,C•*  
    
#J j≻k,C•*    G

2M      
#Yj≻k,C•*  

    
#J j≻k,C•*    G

2M      
#Yj≻k,C•*  

    
#J j≻k,C•*   

M 

2 

C0* 

16 

5 3 

81 

31 8 

256 

106 15 

C1* 5 3 27 8 84 15 

C2* 3 1 8 1 15 1 

C3* 3 3 8 8 15 15 

C4* 5 3 15 8 29 15 

C5* 1 1 1 1 1 1 

3 

C0* 

64 

22 7 

729 

294 26 

4096 

1758 63 

C1* 19 7 189 26 936 63 

C2* 7 1 26 1 63 1 

C3* 7 7 26 26 63 63 

C4* 13 7 51 26 125 63 

C5* 1 1 1 1 1 1 

4 

C0* 

256 

93 15 

6561 

2727 80 

65536 

28722 255 

C1* 65 15 1215 80 9744 255 

C2* 15 1 80 1 255 1 

C3* 15 15 80 80 255 255 

C4* 29 15 159 80 509 255 

C5* 1 1 1 1 1 1 

5 

C0* 

1024 

386 31 

59049 

25048 242 

1048576 

466136 1023 

C1* 211 31 7533 242 98976 1023 

C2* 31 1 242 1 1023 1 

C3* 31 31 242 242 1023 1023 

C4* 61 31 483 242 2045 1023 

C5* 1 1 1 1 1 1 

 
(cont.) 
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(cont.) 
 
Note to table 5: The general formulae on which this table's entries are based are: 
 

   #Yj≻k,C0* : See oeis.org A000346, A212730, A213465 for the basic idea. 

   #Yj≻k,C1* : 
  
.5G G +1( )( )M −GM  

   #Yj≻k,C2*  and 
   #Yj≻k,C3* :   G

M −1  

   #Yj≻k,C4* :   2G
M −3  

   #J j≻k,C0* , 
   #J j≻k,C1* , 

   #J j≻k,C3* , and 
   #J j≻k,C4*  :   G

M −1  

 

Not displayed in the table, 
    #K j≻k,C•*  is the same as 

    #J j≻k,C•*  for C0*, C1*, and C4* but 

switches with 
    #J j≻k,C•*  between C2* and C3*. 




