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1 Introduction

The aggregate production function is pervasive in macroeconomics. The vast majority
of macroeconomic models postulate that real GDP or aggregate output Y can be writ-
ten as arising from some specific parametric function Y = F(L1, . . . , LN, A), where Li

is a primary factor input and A indexes different production technologies. By far the
most common variant takes the form Y = AF(AKK, ALL), where A, AK, and AL index
Hicks-neutral, capital-augmenting, and labor-augmenting technical change, and F is a
CES function.1

From the early 50s to the late 60s, the aggregate production function became a central
focus of a dispute commonly called the Cambridge-Cambridge controversy. The attackers
were the post-Keynesians, based primarily in and associated with Cambridge, England,
and the defenders were the neoclassicals, based primarily in and associated with Cam-
bridge, Massachusetts.2 A primary point of contention surrounded the validity of the
neoclassical aggregate production function. To modern economists, the archetypal exam-
ple of the neoclassical approach is Solow’s famous growth model (Solow, 1956), which
uses an aggregate production function with capital and labor to model the process of
economic growth.

The debate kicked off with Joan Robinson’s 1953 paper criticizing the aggregate pro-
duction function as a ”powerful tool of miseducation.” The post-Keynesians (Robinson,
Sraffa, and Pasinetti, among others) criticized the aggregate production function, and
specifically, the aggregation of the capital stock into a single index number. They were
met in opposition by the neoclassicals (Solow, Samuelson, Hahn, among others) who ral-
lied in defense of the aggregate production function.

Eventually, the English Cambridge prevailed against the American Cambridge, deci-
sively showing that aggregate production functions with an aggregate capital stock do
not always exist. They did this through a series of ingenious, though perhaps exotic
looking, “re-switching” examples. These examples demonstrated that at the macro level,

1More precisely, this variant can be written as

Y
Ȳ

=
A
Ā

(
ωK

(
AKK
ĀKK̄

) σ−1
σ

+ ωL

(
ALL
ĀL L̄

) σ−1
σ

) σ
σ−1

,

where bars denote values of output, factors, and productivity shifters, at a specific point, ωL and ωK =
1 − ωL are the and labor and capital shares at that point, and σ is the elasticity of substitution between
capital and labor. The popular Cobb-Douglas specification obtains in the limit σ→ 1.

2See Cohen and Harcourt (2003) for a retrospective account of the controversy.
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“fundamental laws” such as diminishing returns may not hold for the aggregate capital
stock, even if, at the micro level, there are diminishing returns for every capital good. This
means that a neoclassical aggregate production function could not be used to study the
distribution of income in such economies.

However, despite winning the battle, the English side arguably lost the war. Although
exposed as a fiction, the “neoclassical” approach to modeling the production technology
of an economy was nevertheless very useful. It was adopted and built upon by the real
business cycle and growth literatures starting in the 1980s. Reports of the death of the ag-
gregate production function turned out to be greatly exaggerated, as nearly all workhorse
macroeconomic models now postulate an exogenous aggregate production function.

Why did Robinson and Sraffa fail to convince macroeconomists to abandon aggre-
gate production functions? One answer is the old adage: you need a model to beat a
model. Once we abandon the aggregate production function, we need something to re-
place it with. Although the post-Keynesians were effective in dismantling this concept,
they were not able to offer a preferable alternative. For his part, Sraffa advocated a disag-
gregated approach, one which took seriously “the production of commodities by means
of commodities” (the title of his magnum opus). However, his impact was limited. Clean
theoretical results were hard to come by and conditions under which factors of produc-
tion could be aggregated were hopelessly restrictive.3 In a world lacking both computa-
tional power and data, and in lieu of powerful theorems, it is little wonder that worka-
day macroeconomists decided to work with Solow’s parsimonious aggregate production
function instead. After all, it was easy to work with and only needed a sparing amount
of data to be calibrated, typically having just one or two free parameters (the labor share
and the elasticity of substitution between capital and labor).4

Of course, today’s world is awash in an ocean of micro-data and access to compu-
tational power is cheap and plentiful, so old excuses no longer apply. Macroeconomic
theory must evolve to take advantage of and make sense of detailed micro-level data.
This paper is a contribution to this project.

We fully take on board the lessons of the Cambridge-Cambridge controversy and al-
low for as many factors as necessary to ensure the existence of aggregate production func-

3For a good review, see Felipe and Fisher (2003)
4The popular specification Y = AF(AKK, ALL) with F a CES function described in details in footnote

1 can be entirely calibrated using the labor share ωL and the elasticity of substitution between capital and
labor σ, or even with only the labor share ωL under the common Cobb-Douglas restriction.
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tions.5 Instead of desperately seeking to aggregate factors, we focus on aggregating over
heterogeneous producers in competitive general equilibrium. Under the assumptions of
homothetic final demand and no distortions, such aggregation endogenously gives rise
to aggregate production functions.6 The key difference between our approach and that of
most of the rest of the literature that follows the Solow-Swan paradigm is that we treat ag-
gregate production functions as endogenous reduced-form objects rather than structural
ones. In other words, we do not impose an arbitrary parametric structure on aggregate
production functions at the outset and instead derive their properties as a function of
deeper structural microeconomic primitives.

Our contribution is to fully characterize these endogenous aggregate production func-
tions, up to the second order, for a general class of competitive disaggregated economies
with an arbitrary number of factors and producers, arbitrary patterns of input-output
linkages, arbitrary microeconomic elasticities of substitution, and arbitrary microeconomic
technology shifters. Our sufficient-statistic formulas lead to general aggregation results
expressing the macroeconomic elasticities of substitution between factors and the macroe-
conomic bias of technical change in terms of microeconomic elasticities of substitution
and characteristics of the production network.

The benefits of microfoundations do not require lengthy elaboration. First, they ad-
dress the Lucas critique by grounding aggregate production functions in deep structural
parameters which can be taken to be constant across counterfactuals driven by shocks
or policy. Second, they allow us to understand the macroeconomic implications of mi-
croeconomic phenomena. Third, they allow to unpack the microeconomic implications of
macroeconomic phenomena.

This development can be put in a broader perspective by drawing an analogy with the
shifting attitudes of economists towards aggregate consumption functions. In the wake
of the Rational Expectations Revolution and the Lucas critique, economists abandoned
aggregate consumption functions— functions that postulated a parametric relationship
between aggregate consumption and aggregate income without deriving this relation-

5Since we do not place any restrictions on the number of factors the economy has, we can recreate the
famous counterexamples from the Cambridge capital controversy in our environment. In other words,
despite having an aggregate production function, our framework can accommodate the classic Cambridge
UK critiques. We show exactly how in Section 5.

6We explain later how to generalize our results regarding macroeconomic elasticities of substitution and
the macroeconomic bias of technical change to environments with non-homothetic final demand and with
distortions using an alternative “propagation-equations” methodology which we have developed in other
papers (see Baqaee and Farhi, 2017b, 2018).
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ship from microeconomic theory. This has become all the more true with the rise of
heterogeneous-agent models following the early contributions of Bewley (1986), Aiyagari
(1994), Huggett (1993), and Krusell and Smith (1998). However, the aggregate production
function, which does much the same thing on the production side of the economy was left
largely unexamined. By deriving an aggregate production function from first-principles,
this paper provides microeconomic foundations for the aggregate production function
building explicitly on optimizing microeconomic behavior.

We restrict attention to situations where aggregate production functions, functions
that map endowments and technologies to output, exist. Aggregate production functions
may fail to exist if there is no single quantity index corresponding to final output; this
happens for example if final demand is non-homothetic either because there is a rep-
resentative agent with non-homothetic preferences or because there are heterogeneous
agents with different preferences. Furthermore, aggregate production functions also fail
to exist in economies with distortions. Extended notions of aggregate production func-
tions with distortions and non-homothetic final demand can be defined. However, they
are less useful in the sense that their properties cannot anymore be tied to interesting ob-
servables: their first and second derivatives do not correspond to factor shares, elasticities
of substitution between factors, and bias of technical change.

In this paper, we confine ourselves to economies with homothetic final demand and
without distortions. In other papers (see Baqaee and Farhi, 2017b, 2018), we have de-
veloped an alternative “propagation-equations” methodology to cover economies with
non-homothetic final demand and with distortions. These propagation equations gen-
eralize equations (5) and (6) in Proposition 2 and equations (8) and (9) in Proposition 7.
They fully characterize the elasticities of sales shares and factor shares to factor supplies,
factor prices, and technology shocks. They can be used along the exact same lines as in
this paper to express the macroeconomic elasticities of substitution between factors and
the macroeconomic bias of technical change as a function of microeconomic primitives.
This shows precisely how to extend our results to economies with non-homothetic final
demand and with distortions.

The outline of the paper is as follows. In Section 2 we set up the basic model, introduce
the aggregate cost and production functions as dual ways of representing an economy’s
production possibilities, and define the notions of macroeconomic elasticities of substitu-
tion between factors and of the bias of technical change. In Section 3, we define and char-
acterize the properties of aggregate cost functions for the case of nested-CES economies.
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In Section 4, we define and characterize the properties of aggregate production functions
for the case of nested-CES economies. In Section 5, we review some classic aggregation
theorems and provide new ones. We revisit the Cambridge-Cambridge controversy, and
represent some of the classic arguments via our framework and language. In Section 6, we
provide some simple theoretical examples to illustrate the results developed in Sections
3 and 4: Hicksian and non-Hicksian examples with two and three factors; an example
showing how to capture Houthakker (1955) within our framework; and an example of
factor-biased technical change in a task-based model. In Section 7, we present a simple
quantitative application to capital-skill complementarity à la Griliches (1969) in the US
economy, taking into account the multiplicity of sectors and their input-output linkages.
We put it to use to revisit the analysis in Krusell et al. (2000) of the role of these comple-
mentarities in the evolution over time of the skill premium. In Section 8, we generalized
the results of Sections 3 and 4 to non-nested-CES economies with two simple tricks. We
conclude in Section 9.

2 Setup

In this section, we setup the model and notation, define the equilibrium, the aggregate
production, and the aggregate cost function.

2.1 Environment

The model has a set of producers N, and a set of factors F with supply functions L f . We
write N + F for the union of these two sets. With some abuse of notation, we also denote
by N and F the cardinalities of these sets. What distinguishes goods from factors is the
fact that goods are produced from factors and goods, whereas factors are produced ex
nihilo. The output of each producer is produced using intermediate inputs and factors,
and is sold as an intermediate good to other producers and as a final good.

Final demand is a constant-returns-to-scale aggregator

Y = D0(c1, . . . , cN), (1)

where ci represents the use of good i in final demand and Y is real output.7

7As mentioned before, in this paper, we put ourselves under conditions where the existence of an ag-
gregate output good can be taken for granted because final demand is homothetic. One way to extend
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Each good i is produced with some constant-returns- to-scale production function.
Hence, we can write the production function of each producer as

yi = AiFi(xi1, · · · , xiN, Li1, · · · , LiF) (2)

where yi is the total output of i, xij is the use of input j, and Li f is the use of factor f . The
variable Ak is a Hicks-neutral productivity shifter. We will sometimes use the unit-cost
function A−1

i Ci(p1, · · · , pN, w1, · · · , wF) associated with the production function Fi.
Finally, the economy-wide resource constraints for goods j and factors f are given by:

cj + ∑
i∈N

xij = yj, (3)

∑
i∈N

Li f = L f . (4)

This framework is more general than it might appear. First, although we have as-
sumed constant-returns-to-scale production functions, our analysis also covers the case
of decreasing-returns-to-scale production functions: we simply need to add producer-
specific fixed factors.8,9 Similarly, although we have assumed that technical change is
Hicks neutral, our analysis also covers the case of biased factor- or input-augmenting
technical change: for example, to capture factor- f -augmenting technical change for firm

our analysis to economies that do not possess an “output” good is to characterize the economy’s distance
function. The distance function is the dual of the cost function in quantity space: D(L, A, c) = maxδ{δ :
L/δ produces at least c final goods}, where L, A, and c are vectors of factors, productivities, and final con-
sumptions. Whenever an output good D0(c) exists because final demand is homothetic, the distance func-
tion is simply D(L, A, c) = D0(c)/F(L, A). In Baqaee and Farhi (2018), we develop an alternative approach
based on “propagation equations” which generalize equations (5) and (6) in Proposition 2 and equations
(8) and (9) in Proposition 7. These equations allow us to characterize the first- and second-order properties
of real GDP when it is defined as a Divisa index (and does not correspond to any physical quantity) and
hence to compute macroeconomic elasticities of substitution between factors and the macroeconomic bias
of technical change along the same lines as in this paper. This methodolgy generalizes our results to en-
vironments with non-homothetic final demand. It also has the advantage of allowing us to also deal with
economies with distortions in the same unified framework.

8This was an observation made by McKenzie (1959). See Section 6.3 for a concrete example in the model
of Houthakker (1955).

9Note that this flexibility also allows us to capture different renditions of assignment/sorting models
(see Sattinger, 1993, for a survey) in great generality. In these models: there are distributions of workers
and tasks of different types; output in a given task depends on both the type of the worker and the type
of the task; the output of different tasks can be complements or substitutes; and tasks and workers may
operate under decreasing returns to scale, limiting, for example, the number of workers per task. These
models can be captured within our framework by treating different types of workers as different factors,
different tasks as different producers, and allowing for producer-specific fixed factor to capture decreasing
returns at the task level.
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i, we simply introduce a new fictitious producer which linearly transforms factor f into
factor f for firm i and study a Hicks-neutral technology shock to this fictitious producer.

2.2 Feasible and Competitive Equilibrium Allocations

We first define feasible allocations.

Definition. (Feasible Allocations) A feasible allocation is a set of intermediate input choices
xij, factor input choices Li f , outputs yi, final demands ci, and real output Y, such that (1),
(2), (3), and (4) hold.

Next we define equilibrium allocations. Equilibrium allocations are feasible alloca-
tions which arise as part of a competitive equilibrium.

Definition. (Equilibrium Allocations) An equilibrium allocation is a set of prices pi and
w f for goods and factors, intermediate input choices xij, factor input choices Li f , outputs
yi, final demands ci, and real output Y, such that: final demand maximizes Y subject to (1)
and to the budget constraint ∑N

i=1 pici = ∑F
f=1 w f L f ; each producer i maximizes its profits

piyi −∑j∈N pjxij −∑ f∈F w f Li f subject to (2), taking prices pj and wages w f as given; the
markets for all goods i and factors f clear so that (3) and (4) hold. Instead of fixing factor
supplies L f , we can also define feasible and equilibrium allocations for given factor prices
w f and level of income E allocated to final demand.

The welfare theorems apply in our environment. Equilibrium allocations are efficient
and coincide with the solutions of the planning problems introduced below, which define
the aggregate production and cost functions. We will make use of these theorems to go
back and forth between those properties most easily seen using the equilibrium decen-
tralization and those that arise more naturally using the planning problem.

Going forward, and to make the exposition more intuitive, we slightly abuse notation
in the following way. For each factor f , we interchangeably use the notation w f or pN+ f

to denote its wage, the notation Li f or xi(N+ f ) to denote its use by producer i, and the no-
tation L f or y f or to denote total factor supply. We define final demand as an additional
good produced by producer 0 according to the final demand aggregator. We interchange-
ably use the notation c0i or x0i to denote the consumption of good i in final demand. We
write 1 + N for the union of the sets {0} and N, and 1 + N + F for the union of the sets
{0}, N, and F.
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2.3 Aggregate Production and Cost Functions

We start by defining the aggregate production and cost function planning problems. We
then define the associated aggregate factor price, factor demand, and factor supply func-
tions.

Aggregate Production and Cost Functions

The aggregate production function is defined as the solution of the following planning
problem:

F(L1, · · · , LF, A1, · · · , AN) = max Y

subject to (1), (2), (3), and (4). It is homogeneous of degree one in the factor supplies
L1, · · · , LF. As already discussed above, this production function also indexes the equi-
librium level of real output as a function of productivity shocks Ai and factor supplies
L f .

The aggregate cost function is defined as the solution of the dual planning problem
which seeks to minimize the expenditure necessary to achieve real output Y given factor
prices w f :

C(w1, · · · , wF, A1, · · · AN, Y) = min E

subject to (1), (2), (3), and E = ∑ f∈F w f L f . It is homogeneous of degree one in the fac-
tor prices w1, · · · , wF. The aggregate cost function is also homogeneous of degree one
in aggregate output Y so that we can write it as YC(w1, . . . , wF, A1, . . . , AN), where with
some abuse of notation, C now denotes the aggregate unit-cost function. Most of the re-
sults in the rest of the paper characterize the log derivatives of the aggregate cost function
with respect to productivities or factor prices, which coincide with the corresponding log
derivatives of the aggregate unit-cost function, and so both can be used interchangeably.
To fix ideas, the reader can focus on the aggregate cost function.

The primary difference between the aggregate production function and the aggregate
cost function is that the latter takes the factor quantities as given, while the latter takes
the factor prices as given.

The goal of this paper is to characterize the aggregate production and cost functions
up to the second order as a function of microeconomic primitives such as microeconomic
elasticities of substitution and the input-output network. Propositions 1 and 6 character-
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ize the Jacobians (first derivatives) and Propositions 2 and 7 the Hessians (second deriva-
tives) of the aggregate production and cost functions.

In economic terms, this means that we seek to characterize not only macroeconomic
marginal products of factors and factor demands (first-order properties) but also macroe-
conomic elasticities of substitution between factors and the sensitivities of marginal prod-
ucts of factors and factor demands to technical change (second-order properties).

Macroeconomic Elasticities of Substitution Between Factors

As is well known, there is no unambiguous way to generalize the standard Hicksian
notion of elasticity of substitution between factors (Hicks, 1932) when there are more
than two factors, and several concepts have been proposed in the literature.

Invariably, all competing definitions of the elasticity of substitution are computed via
the Jacobian and Hessian of a function. Since we characterize both of these in general, our
results can be used to compute all the different notions of the elasticity of substitution. In
this paper, we follow Blackorby and Russell (1989) who advocate using the definition due
to Morishima (1967). They argue that Morishima Elasticities of Substitution (MESs) are
appealing because they extend the standard Hicksian notion while preserving some of
its desirable properties: an MES is a measure of the inverse-curvature of isoquants; it is a
sufficient statistic for the effect on relative factor shares of changes in relative factor prices;
it is a log derivative of a quantity ratio to a price ratio.10

Definition. (MESs for the Aggregate Production Function) The MES σF
f g between factors

f and g in the aggregate production function is defined as

1
σF

f g
=

d log( dF
dL f

/ dF
dLg

)

d log(Lg/L f )
= 1 +

d log( d log F
d log L f

/ d log F
d log Lg

)

d log(Lg/L f )
.

Definition. (MESs for the Aggregate Cost Function) The MES σC
f g between factors f and

10Stern (2010) points out that while the MES in cost do characterize the inverse-curvature of the corre-
sponding constant-output isoquants, those in production do not. In the production function case, he defines
the symmetric elasticity of complementarity to be the inverse-curvature of the constant-output isoquants,
and shows that its inverse, which measures the curvature of the constant-output isoquants, is symmet-
ric and can easily be recovered as a share-weighted harmonic average (Λ f + Λg)/(Λ f /σF

f g + Λg/σF
g f ) of

the MESs in production. This concept is the dual of the shadow elasticity of substitution put forth by
McFadden (1963), which is symmetric and which can be recovered as share-weighted arithmetic average
(Λ f σC

f g + ΛgσC
g f )/(Λ f + Λg) of the MESs in costs. We will focus on characterizing MESs for the aggregate

production and cost functions.
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g in the aggregate cost function is defined as

σC
f g =

d log( dC
dw f

/ dC
dwg

)

d log(wg/w f )
= 1 +

d log( d log C
d log w f

/ d log C
d log wg

)

d log(wg/w f )
.

Note that the ratios (dF/dŁ f )/(dF/dLg) and (d log F/d log L f )/(d log F/d log Lg) are
homogeneous of degree zero in L1, · · · , LF . Similarly, the ratios (dC/dw f )/(dC/dwg)

and (d log C/d log w f )/(d log C/d log wg) are homogeneous of degree zero in w1, · · · , wF.
These definitions exploit this homogeneity to write these ratios as functions of L1/L f , · · · , LF/L f

and w1/w f , · · · , wF/w f , respectively. Therefore, underlying the definition of σF
f g are vari-

ations in Lg/L f , holding Lh/L f constant for h , g, i.e. variations in Lg, holding Lh con-
stant for h , g. Similarly, underlying the definition of σC

f g are variations in wg/w f , holding
wh/w f constant for h , g, i.e. variations in wg, holding wh constant for h , g.

As we shall see below in Propositions 1 and 6, d log F/d log Lh and d log C/d log wh are
equal to the factor shares Λh in the competitive equilibria of the corresponding economies.
MESs therefore pin down the elasticities of relative factor shares to relative factor supplies
or relative factor prices:

1− 1
σF

f g
= −

d log(Λ f /Λg)

d log(Lg/L f )
and σC

f g − 1 =
d log(Λ f /Λg)

d log(wg/w f )
.

Similarly, dF/dLh is equal to the wage rate wh and dC/dwh to the factor demand per
unit of output Lh in the competitive equilibria of the corresponding economies, which
can be viewed as homogeneous-of-degree-zero functions of L1, · · · , LF and w1, · · · , wF

respectively. MESs therefore pin down the elasticities of factor prices to factor supplies
and of factor demands to factor prices:

1
σF

f g
=

d log(w f /wg)

d log(Lg/L f )
and σC

f g =
d log(L f /Lg)

d log(wg/w f )
.

MESs between factors in the aggregate production and cost functions can be directly
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expressed as a function of the Jacobians and Hessians of these functions:

1− 1
σF

f g
=

d2 log F/(d log Lg)2

d log F/d log Lg
−

d2 log F/(d log L f d log Lg)

d log F/d log L f
,

σC
f g − 1 =

d2 log C/(d log w f d log wg)

d log C/d log w f
−

d2 log C/(d log wg)2

d log C/d log wg
.

MESs between factors in the aggregate production function are typically not symmet-
ric so that σF

f g , σF
g f and σC

f g , σC
g f in general. Moreover, MESs between factors in the

aggregate production and cost functions are typically not equal to each other, so σF
f g , σC

g f
in general.

The “Hicksian” case where there are only two factors of production f and g is special
in this regard since in this case, the MESs for the cost and production function are the
same, and symmetric, so that we get σF

f g = σF
g f , σC

f g = σC
g f , and σF

f g = σC
f g. The proof is

standard and can be found in Hicks (1932) and in Russell (2017) for example.
Consider the case where the aggregate production function and the associated aggre-

gate cost function are of the CES form with

F(L1, . . . , LN, A) = Ȳ
A
Ā

(
N

∑
i=1

ωi

(
Li

L̄i

) σ−1
σ

) σ
σ−1

,

C(w1, . . . , wN, A) =
Ā
A

(
N

∑
i=1

ωi

(
wi

w̄i

)1−σ
) 1

1−σ

,

where bar variables correspond to some particular point and ωi denotes the share of factor
i at this point. Then with our definitions, the MESs in the aggregate production and cost
functions between factor f and factor g are given by σF

f g = σC
f g = σ.

More generally, if the aggregate production and cost functions are of the nested-CES
form, and if two factors belong to the same CES nest, then the MES between these two
factors is equal to the elasticity of substitution of the nest; more generally, if two factors
enter together with other factors only through a nested-CES sub-aggregate, then the MES
between these two factors is only a function of the elasticities of substitution in the nested-
CES sub-aggregate.

However, even when the economy with disaggregated production is of the nested-
CES form as described in Section 2.5, the aggregate production and cost functions that
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describe its production possibility frontier are typically not of the nested-CES form except
in simple cases with limited heterogeneity and simple input-output network structures.
MESs between factors in the aggregate production and cost functions are macroeconomic
elasticities of substitution. They incorporate general equilibrium effects and typically do
not coincide with any microeconomic elasticity of substitution.

Our results in Propositions 3 and 8 below deliver formulas for the MESs between
factors as a function of microeconomic primitives such as microeconomic elasticities of
substitution and the input-output network.

Macroeconomic Bias of Technical Change

We now present our definitions of the macroeconomic bias of technical change. These
definitions generalize the definitions proposed by (Hicks, 1932) to the case of multiple
factors. We present these definitions directly in terms of the Jacobians and Hessians of
the aggregate production and cost functions. We later relate them to the elasticities of
relative factor shares to technology shocks.

Definition. (Bias of Technical Change for the Aggregate Production Function) The bias
BF

f gj in the aggregate production function towards factor f vs. factor g of technical change
driven by a technology shock to producer j is defined as

BF
f gj

1 + BF
f gj

=
d log( d log F

d log L f
/ d log F

d log Lg
)

d log Aj
.

Definition. (Bias of Technical Change for the Aggregate Cost Function) The bias BC
f gj in

the aggregate cost function towards factor f vs. factor g of technical change driven by a
technology shock to producer j is defined as

BC
f gj =

d log( d log C
d log w f

/ d log C
d log wg

)

d log Aj
.

As already alluded to, and as we shall see below in Propositions 1 and 6, d log F/d log Lh

and d log C/d log wh are equal to the factor shares Λh in the competitive equilibria of the
corresponding economies. The macroeconomic biases of technical change in the aggre-
gate production and cost functions therefore pin down the elasticities with respect to tech-
nology shocks of relative factor shares as well as of relative factor prices and of relative

13



factor demands, holding respectively factor supplies or factor prices constant :11,12

BF
f gj

1 + BF
f gj

=
d log(Λ f /Λg)

d log Aj
=

d log(w f /wg)

d log Aj
and BC

f gj =
d log(Λ f /Λg)

d log Aj
=

d log(L f /Lg)

d log Aj
.

Technological bias in the aggregate production and cost functions can be directly ex-
pressed as a function of the Jacobians and Hessians of these functions:

BF
f gj

1 + BF
f gj

=
d2 log F/(d log Ajd log L f )

d log F/d log L f
−

d2 log F/(d log Ajd log Lg)

d log F/d log Lg
,

BC
f gj =

d2 log C/(d log Ajd log w f )

d log C/d log w f
−

d2 log C/(d log Ajd log wg)

d log C/d log wg
.

Even in the Hicksian case where there are only two factors, the biases of technology in
the aggregate production and cost functions do not necessarily coincide so that BF

f gj , BC
f gj

in general.
Consider the case where the aggregate production and cost functions are of the CES

11We can use these measures to compute a measure of bias of technical change towards one factor instead
of towards one factor vs. another by defining

BF
f j = ∑

g∈F

d log F
d log Lg

BF
f gj = ∑

g∈F
ΛgBF

f gj =
d log Λ f

d log Aj
=

d log w f

d log Aj
− λj

and

BC
f j = ∑

g∈F

d log C
d log wg

BC
f gj = ∑

g∈F
ΛgBC

f gj =
d log Λ f

d log Aj
=

d log L f

d log Aj
− λj,

holding respectively factor supplies or factor prices constant.
12We can also use these measures to compute the scale bias of technical change in the case where there

are decreasing-returns-to-scale at the microeconomic level. As mentioned above, we capture decreasing
returns to scale at the microeconomic producer level by introducing producer-specific fixed factors Fs ⊂ F.
We can then measure the scale bias of technical change by computing the elasticity to the technology shock
of the cumulated share of the other factors

∑
f∈F−Fs

d log F/d log L f

∑g∈F−Fs d log F/d log Lg
BF

f j = ∑
f∈F−Fs

Λ f

∑g∈F−Fs Λg
BF

f j =
d log(∑ f∈F−Fs Λ f )

d log Aj

and

∑
f∈F−Fs

d log C/d log w f

∑g∈F−Fs d log C/d log wg
BC

f j = ∑
f∈F−Fs

Λ f

∑g∈F−Fs Λg
BC

f j =
d log(∑ f∈F−Fs Λ f )

d log Aj
,

holding respectively factor supplies or factor prices constant. The the bias towards F − Fs of technical
change is a measure of the scale bias of technical change.
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form with

F(L1, . . . , LN, A1, . . . , AN) = Ȳ

(
N

∑
i=1

ωi

(
Ai

Āi

Li

L̄i

) σ−1
σ

) σ
σ−1

,

C(w1, . . . , wN, A1, . . . , AN) =

(
N

∑
i=1

ωi

(
Āi

Ai

wi

w̄i

)1−σ
) 1

1−σ

,

where bar variables correspond to some particular point, ωi denotes the share of factor i at
this point, and Ai is a technological shock augmenting factor i. Then with our definitions,
the biases in the aggregate production and cost functions towards factor f vs. factor g
of technical change driven by a technology shock augmenting factor j are given BF

f gj =

BC
f gj = σ− 1 if j = f , BF

f gj = BC
f gj = −(σ− 1) if j = g, and BF

f gj = BC
f gj = 0 otherwise.

More generally, if the aggregate production and cost functions are of the nested-CES
form with factor-augmenting technical change, and if two factors belong to the same CES
nest, then the bias towards the first factor vs. the second factor of a technology shock is
equal to (minus) the elasticity of substitution minus one of the nest if the technology shock
augments the first (second) of the two factors, and zero otherwise; more generally, if two
factors enter together with other factors only through a nested-CES sub-aggregate, then
the bias between these two factors is nonzero only for technology shocks that augment the
factors in the nested-CES sub-aggregate, and then it is only a function of the elasticities of
substitution in the nested-CES sub-aggregate.

However, even when the economy with disaggregated production is of the nested-
CES form as described in Section 2.5, the aggregate production and cost functions that
describe its production possibility frontier are typically not of the nested-CES form with
factor-augmenting technical change except in simple cases with limited heterogeneity and
simple input-output network structures. The bias of technical change in the aggregate
production and cost functions are macroeconomic in nature. They incorporate general
equilibrium effects and typically do not coincide with any microeconomic elasticity of
substitution minus one.

Our results in Propositions 5 and 10 below deliver formulas for the bias of technical
change as a function of microeconomic primitives such as microeconomic elasticities of
substitution and the input-output network.
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2.4 Input-Output Definitions

To state our results, we require some input-output notation and definitions. We define
input-output objects such as input-output matrices, Leontief inverse matrices, and Domar
weights. These definitions arise most naturally in the equilibrium decentralization of
the corresponding the planning solution (for the aggregate production function or the
aggregate cost function respectively).

Input-Output Matrix

We define the input-output matrix to be the (1 + N + F)× (1 + N + F) matrix Ω whose
ijth element is equal to i’s expenditures on inputs from j as a share of its total revenues

Ωij ≡
pjxij

piyi
,

Note that input-output matrix Ω includes expenditures by producers on factor inputs as
well as expenditures by consumers for final consumption. By Shephard’s lemma, Ωij is
also the elasticity of the cost of i to the price of j, holding the prices of all other producers
constant.

Leontief Inverse Matrix

We define the Leontief inverse matrix as

Ψ ≡ (I −Ω)−1 = I + Ω + Ω2 + . . . .

While the input-output matrix Ω records the direct exposures of one producer to another,
the Leontief inverse matrix Ψ records instead the direct and indirect exposures through the
production network. This can be seen most clearly by noting that (Ωn)ij measures the
weighted sums of all paths of length n from producer i to producer j. By Shephard’s
lemma, Ψij is also the elasticity of the cost of i to the price of j holding fixed the prices
of factors but taking into account how the price of all other goods in the economy will
change.
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GDP and Domar Weights

GDP or nominal output is the total sum of all final expenditures

GDP = ∑
i∈N

pici = ∑
i∈N

pix0i.

We define the Domar weight λi of producer i to be its sales share as a fraction of GDP

λi ≡
piyi

GDP
.

Note that ∑i∈N λi > 1 in general since some sales are not final sales but intermediate
sales.

For expositional convenience, for a factor f , we sometimes use Λ f instead of λ f . Note
that the Domar weight Λ f of factor f is simply its total income share.

We can also define the vector b to be final demand expenditures as a share of GDP

bi =
pici

GDP
=

pix0i

GDP
= Ω0i.

The accounting identity

piyi = pici + ∑
j∈N

pixji = Ω0iGDP + ∑
j∈N

ΩjiλjGDP

links the revenue-based Domar weights to the Leontief inverse via

λ′ = b′Ψ = b′ I + b′Ω + b′Ω2 + . . . .

Another way to see this is that the i-th element of b′Ωn measures the weighted sum of all
paths of length n from producer i to final demand.

2.5 Nested-CES Economies

We call an economy nested CES if all the production functions of all the producers (in-
cluding final demand) are of the nested-CES form with Hicks-neutral technical change
at the level of each nest. Following Baqaee and Farhi (2017a), any nested-CES economy,
with an arbitrary number of producers, factors, CES nests, elasticities, and intermediate
input use, can be re-written in what we call standard form, which is more convenient to
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study.
A CES economy in standard form is defined by a tuple (ω, θ, F). The (1 + N + F)×

(1 + N + F) matrix ω is a matrix of input-output parameters. The (1 + N)× 1 vector θ is
a vector of microeconomic elasticities of substitution. Each good i is produced with the
production function

yi

yi
=

Ai

Āi

 ∑
j∈1+N+F

ωij

(
xij

xij

) θi−1
θi


θi

θi−1

,

where xij are intermediate inputs from j used by i. Throughout the paper, variables with
over-lines are normalizing constants equal to the values at some initial allocation. We
represent final demand Y as the purchase of good 0 from producer 0 producing the final
good. For the most part, we assume that A0 = Ā0 and abstract away from this parame-
ter.13

Through a relabelling, this structure can represent any nested-CES economy with an
arbitrary pattern of nests and elasticities. Intuitively, by relabelling each CES aggregator
to be a new producer, we can have as many nests as desired.

To facilitate the exposition in the paper, and due to their ubiquity in the literature,
we present our baseline results for nested-CES economies in Sections 3 and 4. We then
explain how to generalize them for arbitrary economies in Section 8.

3 Aggregate Cost Functions

In this section, we provide a general characterization of aggregate cost functions up to
the second order for nested-CES economies. We refer the reader to Sections 6 and 7 for
some simple theoretical and quantitative examples, and to Section 8 for a generalization
to non-nested-CES economies.

3.1 First-Order Characterization

The following proposition characterizes the first derivatives (gradient) of the aggregate
cost function.

13Changes in A0 are changes in how each unit of final output affects consumer welfare. This is what
Hulten and Nakamura (2017) call “output-saving” technical change.
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Proposition 1. (Gradient) The first derivatives of aggregate cost function are given by the sales
shares of goods and factors

d log C
d log w f

= Λ f and
d log C
d log Ai

= −λi.

The proposition follows directly from Hulten’s theorem (Hulten, 1978). It shows that
the elasticity of the aggregate cost function C to the price of factor f is given by the share
Λ f of this factor in GDP. Similarly, the elasticity of the aggregate cost function C to the
productivity of producer i is given by the negative of the sales share λi of this producer
in GDP. The proposition is fully general and applies even when the economy is not of the
nested-CES form.

Incidentally, Proposition 1 confirms that the aggregate cost function C is homogeneous
of degree one in factor prices, since ∑ f∈F Λ f = 1. It also confirms that C is homogeneous
of degree one in aggregate output Y since d log C/ d log A0 = 1.

3.2 Second-Order Characterization

The following proposition characterizes the second derivatives (Hessian) of the aggregate
cost function.

Proposition 2. (Hessian) The second derivatives of aggregate cost function are determined by the
elasticities of the sales shares of goods and factors

d2 log C
d log w f d log wg

=
dΛ f

d log wg
,

d2 log C
d log Ajd log Ai

= − dλi

d log Aj
,

d2 log C
d log Ajd log w f

=
dΛ f

d log Aj
,

where the elasticities of the sales shares are given by

d log λi = ∑
k∈1+N

(θk − 1)
λk
λi

CovΩ(k)(∑
j∈N

Ψ(j)d log Aj − ∑
g∈F

Ψ(g)d log wg, Ψ(i)), (5)
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and the elasticities of the factor shares are given by

d log Λ f = ∑
k∈1+N

(θk − 1)
λk
Λ f

CovΩ(k)(∑
j∈N

Ψ(j)d log Aj − ∑
g∈F

Ψ(g)d log wg, Ψ( f )). (6)

The shares propagation equations (5) and (6) are taken directly from Baqaee and Farhi
(2017a). While Baqaee and Farhi (2017a) focuses on the second-order macroeconomic
impact of microeconomic shocks d2 log C/(d log Ajd log Ai), in this paper, we focus in-
stead on d2 log C/(d log w f d log wg), which as we will show in Section 3.3 below, de-
termines the macroeconomic elasticities of substitution between factors, as well as on
d2 log C/(d log Ajd log w f ), which determines the elasticity of factor shares to technical
change i.e. the bias of technical change.

Of course, equation (6) is obtained simply by letting i = f in (5). This proposition
shows that these equations, which characterize the elasticities of the shares of goods and
factors to productivity shocks and factor prices, completely pin down the second deriva-
tives of the aggregate cost function.

In these equations, we make use of the input-output covariance operator introduced by
Baqaee and Farhi (2017a):

CovΩ(k)(Ψ(j), Ψ(i)) = ∑
l∈N+F

ΩklΨl jΨli −
(

∑
l∈N+F

ΩklΨl j

)(
∑

l∈N+F
ΩklΨli

)
, (7)

where Ω(k) corresponds to the kth row of Ω, Ψ(j) to jth column of Ψ, and Ψ(i) to the
ith column of Ψ. In words, this is the covariance between the jth column of Ψ and the ith
column of Ψ using the kth row of Ω as the distribution. Since the rows of Ω always sum to
one for a reproducible (non-factor) good k, we can formally think of this as a covariance,
and for a non-reproducible good, the operator just returns 0.

To gain some intuition, consider for example the elasticity d log Λ f /d log wg of the
share Λ f of factor f to the price of factor g in equation (6). Imagine a shock d log wg < 0
which reduces the wage of factor g. For fixed relative factor prices, every producer k will
substitute across its inputs in response to this shock. Suppose that θk > 1, so that producer
k substitutes expenditure towards those inputs l that are more reliant on factor g, captured
by Ψlg, and the more so, the higher θk − 1. Now, if those inputs are also more reliant

on factor f , captured by a high CovΩ(k)

(
Ψ(g), Ψ( f )

)
, then substitution by k will increase

demand for factor f and hence the income share of factor f . These substitutions, which
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happen at the level of each producer k, must be summed across producers. The intuition
for d log Λ f /d log Aj in equation (6) as well as for d log λi/d log wg and d log λi/d log Aj

in equation 5 is similar.

3.3 Macroeconomic Elasticities of Substitution Between Factors

We can leverage Proposition 2 to characterize the macroeconomic elasticities of substitu-
tion between factors in the aggregate cost function.

Proposition 3. (MESs) The MESs between factors in the aggregate cost function are given by

σC
f g = ∑

k∈1+N
θkλkCovΩ(k)(Ψ(g), Ψ(g)/Λg −Ψ( f )/Λ f ),

where

∑
k∈1+N

λkCovΩ(k)(Ψ(g), Ψ(g)/Λg −Ψ( f )/Λ f ) = 1.

This proposition shows that MESs σC
f g between factors in the aggregate cost function

are weighted averages of the microeconomic elasticities of substitution θk in production
with weights given by sufficient statistics of the input-output network λkCovΩ(k)(Ψ(g), Ψ(g)/Λg−
Ψ( f )/Λ f ). These weights capture the change in demand expenditure for factor f vs. g as
a result substitution by producer k in response to a change in the price of factor f .

This implies the following network-irrelevance result, already uncovered in Baqaee
and Farhi (2017a), in the knife-edge case where all the microeconomic elasticities of sub-
stitution are identical.

Proposition 4. (Network Irrelevance) If all microeconomic elasticities of substitution θk are equal
to the same value θk = θ, then MESs σC

f g between factors in the aggregate cost function are also
equal to that value σC

f g = θ.

3.4 Macroeconomic Bias of Technical Change

We can also leverage Proposition 2 to characterize the macroeconomic bias of technical
change in the aggregate cost function.
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Proposition 5. (Bias of Technical Change) The biases towards one factor vs. another of the differ-
ent technology shocks in the aggregate cost function are given by

BC
f gj = ∑

k∈1+N
(θk − 1)λkCovΩ(k)(Ψ(j), Ψ( f )/Λ f −Ψ(g)/Λg).

This proposition shows that biases BC
f gj are weighted sums of the departures from one

θk − 1 of the microeconomic elasticities of substitution with weights given by sufficient
statistics of the input-output network λkCovΩ(k)(Ψ(j), Ψ( f )/Λ f −Ψ(g)/Λg). These weights
capture the change in demand expenditure for factor f vs. g as a result substitution by
producer k in response to a technology shock to producer j.

The network-irrelevance result for MESs in the aggregate cost function stated in Propo-
sition 4 does not extend to the bias of technical change. In general, the network matters
for the bias of technical change, even when all the microeconomic elasticities of substi-
tution θk are identical. The Cobb-Douglas is the one case where it doesn’t: when all the
microeconomic elasticities θk are unitary so that θk = 1, technical change in unbiased with
BC

f gj = 0 for all f , g, and j, no matter what the structure of the network is.

4 Aggregate Production Functions

In this section, we provide a general characterization of aggregate production functions
up to the second order for nested-CES economies. We refer the reader to Sections 6 and 7
for some simple theoretical and quantitative examples, and to Section 8 for a generaliza-
tion to non-nested-CES economies.

4.1 First-Order Characterization

The following proposition characterizes the first derivatives (gradient) of the aggregate
production function.

Proposition 6. (Gradient) The first derivatives of aggregate cost function are given by the sales
shares of goods and factors

d log F
d log L f

= Λ f and
d log F
d log Ai

= λi.
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The proposition follows directly from Hulten’s theorem (Hulten, 1978). It shows that
the elasticity of the aggregate production function F to the supply of factor f is given by
the share Λ f of this factor in GDP. Similarly, the elasticity of the aggregate production
function F to the productivity of producer i is given by the sales share λi of this producer
in GDP. The proposition is fully general and applies even when the economy is not of the
nested-CES form.

Once again, Proposition 6 confirms that the aggregate production function is homoge-
neous of degree one with respect to factor quantities since ∑ f∈F Λ f = 1.

4.2 Second-Order Characterization

The following proposition characterizes the second derivatives (Hessian) of the aggregate
production function.

Proposition 7. (Hessian) The second derivatives of aggregate cost function are given by the elas-
ticities of the sales shares of goods and factors

d2 log F
d log L f d log Lg

=
dΛ f

d log Lg
,

d2 log F
d log Ajd log Ai

=
dλi

d log Aj
,

d2 log F
d log Ajd log L f

=
dΛ f

d log Aj
,

where the elasticities of the sales shares are given by

d log λi = ∑
k∈1+N

(θk − 1)
λk
λi

CovΩ(k)(∑
j∈N

Ψ(j)d log Aj + ∑
g∈F

Ψ(g)d log Lg, Ψ(i))

− ∑
h∈F

∑
k∈1+N

(θk − 1)
λk
λi

CovΩ(k)(Ψ(h), Ψ(i))d log Λh, (8)

and where the elasticities of the factor shares solve the following system of linear equations

d log Λ f = ∑
k∈1+N

(θk − 1)
λk
Λ f

CovΩ(k)(∑
j∈N

Ψ(j)d log Aj + ∑
g∈F

Ψ(g)d log Lg, Ψ( f ))

− ∑
h∈F

∑
k∈1+N

(θk − 1)
λk
Λ f

CovΩ(k)(Ψ(h), Ψ( f ))d log Λh. (9)
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The shares propagation equations (8) and (9) are taken directly from Baqaee and Farhi
(2017a). While Baqaee and Farhi (2017a) focuses on the second-order macroeconomic
impact of microeconomic shocks d2 log F/(d log Ajd log Ai), in this paper, we focus in-
stead on d2 log F/(d log L f d log Lg), which as we will show in Section 4.3 below, de-
termines the macroeconomic elasticities of substitution between factors, as well as on
d2 log F/(d log Ajd log w f ), which determines the elasticity of factor shares to technical
change i.e. the biase of technical change.

The difference with the characterization of the second-order aggregate cost function
in Section 3.2 is that: the elasticities of the factor shares show up in equation (8) for the
elasticities of the sales shares; the elasticities of the sales shares are now given by a system
of linear equations. As we shall see, this is because shocks trigger changes in relative
demand for factors, which given fixed factor supplies, lead to changes in factor prices.

To gain some intuition, consider for example the vector of elasticities d log Λ/d log Lg

of factor shares to the supply of factor g. Note that as observed in Baqaee and Farhi
(2017a), we can rewrite the system of linear factor share propagation equations (9) as

d log Λ
d log Lg

= Γ
d log Λ
d log Lg

+ δ(g), (10)

with
Γ f h = − ∑

k∈1+N
(θk − 1)

λk
Λ f

CovΩ(k)

(
Ψ(h), Ψ( f )

)
,

and
δ f g = ∑

k∈1+N
(θk − 1)

λk
Λ f

CovΩ(k)

(
Ψ(g), Ψ( f )

)
.

We call δ the factor share impulse matrix. Its gth column encodes the direct or first-round
effects of a shock to the supply of factor g on factor income shares, taking relative factor
prices as given. We call Γ the factor share propagation matrix. It encodes the effects of
changes in relative factor prices on factor income shares, and it is independent of the
source of the shock g.

Consider a shock d log Lg > 0 which increases the supply of factor g. If we fix relative
factor shares, the relative price of this factor declines by −d log Lg. Every producer k
will substitute across its inputs in response to this shock. Suppose that θk > 1, so that
producer k substitutes expenditure towards those inputs l that are more reliant on factor
g, captured by Ψlg, and the more so, the higher θk − 1. Now, if those inputs are also more
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reliant on factor f , captured by a high CovΩ(k)

(
Ψ(g), Ψ( f )

)
, then substitution by k will

increase demand for factor f and hence the income share of factor f . These substitutions,
which happen at the level of each producer k, must be summed across producers.

This first round of changes in the demand for factors triggers changes in relative factor
prices which then sets off additional rounds of substitution in the economy that we must
account for, and this is the role Γ plays. For a given set of factor prices, the shock to g
affects the demand for each factor, hence factor income shares and in turn factor prices, as
measured by the F× 1 vector δ(g) given by the gth column of δ. These changes in factor
prices then cause further substitution through the network, leading to additional changes
in factor demands and prices. The impact of the change in the relative price of factor
h on the share of factor f is measured by the f hth element of the F × F matrix Γ. The
movements in factor shares are the fixed point of this process, i.e. the solution of equation
(10):

d log Λ
d log Lg

= (I − Γ)−1δ(g),

where I is the F× F identity matrix.
The intuition for the elasticities of factor share to productivity shocks d log Λ/d log Aj

in equation (9) and for the elasticities of sales shares of goods to factor supplies d log λ/d log Lg

and to productivities d log λ/d log Aj in equation (8) are similar.

4.3 Macroeconomic Elasticities of Substitution Between Factors

As in Section 3.3, we can leverage Proposition 7 to characterize the macroeconomic elas-
ticities of substitution between factors in the aggregate production function.

Proposition 8. (MESs) The MESs between factors in the aggregate production function are given
by

1− 1
σF

f g
= (I(g) − I( f ))

′(I − Γ)−1δ(g),

where Γ is the F× F factor share propagation matrix defined by

Γhh′ = − ∑
k∈1+N

(θk − 1)λkCovΩ(k)

(
Ψ(h′), Ψ(h)/Λh

)
,
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δ is the F× F factor share impulse matrix defined by

δhh′ = ∑
k∈1+N

(θk − 1)λkCovΩ(k)

(
Ψ(h′), Ψ(h)/Λh

)
δ(g) is its gth column, I is the F× F identity matrix, and I( f ) and I(g)are its f th and gth columns.

In Section 3.3, we showed that the MES σC
f g between factors in the aggregate cost func-

tion are weighted averages of the microeconomic elasticities of substitution θk in produc-
tion with weights given by sufficient statistics λkCovΩ(k)(Ψ(g), Ψ(g)/Λg−Ψ( f )/Λ f ) of the
input-output network. For the aggregate production function, the MESs σF

f g between fac-
tors are still determined by microeconomic elasticities of substitution θk and by sufficient
statistics λkCovΩ(k)(Ψ(h′), Ψ(h)/Λh) of the input-output network. However, they are no
longer weighted averages of the microeconomic elasticities of substitution, and they de-
pend on a longer list of input-output network sufficient statistics. In fact, σF

f g is now a
nonlinear function of the sufficient statistics (θk − 1)λkCovΩ(k)(Ψ(h′), Ψ(h)/Λh).

There are two special cases where σF
f g becomes a weighted average of the microeco-

nomic elasticities θi, The first case is the “Hicksian” case when there are only two factors.
The second case is when all the microeconomic elasticities of substitution are identical,
which follows from the following network-irrelevance result established in uncovered in
Baqaee and Farhi (2017a).

Proposition 9. (Network Irrelevance) If all microeconomic elasticities of substitution θk are equal
to the same value θk = θ, then MESs σF

f g between factors in the aggregate production function are
also equal to that value σF

f g = θ.

4.4 Macroeconomic Bias of Technical Change

We can also leverage Proposition 7 to characterize the macroeconomic bias of technical
change in the aggregate production function.

Proposition 10. (Bias of Technical Change) The biases towards one factor vs. another of the
different technology shocks in the aggregate production function are given by

BF
f gj

1 + BF
f gj

= (I( f ) − I(g))
′(I − Γ)−1δ̂(j),
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where Γ is the F× F factor share propagation matrix defined by

Γhh′ = − ∑
k∈1+N

(θk − 1)λkCovΩ(k)

(
Ψ(h′), Ψ(h)/Λh

)
,

δ̂ is the F× 1 + N factor share impulse matrix defined by

δ̂hj = ∑
k∈1+N

(θk − 1)λkCovΩ(k)

(
Ψ(j), Ψ(h)/Λh

)
,

δ̂(j) is its jth column, I is the F× F identity matrix, and I( f ) and I(g)are its f th and gth columns.

In Section 3.4, we showed that the bias BC
f gj of technical change in the aggregate

cost function was a weighted sum of the departure from one θk − 1 of the microeco-
nomic elasticities of substitution in production with weights given by sufficient statis-
tics λkCovΩ(k)(Ψ(j), Ψ( f )/Λ f − Ψ(g)/Λg) of the input-output network. For the aggre-
gate production function, BF

f gj is determined by departures from one θk − 1 of microe-
conomic elasticities of substitution and by sufficient statistics λkCovΩ(k)(Ψ(j), Ψ(h)/Λh)

and λkCovΩ(k)(Ψ(h′), Ψ(h)/Λh) of the input-output network. However, it is no longer a
weighted sum of the departures from one of the microeconomic elasticities of substitu-
tion, and it depends on a longer list of input-output network sufficient statistics. In fact,
BF

f gj is now a nonlinear function of the sufficient statistics (θk− 1)λkCovΩ(k)(Ψ(j), Ψ(h)/Λh)

and (θk − 1)λkCovΩ(k)(Ψ(h′), Ψ(h)/Λh).
As in case of the aggregate cost function, the network-irrelevance result for MESs in

the aggregate production function stated in Proposition 9 does not extend to the bias of
technical change. In general, the network matters for the bias of technical change, even
when all the microeconomic elasticities of substitution θk are identical. Once again, the
Cobb-Douglas is the one case where it doesn’t: when all the microeconomic elasticities θk

are unitary so that θk = 1, technical change in unbiased with BF
f gj = 0 for all f , g, and j,

no matter what the structure of the network is.
As already mentioned, in Sections 6 and 7, we will present some simple theoretical

and quantitative examples to illustrate the results of Sections 3 and 4.. In Section 8, we
will also generalize these results to non-nested-CES economies. Before doing so however,
we now turn to the questions of factor aggregation and network factorization and relate
our results to the Cambridge-Cambridge controversy.
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5 Factor Aggregation, Network Factorization, and the

Cambridge-Cambridge Controversy

“The production function has been a powerful instrument of miseducation.
The student of economic theory is taught to write Y = F(K, L) where L is a
quantity of labour, K a quantity of capital and Y a rate of output of commodi-
ties. He is instructed to [...] measure L in man-hours of labour; he is told
something about the index-number problem involved in choosing a unit of
output ; and then he is hurried on [...], in the hope that he will forget to ask in
what units K is measured. Before ever he does ask, he has become a profes-
sor, and so sloppy habits of thought are handed on from one generation to the
next.” — Robinson (1953)

As described earlier, the Cambridge-Cambridge controversy was a decades-long debate
about the foundations of the aggregate production function. The broader context of the
controversy was a clash between two views of the origins of the returns to capital. The
first one is the Marxist view of the return to capital as a rent determined by political
economy and monopolization. The second one is the marginalist view of the competitive
return to capital determined by technology, returns to scale, and scarcity. The marginalist
view is encapsulated in the “three key parables” of neoclassical writers (Jevons, Bohm-
Bawerk, Wicksell, Clark) identified by Samuelson (1966): (1) the rate of interest is deter-
mined by technology (r = FK); (2) there are diminishing returns to capital (K/Y and K/L
are decreasing in r); and (3) the distribution of income is determined by relative factor
scarcity (r/w is decreasing in K/L). These parables are consequences of having a per-
period neoclassical aggregate production function F(K, L) which has decreasing returns
in each of its arguments.

In his famous “Summing Up” QJE paper (Samuelson, 1966), Samuelson, speaking for
the Cambridge US camp, finally conceded to the Cambridge UK camp and admitted that
indeed, capital could not be aggregated. He produced an example of an economy with
“re-switching” : an economy where, as the interest rate decreases, the economy switches
from one technique to the other and then back to the original technique. This results in
a non-monotonic relationship between the capital-labor ratio as a function of the rate of
interest r.

Since the corresponding capital-labor and capital-output ratios are non-monotonic
functions of the rate of interest, this economy violates the first two of the three key para-
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bles. It is impossible to represent the equilibrium of the economy with a simple neoclas-
sical model with a neoclassical aggregate production function with capital and labor, and
where output can be used for consumption and investment.

Importantly, this result is established using valuations to compute the value of the cap-
ital stock index as sum of the values of the existing vintages of techniques, i.e. the net-
present-value of present and future payments to nonlabor net of the net-present-value of
present and future investments. The value of the capital stock depends on the rate of in-
terest. Basically, the physical interpretation of capital is lost when it is aggregated in this
financial way, and so are basic technical properties such as decreasing returns.14

The reactions to the Cambridge-Cambridge controversy were diverse. Post-Keynesians,
like Pasinetti, considered neoclassical theory to have been “shattered” by their critiques.15

Samuelson (and others like Franklin Fisher) on the other hand became invested in the
view that one should develop disaggregated models of production. For example, Samuel-
son concluded his “A Summing Up” paper with this:

“Pathology illuminates healthy physiology [...] If this causes headaches for
those nostalgic for the old time parables of neoclassical writing, we must re-
mind ourselves that scholars are not born to live an easy existence.” — Samuel-
son (1966).

Solow was more ambivalent:

“There is a highbrow answer to this question and a lowbrow one. The high-
brow answer is that the theory of capital is after all just a part of the fundamen-
tally microeconomic theory of the allocation of resources, necessary to allow
for the fact that commodities can be transformed into other commodities over
time. Just as the theory of resource allocation has as its ‘dual’ a theory of com-
petitive pricing, so the theory of capital has as its ‘dual’ a theory of intertem-
poral pricing involving rentals, interest rates, present values and the like. The

14A historical reason for the focus of the controversy on the aggregation of capital as opposed to labor
was the view held by the participants there was a natural physical unit in which to measure labor, man-
hours. This view rests on the debatable assumption that different forms of labor, such as skilled labor and
unskilled labor for example are perfect substitutes. Another historical reason was that some participants in
the controversy took the view that labor could be reallocated efficiently across production units in response
to shocks whereas capital was stuck in the short run, which they thought made the aggregation of capital
more problematic. From the perspective of this paper, the aggregation problem for capital is not mean-
ingfully different from that of labor. In general, outside of knife-edge cases, factors that are not perfectly
substitutable or which cannot be reallocated cannot be aggregated.

15See for example Pasinetti et al. (2003).
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lowbrow answer, I suppose, is that theory is supposed to help us understand
real problems, and the problems that cannot be understood without capital-
theoretic notions are those connected with saving and investment. Therefore
the proper scope of capital theory is the elucidation of the causes and conse-
quences of acts of saving and investment. Where the highbrow approach tends
to be technical, disaggregated, and exact, the lowbrow view tends to be pecu-
niary, aggregative, and approximate. A middlebrow like myself sees virtue in
each of these ways of looking at capital theory. I am personally attracted by
what I have described as the lowbrow view of the function of capital theory.
But as so often happens, I think the highbrow view offers indispensable help
in achieving the lowbrow objective.” — Solow (1963).

In the mid 60s, an “MIT school” arose, which attempted to make progress on the study of
disaggregated models of production. It impact was limited. Of course it didn’t help that
the re-switching example that concluded the Cambridge-Cambridge controversy seemed
so exotic. Later, developments in the growth literature, the arrival of real business cycle
models, and the rational expectations revolution shifted the mainstream of the profession
(with a few notable exceptions) away from these questions of heterogeneity and aggrega-
tion and towards dynamics and expectations.

In our opinion, the general neglect of these questions is unfortunate, and we hope that
our work will contribute to reviving interest in these important topics. This section can
be seen as a historical detour to make contact with the issues that preoccupied the pro-
tagonists of the Cambridge-Cambridge controversy. First, in Section 5.1, we show that
generically, capital, or for that matter, any group of distinct factors, cannot be physically
aggregated. Second, in Section 5.2, we give useful sufficient conditions for the possibility
of physically factorizing the production network into components which can be repre-
sented via a sub-aggregate production functions. Third, in Section 5.3, we show how to
capture Samuelson’s reswitching example showing that capital cannot be linearly aggre-
gated financially with valuations using our formalism.

The general lesson from this section is that the details of the production network mat-
ter, that outside of very knife-edge special cases, aggregating factors violates the structure
of the network, and hence that it also changes the properties of the model. As a result,
attempting to capture a disaggregated model of production by directly postulating an
aggregate model does not work outside of very special cases.
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5.1 Factor Aggregation

We study the aggregate production and cost functions of an economy with more than
three factors. For brevity, we only treat the case of the aggregate cost function in nested-
CES economies. The analysis of the general non-nested-CES case is similar, using the gen-
eralizations presented in Section 8. Similar proofs can be given in the case of the aggregate
production function.16 We also abstract from productivity shocks in our discussion (hold
them fixed), but similar reasoning can be extended to productivity shocks.

Consider a non-trivial partition {Fi}i∈I of the set factors F, i.e. such that there exists
an element of the partition comprising strictly more than 1 and strictly less than F factors.
We say factors can be aggregated according in the partition {Fi}i∈I if there exists a set of
functions C̃ and g̃i such that

C(w1, . . . , wF, Y) = C̃(g1({w f } f∈F1), . . . , gI({w f } f∈FI ), Y).

Similarly, we say that factors can be aggregated in to the partition {Fi}i∈I , up to an nth
order approximation, if there exists a set of functions C̃ and g̃i such that for all m ≤ n and
( f1, f2, · · · , fm) ∈ Fm,

dm log C(w1, . . . , wF, Y)
dw f1 · · · dw fm

=
dm log C̃(g̃1({w f } f∈F1), . . . , g̃I({w f }i∈FI ), Y)

dw f1 · · · dw fm

.

In words, the factors can be aggregated up to the nth order, if there exists a separable
function whose derivatives coincide with C up to the nth order.

A strict subset Fi of factors can always be aggregated locally to the first order by match-
ing the shares of these factors in revenue.17 But this aggregation fails to the second or-
der, and by implication, it also fails globally. Indeed, and abstracting from productivity
shocks, by the Leontief-Sono theorem, the strict subset Fi of factors can be globally aggre-
gated in the aggregate cost function if and only if Cw f /Cwg , is independent of wh for all

16The results also extend the “hybrid” case of an economy where some factors are in inelastic supply and
some factors are in perfectly elastic supply, as in the steady state of a Ramsey model.

17A loglinear approximation of the aggregate cost function is trivially separable in every partition, and
is a first-order approximation. By Proposition 1, the log-linear approximation sets the elasticity of the
aggregate cost function with respect to the wage of each factor equal to the revenue share of that factor.
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( f , g) ∈ F2
i and h ∈ F− Fi. This is equivalent to the condition that

d2 log C
d log whd log w f

− d2 log C
d log whd log wg

= 0

or equivalently that σC
h f = σC

hg for all ( f , g) ∈ F2
i , h ∈ F − Fi, and vector of factor prices.

Using Proposition 2, this equation can be rewritten as

∑
k∈1+N

(θk − 1)λkCovΩ(k)(Ψ(h), Ψ( f )/Λ f −Ψ(g)/Λg) = 0.

It is clear that this property is not generic: starting with an economy where this prop-
erty holds, it is possible to slightly perturb the economy and make it fail. Indeed, suppose
that the property holds at the original economy for a given vector of factor prices. Con-
sider a set Fi an element of the partition comprising strictly more than 1 and strictly less
than F factors. If CovΩ(k)(Ψ(h), Ψ( f )/Λ f − Ψ(g)/Λg) , 0 for some k, ( f , g) ∈ F2

i , and
h ∈ F − Fi, then it is enough to perturb the elasticity θk to make the property fail. If
CovΩ(k)(Ψ(h), Ψ( f )/Λ f − Ψ(g)/Λg) = 0 for all k, ( f , g) ∈ F2

i , and h ∈ F − Fi, then we
need to perturb the network to bring ourselves back to the previous case. It is enough to
introduce a new producer producing only from factors h and f and selling only to final
demand, with a small share ε, and scale down the other expenditure share in final de-
mand by 1− ε. We can choose the exposures of the new producer to h and f such that
CovΩ(0)(Ψ(h), Ψ( f )/Λ f −Ψ(g)/Λg) , 0 for ε , 0 small enough. This leads us the following
proposition.

Proposition 11. (Conditions for Factor Aggregation) Consider an economy with more than three
factors and a non-trivial partition {Fi}i∈I of the set F of factors. In the aggregate production
function, the factors can be aggregated in to the partition if and only if σF

h f = σF
hg for all i ∈ I,

( f , g) ∈ F2
i , h ∈ F− Fi, and vector of factor supplies. Similarly, in the aggregate cost function, the

factors can be aggregated according to the partition if and only if σC
h f = σC

hg for all i ∈ I, ( f , g) ∈
F2

i , h ∈ F − Fi, and vector of factor prices. The conditions for factor aggregation according to a
given partition in the aggregate production and cost functions are equivalent. Generically, these
properties do not hold.

The capital-aggregation theorem of Fisher (1965) can be seen through the lens of this
proposition. It considers an economy with firms producing perfectly-substitutable goods
using firm-specific capital and labor. It show that the different capital stocks can be ag-
gregated into a single capital index in the aggregate production function if and only if all
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the firms have the same production function up to a capital-efficiency term. In this case,
and only in the case, all the MESs between the different firm-specific capital stocks and
labor in the aggregate production function are all equal to each other, and are equal to
the elasticity of substitution between capital and labor of the common firm production
function.

Proposition 11 also shows that generically, capital, or indeed any other factor, cannot
be aggregated. In other words, disaggregated production models cannot be avoided. Our
approach in the previous sections acknowledges this reality and start with as many dis-
aggregated factors as is necessary to describe technology. Our results take disaggregated
models and seek to characterize their properties in terms of standard constructs such as
the aggregate production and cost functions, marginal products of factors and factor de-
mands, and elasticities of substitution between factors.

5.2 Network Factorization and Sub-Aggregate Production Functions

There is one frequently-occurring network structure under which we can establish a pow-
erful form of network aggregation. This result can easily be conveyed at a high level of
generality without requiring the economy to be of the nested-CES form. We need the
following definition.

Definition. Let I be a subset of nodes. Let M be the set of nodes j < I with Ωij , 0 for
some i ∈ I. We say (r, I, M) is an island, if

1. There is a unique node r ∈ I such that Ωir = 0 for every i ∈ I.

2. Ωji = 0 for every i ∈ I − {r} and every j < I.

3. Ωkj = 0 for every j ∈ M and k < I.

We call r the export of the island. We say M are imports of the island. The imports of the
island can be factors or non-factors. With some abuse of notation, we denote by xri the
total imports of good i ∈ M of the whole island (r, I, M). In the case where f ∈ M is a
factor, we also use the notation Lr f . See Figure 1 for a graphical illustration.

Note that the requirement that the export r of the island not be used as an intermediate
input by other producers in the island is merely a representation convention: if it is not
the case, we can always introduce a fictitious producer which transforms the good into an
export using a one-to-one technology. The same remark applies to the requirement that
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imports of the island not be used by producers outside of the island: if a particular import
is used by another producer outside of the island, we can always introduce a fictitious
producer which transforms the good into an import using a one-to-one technology.

r

· · ·M2M1 Mn−1 Mn

· · ·I1 I2

I3

xr2

xr,n−1xr1 xrN

Figure 1: Illustration of an island (r, I, M) within a broader network. The nodes in the
island I are in blue, the imports M are in green, and the export of the island is denoted by
r. The figure only shows the island, its imports, and its export. This island is embedded
in a broader network which is not explicitly represented in the figure.

Given an island (r, I, M), we can define an associated island sub-aggregate production
function with the island’s imports as factors and its exports as aggregate output:

Fr
(
{xri}i∈M , {Ai}i∈I

)
= max yr, (11)

subject to
yj = AjFj({xjk}k∈I−{r}+M) (j ∈ I),

∑
i∈I

xij = xrj (j ∈ I − {r}+ M).

With some abuse of notation, we use the same symbol Fr to denote the endogenous island
sub-aggregate production function that we have used to denote the exogenous produc-
tion function of producer r. The arguments of the latter are the intermediate inputs used
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by producer r while those of the former are the imports of the island and the productivi-
ties of the different producers in the island. The island sub-aggregate production function
can be characterized using the same methods that we have employed for the economy-
wide aggregate production function throughout the paper.

The planning problem defining the economy-wide aggregate production function can
then be rewritten by replacing all the nodes in the island by its sub-aggregate production
function:

F(L1, . . . , LN, A1, . . . , AN) = maxD0(c1, . . . , cN)

subject to
yi = AiFi({xij}j∈N−I+{r}+F) (i ∈ N − I),

yr = Fr
(
{xri}i∈M , {Ai}i∈I

)
,

ci + ∑
j∈N−I+{r}

xji = yi (i ∈ N − I + {r}),

∑
i∈N−I+{r}

xi f = L f ( f ∈ F),

where Fr is the island sub-aggregate production function.
So, if the economy contains islands, then the economy-wide aggregate production

function can be derived in two stages: by first solving the island component planning
problems (11) giving rise the the island sub-aggregate production functions, and then by
solving the economy-wide problem giving rise to the economy-wide aggregate produc-
tion function which uses the island sub-aggregate production functions. To describe this
recursive structure, we say that the production network has been factorized.

Proposition 12 (Network Factorization). Let (r, I, M) denote an island. Then the economy-
wide aggregate production function depends only on {Ai}i∈I and {xri}i∈M = {yi}i∈M via the
island aggregate production function Fr

(
{xri}i∈M , {Ai}

)
. In particular, if all the imports of the

island are factors so that M ⊆ F, then the factors can be aggregated according to the partition
{M, F−M}.18

The factor-aggregation theorems of Fisher (1982) and Fisher (1983) correspond to spe-
cial cases of the conditions in the second part of this proposition. The first part of the
proposition is particularly useful in disaggregated intertemporal models. In some cases,

18In this case, we can write F(L1, . . . , LN , A1, . . . , AN) = F̃
(

Fr

({
L f

}
f∈M

, {Ai}i∈I

)
, {Ai}i<I , {Li}i<M

)
.
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intertemporal linkages can be represented via a set of capital stocks and their laws of mo-
tions via production functions with investment as inputs. This is the case, for example, of
the post-Keynesian reswitching model studied in the next section. Even though will not
pursue this particular representation of the example, it will prove helpful in understand-
ing some of the obstacles preventing the aggregation of this model into a simple one-good
neoclassical growth model.

5.3 Re-Switching Revisited

We now turn to the post-Keynesian reswitching example in Samuelson (1966). Samuel-
son’s example features an economy with two goods in every period: labor and output.
Labor is in unit supply. Output is used for consumption, labor can be used to produce
output using two different production functions (called “techniques”). The first technique
combines 2 units of labor at t− 2 and 6 units of labor at t to produce one unit of output
at t. The second technique uses 7 units of labor at t− 1 to produce one unit of output at t.
Both techniques are assumed to have constant-returns-to-scale.

We focus on the steady state of this economy, taking the gross interest rate R = 1 + r
as given, where r is the net interest rate. The interest rate R is varied by changing the rate
of time preferences β = 1/R of the agent. By comparing the unit costs of production, it
is easy to see that the second technique dominates for high and low values of the interest
rate, and that the first technique dominates for intermediate values of the interest rate.
Indeed, at a gross interest rate of one (a net interest rate of zero), the second technique is
preferred because it has a lower total labor requirement (7 vs. 8); and at a high interest
rate, the second technique is preferred because the two-period delay in production of the
first technique is too costly. Therefore, the economy features reswitching: as the interest
rate is increased, it switches from the second to the first technique and then switches back
to the second technique.

This post-Keynesian example can be obtained as a limit of the sort of nested-CES
economies that we consider, provided that we use the Arrow-Debreu formalism of index-
ing goods and factors by dates and to think about capital stocks as intermediate goods.
The corresponding production network is represented in Figure 2. The diagram shows
how in different periods, labor can be combined with intermediate goods produced from
past labor to produce new intermediate and final goods.

In Figure 3 we plot some steady-values for this economy as a function of the inter-
est rate. The capital-labor and capital-output ratios are non-monotonic functions of the
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ct ct+1 ct+2

y1,t y1,t+1 y1,t+2

x1,t x1,t+1 x1,t+2

y2,t y2,t+1 y2,t+2

lt−1 lt lt+1

Y

Figure 2: The production network underlying Samuelson’s reswitching example. The
arrows indicate the flow of goods. The green nodes are primary factors, and Y is aggre-
gate output in this economy, which is perfectly substitutable across consumption units at
different dates.

interest rate, where the aggregate capital stock is computed via financial valuations as
the net-present-value of the payments to capital or equivalently at its replacement cost.
Using the notation in Figure 2, this means that the aggregate capital stock in period t is
computed as Kt = px1,t x1,t + py2,t y2,t = 2wt−2x1,t + 7wt−1y2,t.

We could alternatively represent this economy using per-period production functions
for consumption and for investments, where the factors would be the capital stocks cor-
responding to the quantities of the different vintages of the two techniques and labor, and
the laws of motions for the different capital stocks would combine previous capital stocks
and investments to produce new capital stocks. These different production functions
would correspond to a factorization of the production network into separate islands.

For our purposes here, it is more convenient instead to work directly with the disag-
gregated economy in Arrow-Debreu intertemporal form, which is characterized by the
propagation equations (8) and (9). These equations are associated with an intertemporal
production function characterizing the production of an intertemporal aggregate of con-
sumption goods in all dates as a function labor in all dates.
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Figure 3: Samuelson’s reswitching example

For convenience, we consider a smoother version of the post-Keynesian example by
imaging that the two techniques produce different goods which enter in consumption
via a CES aggregator with a finite elasticity of substitution. The example obtains in the
limit when that elasticity of substitution goes to infinity. As can be seen in Figure 4, the
properties of the smoothed-out example resemble those of the original example.19

Now consider a simple one-good neoclassical growth model with a per-period neo-
classical aggregate production function with capital and labor as its two arguments, where
output can be used for investment and for consumption. In such a model, the homoge-

19Marglin (1984) shows that re-switching cannot occur with smooth substitution in the sense that the
composition of the basket of inputs used to produce each good cannot be the same for all goods for two
different interest rates. One lesson of the original example is lost: that for no ranking of the two techniques
in terms of “mechanization” or capital intensity is the economy necessarily becoming more mechanized or
capital intensive as the interest rate decreases. Nonetheless, the lesson that the capital-labor and capital-
output ratios are non-monotonic functions of the interest rate survives.
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Figure 4: Samuelson’s smoothed-out reswitching example

neous capital stock can be computed via financial valuations or equivalently at its replace-
ment cost.

The question we now ask is whether we could represent the disaggregated post-
Keynesian example as a version of the simple neoclassical model with an aggregate capi-
tal stock given by the sum of the values of the heterogeneous capital stocks in the disag-
gregated post-Keynesian example. The non-monotonicity of the capital-labor and capital-
output ratios as a function of the interest rate shows that this is not possible. The simple
neoclassical model could match the investment share, the capital share, the value of capi-
tal, and the value of the capital-output and capital-labor ratios of the original steady state
of the disaggregated model, but not across steady states associated with different values
of the interest rate. In other words, aggregation via financial valuation fails.

The production network of the simple one-good neoclassical growth economy is rep-
resented in Figure 5. The nodes (yt, lt, kt) form an island where yt is the export of the
island, and kt is the import of the island. Hence the relative price of kt and lt depend only
on the quantity of kt and lt, and the problem can be studied in isolation via a neoclassical
production function. The production function of the post-Keynesian reswitching exam-
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ple is different and it cannot be factorized into the same islands and represented with the
same production functions. In other words, physical aggregation also fails.

One way to frame the lesson more generally is that the details of the production net-
work matter. Aggregating factors changes the production network, and hence aggrega-
tion changes the properties of the model.

ct ct+1 ct+2

yt yt yt

kt kt+1 kt+2

lt lt+1 lt+2

Y

Figure 5: The production network underlying a simple one-good neoclassical growth
model of an economy with a per-period production function with capital and labor as
its two arguments, where output can be used for investment and for consumption. The
arrows indicate the flow of goods. The green nodes are primary factors, and Y is aggre-
gate output in this economy, which is perfectly substitutable across consumption units at
different dates.

6 Simple Illustrative Examples

In this section, we provide some simple theoretical examples and a simple quantitative
illustration of our results in Sections 3 and 4 regarding the MESs between factors and the
bias of technical change in the aggregate production and cost functions.

In this section, we provide four simple theoretical examples. The first example is Hick-
sian in the sense that there are only two factors: the MESs in the aggregate production
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and cost functions are identical and are symmetric. The second example is non-Hicksian
since it has three factors: the MESs in the aggregate production and cost functions are
different and are asymmetric in general. The third example is the famous example of
Houthakker (1955). The fourth example works out the macroeconomic bias of technical
change which is capital augmenting at the microeconomic level in a disaggregated “task-
based” model; it also shows that such a model can give rise to richer and more complex
patterns than simpler models based on an aggregate production function in the sense that
such technical change can be capital biased but not necessarily capital augmenting at the
macroeconomic level.

6.1 A Hicksian Example with Two Factors

Our first example features two factors of production and producers with different factor
intensities. A similar example is analyzed in Oberfield and Raval (2014), building on Satō
(1975).20 Each producer 1 ≤ i ≤ N produces from capital (Ki) and labor (Li) according to

yi

ȳi
=

ωiK

(
Ki

K̄i

) θiKL−1
θiKL

+ ωiL

(
Li

L̄i

) θiKL−1
θiKL


θiKL

θiKL−1

and the final demand aggregator is

Y
Ȳ

=

 N

∑
i=1

ωDi

(
yi

ȳi

) θD−1
θD


θD

θD−1

with ωiK = 1− ωiL and ∑N
i=1 ωDi = 1. Sales shares for goods and factors are given by

λD = 1, λi = ωDi, ΛK = ∑N
i=1 λiωiK, and ΛL = ∑N

i=1 λiωiL.
For this example economy, the MES between capital and labor in the aggregate cost

and production functions satisfy σC
LK = σC

KL = σF
LK = σF

KL = σLK, where σLK is given by

σLK =
N

∑
i=1

θiKLλi
ωiK(1−ωiK)

ΛK(1−ΛK)
+ θD

∑N
i=1 λi(ωiK −ΛK)

2

ΛK(1−ΛK)
,

20Satō (1975) only considered the case with two producers.
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where
N

∑
i=1

λi
ωiK(1−ωiK)

ΛK(1−ΛK)
+

∑N
i=1 λi(ωiK −ΛK)

2

ΛK(1−ΛK)
= 1.

The MES between capital and labor σLK is a weighted average of the microeconomic
elasticities of substitution between capital and labor θiKL and of the elasticity of substitu-
tion θD across producers in final demand. The weight on θiKL increases with its sales share
λi and the heterogeneity in factor shares ωiK(1− ωiK) relative to the economy-wide het-
erogeneity in factor shares ΛK(1−ΛK). It is zero when ωiK = 0 or ωiK = 1. The weight on
θD increases in the heterogeneity in capital exposure across producers ∑N

i=1 λi(ωiK−ΛK)
2

relative to the economy-wide heterogeneity in factor exposures ΛK(1 − ΛK). It is zero
when ωiK = ΛK for all i.

6.2 A Non-Hicksian Example with Three Factors

Our second example extends the first example to include three factors. Each producer 1 ≤
i ≤ N produces from capital (Ki), skilled labor (Hi), and unskilled labor (Li), according to

yi

ȳi
=

ωiKH

ωiK

(
Ki

K̄i

) θiKH−1
θiKH

+ ωiH

(
Hi

H̄i

) θiKH−1
θiKH


θiKH

θiKH−1
θiKHL−1

θiKHL

+ ωiL

(
Li

L̄i

) θiKHL−1
θiKHL


θiKHL−1

θiKHL

and the final demand aggregator is

Y
Ȳ

=

 N

∑
i=1

ωDi

(
yi

ȳi

) θD−1
θD


θD

θD−1

,

with ωiKH = 1− ωiL, ωiK = 1− ωiH, and ∑N
i=1 ωDi = 1. This economy can be written

in normal form by introducing fictitious producers indexed by iKH producing a bundle
of capital and skilled labor to be used as an input by producer i. Sales shares for goods
and factors are given by λD = 1, λi = ωDi, λiKH = λiωiKH, ΛK = ∑N

i=1 λiωiKHωiK,
ΛH = ∑N

i=1 λiωiKHωiH, and ΛL = ∑N
i=1 λiωiL.

We start with the MESs in the aggregate cost function. For the sake of illustration, we
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focus on the MESs σC
LK and σC

KL. We have

σC
LK = θD

N

∑
i=1

λiωiKHωiK

(
ωiKHωiK

ΛK
− ωiL

ΛL

)
+

N

∑
i=1

θiKHL

[
λiωiK

ωiKHωiK

ΛK
+ λiωiKHωiK

(
−ωiKHωiK

ΛK
+

ωiL

ΛL

)]
+

N

∑
i=1

θiKHλiωiH
ωiKHωiK

ΛK
,

σC
KL = θD

N

∑
i=1

λiωiL

(
ωiL

ΛL
− ωiKHωiK

ΛK

)
+

N

∑
i=1

θiKHL

[
λi

ωiL

ΛL
+ λiωiL

(
ωiKHωiK

ΛK
− ωiL

ΛL

)]
.

As is apparent from these formulas, in general, σC
LK , σC

KL . For instance, and by
contrast with σC

LK, σC
KL does not depend on the microeconomic elasticities of substitution

θiKH between capital and skilled labor. This follows from two observations: variations
underlying the definition σC

LK vary wK while keeping wH and wL constant while variations
underlying the definition σC

KL vary wL while keeping wK and wH constant; capital and
skilled labor always enter in the CES nest iKH with elasticity θiKH while unskilled labor
does not. In the special case where capital intensities are uniform across producers, σC

LK is
independent of θD, and similarly, in the special case where labor intensities are uniform
across producers, σC

KL is independent of θD. In general, and although verifying it requires
some steps of algebra, both σC

LK and σC
KL are weighted averages of the microeconomic

elasticities of substitution.
The expressions for the MESs in the aggregate production function σF

KL and σF
LK are

more complex, and we omit them for brevity. Obtaining these equations requires solving
a system of equations of two equations in two unknowns for the changes in factor shares
d log ΛL and d log ΛK in response to a change d log K and d log L respectively (after having
used the equation ΛKd log ΛK +ΛHd log ΛH +ΛLd log ΛL = 0 to substitute out d log ΛH).
In general, we have σF

LK , σC
KL, σF

LK , σC
LK, and σF

LK , σF
KL. Moreover, σF

LK and σF
LK

are not weighted averages, or even linear functions, of the microeconomic elasticities of
substitution.
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These expressions simplify drastically in the case where factor intensities and microe-
conomic elasticities of substitution are uniform across producers so that ωiK, ωiH, ωiL,
ωiKH, θiKHL, and θiKH are independent of i. In this case, the aggregate production and
cost functions are of the nested-CES form. In particular, we get σC

KL = σF
KL = θKHL,

σC
LK = θKHLΛK/(ΛK + ΛH) + θKHΛH/(ΛK + ΛH), and σF

LK = (ΛK + ΛH)/(ΛK/θKHL +

ΛH/θKH). Hence we see that in this simple case, σC
LK and σF

LK are respectively the arith-
metic and harmonic averages of the microeconomic elasticities θKHL and θKH with weights
ΛK/(ΛK + ΛH) and ΛH/(ΛK + ΛH) and are therefore different in general.

6.3 Houthakker (1955)

Houthakker (1955) described how a disaggregated economy with fixed proportions and
decreasing returns at the microeconomic level could give rise to a Cobb-Douglas ag-
gregate production function with decreasing returns when the distribution of technical
requirements across producers is a double Pareto. The model illustrates a divorce be-
tween microeconomic elasticities of substitutions between factors equal to 0, and macroe-
conomic elasticities of substitutions between factors equal to 1. The model is a particular
limit case of our general model. In this section, we explain how to capture it using our
formalism.21

The model features individual cells. Each individual j cell can produce up to φj units of
output, where each unit of output requires a1,j units of factor L1 and a2,j units of factor L2.
Using output as the numeraire, the unit is active in equilibrium if 1− a1,jw1 − a2,jw2 ≥ 0.
The total capacity of cells for which a1,j lies between a1 and a1 + da1 and for which a2,j

lies between a2 and a2 + da2 can be represented by φ(a1, a2)da1da2, where φ is the input-
output distribution for the set of cells concerned. Total output and total factor demand

21Levhari (1968) generalizes Houthakker (1955) by deriving distributions of technical requirements across
producers for which the aggregate production function is CES rather than simply Cobb Douglas. Sato (1969)
in turn generalizes Levhari (1968) by allowing for microeconomic production to be CES rather than simply
Leontief. All these models are particular cases of our general model.
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are then given by

Y =
∫ 1/w1

0

∫ (1+a1w1)/w2

0
φ(a1, a2)da1da2,

L1 =
∫ 1/w1

0

∫ (1+a1w1)/w2

0
a1φ(a1, a2)da1da2,

L2 =
∫ 1/w1

0

∫ (1+a1w1)/w2

0
a2φ(a1, a2)da1da2.

The last two equations implicitly give w1 and w2 as functions of L1 and L2, and plug-
ging these functions back into the first equation gives output Y = F(L1, L2) as a func-
tion of L1 and L2, thereby describing the aggregate production function of this econ-
omy. Characterizing this production function is difficult, and so Houthakker focused
on the special case where the distribution of unit requirements is double Pareto with
φ(a1, a2) = Aaα1−1

1 aα2−1
2 . He showed that in this case, the production function is given by

F(L1, L2) = ΘL
α1

α1+α2+1
1 L

α2
α1+α2+1
2 ,

where

Θ = (α1 + α2 + 1)

(
AB(α1 + 1, α2 + 1)

αα1+1
1 αα2+1

2

) 1
α1+α2+1

,

where B is the beta function given by B(α1 + 1, α2 + 1) =
∫ 1

0 tα1(1− t)α2 .
To capture the model using our formalism, one first has to introduce more factors,

because of decreasing returns to scale at the micro level. Specifically, we assume that
over and above the factors L1 and L2, there is a different fixed factor Lj in unit sup-
ply for each producer j. Producer j produces output according to a Leontief aggregate
min{l1/a1, l2/a2, φjlj}, where l1 is its use of factor L1, l2 its use of factor L2, and lj its use
of factor Lj. The outputs of the different producers are then aggregated using a CES ag-
gregate. Houthakker’s model obtains in the limit where the elasticity of substitution of
this CES aggregator goes to infinity. In this limit, the wage of the fixed factor of producer
j can be computed as (1− a1,jw1 − a2,jw2)

+ so that payments to all factors exhaust the
revenues of producer j.

It is possible to obtain Houthakker’s formulas in the particular case where the dis-
tribution is double Pareto by specializing our general formulas, but the calculations are
tedious and so we refrain from doing so. The reason for this difficulty is that there are
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many factors: the two nonfixed factors all all the fixed factors. Our formulas solve for all
these changes in shares simultaneously as the solution of a large system of linear equa-
tions. In the double Pareto case, it is actually possible to sidestep this difficulty and to
solve directly for the changes in the shares in the two non-fixed factors, which turn out to
be zero. This means that while the individual changes in the shares accruing to the fixed
factors are nonzero, their sum is zero. Since the changes in these individual shares is not
of direct interest for the question at hand, the direct method is preferable. Indeed, it is
straightforward to see that

Y =
(α1 + α2 + 1)AB(α1 + 1, α2 + 1)

α1α2wα1
1 wα2

2
,

L1 =
AB(α1 + 1, α2 + 1)

α2wα1+1
1 wα2

2

,

L2 =
AB(α1 + 1, α2 + 1)

α1wα1
1 wα2+1

2

.

This immediately implies that

w1L1

Y
=

α1

α1 + α2 + 1
,

w2L2

Y
=

α2

α1 + α2 + 1
.

This in turn immediately implies that σF
L1,L2

= σF
L2,L1

= σC
L1,L2

= σC
L2,L1

= 1 as well as

Houthakker’s result that F(L1, L2) = ΘLα1/(α1+α2)
1 Lα2/(α1+α2)

2 .

6.4 Capital-Biased Technical Change in a Task-Based Model

In this section, we consider an example taken from Baqaee and Farhi (2018) and inspired
by Acemoglu and Restrepo (2018). We compute the bias of technical change and explain
its dependence on the microeconomic pattern of sales shares, factor intensities, and mi-
croeconomic elasticities of substitution. We then show that in a “task-based” economy
with disaggregated production, a possible consequence of capital-augmenting technical
change and automation at the microeconomic level is a simultaneous decline in both the
labor share of income and the real wage at the macroeconomic level. This cannot happen
in a simpler economy with an aggregate production function with capital-augmenting
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technical since such technical change would always increase the real wage. In other
words, technical change which is capital augmenting at the microeconomic level is capital
biased but not capital augmenting at the macroeconomic level. The impact of technical
change is therefore richer and more complex in models of disaggregated production.

Assume that each producer, associated to a “task”, produces from capital and labor
according to

yi

ȳi
=

ωiL

(
L̃i
¯̃Li

) θKL−1
θKL

+ ωiK

(
K̃i
¯̃Ki

) θKL−1
θKL


θKL

θKL−1

with
K̃i =

AiK

ĀiK
Ki and L̃i =

AiL

ĀiL
Li

and ωiK = 1− ωiL. The consumer values the output of these tasks according to a CES
aggregator

Y
Ȳ

=

 N

∑
i=1

ωDi

(
yi

ȳi

) θD−1
θD


θD

θD−1

,

with ∑N
i=1 ωDi = 1. Sales shares for goods and factors are given by λD = 1, λi = ωDi,

ΛK = ∑N
i=1 λiωiK, and ΛL = ∑N

i=1 λiωiL.
Capital-biased technical change is modeled as a shock d log AkK > 0. Using our for-

mulas, we can characterize the responses of the labor share and of the wage. The biases
towards K vs. L of this technology shock in the aggregate cost function and production
functions are given by

BC
KLkK = (θKL − 1)λk

ωkK
ΛK

ωkL
ΛL

+ (θD − 1)λk
ωkK
ΛK

(1− ωkL
ΛL

)

and
BF

KLkK
1 + BF

KLkK
=

(θKL − 1)λk
ωkK
ΛK

ωkL
ΛL

+ (θD − 1)λk
ωkK
ΛK

(1− ωkL
ΛL

)

1 + (θKL − 1)∑N
i=1 λi

ωiK
ΛK

ωiL
ΛL

+ (θD − 1) 1
ΛLΛK

Varλ(ω(L))
.

When there is a single task k so that λk = 1, ωkL = ΛL, and ωkK = Λk, the aggregate
production function is CES with elasticity of substitution θKL between capital and labor,
and the biases in the aggregate cost and production functions coincide BC

KLkL = BF
KLkL =

θKL − 1.
In general however, these two biases are different BC

KLkL , BF
KLkL. The bias in the ag-

gregate cost function BC
KLkL is a linear function of the different microeconomic elasticities
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of substitution whereas the bias in the aggregate production function BF
KLkL is a nonlin-

ear function of these elasticities. However, the signs of the two biases are identical. A
capital-augmenting shock to task k is more likely to be biased towards capital vs. labor
at the macroeconomic level when: (i) capital and labor are substitutes at the microeco-
nomic level with θKL > 1; and (ii) tasks are substitutes with θD > 1 and task k is more
capital intensive than the average task with ωkL/ΛL < 1, or tasks are complements with
θD < 1 and task k is more labor intensive than the average task with ωkL/ΛL > 1. The
intuition for (i) is straightforward: in response to a positive shock, producer k substitutes
expenditure towards capital if θKL > 1 and towards labor if θKL < 1. The intuition for
(ii) is the following: a positive shock reduces the price of task k; if θD > 1, the household
substitutes expenditure towards task k, resulting in the reallocation of factors towards
task k, which increases the overall expenditure on capital if ωkL/ΛL < 1 and reduces it
otherwise; if θD < 1, the household substitutes expenditure away from task k, resulting
in the reallocation of factors away from task k, which increases the overall expenditure on
capital if ωkL/ΛL > 1 and reduces it otherwise.

We now turn our attention to the effect of technical change on the real wage, holding
factor supplies costant. For simplicity, we focus on the case where final demand is Cobb
Douglas across tasks with θD = 1. We also assume that capital and labor are substitutes
at the microeconomic level with θKL > 1, so that a capital-augmenting shock to task k is
biased towards capital vs. labor at the macroeconomic level, i.e. a positive shock increases
the capital share and decreases the labor share. As we shall now see, the effect of such a
shock on the real wage is ambiguous:22,23

d log wL

d log AkK
= λkωkK

1 + (θKL − 1)∑i λi

(
ωiL
ΛL
− ωkL

ΛL

)
ωiK
ΛK

1 + (θKL − 1)∑i λi
ωiL
ΛL

ωiK
ΛK

.

If task k is more labor intensive than the average task with ωkL/ΛL > 1, and capital

22We can compute this as a function of the aggregate production function using

d log wL
d log AkK

=
d log F

d log AkK
+

d2 log F
d log AkKd log L

/
d log F
d log L

= λkωkK +
d log ΛL
d log AkK

.

23In the general case where θD , 1, we have

d log wL
d log AkK

= λkωkK

1 + (θKL − 1)∑i λi

(
ωiL
ΛL
− ωkL

ΛL

)
ωiK
ΛK

+ (θD − 1)
[

1
ΛKΛL

Varλ(ω(L)) +
ωkL
ΛL
− 1
]

1 + (θKL − 1)∑N
i=1 λi

ωiL
ΛL

ωiK
ΛK

+ (θD − 1) 1
ΛLΛK

Varλ(ω(L))
.
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and labor are highly substitutable with a high-enough value of θKL, then the real wage
falls in response to a positive shock. This is because as task k substitutes away from la-
bor and towards capital, labor is reallocated to other tasks who use labor less intensively.
This reallocation of labor reduces the marginal product of labor and hence the real wage.
These patterns cannot be generated in a simpler economy with an aggregate production
function with capital-augmenting technical change since such a shock always capital in-
creases the marginal product of labor and hence the real wage.24

7 Quantitative Application: Capital-Skill Complementar-

ity and the Skill Premium

In this section, we present a simple quantitative application of the results in Sections 3 and
4. We show how to use these results to study capital-skill complementarity à la Griliches
(1969) in the US economy, taking into account the multiplicity of sectors and their input-
output linkages. We use the analysis to revisit the influential analysis in Krusell et al.
(2000) of the role of these complementarities in the evolution over time of the skill pre-
mium.

Krusell et al. (2000) studies the relationship between the increasing skill premium and
the rapid decline in the relative price of equipment investment goods. They find that
complementarity between capital goods and high-skill labor can explain a large part of
the increase in the skill premium. They use an aggregate model and directly postulate
an exogenous aggregate production function. We revisit their analysis in the context of
a disaggregated model where the aggregate production function emerges endogenously.
We find that moving from the aggregate model to the disaggregated model reduces the
MES between capital and high-skil labor from 0.67 to 0.66 and the MES between capital
an low-skill labor from 1.05 to 0.93. These differences are enough to reduce by 20% the
contribution of the decline in the relative price of equipment investment to the increase
of the skill premium. These particular results notwithstanding, we stress that our goal in
this application is more to demonstrate quantitatively the dependence of macroeconomic
elasticities of substitution on microeconomic primitives than to draw strong implications
for the question of whether and how much complementarities between capital and skilled
labor can explain the behavior of the skill premium.

24Indeed, suppose for example that there is a single task so that λk = 1. We get ωkL = ΛL and ωkK = Λk.
This implies that BF

KLkL = θKL − 1 and d log wL/d log AkK = Λk/θKL > 0. The result is true more generally.
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Krusell et al. (2000) work with a nested CES aggregate production function of the form

Y
Ȳ

=

ωL

(
X
X̄

) θ2−1
θ2

+ (1−ωL)

(
L
L̄

) θ2−1
θ2


θ2

θ2−1

,

with

X
X̄

=

ωH

(
H
H̄

) θ1−1
θ1

+ ωK

(
K
K̄

) θ1−1
θ1


θ1

θ1−1

.

Here L represents low-skill labor, H high-skill labor, and K is capital.
They estimate the model on macro data using the first-order conditions of the model

and find an elasticity of substitution between skilled labor and capital to be θ1 = 0.67 and
an elasticity of substitution between unskilled labor and the composite factor X to be θ2 =

1.67. They argue that these estimates are plausible by noting that they lie in the middle
of the range of estimates in the microeconomic literature reported by Johnson (1997) and
Hamermesh (1996). They then use their estimated model to perform a counterfactual and
conclude that the decrease in the price of equipment investment goods can explain a large
part of the increase in the skill premium over time.

We revisit their exercise in a calibrated disaggregated model with 66 sectors and input-
output linkages. We consider a model with 5 distinct micro elasticities of substitution
(θ0, θ1, θ2, θ3, θ4). The parameter θ0 is the elasticity of substitution across industries in con-
sumption, θ1 is the elasticity of substitution between high-skilled labor and capital, θ2 is
the elasticity of substitution between low-skilled labor and a composite factor consisting
of high skilled labor and capital, θ3 is the elasticity of substitution across value-added and
intermediate inputs, and θ4 is the elasticity of substitution across intermediate inputs.

We consider a benchmark calibration with values for the elasticities (θ0, θ1, θ2, θ3, θ4) =

(0.9, 0.67, 1.67, 0.5, 0.0001) informed by estimates from the microeconomic literature, which
as we shall see, points to strong complementarities at the sectoral level (θ4 = 0.0001) and
between value added and intermediates (θ3 = 0.5). For the elasticities of substitution be-
tween skilled labor and capital and between unskilled labor and the composite factor con-
sisting of high-skilled labor and capital and skilled labor, we pick θ1 = 0.67 and θ2 = 1.67
which we are consistent with the microeconomic literature surveyed in reported by John-
son (1997) and Hamermesh (1996). We set the elasticity of substitution in consumption
θ0 = 0.9, following Atalay (2017), Herrendorf et al. (2013), and Oberfield and Raval (2014),
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all of whom use an elasticity of substitution in consumption (across industries) of slightly
less than one. For the elasticity of substitution across value-added and intermediate in-
puts, we set θ3 = 0.5. This accords with the estimates of Atalay (2017), who estimates
this parameter to be between 0.4 and 0.8, as well as Boehm et al. (2015), who estimate this
elasticity to be close to zero. Finally, we set the elasticity of substitution across intermedi-
ate inputs to be θ4 = 0.001, which matches the estimates of Atalay (2017). The aggregate
production function arising endogenously from our model is different from the aggregate
production function postulated by Krusell et al. (2000).

In the aggregate model of Krusell et al. (2000), macroeconomic elasticities of substitu-
tion between factors coincide with their microeconomic counterparts. As a result, they
can be estimated using either microeconomic or macroeconomic data. Their particular
choices come from a macroeconomic estimation with macroeconomic data using the first-
order conditions of their aggregate model. They find that these estimates are consistent
with microeconomic estimates in the microeconomic literature reported by Johnson (1997)
and Hamermesh (1996).

By contrast, in our disaggregated model, the macroeconomic elasticities of substitu-
tion between factors are different from their microeconomic counterparts. We therefore
rely entirely on microeconomic estimates to justify our choices the microeconomic elastic-
ities of substitution θ1 and θ2. If one takes the view that the economy is described by our
model, then their macroeconomic model is mis-specified. Our justification for choosing
the same values as them for these elasticities is only that these values are consistent with
estimates from the microeconomic literature, and not because they come out of the esti-
mation of their possibly mis-specified macroeconomic model with macroeconomic data.

We use input-output tables and the integrated industry-level production account (KLEMS)
data from the BEA. These two datasets report, at the industry level, the expenditures of
each industry on different types of inputs (supplied from other industries), as well as
the compensation of college (high-skill) employees and non-college (low-skill) employ-
ees. We attribute the remainder of each industry’s value-added net of compensation of
employees to the industry’s capital stock.

Although we calibrate the model with industry-level data, the general methodology
can accommodate as much data as available to the researcher. In particular, going from
an industry-level model, to a firm or product level model is, conceptually, a very easy
step given the generality of Propositions 2 and 7.

In Table 1, we show the MES between the three primary factors for the aggregate
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Production Function Cost Function

Capital Non-college College Capital Non-college College
Capital – 1.67 0.67 Capital – 1.67 0.67
Non-college 1.04 – 0.89 Non-college 1.26 – 1.09
College 0.67 1.67 – College 0.67 1.67 –

Table 1: MESs between factors in the aggregate production function and in the aggregate
cost function for the aggregate model.

Production Function Cost Function

Capital Non-college College Capital Non-college College
Capital – 1.43 0.69 Capital – 1.47 0.72
Non-college 0.94 – 0.94 Non-college 1.09 – 1.09
College 0.66 1.59 – College 0.64 1.54 –

Table 2: MESs between factors in the aggregate production function and in the aggregate
cost function for the disaggregated model.

model of Krusell et al. (2000) using both the production function (quantity elasticities)
and the cost function (price elasticities). Since the aggregate model has a nested CES
production function, the MES between capital and college labor in the aggregate pro-
duction function and in the aggregate cost function are just equal to the corresponding
micro elasticity θ1 = 0.67. Similarly, the MESs between either capital or college labor and
non-college labor are just equal to the corresponding micro elasticity θ2 = 1.67.

In Table 2, we show the same macroeconomic elasticities of substitution (for both
quantities and prices) using the disaggregated model. In the disaggregated model, MESs
between factors depend not only on their microeconomic counterparts θ1 and θ2 as in the
aggregate model, but also on the other microeconomic elasticities of substitution θ0, θ3,
and θ4. Note that the values of σC

HK and σF
HK end up being very similar to those used by

Krusell et al. (2000) (respectively 0.64 vs. 0.67 and 0.66 vs. 0.67) : this is because some
of the microeconomic elasticities are higher (θ0 = 0.9 and θ2 = 1.67) and some are lower
(θ3 = 0.5 and θ4 = 0.0001), and their corresponding effects basically cancel out. The dif-
ference is bigger in the case of σC

LK and σF
LK (respectively 1.09 vs. 1.26 and 0.94 vs. 1.04)

and the disaggregated model has lower values for these elasticities in part simply because
in this case the benchmark microeconomic elasticity is higher to begin with.

To demonstrate this dependence in more detail, we show how the MES between cap-
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ital and skilled labor changes in response to changes in the underlying microeconomic
elasticities of substitution in Table 3, and how the MES between capital and skilled labor
changes in response to changes in the underlying microeconomic elasticities of substitu-
tion in Table 4. In both tables, since the MESs in the aggregate cost function are weighted
averages of the underlying micro-elasticities of substitution, the sum of the derivatives
along this column add up to 1. The same is not true of the MESs in the aggregate produc-
tion function.

Aggregate Model Disaggregated Model

Cost Production Cost Production

σHK 0.67 0.67 0.64 0.66

Consumption: θ0 – – 0.13 0.12
VA vs. INT: θ3 – – 0.1 0.09
INT: θ4 – – 0.09 0.08
VA outer nest: θ2 0 0 0.01 0.05
VA inner nest: θ1 1 1 0.67 0.65

Table 3: Derivatives of the MES between high-skilled labor and capital w.r.t. micro elas-
ticities of substitution.

Aggregate Model Disaggregated Model

Cost Production Cost Production

σLK 1.28 1.05 1.09 0.93

Consumption: θ0 – – 0.11 0.14
VA vs. INT: θ3 – – 0.09 0.11
INT: θ4 – – 0.1 0.07
VA outer nest: θ2 0.4 0.97 0.26 0.57
VA inner nest: θ1 0.6 0.24 0.46 0.22

Table 4: Derivatives of the MES between low-skilled labor and capital w.r.t. micro elastic-
ities of substitution.

We can use our estimates for the values of the macro elasticities of substitution to re-
visit the question posed by Krusell et al. (2000) and assess by how much the growth in
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capital due to the decline in the relative price of equipment has contributed to the widen-
ing skill premium. Following them, we ask how factor income shares would change
if growth in capital had not accelerated in the mid-1970s. Absent this acceleration in
the growth rate, the capital stock in 2015 would be lower. Specifically, maintaining the
growth in the capital stock at its 1970s growth rate would be tantamount to a shock of
size d log K = −0.37 to today’s capital stock.

In Table 5, we show the implied change in factor income shares in response to such a
shock, for both the aggregate and disaggregated models. In the aggregate counterfactual
economy, the capital share would be higher by about 5%, while the non-college share of
income would be 7% higher, and the college share of income would be 13% lower. On the
other hand, in the disaggregated counterfactual economy, the capital share would be 6%
higher, while the non-college share of income would be 3% higher, and the college share
would be 12% lower. Hence, viewed through the lens of the disaggregated economy,
and compared to the aggregate economy, the accelerated growth in capital has weighed
down the capital share more, increased the college share less, and weighed down the
non-college share less (the last effect has been cut by more than half).

Capital Non-college College
Aggregate model 0.05 0.07 -0.13
Disaggregated Model 0.06 0.03 -0.12

Table 5: The (log point) change in factor income shares in response to the shock d log K =
−0.37 in the aggregated and disaggregated model.

The change in the skill premium, defined as the change in the relative income of col-
lege and non-college labor, can also be estimated using the numbers in Table 1 and 2.
Specifically, we can write(

1
σHK
− 1

σLK

)
× d log K =

(
d log ΛH

d log K
− d log ΛL

d log K

)
× d log K,

putting the change in skill premium in the aggregate model at−0.20 log points and−0.16
log points in the disaggregated model.

The implication is that the disaggregated model reduces by 20% the increase in the
skill premium that can be ascribed to the channel running through capital-skill comple-
mentarity and the decrease in the relative price of equipment identified by Krusell et al.
(2000). This is of course by no means the final word on this question. The broad lesson
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is that disaggregating matters for some questions and less for others. There is a priori no
way to know without doing the analysis. The point we wish to demonstrate is how easy
it is to port prior analysis to more realistic production structures through a mechanical
application of Propositions 1 and 6 — the only limit is the availability of data.

8 Beyond CES

In Sections 3 and 4, we confined our characterization of aggregate cost and production
functions to the general class of nested-CES economies with Hicks-neutral technology
shocks at the level of each nest. In this section, we explain how to generalize our results
to general non-nested CES economies.

Now each producer i has a production function Fi(xi1, · · · , xiN, Li1, · · · , LiF, Ai) with
associated cost function Ci(p1, · · · , pN, w1, · · · , wF, Ai). Generically, we can normalize the
technology shock Ai so that d log F/d log Ai = d log C/d log Ai = 1 at the point of interest.

We proceed in two successive steps. In the first step, we continue to assume that
technology shocks are Hicks neutral at the producer level and explain how to deal with
non-CES producers.25 We then explain how to extend our results using the input-output
substitution operator, which is a generalization of the input-output covariance operator
defined in equation (7). In the second step, we relax the assumption of Hicks-neutral
technical change at the producer level and explain how to deal with completely general
biased technical change at the producer level.26

8.1 Dealing with non-CES producers

We start with the case where technical change is Hicks neutral at the producer level. We
introduce the input-output substitution operator. We show how it can be used to gener-
alize the results of Sections 3 and 4.

Definition. (Micreconomic Allen-Uzawa Elasticities of Substitution) For a producer k, let
θk(l, l′) denote the Allen-Uzawa elasticity of substitution in cost between inputs l , l′ in

25That technology shocks are Hicks neutral at the producer level means that we can write,
with some abuse of notation, Fi(xi1, · · · , xiN , Li1, · · · , LiF, Ai) = AiFi(xi1, · · · , xiN , Li1, · · · , LiF) and
Ci(p1, · · · , pN , w1, · · · , wF, Ai) = A−1

i Ci(p1, · · · , pN , w1, · · · , wF)
26In contrast to our analysis of the nested-CES case, in this section, we purposefully eschew any rela-

belling of the network via the disaggregation of a producer into an network of producers (an island) or via
the introduction of fictitious producers. Factor-biased technical change is modeled directly at the original
producer level, where it is not necessarily factor-augmenting.
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the cost of producer k:

θk(l, l′) =
Ckd2Ck/(dpldpl′)

(dCk/dpl)(dCk/dpl′)
=

εk(l, l′)
Ωkl′

,

where εk(l, l′) is the elasticity of the demand by producer k for input l with respect to the
price pl′ of input l′, and Ωkl′ is the expenditure share in cost of input l′.

This definition applies to good inputs and factor inputs using the aforementioned
notation pN+ f = w f . Due to the symmetry of partial derivatives, we have θk(l, l′) =

θk(l′, l). A useful and well-known property is that the elasticity of the expenditure share
in cost of input l with respect to the price of input l′ is given by Ωkl′(θk(l, l′)− 1) (see e.g.
Russell, 2017).27

Following Baqaee and Farhi (2017a), we introduce the input-output substitution operator
for producer j:

Φk(Ψ(i), Ψ(j)) = ∑
(l,l′)∈(N+F)2

l,l′

ΩklΩkl′(θk(l, l′)− 1)ΨliΨl′ j, (12)

=
1
2

EΩ(k)

(
(θk(l, l′)− 1)(Ψi(l)−Ψi(l′))(Ψj(l)−Ψj(l′))

)
, (13)

where Ψi(l) = Ψil, Ψj(l) = Ψjl, and the expectation on the second line is over l and l′.
When the production function of k is CES with elasticity of substitution θk, the Allen-

Uzawa elasticities θk(l, l′) are identical θk(l, l′) = θk, and we recover

Φk(Ψ(i), Ψ(j)) = (θk − 1)CovΩ(k)(Ψ(j), Ψ(i)).

Even when the Allen-Uzawa elasticities θk(l, l′) are different across couples (l, l′), the
input-output substitution operator Φk(Ψ(i), Ψ(j)) shares many properties with a covari-
ance operator. For example, it is immediate to verify that: Φk(Ψ(i), Ψ(j)) is bilinear in Ψ(i)

and Ψ(j); Φk(Ψ(i), Ψ(j)) is symmetric in Ψ(i) and Ψ(j); Φk(Ψ(i), Ψ(j)) = 0 whenever Ψ(i) or
Ψ(j) is constant.

All of our results in Sections 3 and 4 can be generalized to non-nested-CES economies.
All that is needed is to replace terms of the form (θk− 1)CovΩ(k)(Ψ(j), Ψ(i)) by Φk(Ψ(i), Ψ(j)).

27This property is the reason we choose to use Allen-Uzawa elasticities at the producer level: because they
easily give the elasticities of cost expenditure shares with respect to input prices. Morishima elasticities
σC

k (l, l′) = εk(l, l′) − εk(l′, l′) are better suited instead to give the elasticities of relative cost expenditure
shares. Of course, the two concepts are related and so we could have used either one.
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For example, the result in Proposition 3 for the MES between factors in the aggregate cost
function becomes

σC
f g − 1 = ∑

k∈1+N
λkΦk(Ψ(g), Ψ(g)/Λg −Ψ( f )/Λ f ).

Just like in the nested-CES case, σC
f g is a weighted average of the microeconomic elastici-

ties of substitution θk(l, l′) and is equal to θ if the microeconomic elasticities of substitu-
tion are all equal to θ.

Intuitively, Φk(Ψ(i), Ψ(j)) captures the way in which k redirects expenditure towards
i in response to one percent change in the price of j. Equation (12) says that the way
k redirects demand towards i in shares in response to change d log pj in the price of j
depends on considering, for each pair of inputs l and l′, how much the change Ψl′ jd log pj

in the price of l′ induced by the decline in the price of j causes k to substitute towards l is
(measured by ΩklΩkl′(θk(l, l′)− 1)Ψl′ jd log pj), and on on the exposure of l to i (measured
by Ψli).

Equation (13) exploits the symmetry of Allen-Uzawa elasticities to say that the way k
redirects demand towards i in shares in response to a decline in the price of j depends
on considering, for each pair of inputs l and l′, whether or not increased exposure to j
(measured by Ψj(l)−Ψj(l′)), is aligned with increased exposure to i (measured by Ψi(l)−
Ψi(l′)), and whether l and l′ are complements or substitutes (measured by (θk(l, l′)− 1)).

8.2 Dealing with Biased Technical Change at the Producer Level

We now further generalize the results of Sections 3 and 4 to the case where technical
change is biased at the producer level. This generalization matters only for our results on
the bias of technical change in the aggregate production and cost functions. It does not
change anything to our results on the MESs between factors in the aggregate production
and cost functions.

Definition. (Microeconomic Bias of Technical Change) For a producer k, we denote by bC
ijk

the microeconomic bias towards input i vs. j of a technology shock to producer k, defined
by the elasticity of the ratio of the cost shares of inputs i vs. j of producer k with respect
to a technology shock to producer k, holding input prices constant:

bC
ijk =

d log(Ωki/Ωkj)

d log Ak
,
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holding input prices constant. Similarly, we denote by bC
ik the bias towards input i of

a technology shock to producer k, defined by elasticity of the cost share of input i of
producer k, holding input prices constant:

bC
ik =

d log Ωki
d log Ak

= ∑
j∈N

ΩkjbC
ijk,

holding input prices constant.

Note that we have defined the bias of technical change towards inputs, be they fac-
tors or intermediate goods. These notions are purely microeconomic. They are defined
at the level of an individual producer, and do not embed any general equilibrium what-
soever. In what follows, we will rely on the following properties: ∑i∈N ΩkibC

ik = 0 and

∑i∈N ∑j∈N ΩkiΩkjbC
ijk = 0

In the presence of biased technical change at the producer level, the only difference to
the analysis in Section 8.1 is that we now must include new forcing terms in the propaga-
tion equations (5) and (6) in Proposition 2 and (8) and (9) in Proposition 7. More precisely
the following term must be added on the right-hand sides of equations (5) and (8) for
d log λi:

∑
k∈1+N

∑
j∈1+N

λk
λi

CovΩ(k)(bC
(k), Ψ(i))d log Ak;

and the following term must be added on the right-hand sides of equations (6) and (9) for
d log Λ f :

∑
k∈1+N

∑
j∈1+N

λk
Λ f

CovΩ(k)(bC
(k), Ψ( f ))d log Ak,

where bC
(k) is the k-th column of bC

jk. These terms account for the direct and indirect effects
through the network of the changes in input expenditures of each producer k due to the
bias of its technical change d log Ak.

Of course, these new terms do not appear in the results on the MESs between factors
in the aggregate production and cost functions which do not depend on the nature of
technical change. But they do enter the results on the bias of technical change in the
aggregate production and cost functions. For example, the result in Proposition 5 for the
bias of technical change in the aggregate cost function becomes

BC
f gj = λjCovΩ(j)(bC

(j), Ψ( f )/Λ f − Ψ(g)/Λg) + ∑
k∈1+N

λkΦk(Ψ(j), Ψ( f )/Λ f − Ψ(g)/Λg).
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9 Conclusion

This paper is part of a broader agenda to bring macro theory closer to micro data. As mi-
cro data becomes more and more plentiful, parsimonious reduced-form aggregate pro-
duction functions look more and more antiquated. This paper takes a step towards re-
alizing this goal by providing an organizing framework and some general characteri-
zations of micro-founded aggregate production functions. However, we think we have
only scratched the surface of what is left to be done. Extending the analysis to allow for,
amongst other things, joint-production, non-homothetic demand, and tractable stochastic
dynamics are just a few of the further steps that need to be taken before theory can start
to approximate reality. We are actively pursing these questions in ongoing research.
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Satō, K. (1975). Production functions and aggregation, Volume 90. North-Holland.

Sattinger, M. (1993). Assignment models of the distribution of earnings. Journal of economic
literature 31(2), 831–880.

Solow, R. M. (1956). A contribution to the theory of economic growth. The quarterly journal
of economics 70(1), 65–94.

Solow, R. M. (1963). Capital theory and the rate of return. North-Holland Pub. Co.

Stern, D. I. (2010). Derivation of the hicks, or direct, elasticity of substitution using the
input distance function. Economics letters 108(3), 349–351.

62


	Introduction
	Setup
	Environment
	Feasible and Competitive Equilibrium Allocations
	Aggregate Production and Cost Functions
	Input-Output Definitions
	Nested-CES Economies 

	Aggregate Cost Functions
	First-Order Characterization
	Second-Order Characterization
	Macroeconomic Elasticities of Substitution Between Factors
	Macroeconomic Bias of Technical Change 

	Aggregate Production Functions
	First-Order Characterization
	Second-Order Characterization
	Macroeconomic Elasticities of Substitution Between Factors
	Macroeconomic Bias of Technical Change

	Factor Aggregation, Network Factorization, and the  Cambridge-Cambridge Controversy
	Factor Aggregation
	Network Factorization and Sub-Aggregate Production Functions 
	Re-Switching Revisited

	Simple Illustrative Examples 
	A Hicksian Example with Two Factors
	A Non-Hicksian Example with Three Factors
	Houthakker (1955) 
	Capital-Biased Technical Change in a Task-Based Model

	Quantitative Application: Capital-Skill Complementarity and the Skill Premium 
	Beyond CES
	Dealing with non-CES producers 
	Dealing with Biased Technical Change at the Producer Level

	Conclusion



