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ABSTRACT

This paper analyzes statistical issues arising from non-representative network samples of the 
population, the most common network data used. We first characterize the biases in both network 
statistics and estimates of network effects under non-random sampling theoretically and 
numerically. Sampled network data systematically bias the properties of observed networks and 
suffer from non-classical measurement-error problems if applied as regressors. Apart from the 
sampling rate and the elicitation procedure, these biases depend in a non-trivial way on which 
subpopulations are missing with higher probability. We then propose a methodology, adapting 
post-stratification weighting approaches to networked contexts, which enables researchers to 
recover several network-level statistics and reduce the biases in the estimated network effects. 
The advantages of the proposed methodology are that it can be applied to network data collected 
via both designed and non-designed sampling procedures, does not require one to assume any 
network formation model, and is straightforward to implement. We use Monte Carlo simulation 
and two widely used empirical network data sets to show that accounting for the non-
representativeness of the sample dramatically changes the results of regression analysis.
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1 Motivation

There is growing interest in understanding the role of networks in Economics.1 Different
“micro” and “macro” features of network architecture shape diffusion, learning, behavior, and
other substantive phenomena in a variety of contexts.2 Due to the increasing availability of
large network data sets and increasing computational power, empirical network research is
now a dynamic part of this literature. At the same time, empirical network analysis generates
new econometric challenges (Fortin and Boucher, 2015; De Paula, 2017; Jackson, Rogers,
and Zenou, 2017). This paper investigates issues arising with non-randomly sampled network
data, the most common network data used. We argue that the existing approaches to sampled
network data do not eliminate the statistical problems arising from non-random sampling, and
show how failure to account for non-representativeness of the sample causes problems with
inference about the size and direction of network effects.

The vast majority of empirical network studies analyze partial samples, and the sampling
rates are typically low.3 Even though the literature across several disciplines has noticed
that using sampled data may lead to considerable biases and other statistical issues, the
typical approach is to treat the data “as if” it were complete.4 In a recent contribution,
Chandrasekhar and Lewis (2016) show formally that even in absence of other econometric
issues, and even if the nodes are selected randomly, sampled networks differ systematically from
the population networks and that inference on sampled network data leads to measurement
errors and inconsistency problems when identifying network effects. The estimates from using
sampled networks may suffer from attenuation but also expansion or even sign switching. One
thus cannot rely on solutions to classical measurement-error problems to correct these issues
even if the sample is representative.

Furthermore, samples in network studies are typically non-representative. Apart from
problems inherent in sampling, non-representativeness of network data may be caused by the
sampling strategy itself (Kossinets, 2006; Kolaczyk, 2009; Handcock and Gile, 2010). For ex-
ample, one prominent sampling method in applied work, snowball sampling, is prone to finding
nodes with higher connectivity than nodes with a small number of network neighbors. The rea-
son is that people are found through network links. Having more connections thus increases
the probability of being sampled.5 Hence, more connected nodes can be overrepresented,
whereas low-degree nodes are underrepresented. Other issues arise with “truncated” meth-
ods due to either the specification of network boundary or fixed-choice design (e.g., nominate
five friends). Last, several data sets exploit stratified network samples to better approximate

1See Vega-Redondo (2007), Jackson (2010b), and Goyal (2012) for reviews.
2Jackson (2010a) provides a survey of economic applications. Jackson, Rogers, and Zenou (2017) develop

a taxonomy of macro, aggregate, or global network properties as opposed to micro, local, or individual ones,
which we adopt here. They consequently review the influence of these characteristics at both levels in different
socio-economic settings.

3Chandrasekhar and Lewis (2016) report that the median sampling rate in applied work is 25% and more
than 66% of network studies have a sampling rate lower than 51%. An important reason behind the common
use of partial samples is that network elicitation is typically more costly than collection of basic individual
characteristics (Breza et al., 2017).

4Exceptions include Ammermueller and Pischke (2009), Conley and Udry (2010), and Conti et al. (2013).
Alatas et al. (2016) apply the corrections based on the missing-at-random assumption from Chandrasekhar
and Lewis (2016).

5The idea is similar to the difference between the degree distribution of all nodes and the degree distribution
of nodes on one side of a link (see e.g., Jackson (2010b), Chapter 4.2). Similar issues may arise with other
edge-based sampling strategies, such as independent edge sampling.
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the missing-at-random assumption. Unfortunately, it is difficult and costly to stratify on all
relevant characteristics. The issues with collection of network data may generate samples in
which the observed network structure is endogenous to the missing data mechanism.

To intuitively explain the issues arising from non-random sampling, we informally de-
compose the problem into two effects, scaling and non-representativeness. Scaling refers to
observing fewer people and relationships than there exist in the population, independently of
the (non-) representativeness of the sample. In contrast, non-representativeness corresponds
to non-randomness of the sample. If nodes are missing at random, only scaling matters. As an
example of the effect of random missing, consider the average degree of a network.6 If the links
between the sampled and non-sampled individuals are not observed, then the sample average
degree is biased downwards by construction. In addition, imagine that the population average
degree is correlated with the diffusion properties of the network. Applying the observed sample
average degree in a regression therefore inflates the estimated impact of average degree on dif-
fusion under random missing. This is an example of expansion of the estimated effect and thus
non-classical measurement error. However, if nodes are not missing at random, whether the
observed average degree and the estimates will be inflated or attenuated will depend on who is
missing. For example, if less connected nodes are missing with higher probability (a problem
inherent in e.g., snowball sampling), scaling and non-representativeness can bias the average
degree and the estimates in opposite directions, and one cannot easily predict which force will
dominate. In contrast to average degree, the homophily index and clustering coefficient can
be unbiased in representative samples.7 Nevertheless, in samples in which different types of
nodes are missing with differing probabilities, homophily will be biased by definition. Since
clustering is typically associated with connectivity in social networks (Jackson and Rogers,
2007), clustering is also likely to be mismeasured. The magnitude and direction of the biases
in these characteristics and in their estimated effects in regressions again depend crucially and
non-trivially on who is missing.

This study provides a systematic analysis of the problems arising from examining non-
randomly sampled network data and proposes a solution that (i) allows researchers to recover
the true population network properties and (ii) mitigates biases in regressions testing the
impact of network features (such as the average degree, total clustering, or homophily of a
network) on either individual or group-level behaviors and outcomes.8 We first characterize
analytically and numerically the extent of biases under non-random missing both in the struc-
tural properties of observed networks and in estimates from a regression analysis, employing
raw sampled networks as well as the existing corrections based on the missing-at-random as-
sumption. Second, we propose a set of analytical corrections which allow us to recover the true
values of several network characteristics widely used in applications. Third, we test the ability
of our approach to mitigate these biases vis-à-vis the raw data, true population statistics, and
random corrections.

The first contribution of this study is to show that relying on the missing-at-random

6Average degree is the average number of connections per person in a network. It is formally defined in
Section 2.

7Homophily is the tendency to associate with higher probability with similar others and the clustering
coefficient is a measure of local density within one’s neighborhood. See Section 2 for definitions.

8Our study also improves inferences in network-formation applications studying contextual determinants of
the network architecture (i.e. applying different network properties as regressands). Since network formation
represents a key topic in the network literature (see Jackson (2005) for a review), it enlarges the applicability
of the proposed methodology. However, since mismeasured dependent variables are less problematic as they
only affect the estimated errors, this study focuses on regressions including network properties as regressors.
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assumption to adjust the raw network sample, which is rarely satisfied empirically, may be as
serious as applying raw network data. Since the direction and magnitude of the biases depend
on who is missing, we demonstrate the necessity of accounting for potential different missing
rates of different segments of the population in applied work. This is particularly important
in network data as population and distributional parameters are most important.

As a second and main contribution of this paper, we propose a set of analytical corrections
for several network characteristics widely used in applications: average degree, clustering co-
efficient, graph span, epidemic threshold, and homophily. These network features represent
fundamental aspects of network architecture commonly employed in theoretical and empirical
research and provide intuitive insights regarding the way social organization shapes individ-
ual and group-level phenomena (Jackson, Rogers, and Zenou, 2017). To that aim, we take
explicit account of the missing rates of different sub-populations and adapt standard (i.e.,
network-free) post-stratification weighting approaches to networked contexts. There is a gen-
eral agreement that when population information is available, post-stratification weighting
can correct sampling biases due to varying response rates among different demographic or
socioeconomic categories and thus improve the precision of sample estimates for objective
variables of interest.9 Intuitively, we assume that the population can be divided into a fi-
nite number T ∈ N of disjoint types or groups and that sampling (or conversely missing)
rates differ across types.10 The main difference between the standard post-stratification and
our approach is to weight on network links, triples, or triangles, rather than on individuals.
Since the proposed corrections are asymptotically unbiased, regressing economic outcomes on
the corrected network measures, or using the corrected network features as dependent vari-
ables, delivers consistent estimates under standard assumptions. Moreover, our methodology
nests the existing corrections designed for random sampling as a special case (e.g., Kolaczyk,
2009, Chandrasekhar and Lewis, 2016). The two approaches perform similarly both theo-
retically and in our numerical experiments if the sample is indeed representative. However,
our methodology outperforms approaches based on the missing-at-random assumption if the
sample is non-representative, making our methodology more broadly applicable.

In this paper, we apply our methodology to two carefully elicited and widely applied
data sets – The National Longitudinal Study of Adolescent to Adult Health (hereafter Add
Health), collected with the truncated fixed-choice design, and a more recent stratified data set
on microfinance take-up in a number of Indian villages (Banerjee et al., 2013). We focus on
these data sets because they contain a relatively large number of networks, are widely employed
in empirical work,11 and a node and link have different meanings in each setting, illustrating
the broad applicability of our approach. Crucially, both data sets were carefully collected,
following standard sampling procedures in applied network research. We thus believe that our
analysis can be viewed as a conservative perspective on the severity of the issue in applied
work.

9See Holt and Smith (1979), Little (1993) and Valliant (1993) for statistical properties of poststratification
weighting.

10These types or groups are thought to represent, say, gender, race, ethnicity, location, age, education, etc.
or their combinations (say, “white women of an age between 20 and 30 with an yearly income below $50,000”
or “men of other race of an age over 70 with an income over $100,000.”). The variable resulting from combining
different types is termed rake in the post-stratification literature and throughout our paper.

11See e.g., Moody (2001); Echenique and Fryer (2007); Bramoullé, Djebbari, and Fortin (2009); Currarini,
Jackson, and Pin (2009, 2010); Calvó-Armengol, Patacchini, and Zenou (2009) among many others for the
friendship networks and Chandrasekhar and Lewis (2016); Jackson, Rodriguez-Barraquer, and Tan (2012);
Banerjee et al. (2013, 2014) and De Paula, Rasul, and Souza (2018) for the latter.
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We first show that both networks are indeed non-random samples of the population un-
der scrutiny. The Indian village networks stratified on religion and geographical location are
non-representative in terms of age and gender, while senior and non-white students are over-
represented in the Add Health data. Our applications then corroborate that one cannot easily
predict the direction and magnitude of the biases, and not accounting for unequal missing
rates of different segments of the population affects the estimated network effects dramati-
cally in both data sets. In a battery of regressions we frequently observe attenuation and
false negative findings, but we note that expansion, sign-switching, and false positives are
also commonplace. Moreover, the biases are economically important; in many instances, the
network effects are over/underestimated by 100% or more.

The present paper contributes to several literatures. First, we contribute to the literature
on missing links of social network data. Several studies have drawn attention to the issues
arising with sampled networks and to how particular sampling methods affect observed net-
works, some of which provide partial solutions to different issues (Stork and Richards, 1992;
Kossinets, 2006; Handcock and Gile, 2010; Huisman, 2009). Our approach has certain paral-
lelism with respondent driven-sampling, a methodology that combines snowball sampling with
a model that weights the sample to compensate for the non-representativeness of the sample
(Heckathorn, 1997), as well as statistical sampling theory that has developed procedures for
how to recover true population networks if the only source of randomness is the sampling de-
sign (see Kolaczyk (2009) for a survey). Our weighting method has the same goals but differs
substantially from these approaches in the underlying assumptions and in applicability: the
former approaches are only applicable under specific sampling designs, whereas our approach
can be applied both under designed sampling that depends on the network structure (such as
snowball sampling) and also in cases in which networks are not elicited via designed sampling
(as the case in e.g., the Add Health data or the stratified sample in Banerjee et al. (2013)).12

Moreover, existing approaches assume certain form of representativeness in the sampling pro-
cess ex ante, while our proposed methodology exploits the ex-post non-representativeness of
the sample.

Second, our methodology complements an emerging econometric literature on imperfectly
measured network data and the estimation of network effects. Chandrasekhar and Lewis (2016)
propose an integral methodology of how to deal with randomly sampled networks. Similar to
this paper, they show that estimations with sampled networks suffer from non-classical mea-
surement error and propose how to ensure consistent estimates. Their methodology consists
of two alternative strategies. First, they provide formal corrections for average degree, clus-
tering coefficient, and graph span under an assumption of random sampling. Our approach
generalizes this first strategy. As a second solution, they propose a graphical reconstruc-
tion technique that delivers consistent estimates in both network-level and individual-level
regressions, including the estimates of network effects using instrumental variable strategies
proposed by Bramoullé, Djebbari, and Fortin (2009) and De Giorgi, Pellizzari, and Redaelli
(2010).13 The procedure is to first estimate a network formation model, and then employ
the estimated model to interpolate over missing parts of the network. As mentioned in their
paper, the network reconstruction approach requires a correct model specification and certain

12For sake of brevity, we focus on two sampling designs in this paper, but our methodology can be applied
to other sampling methods as discussed in Section 6.

13Liu (2013) shows that the solution in Chandrasekhar and Lewis (2016) may still suffer from weak-
instrument problems and proposes to apply outdegrees of sampled nodes in star subgraphs as the instrument
to overcome this issue.
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assumptions to ensure consistency of the network statistics. This second approach does not
necessarily recover the network properties, however. Most importantly for the present work,
both approaches are based on a missing-at-random assumption. Breza et al. (2017) propose a
two-stage strategy for network elicitation using responses to questions such as “How many of
your social connections have trait k?” that permits the estimation of both node- or graph-level
network properties. Chandrasekhar and Jackson (2016) propose a network formation model
similar in the spirit to our recovery methodology in that it is also based on subgraphs in
function of types of the nodes. The advantage of our approach, as opposed to the graphical
reconstruction in Chandrasekhar and Lewis (2016) and the approaches in Breza et al. (2017)
and Chandrasekhar and Jackson (2016) is that our methodology does not rely on any par-
ticularly assumed network formation model. This is crucial because when the model is fitted
on largely non-representative network samples, the estimated network-formation parameters
in the first stage will likely be biased and potentially inconsistent even if the assumed model
is correct. As a result, none of these approaches can effectively recover the true network for-
mation process from non-representative samples. Our methodology overcomes this issue as
well as additional statistical problems arising from assuming an incorrect network formation
model and introducing additional uncertainty via the two-stage procedures in Chandrasekhar
and Lewis (2016), Breza et al. (2017), and Chandrasekhar and Jackson (2016). More recently,
De Paula, Rasul, and Souza (2018) propose a methodology allowing estimation of the entire
network structure from panel data simultaneously with peer effects if either no or partial
information on networks is available. The latter is, by definition, restricted to panel data
containing a large enough number of time series units, a very strong requirement in many
applications.14 Hence, our work complements and expands the above studies by providing
the first step toward the statistical treatment of network data coming from non-representative
samples of the population, which is the most common type of network data available.

Last, we contribute to better practices in the empirical evaluation of the effects of global
network features in socio-economic environments (for an up-to-date survey of this literature,
see Jackson, Rogers, and Zenou (2017)). For example, there is an increasing tendency to
apply data from online or phone interactions and movements to illustrate how the structure
of regional or state networks affect such diverse phenomena as the economic performance or
education (Bailey et al., 2018a), housing prices (Bailey et al., 2018b), but also the spread of
diseases, rumors, and behaviors (Lazer et al., 2009; Centola, 2010, 2011). The nature of these
data might generate certain biases in terms of, say, computer literacy or age. This would
influence network properties and would be subject to missing nodes in the true interaction
network. Our work cautions that this type of analysis should carefully check whether the data
come from representative samples of the population to be able to draw correct population-level
inference.

Our study shows that even in the absence of other econometric issues, mismeasured network
data with non-representative samples might lead to a serious misunderstanding of network
effects, and we propose a methodology that might mitigate this issue. As network data and
empirical techniques continue to be widely used, this approach can be used to improve the
inference that we draw from network studies more generally, and as a standard robustness
check of empirical results.

14More importantly, the main objective of De Paula, Rasul, and Souza (2018) is to estimate endogenous
network effects in the classic Manski (1993) specification, whereas we are interested in recovering the true
network of interest from partial network data and how global network properties shape individual and group-
level behaviors and outcomes, a type of network effects on which their approach does not apply.
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The rest of the paper is organized as follows. Section 2 introduces the set up and Section
3 characterizes mathematically the biases in a series of network variables and proposes the
corrections. The numerical analysis is presented in Section 4. We analyze two applications
of our methodology in Section 5. Section 6 discusses the extensions and limitations of our
approach.

2 Framework

2.1 Notation

A population network (graph) is a pair G = (V,E) of a set of nodes V and edges E. Denote
n = |V | the cardinality (size) of V . The network is represented with an n × n adjacency
matrix W (G). We follow the theoretical and empirical literature and focus on undirected and
unweighted networks.15 Therefore, Wij = 1(0) if i and j are (not) connected and Wij = Wji

for each i, j ∈ V . Following convention, we set Wii = 0. We assume that the population can
be classified into T disjoint types with a generic type t ∈ {1, 2, ..., T}. Let Vt be the set of
nodes of type t, nt = |Vt| is the size of subpopulation t, and

∑T
t=1 nt = n. We write ti = t if

individual i is of type t. Then, ti = tj (ti 6= tj) indicates that i and j are (not) of the same
type.

Rather than the whole network, researchers observe only sample of the population network.
Let S ⊂ V be the set of sampled nodes of size m = |S| = ψn, where ψ = m

n
is the sampling

rate. Analogously, mt = ψtnt is the sampled number of individuals of type t and ψt is type t’s
sampling rate.

There are two types of sampled networks.16 The first is the induced subgraph, denoted by
G|s. The induced graph restricts the network links among the m sampled nodes. The second
is the star subgraph, denoted by Gs. The star network samples S but allows for links of the
m sampled nodes to anyone in V . That is, G|s = (S,E |S) and Gs = (V,ES) where E|S is set
of edges between the sampled nodes and ES is set of all edges such that at least one of nodes
is in S.

We concentrate on several network statistics, and denote a generic network statistic as
w(G). It can represent a scalar, vector, or even the whole adjacency matrix itself (i.e., w(G) =
W (G)). The dimension of w(G) will depend on the application and will be defined in each
context. Let w(G), G ∈ {Gs,G|s}, be the corresponding network statistic using the sample
network G and w̃(G) the corrected network statistic in question proposed to mitigate the
sample biases with respect to the population. For example, w(G) = 1

n

∑
i∈V
∑

j∈V Wij is the

average degree of a graph, which we denote d(G) below. Hence, d(G) is the average degree of

the sample network and d̃(G) the proposed correction of the sample average degree to mitigate
biases with respect to the true d(G).

We assume that the sampling is non-random in the following sense. The analyst observes
mt ≤ nt individuals of type t, with mt = ψtnt and

∑
tmt = m. If ψt = ψ for all t ∈ T , the

sample is representative. Our framework allows for ψt 6= ψs for any t, s ∈ T , hence nests the
random sampling case treated in Chandrasekhar and Lewis (2016). We make the following
assumption for the heterogeneous sampling rates:

15Most of the analysis extends for directed and weighted graphs.
16Section 6 discusses other sampling schemes and their relations with the proposed methodology.
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Assumption 1. The sampling rates for each type t are asymptotically stable, i.e. mt

nt
= ψt as

nt →∞, ∀t.

In applications, the researcher may observe R different networks with a generic label r ∈
{1, 2, ..., R}. If a measure refers to a specific network, we use a subscript r to specify it.

That is, Gr is the graph of population r, Gr ∈ {Gs
r,G

|s
r } the corresponding sampled graphs of

network r, and accordingly for the other variables. Therefore, nr,t and mr,t are the number of
nodes of type t in the population network r and their corresponding sampled number. Once
again, ψr,t = mr,t

nr,t
is the sampling rate of type t in network r.

2.2 Econometric Modeling

In addition to the reconstruction of network properties of interest, we also analyze regres-
sion analysis with non-randomly sampled networks. Our approach is suitable for models
where – apart from other variables – one or more network-wide characteristics are regressors.
Throughout the analysis, we focus on regressions in which the researchers are interested in
understanding whether and how the global properties of a network (e.g., average degree or
the average distance in the network) influence a particular outcome. Formally,

yr = α + w(Gr)β + xrγ + εr, (1)

where yr is the outcome variable of population or network r, xr is the set of network-level
controls, and w(Gr) is the true network property (or properties) of interest. The researcher
is interested in estimating the parameters α, β, and γ. (We mostly focus on the estimations
of β.) Examples of applications of (1) in the literature include Alatas et al. (2016) which
regress the ability of villages to aggregate information on a set of network characteristics
in Indonesian villages, Banerjee et al. (2013) which model microfinance take-up rate in rural
India, Currarini, Jackson, and Pin (2009, 2010) and Golub and Jackson (2012a,b) which relate
homophily with school-level statistics using Add-Health data, and Toomet, Van Der Leij,
and Rolfe (2013) which link regional wage differences between ethnicities with region-level
homophily, or the innovation literature that model the ability of different regions to generate
knowledge depending on the structure of regional research networks (e.g., Fleming, King III,
and Juda, 2007). Such regressions are also of interest theoretically. For example, the overall
clustering of a network may explain the magnitude and efficiency of risk-sharing within a
society (Bloch, Genicot, and Ray, 2008), the stability of behavior in a society may be related
to the minimal eigenvalue of the adjacency matrix (Bramoullé, Kranton, and D’amours (2014),
among others).

The proposed approach also applies to models studying whether and how the overall prop-
erties of a network affect outcomes at the individual level: yir = α+w(Gr)β + xirγ + λr + εir,
where yir is the behavior of an individual i in network r, xir is her heterogeneity (that can
include the heterogeneity of i’s neighborhood), and λr is either fixed or random effect of
network r. For instance, the decision of an individual to adopt a product (e.g., microfi-
nance as in Banerjee et al., 2013), participate in an activity (e.g., recreational activity as in
Bramoullé, Djebbari, and Fortin, 2009), or behave in a particular way (Centola, 2010) can
depend on the overall structure of the network. In the same vein, the innovation literature
studies how the structure of regional networks shapes innovative performance of individual
innovators (Schilling and Phelps, 2007; Whittington, Owen-Smith, and Powell, 2009). There
also exist theories arguing that the overall structure of a network may determine the behavior
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at the individual level (see e.g., Ballester, Calvó-Armengol, and Zenou, 2006; Bramoullé and
Kranton, 2007; or Bramoullé, Kranton, and D’amours, 2014).

With sampled data on the network, the researchers observe G ∈ {GS, G|S} which is mis-
measured, rather than G. Therefore, scholars typically estimate

yr = α + w(Gr)β + xrγ + εr, (2)

leading to a measurement error in the regressors. The classic measurement error and the
resulting attenuation bias are based on several assumptions not generally satisfied in the case
of network measures (see e.g., Jeffrey, 2018, or Hyslop and Imbens, 2001).17 Chandrasekhar
and Lewis (2016) show formally and via simulations that the biases are generally not tractable
and can lead to expansion or sign switching even in the simplest cases and under purely random
sampling. The issues become even more problematic if the missing-at-random assumption is
violated. Moreover, if multiple regressors are included into the model as in (2), the estimates
of independent variables measured without error also become biased when another one is
mismeasured. That is, even if network properties only serve as controls, they may bias the
estimates of the main variables of interest.

In the following sections, we show how the biases depend on who is missing in the sample.
Section 5 further illustrates the bias problem by two widely used network data sets coming
from non-representative samples of the population under study.

3 Analytic corrections for sample network measures

This section shows formally the biases in some commonly used network characteristics aris-
ing from sampling and proposes how to correct them using post-stratification weighting ap-
proaches.18 Since each network r ∈ {1, .., R} is corrected separately, the main text illustrates
our approach for a generic network r.19 All the derivations are based on Assumption 1. Also
note that we use I(A) to denote an indicator function, while equals 1 if condition A is satisfied
and equals to 0 otherwise.

3.1 Average Degree

The degree of a node is the number of his/her network connections. The average degree
of population graph Gr is simply the average number of network links per person in the
network, defined as d(Gr) = 1

nr

∑
i∈Vr

∑
j∈Vr Wij,r. The degree is a basic measure of local

node’s importance or centrality. It has been applied as a regressor in numerous empirical
studies and contexts (see, e.g., Kremer and Miguel, 2007; Branas-Garza et al., 2010; Banerjee
et al., 2013; Alatas et al., 2016, among many others).

17While there are other challenges typically present in network regressions, such as endogeneity and/or
omitted variable problems, our argument is that sampling presents an issue even in the absence of these
problems.

18The poststratification weight assigned to a sampled individual i depends on which categories she belongs

to. Formally, pti = nt/n
mt/m

. Whenever the sampled ratio in category t is smaller (larger) than that in the

population, the weight is larger (smaller) than one. In other words, it raises (or decreases) the weights for
types of individuals who are underrepresented (or overrepresented) compared to the population. Below, we
introduce a similar approach but applied to different types of relationships (or subgraphs in the terminology
of Chandrasekhar and Jackson, 2016).

19Full derivations for all network measures are relegated into Appendix A.
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For induced subgraphs, the sample average degree is defined as d(G
|s
r ) = 1

mr

∑
i∈Sr

∑
j∈Sr

W
|s
ij,r.

We can show the conditional expectation of d(G
|s
r ), given Gr, as

E(d(G|sr )|Gr) =
T∑
t=1

(
1

nr

∑
i,j∈Vr

Wij,rI(ti = tj = t)

(
ψr,t (ψr,t + o(1))

ψr

))

+
T∑
t=1

T∑
` 6=t

(
1

nr

∑
i,j∈Vr

Wij,rI(ti = t, tj = `)

(
ψr,tψr,`
ψr

))
. (3)

The intuition behind the conditional expectation in (3) is the following: There are
∑

i,j∈Vr Wij,r

edges in the population network of interest, out of which
∑

i,j∈Vr Wij,rI(ti = tj = t) edges link
two individuals of the same type t ∈ {1 · · · , T}, and

∑
i,j∈Vr Wij,rI(ti = t, tj = `) edges connect

two individuals of different types, t 6= `. Given the sampling rate of each type, we only observe,
for example,

ψr,tψr,`

ψr

∑
i,j∈Vr Wij,rI(ti = t, tj = `) of the cross-type edges in sample. As long

as ψr < 1 for some r, the conditional expectation of d(G
|s
r ) is not equal to d(Gr) and bias

emerges even if the sample is representative due to scaling. Moreover, as ψr,t and ψr,` are not
necessarily the same as ψr, we have the second source of bias, non-representativeness, and the
issue becomes more complicated.

To correct the biases from both scaling and non-representativeness, we follow the principle
of Horvitz-Thompson estimator (Horvitz and Thompson, 1952) to propose the weighted sample
average degree as follows:

d̃(G|sr ) =
T∑
t=1

(
1

mr

∑
i,j∈Sr

W
|s
ij,rI(ti = tj = t)

(
ψ2
r,t

ψr

)−1)

+
T∑
t=1

T∑
6̀=t

(
1

mr

∑
i,j∈Sr

W
|s
ij,rI(ti = t, tj = `)

(
ψr,tψr,`
ψr

)−1)
. (4)

Based on (4), we multiply each observed cross-type link by a post-stratification weight
(
ψr,tψr,`

ψr

)−1
.

Note that the product
∑

i,j∈Sr
W
|s
ij,rI(ti = t, tj = `)

(
ψr,tψr,`

ψr

)−1
accounts for two effects: the

possible missing rates of these links in the sample and the number of such links in the ob-
served part of the network. That is, the corrections respect the observed correlations in who

is connected to whom. Similarly, we propose to multiply by
(
ψ2
r,t

ψr

)−1
all edges between two

individuals of the same type t. Note that due to the presence of the “error” term o(1) in (3),

the proposed corrected d̃(G
|s
r ) is only unbiased if a network grows large; otherwise it is subject

to an error due to the randomness in the sampling. Since samples are finite in applications,
Section 4 complements this section with numerical analysis using designed population and
sample sizes.

For star networks, the sample average degree is defined as d(Gs
r) = 1

mr

∑
i,j∈Sr

W s
ij,r. In
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this case

E(d(Gs
r)|Gr) =

T∑
t=1

(
1

nr

∑
i,j∈Vr

Wij,rI(ti = tj = t)

(
ψ2
r,t + 2ψr,t(1− ψr,t) + o(1)

ψr

))

+
T∑
t=1

T∑
` 6=t

(
1

nr

∑
i,j∈Vr

Wij,rI(ti = t, tj = `)

(
ψr,tψr,` + ψr,`(1− ψr,t) + ψr,t(1− ψr,`) + o(1)

ψr

))
.

(5)

Again, as long as ψr 6= 1 and the sampling rate across types are not the same, i.e., ψr,t 6= ψr,`,
the conditional expectation of d(Gs

r) in (5) does not equal to d(Gr). To correct the bias, our
proposed weighted sample average degree takes the following form:

d̃(Gs
r) =

T∑
t=1

 1

mr

∑
i,j∈Sr

W s
ij,rI(ti = tj = t)

((
ψ2
r,t + 2ψr,t(1− ψr,t)

)
ψr

)−1
+

T∑
t=1

T∑
6̀=t

(
1

mr

∑
i,j∈Sr

W s
ij,rI(ti = t, tj = `)

(
(ψr,tψr,` + ψr,`(1− ψr,t) + ψr,t(1− ψr,`))

ψr

)−1)
.

(6)

Note that if ψr,t = ψr,` = ψr (that is, under random sampling), expression in (3) col-

lapses to E[d(G
|s
r )|Gr] = (ψr + o(1))d(Gr) and expression in (5) collapses to E[d(Gs

r)|Gr] =
[1− (1− ψr)2 + o(1)] d(Gr), which would be exactly the same as shown by Chandrasekhar and
Lewis (2016). The key difference between the correction approach proposed in Chandrasekhar
and Lewis (2016) and the weighted sample average degrees in (4) or (6) is that the corrections
based on the missing-at-random assumption are only a rescaling of the corresponding sample
average degree, while matters become more complex if sampling differs across groups and the
network is homophilous or heterophilous. In such a case, one has to rescale on links and dif-
ferent links have to be weighted differently to yield an asymptotically unbiased correction. If
one applies the random corrections incorrectly, biases emerge and there is no reason for these
biases to be smaller than the ones in the raw (uncorrected) data.

3.2 Clustering Coefficient

The clustering coefficient of a node i measures the fraction of the pairs of i’s network neighbors
who are neighbors themselves. The total clustering of a graph is the ratio between the number
of triangles and the number of connected triples in the network,20 calculated as c(Gr) = ρ(Gr)

τ(Gr)
,

where

ρ(Gr) = 3
∑
i∈Vr

∑
k>i

∑
j 6=i,k

Wij,rWjk,rWki,r and τ(Gr) =
∑
i∈Vr

∑
k>i

∑
j 6=i,k

Wij,rWjk,r.

The clustering coefficient has traditionally been considered as a measure of one’s social
capital. For example, it plays an important role in risk-sharing (Bloch, Genicot, and Ray,

20A triangle refers to a complete subnetwork of three individuals, while a connected triple is a three-node
subnetwork, in which at least two edges are present. Hence, every triangle is also a connected triple but the
converse is not always true.
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2008), trust building (Karlan et al., 2009), and enhancing cooperation (Granovetter, 1985).
Several additional empirical papers have used the clustering as a regressor or the dependent
variable (e.g., Fleming, King III, and Juda, 2007; Kovář́ık and Van der Leij, 2014; Alatas
et al., 2016).

For induced subgraphs, the sample number of triangles and the sample number of con-
nected triples are computed by ρ(G

|s
r ) = 3

∑
i∈Sr

∑
k>i

∑
j 6=i,kW

|s
ij,rW

|s
jk,rW

|s
ki,r and τ(G

|s
r ) =∑

i∈Sr

∑
k>i

∑
j 6=i,kW

|s
ij,rW

|s
jk,r. In Appendix A.2 we show that the sample clustering coeffi-

cient c(G
|s
r ) = ρ(G

|s
r )

τ(G
|s
r )

is biased. Thus, to correct the bias, we propose the following weighted

estimator for the number of triangles,

ρ̃(G|sr ) =
T∑
t=1

(
3
∑
i∈Sr

∑
k>i

∑
j 6=i,k

W
|s
ij,rW

|s
jk,rW

|s
ki,rI(ti = tj = tk = t)

(
ψ3
r,t

)−1)

+
T∑
t=1

T∑
6̀=t

(
3
∑
i∈Sr

∑
k>i

∑
j 6=i,k

W
|s
ij,rW

|s
jk,rW

|s
ki,r

(
I
(ti=tj=t

tk=`

)
+ I

(ti=tk=t
tj=`

)
+ I

(
tj=tk=t
ti=`

)) (
ψ2
r,tψr,`

)−1)

+
T∑
t=1

T∑
6̀=t

T∑
h6=t,`

(
3
∑
i∈Sr

∑
k>i

∑
j 6=i,k

W
|s
ij,rW

|s
jk,rW

|s
ki,rI(ti = t, tj = `, tk = h) (ψr,tψr,`ψr,h)

−1

)
,

(7)

and analogously, the weighted estimator for the number of connected triples,

τ̃(G|sr ) =
T∑
t=1

(∑
i∈Sr

∑
k>i

∑
j 6=i,k

W
|s
ij,rW

|s
jk,rI(ti = tj = tk = t)

(
ψ3
r,t

)−1)

+
T∑
t=1

T∑
6̀=t

(∑
i∈Sr

∑
k>i

∑
j 6=i,k

W
|s
ij,rW

|s
jk,r

(
I
(ti=tj=t

tk=`

)
+ I

(ti=tk=t
tj=`

)
+ I

(
tj=tk=t
ti=`

)) (
ψ2
r,tψr,`

)−1)

+
T∑
t=1

T∑
6̀=t

T∑
h6=t,`

(∑
i∈Sr

∑
k>i

∑
j 6=i,k

W
|s
ij,rW

|s
jk,rI(ti = t, tj = `, tk = h) (ψr,tψr,`ψr,h)

−1

)
. (8)

Based on (7) and (8), we propose to multiply by ψ−3r,t all triangles and connected triples
composed of three individuals of the same type t, by (ψ2

r,tψr,`)
−1 those with two individuals of

type t and one of type ` 6= t, and finally by (ψr,tψr,`ψr,h)
−1 the triangles and connected triples

containing three individuals of three different types. The proposed weighted sample clustering
coefficient is thus c̃(G

|s
r ) = ρ̃(G

|s
r )/τ̃(G

|s
r ). Since the clustering coefficient is measured using

connected triples and triangles, the corrections differ from average degree in that, instead of
pairs, we correct “relationships” of three individuals depending on how they are interconnected
(connected triple or triangle) and their type composition.

The matters are again somewhat more complex for the star subgraph. We propose the
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following weighted estimator for the number of triangles for the star subgraph:

ρ̃(Gs
r) =

T∑
t=1

(
3
∑
i∈Sr

∑
k>i

∑
j 6=i,k

W s
ij,rW

s
jk,rW

s
ki,rI(ti = tj = tk = t)

(
ψ3
r,t + 3ψ2

r,t(1− ψr,t)
)−1)

+
T∑
t=1

T∑
` 6=t

(
3
∑
i∈Sr

∑
k>i

∑
j 6=i,k

W s
ij,rW

s
jk,rW

s
ki,r

(
I
(ti=tj=t

tk=`

)
+ I

(ti=tk=t
tj=`

)
+ I

(
tj=tk=t
ti=`

))
·

(
ψ2
r,tψr,` + 2(1− ψr,t)ψr,tψr,` + ψ2

r,t(1− ψr,`)
)−1)

+
T∑
t=1

T∑
6̀=t

T∑
h6=t,`

(
3
∑
i∈Sr

∑
k>i

∑
j 6=i,k

W s
ij,rW

s
jk,rW

s
ki,rI(ti = t, tj = `, tk = h)·

(
ψr,tψr,`ψr,h + (1− ψr,t)ψr,`ψr,h + ψr,t(1− ψr,`)ψr,h + ψr,tψr,`(1− ψr,h)

)−1)
. (9)

The weighted estimator for the number of connected triples has the following form:

τ̃(Gs
r) =

T∑
t=1

(∑
i∈Sr

∑
k>i

∑
j 6=i,k

W s
ij,rW

s
jk,rI(ti = tj = tk = t)

(
ψ3
r,t + 3ψ2

r,t(1− ψr,t) + ψr,t(1− ψr,t)2
)−1)

+
T∑
t=1

T∑
6̀=t

(∑
i∈Sr

∑
k>i

∑
j 6=i,k

W s
ij,rW

s
jk,r

(
I
(ti=tj=t

tk=`

)
+ I

(
tj=tk=t
ti=`

))
·

(
ψ2
r,tψr,` + 2(1− ψr,t)ψr,tψr,` + ψ2

r,t(1− ψr,`)
)−1)

+
T∑
t=1

T∑
6̀=t

(∑
i∈Sr

∑
k>i

∑
j 6=i,k

W s
ij,rW

s
jk,rI

(ti=tk=t
tj=`

)
·

(
ψ2
r,tψr,` + 2(1− ψr,t)ψr,tψr,` + ψ2

r,t(1− ψr,`) + (1− ψr,t)2ψr,`
)−1)

+
T∑
t=1

T∑
6̀=t

T∑
h6=t,`

(∑
i∈Sr

∑
k>i

∑
j 6=i,k

W s
ij,rW

s
jk,rI(ti = t, tj = `, tk = h)

(
ψr,tψr,`ψr,h + (1− ψr,t)ψr,`ψr,h

+ ψr,t(1− ψr,`)ψr,h + ψr,tψr,`(1− ψr,h) + (1− ψr,t)ψr,`(1− ψr,h)
)−1)

. (10)

Similar to the case of induced subgraph, we multiply different weights shown in (9) and (10)
to the edges in which all triangles and connected triples composed of three individuals of the
type t, two individuals of type t and one of type ` 6= t, and the triangles and connected triples
containing three individuals of three different types. The final weighted sample clustering
coefficient is thus c̃(Gs

r) = ρ̃(Gs
r)/τ̃(Gs

r).

3.3 Epidemic Threshold

There is increasing interest in understanding the diffusion properties of networks. The applica-
tions range from diffusion of innovation (e.g., Valente, 1996; Cowan and Jonard, 2004), product
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adoption (Banerjee et al., 2013; Hu, Hsieh, and Jia, 2014), spread of information (Alatas et al.,
2016) to spread of behaviors (Centola, 2010; Jackson and Yariv, 2007). The epidemic threshold
is one way to quantify how easy it is for a disease, information, idea, or behavior to propagate
through a network. Traditionally, the lower the threshold the easier the propagation. There
are a large variety of epidemic thresholds, depending on the diffusion conditions and network
properties (see e.g., Vega-Redondo, 2007, or Jackson, 2010b). We focus on the following simple
version which is widely used, based on mean-field approximations:

Thrld(Gr) =
d(Gr)

ds(Gr)
=

1
nr

∑
i∈Vr

∑
j∈Vr Wij,r

1
nr

∑
i∈Vr(

∑
j∈Vr Wij,r)2

.

The threshold is simply the ratio between the average degree, d(Gr), and the average squared
degree, denoted by ds(Gr). Given the corrections of d(Gr) it follows that

ds(Gr) = d(Gr) +
1

nr

∑
i∈Vr

∑
j∈Vr

∑
k 6=j

Wij,rWik,r. (11)

As a consequence, we only focus on the second term in (11). For the case of induced subgraph,

we propose the following weighted estimator for ds(G
|s
r ),

d̃s(G|sr ) = d̃(G|sr )

+
T∑
t=1

(
1

mr

∑
i∈Sr

∑
j∈Sr

∑
k 6=j

W
|s
ij,rW

|s
ik,rI(ti = tj = tk = t)

(
ψ3
r,t

ψr

)−1)

+
T∑
t=1

T∑
6̀=t

(
1

mr

∑
i∈Sr

∑
j∈Sr

∑
k 6=j

W
|s
ij,rW

|s
ik,r

(
I
(ti=tj=t

tk=`

)
+ I

(ti=tk=t
tj=`

)
+ I

(
tj=tk=t
ti=`

))(ψ2
r,tψr,`

ψr

)−1)

+
T∑
t=1

T∑
6̀=t

T∑
h6=t,`

(
1

mr

∑
i∈Sr

∑
j∈Sr

∑
k 6=j

W
|s
ij,rW

|s
ik,rI(ti = t, tj = `, tk = h)

(
ψr,tψr,`ψr,h

ψr

)−1)
.

(12)

That is, we propose to multiply
(
ψ3
r,t

ψr

)−1
to the triple (i, j, k) in which three individuals are of

the same type t; multiply
(
ψ2
r,tψr,`

ψr

)−1
to the triple (i, j, k) in which two individuals are of the

same type t and the other is of type `; multiply
(
ψr,tψr,`ψr,h

ψt

)−1
to the triple (i, j, k) in which

three individuals are of different types, t, `, and h, to correct the second term of ds(G
|s
r ). The

first term follows the correction of average degree, i.e., d̃(G
|s
r ). The proposed weighted sample

epidemic threshold is thus T̃ hrld(G
|s
r ) = d̃(G

|s
r )/d̃s(G

|s
r ).
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For star subgraphs, we consider the following weighted estimator for ds(Gs
r),

d̃s(Gs
r) = d̃(Gs

r)

+
T∑
t=1

(
1

mr

∑
i∈Sr

∑
j∈Sr

∑
k 6=j

W s
ij,rW

s
jk,rI(ti = tj = tk = t)·

(
ψ3
r,t + 3ψ2

r,t(1− ψr,t) + ψr,t(1− ψr,t)2

ψr

)−1)

+
T∑
t=1

T∑
6̀=t

(
1

mr

∑
i∈Sr

∑
j∈Sr

∑
k 6=j

W s
ij,rW

s
jk,r

(
I
(ti=tj=t

tk=`

)
+ I

(
tj=tk=t
ti=`

))
·

(
ψ2
r,tψr,` + 2(1− ψr,t)ψr,tψr,` + ψ2

r,t(1− ψr,`)
ψr

)−1)

+
T∑
t=1

T∑
6̀=t

(
1

mr

∑
i∈Sr

∑
j∈Sr

∑
k 6=j

W s
ij,rW

s
jk,rI

(ti=tk=t
tj=`

)
·

(
ψ2
r,tψr,` + 2(1− ψr,t)ψr,tψr,` + ψ2

r,t(1− ψr,`) + (1− ψr,t)2ψr,`
ψr

)−1)

+
T∑
t=1

T∑
6̀=t

T∑
h6=t,`

(
1

mr

∑
i∈Sr

∑
j∈Sr

∑
k 6=j

W s
ij,rW

s
jk,rI(ti = t, tj = `, tk = h)·(

ψ−1r

(
ψr,tψr,`ψr,h + (1− ψr,t)ψr,`ψr,h + ψr,t(1− ψr,`)ψr,h

+ ψr,tψr,`(1− ψr,h) + ψr,t(1− ψr,`)(1− ψr,h)
))−1)

. (13)

To correct the second term of ds(Gs
r), we multiply different weights shown in (13) to the edges

in which all triples composed of three individuals of the type t, two individuals of type t and
one of type ` 6= t, and the triples containing three individuals of three different types. The

final weighted sample epidemic threshold is T̃ hrld(Gs
r) = d̃(Gs

r)/d̃s(G
s
r).

3.4 Graph span

Another important network measure is the distance between nodes. The path length between
i and j is the minimum number of edges between them. The average path length is simply
the average path length over all finite paths. Naturally, the shorter the distance between
nodes the easier for them is to communicate, transmit information, or influence each other.
Shorter average distances consequently allow for easier transmission throughout the whole
population. Therefore, distances play important role in diffusion (similarly to the epidemic
threshold), but also in risk-sharing or flow of capital among others. Several recent papers have
analyzed distances in several applications. Examples include Kinnan and Townsend (2012),
Leider et al. (2009), Goeree et al. (2010), Banerjee et al. (2013), and Alatas et al. (2016).

Despite their intuition and use in many applications, path lengths are complex objects
and their analytical forms are only available for specific network architectures. We focus on
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graph span, a measure that approximates the average path length in many networks (Watts
and Strogatz, 1998; Jackson, 2008). Graph span is defined as

`(Gr) =
log nr − log d(Gr)

log d2(Gr)− log d(Gr)
+ 1,

where d2(Gr) = 1
nr

∑
i∈Vr

∑
j>i

∑
k 6=i,jWij,rWjk,r is the average number of second-order neigh-

bors (that is, nodes at distance two or simply neighbors of neighbors).

For the case of induced subgraph, we propose the following weighted estimator for d2(G
|s
r ):

d̃2(G
|s
r ) =

T∑
t=1

(
1

mr

∑
i∈Sr

∑
j>i

∑
k 6=i,j

W
|s
ij,rW

|s
jk,rI(ti = tj = tk = t)

(
ψ3
r,t

ψr

)−1)

+
T∑
t=1

T∑
` 6=t

(
1

mr

∑
i∈Sr

∑
j>i

∑
k 6=i,j

W
|s
ij,rW

|s
jk,r

(
I
(ti=tj=t

tk=`

)
+ I

(ti=tk=t
tj=`

)
+ I

(
tj=tk=t
ti=`

))(ψ2
r,tψr,`

ψr

)−1)

+
T∑
t=1

T∑
6̀=t

T∑
h6=t,`

(
1

mr

∑
i∈Sr

∑
j>i

∑
k 6=i,j

W
|s
ij,rW

|s
jk,rI(ti = t, tj = `, tk = h)

(
ψr,tψr,`ψr,h

ψr

)−1)
.

(14)

Hence, we propose to multiply
(
ψ3
r,t

ψr

)−1
to the triple (i, j, k) in which three individuals are

of the same type t; multiply
(
ψ2
r,tψr,`

ψr

)−1
to the triple (i, j, k) in which two individuals are of

the same type t and the other is of type `; multiply
(
ψr,tψr,`ψr,h

ψt

)−1
to the triple (i, j, k) in

which three individuals are of different types, t, `, and h, to correct d2(G
|s
r ). The proposed

weighted sample graph span is thus ˜̀(G
|s
r ) = log(ψ−1

r mr)−log d̃(G|sr )

log d̃2(G
|s
r )−log d̃(G|sr )

+ 1.
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For star subgraphs, we propose the following weighted estimator for d2(G
s
r),

d̃2(G
s
r) =

T∑
t=1

(
1

mr

∑
i∈Sr

∑
j>i

∑
k 6=i,j

W s
ij,rW

s
jk,rI(ti = tj = tk = t)·

(
ψ3
r,t + 3ψ2

r,t(1− ψr,t) + ψr,t(1− ψr,t)2

ψr

)−1)

+
T∑
t=1
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ψr
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+
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∑
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∑
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)
·

(
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r,tψr,` + 2(1− ψr,t)ψr,tψr,` + ψ2

r,t(1− ψr,`) + (1− ψr,t)2ψr,`
ψr

)−1)

+
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t=1

T∑
6̀=t

T∑
h6=t,`

(
1

mr

∑
i∈Sr

∑
j>i

∑
k 6=i,j

W s
ij,rW

s
jk,rI(ti = t, tj = `, tk = h)·(

ψ−1r
(
ψr,tψr,`ψr,h + (1− ψr,t)ψr,`ψr,h + ψr,t(1− ψr,`)ψr,h

+ ψr,tψr,`(1− ψr,h) + (1− ψr,t)ψr,`(1− ψr,h)
))−1)

. (15)

Similar to the case of induced subgraph, we multiply different weights shown in (15) to the
edges in which all triples composed of three individuals of the type t, two individuals of type
t and one of type ` 6= t, and the triples containing three individuals of three different types.

The final weighted sample graph span is thus ˜̀(Gs
r) = log(ψ−1

r mr)−log d̃(Gs
r)

log d̃2(Gs
r)−log d̃(Gs

r)
+ 1.

3.5 Homophily index

Many social and economic networks exhibit a feature called homophily, a tendency to bond
with similar individuals. In social and professional networks, who links with whom is typically
correlated with characteristics such as gender, age, race, social and economic status, among
others (see McPherson, Smith-Lovin, and Cook (2001) for a survey). This phenomenon of
”birds of a feather flock together” gains particular relevance in our approach, because we
explicitly consider types in the population and network, respectively. Homophily is an im-
portant measure of cross-type segregation and affects many economically relevant phenomena
such as diffusion or learning and their speeds (Golub and Jackson, 2012a,b), labor market
outcomes (Calvo-Armengol and Jackson, 2004; Toomet, Van Der Leij, and Rolfe, 2013), or
individual and firm-level success (McPherson and Smith-Lovin, 1987; Ibarra, 1992).

We adapt the homophily index from Currarini, Jackson, and Pin (2009). For Gr, the

homophily index within group t is defined as Ht(Gr) = st(Gr)
st(Gr)+dt(Gr)

, where st(Gr) denotes the
average number of friendships that agents of type t have with agents of the same type and
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dt(Gr) denotes the average number of friendships that type t form with agents of type different
than t. The homophily index of a network is simply the average homophily across all nodes.
We use t to represent different demographic characteristics, such as gender, race, age, or their
combinations (i.e., rake). Specifically, let Vr,t denotes a set of nodes of type t. Then,

st(Gr) =
1

nr,t

∑
i,j∈Vr,t

Wij,r, dt(Gr) =
1

nr,t

∑
i∈Vr,t

∑
j /∈Vr,t

Wij,r.

In the case of induced subgraph, fixing type t, we propose the following weighted estimators

s̃t(G
|s
r ) =

1

mr,t

∑
i,j∈Sr

W
|s
ij,rI(ti = tj = t)ψ−1r,t

and

d̃t(G
|s
r ) =

T∑
` 6=t

(
1

mr,t

∑
i,j∈Sr

W
|s
ij,rI(ti = t, tj = `)ψ−1r,`

)
.

Therefore, we propose multiply ψ−1r,t on each link for the calculation of s̃t(G
|s
r ) and ψ−1r,` for

d̃t(G
|s
r ). The weighted sample homophily index is H̃t(G

|s
r ) = s̃t(G

|s
r )

s̃t(G
|s
r )+d̃t(G

|s
r )

.

In the case of star subgraph, fixing type t, we propose the following weighted estimators

s̃t(G
s
r) =

1

mr,t

∑
i,j∈Sr

W s
ij,rI(ti = tj = t)

(
ψr,t + 2(1− ψr,t)

)−1
(16)

and

d̃t(G
s
r) =

T∑
` 6=t

(
1

mr,t

∑
i,j∈Sr

W s
ij,rI(ti = t, tj = `)

(
ψr,`/ψr,t + (1− ψr,`)

)−1)
. (17)

Therefore, we propose to multiply
(
ψ2
r,t + 2ψr,t(1− ψr,t)

)−1
on each link for the calculation

of s̃t(G
s
r) and multiply (ψr,t/ψr,` + (1− ψr,`))−1 for d̃t(G

s
r). The weighted sample homophily

index is H̃t(G
s
r) = s̃t(Gs

r)

s̃t(Gs
r)+d̃t(G

s
r)

.

4 Monte Carlo Simulations

This section evaluates numerically the extent of biases in the network measures (in Section
4.1) and the estimates using these measures as regressors (in Section 4.2), depending on the
sampled network type (induced vs. star subgraph), sampling rate, and (non-)randomness
of the sample. We quantify the biases in raw sampled data and in corrections based on the
missing-at-random assumption, and compare their performance vis-à-vis our poststratification
weighting. We concentrate on a scenario that mimics our modeling assumptions. This provides
a natural testing ground of our approach.

The population data in our simulation study is adopted from the Add Health Wave-I In-
school data.21 In particular, we adopt one Add Health school as a prototype.22 By adopting

21This is a program project designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris,
and funded by a grant P01-HD31921 from the National Institute of Child Health and Human Development,
with cooperative funding from 17 other agencies. Special acknowledgment is due Ronald R. Rindfuss and
Barbara Entwisle for assistance in the original design. Persons interested in obtaining data files from Add
Health should contact Add Health, Carolina Population Center, 123 W. Franklin Street, Chapel Hill, NC
27516-2524 (addhealth@unc.edu). No direct support was received from grant P01-HD31921 for this analysis.

22The adopted school is a public suburban school with 1606 student from grades 9 to 12. The school is
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a real-life sample school, we can preserve certain real-life relationships between individuals’
characteristics and the network. For example, white students have on average more net-
work (friendship) connections than black students and the latter are on average more con-
nected than other races in the data, and the patterns of homophily depend systematically on
the race composition of each school (Currarini, Jackson, and Pin, 2009, 2010).

For ease of interpretation we manipulate the size of the population data to 1,500 so that
the numbers of whites, blacks, and other races are all equal to 500 in each race group. We
use three demographic characteristics from the prototype to define individual’s type: seniority
(C1), gender (C2), and race (C3). Seniority takes value of one if an individual is older than the
population average and zero otherwise. For gender, one stands for male and zero for female.
For race, one denotes White, two denotes Black, and three stands for other races. We also
combine these three characteristics to form 2 × 2 × 3 = 12 cross-characteristics, denoted by
Rake throughout.23 Seniority and gender are largely uncorrelated with individual network
connectivity. In contrast, race is strongly correlated with network degree in the data. The
average degree of white students is 9.60, black students have an average of 7.38, whereas the
average connectivity is 4.39 for other races. Naturally, the three variables can partially predict
who is connected to whom.

4.1 Network characteristics

As a first step, we quantify the biases in network measures in sample networks using raw data,
corrections assuming representativeness, and our postsratification weighting approach. From
the above described population, we examine a number of removal schemes and 100 artificial
sampled networks are generated for each scheme. In particular, we vary the removal strategy
in three dimensions. First, we apply two sampled network types, induced and star subgraphs.
In the induced subgraphs, we remove a fraction of nodes and all their links (including their
connections to the non-removed individuals); for the star subgraphs, we remove a fraction of
nodes and only their links to other removed individuals. Second, we consider three sampling
rates, ψ = 80%, 60%, and 40% (or alternatively three removal rates, 1− ψ = 20%, 40%, and
60%, respectively). Third, we employ four removal strategies with respect to the representa-
tiveness of the artificially sampled subgraphs. We either remove people randomly (Scenario
R) or on basis of their connectivity. In the latter case, we employ three scenarios: (i) removal
of high-degree nodes with higher probability (Scenario H), (ii) removal of intermediate-degree
nodes with higher probability (Scenario M), and (iii) removal of low-degree nodes with higher
probability (Scenario L).24 Since race is strongly correlated with network degree in the data,
when we generate our artificial samples and would like non-random (disproportional) missing,
we use race for such purposes. More precisely, if we want to remove highly connected nodes
with higher probability, we remove white students with higher probability and so on. We
perform 100 repetitions (based on the 100 artificial sampled networks) of each constellation.
We focus on the five network statistics treated in Section 3. In case of homophily, we mostly
focus on rake homophily. The results are very similar in case of homophily on other variables.

located in the southern U.S.
23Rake combines the previous three variables such that the types are for example “senior black female,”

“junior male of other race” and so on.
24We use the notation R(andom), H(igh), M(edium), and L(ow) to make sure that the readers associate the

letter with the removal strategy. The amounts of removal for (white, black, other races) are ( 1−ψ
2 , 1−ψ3 , 1−ψ6 )×

1500 in scenario H, ( 1−ψ
4 , 1−ψ2 , 1−ψ4 )× 1500 in scenario M, and (1−ψ

6 , 1−ψ3 , 1−ψ2 )× 1500 in scenario L.
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Figures 1 and 2 summarize the first set of results from our Monte Carlo simulations for
the induced- and the star-subgraph sampling, respectively. In Figures 1 and 2, the y-axes
reflect the average magnitudes and signs of the biases (out of 100 runs of each constellation)
in percentage terms with respect to the population values. The x-axes list the five network
characteristics under scrutiny in the following order: average degree, total clustering, graph
span, epidemic threshold, and homophily on rake.25 The blue bars represent the raw sample
data and the red bars, denoted by Random, reflect the random corrections proposed by Chan-
drasekhar and Lewis (2016). The remaining three cases are variations of our methodology.
The light green bars weight on the network-unrelated C1, whereas the last two bars represent,
respectively, the weighting on C3 only (brown) and Rake (i.e., the combination of C1 − 3;
gray).26 The rows and columns represent the four different removal strategies, Scenario R, H,
M, L, and the three sampling rates, ψ = 80%, 60%, and 40%, in these orders.

We first discuss the biases that arise in the considered measures if raw sampled data are
used to compute the network statistics and stress the effect of non-representativeness. This
exercise reveals that treating the data “as if” complete leads to large differences between
the population and sample networks under virtually all removal strategies. Not surprisingly,
the biases are larger in the induced subnetwork (as less information is available about the
network, conditional on the sampling rate) and decrease with the sampling rate (increase
with the missing rate). The most biased characteristics are average degree, graph span, and
the epidemic threshold. The raw sample data consistently make the network appear less
connected, exhibiting longer average distances, and as less epidemic-prone than it actually is.
All these findings are direct consequences of observing fewer links than there actually exist in
the population.

To provide some rough quantification of the biases in the sample average degrees, the biases
are in the range of 20%, 40%, and 50% in the induced subgraphs and 3%, 15%, and 20% in the
star subgraphs for ψ = 80%, 60%, and 40%, respectively. The extent of biases in the average
degree are clearly associated with who is removed and in the expected direction. Under non-
random missing and conditional on ψ, we always detect the largest biases when there is a
tendency not to observe relatively connected individuals, followed by the removal of nodes
with intermediate connectivity, and then with the removal of low-degree nodes exhibiting the
lowest biases in average degrees. Random removal mostly leads to biases comparable to the
removal of nodes with intermediate degrees. As for the graph span, the sample networks always
exhibit longer average distances, compared to the population graphs, and the biases follow
the same patterns as the average degree: they rise with the missing rate and the tendency to
remove more connected nodes. The biases are respectively 8-20%, 21-69%, and 38-386% for
the induced subgraph and 1-4%, 5-16%, and 11-52% for the star subgraph. Last, observing
only a sample of nodes increases the epidemic threshold. Once again, larger missing rate is
associated with larger biases and with the tendency to remove more connected individuals,
with the exception of the induced network and ψ = 80% where the largest bias occurs if
intermediate nodes are missing with higher probability. The epidemic threshold is biased
respectively almost up to 36%, 77%, and 163% in the induced graphs, and 5%, 19%, and 44%
in the star subnetworks.

The biases are quantitatively much lower and exhibit more complex patterns in case of
the clustering coefficient and the homophily index, two network characteristics that represent

25The results are qualitatively similar if we focus on gender or race homophily instead. We thus omit them
here.

26Weighting on C2 performs very similarly to weighting on C1 and is thus omitted.
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Figure 1: Induced subgraph: Biases (%) of network measures and their corrected versions
with respect to the population network for ψ = 80% (left), 60% (center), 40% (right) and four
different removal strategies.
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Figure 2: Star subgraph: Biases (%) of network measures and their corrected versions with
respect to the population network for ψ = 80% (left), 60% (center), 40% (right) and four
different removal strategies.
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shares and are thus restricted to values between zero and one. They also increase with the
sampling rate, but they are not necessarily lower in the star graph and their magnitudes and
signs are highly sensitive to the removal strategy.

The clustering coefficient in the induced subgraph is only mildly biased (less than 2%)
under random removal and this removal scheme always deviates the clustering coefficient the
least from its true population value. Removing more connected nodes with higher probability
(Scenario H) always drives the clustering coefficient down, while Scenarios M and L inflate
it. Quantitatively speaking, the sampled clustering coefficients are biased (downwards) by
-5.1%, -10.7%, and -16.8% for ψ = 80%, 60%, and 40% when more higher-degree nodes are
not observed; the corresponding figures are positive and relatively similar for Scenarios M and
L (3.9%, 9.3%, and 16.7% vs. 4.8%, 10.9%, and 23.4%).

In contrast to the induced graph, the biases in the clustering coefficient are always negative
and even the random removal can bias the coefficient downwards considerably under the star-
network sampling scheme. This naturally arises due to the fact that many neighbors of the
sampled nodes are not observed. The mutual links of the latter are thus not recorded, lowering
the clustering of the sampled subjects. Hence, the network always looks less clustered than
it actually is in the star subnetworks. Under random missing, the observed biases are -3.4%,
-12.6%, and almost -30% as the missing rate increases. Compared to the missing-at-random
situation, the biases are always larger in absolute terms if high-degree nodes are removed with
higher probability (Scenario H: -6.1%, -22.0%, and -45.6% for ψ = 80%, 60%, and 40%) and
lower in the other two cases (Scenario M: -2.6%, -8.3%, and -13.35; Scenario L: -1.6%, -6.1%,
and -12.42%). This is an example showing that non-random missing may generate lower biases
than representative samples if the “right” nodes are removed.

Regarding homophily on rake, it exhibits no biases whatsoever under random missing
(less than 0.15%). This is probably the reason why the literature has ignored the effects of
sampling on homophily. However, non-random missing leads to mismeasured values. Under
disproportional missing of different types, the biases again decrease with the sampling rate.
Overall, sampling makes the networks look less homophilous than they are, except when
relatively non-connected nodes are missing with higher probability in the induced graph.27

Virtually no biases are detected in the star graph and they are very low for the induced graph
if ψ = 80%. For ψ = 60%, the biases in absolute value do not exceed 7% and 4% in the induced
and star graph, respectively. Nevertheless, the biases start to be severe (10% or more) if the
sampling rate is low.

The second objective of this section is to compare the raw sample statistics with the
random corrections and three variations of weights that apply our methodology. Remember
that seniority (C1) is largely uncorrelated with connectivity while race (C3) is associated
strongly, but both variables determine who links with whom. Therefore, we first discuss the
case of C1. One would expect C1 to correct at least the scaling effect. This exercise is of
interest to illustrate what happens when a researcher weights on a variable that contains
little information about the network. Can such a variable hurt, rather than help? If so, one
should be very careful selecting the variables. Second, we weight on C3, which should correct
the scaling problem and provide additional improvement, since this variable correlates with
one’s position. Last, we weight on rake (that is, the combination of C1, C2, and C3). We
hypothesize these corrections should outperform the previous cases, since they employ most
of the available information.

27One non-regular exception is the case of higher missing of high-degree nodes with ψ = 40%.
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With very few exceptions, all correction strategies outperform the raw data. As expected,
the corrections assuming randomness work well under random sampling and their performance
is similar to our weighting methodology. Nevertheless, the random corrections and the weight-
ing approach diverge once the missing-at-random assumption is violated. As hypothesized,
the random corrections and weighting on the network-irrelevant C1 perform very similarly
overall. This is an important result, since it shows that weighting on any variable still mit-
igates the biases and does not hurt, compared to the raw data and the random corrections.
However, these corrections are still biased and these biases increase with the missing rate and
are lower in the star-subnetwork sampling scheme. The biases are minimal if we weight either
on C3 or rake and both approaches virtually always outperform all other methods. In fact,
both weighting schemes almost eliminate any biases arising from sample network data. The
maximum biases are 1.1%, 1.6%, and 6.8% for ψ = 80%, 60%, and ψ = 40% for the induced
subgraphs; the figures are even lower for the star subnetwork.

To investigate further the finite-sample properties of the proposed corrections, Figures
B.1 - B.16 in Appendix B complement the above analysis by displaying the distribution of
the corrections network by network. More precisely, the figures plot the true population
network statistics for each network on the y-axes and, respectively, their (raw) sample values,
the corrections based on randomness, and the corrections weighted on rake on the horizontal
axes.28 The reported graphs enable one to evaluate two particular features of the finite-sample
performance of the raw data and the corrections: (a) the slope of the estimators in comparison
with the 45o line, and (b) their dispersion around the 45o line. Ideally, an estimator recovers
a network statistic free of any error. All points in each panel would thus lie right on the 45o

line. In the other extreme, the raw data as well as the corrections might be systematically
related to the magnitude of the population statistic and the corrections might be unstable.
This would be the case if the biases in the corrected value of, say, average degree would
systematically be higher for networks with low average connectivity compared to networks
with high connectivity and the proposed corrections would systematically lie far away from
the true values. Regarding the stability of the corrections, some dispersion is expectable and
inevitable in finite samples. As for the slope, only attenuation would be an issue in simple
linear regressions applying these corrections as long as the distribution of the corrected values
preserve the slope of the 45o line.29 If the corrections have a slope lower than the 45o line,
attenuation would be reinforced, although the likelihood of false negatives (and type I error)
would increase. However, the most serious problem arises if the corrections exhibit a slope
higher than one in the figures. In such a case, expansion of network effects would take place
and the probability of type II error increases if the corrections were applied as regressors in
simple linear regression models. Note that the corrected network statistics might still inflate
the estimated network effects even if the corrections work well on average in Figures 1 or 2.30

28Appendix B reports 16 figures, corresponding to the two sampling methods, four removal strategies, and
two sampling rates 40% and 80%. Since all the conclusions extend to ψ = 60%, we save on space and do not
include the graphs for ψ = 60%. Each figure contains six panels, one for each network statistic under study.
Each circle in each panel corresponds to one network.

29If the slope is one in the figures, the estimated network effect would be attenutated even if the values of
the corrected variable are on average shifted downwards of upwards from the 45o line. Such shifts would be
absorbed by the estimated intercept.

30This would be the case if a statistic corrected well on average is inflated for below-average values while
reduced for above-average values. This is common using the raw data and the case in several instances while
employing the corrections based on randomness in Figures B.1 - B.16. Regressing a variable of interest on such
incorrectly corrected statistic will naturally lead to expansion and the possibility to accept a network effect
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It is, therefore, crucial to account for such a possibility. The matters become naturally more
complex and problematic in multivariate regressions or non-linear models.

Figures B.1 - B.16 reveal that the raw-data network statistics are systematically biased
as the slopes of the corrections differ typically from 45o line (independently of the statistic
under scrutiny, the parameter values, and the removal strategy), and the raw-data statistics
deliver largely unstable estimates of the true value. Therefore, if the raw network statistics are
employed as regressors, the estimates will be seriously biased, and acceptance of spurious net-
work effects would be frequent. These issues are particularly severe under non-representative
sampling strategies.

The corrections based on the missing-at-random assumption and our poststratification ap-
proach perform similarly under random missing and successfully recover the true population
values. In addition, the estimates under both methodologies are very stable as they only devi-
ate slightly from the 45o line under random sampling. They should both eliminate the expan-
sion problem and only suffer mildly from attenuation if applied as regressors in representative
samples. In contrast, our weighting approach clearly outperforms any other method once we
depart from the missing-at-random assumption: the weighted corrections always exhibit slopes
equal to the 45o degree line in Figures B.1 - B.16 and they are never more dispersed than the
raw-data statistics or the corrections assuming representativeness. The increased performance
of the weighting methodology is more pronounced as the missing rate increases in case of all
the studied network statistics. Our approach particularly outperforms the random corrections
if low-degree nodes are more likely to be missing in the induced subgraphs and if high-degree
nodes are missing with higher probability under the star-subgraph sampling. Therefore, our
methodology outperforms the corrections based on the missing-at-random assumption both in
terms of the average performance and in their stability. As a result, the proposed approach
should improve inference on sampled networks by delivering the least biased and more stable
estimates of network effects. The next section analyzes this issue.

4.2 Network effects

We now turn the attention to the performance of the poststratification weighting in a regression
framework, aiming at estimating global network effects on economic outcomes. Since our
weighting approach is designed for global network measures, the independent variables of
network measures in the regressions are measured at the network-wide level. We also limit
the present analysis to network-level dependent variables, such as the mean, median, or other
statistics computed from individuals’ outcome in the network. However, as discussed above,
the method can be extended to models in which we directly regress individual behaviors or
outcomes on global network properties or in which the network properties are the dependent
variables.

To generate the population data, we again take the manipulated Add Health school sample
of the size 1,500 individuals as the phototype. We create 200 artificial populations of the size
1,500 with the node characteristics adopted from this phototype sample. Then, based on the
average connectivity, clustering coefficient, and homophily index corresponding to different
types of individuals in this phototype sample, we simulate network links in these 200 artificial
populations. That is, we generated 200 population networks that have the same size, same

that does not exist even in simple linear regression models. This never happens under our weighting approach
in Figures B.1 - B.16 though.
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node characteristics (i.e., C1, C2, and C3), but different network configurations. Particularly,
simulated links exhibit uneven connectivity across types, where white nodes on average have
the highest degree, followed by blacks and then nodes of other races. There are also features of
clustering and homophily in different types. To simulate the population dependent variable y
in each network, we follow a simple linear regression model: yr = α+βw(Gr)+εr, with εr being
an i.i.d. random error from N(0, 1). We generate the data with designed parameters α = 1 and
different β’s corresponding to different network measure w(Gr): β = 0.5 for average degree;
β = 5 for the clustering coefficient; β = −0.5 for the epidemic threshold; β = −0.5 for graph
span; and β = −0.5 for each of the homophily indices. Lastly, for each of these networks,
we generate 100 artificial samples following the same removal strategies from the previous
section. This generates the artificial raw data, on which we apply the corrections based on the
missing-at-random assumption and our poststratification weighting approach. We estimate
the model using the three types of network measures (raw data, random corrections, and
poststratification weighting on rake) and compare them to the estimates with the artificial
population networks.

Figures 3 and 4 report the average biases and their direction in the estimated β’s (out of 100
Monte Carlo repetitions) with respect to the population for the induced and star subgraphs,
respectively. Again, y-axes reflect the biases in percentage terms and their signs and x-axes
the five network statistics. The blue bars correspond to the raw data, the red ones to the
corrections based on random missing, and the gray bars to weighting on rake. For clarity, we
omit the results corresponding to weighting on seniority, gender, or race only. The biases in
the estimates behave similarly to the biases detected in the previous subsection.

The general results regarding the biases mimic those of network characteristics, in most
respects. The biases in the estimates – both from the raw data and after applying the cor-
rections – increase in the missing rate, are higher for the induced networks compared to star
subgraphs, where less data is missing (conditional on the sampling rate), and depend on who
is missing. The raw network data exhibit very large biases in the estimates of network ef-
fects for all network statistics and expansion is commonplace. Hence, type II error is very
likely. The performance of the corrections based on randomness and the weighting approach
is similar if the data are missing at random, but they generally diverge otherwise. Both
types of corrections mitigate the biases with respect to the raw data, but accounting for the
non-representativeness of the sample using our methodology generally reduces the biases as
compared to the corrections based on randomness.

In the induced networks, the biases in the estimates using raw data are typically con-
siderable in percentage terms. These biases are specifically large for the average degree, the
epidemic threshold, and the graph span. The raw data always inflate the network effects of
these corrections. Hence, expansion and non-classical measurement error problem present a
serious issue in these cases. The effects of the average degree are inflated by more than 20%,
40%, and 50% for 1−ψ = 20, 40, 60%, with the exception of Scenario L under which the figures
are lower but still important. The biases in the effects of the graph span and the epidemic
threshold are comparable to those of average degrees. The biases are considerably lower in
case of the clustering coefficient and homophily on rake. The random corrections correspond
to their observed sample values in the induced case. Indeed, the biases are relatively low for
random removal (below 11% and 2% for clustering and homophily, respectively). However, the
matters change if we abandon the missing-at-random framework. The effect of clustering is
mostly underestimated, while that of homophily either unbiased or overestimated. The biases
in case of clustering increase with the missing rate and are very sensitive to ψ, being this sensi-
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Figure 3: Induced subgraph: Biases (%) in network effects and their corrected versions with
respect to the population network for ψ = 80% (left), 60% (center), and 40% (right) and four
different removal strategies.
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Figure 4: Star subgraph: Biases (%) in network effects and their corrected versions with
respect to the population network for ψ = 80% (left), 60% (center), and 40% (right) and four
different removal strategies.
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tivity particularly large if relatively more connected nodes are missing with higher probability
(3%, 14%, and 74% for 1 − ψ = 20, 40, 60%). They are somewhere below 9% for ψ = 80%,
around 20% if ψ = 60%, and between 30% and 74% if ψ = 40% under non-representative
missing. In case of homophily, the estimates are biased more than 15% only if more connected
nodes are missing with higher probability and ψ < 80%.

The biases are generally reduced considerably under this sampling strategy when the cor-
rections are applied. As for the comparison between random corrections and post-stratification
weighting, the former already outperform slightly the latter under random removal. Further-
more, once the removal is not random, the differences between both correction types become
larger even though there are few cases, in which both methodologies perform similarly. In
quantitative terms and with few exceptions, our corrections exhibit biases below 5%, 10%,
and 20% as the missing rate increases in Figure 3, whereas these numbers are in the order
of 10%, 40%, and 50-60% under random corrections. Hence, the superior performance of
our methodology compared to random corrections reveals with lower sampling rates, a ten-
dency already observed in Section 4.1. We only observe systematically serious biases in our
approach for the highest missing rate considered, but in all the cases we outperform the alter-
native strategies. There are some cases, in which the bias under random corrections exceeds
that of the raw data; this never happens with our corrections. Moreover, whenever there is a
different sign in the estimates between the random corrections and our weighting approach,
it is always the case that the estimates are attenuated under the weighting but inflated while
employing the random corrections. Hence, our methodology is generally the most successful
mitigating the biases in the network effects and preventing the false positive findings in the
induced subgraphs.

The star-subgraph statistics exhibit lower biases than the induced graphs and this also
holds when the estimated network statistics are applied as regressors. With few exceptions,
the biases in the estimates of network effects using the raw data are mostly below 5%, 20%,
and 50% for ψ = 80%, 60%, and 40%. Once again, the effect of average degree and graph
span are inflated, but this time the effect of the epidemic threshold is overestimated only
for ψ = 60%. The effect of the clustering coefficient is overestimated in many instances and
relatively large. Both types of corrections reduce the biases drastically. Random corrections
never outperform our weighting approach and they particularly fail to recover the true effect
of the clustering coefficient and the graph span for high missing rates in every non-random
missing scenario. Under the star sampling procedure, our weighting approach eliminates
virtually all the serious biases in the estimates. Overall, our approach is remarkably successful
recovering the true network effects under the star-subgraph sampling.

5 Empirical applications

In this section, we apply the proposed methodology to two data sets with the objective to illus-
trate how statistical inference can be affected if one does not account for non-representativeness
of network samples. In the first subsection, we use network data from rural India. In the sec-
ond, we employ adolescent friendship networks from U.S. high schools. Both data sets contain
information on (non-network) characteristics for the whole population, but only sampled data
on networks.
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5.1 Village Networks in Rural India

Banerjee et al. (2013) elicit a large variety of characteristics including network data from 75
villages in southern Karnattaka, India, corresponding to 75 different networks. The authors
initially collected the census information for each household (on age and gender of household
members) in all villages and later conducted detailed follow-up survey with a subsample of the
population of each village. In the latter, they also elicit the network of relationships among
individuals. Two features of this data make them particularly interesting for our purpose.
First, as in most studies, the survey respondents only represent a sample of each village
and thus their reported network is an induced subgraph of the population network. The
average sampling rate across villages is 35%. The crucial aspect of their sampling design is
the stratification by religion and geographic sub-location, generating a representative sample
with respect to these two variables. This is a common approach in many applications. The
stratification on religion and geography notwithstanding, Table 1 reveals that the data are not
representative in terms of age, gender, and – to a lesser extent – household size. Below, we test
to what extent the differences between the sample and population shares of these categories
affect the estimation of network effects.

Table 1: Population and sample shares of different characteristics cate-
gories and labor outcomes in the Indian rural village data from Banerjee
et al. (2013).

Population Sample Difference (p-value)

Age
< 30 38.71% 30.97% 7.74% (0.000)
30 - 50 39.60% 54.11% -14.51% (0.000)
> 50 21.69% 14.92% 6.77% (0.000)

Male Ratio 50.34% 44.57% 5.77% (0.000)

Household Size
< 3 17.26% 15.49% 1.77% (0.038)
3 - 8 71.57% 73.48% -1.91% (0.039)
> 8 11.17% 11.03% 0.14% (0.879)

Labor Outcome
employed 62.49%
work outside village 21.21%

Num. of Villages 75 75
Observations 48,646 16,995

Second, the data contain several variables regarding the labor market outcomes of the
participants, such as the employment status, whether they work outside the village, and
their occupation. Since the important role of social networks in labor markets is widely ac-
knowledged in the literature and documented in the data,31 this application is interesting in its

31Granovetter (1985), Montgomery (1991), or Calvo-Armengol and Jackson (2004) are three standard ref-
erences. See also Granovetter (2005) for a review.
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own right. The theoretical literature argues that the degree distribution (Calvo-Armengol and
Jackson, 2004) and the average clustering coefficient (Espinosa, Kovarik, and Ruiz-Palazuelos,
2018) might affect the employment prospects directly, while average network distances and
the epidemic threshold might influence the flow of labor-market information and thus the
labor outcomes indirectly (see Calvo-Armengol and Jackson (2004) for examples). Similarly,
the extent of segregation may determine who hears about jobs and who does not. However,
little empirical evidence exists regarding the impact of different macro features of networks on
labor markets, due primarily to the lack of suitable data containing enough networks. We thus
ask how the village employment rate and the fraction of people working outside the village
are determined by the global features of the underlying network of relationships within the
village. Most importantly, for the present study, we ask how the estimated network effects
change if we account for missing network data and non-randomness of the sample. Specifically,
we hypothesize that the over-representation of people aged 30-50 and under-representation of
men in the sample (see Table 1), those who typically actively participate in labor markets in
a country like India, might bias the estimated network effects if their misrepresentation is not
accounted for.

Table 2 reports the estimated network effects in a series of estimations differing in (i)
the dependent variable ((I) employment rate; (II) fraction of population working outside the
village), (ii) whether raw or corrected networks are used (columns) and (iii) different network
characteristics (rows). Once again, to separate the effect of scaling from the effect on non-
randomness of the sample, we use the raw network data, corrections based on randomness,
and our approach in which we weight on a rake variable (incorporating the information on age,
gender, and household size). Each row reports the estimated network effect (and the standard
error robust to heteroscedasticity in parentheses) from a regression of one dependent variable
on the corresponding network statistic and village size. There are two important things to
note. First, we also apply the post-stratification rake weighting on the dependent variables,
i.e., employment and working outside villages, at the village level to correct measurement
errors due to non-randomness of the sample. Second, we use the network constructed by the
union of all relationships reported by survey respondents, e.g., borrowing, lending, seeking
advices, going to temple together, visiting home, and others following Banerjee et al. (2013).
We also study the network effects which are only based on reported friendships and find similar
results.32

32The results of network effects from friendships are reported in Table C.1 in Appendix C.
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Table 2: Estimated network effects on the share of population in rural India village
that (I) employed and (II) work outside the village.

Dependent Variable (I) Employed (%) (II) Work Outside Village (%)

Raw Random Rake Raw Random Rake

Degree 0.0269∗∗∗ 0.0091∗∗ 0.0088∗∗ -0.0235∗ -0.0093∗∗ -0.0101∗

(0.0095) (0.0035) (0.0039) (0.0120) (0.0044) (0.0051)
Cluster 0.1663∗∗ 0.1663∗∗ 0.1413∗∗ -0.2137∗∗ -0.2137∗∗ -0.1665∗∗∗

(0.0643) (0.0643) (0.0610) (0.0889) (0.0889) (0.0626)
Span -0.0248∗∗ -0.0746∗∗ -0.0650∗ 0.0335∗∗∗ 0.1253∗∗∗ 0.1255∗∗∗

(0.0096) (0.0349) (0.0345) (0.0117) (0.0427) (0.0435)
Epid. Thrld -1.1530∗∗∗ -2.3017∗∗∗ -2.0965∗∗ 0.9357∗∗ 2.3498∗∗ 2.3924∗∗

(0.3589) (0.8442) (0.8341) (0.4148) (0.9967) (1.0430)
HI-sex 0.1622 0.1622 0.0974 -0.0689 -0.0689 -0.0368

(0.1017) (0.1017) (0.0929) (0.1344) (0.1344) (0.1473)
HI-age 0.4015∗ 0.4015∗ -0.1271 -0.1253 -0.1253 0.4875∗∗

(0.2356) (0.2356) (0.1932) (0.3026) (0.3026) 0.1953
HI-householdsize 0.0176 0.0176 -0.0127 0.2465∗∗ 0.2465∗∗ 0.0950

(0.1036) (0.1036) (0.1003) (0.0968) (0.0968) (0.1163)
HI-rake 0.2484 0.2484 0.0443 0.4158∗ 0.4158∗ 0.5957∗∗∗

(0.1790) (0.1790) (0.1628) (0.2098) (0.2098) (0.2135)

Note: Regression is based on 75 villages. Standard errors robust to heteroscedasticity are reported in
parentheses. *, **, *** stand for significance at 10%, 5%, and 1% respectively. Each row corresponds
to one regression and the village size is included as a default control.

Regarding the main purpose of our exercise, Table 2 shows the sensitivity of results with
respect to no-representative sampling. First, the estimates using raw data or corrections based
on the missing-at-random assumption might be attenuated, expanded, and can even switch
signs, compared to the corrections that account for both scaling and the non-representativeness
of the network data. There are examples of false positive findings: two regressions in Table 2
detect a significant network effect using both the raw network statistics and those correcting
for scaling, but this effect disappears if we correct for non-randomness of the network sample.
There exist one case, in which we detect no effect using the raw data and random corrections
but we do using our weighting approach. The sign switching occurs three times in case of the
raw data and three times in case of the random corrections; it always concerns the effect of
homophily. Second, overestimation with respect of the effect of the weighted network statistics
– disregarding the (non-)significance – is commonplace.

In the 2× 8 = 16 regressions employing the raw network data, the biases in the estimates
are always higher than 10% and 10 of the regressions are overestimated. Under overestimation,
the estimates are inflated between 17% in case of clustering and 2,226% in case of the average
degree; if attenuated, the biases range from 30% in case of homophily on rake to 415% in case
of the age homophily. The remaining biases are spread somehow in between these extremes
and are overally economically important.

In case of the random corrections, 11 (out of 16) estimates reported in Table 2 are biased
more than 10% with respect to the weighting approach. The biases are below 10% in case of
the average degree and the epidemic threshold in both applications and in case of graph span
when regressed on the fraction of people working outside the village. If biased more than 10%,
the estimates are inflated in 7 regressions (43.8%). These biases lie between 14.8% in case of
the clustering coefficient and 460.7% for rake homophily. Underestimation of the estimates
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by more 10% is observed in 4 instances (25%) and the biases range from 30% in case of rake
homophily to 415.9% in case of age homophily. Again, the remaining cases are distributed in
between.

In sum, there are important biases in the estimates under both the raw data as well
as corrections assuming representativeness. Crucially, false positives, expansion of network
effects, and sign switching are common. More important, the direction and the magnitude of
the biases depend non-trivially on the particular network statistics, the dependent variable
under study, and who is missing.33 Hence, researchers cannot easily predict the direction of
the biases and thus cannot rely on classical measurement-error solutions, even in the simplest
cases analyzed here.

As for how the village networks shape labor outcomes, we corroborate the literature in that
the architecture of social structures plays a key role in labor markets. Using our weighted
corrections and accounting for the non-representativeness of the sample (that is, columns
denoted Rake in Table 2) shows that virtually all the features of social organizations under
study matter for the average labor outcomes in the village and the effects of the different
characteristics are to a large extent consistent with each other. More precisely, both higher
average degrees and more dense social circles stimulate employment and prevent people from
having to travel for work outside their village. Higher average degree favors the flow of
information about jobs throughout the village, naturally making people more likely to find
a job and to find it within the village. As for the clustering coefficient, it is an important
measure of whether people take care of each other within a village in adverse situations,
such as unemployment (Coleman, 1988). Indeed, the estimated effect is positive, suggesting
that more clustered villages exhibit higher employment rates and less need to search for jobs
outside the village. Relatedly, shorter distances and lower epidemic thresholds lead to higher
employment rates and less traveling for work outside the community. This is in line with the
idea that higher values of both variables correspond to less integration, hindering – among
other things – the flow of job-related information from more distant network neighborhoods.
Last, homophily does not seem to effect the labor outcomes systematically. The only exception
is age homophily. The estimates reveal that higher segregation across different age categories
makes people more likely to work outside the village. Recall that higher homophily corresponds
to less connections and thus lower information flow across different subgroups in the village
population. This effect is thus in line with the effect of the graph span.

5.2 Adolescent Friendship Networks in U.S. High Schools

As a second application, this subsection applies our approach to the Add Health data set.
These data contain extensive information on friendship networks in selected U.S. high/middle
schools and detailed data on individual heterogeneity. The schools are representative.34 Even
though the data collectors interviewed all the students present during the questionnaire day,
the average sampling rate is 63.6% of the school census. We combine the sampled network data
with certain information on the roster in each school. Since the participation was determined
non-randomly, we can expect non-representativeness of the sample. As Table 3 indeed shows,

33Observe that the largest biases are detected in case of age-related statistics, the category that differs the
most between the population and the sample.

34We use 48 high schools (out of 80) in Add Health data which consist of year 9 to year 12 and students
of different races, because these are the only schools that have a complete registration record (i.e., population
record) on race and year compositions of their students.
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the sample and the population differ in terms of race and grade compositions. In particular,
white students and students of the ninth grade are underrepresented in the sample. We already
know that white students are more connected. Thus, higher missing of white students will
directly affect the observed network connectedness and the degree of race segregation. As for
the grade composition, younger students might for instance be less integrated in the school
networks, compared to their older schoolmates. Hence, there are good reasons to believe that
the observed school networks are mismeasured and that this may affect inferences on these
networks.

Table 3: Population and sample statistics of different characteris-
tics categories and school activities in the Add Health data.

Population Sample Difference (p-value)

White Ratio 60.43% 53.32% 7.11% (0.214)

Year grade
9th 32.22% 30.00% 2.22% (0.044)
10th 25.63% 26.53% -0.90% (0.121)
11th 22.06% 23.00% -0.94% (0.139)
12th 20.09% 20.47% -0.38% (0.566)

Activity
club 2.03
exercise 4.35

Num. of Schools 48 48
Observations 66,025 40,898

We present two particular applications here. The first application is inspired by Bramoullé,
Djebbari, and Fortin (2009) who find large peer effects in club participation using the Add
Health data. This raises the question of whether the global features of friendship networks
predict the average club participation at high schools. The second presented application
is inspired by the experiments of Centola (2010, 2011) regarding the effect of networks on
the spread of health-related behaviors. He reports that health related behaviors, including
exercising, are heavily influenced by the clustering coefficient and network distances (Centola,
2010), and homophily (Centola, 2011). Therefore, we regress two dependent variables, the
average club participation and average exercise frequency in the schools, on the same network
characteristics as in Section 5.1 and the school size. Table 4 reports the estimates using again
raw network data, networks corrected for scaling, and those corrected by our poststratification
weighting. The table has the same structure as Table 2.
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Table 4: Estimated network effects on (I) club participation and (II) frequency of
exercise in U.S. high schools.

Dependent Variable (I) Number of clubs attended (II) Frequency of exercise

Raw Random Rake Raw Random Rake

Degree 0.0681∗∗ 0.0646∗∗ 0.0660∗∗ 0.0970∗∗ 0.0526∗∗∗ 0.0498∗∗∗

(0.0329) (0.0257) (0.0255) (0.0421) (0.0186) (0.0194)
Cluster -0.0116 -0.0116 -0.0583 0.5104 0.5104 0.4591

(0.3729) (0.3729) (0.3571) (0.6480) (0.6480) (0.6289)
Span -0.0009 -0.2886∗∗ -0.3561∗∗∗ -0.0079∗∗∗ -0.1940∗ -0.2399∗∗

(0.0012) (0.1117) (0.1240) (0.0014) (0.1049) (0.1192)
Epid Thrld -2.3991∗ -10.7449∗∗∗ -12.9819∗∗ -4.8215∗∗∗ -6.6086∗ -8.3189∗∗

(1.3756) (3.7717) (4.0284) (1.5809) (3.3198) (3.9157)
HI-grade 2.4168∗∗ 2.4168∗∗ 2.6725∗∗ 1.3443 1.3443 0.6779

(1.0237) (1.0237) (1.0310) (1.1274) (1.1274) (1.3677)
HI-race -0.8281∗ -0.8281∗ 0.0248 -1.9841∗∗∗ -1.9841∗∗∗ -0.8637

(0.4314) (0.4314) (0.5886) (0.6582) (0.6582) (0.7602)
HI-rake 0.1263 0.1263 1.2347∗ -1.6500∗ -1.6500∗ -0.4103

(0.7949) (0.7949) (0.6998) (0.9354) (0.9354) (0.8941)

Note: Regression is based on 48 schools. *, **, *** stand for significance at 10%, 5%, and 1%
respectively. Each row corresponds to one regression with the school size included as a default control.

Again, we observe that some network effects appear and some disappear, and there are
two instances of sign switching once we account for non-randomness. Similarly, the (non-)
significance can persist, appear, or disappear. There are three cases in the table, in which
both the raw data and the random corrections generate significant impact on the dependent
variables, while they become insignificant with our weighting approach; in one case, the op-
posite occurs. Contrary to Section 5.1, whether the effects are overall attenuated or inflated
depends crucially on the dependent variable.

In case of the club participation, the only case in which we detect expansion corresponds to
the effect of average degree using the raw data and the bias is small (3.2%). All the remaining
effects are attenuated with respect to our weighting approach. The attenuation is small for
the effect of the average degree corrected for random samples (-2.1%) and homophily on grade
(-9.6%). Nevertheless, the estimated effects are biased downwards considerably for the other
variables. The estimated effects are more biased for the raw data. The effects of clustering are
biased downwards by 80.1%, whereas those of the graph span and epidemic threshold by more
than 80% and roughly 18% for the raw data and random corrections, respectively. The more
dramatic biases appears – similarly to Section 5.1 – for the variables affected the most by the
differing sampling probabilities of different types. The estimated effect of homophily on race,
the variable closely related to network positioning in the data, is biased downwards by more
than 3,000% if we do not correct for the higher missing rates of races other than white. Race
homophily seems to affect significantly and negatively club participation if we disregard the
non-representativeness of the network data, but once we correct for it the effect switches the
sign and becomes statistically non-significant.

As for the exercise frequency, the effects of the average degree, the clustering coefficient,
and homophily are always overestimated, while those of the epidemic threshold and graph
span are attenuated using both the raw data and corrections assuming representativeness.
The biases in the effects of average degree are 94.8% with raw data but only 5.6% if corrected
for scaling. The effect of the clustering coefficient is overestimated by 11.2% in both cases. The
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influence of homophily is always inflated by more than 98% independently of the homophily
type. The estimated effects of graph span and epidemic threshold are underestimated by
around 20% if we employ random corrections; the figures are considerably larger with the raw
network data.

Regarding the effects of the network if corrected for both scaling and non-representativeness,
the average connectivity of the network stimulates both club participation and exercise fre-
quency, and longer distances and higher epidemic threshold hinder them. All these features
reflect different aspects of higher network integration and the signs are aligned with the in-
tuition. Homophily only affects positively the club attendance but does not influence how
much people exercise. The former finding confirms Centola (2011) in that higher homophily
stimulates diffusion, but the latter contradicts his findings that higher homophily stimulates
the adoption of health behaviors. In contrast to Centola (2010), the clustering does not ex-
plain any dependent variable. Since the experiment of Centola (2010) cannot disentangle the
effect of clustering from that of distances by design, we include both the clustering coefficient
and graph span into a same model (see Table C.2 in Appendix C) and find that the results
do not change. Hence, the (treatment) effect detected by Centola (2010) seems to be driven
by network distances, whereas the effect of clustering might play a minor role in promoting
health behaviors in his data. This conclusion is reinforced by the fact that it holds for both
dependent variables.

Once again, there is no general tendency in the biases and in how significance levels are
affected. We observe attenuation, expansion, and sign switching, and the (non-) significance
can persist, appear or disappear under our corrections. Most importantly, these applications
illustrate that both the magnitudes and the directions of the biases depend non-trivially on
the dependent variable under study.

6 Discussion

To conclude, we briefly comment on potential extensions and limitations of our methodol-
ogy regarding other sampling methods and network characteristics. We also provide several
recommendations concerning the selection of weighting variables.

Alternative sampling strategies Although this paper focuses on two particular sam-
pling methods, the induced- and star-subgraph elicitation, the proposed methodology can be
adopted to other sampling schemes as long as the researcher knows the strategy employed for
the elicitation of the sample and possesses some information on the whole population. In the
following, we provide several examples illustrating the applicability of the proposed approach
to other sampling strategies.

As a first example, consider the issue known as the boundary specification problem. Re-
gardless of whether a researcher elicits a complete or sampled network, she must set a boundary
to determine the population of interest. Imagine for simplicity that the researcher elicits the
entire network structure within one class in a school, disregarding any individual from other
classes and the ties from the class under scrutiny to people outside the class. It is very likely
that there exist connections between the members of the class and other people who do not
belong to the class. Hence, even if there exist a clearly defined boundary and the class network
is complete, the true social network of the studied population is most likely incomplete. If one
would like to study the complete network, say, at the school level and individual characteristics
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are available for the whole school, one can mitigate the boundary specification problem by
applying directly our method because setting a boundary is mathematically equivalent to our
induced graph sampling.

As a second example, consider snow-ball sampling, a sampling procedure commonly applied
in Sociology, Marketing and Epidemiology (Berg, 2004; Browne, 2005; Chen, Chen, and Xiao,
2013). Under the snow-ball sampling, a researcher initially selects a randomly selected subset
of nodes. Then, she performs the first wave by eliciting all the contacts of the initially selected
nodes. In the second wave, she elicits all the contacts of the nodes found in the first wave,
and so on. Observe that the star-network sampling treated above is formally equivalent to
one-wave snow-ball sampling and our methodology directly applies. Nevertheless, there is a
difference between our approach and the corrections proposed in the literature for one-wave
snow-ball sampling: they only coincide if each type is missing with the same probability or if
the weighting variables provide no information about the network under study (see Kolaczyk
(2009)). This paper argues this is rarely the case even in very carefully and systematically
collected data sets.

Unsurprisingly, the corrections proposed in Section 2 cannot be employed directly under
other sampling designs. However, our weighting approach should be adaptable to the employed
sampling strategy in most cases. Consider, for example, random selection of links (also known
as incident edge sampling) such that an individual i belongs to the sample if and only if at
least one of her edges is sampled. Such sampling is commonplace in communication data,
where only a random sample of phone calls or e-mails is selected. The main problem of
this sampling design is to compute the probability with which a particular individual of a
particular type belongs to the sample, but this probability is observed in the type of data we
target by this study. Additionally, since the probability of being sampled depends on nodes’
degrees, the differing sampling rates across types already provide information regarding the
different connectivity of each type. On the other hand, the probability of each dyad to belong
to the sample is the same for each link. Hence, combining this information with the observed
connectivity across and within types, one can compute, for instance, the expected average
degree of the network a là Section 2 but such computation might be more involved. A similar
approach would apply for other network measures of interest.

As for snow-ball sampling, it is equivalent to our star subgraph elicitation only if one
wave is executed. Although the computation becomes increasingly complex as more and more
waves are preformed, one can adapt our approach to multiple waves taking into account the
missing frequencies of each type and the information about the within-type and across-type
connectivity from the observed part of the network using combinatorial arguments (see e.g.,
Frank (1977); Snijders (1992)). It is also possible to take into account that all connections
are observed for one part of the sample and apply the corrections to nodes for which some
information might be missing. This notwithstanding, the complexity of the problem increases
with the number of waves as mentioned above and the literature almost exclusively focuses
on the one-wave variant even if all the randomness solely comes from the sampling process
(Frank, 1977). Similar considerations apply for forest-fire sampling, a generalization of snow-
ball sampling. It again starts with a set of randomly chosen individuals and operates in waves.
In the first wave, the analyst elicits the links from the initially chosen individuals, but each
link is only followed with a probability p ≤ 1, and similarly in the following waves. Naturally,
if p = 1 forest-fire sampling is equivalent to snow-ball sampling. Again, one can incorporate
the probability p to the variations of our corrections adapted to snow-ball sampling.

More generally, apart form the Horvitz-Thompson estimator, the statistical sampling the-
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ory has developed a number of estimators of different network measures under a variety of
sampling schemes (see Frank (2005) or Kolaczyk (2009) for text-book treatments) and our
approach combines their developments with the ideas of post-stratification weighting. When-
ever a correction exists under random sampling, it can be generalized to non-representative
samples.

There are three ways how our methodology enriches the existing methods. First, the
inclusion probability of one particular individual in the sample is typically difficult to compute
using the approach of statistical sampling theory, but such issue is overcome in our case
by comparing the population and sample frequencies of each type. Moreover, the existing
literature assumes representative sampling, while we take into account the possibility that
different types may be selected with different probabilities beyond the non-randomness caused
by the sampling method and we respect the observed homophily patterns. This provides a
better estimate of the network statistics of interest if the types are correlated with network
positioning and/or predict who is connected to whom, two prevalent features of real-life social
networks. Last but not least, in contrast to the statistical sampling theory, the proposed
methodology does not rely on graph-based sampling designs and can be applied to e.g., samples
stratified on certain non-network characteristics, a common approach in the collection of
network data in, for example, Labor and Development Economics.

Other network statistics For their theoretical and empirical relevance, this study focuses
on five basic network measures: average degree, total clustering, graph span, epidemic thresh-
old, and homophily index (Jackson, Rogers, and Zenou, 2017). Nevertheless, one can easily
adapt the methodology to any other large-scale network measure that solely requires the
knowledge of nodes’ local information.35 The examples include the assortativity coefficient,
the average size of the second-order neighborhood, network entropy, or the average number of
cycles of size four within nodes’ neighborhoods. Assortativity is a common feature of network
architectures and measures a correlation between the degrees of connected nodes.36 Assorta-
tivity plays a crucial rule in diffusion: it can slow down or enhance the disease transmission but
also that of behaviors and social norms (Newman, 2002; Jackson, Rogers, and Zenou, 2017).
Social networks typically exhibit positive assortativity, the tendency of more connected in-
dividuals to be connected to more connected individual. In contrast, many technological or
biological networks exhibit negative correlations between the degrees of connected individuals.
The average size of the second-order neighborhood (compared to that of direct neighborhood)
enables to assess how fast diffusion spreads and it has also shown to be important in labour
markets (Calvo-Armengol and Jackson, 2004). Since the computation of both the assortativ-
ity coefficient and the second-order neighborhood only requires the knowledge of one’s degree
and the degree of her neighbors, the weighted corrections follow directly from the corrections
proposed in Section 2.

Other measures do not follow directly from Section 2, but our approach can still be ap-
plied. For instance, Eagle, Macy, and Claxton (2010) apply the concept of network entropy
that reflects the diversity of connections of an individual to different groups (or types in the
terminology of the current paper) in the population. They report large economic advan-
tages from belonging to communities with geographically diversified distributions of contacts.

35In this paper, local information always refers to the first- and second-order neighborhoods of each node.
One can go further and incorporate more distant neighbors at the cost of lower precision of the proposed
corrections.

36Assortativity can be understood as degree homophily.
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Since their measure only relies on the distribution of different types in the neighborhood of
each node, the corrected variation of this measure for sampled networks is straightforward.
Similarly, cycles of size four have recently received certain attention in Sociology (Opsahl,
2013), Physics (Yin, Benson, and Leskovec, 2018), and Economics (Espinosa, Kovarik, and
Ruiz-Palazuelos, 2018). One can recover it following our approach using the combinatorial
logic. Since these characteristics are extensions of the ideas of homophily and the clustering
coefficient, respectively, we focus on the more common variations and do not propose the
corrections of these two measures in this study.

These examples notwithstanding, the proposed methodology cannot be applied in other
cases. First, it does not allow to recover global network measures computed on basis of the
whole network architecture, such as the average betweenness and eigenvector centralities or the
spectral properties of a graph. Similarly, the weighting approach cannot recover the network
characteristics at the individual level. We cannot even compute the degree distribution and
only recover the moments of this distribution. Whether and how the logic of our methodology
can be applied in these cases is left for future research.

Selection of (auxiliary) weighting variables A natural question arising from the pro-
posed methodology is the choice of the (auxiliary) weighting variables. Our approach is based
on the idea that individual heterogeneity and the observed part of the network provide valuable
information about the missing part. The evidence supports this assumption and reveals that
two types of correlations are of particular relevance: the positioning in a network correlates
with a series of individual characteristics and similar people (or dissimilar as in, say, romantic
networks) are more likely to be connected. However, the evidence also points out that different
characteristics matter in different contexts and situations. For instance, Morelli et al. (2017)
report that positive emotions explain positioning in network reflecting time sharing, while
empathy plays a role in intimate networks of the same people describing trust and support.
Similarly, firms will probably form ties differently if searching for providers, compared to in-
novation collaborations. Hence, one has to know the particular application under study to
assess which node-level characteristic might provide valuable information about the network
and we prefer to refrain from making general recommendations regarding the application of
particular variables.

Practically speaking, most data sets we are aware of are restricted to a relatively small
number of variables at the population level. Since our results show that the performance
increases with more information and that applying variables that provide no information about
the network does not affect the performance negatively, we would recommend researchers to
employ all the available information in such cases.

If, in contrast, too many variables are available for weighting, one would like to avoid to
having too many types and probably disregard some of them. In such a situation, the main
problem would be to have too few observations in each stratified cell. It may increase the vari-
ance of the proposed weighting estimates of the characteristic under study and thus decrease
the performance of the corrections. One straightforward solution is to apply the principal
component analysis to filter the relevant independent information from a large number of po-
tentially correlated variables. Another solution can be a simple two-step algorithm. Consider
a set Z of population-level variables with z = |Z|. Denote w̃−i(G) the correction of a network
statistics using all the available variables but i. Last, let θ ≥ 0 be a (small) threshold chosen
by the researcher. Then, we propose the following algorithm to eliminate some of the variables
available at the population level:
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Step 1: use all the available z variables and generate the correction w̃(G) of the network
characteristic of interest;

Step 2: for each i = 1, 2, ..., z, compute w̃−i(G). If |w̃(G)− w̃−i(G)| ≤ θ, remove variable i.

Despite its simplicity, the proposed algorithm targets several key features of the selection of
the “right” variables. The main contribution of the proposed algorithm lies in eliminating the
variables that either provide too little information for the network statistic of interest (where
too little is determined by the researcher with choice of θ) or provide the same information as
some other considered variable (thus providing too little additional information). Moreover,
the algorithm selects endogenously the most suitable variables for each network statistic. As
a result, different network statistics might be corrected with different variables.37

As for θ, it represents a threshold to be decided by the researcher. It can be set to zero
if the researcher would like to maintain all the information; alternatively, it can be set equal
to any arbitrary (most likely) small number or computed on basis of a desirable percentage
improvement if the research would like to filter out only the most relevant variables. We remain
agnostic about the specific approach a researcher would take for a particular project. We stress,
however, that researchers should be aware of the significant inferential problem addressed here
and the limits of assumed randomness of the network sampled. In most settings, a variety of
weights should be used to discover if results are sensitive to the random network assumption
and, if so, potential sources of bias. Such analysis should serve as a standard robustness check
of empirical network results, giving scholars confidence that the results reflect network effects
and are not a figment of sampling strategy.

37This is an important issue as different features of network positioning are commonly explained by different
individual characteristics. For instance, in the context of friendships, Branas-Garza et al. (2010) report that
social-norm adherence explains one’s centrality but not the clustering coefficient whereas Kovář́ık and Van der
Leij (2014) document that risk attitudes predict the clustering coefficient but not the centrality.
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Supplementary Appendix

A Derivation of Conditional Expectation of Network

Statistic

In the following derivations, we denote
(
n
m

)
the number of all possible sample of size m from a

set of n nodes. We use I(A) to denote an indicator function which equals to 1 if the condition
A satisfies and 0 otherwise. We also use the notation o(1) to denote a term which converges
to zero when the sample size goes to infinity. All the derivations are based on Assumption 1.

A.1 Conditional Expectation of Average Degree

For induced subgraphs, the conditional expectation of the sample average degree, d(G
|s
r ), is
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The conditional expectation of average degree for the star subgraph, d(Gs
r), is
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A.2 Conditional Expectation of Clustering Coefficient

The clustering coefficient of a graph is a ratio of the number of triangles to the number of
connected triples, calculated as c(Gr) = ρ(Gr)

τ(Gr)
, where

ρ(Gr) = 3
∑
i∈Vr

∑
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∑
j 6=i,k
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∑
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For induced subgraphs, the conditional expectation of ρ(G
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r ) can be decomposed as follows,
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When three individuals are of the same type, i.e., ti = tj = tk = t, we have
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Therefore, we can further obtain
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The conditional expectation of the denominator τ(G
|s
r ) has the following form:
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When three individuals are of the same type, i.e., ti = tj = tk = t, we have
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Therefore,
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When two individuals are of the same type and the third is of a different type, including
ti = tj = t and tk = `; tj = tk = t and ti = `; and ti = tk = t and tj = `,
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nr,t−2
mr,t−2

)(
nr,`−1
mr,`−1

)
+ 2
(
nr,t−2
mr,t−1

)(
nr,`−1
mr,`−1

)
+
(
nr,t−2
mr,t−2

)(
nr,`−1
mr,`

))∏
q 6=t,`

(
nr,q
mr,q

)
∏T

q=1

(
nr,q
mr,q

)
 .

When three individuals are of different types, i.e., ti = t, tj = `, tk = h,

E
(
I
(

i,j,k∈Sr
ti=t,tj=`,tk=h ∨

any two of i,j,k∈Sr
ti=t,tj=`,tk=h

)∣∣∣Gr

)
=

(
T∏

q=1

(
nr,q

mr,q

))−1 [((
nr,t − 1

mr,t − 1

)(
nr,` − 1

mr,` − 1

)(
nr,h − 1

mr,h − 1

)
+

(
nr,t − 1

mr,t − 1

)(
nr,` − 1

mr,`

)(
nr,h − 1

mr,h − 1

)

+

(
nr,t − 1

mr,t

)(
nr,` − 1

mr,` − 1

)(
nr,h − 1

mr,h − 1

)
+

(
nr,t − 1

mr,t − 1

)(
nr,` − 1

mr,` − 1

)(
nr,h − 1

mr,h

)) ∏
q 6=t,`,h

(
nr,q

mr,q

) .
Therefore, we can further obtain

E(ρ(Gs
r)|Gr) =

T∑
t=1

3
∑
i∈Vr

∑
k>i

ti=tj=tk=t

∑
j 6=i,k

Wij,rWjk,rWki,r

(
ψ3

r,t + 3ψ2
r,t(1− ψr,t) + o(1)

)

+

T∑
t=1

T∑
` 6=t

3
∑
i∈Vr

∑
k>i

ti=tj=t,tk=`

∑
j 6=i,k

Wij,rWjk,rWki,r

(
ψ2

r,tψr,` + 2(1− ψr,t)ψr,tψr,` + ψ2
r,t(1− ψr,`) + o(1)

)

+

T∑
t=1

T∑
` 6=t

3
∑
i∈Vr

∑
k>i

tj=tk=t,ti=`

∑
j 6=i,k

Wij,rWjk,rWki,r

(
ψ2

r,tψr,` + 2(1− ψr,t)ψr,tψr,` + ψ2
r,t(1− ψr,`) + o(1)

)

+

T∑
t=1

T∑
6̀=t

3
∑
i∈Vr

∑
k>i

ti=tk=t,tj=`

∑
j 6=i,k

Wij,rWjk,rWki,r

(
ψ2

r,tψr,` + 2(1− ψr,t)ψr,tψr,` + ψ2
r,t(1− ψr,`) + o(1)

)

+

T∑
t=1

T∑
6̀=t

T∑
h 6=t,`

3
∑
i∈Vr

∑
k>i

ti=t,tj=`,tk=h

∑
j 6=i,k

Wij,rWjk,rWki,r (ψr,tψr,`ψr,h + (1− ψr,t)ψr,`ψr,h + ψr,t(1− ψr,`)ψr,h + ψr,tψr,`(1− ψr,h))

 .
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The conditional expectation of τ(Gs
r) is:

E(τ(Gs
r)|Gr) = E

∑
i∈Sr

∑
k>i

∑
j 6=i,k

W s
ij,rW

s
jk,r

∣∣∣∣∣∣Gr



=

T∑
t=1

∑
i∈Vr

∑
k>i

ti=tj=tk=t

∑
j 6=i,k

Wij,rWjk,rE
(
I
(

i,j,k∈Sr
ti=tj=tk=t ∨ any two of i,j,k∈Sr

ti=tj=tk=t ∨ only j∈Sr
ti=tj=tk=t

)∣∣∣Gr

)

+

T∑
t=1

T∑
6̀=t

∑
i∈Vr

∑
k>i

ti=tj=t,tk=`

∑
j 6=i,k

Wij,rWjk,rE
(
I
(

i,j,k∈Sr
ti=tj=t,tk=` ∨

any two of i,j,k∈Sr
ti=tj=t,tk=` ∨ only j∈Sr

ti=tj=t,tk=`

)∣∣∣Gr

)

+

T∑
t=1

T∑
6̀=t

∑
i∈Vr

∑
k>i

tj=tk=t,ti=`

∑
j 6=i,k

Wij,rWjk,rE
(
I
(

i,j,k∈Sr
tj=tk=t,ti=` ∨

any two of i,j,k∈Sr
tj=tk=t,ti=` ∨ only j∈Sr

tj=tk=t,ti=`

)∣∣∣Gr

)

+

T∑
t=1

T∑
` 6=t

∑
i∈Vr

∑
k>i

ti=tk=t,tj=`

∑
j 6=i,k

Wij,rWjk,rE
(
I
(

i,j,k∈Sr
ti=tk=t,tj=` ∨

any two of i,j,k∈Sr
ti=tk=t,tj=` ∨ only j∈Sr

ti=tk=t,tj=`

)∣∣∣Gr

)

+

T∑
t=1

T∑
` 6=t

T∑
h 6=t,`

∑
i∈Vr

∑
k>i

ti=t,tj=`,tk=h

∑
j 6=i,k

Wij,rWjk,rE
(
I
(

i,j,k∈Sr
ti=t,tj=`,tk=h ∨

any two of i,j,k∈Sr
ti=t,tj=`,tk=h ∨ only j∈Sr

ti=t,tj=`,tk=h

)∣∣∣Gr

) .

When the three individuals involved are of the same type, i.e., ti = tj = tk = t, we have

E
(
I
(

i,j,k∈Sr
ti=tj=tk=t ∨

any two of i,j,k∈Sr
ti=tj=tk=t ∨ only j∈Sr

ti=tj=tk=t

)∣∣Gr

)
=


((

nr,t−3
mr,t−3

)
+ 3
(
nr,t−3
mr,t−2

)
+
(
nr,t−3
mr,t−1

))∏
q 6=t
(
nr,q

mr,q

)
∏T

q=1

(
nr,q

mr,q

)
 .

When two individuals are of the same type and the third is of a different type that ti = tj = t
and tk = ` or tj = tk = t and ti = `

E
(
I
(

i,j,k∈Sr
ti=tj=t,tk=`

∨ any two of i,j,k∈Sr
ti=tj=t,tk=`

∨ only j∈Sr
ti=tj=t,tk=`

)∣∣∣Gr

)
= E

(
I
(

i,j,k∈Sr
tj=tk=t,ti=`

∨ any two of i,j,k∈Sr
tj=tk=t,ti=`

∨ only j∈Sr
tj=tk=t,ti=`

)∣∣∣Gr

)
=


((

nr,t−2
mr,t−2

)(
nr,`−1
mr,`−1

)
+ 2
(
nr,t−2
mr,t−1

)(
nr,`−1
mr,`−1

)
+
(
nr,t−2
mr,t−2

)(
nr,`−1
mr,`

)
+
(
nr,t−2
mr,t−1

)(
nr,`−1
mr,`

))∏
t6=t,`

(
nr,q

mr,q

)
∏T

q=1

(
nr,q

mr,q

)
 ;

and for ti = tk = t and tj = `,

E
(
I
(

i,j,k∈Sr
ti=tk=t,tj=`

∨ any two of i,j,k∈Sr
ti=tk=t,tj=`

∨ only j∈Sr
ti=tk=t,tj=`

)∣∣∣Gr

)
=


((

nr,t−2
mr,t−2

)(
nr,`−1
mr,`−1

)
+ 2
(
nr,t−2
mr,t−1

)(
nr,`−1
mr,`−1

)
+
(
nr,t−2
mr,t−2

)(
nr,`−1
mr,`

)
+
(
nr,t−2
mr,t

)(
nr,`−1
mr,`−1

))∏
t6=t,`

(
nr,q

mr,q

)
∏T

q=1

(
nr,q

mr,q

)

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Last, when the three individuals are of different types, i.e., ti = t, tj = `, tk = h,

E
(
I
(

i,j,k∈Sr
ti=t,tj=`,tk=h ∨

any two of i,j,k∈Sr
ti=t,tj=`,tk=h ∨ only j∈Sr

ti=t,tj=`,tk=h

)∣∣∣Gr

)
=

(
T∏

q=1

(
nr,q

mr,q

))−1 [((
nr,t − 1

mr,t − 1

)(
nr,` − 1

mr,` − 1

)(
nr,h − 1

mr,h − 1

)
+

(
nr,t − 1

mr,t − 1

)(
nr,` − 1

mr,`

)(
nr,h − 1

mr,h − 1

)

+

(
nr,t − 1

mr,t

)(
nr,` − 1

mr,` − 1

)(
nr,h − 1

mr,h − 1

)
+

(
nr,t − 1

mr,t − 1

)(
nr,` − 1

mr,` − 1

)(
nr,h − 1

mr,h

)

+

(
nr,t − 1

mr,t

)(
nr,` − 1

mr,` − 1

)(
nr,h − 1

mr,h

)) ∏
q 6=t,`,h

(
nr,q

mr,q

) .
Therefore, we obtain the following:

E(τ(Gs
r)|Gr) =

T∑
t=1

∑
i∈Vr

∑
k>i

ti=tj=tk=t

∑
j 6=i,k

Wij,rWjk,r

(
ψ3

r,t + 3ψ2
r,t(1− ψr,t) + ψr,t(1− ψr,t)

2 + o(1)
)

+

T∑
t=1

T∑
6̀=t

∑
i∈Vr

∑
k>i

ti=tj=t,tk=`

∑
j 6=i,k

Wij,rWjk,r

(
ψ2

r,tψr,` + 2(1− ψr,t)ψr,tψr,` + ψ2
r,t(1− ψr,`) + o(1)

)

+

T∑
t=1

T∑
6̀=t

∑
i∈Vr

∑
k>i

tj=tk=t,ti=`

∑
j 6=i,k

Wij,rWjk,r

(
ψ2

r,tψr,` + 2(1− ψr,t)ψr,tψr,` + ψ2
r,t(1− ψr,`) + o(1)

)

+

T∑
t=1

T∑
6̀=t

∑
i∈Vr

∑
k>i

ti=tk=t,tj=`

∑
j 6=i,k

Wij,rWjk,r

(
ψ2

r,tψr,` + 2(1− ψr,t)ψr,tψr,` + ψ2
r,t(1− ψr,`) + (1− ψr,t)

2ψr,` + o(1)
)

+

T∑
t=1

T∑
6̀=t

T∑
h 6=t,`

∑
i∈Vr

∑
k>i

ti=t,tj=`,tk=h

∑
j 6=i,k

Wij,rWjk,r

(
ψr,tψr,`ψr,h + (1− ψr,t)ψr,`ψr,h + ψr,t(1− ψr,`)ψr,h

+ ψr,tψr,`(1− ψr,h) + (1− ψr,t)ψr,`(1− ψr,h)
))

.

Chandrasekhar and Lewis (2016) show that E[ρ(Gs
r|Gr)] = (3ψ2

r(1 − ψr) + ψ3
r + o(1)ρ(Gr)

and E[τ(Gs
r|Gr)] = (ψr(1− ψr)2 + 3ψ2

r(1− ψr) + ψ3
r + o(1))τ(Gr) based on random samples,

which are again the special case of our derivations.

A.3 Conditional Expectation of Epidemic Threshold

There is one version of epidemic threshold condition based on the mean-field approxima-
tion (Pastor-Satorras and Vespignani, 2002), which is stated as

Thrld(Gr) =
d(Gr)

ds(Gr)
=

1
nr

∑
i∈Vr

∑
j∈Vr Wij,r

1
nr

∑
i∈Vr(

∑
j∈Vr Wij,r)2

.

The numerator is the average degree denoted by d(Gr) and the denominator is average of
degree square denoted by ds(Gr). The corrections of d(Gr) are derived in section A.1. Here
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we discuss the correction of ds(Gr). Since

ds(Gr) =
1

nr

∑
i∈Vr

(∑
j∈Vr

Wij,r

)2

=
1

nr

∑
i,j∈Vr

Wij,r +
1

nr

∑
i∈Vr

∑
j∈Vr

∑
k 6=j

Wij,rWik,r

= d(Gr) +
1

nr

∑
i∈Vr

∑
j∈Vr

∑
k 6=j

Wij,rWik,r,

we only need to consider the second term in the above equation.
For induced subgraph,

E

 1

mr

∑
i∈Sr

∑
j∈Sr

∑
k 6=j

W
|s
ij,rW

|s
ik,r

∣∣∣∣∣∣Gr



=

T∑
t=1

 1

mr

∑
i∈Vr

∑
j∈Vr

ti=tj=tk=t

∑
k 6=j

Wij,rWik,rE
(
I
(

i,j,k∈Sr
ti=tj=tk=t

)∣∣∣Gr

)+

T∑
t=1

T∑
` 6=t

 1

mr

∑
i∈Vr

∑
j∈Vr

ti=tj=t,tk=`

∑
k 6=j

Wij,rWik,rE
(
I
(

i,j,k∈Sr
ti=tj=t,tk=`

)∣∣∣Gr

)

+

T∑
t=1

T∑
` 6=t

 1

mr

∑
i∈Vr

∑
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tj=tk=t,ti=`

∑
k 6=j

Wij,rWik,rE
(
I
(

i,j,k∈Sr
tj=tk=t,ti=`

)∣∣∣Gr

)+

T∑
t=1

T∑
` 6=t

 1

mr

∑
i∈Vr

∑
j∈Vr

ti=tk=t,tj=`

∑
k 6=j

Wij,rWik,rE
(
I
(

i,j,k∈Sr
ti=tk=t,tj=`

)∣∣∣Gr

)

+

T∑
t=1

T∑
` 6=t

T∑
h6=t,`

 1

mr

∑
i∈Vr

∑
j∈Vr

ti=t,tj=`,tk=h

∑
k 6=j

Wij,rWik,rE
(
I
(

i,j,k∈Sr
ti=t,tj=`,tk=h

)∣∣∣Gr

) .

When three individuals are of the same type, i.e., ti = tj = tk = t, we have

E
(
I
(

i,j,k∈Sr
ti=tj=tk=t

)∣∣Gr

)
=

((
nr,t−3
mr,t−3

)∏
q 6=t
(
nr,q

mr,q

)∏T
q=1

(
nr,q

mr,q

) )
.

When two individuals are of the same type and the third is of a different type, including
ti = tj = t and tk = `; tj = tk = t and ti = `; and ti = tk = t and tj = `,

E
(
I
(

i,j,k∈Sr
ti=tj=t,tk=`

)∣∣∣Gr

)
= E

(
I
(

i,j,k∈Sr
tj=tk=t,ti=`

)∣∣∣Gr

)
= E

(
I
(

i,j,k∈Sr
ti=tk=t,tj=`

)∣∣∣Gr

)
=

((nr,t−2
mr,t−2

)(
nr,`−1
mr,`−1

)∏
q 6=t,`

(
nr,q

mr,q

)∏T
q=1

(
nr,q

mr,q

) )
.

When three individuals are of different types, i.e., ti = t, tj = `, tk = h,

E
(
I
(

i,j,k∈Sr
ti=t,tj=`,tk=h

)∣∣∣Gr

)
=

((nr,t−1
mr,t−1

)(
nr,`−1
mr,`−1

)(
nr,h−1
mr,h−1

)∏
q 6=t,`,h

(
nr,q

mr,q

)∏T
q=1

(
nr,q

mr,q

) )
.
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Therefore,

E
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∑
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∑
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∑
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

=
1
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ti=tj=tk=t

∑
k 6=j
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(
ψ3

r,t + o(1)
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)+
1
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T∑
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T∑
6̀=t

∑
i∈Vr

∑
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∑
k 6=j

Wij,rWik,r

(
ψ2

r,tψr,` + o(1)

ψr

)

+
1
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T∑
t=1

T∑
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∑
i∈Vr

∑
j∈Vr

tj=tk=t,ti=`

∑
k 6=j

Wij,rWik,r

(
ψ2

r,tψr,` + o(1)

ψr

)+
1

nr

T∑
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T∑
` 6=t

∑
i∈Vr

∑
j∈Vr

ti=tk=t,tj=`

∑
k 6=j

Wij,rWik,r

(
ψ2

r,tψr,` + o(1)

ψr

)

+
1
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T∑
t=1
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i∈Vr

∑
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∑
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(
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) .

For star subgraphs, the conditional expectation is
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)
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j∈Vr

ti=tj=t,tk=`

∑
k 6=j

Wij,rWik,rE
(
I
(

i,j,k∈Sr
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+
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+
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tj=tk=t,ti=` ∨ only i∈Sr

tj=tk=t,ti=`

)∣∣∣Gr

)

+

T∑
t=1

T∑
` 6=t

T∑
h 6=t,`

 1

mr

∑
i∈Vr

∑
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∑
k 6=j
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I
(
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any two of i,j,k∈Sr
ti=t,tj=`,tk=h ∨ only i∈Sr

ti=t,tj=`,tk=h

)∣∣∣Gr

) .

When three individuals are of the same type, i.e., ti = tj = tk = t, we have

E
(
I
(

i,j,k∈Sr
ti=tj=tk=t ∨

any two of i,j,k∈Sr
ti=tj=tk=t ∨ only i∈Sr

ti=tj=tk=t

)∣∣Gr

)
=


((

nr,t−3
mr,t−3

)
+ 3
(
nr,t−3
mr,t−2

)
+
(
nr,t−3
mr,t−1

))∏
q 6=t
(
nr,q

mr,q

)
∏T

q=1

(
nr,q

mr,q

)
 .

When two individuals are of the same type and the third is of a different type that ti = tj = t
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and tk = ` or tj = tk = t and ti = `

E
(
I
(

i,j,k∈Sr
ti=tj=t,tk=`

∨ any two of i,j,k∈Sr
ti=tj=t,tk=`

∨ only i∈Sr
ti=tj=t,tk=`

)∣∣∣Gr

)
= E

(
I
(

i,j,k∈Sr
tj=tk=t,ti=`

∨ any two of i,j,k∈Sr
tj=tk=t,ti=`

∨ only i∈Sr
tj=tk=t,ti=`

)∣∣∣Gr

)
=


((

nr,t−2
mr,t−2

)(
nr,`−1
mr,`−1

)
+ 2
(
nr,t−2
mr,t−1

)(
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)
+
(
nr,t−2
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)(
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mr,`

)
+
(
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)(
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))∏
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(
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)
∏T

q=1

(
nr,q

mr,q

)
 ;

and for ti = tk = t and tj = `,

E
(
I
(

i,j,k∈Sr
ti=tk=t,tj=`

∨ any two of i,j,k∈Sr
ti=tk=t,tj=`
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)
=


((
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)(
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)
+ 2
(
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)(
nr,`−1
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)
+
(
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)(
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)
+
(
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)(
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mr,`−1

))∏
t6=t,`

(
nr,q

mr,q

)
∏T

q=1

(
nr,q
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)


When three individuals are of different types, i.e., ti = t, tj = `, tk = h,

E
(
I
(

i,j,k∈Sr
ti=t,tj=`,tk=h

∨ any two of i,j,k∈Sr
ti=t,tj=`,tk=h

∨ only i∈Sr
ti=t,tj=`,tk=h

)∣∣∣Gr

)
=

(
T∏
q=1

(
nr,q
mr,q

))−1 [((
nr,t − 1

mr,t − 1

)(
nr,` − 1

mr,` − 1

)(
nr,h − 1

mr,h − 1

)
+

(
nr,t − 1

mr,t − 1

)(
nr,` − 1

mr,`

)(
nr,h − 1
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)
+

(
nr,t − 1
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)(
nr,` − 1

mr,` − 1

)(
nr,h − 1

mr,h − 1

)
+

(
nr,t − 1

mr,t − 1

)(
nr,` − 1

mr,` − 1

)(
nr,h − 1

mr,h

)
+

(
nr,t − 1

mr,t − 1

)(
nr,` − 1

mr,`

)(
nr,h − 1

mr,h

)) ∏
q 6=t,`,h

(
nr,q
mr,q

)]
.
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Therefore, we can further obtain

E

 1

mr

∑
i∈Sr

∑
j∈Sr

∑
k 6=j

W s
ij,rW

s
ik,r

∣∣∣∣∣∣Gr



=

T∑
t=1

 1

nr

∑
i∈Vr

∑
j∈Vr

ti=tj=tk=t

∑
k 6=j

Wij,rWjk,r

(
ψ3

r,t + 3ψ2
r,t(1− ψr,t) + ψr,t(1− ψr,t)

2 + o(1)

ψr

)

+

T∑
t=1

T∑
6̀=t

 1

nr

∑
i∈Vr

∑
j∈Vr

ti=tj=t,tk=`

∑
k 6=j

Wij,rWjk,r

(
ψ2

r,tψr,` + 2(1− ψr,t)ψr,tψr,` + ψ2
r,t(1− ψr,`) + o(1)

ψr

)

+

T∑
t=1

T∑
6̀=t

 1

nr

∑
i∈Vr

∑
j∈Vr

tj=tk=t,ti=`

∑
k 6=j

Wij,rWjk,r

(
ψ2

r,tψr,` + 2(1− ψr,t)ψr,tψr,` + ψ2
r,t(1− ψr,`) + o(1)

ψr

)

+
T∑

t=1

T∑
6̀=t

 1

nr

∑
i∈Vr

∑
j∈Vr

ti=tk=t,tj=`

∑
k 6=j

Wij,rWjk,r

(
ψ2

r,tψr,` + 2(1− ψr,t)ψr,tψr,` + ψ2
r,t(1− ψr,`) + (1− ψr,t)

2ψr,` + o(1)

ψr

)

+

T∑
t=1

T∑
6̀=t

T∑
h 6=t,`

 1

nr

∑
i∈Vr

∑
j∈Vr

ti=t,tj=`,tk=h

∑
k 6=j

Wij,rWjk,r

(
ψ−1

r

(
ψr,tψr,`ψr,h + (1− ψr,t)ψr,`ψr,h + ψr,t(1− ψr,`)ψr,h

+ψr,tψr,`(1− ψr,h) + ψr,t(1− ψr,`)(1− ψr,h)))

)
.

A.4 Conditional Expectation of Graph Span

The graph span is defined as

`(Gr) =
log nr − log d(Gr)

log d2(Gr)− log d(Gr)
+ 1,

where d2(Gr) = 1
nr

∑
i∈Vr

∑
j>i

∑
k 6=i,jWij,rWjk,r is the average number of second neighbors.

For the case of induced subgraph,

E(d2(G
|s
r )|Gr) = E

 1

mr

∑
i∈Sr

∑
j>i

∑
k 6=i,j

W
|s
ij,rW

|s
jk,r

∣∣∣∣∣∣Gr



=

T∑
t=1

 1

mr

∑
i∈Vr

∑
j>i

ti=tj=tk=t

∑
k 6=i,j

Wij,rWjk,rE
(
I
(

i,j,k∈Sr
ti=tj=tk=t

)∣∣∣Gr

)+

T∑
t=1

T∑
6̀=t

 1

mr

∑
i∈Vr

∑
j>i

ti=tj=t,tk=`

∑
k 6=i,j

Wij,rWjk,rE
(
I
(

i,j,k∈Sr
ti=tj=t,tk=`

)∣∣∣Gr

)

+

T∑
t=1

T∑
` 6=t

 1

mr

∑
i∈Vr

∑
j>i

tj=tk=t,ti=`

∑
k 6=i,j

Wij,rWjk,rE
(
I
(

i,j,k∈Sr
tj=tk=t,ti=`

)∣∣∣Gr

)+

T∑
t=1

T∑
6̀=t

 1

mr

∑
i∈Vr

∑
j>i

ti=tk=t,tj=`

∑
k 6=i,j

Wij,rWjk,rE
(
I
(

i,j,k∈Sr
ti=tk=t,tj=`

)∣∣∣Gr

)

+

T∑
t=1

T∑
` 6=t

T∑
h 6=t,`

 1

mr

∑
i∈Vr

∑
j>i

ti=t,tj=`,tk=h

∑
k 6=i,j

Wij,rWjk,rE
(
I
(

i,j,k∈Sr
ti=t,tj=`,tk=h

)∣∣∣Gr

) .
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When three individuals are of the same type, i.e., ti = tj = tk = t, we have

E
(
I
(

i,j,k∈Sr
ti=tj=tk=t

)∣∣Gr

)
=

((
nr,t−3
mr,t−3

)∏
q 6=t
(
nr,q

mr,q

)∏T
q=1

(
nr,q

mr,q

) )
.

When two individuals are of the same type and the third is of a different type, including
ti = tj = t and tk = `; tj = tk = t and ti = `; and ti = tk = t and tj = `,

E
(
I
(

i,j,k∈Sr
ti=tj=t,tk=`

)∣∣∣Gr

)
= E

(
I
(

i,j,k∈Sr
tj=tk=t,ti=`

)∣∣∣Gr

)
= E

(
I
(

i,j,k∈Sr
ti=tk=t,tj=`

)∣∣∣Gr

)
=

((nr,t−2
mr,t−2

)(
nr,`−1
mr,`−1

)∏
q 6=t,`

(
nr,q

mr,q

)∏T
q=1

(
nr,q

mr,q

) )
.

When three individuals are of different types, i.e., ti = t, tj = `, tk = h,

E
(
I
(

i,j,k∈Sr
ti=t,tj=`,tk=h

)∣∣∣Gr

)
=

((nr,t−1
mr,t−1

)(
nr,`−1
mr,`−1

)(
nr,h−1
mr,h−1

)∏
q 6=t,`,h

(
nr,q

mr,q

)∏T
q=1

(
nr,q

mr,q

) )
.

Therefore,

E(d2(G
|s
r )|Gr) =

T∑
t=1

 1

nr

∑
i∈Vr

∑
j>i

ti=tj=tk=t

∑
k 6=i,j

Wij,rWjk,r

(
ψ3

r,t + o(1)

ψr

)+

T∑
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T∑
` 6=t

 1
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∑
i∈Vr

∑
j>i

ti=tj=t,tk=`

∑
k 6=i,j

Wij,rWjk,r

(
ψ2

r,tψr,` + o(1)

ψr

)

+

T∑
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T∑
` 6=t

 1
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∑
i∈Vr

∑
j>i

tj=tk=t,ti=`

∑
k 6=i,j

Wij,rWjk,r

(
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r,tψr,` + o(1)
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)+

T∑
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T∑
` 6=t

 1
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∑
i∈Vr

∑
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∑
k 6=i,j

Wij,rWjk,r

(
ψ2

r,tψr,` + o(1)

ψr

)
T∑
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T∑
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T∑
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+
1
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∑
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∑
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∑
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(
ψr,tψr,`ψr,h

ψr

) .
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For star subgraph, the conditional expectation is

E(d2(G
s
r)|Gr) = E

 1

mr

∑
i∈Sr

∑
j>i

∑
k 6=i,j

W s
ij,rW

s
jk,r

∣∣∣∣∣∣Gr



=

T∑
t=1

 1

mr

∑
i∈Vr

∑
j>i

ti=tj=tk=t

∑
k 6=i,j

Wij,rWjk,rE
(
I
(

i,j,k∈Sr
ti=tj=tk=t ∨ any two of i,j,k∈Sr

ti=tj=tk=t ∨ only j∈Sr
ti=tj=tk=t

)∣∣∣Gr

)

+

T∑
t=1

T∑
` 6=t

 1

mr

∑
i∈Vr

∑
j>i

ti=tj=t,tk=`

∑
k 6=i,j

Wij,rWjk,rE
(
I
(

i,j,k∈Sr
ti=tj=t,tk=` ∨

any two of i,j,k∈Sr
ti=tj=t,tk=` ∨ only j∈Sr

ti=tj=t,tk=`

)∣∣∣Gr

)

+

T∑
t=1

T∑
` 6=t

 1

mr

∑
i∈Vr

∑
j>i

tj=tk=t,ti=`

∑
k 6=i,j

Wij,rWjk,rE
(
I
(

i,j,k∈Sr
tj=tk=t,ti=` ∨

any two of i,j,k∈Sr
tj=tk=t,ti=` ∨ only j∈Sr

tj=tk=t,ti=`

)∣∣∣Gr

)

+

T∑
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T∑
` 6=t

 1
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∑
i∈Vr

∑
j>i

ti=tk=t,tj=`

∑
k 6=i,j

Wij,rWjk,rE
(
I
(

i,j,k∈Sr
ti=tk=t,tj=` ∨

any two of i,j,k∈Sr
ti=tk=t,tj=` ∨ only j∈Sr
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)∣∣∣Gr

)

+

T∑
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T∑
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)∣∣∣Gr

) .

When three individuals are of the same type, i.e., ti = tj = tk = t, we have

E
(
I
(

i,j,k∈Sr
ti=tj=tk=t ∨

any two of i,j,k∈Sr
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=
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))
∏
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(
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)∏T
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(
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)
 .

When two individuals are of the same type and the third is of a different type that ti =
tj = t and tk = ` or tj = tk = t and ti = `
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I
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and for ti = tk = t and tj = `,

E
(
I
(

i,j,k∈Sr
ti=tk=t,tj=`

∨ any two of i,j,k∈Sr
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=
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)
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When three individuals are of different types, i.e., ti = t, tj = `, tk = h,
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) .
Therefore, we can further obtain
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.

Compared to Chandrasekhar and Lewis (2016), they show that, under random sample,

E(d2(G
|s
r )|Gr) = (ψ2 + o(1))d2(Gr) for the induced subgraph, and E[d2(G

s
r)|Gr] = (ψ + ψ2 −

ψ3 + o(1))d2(Gr) for the star subgraph.

A.5 Conditional Expectation of Homophily Index

Currarini, Jackson, and Pin (2009) define the homophily index of graph Gr as Ht(Gr) =
st(Gr)

st(Gr)+dt(Gr)
, where st(Gr) denotes the average number of friendships that agents of type t

have with agents of the same type and dt(Gr) denotes the average number of friendships that
type t form with agents of type different than t. Here we may use type t to represent different
demographic characteristics, e.g., gender, race, and age, etc. Specifically, let Vr,t denotes a set
of notes with type t. Then,
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∑
i,j∈Vr,t

Wij,r, dt(Gr) =
1

nr,t

∑
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∑
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In the general case of induced subgraph, fixing type t, we have
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In a general case of star subgraph, fixing type t, we have
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B Additional Simulation Results

Figure B.1: Recovering network properties. Induced subgraph, random removal of 20% of
nodes (ψ = 80%).
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Figure B.2: Recovering network properties. Induced subgraph, random removal of 60% of
nodes (ψ = 40%).

63



Figure B.3: Recovering network properties. Induced subgraph, removal of 20% of nodes
(ψ = 80% ). Highly connected nodes are removed with higher probability.
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Figure B.4: Recovering network properties. Induced subgraph, removal of 60% of nodes
(ψ = 40% ). Highly connected nodes are removed with higher probability.
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Figure B.5: Recovering network properties. Induced subgraph, removal of 20% of nodes
(ψ = 80%). Nodes with median connectivity are removed with higher probability.
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Figure B.6: Recovering network properties. Induced subgraph, removal of 60% of nodes
(ψ = 40%). Nodes with median connectivity are removed with higher probability.
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Figure B.7: Recovering network properties. Induced subgraph, removal of 20% of nodes
(ψ = 80%). Nodes with low connectivity are removed with higher probability.
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Figure B.8: Recovering network properties. Induced subgraph, removal of 60% of nodes
(ψ = 40%). Nodes with low connectivity are removed with higher probability.
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Figure B.9: Recovering network properties. Star subgraph, random removal of 20% of nodes
(ψ = 80%).
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Figure B.10: Recovering network properties. Star subgraph, random removal of 60% of nodes
(ψ = 40%).
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Figure B.11: Recovering network properties. Star subgraph, removal of 20% of nodes (ψ =
80%). Highly connected nodes are removed with higher probability.
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Figure B.12: Recovering network properties. Star subgraph, removal of 60% of nodes (ψ =
40%) Highly connected nodes are removed with higher probability.
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Figure B.13: Recovering network properties. Star subgraph, removal of 20% of nodes (ψ =
80%). Nodes with median connectivity are moved with higher probability.
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Figure B.14: Recovering network properties. Star subgraph, removal of 60% of nodes (ψ =
40%). Nodes with median connectivity are removed with higher probability.
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Figure B.15: Recovering network properties. Star subgraph, removal of 20% of nodes (ψ =
80%). Nodes with low connectivity are removed with higher probability.
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Figure B.16: Recovering network properties. Star subgraph, removal of 60% of nodes (ψ =
40%). Nodes with low connectivity are removed with higher probability.
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C Additional Empirical Results

Table C.1: Estimated network effects on the share of population in rural India
village that (I) employed and (II) work outside the village – based on friendship
network

Dependent Variable (I) Employed(%) (II) Work Outside Village(%)

Raw Random Rake Raw Random Rake

Degree 0.0425∗∗ 0.0161∗∗ 0.0120 -0.0216 -0.0103 -0.0118
(0.0197) (0.0075) (0.0076) (0.0213) (0.0083) (0.0090)

Cluster 0.2490∗∗∗ 0.2490∗∗∗ 0.1272∗∗ 0.0194 0.0194 0.0464
(0.0714) (0.0714) (0.0555) (0.0935) (0.0935) (0.0629)

Span 0.0001 -0.0102 -0.0033 0.0001 0.0145 0.0022
(0.0002) (0.0097) (0.0077) (0.0001) (0.0103) (0.0083)

Epid Thrld -0.4304∗∗ -0.7882∗ -0.4498 0.2627 0.6378 0.4709
(0.2005) (0.3997) (0.3608) (0.1893) (0.3876) (0.3552)

HI-sex 0.3504∗∗∗ 0.3504∗∗∗ 0.2745∗∗ -0.0008 -0.0008 0.0926
(0.1107) (0.1107) (0.1106) (0.1401) (0.1401) (0.1416)

HI-age 0.4039∗∗∗ 0.4039∗∗∗ 0.0603 -0.1427 -0.1427 0.4020∗∗

(0.1437) (0.1437) (0.1478) (0.2374) (0.2374) (0.2086)
HI-householdsize 0.0377 0.0377 -0.0382 0.1901∗∗ 0.1901∗∗ 0.1004

(0.0842) (0.0842) (0.0832) (0.0820) (0.0820) (0.0968)
HI-rake 0.1905 0.1905 0.0181 0.2488∗ 0.2488∗ 0.4177∗∗∗

(0.1221) (0.1221) (0.1166) (0.1344) (0.1344) (0.1362)

Note: Regression is based on 75 villages. Standard errors robust to heteroscedasticity are
reported in parentheses. *, **, *** stand for significance at 10%, 5%, and 1% respectively.
Each row corresponds to one regression and the village size is included as a default control
variable.

Table C.2: Effects of clustering and graph span on (I) club participation and (II) frequency
of exercise in U.S. high schools.

Dependent Variable (I) Number of clubs attended (II) Frequency of exercise

Raw Random Rake Raw Random Rake

Cluster 0.0519 -0.3535 -0.3891 1.1620∗∗ 0.3139 -0.3891
(0.4294) (0.3895) (0.3718) (0.5264) (0.6989) (0.3718)

Span -0.0010 -0.3079∗∗ -0.3779∗∗∗ -0.0103∗∗∗ -0.1769∗ -0.3779∗∗∗

(0.0014) (0.1160) (0.1237) (0.0019) (0.1152) (0.1237)

Note: Regression is based on 48 schools. *, **, *** stand for significance at 10%, 5%, and 1%
respectively. The model includes both the clustering coefficient and graph span as network
regressors, and has the school size included as a default control variable.
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