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1 Introduction

Economists have been studying the nexus between labor demand, globalization and technology
adoption for decades. Theory and anecdote suggest that some combination of technology and glob-
alization has raised the relative demand for more skilled workers[l] However, causal identification
of these forces has proved challenging, as well as the channels through which they operate. While
there is a consensus that skill-biased technological change (SBTC) has raised the relative demand
for more skilled workers, direct micro evidence on the drivers of SBTC is remarkably sparse. One
reason for this absence of evidence is that technological change is devilishly difficult to measure. In
this paper we overcome these challenges.

We study how firm-level decisions on research and development (R&D), information and com-
munication technology (ICT) adoption, as well as exporting and importing decisions affect firm-level
productivity and its bias towards skilled workers. These shifts in productivity, in turn, affect firms’
optimal demand for labor. We find large effects of global participation, R&D and, in particular,
ICT on labor demand through their effects on SBTC.

We make several contributions. Our first is to develop new methodology to estimate a firm-
level nested constant elasticity of substitution (CES) production function, where we nest skilled
and unskilled labor in a labor composite. This allows us to compute both Hicks-neutral and skilled
labor augmenting productivity shifters. We demonstrate that nesting skilled and unskilled labor
has important implications for estimating the effects of participation in international trade and
technology adoption on productivityﬂ Second, while most studies rely on small samples and/or
focus on manufacturing, we apply our methodology to to most sectors of the French private sector,
including both manufacturing and non-manufacturing industriesﬁ This is particularly important
for evaluating the effects of ICT, which is pervasive outside of manufacturing.

We then jointly estimate the separate causal effects of firm-level decisions on R&D and ICT
investments, as well as decisions on importing and exporting on both dimensions of productivity,
Hicks neutral and skill-augmenting. Ours is the first paper to do this. Finally, we evaluate the
quantitive implications of our estimates, both at the firm-level and for aggregate relative demand

for skilled labor. One important finding is that ICT has the largest effect on aggregate demand for

IHelpman| (2018) and |Acemoglu and Autor| (2011) provide insightful reviews of the literature.

*This goes beyond [Fox and Smeets| (2011), who find that adjusting inputs for quality in several dimensions
lowers Hicks-neutral productivity dispersion. Our point here is that inference on the importance of forces that affect
productitivy is changed once we allow labor to be composed of two types. We elaborate on this in Section

3We describe the sample in Section



skill, mostly through its effect on firm sizes, rather than through within-firm adjustmentﬁ Another
important finding is that increases in demand for skilled labor due to higher skill augmenting
productivity are not on average accompanied by lower demand for unskilled labor, due to the
cost-reducing effect of skill augmenting productivity.

Quantifying the importance of technology adoption and globalization for relative labor demand
at the micro level is hard for two reasons. First, while it is relatively easy to measure importing
and exporting at the level of the firm, it has proven very hard to measure technology adoption,
except in case studies and in particular industriesﬂ The focus on firms is important, because that
is where decisions about technological change, globalization and employment are made. Second,
it is difficult to identify causal effects since firms jointly choose whether to import, export and
adopt technology. In order to overcome these challeneges, we apply and extend new techniques
from the structural production function estimation literature in order to consistently estimate both
Hicks-neutral and skill-augmenting productivity shifters.

Given the absence of information about real output or real intermediate input use in our data,
we build on the methodology proposed by |Grieco et al.| (2016)) [GLZ]. We extend GLZ’s approach
in several ways. First, we separate labor into three components: skilled and unskilled labor which
contribute to output in the standard way, and “techies”, who are assumed to affect production
only through their lagged impact on productivity. We discuss the sensitivity of the results to
this assumption in Section Second, we allow the elasticity of substitution between skilled
and unskilled labor to differ from the elasticity among capital, materials, and composite labor by
estimating a nested-CES production function. Third, we allow these firm production functions
to include—in addition to a Hicks neutral term that is already present in GLZ—a skilled-labor
augmenting term.

Our estimator extends that of GLZ to the case of a nested CES production function, while ap-
plying insights from Leén-Ledesma et al.| (2010]) on using multiple equations to identify parameters
of the production function. The estimator exploits the first order conditions implied by profit max-
imization and monopolistic competition to recover unobserved quantities of intermediate inputs
and (augmented) skilled labor services, to identify the production function parameters, and to fully

recover both Hicks-neutral and skill augmenting productivity shiftersﬁ Like GLZ, our approach

4The greater importance of changes in firm composition versus within-firm adjustment is also found in[De Loecker
and Eeckhout| (2018) for increases in average markups, |Autor et al.| (2020) for the decline in the labor share, and
Harrigan et al.| (2021) for job polarization.

®We discuss this literature in Section

9Doraszelski and Jaumandreul (2013) and [Doraszelski and Jaumandreu| (2018) also use the first order conditions



does not rely on proxy variable methods[]

We use a flexible specification of the firm’s productivity process which permits us to make
causal statements about the effects of firms’ investment in ICT and R&D and of importing and
exporting decisions on firm productivity. As in Doraszelski and Jaumandreu| (2013), we assume
that productivity follows a controlled Markov process and is endogenously determined by lagged
productivity as well as other lagged firm-level decisions. Once this process is estimated, we use the
parameters of the production functions to quantify the impact of these factors on the demand for
skilled and unskilled labor. Our approach resembles that of [Doraszelski and Jaumandreu| (2018)),
which is the first paper in the production function estimation literature to estimate both neutral
and non-neutral technology differences. Doraszelski and Jaumandreu (2018)) include, in addition
to a Hicks neutral productivity shifter, a labor augmenting term. However, they do not distin-
guish between skilled and unskilled labor and they identify only one elasticity of substitution. In
addition, they rely on availbility of real input use and input prices at the firm level to identify the
production function, which are not available in our data. While they observe only 2,375 firms in
10 manufacturing industries, our sample includes roughly 193,000 firms in both manufacturing and
non-manufacturing.

We apply our methodology using matched employer-employee administrative data for most
of the French private sector from 2009 to 2013. The dataset has information on exporting and
importing by firm. In order to identify the effect of technology adoption and R&D on firm level
productivity, we use workers in technology-related occupations, who we call “techies”. These
workers are engineers and technicians with skills and experience in science, technology, engineering
and math (STEM). They are essential to productivity growth, by virtue of being the creators of
new products and processes, and as mediators of technology adoption at the firm level (Tambe and
Hitt| (2012, 2014); [Harrigan et al. (2021))).

The detailed description of occupations in the dataset allow us to identify the techies who are
central in creating, planning, installing, and maintaining ICT, as well as in training and assisting
other workers in the use of ICT. We are able to separately identify other techies who design and
lead R&D processes, and ensure the transfer of know-how to other workers in the firm. Using data
on R&D techies offers an alternative to R&D expenditure data at the firm level, for all firms in the

French private sector. As a result we are able to estimate the separate firm-level effects of R&D

to identify the production function.
“Olley and Pakes| (1996)), Levinsohn and Petrin| (2003) and |Ackerberg et al| (2015) all rely on proxy methods.
Gandhi et al.| (2020) propose an alternative estimator that exploits firms’ optimality conditions.



and ICT investment on productivity and its bias towards skilled workers.

Very few papers have investigated R&D and ICT investment jointly due to the lack of data
(Hall et al.| (2013]), Mohnen et al. (2018)). |Hall et al.| (2010) argue that R&D is related to product
and process innovation, whereas others argue that ICT investments foster organizational changes
within firms such as business processes and work practices (Bresnahan et al. (2002))) and span
of control (Bloom et al.|(2014)), both of which may enhance productivity (Brynjolfsson and Hitt
(2000))). As we discuss in the literature review below, and as the results demonstrate, the distinction
between R&D and ICT proves to be important as both investments may have different influences
on productivity and relative labor demand.

For each industry, we find an elasticity between capital, materials and labor aggregate which
is greater than unity (1.5 on average). These results contrast with Doraszelski and Jaumandreu
(2018) and [Raval (2019) who assume a CES functional form with Hicks-neutral productivity dif-
ferences across firms and labor augmenting technology. They do not distinguish skilled from un-
skilled labor, treating them as perfect substitutes. As the authors acknowledge, their findings of
labor-augmenting technological progress may be conflating skill-composition differences with labor
augmenting technological differences across firms. We find moreover an elasticity between skilled
and unskilled labor that is greater than the upper nest elasticity (2.8 on average). This finding
implies that skill augmenting technological progress necessarily raises the relative demand of skilled
workers and the firm’s skill intensity.

We find that both technology and trade have large effects on skill-augmenting productivity.
Our baseline estimates imply that compared to firms that don’t employ techies, firms with a lot
of techies (at the 75" percentile) have skill-augmenting productivity which is 15 percent higher.
Both ICT and R&D techies have a similarly large marginal effect on skill-augmenting productivity,
but because firms that employ R&D techies do so at greater intensity than firms that employ ICT
techies, R&D techies are more important in explaining cross-firm differences in skill-augmenting
productivity. In contrast, the effect of techies on Hicks neutral productivity is driven only by ICT
techies. Turning to the effects of trade, we find that the effect of exporting and importing is to raise
skill-augmenting productivity by 15 percent and 7 percent, respectively. We don’t find an effect of
trade on hicks neutral productivity shifters.

We use the estimates of the elasticities of substitution and demand to translate the estimated
effects on productivity into effects on firm-level labor demand. Compared to firms that don’t employ

techies, firms with a lot of techies have employment of skilled labor that is 28 percent higher, while



employment of unskilled labor is no lower. The effects of trade are comparably large: exporting and
importing raise employment of skilled workers by 28 percent and 13 percent respectively while not
reducing unskilled employment. These results on the employment effects of techies and trade are
crucial to public policy debates. They show that unskilled workers are right to be wary of technology
and trade, which we find do indeed favor employment of skilled workers. However, on avereage,
this is only a relative effect: because of the powerful productivity effects of technology and trade,
skilled workers see labor demand rise when the firms where they work hire techies and/or engage
in international trade, but employment of unskilled workers barely drops. Nevertheless, there is
cross-industry heterogeneity in this respect, where SBTC has sometimes positive and sometimes
negative effects on demand for unskilled labor.

Aggregating all firm-level decisions and using our estimates we find that ICT techies have the
largest effect on aggregate relative demand for skill, mostly through their effect on firm sizes, not
through within-firm adjustment. The reason is that we estimate that only ICT affects directly
Hicks-neutral productivity. In addition, ICT techies are more prevalent in larger and skill intensive
firms, which amplifies their firm-level effect.

All the results we find in this paper are driven by firm-level decisions. Our methodology
consistently estimates the effects of firms’ choices to employ techies and trade, but does not model
these choices themselves. We also do not consider the effects of these firm-level decisions on industry
or economy-wide equilibrium employment and wages. These are limitations of the scope of our paper
but do not impinge on the internal consistency of our research strategy. Furthermore, any credible
analysis of the equilibrium effects of technology adoption and globalization on labor markets must
be built on an understanding of what goes on inside firms. This is where our contribution lies.

The rest of the paper is organized as follows. In Section [2, we discuss papers directly related
to our research questions and methodology. After a brief discussion of why not all firms employ
techies in Section [3] we develop our econometric methodology in Section [4] and describe our data
and construction of the estimation sample in Section Estimation results and the quantitative

implications for skill bias and labor demand are reported in Section [6}

2 Related research

Skill-biased technological change (SBTC) and globalization have been of intense interest to economists

for decades, but there are remarkably few papers that look for SBTC at the firm or plant level,



and none that simultaneously estimate, as we do, the effect of ICT, R&D and trade on SBTC. We
discuss these few papers here to put our contribution in context. We also review research on the

specific role of techies.

2.1 Firm-level biased technological change and globalization

In this subsection we discuss papers that study firm- or plant-level changes in the composition of
employment as a result of technological changeﬁ Several papers study a single industry or firm.
Bartel et al.| (2007)) look at the valve manufacturing industry between 1999 and 2003 to study
how adoption of ICT caused reorganization within firms. They show that ICT adoption increased
Hicks-neutral total factor productivity (TFP) (through faster setup times, greater customizability,
and better quality control) and also raised the skill-requirements for machine operators. [Autor
et al.| (2002) study how the introduction of digital check imaging affected reorganization and the
allocation of tasks across workers within one large bank. |Acemoglu and Finkelstein| (2008) find that
when a policy change in 1983 increased the relative price of labor for hospitals, hospitals increased
both their capital-labor ratio and their skill /unskill ratio among nurses—a result that is suggestive
of complementarity between capital and skilled labor. Our paper has a broader scope, as we study
all private sector firms in France.

Some of the most informative papers about firm-level SBTC are primarily descriptive. [Dunne
et al. (2004) uses the Census’ Longitudinal Research Database and find that computer use within
plants is not associated with higher overall labor productivity but is associated with greater non-
production worker intensity, a common proxy for skilled workers. Helper and Kuan (2018) survey
the auto parts industry and find that most firms in this industry do not perform R&D, but innovate
nonetheless through the efforts of their engineers and technicians. They also find that the tasks done
by engineers overlap much more with skilled than with unskilled workers. Barth et al.| (2017) study
plant-level data on US manufacturing firms, with a focus on the role of scientists and engineers.
In the private sector as a whole, they show that 80 percent of scientists and engineers worked
outside R&D occupations in 2013. They estimate a simple gross revenue production function at the
establishment level from 1992 to 2007 using fixed effects OLS, and find statistically significant effects
of the science and engineer share of employment on revenue, a result that suggests a positive effect of

scientists and engineers on TFP. |Bresnahan et al. (2002)) argue persuasively for a complementarity

8To keep this literature review manageable, we eschew discussion of the many important papers that analyze
SBTC and related issues using industry-level data.



between IT, decentralized firm organization, and skilled labor. They construct measures of “work
organization”, computer capital, and employee skill for a small number of very big publicly traded
firms in the mid-1990s, and find robust correlations that are consistent with their view. Building
on these insights, our paper moves beyond descriptive analysis to structural estimation, and offers
causal inference.

Two recent papers on firm level skill-biased technology both use data from Norway to estimate
causal effects. /Akerman et al. (2015) exploit exogenous variation in the local availability of broad-
band internet in the 2000s, and find convincing intent-to-treat effects on both local skilled wages
and firms’ output elasticity for skilled workers. As they acknowledge, their evidence that firms who
adopt broadband internet increase their skill intensity is weaker. Boler| (2015) uses a 2002 tax break
for R&D expenditure to estimate the effects of R&D on firm-level skill intensity in manufacturing.
Her reduced form evidence is supportive of a very strong effect of R&D on skill intensity, while her
structural production function estimates find a smaller but still important effect. These Norwegian
papers are important antecedents to our paper, but the greater size and diversity of the French
economy, as well as our analysis of nonmanufacturing in addition to manufacturing firms, allows
us to estimate broader and more nuanced effects

Turning to the effects of globalization, Becker et al. (2013) use German micro data on em-
ployment and offshoring by multinational firms during 1998-2001. They find a positive association
between offshoring and plant-level skill intensity. For Indonesia, Kasahara et al.| (2016) find that
plant-level use of imported materials raised the level of education within manufacturing plants be-
tween 1995 and 2007F_U] Bustos| (2011) finds that Argentinian firms raised their productivity and
skill intensity after a major trade reform in 1991. She also finds an association between spending
on ICT and skill upgrading. Our results are consistent with the papers by |Kasahara et al.| (2016])
and Bustos| (2011), but we are not able to investigate the channel identified by Becker et al.| (2013))
since we don’t have information on foreign affiliates of the French firms in our data.

Like us, Bender et al.| (2018) use a framework that has both Hicks-neutral and management-
augmenting technological differences across firms. Applying the methodology of |Abowd et al.
(1999), they construct individual-level measures of worker quality, which they match to firms. This

very creative paper is hampered by matching problems that lead to a sample size of just 361 German

9Bgler| (2015) sets up a similar nested-CES production function to ours, but does not fully estimate it. Instead,
she only considers relative demand for skill, inferred from the lower nest.

19Amiti and Cameron| (2012)) also study firm-level data from Indonesia, but their primary focus is the skill premium
rather than skill intensity.



firms across three years (2004, 2006, and 2009). As a consequence, their data analysis is mainly
descriptive, while our dataset of nearly 200,000 French firms allows us to do structural estimation.

Two recent papers estimate firm-level labor augmenting technology under the assumption that
firms produce using a CES production function of capital, labor, and materials. The production
function estimator of |Doraszelski and Jaumandreu (2018)) is related to our methodology, as we
discuss above, but relies on the availablility of real output and inputs and their prices—information
that is absent in our data. Raval (2019) uses an equation implied by static cost minimization to
estimate both the elasticity of substitution and the level of labor-augmenting technology differences
across U.S. manufacturing plants between 1987 and 2007E-] While these two papers are not about
SBTC, their findings of large labor augmenting technology differences across firms have a plausible
interpretation as differences in the skill mix across firms. By contrast, our structural model directly

estimates skilled labor augmenting technological differences across firms.

2.2 The role of techies

Though we are the first to analyze the impact of techies on SBTC, there is a small literature that
has looked at the impact of techies on output, the structure of employment, and productivity at
the firm level. The motivation for this literature is stated succinctly by (Tambe and Hitt| (2014):
“the technical know-how required to implement new IT innovations is primarily embodied within
the IT workforce”. Similarly, Deming and Noray| (2018]) show that, in their words, “STEM jobs
are the leading edge of technology diffusion in the labor market”.

Firm-level research on this proposition has been hampered by a lack of firm-occupation level
data in most administrative and survey datasets. An exception is Harrigan et al.| (2021), which
uses detailed occupational data (including data on techies) for the entire French private sector
from 1994 to 2007. [Harrigan et al.| (2021]) show that employment growth is higher in French firms
with more techies, and also that more techies leads to within-firm skill upgrading. |[Lichtenberg
(1995) and Brynjolfsson and Hitt| (1996), working with a small number of U.S. firms in the late
1980s and a simple Cobb-Douglas production function estimating equation, find that IT labor has a
positive output elasticity. Tambe and Hitt| (2012) use a newer data source and a more sophisticated
estimation technique, and again find a positive output elasticity of IT labor. Using a remarkable

dataset that tracks the movement of IT workers across firms, [Tambe and Hitt| (2014) find what they

"The industry-level estimates from an earlier version of [Raval| (2019) are used to compute the aggregate elasticity
of substitution in |Oberfield and Raval| (2020).



interpret as evidence for knowledge spillovers across firms through the channel of techie mobility.
In the present paper, rather than treating IT labor as a simple input we estimate the effect of IT
labor on productivity. In addition, our methodology is not vulnerable to the endoegenity bias that
plagues OLS estimation of production functions (the so-called “transmission bias”) .

The idea that engineers and other technically-trained workers are important for productivity
growth has also found support in the economic history literature. Kelly et al.| (2014) and Ben Zeev
et al.| (2017) highlight the importance of the British apprentice system during the British Industrial
Revolution in supplying the basic skills needed for technology adoption (whether British technology
or other). Maloney and Valencia Caicedo| (2017) construct a dataset of engineer intensity for the
Americas and for U.S. counties around 1880, and show that this intensity helps predicting income
todayF_ZI Indeed, engineers are at the center of modern (endogenous) growth theory, e.g., Romer

(1990).

3 Why don’t all firms employ techies?

Many of the papers in section find that employment of techies enhances productivity, which
raises a simple question: why don’t all firms employ them? As we will show in section in
our sample of French firms techies are found to have strong positive effects on skill-augmenting
productivity, yet only few firms employ them. A similar finding is well-known to trade economists:
in some studies of developing countries, exporting is found to raise productivity, yet a minority
of firms export. Following Melitz (2003), the consensus explanation for this phenomenon is fixed
costs: firms choose to export only when the extra revenue from exporting exceeds the fixed costs
of exporting. Alternatively, the variable costs of exporting may make it unprofitable for high-cost
firms, as shown by Melitz and Ottaviano (2008). Here we sketch a simple model that makes a
similar point about techies, and that gives a rationale for a constant elasticity relationship between
techies and productivity. We do not estimate this model, rather we use it here to make a few simple
theoretical points.

For maximum simplicity, suppose there are only two periods and one type of productivity.
The firm takes demand, costs and initial period log productivity wy;—1 as given and has to choose
optimal techie employment T';_; to maximize profits. The relationship from techies to changes in

productivity is

2See also Murphy, Shleifer and Vishny (1991) for evidence on the relationship between engineers (versus lawyers)
and income.



T
wp = w1 + Max [(Hn( It 1),0], 6>0.
Yif

Although the elasticity of productivity with respect to techies is constant and equal to §, the level
of techie employment required to attain a given growth in productivity Awy; will differ across firms
because of differences in ~;y. Fixed costs of employing positive techies are vp; and the wage of
techies is 7, so the cost of hiring techies is 71,1 +707. With heterogeneity in the costs vy and 1
not all firms will employ techies, and we derive the following very intuitive conclusions in Appendix
First, the optimal amount of techies is more likely to be positive when demand and/or initial
productivity are higher. Conversely, the optimal amount of techies is more likely to be zero when
fixed costs of techies are high and/or when the efficiency of techies are low. Second, the optimal
amount of techies may be zero even if the fixed cost of employing techies is zero. Finally, when the
optimal amount of techies is positive, it is increasing in initial productivity and the efficiency of
techies. A further implication of this framework is that since firms that export will have a higher
demand level, they will also be more likely to employ techies.

The evidence in Table[T]is consistent with these simple predictions. The table reports regressions
of firm-level outcomes on an indicator for positive techie employment. All regressions include
firm xindustry fixed effects, so the reported results are identified by variation across firms within
industry-years. Just 11 percent of firm-year observations have positive techies, as shown by the
relative sample sizes in the two columns. The results show that techies are associated with greater
revenue and a greater propensity to import and export and, in a preview of our structural analysis

below, are also associated with a higher share of managers in the firm’s wage bill.

4 Econometric methodology

Most firm- or plant-level datasets (including ours) include information on revenue and the value of
expenditures on materials but not data on the corresponding output and materials prices. |Grieco
et al.| (2016 [GLZ] show how to estimate the parameters of a CES production function even in
the absence of real output or input data, by exploiting the firm’s first-order conditions for profit
maximization [

Many papers follow some variant of the Olley and Pakes| (1996]), Levinsohn and Petrin| (2003)) and

13De Loecker and Goldberg| (2014) give a clear exposition of the estimation and interpretation problems that arise
when real input and output quantities are unavailable.
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Ackerberg et al.| (2015) [OP/LP/ACF]| proxy variable methodology to first estimate productivity
and then study its determinants, often in the context of estimating the effects of exporting or
importing on productivityllz] De Loecker| (2013) points out the limitations of this approach. In
particular, he shows that if productivity is an endogenous function of exporting then a measure
of exporting must be included in the moment conditions to get a consistent estimator for the
production function.

As discussed above, |Doraszelski and Jaumandreu (2013) take a different approach to estimating
endogenous productivity, combining the firm’s optimal demand with a controlled Markov specifica-
tion for productivity, while Doraszelski and Jaumandreu| (2018) apply this approach to estimating
Hicks-neutral and separate labor-augmenting productivity shifters. We cannot apply their method-
ology because it relies on availbility of real input use and input prices at the firm level to identify
the production function, which are not available in our data. Doraszelski and Jaumandreu| (2018)
estimate a 3-factor CES production function with Hicks-neutral wy and labor-augmenting wpy
technology differences across firms. Labor and materials are static inputs, which implies that the
optimal labor to materials ratio depends on wy but not on wg. This insight motivates a two stage
procedure. In the first stage they recover Wy and the estimated elasticity of substitution & through
estimation of a relative factor demand equation implied by the CES functional form. They then use
Wy and ¢ as data in a second stage which allows them to recover @HF_EI In contrast, our approach
identifies all parameters of the production function and productivity shifters in one step, as we
describe below.

Our approach extends Grieco et al.| (2016) [GLZ] in three ways. First, we separate labor into
three components: skilled and unskilled labor S and L, which contribute to output in the standard
way, and workers T in technical occupations (“techies”), who are assumed to affect production only
through their lagged impact on productivity. Second, we allow firm production functions within
an industry to differ in two dimensions: in addition to a Hicks neutral term 7, already present in
GLZ, we consider a skilled-labor augmenting term 2g. Third, we allow the elasticity of substitution

between S and L to differ from the elasticity among capital, materials, and composite labor.

“For example, [Pavcnik| (2002) and [Amiti and Konings| (2007)).

1511 their application to Spanish manufacturing data in 1990-2006, [Doraszelski and Jaumandreu| (2018) find great
heterogeneity in the level and growth of labor-augmenting productivity differences, with weighted average annual wy
growth of 1.5 percent per year.
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4.1 Estimating the production function and productivity

We begin with a constant returns to scale nested CES production function, where physical output
of firm f in year t Yy is produced using composite labor Ny, capital Ky, and materials My;.
The labor composite Ny; is a CES function of skilled labor Sy; and unskilled labor Ly, both
measured as hours worked. These functions are assumed to be the same for all firms in an industry
up to the two productivity levels Qpp; and Qgy;. For reasons discussed by GLZ, it is important
for identification to normalize each data series by its geometric mean. We do this, so in what
follows all variables should be understood as values relative to their geometric means, such that
L =8=K=M=Y =1, where an overbar denotes the geometric mean of the respective
variable[']

The normalized production function is

1
th:QHft |:OéNN}Yt+OéKK}Yt+OéMM}Yt]’Y , V= <1 (1)

th = [OzLL?t + ag (sttSft)p} i , p=—2<1. (2)

Higher skill-augmenting technology €1gy; increases the effective supply of skilled labor services
holding hours worked constant. Similarly, better Hicks-neutral technology €f7; increases physical
output holding all physical inputs and skill-augmenting technology constant. Input and output
prices may differ across firms, but our data only reports revenue Ry; and the value of materials
purchases E%[ , along with wages and physical L, § and K. The labor and materials inputs are
assumed to be chosen after Q0 ¢; and gy are observed. To go from revenue to output requires an
assumption on demand, and we follow GLZ in assuming that firms produce differentiated products
and face a common industry-level constant elasticity of demand n < —1. The inverse demand
function facing the firm is
1

Ppp = AYyy (3)

where A; is an exogenous industry-level demand shifter.

A revenue shock uy; is realized after all input choices have been made and both productivity

16To understand the importance of normalizing the CES production function, see [Leén-Ledesma et al.| (2010) and
the discussion and references on page 668 of (Grieco et al| (2016). Below we illustrate one important outcome of
normalization: it helps identify the distribution parameters of the production function.
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levels have been realized.

4.1.1 The estimating framework

Since L, S and M are static inputs, their first order conditions for expected profit maximization

will always hold with equalitym As shown in Appendix these conditions imply

o Ejjc\/[ 1/v
N t
S\ 7T [asWip\To7
Qen = (1) 2" (asWrp\ T2 5
s= (2) 7 (B5) 6

where Efci = Px ¢ X4 is expenditures on production factor X and Py is the price (or wage, W) of
X. The derivation of and requires that o # 1 and ¢ # 1, which rules out the Cobb-Douglas
case that is assumed in most of the productivity estimation literatureﬁ A few more steps yield an

estimating equation,

K\ (Ap\ 7
E}‘{+E}Vt(1+r)<Lj:> (ft> + g, (6)

InRs = In [77] +In
n oy,

1+

where E% = E]’%t + E}?t is the wage bill, Ay = (E]%t / E%) is unskilled labor’s share of the wage bill,
and 7 = ag/«a NH

Equation @ has just four parameters (7,7, p and 7) and no endogenous or unobservable vari-
ables. The key to the derivation is that there are three flexible (“static”) inputs (S, L and M),
which gives us two ratios of static first order conditions, and . These two equations allow
us to eliminate the two unobservables, My; and (g, and in the Appendix allows us to
eliminate {1 ¢;. Because we have eliminated the unobserved productivity terms from our estimat-
ing equation, we do not need to use proxy variable methodology. Our timing assumptions are key:
firms choose static inputs after observing both productivity shocks but before observing the revenue
shock.

The five distribution parameters ag, ar, an, ax and oy are identified by 7 = ax /an and the
following equations,

anN +ag +apy =1 (7)

1"That is, before the revenue shock uy; is realized.
¥ This includes OP/LP/ACF. In our results below in Table 5| the point estimates for o and ¢ exceed one for every

industry, and in Table [6| we can always reject the null hypotheses ¢ =1 and ¢ = 1.
19See Appendix for the derivation of @
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onEN = ozNEM (8)
ar=E"/EY , ag=E"JE". (9)

Equations (|7)) is implied by constant returns to scale. Equation (§)) follows from taking the geometric
mean of , and using the normalization conditions. Equations @ follow from taking the geometric
mean of , using the normalization conditions (which imply g = 1), and constant returns.
Equations @ show that oy and ag are identified directly from geometric means of the data, and
do not require estimation.

Equation @ can be estimated consistently by nonlinear least squares. Following Leén-Ledesma,
et al.|(2010), in order to increase efficiency we make use of the implication of ([5)) that the skill ratio

can be written as

S Wy
In <> :60—w1n< > + vy, (10)
L ft 447 ft

where vy = (¢ —1)In Qg Equation is an estimating equation, but since the unobservable v ;
contains Qg it is likely that Cov[In(Ws/Wp) ¢, vse] # 0 . Therefore using in our estimation
framework requires an instrument for In(Ws/Wp)s. To form such an instrument, we exploit
the rich occupational detail in our data on employment. As discussed in Section below, we
measure S and L as aggregates of employment in many detailed occupational categories. Denote
the industry average wage in detailed occupation o as W, and the share of occupation o in firm f’s
employment of labor aggregate j € {S, L} as \jos. By definition, these shares sum to one within S
and L, > Asoft = Do ALoft = 1 Vf,t. Our instrument In Zy; is then defined as

InZs = Z ASofi—1 InWo_1 — Z Mofi—1InWo1. (11)

Equation has a form similar to a Bartik or shift-share instrument. |Goldsmith-Pinkham et al.
(2020)) show that a sufficient condition for exogeneity of instruments like is that the shares
Ajof,t—1 are exogenous to the shock vy in equation m Exogeneity of shares follows in our
case from our assumption that Qg affects the productivity of aggregate S, but not the individual
occupations that make up S. An implication is that Qg will affect S/L but not the composition

of S or L. Because there is substantial heterogeneity across firms in the detailed occupational

29Adao et al.| (2019) propose methods for inference in single-equation linear shift-share designs, but their methods
are not applicable to our GMM estimator developed below.
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makeup of S and L, there is ample cross-section variation in In Zy; to identify the parameter on
In(Ws /W) s in equation (10).

To estimate the parameters of interest we form a GMM estimator as follows. Write @ as
InRys = f(n,7,p0,7; E%, E%, Ky, Le, M) +uge. We compute the derivatives of f with respect to
(n,7,p and 7) and set the product of these derivatives with the error uy; to zero, which gives four
moment conditions. Then, using the instrument defined by equation gives us two addition
moment conditions that identify p and the constant in . We thus have six moment conditions
to identify five parameters (recall that ¢ = (1/(1 — p)).

Our GMM estimator weights each firm-year observation by total firm employment. This is
appropriate given that we want to estimate population average partial effects, where the population
of interest is industry employment (see [Solon et al. (2015) for a discussion of this rationale for
weighting). In the absence of employment weights, firms with few workers would have the same

influence on the estimates as firms with very many workers, which we wish to avoid.

4.1.2 Recovering productivity

We recover estimated skill augmenting productivity using . We show in Appendix that

estimated Hicks neutral productivity is

-5
WHft = %log {iﬁlzﬁ (Oi]\]f\%t> X [CYN <W> N;Zt —l—aKK]t} } (12)
where 0 = [ (1 — ) + 1]/yn. Fully recovering Hicks neutral productivity would also require an
estimate of the unobservable aggregate A;. This doesn’t matter for the cross sectional distribution
at a point in time, but it does imply that our Hicks neutral productivity estimates are comparable
over time only in relative terms. That is, we can compare two firms’ productivities in a given
year, and we can say how this comparison changes over time, but we cannot compare Hicks-neutral
productivity shifters for a given firm over time.

Formally, the Hicks neutral parameter Qs is physical TFP. This follows from deflating revenue
by price using equation . In practice, it is not plausible that the simple demand system given by
solves all the problems related to unobservable prices and quality that are required to distinguish
revenue TFP from physical TFP, as Foster et al.| (2008) are able to do. Our interpretation of Qs

is revenue TFP, where some but not all of the variation in revenue has been controlled for by the
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demand system.

4.1.3 Skill-augmenting productivity and skill bias

Hicks-neutral technology differences €1z ¢; have no implications for relative skill demand because
they do not affect the relative marginal products of different inputs. Re-arranging equation
shows that the effect of skill augmenting technology differences {1g¢; on relative skill demand

depends crucially on the elasticity of substitution ¢,

S 1 (aSWLft>“0
2t _ el (S8 13
Ly SIt \ arWs st (13)

If ¢ > 1, a higher level of Qg raises relative skill demand, which is to say that skill-augmenting
technology differences are skill-biased. In our empirical results below we estimate @ > 1 for all
industries@ When ¢ > 1, the identification of g is transparent from equation : it is a
residual that rationalizes greater skill intensity, conditional on parameters and factor prices.
Estimating equations similar to in log-linear form and identifying the elasticity of substi-
tution have a long history in the macro-labor literature on SBTC; see |Acemoglu and Autor| (2011)
for discussion and references. More recently, [Raval (2019) and Doraszelski and Jaumandreu| (2018))
estimate the elasticity of substitution between capital and labor and labor-augmenting technology
shifters using similar equations. In our methodology this source of variation is only part of what
identifies ¢ in the data, through equation ; as @ illustrates, variation in levels also plays an

important role.

4.2 Employment effects of productivity

There are two effects of productivity improvements on factor demand, holding product demand
curves and factor prices constant. First, greater productivity lowers costs which increases final
demand and thus the demand for inputs. Second, greater productivity means fewer inputs are
required per unit output, which reduces the demand for inputs. The net effect on factor demand
depends on the balance between these two effects. When technological change is pervasive, there
will be general equilibrium effects on both factor prices and market demand which are beyond the

scope of this paper. But holding factor prices and market demand constant, we show in Appendix

21See Table
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[A224] that the effects of productivity differences across firms on employment are

L=(-1-1)Qu+ (—n—0)0sQs + (o — ¢) Osn s (14)

= (== 1)Qu + (=1 — 0) 0sQs + (0 — ) Osns + (¢ — 1) Qg (15)

W)

where Ogpy is the share of S in the unit cost of the labor composite N and g is the share of S in
total unit cost@ We show in Appendix that our normalization implies that gy = ag and
fs = agan at the geometric mean of the data. Each equation combines a labor saving effect and

a cost reducing demand (or substitution) effect of technological progress:

e For both § and L, the effect of Hicks-neutral technological progress O g > 01is to reduce the
employment that is required to produce a unit of ouput, and thus decrease employment with
an elasticity of —1. But at the same time costs decrease with an elasticity of —1 and thus
increase demand with elasticity —n > 0, so the net effect on employment of Hicks-neutral

technological progress is (—n — 1) Q.

e The coefficient (—n — o) fs that appears in both equations represents the effect of skill-
augmenting technological progress ﬁg > ( through the labor composite N. This reduces
the employment of both S and L that is required to produce a unit of output with an elas-
ticity of —ofg. At the same time, production costs decrease with an elasticity of —0g and
this increases overall demand with elasticity —nflg. Thus, labor demand increases with an

elasticity (—n — o) g through this channel.

e The coefficient (0 — ¢)Ogn that appears in both equations represents the effect of skill-
augmenting technological progress ﬁg > 0 through its effect on substitution towards the
labor composite N. Skill-augmenting technological progress reduces the employment that is
required to produce a unit of N with an elasticity of —pfgsy. At the same time, the cost
of a unit of N decreases with an elasticity of —0gn and this induces substitution towards N
within overal inputs with elasticity 00gy. Thus, labor demand increases with an elasticity
(0 — @) Osn. This coefficient is negative if ¢, the elasticity of substitution between L and S
within N, exceeds o, the elasticity of substitution between N and the other factors (this is

what we find empirically below, see Table .

e The term (¢ — 1) Qg represents the familiar balance between the efficiency effect which re-

22Recall that we define the elasticity of demand 7 to be less than —1, so —n > 1.
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duces employment with an elasticity of —1 and the substitution between the other factors

and S which increases employment of S with an elasticity ¢.

Subtracting the first equation from the second shows that the elasticity of skill intensity with respect
to skill-augmenting technological progress is ¢ —1. When this elasticity is positive, skill-augmenting
technological progress is said to be skill-biased. We apply equations and in our empirical

analysis below.

4.3 Endogenous productivity

In the OP/LP/ACF methodology, productivity is treated as completely exogenous. But one reason
to do firm-level productivity estimation (and one of our main research questions) is to be able to
study what causes the estimated productivity differences. In the trade literature, this has been
done repeatedly in the context of explaining the fact that exporters have higher productivity: is
this fact due to selection a la Melitz| (2003)), or is there an additional causal “learning-by-exporting”
effect?

In developing our estimator in Section did not make any assumptions about stochastic
processes that characterize the evolution of productivity shifters wp s and wgy;. Therefore, we
are free to study the determinants of productivity in a flexible way, using firm-level explanatory
variables. Following Doraszelski and Jaumandreu (2013), we now assume that productivity is given
by a “controlled Markov” process, where productivity depends on three factors: lagged productivity,
a k x 1 vector of lagged characteristics of the firm zf;_;, and a shock which is orthogonal to all
other shocks and lagged variables in the model.

The lagged firm characteristics zy;—1 include choice variables of the firm such as exporting,
importing and employment of techies as well as predetermined firm characteristics such as age and
size which are known to help predict productivity. To allow wp f; and wgy; to influence each other

we specify the following two equations,
Wit = Pt + BaawHfi—1 + Buswsfi—1 + Buzzpi—1 + Er e (16)

wsft = pst + BsHWH -1 + Bsswsfi—1 + Bszzpi—1 + syt (17)

The shocks {ff¢ and {gf; are assumed to be serially uncorrelated. The industry x time fixed effects

wrre and pgy control for among other things the demand shifter A;. These equations can be con-
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sistently estimated by OLS. De Loecker| (2013) and Doraszelski and Jaumandreu (2013)) estimate
more general non- or semi-parametric versions of and . A virtue of our parametric specifi-
cation is that it is straightforward to calculate the steady-state cross-sectional effects of persistent

differences in firm characteristics,

(- BBy, B BaH BHS By — BHz . (1)
wsf Bsa Bss Bsz

WHf

4.3.1 Interpretation and identification

It is important to be clear about what is meant by a “controlled Markov process”. The key is that
the Markov assumption breaks realized productivity into expected and unexpected components.
Thus, statistical exogeneity of lagged productivity and firm characteristics in and is
assured, but can we interpret the estimated effects of (say) techies as causal in the cross section?
For example, if the estimated effect of techies in is positive, can we say “techies cause higher
Hicks-neutral productivity”? If the answer is yes, that raises the question, what determines the
choice of techies and trade status, and why don’t all firms make the same choices? In the trade
context, underlying differences in firm-specific trade costs have been used to explain why not all
firms trade, and similar reasoning can be applied in the case of techies: some products/processes
are simply harder to improve using ICT, and/or firms have unobservable heterogeneity in their
aptitude for applying IT and thus employing techies. In Section [3| above, we presented a simple
model of optimal techie choice to clarify the insight that equations and can consistently
estimate the effect of techies on productivity even in the absence of a structural model of techie
choice.

De Loecker| (2013)) has a persuasive discussion of how to interpret the learning-by-exporting
effect in his version of the controlled Markov process (page 8). He emphasizes two things. First,
it is lagged exporting that enters the Markov process, which is to say that productivity (more
precisely, the shock to productivity &g s¢) is realized after the exporting decision is made. Second,
the persistence of the exporting decision is controlled for by having lagged realized productivity in
the equation for current productivity. These arguments extend directly to our setting.

The way that |Doraszelski and Jaumandreu (2013) discuss their estimated effects of R&D on
productivity is to remain silent on the issue of how R&D decisions are decided. That is, they

answer the question: given that a firm has decided to do R&D, what is the estimated effect on
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productivity? We will take the same approach, and will interpret our estimates as answering the
question: given that a firm has decided to trade and/or employ techies, what is the estimated effect
on productivity?

As in De Loecker| (2013) and Doraszelski and Jaumandreu, (2013), identification of the effects of
firm choices on productivity is based on cross-sectional differences in productivity growth between
firms that do or do not make a given choice. For example, consider two firms with the same lagged
productivity and all other explanatory variables except that one firm chooses to employ techies
and the other does not. If the firm with techies has higher productivity in the next period, the
estimator attributes that to the firm’s employment of techies.

In our application we measure techies by the share of techies in the firms’ wage bill, which has
the virtue of capturing both the extensive and intensive margin of techie employment. Imported
inputs are already included in a firm’s purchases of materials My;. To allow for a productivity
effect of importing while avoiding double counting of imported inputs, we measure importing by
an indicator variable. As discussed in |Grieco et al.| (2017)), the importing indicator can be thought
of as measuring the firm’s access to a broader and/or cheaper range of inputs than are available
domestically. For symmetry with how we treat imports, we also measure a firm’s exporting activity

by an indicator variable.

4.3.2 Do techies belong in the production function?

A central element of our methodology is that we assume that techies affect output only through
their effect on future productivity, and not through any contemporaneous contribution to factor
services that affect current output. This assumption is analogous to the standard assumption that
investment in ¢-1 has no effect on output in ¢-1, but raises output in ¢ through its contribution to
capital in time ¢. Similarly, Beaudry et al| (2016) use a model with cognitive labor in ¢ affecting
output only through its effect on organizational capital in t+1.

Our reasons for specifying the role of techies in this way are both theoretical and empirical.
Theoretically, if techie employment in ¢ affects output in ¢ as part of labor input in ¢ as well as
productivity in ¢+1, then the static first order conditions for optimal employment would not hold
and the derivation of our estimating equation @ does not go through. For this reason we drop from
our analysis the Computer and electronics industry, where ICT techies almost surely contribute
to output directly. Empirically, if techies enter the production function as a separate factor,

an implication is that employment of techies would be strictly positive for all firms in all periods,
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which is emphatically not the case in our data, where only 11 percent of firms employ techies.

While our assumption that techies affect output only through their effect on future productivity
is well-grounded, it is important to consider how our measurement of productivity could go awry
if techies do in fact increase current output directly, which we will call the “orthodox case”. If
the orthodox case is the right specification, then leaving techies out of the first stage production
function will understate labor inputs in the first stage.

In Appendix [A.2.3] we show that the greater is the underestimate of true inputs the greater will
be the overestimate of Hicks-neutral productivity. Less obviously, we also show that when ¢ > 1,
firms with high techie shares will have measured wg which is biased down by more than for firms
with low techie shares. The reason is that with ¢ > 1 greater wg leads to greater employment
of skilled workers S, which implies that higher S indicates higher true wg. Incorrectly removing
techies from S will thus lead to an underestimate of wg, and the underestimate will be larger the
greater is the share of techies in S.

The key implication is that if the orthodox model is correct, our estimated effect of techies on
wy in equation may be biased up, and our estimated effect of techies on wg in equation
may be biased down. However, these biases are largely mitigated due to two related reasons. First,
any biases in the estimated levels of productivity appear on both sides of equations and .
Second, although mis-specification leads to a mechanical intra-temporal correlation between techies
and wg and between techies and wp, since we estimate the effect of techies on future productivity
controlling for current productivity, i.e. an inter-temporal relationship, this direct effect washes
out.

A further implication of the orthodox model is that if we do include techies as part of labor
input in the first-stage estimating equation @, they should have no explanatory power in the
second stage regressions and . In section below, we test this possibility by estimating
the first stage with techies as part of labor inputs, and then testing the null that techies have no

effect in the second stage. The null is rejected at the 0.01 percent significance level.

4.4 Estimation details

We estimate equations @ and jointly by GMM, separately for 14 industries, which include

both manufacturing and non-manufacturing sectors, and we weigh observations by employment
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(Section above discusses estimator in greater depth)ﬁ We report robust standard errors
clustered by firm. Each industry sample is an unbalanced panel, which raises the issue of selection
bias due to endogenous exit. As pointed out by |Ackerberg et al.| (2007), endogenous exit will not
bias production function estimation as long as the firm exits in the period after the exit decision
was made. This (often implicit) assumption is now standard in the literature, and we make it here.
The estimated elasticities of substitution is given by the formulas = (1 —5) ' and 3= (1 —p) "
and standard errors take this into account. Our estimation sample is summarized in Table [4]
Industry-level production function estimation generates estimated Hicks neutral and skill aug-
menting productivity for each firm-year, computed using equations and . After dropping the
highest and lowest percentile of estimated productivity to trim outliers, we estimate the controlled
Markov processes given by equations and . In these regressions, we measure techies by the
lagged share of techies in the firm’s wage bill, and import and export participation are measured
by indicator variables. We also include lagged firm size (measured by lagged revenue) and firm age
as additional controls. Estimation is by weighted least squares with industry x year fixed effects

and we compute bootstrap standard errors clustered by firm to take into account that the second

stage uses estimated productivities as regressors@

5 Data

We construct a detailed panel data on firms in the French private sector between 2009 and 2013.
The panel is the result of merging three confidential, administrative firm-level datasets. Martching
firms across these datasets is straightforward because firms are identified by the same identification
number (SIREN), which can be followed across years in each of the three datasets. We highlight
key features of the data here, and relegate other details to Appendix

5.1 The composition of labor within firms

Our first source of information is taken from the annual declaration of social data (DADS) dataset.

The DADS is a requirement for all businesses with employees. Employers provide information

2Two sectors (coke and refined petroleum, and pharmaceutical products) are dropped because they have tiny
shares of total hours worked and very few firms, and two sectors (transport equipment and publishing/broadcasting)
are dropped because estimation of equation failed to converge. We also drop the financial intermediation sector.

240ur bootstrap re-samples firms rather than individual firm-year observations, so the resulting bootstrap covari-
ance matrices are effectively clustered by firms. All bootstrap results are computed using 800 replications. For more
details on how we compute standard errors, see Appendix @
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on employees in each of their establishments, which are identified by their SIRETE The first
nine digits of each SIRET is the firm-level identification number, SIREN, which makes it easy to
aggregate across establishments for each firm. For each worker, the DADS reports gross and net
wages, hours paid, tenure, gender, age and occupation. It also reports the sector of activity of the
firm. There is no information about workers’ education.

We use the French occupational classification PCS-ESE to allocate all workers to one of three
broad categories (Appendix Table lists the two-digit PCS codes). Detailed 4-digit occupational
codes (there are almost 500 in total) are reported in the DADS beginning in 2009, which determines
the first year of our sample.

Table [2] lists the 4-digit occupations that we classify as techies, based on the occupational
descriptions. Techie occupations are a subset of the two digit occupations “technical managers and
engineers” (38) and “technicians” (47), and are closely related to the installation, management,
maintenance, and support of ICT, as well as product and process design and longer-term R&D
activities. In our empirical anaylysis, we will look separately at the effect of techies whose job
descriptions mention ICT and those who work in R&D occupations. Table [3| reports the shares of
ICT and R&D workers within the overall techie wage bill. R&D workers are a somewhat larger
share of the techie wage bill than the share of ICT workers, and the R&D share increases slightly
from 2009 to 2013. Table 3| also reports wide dispersion in these shares across industries.

The techie wage bill share as a measure of firm-level technological sophistication can be com-
pared to R&D expenditures, a common metric for technology adoption in the literature. Firm-level
R&D is a useful measure, but it excludes much of the ongoing expenditure and managerial atten-
tion that firms devote to technology adoption and ICT use@ In fact, reported R&D is not even
a necessary condition for technology adoption and innovation, and firms employ many scientists
and engineers in non-R&D occupationsm Conversely, R&D is likely to be impossible without the
employment of techies, who are needed to install, maintain and manage the ICT used in R&D

departments. Thus, the techie share is a more precise measure of firm-level effort devoted to tech-

25The declaration file serves both fiscal and social administrative purposes. All employers and their employees
are covered by the DADS declaration with the exception of self-employed and government bodies, domestic services
(section 97-98 of NAF rev. 2) and employees in businesses outside French territory (section 99 of NAF rev. 2). The
data do not include worker identifiers, so we cannot track workers over time, but this does not concern us given our
focus on firm-level rather than individual outcomes.

26Firm-level R&D expenditures also include expenditures on R&D capital goods, which are a component of the
firm’s investment. Thus using R&D expenditures in the context of production function estimation raises the potential
for double-counting of inputs.

2T As noted above, Barth et al| (2017) find that 80 percent of U.S. private sector scientists and engineers worked
outside R&D occupations in 2013.

23



nology adoption than R&D expenditures. The wage bill of techies is a big chunk of overall ICT
spending: Saunders and Brynjolfsson! (2016|) found that for a sample of US firms, more than half
of all spending on IT was on techies@ Similarly, |Schweitzer| (2019) finds that in 2014, labor costs
account for 60 percent of aggregate R&D spending in France@

One potential threat to our approach that treats firm-level techies as an indicator of firm-level
technological sophistication is that firms can purchase ICT and R&D consulting services. By hiring
a consultant, firms can obtain and service ICT without increasing its permanent staff of techies.
However, less than 4% of techie hours are in the IT and R&D consulting sectors, which implies that
over 96% of the hourly services supplied by techies are obtained in-house rather than purchased
from consultantsPY

In order to construct the broad managerial occupation category S we aggregate the number of
hours worked by firm owners (proprietors, CEOs or directors of firms), workers in top management
positions, and professionals and engineers whose tasks are not related to either ICT or R&D. These
are non-technical management and professional occupations that are dominated by workers with
a university education. We allocate to the broad non-managerial occupation category category L
clerical employees, blue-collar workers, services workers, and technicians who do not work in ICT
or R&D related occupations. Though our mnemonic for these workers is “unskilled”, the category
L includes a wide variety of occupations. Overall, relatively few of the jobs in this category require
a university degree, with the exception of the fairly large category of “middle managers”, most of
whom probably have university degrees.

A key feature of our methodology is that firms are assumed to be able to choose their labor inputs
to satisfy the static first order conditions for profit maximization after observing productivity@
Most French workers are on permanent labor contracts which make them expensive to lay off, which
at first glance makes it implausible that firms can choose employment to satisfy their static first
order conditions. However, many French workers are on temporary labor contracts which make

adjustment of labor input at the margin cheap and easy@ This is all that is required for our

28Saunders and Brynjolfsson| (2016) find that for a sample of 127 large publicly traded US firms from 2003 to 2006,
half of all spending on IT is for “Internal IT Services (e.g., custom software, design, maintenance, administration)”.
Including training services brings the share to 0.54.

29The remiainder 40 percent are split into 6 percent capital expenditures and 34 percent “other current expenses”.

30We refer to the IT and R&D consulting sectors as industry codes 62 (Computer Programming, consultancy and
related activities), 631 (Data Processing, Hosting and related activities ; web portals), and 72 (Scientific R&D) in
the NAF classification.

31Gee equations and in the appendix.

32In our sample, the share of hours worked on temporary contracts is 3 percent for S, 11 percent for L, and 4
percent for techies.
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estimating equation @ to be appropriate for French firms.

5.2 Other firm level data

The DADS has information on the two-digit sector of activity of the firm. The estimation sample
includes firms in 14 industries, which include both manufacturing and non-manufacturing sectors@
Firm balance sheet information comes from the FARE dataset for the years 2009—2013@ The
source of the information is firms’ tax declarations. We use information on total revenues, material
expenditures and the necessary series that we need to construct the capital stock at the level of
the firm. Appendix describes the source data and explains how we construct firm-level capital
stocks using this dataset.

Data on bilateral exports and imports of firms located in France are provided by French Cus-
toms. For each observation, we know the importing or exporting firm, trading partner country, the
product traded, and the value of trade. We use the firm-level SIREN identifier to match the trade
data to our two other data sources. This match is not perfect: we fail to match about 11 percent
of imports and exports to firms. The reason for the imperfect match is that there are SIRENs in
the trade data for which there is no corresponding SIREN in our other data sources. This is likely
to lead to a particular type of measurement error: for some firms, we will observe zero trade even
when true trade is positive. This is not a big concern for us, because most of the missing values
are in the oil refining industry, which we drop from our sample.

In some of our specifications, we classify trade by country and/or product category. Countries
are classified as High Income based on the 2011 World Bank classiﬁcationﬁ In order to identify
intermediate inputs, we use the Broad Economic Categories (BEC rev. 4) classification from
the United Nations that classifies HS6 products into final, intermediate and capital goods. See
Appendix for details.

33Two sectors (coke and refined petroleum, and pharmaceutical products) are dropped because they have tiny
shares of total hours worked, and three sectors (transport equipment, transportation and storage and publish-
ing/broadcasting) are dropped because estimation of equation @ failed to converge. We also drop the computers
and electronic sector because of its intensity in techie workers.

34Fichier Approché des Résultats Esane (FARE)

35https://datahelpdesk.worldbank.org/knowledgebase/articles /906519-world-bank-country-and-lending-groups
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6 Estimation results

We start by reporting the results of production function estimation and the implied elasticities
of employment with respect to skill augmenting productivity. We then turn to our estimates of
endogenous productivity (equations and. Using our regression results, we derive implications
for labor demand. Finally, we estimate the aggregate effect of techies and trade on relative demand

for skill.

6.1 Production function estimates

Table [5| reports industry-by-industry estimates of the production function and demand parameters.
The derivation of equation @ requires o # 1 and ¢ # 1. All of our estimates of ¢ and ¢ are greater
than one, and in all industries we can reject the nulls that ¢ = 1 and ¢ = 1 at conventional levels
of statistical significance (see Table @ The employment-weighted averages are roughly 1.5 for o
and 2.8 for ¢. Economic logic requires that the estimated elasticity of demand 7 satisfies —1 > 1,
which holds and is statistically significant for all industries. The estimated 7)’s are plausible in
magnitude, with an employment-weighted average value of -6.5. For example, we find particularly
large elasticities in Wholesale and Retail, which makes sense based on the nature of these industries.

For each industry, we find that —) > ¢ and @ > & > 1, and in all but one industry we can
reject the null that ¢ = o (see column (3) of Table[f]). From equations (14)-(L5)), this implies that
skill-augmenting technological progress is skill-biased and thus necessarily raises the firm’s skill
intensity. In Table [7] we show that the elasticity of unskilled employment is on average slightly
negative, although this conceals substantial heterogeneity, with substantial positive effects in many
sectors and large negative effects for two industries, Wholesale and Retail, that together comprise
more than a third of hours worked in our sample. By contrast, the elasticity of skilled employment
is greater than or equal to one in every industry, with an employment-weighted average of 1.7. We
return to these results when we calculate the employment effects of techies and trade in Table
below.

Our estimation procedure imposes that the distribution parameters oy, apr and ax are strictly
positive and sum to one, which helps explain the generally small standard errors on these parame-
ters. The final row of the table reports the weighted average of the parameters, and the results are
reasonable, given average shares in factor payments: ays is the largest, followed by apy, while ax

is the smallest. Note that ay and ag are directly given by their corresponding average wage bill
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shares in @, so they have no standard errors.

Our finding of 0 > 1 contrasts with ¢ < 1 found by Doraszelski and Jaumandreu| (2018]) for
Spanish manufacturing firms and Raval| (2019) for U.S. manufacturing plants. Like us, these two
papers assume a CES functional form with Hicks-neutral productivity differences across firms, where
capital and materials are two of the inputs. The key difference from our paper is that [Doraszelski
and Jaumandreu| (2018) and Raval (2019) combine all workers into a single labor aggregate and
allow for labor-augmenting technological differences, while we divide labor into two categories and
allow for skill-augmenting technological differences. Both Doraszelski and Jaumandreu (2018)) and
Raval (2019) acknowledge that their findings of labor-augmenting technological progress may be
conflating skill-composition differences with labor augmenting technological differences across firms.
Our finding of ¢ > 1 is consistent with the findings of |Boler| (2015]), who estimates a model much
like ours on Norwegian manufacturing firms. Our result is also consistent with most of the industry-
and macro-level labor literature on substitution between skilled and unskilled labor (see the results

and discussion in Acemoglu and Autor| (2011))).

6.2 Endogenous productivity

We begin by discussing the impact effects of techies and trade on productivity before reporting
the steady state effects. In the first row of Table [§] we find that the overall level of techies has
a statistically significant effect on skill augmenting productivity wg, but no significant effect on
Hicks-neutral productivity WH@ The second and third rows of the table report estimates when
techies are broken down by their detailed job descriptions. ICT techies have a large and statistically
significant effect on wy, while R&D techies have a tiny and imprecisely estimated effect. Both ICT
and R&D techies have large, precisely estimated and almost equal effects on wg.

Turning to the effects of trade participation on productivity, we find that the effect of exporting
on wy is very small and imprecisely estimated. This does not imply that exporting firms are not
more productive and/or skill intensive, as has been shown in countless studies. Rather, our esti-
mates show that conditional on lagged productivity, exporting does not cause higher productivity.
Thus our results for France contrast with the results of De Loecker (2013)), who finds that export-
ing leads to productivity increases for Slovenian firms during the 1990s. Slovenia in the 1990s was

an emerging transition economy while France is a mature developed country, so our results are

36Similarly, Doraszelski and Jaumandreu| (2018) find that firm level R&D expenditure has a larger effect on labor-
augmenting than Hicks-neutral technological progress.
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consistent with the consensus in the literature that learning-by-exporting is found only in (some)
developing countries. By contrast, exporting does have a positive and statistically significant effect
on wg.

We find no statistically significant effects of importing on wpg, but we do find positive effects
on wg, though the effect is less than half as big as the effect of exporting. Our finding that both
importing and exporting raise wg, combined with our estimates of @ > 1, implies that global
engagement causes French firms to increase their skill intensity.

Table [J reports additional results about the effect of importing on productivity, and allows
us to see whether the country of import sourcing and/or whether importing inputs affects our
conclusions. In columns 1 and 4, we add an indicator variable for imports of intermediate goods, so
that the effect of importing intermediates is the sum of the effect of importing in general and the
incremental effect of importing inputs. Introducing this channel shows that the importing effect on
wyg is no different when we break out intermediate inputs. Columns (2) and (5) of Table [J] consider
an alternative split, with separate indicators for importing from high income countries and all other
countries, and we find that the effect of importing on wg is about twice as high when imports come
from low and medium income countries 7]

Finally, in columns (3) and (6) we report the interactions of the indicator variables for income
class and intermediate imports. Consistent with what we found in column (4), whether imports
of inputs come from high or medium/low income countries makes no difference. The effect of
importing inputs from both high income and other countries is the sum of the two coefficients, and
these linear combinations are reported in the bottom panel of the Table. Our baseline estimate of
0.0143 in column 4 of Table [9) means that the impact effect of offshoring is to raise wg by 1.4 percent
compared to firms who source only from France. In column (3), the coefficient on importing from
other country has a positive sign on on wy but a low degree of significance. However, the effects
of importing from both high income and other countries which is reported in the bottom panel of
the table is not significant.

The final rows of Table [8] report the effects of other controls. Productivity is very persistent,
with a coefficient on lagged productivity of about 0.8 for both wy and wg. By contrast, lagged wg
has a very small and imprecisely estimated effect on wg, and vice versa. Firm size has no discernible
effect on wy but a positive effect on wg, suggesting that bigger firms become more skill intenisve

relative to smaller firms. Firm age has negative effects on both wy and wg, suggesting that older

3"Countries are defined as high income on the basis of the 2002 World Bank classification.
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firms have slower productivity growth@

Because of the persistence of productivity, the techie and trade effects reported in Table
understate the long-run impact of these variables on cross-sectional productivity differences. Table
reports the associated steady-state effects, using equation . In addition to reporting the
long-run effects and their standard errors, Table also reports scaled long-run techie effects in
italics. These are computed by multiplying the long-run coefficients times the 75" percentile of
the corresponding variable, as reported in Table The number 0.148 in the third row of column
3 of Table [10] means that compared to firms with no techies, in the long run firms with a lot of
techies have wg which is 15 percent higher. This is a big effect in economic terms. It is also large
relative to the variation in wg, as 0.148 is equal to 17 percent of the 75" — 25" percentile range
of wg, which is 0.86 (second row, last column of Table . In column 4 of Table [10[ we find that
the scaled long-run effect is about twice as big for R&D techies as for ICT techies, a difference due
to the fact that the 75" percentile of R&D techies is about 2.5 times as large as for ICT techies.
In other words, both ICT and R&D techies have a large long-run effect on wg, but the greater
expenditure on R&D techies means that they have a larger economic effect on wg across firms.

ICT techies also have a large long-run effect on wy, as seen in column (2) of Table The
steady state effect of 0.175 is comparable in size to the effect of techies on wg, and is about 12
percent of the interquartile range of wyy.

The long-run effects of importing and exporting on wg are also substantial, both in economic
terms and relative to the variation in productivity. Since the trade variables are indicators, they
are simple to interpret: the number 0.147 in the “Exporting” row of column (3) and (4) of Table
means that compared to firms that don’t export, exporting causes wg to be 15 percent higher in
the long run. Importing causes an effect which is about half as big, with firms that import having
7 percent higher steady state wg. Thus, the causal effects of exporting are about the same as the

causal effects of employing techies.

6.3 The skill bias of techies and trade

Since the estimated effects of techies on wy are statistically insignificant in Tables [§] through
here we focus on quantifying the employment effects of techies and trade through their effects on

ws. Applying equations —, our quantification uses the industry-level estimates of 1 and o

38 As a robustness check, in unreported results we re-estimated equations ([16)) and (17 with two lags of all variables.
The sum of the coefficients is not appreciably different than the corresponding baseline coefficients with only one lag.
This implies that the long-run effects with one or two lags are essentially the same.
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from Table [5] together with the long-run effects reported in Table[I0] To arrive at an economy-wide
number, we compute the elasticities defined in equations — for each industry. We then
construct an employment-weighted average of the industry elasticities, which we report in the first
line of Table [[2] In Panel A of Table we multiply the elasticities by the estimated effects of
techies and trade from Table Finally, to give a sense of the magnitude of the techie effects,
in Panel B we multiply the Panel A estimates by the 75" percentile of the employment-weighted
distribution of techies. Thus, the numbers in Panel B of Table [I2] answer the question: how does
employment differ between a firm with no techies and a firm with a lot of techies?

The first line of Table shows that skill augmenting productivity raises S and S/L, and has
a tiny negative effect on L. The elasticities are big: a one percent increase in (g raises skilled
employment by 1.7 percent, reduces unskilled employment by less than a tenth of a percent, and
increases skill intensity by 1.8 percent. Techies are an important driver of these effects: as shown
in the first row of Panel B, high techie firms have employment of S that is 0.25 log points (28
percent) higher than firms with no techies, employment of L that is 0.01 log points lower, and a
skill intensity that is 0.26 log points (30 percentage points) higher. This effect is driven more by
R&D techies than by ICT techies.

The last two lines of Panel A show that exporting and importing are also strongly pro-employment
and skill biased: firms that export have employment of S that is 0.26 log points (28 percent) higher
than firms that do not, and firms that import have employment of S that is 0.12 log points (13
percent) higher than firms that do not. Putting these two effects together, global engagement
causes firms to increase S by a substantial 0.37 log points (45 percent).

Table [12] is one of the bottom lines of our paper. For the first time in the literature, we have
jointly estimated the firm-level labor demand effects of ICT, R&D, importing and exporting in a
unified framework, which allows us to compare their importance. Table [12| shows that techies and
trading raise both skill intensity and employment, and the effects are big. These are firm-level
effects, calculated holding market demand and factor prices fixed. In a general equilibrium full
employment model, the partial equilibrium effects found here would have clear implications for

relative wages: techies and trading raise the skill premium.

6.4 Aggregating the effects of techies and trade

In this section we ask: how much of the change in the aggregate skill intensity in our sample period

can be explained by firms’ choices on techies and trade? To do this we proceed in three steps.
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First, we construct predicted changes in productivity shifters across firms. Starting from esti-
mated Hicks-neutral and skill augmenting productivity levels (in logs) in 2009, we predict produc-
tivity levels in 2013 using actual techie, exporting and importing decisions from 2009 through 2012
by iterating forward using the estimated parameters of equations and . The log differences
between the predicted productivity in 2013 and the actual values in 2009 are due to techies and
trade choices made by firms between 2009 and 2012. In the second step we use the predicted
changes in productivity from the first step to calculate the predicted change in employment of S
and L for each firm between 2009 and 2013 using equations —. Finally, we sum over all firms
to get predicted aggregate skill intensity. These calculations take into account both within-firm
adjustment and as changes in firm sizes, but exclude firm entry and exit (85% of employment is
accounted by “continuous” firms, who exist throughout our sample). Details of how we perform
these calculations are given in Appendix

We measure aggregate skill intensity by 100 x S/L. This measure increases in our sample of
continuous firms by 2.7 percentage points (pp), from 16.7 percent in 2009 to 19.4 percent in 2013
(the numbers for the entire French private sector are very similar). Our first computation uses only
the statistically significant direct effects of techies and trade on wg from column 3 of Table|8] Using
these estimates, we calculate that techie employment decisions in 2009-2013 imply an increase in
relative demand for skill of 0.40pp. The same exercise using exporting and importing decisions
amounts to 0.50pp and 0.23pp increase in aggregate relative demand for skill, respectively. Adding
these three effects together gives an increase of 1.13pp, almost half the total increase in the data.

When we evaluate firm-level ICT techie employment decisions in 2009-2013, we use the esti-
mates from columns 2 and 4 of Table 8] We find a much larger implied increase in relative demand
for skill amounting to 3.5pp, which is more than the actual increase of 2.7pp. This is driven by the
large direct effect of ICT techies on wy. In fact, 87% of the 3.5pp implied increase in aggregate
relative demand for skill is driven by changes in firm sizes, holding constant firm-level skill inten-
sities. Skill-intensive firms are those who are also more likely to employ techies, who cause greater
employment growth. The greater importance of changes in firm composition versus within-firm
adjustment is also found in |De Loecker and Eeckhout| (2018]) for increases in average markups, and
Autor et al.[(2020) for the decline in the labor share, and |[Harrigan et al.| (2021) for job polarization.

The calculations in this section do not take account of equilibrium conditions in the markets for
goods or labor. As such, they should be interpreted as rough estimates of the relative demand effects

of techies and trade on labor demand, and in particular their relative importance. Computation
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of the general equilibrium effects on employment and wages is beyond the scope of this paper, but
any general equilibrium model should be consistent with the aggregate relative demand effects that

we compute here.

6.5 Robustness

There are three novel elements of the empirical approach we have implemented in the previous
sections. The first is our specification of the nested CES production function in equations and
(2), which allows for both Hicks-neutral and skill-augmenting technology differences across firms
as well as two elasticities of substitution. The second is the way we treat techies, assuming that
they affect output only through their lagged effect on productivity. Finally, our controlled Markov
specification allows productivity to be an endogenous outcome of firm decisions. In this section,

we consider the sensitivity of our conclusions to each of these elements.

6.5.1 Hicks-neutral productivity only

A key message of our paper is that technological differences across firms have a skill-augmenting
component wg; as well as a Hicks-neutral component wrs¢. If our model is correct, then computing
wp s+ while ignoring variation in wg s will bias the estimates of wy ¢4: firms that are highly productive
beause of high wgy; will incorrectly be measured as having high wp . Additionally, if techies and
trade affect productivity through their effect on wgy;, then ignoring that channel will lead to an
over-estimate of the effect of techies on wy .

To investigate this bias, we estimate a simplified production function which aggregates all non-
techie labor and compute the implied wyy ¢4, preccisely as in GLZ. We then estimate the controlled
Markov equation for wy s excluding wgfi—1.

Results are reported in Table where we find that techies, R&D techies, and imports have
a large and precisely estimated effect on wg ;. This contrasts with our baseline results in Table
where the effect of techies and imports on firm productivity comes mainly through their effect on
wg ¢ rather than through an effect on wy ;. We conclude from comparing Tables |8 and that an

accurate accounting of technology differences across firms requires estimating wgy; as well as W f¢.

6.5.2 Including techies in the production function

In Section above (with details in Appendix [A.2.3) we discuss the biases in productivity

estimation that would result from assuming (as we do) that techie labor services in ¢ have no
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effect on output in ¢ when in fact they do. Here we consider an alternative specification where
we include techies in the definition of employment when estimating the production function, and
then compute implied Hicks-neutral ws; and skill-augmenting wg¢; productivity. Since techies are
part of production in this specification, they should not affect productivity when we re-estimate
the controlled Markov specification for productivity as given by equations and . Table
reports the results of this exercise. The estimated effects of techies on both wg s and wgy; are
somewhat smaller than in our baseline estimates in Table 8] but the null hypothesis that the effects
are zero can be rejected. We thus conclude that the data reject the model that techies affect output
only through a contemporaneous effect on output. This does not establish that techies have no
contemporaneous effect on output, but, as discussed in Section [£.3.2 a model where techies belong

in the production function and, with a lag, also in the productivity process is not identified.

6.5.3 Relative labor demand

In Section we found large effects of techies and trade on skill-augmenting technology wft. What
this means is that, conditional on wages, techies and trade raise firm-level employment of more-
skilled relative to less-skilled workers. This interpretation follows from the relative skill demand
equation when ¢ > 1 (which is what we find for all industries in Table .

We can estimate the relationship between relative skill demand and techies and trade more

directly. Re-writing equation gives

(¢ =1 wgp =In <i> +¢ln (VVL> + constant (19)
ft S/ 1t

Substituting equation into equation and moving the relative wage term to the righthand

side of the equation gives

S W,
In(— =—pln =S + Bsawrfi—1 + Bsswspi—1 + Bszzpi—1 + constant + g (20)
L ft WL ft

Equation ([20) does not impose all of the structure of our model, but is nonetheless intuitive: it
states that relative skill demand depends on relative wages, lagged productivity, and the lagged
determinants of current skill-augmenting productivity.

We estimate equation by two-stage least squares, using In Z¢; defined in equation as an
instrument for In (Wg/WL);,. We report the results in Table As in our baseline specifications
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for skill-augmenting productivity (columns 3 and 4 in Table |8 and columns 4, 5 and 6 in Table @,
we find large and statistically significant positive effects of techies, importing and exporting. The
most interesting result from Table[AZ]is the estimate of 3.1 for the elasticity of substitution between
skilled and less-skilled labor, only slightly larger than the 2.8 average of industry-specific estimates
reported in Table 5] While these parameter estimates cannot be directly compared to the more
model-based estimates discussed in Section [6] it is reassuring that the implications are broadly
consistent: the elasticity of substitution between more-skilled and less-skilled labor is substantially

greater than 1, and techies and trade raise the relative demand for skill.

7 Conclusion

We show how firm-level decisions on R&D, ICT and trade affect firm-level productivity and its bias
towards skilled workers. We do this by estimating firm-level nested CES production functions, which
allows us to infer both Hicks-neutral and skill-augmenting technology differences. We use matched
employer-employee data in manufacturing and non-manufacturing industries in France, from 2009
to 2013. The data has information on exporting, importing and technology adoption at the firm
level, as well as detailed information on each worker’s occupation. Our measure of technology
adoption is firm-level employment of workers in technology and research related occupations, who
we call “techies”.

We find that techies, exporting and importing raise skill-biased productivity. In contrast, only
ICT techies raise Hicks-neutral productivity. We show that both trade and employment of techies
lead to greater employment of skilled workers without reducing employment of less skilled workers.
The result for unskilled workers is surprising but easy to explain: the direct substitution effect away
from unskilled labor is offset by the powerful employment-enhancing effect of greater productivity.
When aggregating our firm-level estimates, we find that ICT has the largest effect on aggregate
demand for skill, mostly through its effect on firm sizes, not through within-firm adjustment. These
conclusions are based on firm-level effects, calculated holding product demand and economy-wide
aggregates constant. Analyzing market and general equilibrium effects that are consistent with our
firm-level findings is an important task for future research.

We develop a new methodology that allows us to identify the causal effects on productivity and
employment of firms’ decisions on trade and employment of techies through their effects on both

Hicks-neutral and skill-augmenting technology differences. This identification is well-founded even
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though we remain silent on what drives firm decisions on techies and trade. Understanding why
some, but not all, firms employ techies and engage in international trade is an important question

that is beyond the scope of this paper.
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Table 1: Covariates of techies
I (techies > 0)

Log revenue 0.120
(0.001)
Exporter dummy 0.272
(0.005)
Importer dummy 0.275
(0.004)
Manager wage bill share 0.142
(0.011)
Obs. 568,650

Notes to Table Each entry is the weighted least squares coeflicient in a regression of the row
variable on an indicator equal to 1 if the firm employs any techies. All regressions include industry
x year fixed effects. Regressions weighted by firm employment. Standard errors clustered by firm
in parentheses. All estimated coefficients are statistically significant at the 0.01 level.

Table 2: Techie occupations

Technical managers & engineers (Ingénieurs et cadres techniques d’entreprise)

Engineers and R&D managers, electricity and electronics
Mechanical engineers and R&D managers

Materials and chemical engineers and R&D managers
Engineers and R&D managers, intermediate goods
Information technology R&D engineers and managers
Information technology support engineers and managers
Information technology project managers
Telecommunications engineers and specialists

Technicians ( Techniciens)

383a R&D
384a R&D
385a R&D
386a R&D
388a ICT
388b ICT
388c ICT
388e ICT
473b  R&D
474b  R&D
475a  R&D
478a ICT
478b ICT
478c ICT
478d ICT

R&D technicians, electrical and electronic equipment

R&D technicians, mechanical and metalworking equipment
R&D technicians, processing industries

R&D technicians, information technology

Computer production and operation technicians

Computer installation and maintenance technicians
Telecommunications and computer network technicians

Notes to Table [2; First column is the occupational code of the PCS classification, and the third
column is our translation of the official descriptions. The second column is our categorization based
on the descriptions.
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Table 3: Wage bill shares within Techies (%)
Whole economy

ICT R&D
2010 38 62
2013 39 61
Variation across industries in 2009
std. dev. 31.0 31.0
Min 17.4 4.2
Max 95.8 82.6

Notes to Table [3} Wage bill shares within techies in the estimation sample. Wage bill shares sum
to 100 across the two categories ICT and R&D.

Table 4: Estimation sample, 2010-2013

Industry Obs.  Obs. Firms Firms Revenue Hours
(%) (%) (%) (%)
Food, beverage, tobacco 18,224 3.2 6,072 3.1 8.8 6.8
Textiles, wearing apparel 6,771 1.2 2,201 11 1.3 1.9
Wood, paper products 13,810 2.4 4,491 2.3 2.5 3.6
Chemical products 4,075 0.7 1,202 0.6 5.0 3.2
Rubber and plastic 11,257 2.0 3,469 1.8 4.3 5.0
Basic metal and fabricated metal 23,908 4.2 7,457 3.9 4.7 7.2
Electrical equipment 3,242 0.6 1,001 0.5 1.9 2.2
Machinery and equipment 8,111 14 2,447 1.3 3.1 3.9
Other manufacturing 19.210 3.4 6,275 3.3 2.6 4.5
Construction 108,919 19.2 38,389 19.9 9.0 14.1
Wholesale 122,317 21.5 40,032 20.7 37.6 21.8
Retail 145,271 25.5 48,680 25.2 14.0 12.6
Accommodation and food services 64,172 11.3 24,212 12,5 2.2 6.4
Administrative and support activities 19,363 3.4 7,033 3.6 3.1 6.8
Total 568,650 100 192,961 100 100 100

Notes to Table {4 We lose 9.8% of total revenue and 9.2% of total hours due to dropping the sectors
of coke and refined petroleum, pharmaceutical products, computer electornic, transport equipment,
publishing and broadcasting and transportation and storage.
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Table 6: Test statistics for production function estimates

(1) @ @ @

Industry Hy:0=1 Hy:9p=1 ¢o—0 J(1)

Food, beverage, tobacco 9.0 9.1 0.901 9.9
44

Textiles, apparel 3.1 5.0 0.503 2.8
2.2

Wood, paper products 2.0 3.8 0.497 0.5
3.2

Chemical products 5.0 3.2 0.604 6.1
2.2

Rubber & plastic 5.5 5.4 0.426 3.7
2.2

Basic & fabricated metal 8.4 7.9 0.230 19.9
4.1

Electrical equipment 3.8 2.8 0.873 2.6
2.3

Machinery & equipment 3.2 7.3 1.322 7.3
6.9

Other manufacturing 5.4 8.9 1.352 8.5
8.0

Construction 16.7 25.6 0.928 64.6
14.8

Wholesale 13.9 29.1 2.307 8.7
2/.4

Retail 12.8 39.5 1.934 33
30.4

Accommodation and food 12.0 15.2 0.026 37.0
0.3

Admin & support 17.8 17.2 2.067 435.1
10.7

Notes to Table[6} Columns (1) and (2) report ¢-statistics for the null hypotheses that the elasticities
of substitution o and ¢ in the production function are equal to one. Column (3) reports the point
estimate of ¢ — o from Table [5{and, in italics, the ¢-statistic for Hp : ¢ —o = 0. Column (4) reports
Hansen’s x? J statistic test of overidentification.
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Table 7: Employment elasticities of skill-augmenting productivity

S L S/L

Food, beverage, tobacco 1.80 0.02 1.78
0.16 0.04 0.20

Textiles, apparel 1.04 0.05 0.99
0.15 0.05 0.20

Wood, paper products 0.73 0.14 0.59
0.12 0.04 0.16

Chemical products 1.07 0.12 0.95
0.22 0.09 0.30

Rubber & plastic 1.17 0.07 1.10
0.17 0.04 0.20

Basic & fabricated metal 0.69 0.20 0.49
0.05 0.02 0.06

Electrical equipment 1.18 0.07 1.11
0.29 0.11 0.39

Machinery & equipment 1.38 -0.01 1.40
0.1/ 0.07 0.19

Other manufacturing 1.53 0.01 1.52
0.13 0.06 0.17

Construction 1.36 -0.07 1.43
0.04 0.01 0.06

Wholesale 2.39 -0.29 2.68
0.06 0.04 0.09

Retail 2.04 -0.27 2.32
0.04 0.02 0.06

Accommodation and food 1.18 0.20 0.98
0.05 0.02 0.06

Admin & support 3.07 0.01 3.06
0.15 0.07 0.18

Weighted average 1.71 -0.07 1.78

Notes to Table Flasticities computed using equations - and estimates from Table
Standard errors in italics. Weighted average elasticities computed using industry hours shares from
Table @
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Table 8: Techie and trade effects on productivity

0 ) ® @
Hicks neutral wg Skill augmenting w?t
Techies 0.4533 0.3501 %+
(0.397) (0.043)
Techies : ICT 0.9137** 0.3519%**
(0.4558) (0.051)
Techies : R&D 0.0465 0.3485%**
(0.6165) (0.061)
Exporting -0.0130 -0.0124 0.0305%**  (0.0305%**
(0.027) (0.0269) (0.0032) (0.0032)
Importing 0.0236 0.0237 0.0139%*%*  (0.0139***
(0.035) (0.0349) (0.0032) (0.0032)
lagged wﬁ 0.8108***  0.8107***  0.0049* 0.0049*
(0.025) (0.0250) (0.0026) (0.0026)
lagged w?, 0.0486 0.0479 0.7939%**  (0.7939%**
(0.034) (0.0337) (0.0054) (0.0054)
firm size 0.0005 0.0005 0.0004***  0.0004***
(0.0004) (0.0004) (0.0001) (0.0001)
firm age -0.0383**  -0.0382**  -0.0064*** -0.0064***
(0.0166) (0.0165) (0.0013) (0.0013)

Notes to Table Weighted least squares estimation of equations and , pooled across indus-
tries, with industry x year fixed effects. Observations weighted by firm employment. Bootstrapped
standard errors clustered by firm in parentheses. Sample: 568,650 observations on 192,961 firms
during 2009-2013. Asterisks indicate statistical significance, * = 0.10, ** = 0.05, *** = 0.01.
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Table 9: Techie and trade effects on productivity, importing detail

(1) (2) (3) (4) (5) (6)
Hicks neutral wft Skill augmenting w?t
Techies 0.4544  0.4515  0.4596  0.3499***  0.3399*** (.3396***
(0.398)  (0.399) (0.399) (0.043) (0.043) (0.043)
Exporting -0.0123  -0.0092 -0.0083  0.0303***  0.0265*** 0.0265%**
(0.026)  (0.024) (0.023)  (0.0032) (0.0032) (0.0032)
Importing 0.0370** 0.0112%**
(0.017) (0.0048)
Importing inputs -0.0158 0.0031
(0.036) (0.0047)
Importing high income 0.0085  0.0232 0.0087***  0.0096*
(0.031)  (0.020) (0.0032) (0.0049)
Importing other income 0.0080 0.0319* 0.0178%F*  0.0169***
(0.029) (0.019) (0.0036) (0.0051)
Imp. inputs high income -0.0180 -0.0010
(0.029) (0.0049)
Imp. inputs other income -0.0318 0.0014
(0.033) (0.0059)
Linear combinations of estimates
Importing + imp. inputs 0.0212 0.0143***
(0.040) (0.0033)
High inc., imp. + imp. inputs 0.00526 0.0086**
(0.035) (0.0034)
Other inc., imp. + imp. inputs 0.0001 0.0183***
(0.036) (0.0042)
Other controls Yes Yes Yes Yes Yes Yes

Notes to Table @]: Weighted least squares estimation of equations and , pooled across
industries, with industry x year fixed effects. Estimates of other controls (lagged productivity,
firm size and age) omitted. Effects reported in bottom panel are linear combinations of WLS
estimates. Observations weighted by firm employment. Bootstrapped standard errors clustered by
firm in parentheses. Sample: 568,650 observations on 192,961 firms during 2009-2013. Asterisks
indicate statistical significance, * = 0.10, ** = 0.05, *** = 0.01.
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Table 10: Long run techie and trade effects on productivity

(1) (2) (3) (4)
Hicks neutral wg Skill augmenting w?t
Techies 2.851 1.767***
(2.30) (0.201)
0.239 0.148
Techies : ICT 5.291°%* 1.834%**
(2.65) (0.235)
0.175 0.061
Techies : R&D 0.678 1.707%**
(3.09) (0.294)
0.054 0.137
Exporting -0.0308 -0.0282 0.147%** 0.147%**
(0.138) (0.137)  (0.015) (0.015)
Importing 0.143 0.143 0.0707*%**  0.0707***
(0.192) (0.192)  (0.015) (0.015)

Notes to Table Effects are long-run steady state effects on productivity given by equation
, based on results in Table 8| Bootstrapped standard errors clustered by firm in parentheses.
Scaled techie coefficients, defined as the estimate times the 75th percentile of the techie distribution
reported in Table [T} are reported in italics. Sample: 568,650 observations on 192,961 firms during
2010-2013. Asterisks indicate statistical significance, * = 0.10, ** = 0.05, *** = 0.01.
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Table 11: Summary statistics for second stage regressions
Mean Std Dev  p25 p50 p75  pT5-p25

Hicks neutral productivity wg 0 1.95 -0.72  0.08 .79 1.514
Skill augmenting productivity wg 0 0.83 -0.42 .01 0.43 0.86
Techie share of wage bill 0.063 0.069 0.019 0.041 0.084  0.065
Techies: ICT 0.031 0.052  0.094 0.018 0.033 0.024
Techies: R&D 0.058 0.060  0.016 0.039 0.080  0.062
Exporting 0.44 0.50 0 0 1 1

Importing 0.48 0.50 0 0 1 1

Notes to Table Summary statistics for variables used to estimate equations and ,
weighted by firm employment. Statistics for the three Techie variables are for firms with positive
employment of each techie variable separately. p25 is the value of the variable at the 25th percentile
of it’s distribution, etc. Sample: 568,650 observations on 192,961 firms during 2010-2013.

Table 12: Employment effects of skill augmenting technology differences

S L S/L
Elasticities 1.71 -0.07 1.78
A. Elasticities x second stage estimates
Techies 3.02 -0.12 3.14
Techies : ICT 3.13 -0.12 3.26
Techies : R&D 2.92 -0.12 3.03
Exporting 0.25 -0.01 0.26
Importing 0.12 0.00 0.13
B. Elasticities x second stage estimates X p75
Techies 0.25 -0.01 0.26
Techies : ICT 0.10 0.00 0.11
Techies : R&D 0.23 -0.01 0.24

Notes to Table[I2} This table reports estimated steady-state effects of skill augmenting productivity
differences on employment of managers S, other workers L, and their ratio. The first row reports
employment-weighted averages of industry level elasticities, computed using equations — and
the estimates from Table[5l Panel A multiplies the elasticities by the corresponding estimates from
columns (3) and (4) of Table Panel B multiplies the panel A numbers by the 75th percentile of
the distribution of techies, from Table
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A Appendix

A.1 data definitions and construction

Here we discuss in detail the three administrative datasets used in our paper, as well as details on
supplementary publicly available data.

A key feature of the French statistical system is that establishments are identified by a unique
number, the SIRET, which is used by all data sources. The first 9 digits of an establishment’s
SIRET comprise the SIREN of the firm to which the establishment belongs. This makes it easy to

aggregate from establishments to firms.

A.1.1 Workers: DADS Poste

Our source for information on workers is the DADS Poste, which is based on mandatory annual
reports filed by all firms with employees, so our data includes all private sector French workers
except the self—employed@ The DADS Poste is an INSEE database compiled from the mandatory
firm-level DADS ("Déclaration Annuelle de Données Sociales") reports. Our unit of analysis is
annual hours paid in a firm, by occupation. The data is reported at the level of establishments,
which are identified by their SIRET. The first nine digits of each SIRET is the firm-level SIREN,
which makes it easy to aggregate across establishments for each firm. For each worker, the DADS
Poste reports gross and net wages, hours paid, occupation, tenure, gender and age. There is no
information about workers’ education or overall labor market experience. The data do not include
worker identifiers, so we can not track workers over time, but this is of no concern to us given our

focus on firm-level rather than individual outcomes 9]

A.1.2 Balance sheet data: FARE

Firm-level balance sheet information is reported in an INSEE dataset called FARE@ The balance
sheet variables used in our empirical analysis include revenue, expenditure on materials, and the

book value of capital. We do not use balance sheet data on employment or the wage bill, because

39 All employers and their employees are covered by the DADS declaration with the exception of self-employed
and government bodies, domestic services (section 97-98 of NAF rev. 2) and employees in businesses outside French
territory (section 99 of NAF rev. 2). However, local authorities and public-employed hospital staff are included since
1992. Public institutions of industrial and commercial nature are also included.

40A related dataset, made famous by |Abowd et al.| (1999), is the DADS Panel. This sample from of the DADS
data does include worker identifiers.

YFICUS (Fichier complet unifié de SUSE) reports balance sheet data through 2007, while FARE ( Fichier approché
des résultats Esane) starts in 2008. The underlying data sources are identical.

50



"RJRP INO UI J0U dIR JR) SUOI)edNodo [en)moLse pur 10999s orqnd sjruio s[qry, Sy, ‘soiojdure Aq pausisse aIr sspod §HJ "90URI] Ul
SIOYIOM TR AJISSR[D 0] POSTL ST S9POD [RUOIYedNID0 JO WDISAS (§2)]9UU01552[04d0100G 9110069907 99 sU01ss3[01] ) SO UL, E@E@H 07 S9J0N

SIoIOqe[ [enuew Pa[Isu )
SIOYIOM [RLIJSNPUL POI[INSU)

SIOYIOM oeso[oyMm pue j10dsurl) POIIYS
SIOATI(]

SIaIOQe[ [enueu PI[[IS

SIOIOM [RLIJSNPUI POI[INS

SIONIOM 9DIAISS [RUOSIOJ

SIOIOM [IR10Y

SIoyI0M 9OIF()

SIOYI0M AJLINDSG

USUIDIO] PUR SIOSIAISdNG

SURIOIUDT,

speuoissojord pue SIoGeurUl [9A-PIA
sreuorssojord )[esY [PAJ[-PIN

SIoYORa],

SI98eURW [RIIUYIQ], PUR SIOOULSUG
sreuorssojord pue srageuewr dog,
speuorssajord oATIRaIN)

sreuolssojoId [RUOIIRONDS PUR OYIJUSIOG
S9SSaUISTI(| JO SPRS]

s1odeasdoyg

SIONIOM PUR SIOUMO SSOUISN( [[RUUG
UoT)R[SURI) [SI[SUY [RIDIFoUN

[euestyre odA) op soyirenb uou sIOLIAN()

[eusnput od4) op soyIeNb UOU SISLIATN()

j10dsuer) np 9o oFeUISESRW NP ‘UOTIUIINURW B] 9P SoyI[enb siorian()
simegner)

reuestre od4A) op soyirenb siotIAn()

Prysnput od£A} op sogienb sioLIAn()

srarnoT)IRd XNR S$109IIP SIDIAISS SIP S[AUUOSI8J
doIomIod op soAorduuryy

ostrdaryus, p sjryenisturupe soAordury

SOITRJI[TW 10 SISO

ASLIJIRWL 9P SIUISR ‘SOIJIRUISIJUO))

SULIOTUTA,

SoSLIdOIIUS SOP SO[RIOISUIIOD 19 SOAIJRIJSIUTWIPR SOIIRIPIULIDIUL SUOISSOJOI]
[RIDOS [TRARI) TIP 19 9JURS R 8D SOIIRIPIULISIUI SUOISSOJOIJ
SO[IUUISSE 10 SINSINIIISUL ‘SO[009 SOP SINSSSIJOI]
ostrdoIjus, p sonbruyoo} soIped 10 SINOIudSu]

9sLIdoIyUo, P XNRIDISWITIOD 19 SJIJRIJSTUTUIPE SOIPR))
so[oe)oads Sop 10 S)IR SOP ‘UOI)RULIOJUL [ 8P SUOISSSJOI]
senbyrjusros suorssojord ‘SInossojorg

snid no sgrreres ()1 ap ostidargua p sjoy))

SO[TUIISS® 10 STURIISUITIO))

SURSILIY

uorydriosep [RIOIJO

89
19
g9
79
€9
3¢9
9¢
G¢
%
€4
8¥
Ly
9
37
(47
8¢
Le
153
Ve
€¢C
GG
1¢
PO SO

sopoo Teuorednod() Ty 9qeL,

51



the DADS Poste data is more detailed, but the FARE wage bill and employment data are extremely
highly correlated with the corresponding DADS Poste data.

To construct capital stocks, we begin with the book value of capital recorded in FARE. We
follow the methodology proposed by Bonleu et al. (2013) and |Cette et al.| (2015)). Since the stocks
are recorded at historical cost, i.e. at their value at the time of entry into the firm 4’s balance sheet,
an adjustment, has to be made to move from stocks valued at historic cost (Kﬁvt) to stocks valued
at current prices (K;s;). We deflate K BV by a price by assuming that the sectoral price of capital

is equal to the sectoral price of investment 1" years before the date when the first book value was

available, where T is the corrected average age of capital, hence pﬁft = pgt_T. The average age of

capital is computed using the share of depreciated capital, DKES‘Q in the capital stock at historical
cost.
DKBY
= gy <A
2,8,
where
- KB,
A = median;cg LBV
ADKz s,t

with S the set of firms in a sector. We use the median value A to reduce the volatility in the data,

as investments within firms are discrete events.

A.1.3 Trade data: Douanes

Our source for firm-level trade data is the French Customs (Douanes). For each trade observation,
we know the importing or exporting firm, trading partner country, the product traded, and the
value of trade. We use the firm-level SIREN identifier to match the trade data to our two other
data sources. This match is not perfect: we fail to match about 11 percent of imports and exports
to firms. The reason for the imperfect match is that there are SIRENs in the trade data for which
there is no corresponding SIREN in our other data sources. This is likely to lead to a particular
type of measurement error: for some firms, we will observe zero trade even when true trade is
positive.

In some of our specifications we classify trade by exporter per capita income and/or whether
they are imports of intermediate goods. Countries are classified as High Income based on the 2011

World Bank classiﬁcatio@ We use the Broad Economic Categories (BEC rev. 4) classification

“*https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups
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from the United Nations that classifies HS6 products into final, intermediate and capital goods.

A.2 Methodology

This section gives details on our two-step estimation procedure and related calculations.

A.2.1 Estimating equation
Using equations and , revenue is given by

n+1 n+1

Ry = "' P Yy = €1 Ay, lan N}, + ax K, + aMMJYt] ” (A.21)

Equation (A.21)) contains three unobservable shocks (uyf, wg s and wgyp) and one unobservable
variable My;. Ny can be constructed from observables and parameters. Before the revenue shock

is realized, firms choose inputs optimally to maximize ex ante profit. Using to substitute for

Ny in (A.21)) yields the following first-order conditions for this problem,

an NG, Xpe = Py (A.22)
1—p
1 1
OZLL';t [OéLLfct + aSQg*ft (Sft)p} 7 aNN}Yt Xp=Wpp (A.23)
1-p
- -1

s, (Spe)” 1 [aLU;t + s, (Sft)P] " anNj T Xp = Wap (A.24)
ay M}, X g = Porge (A.25)

n+l é
where Xpi = LA, anN], + axcK}, +anMj, |, 8 = "2 Dividing (4.22) by (A.25

and solving for My, gives equation , and dividing (A.23) by (A.24) and solving for Qg gives
. Using in gives

|—=

Nygt =L (O%) ’ (A.26)
Aft
Ef, Bf, . , , _
where Ay = BB, = By is the share of unskilled labor in the wage bill.
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If Ny¢ were data, using to eliminate My, and (A.23) to eliminate Qg ¢, from (A.21) would
yield the following estimating equation from GLZ (their equation 8, see their Appendix A.1 for

derivation),

n M N aK Kft)q
InRy =1In +In|Ey; + F 14— — +u A .27
NS [ ft ft< aN> <th Tt (A.27)

Ny depends on parameters and is thus not data, so we substitute (A.26) into (A.27) which yields

our estimating equation @

To solve for Hicks-neutral productivity wp s, substitute and into (A.22), multiply both
sides by Ny, and take logs to obtain equation . An alternative expression for wg s is obtained

using (|A.23]) rather than (A.22)),

-1

7 7 n Y pP—7 N

= —— 1 —_— Aia? ~InFErs—~vInL InFE

WH ft | n <1+77)< taLozN> +pn Lt —yInLyg + n g

N M N\ 7
n(y—1) -1 1o (EptER L (ER\T y

+——— —In|afay | ——"| L — +agK (A.28
(1+n)y L Ep T\ B, ft )

A.2.2 Calculation of standard errors

For the first stage GMM estimates reported in Tables [f] through [7] standard errors are clustered
by firm. For the second stage estimates reported in Tables [§ through [I0] and [A3] through [A4]
covariance matrices are computed by bootstrapping, with firms drawn without replacement, which
is equivalent to clustering by firm. In all bootstraps we use 800 replications (decreasing the number
of replications to 400 had virtually no effect on inference).

As explained in Section the derivation of our production function estimator requires that
that o # 1 and ¢ # 1. Our point estimates satisfy these restrictions (see Table @, but in a small
number of our bootstrap draws the value of ¢ is so close to one, which is equivalent to v close to
zero, that some of the values of Wy take on very extreme values (to see how this happens, note
that equation which defines wp ¢4 includes a term with an exponent § which goes to infinity as
v goes to zero). To prevent our covariance estimates from being distorted by this small number of

bootstrap draws, we drop all bootstraop draws b where |7,| < 0.01.

o4



A.2.3 Effect of techies on output

A central element of our methodology is that we assume that techies affect output only through
their effect on future productivity, and not through any contemporaneous contribution to factor
services that affect current output. This assumption is analogous to the standard assumption that
investment in ¢-1 has no effect on output in ¢-1, but raises output in ¢ through its contribution to
K;. While our assumption that techies affect output only through their effect on future productivity
is well-grounded, it is important to consider how our measurement of productivity could go awry
if techies do in fact increase current output directly, a case that we will call the “orthodox case”.
In general this is an intractable problem to analyze, so here we make two empirically relevant
simplifications. First, we suppose that ¢ = o (which is not far from what we find in Table .
Second, we suppose that in the orthodox case techies are a component of skilled labor S, so that
techies T and managers B (for “bosses”) together make up skilled labor S, and that the ratio of

techies to managers, 07, = T/ By, varies across firms and time. In levels, this amounts to

Sft = Bft + Ty = (1+ (Sft) Bft
Using the approximation log (1 4+ 65;) ~ 6, and the notation that lower case letters are the log of
upper case variables gives sy; = 64 + byy. Similarly, define 74, as the ratio of the techie to manager
wage bill in S,

E}, = Efi+ Ef, = (1 + 1) Ef}

When ¢ = o, the expression for Hicks-neutral productivity given by equation (A.28) simplifies

to
L S M
n n__ Eip Ept+Ep+Epn ) ., .
w = n +Bln |ara L +axgK
"t n+1 (l—i—nAtaLaNL}t) B [ L N( E][”/t It K2 ft
where § = % is negative as long as |n| > o, a condition which holds in our estimates

(see Table |5). Under the assumption that our model is correct, we can write true Hicks-neutral

productivity as
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EL + EB 4+ EM
W}qft =0+ B1n {aLaN ( 1t Eth It L}t + ozKK}’t
ft

n+1 e
the term Ej?t in this expression is multiplied by (1 + 74), giving

Ef + (L+71p) Ef, + EY
W%Ift =0+ fln {aLaN ( /t It It L’}t + OzKK;Zt

where 07 = L= [ln (1177141‘5%)] . Under the assumption that the orthodox model is correct,

Ef,

If the orthodox model is correct, but we incorrectly estimate Hicks-neutral productivity using wllq o

then the error is

Ef, + Ef, + EY
Wirfr — Wt = ﬁln{aLaN < It EJZ ft L}, +akxKj,
t

EL + (14 74) EE + BEY
—ﬁln{aLaN < It E]%t It It L}t —i—aKK;Zt

This expression is strictly positive and increasing in the techie share 7. The intuition is simple:
the larger is 77, the greater is the underestimate of true inputs under the wrong model and thus
the greater the overestimate of Hicks-neutral productivity.

Under the assumption that our model is correct, from (A.23) and (A.24) we can write true

skill-augmenting productivity as

apEL

aLEﬁ
It

1
W}th =lp —bp + ;log (

Under the assumption that the orthodox model is correct, and using log (1 + 7f¢) ~ T4, we can

write true skill-augmenting productivity as

OéLEJ]%>

T 1
wgft = lft — bft — 5ft + % + ;log (aSEL
ft

If the orthodox model is correct, but we incorrectly estimate skill-augmenting productivity using

w}q I then the error is

1 > T, 1 as
Wgp —Wgpy = 0p — —— + —log | —
ST T T g(aB)
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The third term in this expression is a constant, while the first is positive. In our application we
always estimate 1 > p > 0, so the second term is negative. If techies are paid on average the same

as managers, then d7; = 774 and we have

—1 1 ag
by =ene=in (55) + Joo ()

Since (p;pl) < 0, we conclude that the error is negatively correlated with the techie share in the
cross section: firms with high techie shares d7; will have measured wgy; which is biased down by
more than for firms with low techie shares. The intuition is as follows. When 1 > p > 0, greater
wg ¢ leads to greater employment of skilled workers .S, which implies that higher S indicates higher
true wgy;. Incorrectly removing techies from S will thus lead to an underestimate of wgy;, and the

underestimate will be larger the greater is the share of techies in S.

A.2.4 Output and employment elasticities

The unit cost function corresponding to the nested CES production function given by equations

and is

l1—0o
1—¢p

1 _ we\ ¥ _ _
C = an oy [afwi Y4 ag (Qi) + a‘]’(r}{ 7 4+ a‘]{/[p}\/[” (A.29)

1 1
_ o, l1—0c o, l—0c o 1-0c171=
_—QH [anN +Oagrg T oDy ] v

1 1
= — X1
Qy
where wy = |afwl ¥ +af (Ls e d X = [a§wk 7 +a%rk® +afpi;%]. The unit
N apwp T+ ag Qg an [anN + o T Ay Dy ] e unl

factor demands can be obtained using Shepard’s lemma,

®, =0

80 6'LUN Oz‘]rvafwz wa _o
L = = X l1-0o ABO
! owy % owy, Qg ( )
oC  Owy a‘fvagﬁg_lwgwwff_” o
S, = — X1-0 A.31
' duy  duws O (A-31)
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oC  agry’ o
=~ =K K x1%5 A.32
87'K QH ( )

—0

oC O‘i/[pM _o
= = X1-0 A.33
Ipm Qg (A.33)

Unit skill intensity is

S _ et (orws I
L), S agwr,

1 n+l
For an inverse demand curve of the form P = AQ7, revenue is AQ » and the marginal revenue =
1
marginal cost condition is ”THAQW = (. Solving for profit maximizing output ¢ and revenue R

gives

Q = BC™" = BQ "X ot

n+1

R=DC'" = DO\ x o=t

where B = <7777i1A> K , D=AB WTH Increasing marginal costs leads to proportionately increas-
ing prices (because of the constant markup) and thus a decline in sales with elasticity n < 0 and a
decline in revenue with elasticity n+1 < 0. Hicks-neutral TFP improvements raise sales and revenue
with elasticities of —n > 0 and — (4 1) > 0 respectively. Multiplying the unit factor demands
from and by the quantity demanded gives the full Marshallian factor demands,

aZ.afw; fwl° o n
L=0Q=-"L"L N XizxBQ,/ X
Qn
-1 - —c
aZafQ%  wePw? o o n
S=8Q=-N55 "8 N XisxBQ, X1

Qu

Taking logs of these factor demands and collecting constant parameters in k gives

InL=kr+(—n—1)InQy —phwy+ (¢ —0) nwy + <7l7+0> In X
-0
n+o
InS=ks+(—n—1)InQy —pnws+ (p — o) Inwy + (1 >lnX—i—(<p— 1)InQg (A.34)
-0
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To understand how these Marshallian factor demands respond to changes in technology, it is first
necessary to calculate cost shares and elasticities. First we calculate 0y, 0k, and 0 the shares of

composite labor and capital in unit cost,

U)NN1 OzNw]lV 7
9N pu— pu—
C X
0. — rxKy a}'{r}{_”
K="c T Xx
g _ PMMi _ afri?
M C X

Next, we calculate 65 and Ogp, the shares of skilled and unskilled labor in the cost of a unit of

composite labor

1-¢
wr Ly 1— 1— ws
0N = =afw; ?|afw, P+al | ==
wn LY Lvr s\ g

1—¢ 1—¢
_wsLy o wg © 0 wg
Osy = o Qg <Qs> [aLwL +aj Qs

Then we calculate the shares of skilled and unskilled labor in the unit cost of output. We do this

-1

in two steps. First, we divide (A.30)) by (A.29)) to get

Ly ofwy’ we\ 1T
o= x % |erwr T el g,

Next multiply by “A<L wL

wrly  a%wi @ 1— wg =]
_ NN ® © e 1—¢p
= X oy w afw! +af
C X LY™L L*™L S <QS>
=0n x 0N

So we conclude as expected that
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9L :9N X HLN

Similarly,

95291\7 X HSN

Notice that O,y +0sy =1 and 0, +0g =0y and 0, + 05 + O + 0y = 1.

Next, compute the following elasticities,

OlnX  Ohlmwy
81HQH N 61HQH N

Olnwy _ g
0Iln Qg SN
Oln X _ wg =
= — ]_— Y=93%a% —_ X 1: _]- 0

Substituting these expressions into equations (A.34]) yields equations and . These equations

have straightforward intuition:

e For both § and L, the effect of Hicks-neutral technological progress is to reduce the employ-
ment required to produce a unit of ouput, and thus decrease employment with an elasticity
of -1. But at the same time, costs decrease with an elasticity of -1 and thus increase demand
with elasticity 7, so the net effect on employment of Hicks-neutral technological progress is

(n— 1)§H-

e The effect of skill-augmenting technological progress has multiple channels. First, suppose
that ¢ = ¢, which means we have a simple 3-factor CES function and the second term dis-
appears. The term (n — o) 05@5 that appears in both equations represents the cost-reducing
effect of skill-augmenting technological progress, which reduces costs with an elasticity of 0g
and thus increases labor demand with an elasticity (n — o) #g. The term (¢ — 1) (AZS in equa-
tion represents the usual balance between the efficiency effect which reduces employment
with an elasticity of -1 and the substitution between the other factors and S which increases

employment of S with an elasticity o = ¢.
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e The coefficient (0 — ¢) Ogn is negative if ¢, the elasticity of substitution between L and S
within N, exceeds o, the elasticity of substitution between N and the other factors. When
S becomes more productive, there is both substitution within N towards S and substitution

towards N from the other factors.

It is instructive to compute output elasticities directly from the primal production function and

. We have

1 ~ -
Yy =InQupe+ -~V Vi= |aw N}, + ax K, + anMj,

1 ~ -
In Ny = ;ln Ny, Nyt [OZLL?t + ag (sttSft)p]

Output elasticities € are

-1 —1 -1
Ny Ky My,
EYN = ON—= ) €YK = O —= ) €EYM = O —=
ft ft Yy
ot Qr. gt
t S t
ENL = O, I , €ENS = Oés#
N ft N 1t

€YL = €YNENL, €YS = €YNENS

Evidently, these output elasticities are complex functions of parameters and the data, and will differ
depending on where in the sample they are evaluated. But recall that we normalize all data series,
including productivity, by their geometric means. Thus at the geometric mean of the normalized

data, which we denote by superscript g, we have

YI=Qf =L =NI=KI=MI=19 =59 =1

which along with the constant returns to scale assumptions ay + ax + ay = ar + ag =1 in turn
implies that the distribution parameters «; have a very simple interpretation as output elasticities

at the geometric mean of the data,

g  _ g _ g  _ 9  _ g _ g _ g _
€y N = QON, €y = QK, €y =Qn, €yxp =0QL, €yg=0Qag, €y =QaNQL, €yg=aNag
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A.2.5 Quantifying the aggregate effect of techies and trade on relative demand for
skill

Here we describe in detail how we quantify the effect of techies and trade on changes in the aggregate
skill ratio between 2009 and 2013.

To get predicted values for productivity, we set all error terms to zero and iterate forward.
Starting from ¢ — 1 = 2009, and setting the time fixed effects equal to zero to eliminate notational

clutter, we have

Wr2010 = Bz2f2000 + Bwy2009

where 8z and B are estimated parameters from equations and , Wyao09 is estimated pro-
ductivity in 2009, and @rag10 is predicted productivity in 2010. All wy, (whether predicted or not)

are 2 x 1 vectors with elements wys; and wgy;. Iterating forward gives

Bp2013 = Bzzp012 + BBg2zpao11 + B2Bzzsa010 + B2Bzz 12000 + B*w 009 - (A.35)

Suppose that beginning in 2009, zy, = 0. Plugging this into (A.35]) we can define

~0 4
Wrao13 = B w2009

and thus the effect of the actual path of firm decisions (captured in the sequence of z4;s) on predicted

productivity is

Bf2013 — BYoo1s = T = Bzzpa012 + BBzzp011 + B*Bzzr2010 + B*Bz 22000 - (A.36)

The 2 x 1 vector z defined by equation is key in what follows. Note that is not
affected if we explicitly account for the estimated time fixed effects: since the terms involving the
fixed effects are unchanged when we set z¢; = 0, they would show up in the definition of both &y2013
and @?2013 and thus would cancel out in the definition of 1’ The same holds for any elements
of the vector z¢; that we are not interested in (such as size and age): since these are identical in
the definitions of both W13 and @?2013, their effects cancel out in (A.36]).

When we consider the effect of firm decisions on techies, all elements of z7; in are set
to zero, except for firm expenditures on techies. Similarly, when we consider the effect of firm

trade decisions, the only non-zero element of zs; in (A.36)) are the firm indicators for exporting or
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importing.

To get the effect of predicted productivity on predicted Syog13 and Ljyogi3, we substitute the
elements of = (under each experiment: techies or importing) for dwg s and dwgy: in equations
—. In doing so, we use industry-specific estimates of the elasticities 1, o and ¢. We replace
Osn by the industry-specific estimate of ag, and 0g by the industry-specific estimate of agay,
because the data do not permit us to gauge the expenditure share on skilled labor in total costs.
The reason is that we do not know the costs of firms, since we do not observe the cost of capital (we
observe all other components of costs). Since we normalize all of our input data by the geometric
mean for each industry, at the point of normalization O3y = ag and 0 = agay. We then use
these predicted percent changes between 2009 and 2013 to get predicted levels in 2013, based on
the actual 2009 levels of Sya009 and L fagpg. Finally, we sum across the predicted Sypo013 and L 2013
to get predicted aggregate levels Sog13 and Logis in 2013. These are used to compute predicted
82013/ L2013)-

We compare the predicted change S2013/L2013 — S2009/ L2009 to the actual change in the data,

as described in the main text.

A.2.6 Firm choice of techies

In this section we describe a very simple model of a firm’s choice of how many techies to employ.
The purpose is to give intuition about why some but not all firms choose to hire techies, and to
motivate the correlations that are reported in Table We describe the firm’s optimal choice of
techies, given a simple function from current techies to future productivity. A simple two-period
model is sufficient to illustrate the mechanisms at work. We also assume that there is just one
dimension to productivity, and that the firm faces the demand curve given by equation (3)).

The relationship from techies to changes in log productivity is

Try
Wi =wp—1 + Mazx [5ln< ’J;t 1>,0], >0 (A.37)
1f

Here, effective techie services per unit of techies employed is % < 1. Fixed costs of employing
positive techies are yps. Although the elasticity of productivity with respect to techies is constant
and equal to ¢, the level of techie employment required to attain a given Awy; will differ across

firms because of differences in ;.
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The production function is

th = thLft

where Ly = F'(Xy) , F is the CES aggregator, X is vector of inputs, and Qy, = e“/t. Let w be
the cost of the input bundle. By equation , revenue is

n—1

Rypp = AlQp L]
The static profit-maximizing input choice is

o1 [n=1A]"
Ly =95 [ 7 w}

Plugging this back into the expression for revenue gives optimized revenue for given productivity,

- —1\"!
Rpy=BQY ', B=A (77) Wi
n

With no discounting, the firm chooses T';_1 to maximize two-period profits,

Iy = BQ}, Y + B = rTpy — Sofl (Ti—1 > 0)

where I () is the indicator function. There will be two solutions, one the corner solution with

Ty—1 = 0 and the other an interior optimum with Tp_; > 0. When Ty, > 0, equation ((A.37))

é
implies Q¢ = [Tfy ;1} Q1. Substituting this into the expression for profits gives
Tr1]° .
-1 t—1
1t = BQ?]“tfl —1T—1— vy +B <|: j:/lf :| th_1> (A.38)

At the interior solution, the firm chooses T';_1 to maximize H:]C. The solution of this problem is

§(n—1) 1—

n
Ty = (0 — §) Tt 7“175(177*1)7{5}"_1)_1(2;(1"_1)_1 (A.39)

For high enough values of §, the second order condition of the profit maximization problem doesn’t

hold and optimal techie employment is infinite. To rule this out we assume ¢ < 77%1 < 1. This
restriction implies that the elasticities of techies with respect to 7 and ~;; are negative, and that
the elasticity of techies with respect to wyq is positive.

Plugging the solution (A.39) back into the expression for 2, gives
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-5
o]0 L

This equation establishes the intuitive result that optimized €1, is decreasing in r and vy, and
increasing in Q.
To figure out whether Ty = 0 or T > 0 yields higher profits, the firm simply computes

maximized profits in each case. Profits at the corner solution are

C -1
n§ = 2B,

To compute profits at the interior solution, substitute (A.39)) and (A.40]) into (A.38) to obtain

5(n—1)

n—1

- 0 1-6(n—1) r 5(n—1)—1 1

I} = BOG —ryop ++ <7§1> B {5 (7= 1)] —rd(n—1)1=0D
1f

Thus the difference between the two profit levels is

I} 10§ = —ryo7 + e B {5(77—1)} —rd(n— 1)
Ly

A necessary condition for this to be positive is that the term in brackets is positive. This will be
more likely when demand (captured by B) is higher, and less likely when r is higher. If the term
in brackets is positive, the whole expression is more likely to be positive the smaller is 15 and oy
and the larger is 27;. If the term in brackets is negative, then H? — HJ? < 0 even if 7oy = 0, which
shows that fixed costs are not a necessary condition for zero techies to be optimal.

The lessons from this exercise are quite simple and intuitive:

e The optimal amount of techies is more likely to be positive when demand and/or initial

productivity are higher.

e The optimal amount of techies is more likely to be zero when fixed costs of techies are high

and/or when the efficiency of techies are low.
e The optimal amount of techies may be zero even if the fixed cost of employing techies is zero.

e When the optimal amount of techies is positive, it is increasing in initial productivity and

the efficiency of techies.
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Firms that export will have a higher demand level A, and thus will be more likely to employ techies.

The predictions from this simple model are consistent with the correlations in Table

A.3 Additional tables

66



Table A2: Techie and trade effects on Hicks neutral productivity, simplified production function

(1) (2)

Techies 0.4872%**
(0.1068)
Exporting 0.0074 0.0077
(0.0049) (0.0049)
Importing 0.0214%*F*%  0.0214%**
(0.0063) (0.0063)
Techies : ICT 0.7129%***
(0.1253)
Techies : R&D 0.2846**
(0.1227)
lagged wi 0.8545%%%  ().8544%**
(0.0102) (0.0102)
Other controls Yes Yes

Notes to Table Dependent variable for all regressions is estimated Hicks neutral productivity
w]{{t computed from simplified production function estimation, see text for details. Weighted least
squares estimation of equation , pooled across industries, with industry x year fixed effects.
Other controls include firm size and age. Observations weighted by firm employment. Bootstrapped
standard errors clustered by firm in parentheses. Sample: 568,650 observations on 192,961 firms

during 2009-2013. Asterisks indicate statistical significance, * = 0.10, ** = 0.05, *** = 0.01.

Table A3: Techie and trade effects on productivity, techies in production

(1) (2) (3) (4)

Hicks neutral wg Skill augmenting w?t
Techies 0.2828 0.2735%**
(0.3136) (0.0465)
Techies : ICT 0.7938** 0.2377%**
(0.3999) (0.0496)
Techies : R&D -0.2018 0.3074%%*
(0.4683) (0.0638)
Exporting -0.0089  -0.0084 0.0300%**  (0.0300%***
(0.0308)  (0.0307) (0.0030) (0.0030)
Importing 0.0241 0.0243 0.0136***  0.0136***
(0.0422) (0.0422) (0.0031) (0.0031)
other controls yes yes yes yes

Notes to Table [A3} Weighted least squares estimation of equations (16) and (L7)), pooled across

industries, with industry x year fixed effects. Techies included in S and L in production function
estimation. Other controls included lagged wﬁ and w]*?t, lagged firm size and age. Observations
weighted by firm employment. Bootstrapped standard errors clustered by firm in parentheses.
Sample: 568,650 observations on 192,961 firms during 2009-2013. Asterisks indicate statistical
significance, * = 0.10, ** = 0.05, *** = 0.01.
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Table A4: Techie and trade effects on skill demand
(1) (2)
log Skill premium -3.1312***  -3.1299***
(0.0517) (0.0516)

Techies 0.9328***
(0.1390)
Exporting 0.1490%**%  0.1502***
(0.0156) (0.0156)
Importing 0.1386***  (.1388***
(0.0149) (0.0148)
Techies : ICT 1.8250%**
(0.1920)
Techies : R&D 0.1460
(0.1365)
lagged w]{{t 0.0067* 0.0064*
(0.0038) (0.0038)
lagged w3, 0.9795%%*  (.9780***
(0.0853) (0.0852)
Other controls Yes Yes

Notes to Table Dependent variable for all regressions is log hours of skilled/unskilled hours
worked. Weighted two stage least squares estimation of equation , pooled across industries,
with industry x year fixed effects. Other controls include firm size and age. Observations weighted
by firm employment. Bootstrapped standard errors clustered by firm in parentheses. Sample:
568,650 observations on 192,961 firms during 2009-2013. Asterisks indicate statistical significance,
* = 0.10, ** = 0.05, *** = 0.01.
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