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Over the last two centuries, real output per capita in the United States has increased

substantially more than the growth of inputs to production, such as the number of hours worked

or the amount of capital used. Thus, much of economic growth is attributed to improvements

in productivity—which however appears to have slowed down in the recent decades (Gordon,

2016). Similarly, there are significant differences in productivity across firms or establishments,

which are rather persistent. Understanding the economic factors behind these differences in

productivity across time and space has been at the forefront of the economic agenda (Syverson,

2011). Models of endogenous growth ascribe most of these movements to fluctuations in the

rate of technological progress. However, both this link and the underlying economic forces

are hard to pin down due to difficulty in measuring degree of technological progress over time.

Our goal is to fill this gap by constructing indices of technological progress at the aggregate

and sectoral level that are consistently available—and comparable—over long periods of time.

Patent statistics are a useful starting point. Though not all innovations are patented,

patent statistics are by definition related to inventiveness.1 A major obstacle in inferring the

degree of technological progress from patent data is that patents vary greatly in their technical

and economic significance. While measures such as citations a patent receives in the future

have been used to address this obstacle, these metrics are not uniformly and consistently

available over time, making it difficult to compare citation counts of patents across cohorts.2

More recently, Kogan et al. (2017) propose a new measure of the private, economic value of

new innovations that is based on stock market reactions to patent grants. However, their

measure is only available for patents that are assigned to publicly traded firms after 1927.

Hence, time-series fluctuations in indices derived from their measure could be affected by shifts

in innovative activity between public firms and other entities—which include private firms,

research institutions or government agencies.

We apply state-of-the-art techniques in textual analysis on the high-dimensional data from

patent documents to construct indices of breakthrough innovations. Breakthrough innovations

represent distinct improvements in the technological frontier and which become the new

foundation upon which subsequent inventions are built. If citation data were objectively

determined and consistently available, a breakthrough innovation would receive a large number

1Griliches (1998) writes on statistics that are based on patents: “they are available; they are by definition
related to inventiveness, and they are based on what appears to be an objective and only slowly changing
standard. No wonder that the idea that something interesting might be learned from such data tends to be
rediscovered in each generation.”

2Patent citations are only consistently recorded by the USPTO in patent documents after 1945. Prior to
1945, citations sometimes appear inside the text of the patent document, but they are much less common than
in the post-war era. For instance, consider patent 388,116 issued to William Seward Burroughs on August 1888
for a ‘calculating machine’, one of the precursors to the modern computer. Burroughs’ patent has just three
citations as of March 2018. Similarly, patent 174,465 issued to Graham Bell for the telephone in February 1876
has the first recorded citation in 1956 (from patent 2,807,666). Until March 2018, it has received a total of 10
citations. These issues are not confined to the pre-1945 period: one of the first computer patents 2,668,661
issued in 1954 to George Stibitz at Bell Labs has just 15 citations as of March 2018.
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of future citations. Given the absence of consistently available citation data, we instead

propose a measure that is similar in spirit that can be constructed by analyzing the text of

patent documents. We use advances in textual analysis to create links between each new

invention and the set of existing and subsequent patents. Specifically, we construct measures

of textual similarity to quantify commonality in the topical content of each pair of patents.

We then identify significant (high quality) patents as those whose content is distinct from prior

patents (is novel), but is similar to future patents (is impactful). Since our indicators of the

significance of a patent require no other inputs besides the text of the patent document, they

are consistently available for the entire history of US patents spanning nearly two centuries of

innovation (1840–2010).

We validate our indicator of a significance of a patent along several dimensions. We first

focus on the sample when citation data is available. We find that our indicator is significantly

correlated with patent citations. More importantly however, we find that our text-based patent

indicators are significant predictors of future citations—indicating that they provide a (much)

more timely assessment of a patent’s quality than citation counts. Within a few years of

a patent’s arrival, text-based similarity measures are able to reach an assessment of patent

quality that predicts citation counts decades henceforth.

To examine how our quality indicator performs in evaluating older patents, we identify a

set of major technological breakthroughs of the 19th and 20th century using the help of research

assistants. Our indicators of patent significance perform substantially better than citation

counts in identifying these major technological breakthroughs—especially when citations are

measured over the same horizon as our indicator, but often even when they are measured using

the entire sample. These breakthroughs include watershed inventions such as the telegraph,

the elevator, the typewriter, the telephone, electric light, the airplane, frozen foods, television,

plastics, computers and advances in modern genetics. This superior performance is not only

driven by the fact that citations are sparsely recorded prior to 1945. Even in the more recent

period, we find that our indicators often perform better than citations (over the same horizon)

in identifying major technological breakthroughs—including for instance, recent advances in

molecular biology and genetics.

As a further validation of our indicators we explore their relation to measures of private

values. We emphasize that we view our indicators as more likely to be measuring the scientific

value of a patent, given that it captures the extent to which novel contributions are adopted by

subsequent technologies. That said, prior work has documented a strong correlation between

patent citations (which form the inspiration for our measure) and measures of market value (e.g.

Hall et al., 2005; Kogan et al., 2017).3 Along these lines, we show that our quality indicator is

3The scientific and private value of a patent need not coincide. For instance, a patent may represent only a
minor scientific advance, yet be very effective in restricting competition, and thus generate large private rents.
That said, models of innovation with endogenous markups (Aghion and Howitt, 1992; Grossman and Helpman,
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significantly correlated with the Kogan et al. (2017) measure of each patent’s economic value.

Our most conservative specification compares two patents that are granted to the same firm

in the same year: in this case, a one standard deviation increase in our quality measure is

associated with a 0.4 to 1.2 percentage point increase in patent value.

Armed with a consistent measure of the significance of a patent, we next set out to analyze

long-run trends in innovation. We begin by identifying breakthrough innovations—patents

that lie at the right tail of our measure. We construct time-series indices that describe the

arrival intensity of breakthrough innovations, which requires us to compare patents of different

cohorts in terms of quality. To ensure that the time-variation in our measure is not driven

by changes in language—or measurement error due variances in the quality of the optical

recognition algorithm applied to the text document—we remove calendar year-specific average

from our measure. Our operating assumption is that such shifts in language (or measurement

error) likely affect all patents symmetrically. We then construct indices of breakthrough

innovation—at the aggregate, sectoral, and firm level—by counting the number of patents

each year whose quality is in the top fifth percentile of our quality measure (net of year fixed

effects). For comparison, we also construct corresponding indices using forward citation counts

(net of year fixed effects), measured either over specific horizons or over the entire sample.

Our aggregate innovation index uncovers three major technological waves: the second

Industrial Revolution (mid- to late 19th century), the 1920s and 1930s, and the post–1980

period. Examining the technology areas where these breakthrough innovations occurred, we

find that advances in electricity and transportation play a role in the 1880s; agriculture in the

1900s; chemicals and electricity in the 1920s and 1930s; and computers and communication in

the post-1960s. Our innovation index is a strong predictor of aggregate total factor productivity

during this period: a one-standard deviation increase in our index is associated with a 0.5 to 2

percentage points higher annual productivity growth over the next five to ten years.

We create sectoral indices of technological breakthroughs that span the entire sample

by mapping technology areas to industries. Sectors that have breakthrough innovations

experience faster growth in productivity than sectors that do not. In specifications that

examine within-industry fluctuations in productivity (that is, net of industry and time effects),

we find that a one-standard deviation increase in our innovation index is associated with 1

percentage point higher annual productivity growth over the next five years. In contrast to

our text-based breakthrough index, the citations-based index is not statistically significantly

related to industry productivity.

In sum, our paper provides a measure of technological innovation that is consistent across

time and space. Our text-based indicator of patent quality are complementary to forward

1991) imply that the markup a technology leader can charge is related to the improvement in quality relative
to the second-best alternative.
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citations and have distinct advantages. First, it is consistently available for the entire 1840–2010

period, which allows us to construct indices of the level of technological change by comparing

patents across cohorts. Second, it incorporates information faster than patent citations. Our

indicator predicts future citations and, estimated over relatively short horizons post patent

filing date (up to 5 years), it often shows a stronger correlation with real outcomes than

citations measured over the same period.

Our work is connected to several strands of the literature. First, patent statistics offer a

promising avenue in constructing indices of technological progress. Shea (1999) constructs

direct measures of technology innovation using patents and R&D spending and finds a weak

relationship between TFP and technology shocks. The results in Shea (1999) likely illustrate a

shortcoming of simple patent counts, since they ignore the wide heterogeneity in the economic

value of patents (Griliches, 1998; Kortum and Lerner, 1998). Furthermore, fluctuations in the

number of patents granted are often the result of changes in patent regulation, or the quantity

of resources available to the US patent office (see e.g. Griliches, 1990; Hall and Ziedonis,

2001). As a result, a larger number of patents does not necessarily imply greater technological

innovation (for more details, see the discussion in Griliches, 1998). Alexopoulos (2011) proposes

an alternative measure that is based on books published in the field of technology. Though the

measure in Alexopoulos (2011) overcomes many of the shortcomings of patent counts, it is only

available at the aggregate level and for only the later part of the 20th century. By contrast,

our measure is available at the individual patent level and is available since the 1840s.

Second, our analysis is related to work on patent valuation (see, e.g. Pakes, 1985; Austin,

1993; Hall et al., 2005; Nicholas, 2008; Kogan et al., 2017). The advantage of using financial

data in inferring the (private) value of patents is that asset prices are forward-looking and

hence provide us with an estimate of the private value to the patent holder that is based

on ex-ante information. In particular, Pakes (1985) examines the relation between patents

and the stock market rate of return in a sample of 120 firms during the 1968–1975 period.

His estimates imply that, on average, an unexpected arrival of one patent is associated with

an increase in the firm’s market value of $810,000. Hall et al. (2005) finds that the current

stock of patent citations carries information for firms’ market valuations beyond that in past

R&D expenditures and simple patent counts. Our results are similar; measures of intangibles

constructed using our quality indicators contain information on firm values that is not captured

by R&D, patent counts, or citation counts. Closest to our paper, Kogan et al. (2017) propose

a new measure of the private, economic value of new innovations that is based on stock market

reactions to patent grants. Kline et al. (2017) extrapolate their measure to a broader sample

of patents to private firms. By construction, our indicators measure the scientific novelty and

impact of the patent, which need not perfectly coincide with the private value of a patent.

Our paper is part of a recent but growing effort in applying advances in textual analysis to
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patent documents. Closest to our work is Balsmeier et al. (2018), who as part of a broader

effort in disambiguating assignee and inventor names, also construct a patent-level measure

of novelty starting in 1975. They define a novel patent as one that contains words that did

not previously appear in the entire set of patent documents in their sample period. As a

part of our definition of breakthrough patents over last two centuries, we also construct a

measure of novelty. While the two measures are related, our construction of novel patent is

somewhat different. We define a novel patent as one that is textually dis-similar from recent

patents, defined as those within five years of the patents application date, where our similarity

calculation overweighs uncommon words. As our analysis shows, breakthrough patents, which

builds on our measure of novelty, strongly relate with metrics that might be associated with

innovative activity.

Last, our paper makes a methodological contribution to estimating document similarity.

Specifically, a key challenge in analyzing the textual similarity between documents is separating

differences in writing style (language) from differences in content. Patent documents have the

advantage that they largely contain scientific and legal terms, whose use has changed only

slowly. However, given that our analysis spans almost two centuries of data, this is an important

concern. We follow the literature on text analysis and construct measures of similarity that

place more weight on important terms—that is, terms that are relatively uncommon across

documents based on the inverse document frequency (IDF) (for a survey of existing methods,

see e.g., Gentzkow et al., 2017). This static approach is ill-suited to our purposes; the process

of innovation is often associated with the introduction of new scientific terminilogy. Hence,

we introduce a dynamic modification to the existing approach that is crucial to our purposes.

Specifically, we instead weigh terms according to the frequency in which they appear in patent

documents up until the patent document is filed. As a result, the appropriate weight that terms

receive in our similarity calculation evolves over time as scientific terms become more common

or as natural language evolves.

I. Measuring the Significance of a Patent

In this section, we describe the construction of our metrics of patent significance. Throughout

the paper, we will use the terms significant and high-quality patent interchangeably. We

describe our data sources in Section A, then Section B describes our measure of similarity

between patent documents. Section C contains the bulk of our analysis, which focuses on

constructing a patent-level measure of quality that is based on textual similarity.
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A. Data

We briefly overview our conversion of unstructured patent text data into a numerical format

suitable for statistical analysis. To begin, we build our collection of patent documents from two

sources. The first is the USPTO patent search website, which records all patents beginning

from 1976. Our web crawler collected the text content of patents from this site, which includes

patent numbers 3,930,271 through 9,113,586. The records in this sample are comparatively

easy to process as they are available in HTML format with standardized fields.

For patents granted prior to 1976, we collect patent text from our second main datasource,

Google’s patent search engine. For the pre-1976 patent records, we recover all of the fields

listed above with the exception of inventor/assignee addresses (Google only provides their

names), examiner, and attorney. Some parts of our analysis rely on firm-level aggregation of

patent assignments. We match patents to firms by firm name and patent assignee name. Our

procedure broadly follows that of Kogan et al. (2017) with adaptations for our more extensive

sample. In addition to the citation data we scrape from Google, we obtain complementary

information on patent citations from Berkes (2016) and the USPTO. The data in Berkes (2016)

includes citations that are listed inside the patent document and which are sometimes missed

by Google. Nevertheless, the likelihood of a citation being recorded is significantly higher in

the post-1945 than in the pre-1945. When this consideration is relevant, we examine results

separately for the pre- and post-1945 periods.

To represent patent text as numerical data, we convert it into a document term matrix

(DTM), denoted C. Columns of C correspond to words and rows correspond patents. Each

element of C, denoted cpw, counts the number of times a given one-word phrase (indexed by w)

is used in a particular patent (indexed by p), after imposing a number of filters to remove stop

words, punctuation, and so forth. We provide a detailed step-by-step account of our DTM

construction in Appendix V. Our final dictionary includes 1,685,416 terms in the full sample

of over nine million patents.

B. Measuring patent similarity

The basic building block for our patent-level quality measure using patent text is the textual

similarity between pairs of patents. Here, we discuss the construction of our textual similarity

measure in more detail.

1. Definition of patent similarity

A key consideration in devising a similarity metric for a pair of text documents is to appropriately

weigh words by their importance. It is more informative if terms such as ‘electricity’ and

‘petroleum’ enter more prominently into the similarity calculation than common words like
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‘process’ or ‘inventor.’ In textual analysis, a leading approach to overweighting terms that

are most diagnostic of a document’s topical content is the “term-frequency-inverse-document-

frequency” transformation of word counts:

TFIDFpw ≡ TFpw × IDFw. (1)

The first component of the weight, term frequency (TF), is defined as

TFpw ≡
cpw∑
k cpk

, (2)

and describes the relative importance of term w for patent p. It counts how many times term

w appears in patent p adjusted for the patent’s length. The second component is the inverse

document frequency (IDF) of term w, which is defined as

IDFw ≡ log

(
# documents in sample

# documents that include term w

)
. (3)

IDF measures the informativeness of term w by under-weighing common words that appear in

many documents, as these are less diagnostic of the content of any individual document.

The product of these two terms, TFIDF , describes the importance of a given word or

phrase w in a given document p. Words that appear infrequently in a document tend to have

low TFIDF scores (due to low TF ), as do common words that appear in many documents (due

to low IDF ). A high value of TFIDFpw indicates that term w appears relatively frequently

in document p but does not appear in most other documents, thus conveying that word w is

especially representative of document p’s semantic content.

For our purposes, this traditional weighting scheme is not ideal because it ignores the

temporal ordering of patents. In particular, we are interested in the novelty or impact of

patent p’s text content given the history of innovation leading up to the development of p.

Consider for example Nikola Tesla’s famous 1888 patent (number 381,968) of an AC motor,

which was among the first patents to use the phrase “alternating current,” a phrase used with

great frequency throughout the 20th century. Standard IDF would sharply de-emphasize this

term in the TFIDF vector representing Tesla’s patent because so many patents subsequently

used this phrase so intensively. TFIDF would therefore give a misleading, and quite inverted,

portrayal of the patent’s innovativeness.

To overcome this issue, we devise and analyze a modified version of the traditional TFIDF

measure. In particular, in place of (3), we instead construct a retrospective, or ‘point-in-time’

version of inverse document frequency. Therefore, we define the “backward-IDF” of term w

for filing year t, (denoted by BIDFwt) as the log frequency of documents containing w in any
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patent filed prior to filing year t. More specifically, backward-IDF is defined as:

BIDFwt = log

(
# patents prior to t

1 + # documents prior to t that include term w

)
. (4)

This retrospective document frequency measure evolves as a term becomes more or less widely

used over time, giving a temporally appropriate weighting to a patent’s usage of each term. It

reflects the history of invention up to, but not beyond, the new patent’s arrival.

Continuing with the Tesla example discussed above, consider measuring the similarity

between Tesla’s AC motor patent, and patent 4,998,526 assigned in 1990 to General Motors

Corporation for an “Alternating current ignition system.” An important question emerges:

What is the most sensible IDF to use when calculating TFIDF similarity of these two

patents. One possibility is to use BIDF for the year 1888 in the TFIDF of Tesla’s patent,

and BIDF as of 1990 for GM’s patent. However, over the 102 years between these two

patents, “alternating current” appears in tens of thousands of other patents. Thus, the use of

“alternating current” by GM would be greatly down-weighted with a 1990 BIDF adjustment,

and thus the co-occurrence of “alternating current” in these two patents would have a small

contribution to the pair’s similarity.

One of the central goals of this paper is to quantify the impact of patents on future

technological innovations. To best reflect quantify this impact, we instead calculate pairwise

similarity by applying to both patent counts the BIDF corresponding to the earlier of the two

patents. Thus, to calculate the similarity between the patent pair in this Tesla/GM example,

the term frequencies of both are normalized by the 1888 backward-IDF .

In sum, we construct the similarity between the patent pair (i, j) as follows. First, for both

patents we construct our modified-version of the TFIDF for each term w in patent i as

TFBIDFw,i,t = TFw,i ×BIDFw,t, t ≡ min(filing year for i, filing year for j) (5)

and likewise for patent j. These are arranged in a W -vector TFBIDFi,t where W is the size

of the set union for terms in pair (i, j). Next, each TFBIDF vector is normalized to have

unit length,

Vi,t =
TFBIDFi,t
||TFBIDFi,t||

. (6)

Finally, we calculate the cosine similarity between the two normalized vectors:

ρi,j = Vi,t · Vj,t. (7)

Our similarity measure is closely related to Pearson correlation, with the difference that

TFBIDF is not centered before the dot product is applied. Because TFBIDF is non-
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negative, ρi,j lies in the interval [0,1]. Patents that use the exact same set of words in the same

proportion will have similarity of one, while patents with no overlapping terms have similarity

of zero.

Pairwise similarities constitute a high-dimensional matrix of approximate dimension 9

million × 9 million, which leads to over 800 terabytes of data. To reduce the computational

burden when studying similarities, we set similarities below 5% to zero and get roughly 20

terabytes of data. This affects 93.4% of patent pairs. Patents with such low text similarity are,

for all intents and purposes, completely unrelated, yet introduce a large computational load

in the types of analyses we pursue. Replacing these approximate zeros with similarity scores

of exactly zero achieves large computational gains by allowing us to work with sparse matrix

representations that require substantially less memory.4

2. Descriptive statistics and validation of similarity

Panel A of Figure 1 plots the distribution of our similarity score across patent pairs, and

focuses on pairs that are 0–20 years apart. The first observation is that the distribution of

pairwise similarities is highly skewed. Patents tend to be highly dissimilar, with only a small

fraction of pairs very closely related. The median similarity score across patent pairs is 7.8%,

whereas the average similarity score is 10.2%. In the right tail, the 90th and 95th percentiles

of similarity scores are 17.6% and 22.9%, respectively. In network terminology, the patent

system’s connectivity is sparse.

Citations provide a natural external measurement of patent linkages for assessing the

text-based similarity measure ρi,j. To this end, we examine whether patent pairs with high

ρi,j are more likely to be linked by a citation. We bin patent pairs i-j in terms of their cosine

similarity, and then compute the average propensity of a citation link—that is, we estimate

E [1i,j|ρi,j], where 1i,j is a dummy variable that takes the value one if patent j cites patent i

(where patent i is filed prior to patent j). Panel B of Figure 1 plots the results. Indeed, patent

pairs that are linked by a citation are more similar. The likelihood that patent j cites the

earlier patent i is monotonically increasing in the similarity ρi,j between the two patents. Our

similarity score does not rely on any patent citation information, thus the results in Panel B

are a powerful external validity check for our measure.

3. Patent similarity: examples

Figure 2 provides a few examples of patents’ similarity network. To simplify the presentation,

and also illustrate the advantages of our method in the early parts of the sample, we focus on

4Our empirical findings are insensitive to this threshold as they are driven primarily by the highest similarity
pairs. In experiments with similarity cutoffs ranging from 1% to 10%, we find results that are quantitatively
indistinguishable.

10



four patents from the 19th century. For each of these patents, the figure plots the set of prior

and subsequent patents (filed within a period of five years) that have a cosine similarity of

50% or greater with the focal patent.

The patent at the top left part of the figure (US 4,750) is one of the first patents associated

with the sewing machine, issued to 1846 to Elias Howe Jr. The patent is for the lockstitch, an

efficient and sturdy stitch mechanism, which continues to be used today. The figure shows

that this patent is not significantly connected to any prior patents. By contrast, it is relatively

closely related to sixteen patents, all for improvements in the sewing machine, that were filed

over the next five years. Many of these subsequent patents were owned by either Elias Howe,

or three companies, Wheeler & Wilson, Grover and Baker, and I. M. Singer, who together

formed the first patent pool in American industry in 1856 (Lampe and Moser, 2010).

The patent on the top right (US 493,426) is one of the earliest patents associated with

cinematography. The patent is issued to Thomas Edison, for exhibiting ‘photographs of moving

objects’, by Thomas Edison, and is essentially one of the first film projectors. The patent

is highly similar to two prior patents and twelve subsequent patents, filed within five years

apart. Most of the subsequent patents are related to cinematography–among them Among the

subsequent patents, three are fo a ‘kinetographic’ camera, one of the early precursors of the

film capera.

The patent at the bottom, left part of the figure (US 161,739) is one of the early patents

issued to Graham Bell, for multiplexing intermittent signals on a single wire, that eventually

led to the invention of the telephone. We can see that it is quite similar to four prior patents

filed over the previous five years, all of which are related to the telegraph. It is also related to

eleven patents filed over the next five years, one of which is Graham Bell’s famous ‘telephone’

patent (174,465). Last, the patent on the bottom right is a random patent (US 222,189) for

improvements in the cover of petroleum lamps. Within a five-year span, it is related to seven

prior patents and five subsequent patents, all of which refer to improvements in lamps.

In brief, our examples show that our similarity measure identifies meaningful connections

between patents. We next examine additional validation checks using an external measure of

connection—patent citations.

C. Measuring Significant Patents

We aggregate a patent’s pairwise similarity with other patents into a single indicator of

significance of a patent—also referred to as the quality of a patent. Our main idea is that a

significant patent is one that is both novel and impactful. Novel patents are those that are

conceptually distinct from their predecessors, and therefore rely less on prior art. Impactful

patents are those influence future scientific advances, manifested as high similarity with
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subsequent innovations.

1. Significant patents: definition

Our definition of patent significance combines both novelty and impact. As a novel patent

is one that is distinct from prior art, we measure a patent’s novelty as the (inverse of) its

similarity with the existing patent stock at the time it was filed. We refer to this as “backward

similarity,” and define it as

BSτj =
∑
i∈Bj,τ

ρj,i, (8)

where ρi,j is the pairwise similarity of patents i and j defined in equation (7) and Bj,τ denotes

the set of “prior” patents filed in the τ calendar years prior to j’s filing. Patents with low

backward similarity are dissimilar to the existing patent stock. They deviate from the state

of the art and are therefore novel. We will consider a backward-looking window of τ = 5

years in our baseline quality measure—-henceforth denoted by BSj . That said, our results are

insensitive to other window choices.

Next, we measure a patent’s impact by its “forward similarity,” defined as

FSτj =
∑
i∈Fj,τ

ρj,i, (9)

where Fj,τ denotes the set of patents filed over the next τ calendar years following patent j’s

filing. The forward similarity measure in (9) estimates of the strength of association between

the patent and future technological innovation over the next τ years.

A patent might have high forward similarity because it changes the course of future

innovation. Or, it might be part of scientific regime shift that was catalyzed by a predecessor

patent. The “alternating current” example highlights this difference. Nikola Tesla’s patent

has a high forward similarity because it dictated the course of future electronics, but was

very different from any prior patents. The General Motors patent’s similarity with future

AC-related patents merely reflects that it is part of a mainstream technology—it has a high

similarity both backward and forward. The distinction between these two patents emerges

when we compare forward versus backward similarity for a given patent.

Thus, our indicator of patent significance combines forward and backward similarity to

identify patents that are both novel and impactful in the following way:

qτj =
FSτj
BSj

. (10)

Our indicator (10) attaches higher scientific value to patents that are both novel relative to

their predecessors and are influential for subsequent research. A patent may have high forward
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similarity because it is a “follower” in a technology area with many other followers, in which

case it will have a high backward similarity as well. In normalizing by backward similarity,

our quality measure adjusts for this. Highly significant patents—those with a large influence

on future technologies and that deviate from the status quo—are more likely to represent

scientific breakthroughs.

Our indicator of the significance of a patent largely follows the logic behind indicators based

on future citations. Specifically, the numerator in (10) is the sum over similarity with future

patents—which is directly analogous to the sum of future citations. The numerator in (10)

scales the forward similarity score by the novelty of the patent—since, presumably, patents

should be citing the earliest relevant prior patents that are related to the invention, that is,

novel patents. However, given our interest in constructing time-series indices of innovation, one

worry is that time-series fluctuations in (10) are also affected by mechanical factors, such as

shifts in language; the fact that the retrospective document frequency measure (4) is changing

over time so terms become less novel over time; and the fact that the number of patents is

rapidly expanding over time. Given that these issues likely affect most patents symmetrically,

when constructing time-series indices in Section III, we will adjust (10) by removing time fixed

effects.

2. Significant patents: descriptive statistics

Figure 3 compares the cross-sectional distribution of quality, and citations, and its evolution

over time. We can immediately see that the vast majority of patents receive very few citations

in the pre-1947 period. For instance, even patents in the 90-th or 95-th percentile receive

almost no citations over the next 10 years. Even when we examine their total citations in the

entire sample, patents in the 95-th percentile typically receive between 2 to 10 citations in the

pre-1947 period—compared to 20 citations in the 1960s or 50 citations in the 1980s. Part of

this shift in the distribution of citations is mechanical, since the USPTO only started officially

recording citations after 1947. However, we see that shifts in the propensity for patents to cite

earlier patents could have played a role.

II. Validation

Next, we conduct three validation checks for our quality measure. First, we identify a list of

important patents and examine how they score in terms of our quality indicators. Second, we

relate our quality measure to forward patent citations, a common measure of patent quality in

the innovation literature. Last, we examine the correlation between our quality indicators and

market values.
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A. Historically important patents

Our first validation exercise examines how historically important patents score in terms of our

quality indicator. We compile a list of approximately 250 historically important patents based

on online lists of ‘important patents’, for instance, the USPTO’s “Significant Historical Patents

of the United States” list. Our list targets indisputable important and radical inventions of

the last 200 years, beginning with the telegraph and internal combustion engine, and ending

with stem cells, Google’s Pagerank algorithm and gene transfer. The full list of patents and

sources is provided in Appendix Table A.7.

For each of these radical inventions we report their rank in terms of our patent quality

measure (10) and forward citations. We focus on horizons of 10 years after the filing date for

measuring quality and citations. For each patent, we compute its percentile rank based on

quality or citations; for instance, a value of 0.90 indicates that the patent is in the top 10%.

In addition to computing percentile ranks using the unconditional distribution, we perform

two adjustments with the aim of removing time-series variation in these indicators that is

unrelated to technical change. First, we rank patents based on cohort (issue year) demeaned

values of these indicators. Removing cohort fixed effects helps eliminate factors that affects

patents symmetrically, such as shifts in language; variation in the quality of the digitized

patent documents; or changes in citation patterns. Second, we compute ranks within cohort.

Though this comparison is not very useful in constructing a time-series index of technological

change, it clarifies the extent to which these indicators are useful for purely cross-sectional

comparisons.

Figure 4 summarize our findings. Panel A shows that, in terms of unconditional comparisons,

our similarity-based quality indicator significantly outperforms citations: the average rank

assigned to these important patents is 0.74, compared to 0.37 for citations. In Panel B, we see

that the difference shrinks when these indicators are demeaned using year-fixed effects, but is

not fully eliminated—0.78 for quality versus 0.70 for citations. Comparing Panel B to Panel C

shows that removing time fixed effects leads to similar results as comparing patents within

cohorts.

Appendix Table A.2 performs additional comparisons between our quality indicators and

citations for different measurement horizons. In sum, these historically important patents rank

at least as high using our patent quality measure than citations, even when the latter are

measured over the entire sample. A key driver of behind the out-performance of our text-based

quality indicators is that the texts of the underlying patent document have been uniformly

available throughout the entire sample. By contrast, patent citations have been consistently

recorded in patent documents only after 1945. Given our goal of constructing indices of

technological change entails comparisons across patent cohorts, our text-based indicators have
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a significant advantage—which we exploit in Section III.

B. Patent Significance and Citations

The existing literature on innovation mostly relies primarily on patents’ citations to measure

their impact. We next investigate the power of our text-based quality measure for explaining

patent citations. In particular, we estimate the following specification at the patent level

(indexed by j):

log
(
1 + CITES0,τ

j

)
= α + β log qτj + γ Zj + εj. (11)

For this regression, we restrict attention to the sample of patents issued after 1945, as this is

the period for which citations are recorded consistently by the USPTO. We measure patent

quality and citations over the τ years since patent filing. The vector Zj includes dummies

controlling for technology class (defined at the 3-digit CPC level), grant year, assignee and the

interaction of assignee and year effects. Including assignee fixed effects reduces the number

of observations since many patents have no assignees. Nevertheless, in our most conservative

specification we compare patents in the same technology class that are granted to the same

assignee in the same year. Lastly, we cluster the standard errors by patent grant year.

Panel A of Figure 5 shows binned scatter plots of citations versus our text-based quality

measure and reveal a strong positive correlation between the two. We collect observations

into 50 bins (cutoff at every other percentile of the quality distribution). Within each bin, we

average citation and text-based quality measures after controlling for technology class and

assignee-by-grant year fixed effects, and consider contemporaneous forward windows of τ =1,

5, and 10 years for both citations and text similarity. Table 1 reports corresponding regression

estimates. The contemporaneous explanatory power of our patent quality for citations is

consistent across horizons τ and choice of controls Z. Importantly, the magnitude of these

correlations is substantial. Focusing on our most conservative specification, which compares

two patents filed in the same year, are in the same class, and are issued to the same entity

in the same year, we find that increasing the quality measure from the median to the 90th

percentile results in 0.7 (1.5) additional citations, relative to the median of 2 (3) citations,

when quality and citations are measured over the next 5 (10) years after the patent application

is filed.

In short, our text-based measure of patent quality is highly correlated with patent citations

over the same measurement horizon. Perhaps more interestingly, text-based quality measure is

predictive of future citations. The left-most figure in Figure 5, Panel B plots the predictive

relation between our text-based quality measured in the 0-1 year window after filing, versus all

citations in years 2 and beyond. Likewise, we plot quality over years 0-5 versus citations in years

6+, and quality over 0-10 versus citations in years 11+. In all cases, we find an unambiguously
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strong positive association between our near-term quality measure and long-term future

citations.

Similarly, we estimate the same predictive relation via regression while controlling for the

information in lagged citations:

log
(
1 + CITESτ+

j

)
= α + β log q0,τ

j + c log
(
1 + CITES0,τ

j

)
+ γ Zj + εj. (12)

This specification uses patent quality from years 0 through τ to forecast citations in year τ + 1

and beyond, controlling for citations in the 0 to τ window. As before, the control vector Z

includes fixed effects for year, technology class, and assignee. Our main coefficient of interest

is b, which captures the predictive relation between our impact measure and future citations.

The results in Table 3 show that our impact measure predicts future citations after controlling

for the number of citations over the same period for which text-based quality is measured. The

relation is statistically as well as economically significant. Focusing on the most conservative

specification that includes the full set of fixed effects, we see that an increase in the patent

quality from the median to the 90th percentile is associated with 20-25% more citations relative

to the median. Similar results obtain when we expand the sample to include patents issued

prior to 1945 (see Appendix Table A.3).

To explore their individual roles, we estimate a variant of equation (11) that decomposes

our quality measure into the numerator (impact) and the denominator (novelty). Table 2

shows that patent impact—as measured by the patent’s forward similarity—is positively and

significantly related to the number of times the patent gets cited over the same period. Second,

patents that are more novel, that is, they are more dissimilar to earlier patents, are also

more likely to be cited more in the future. Interestingly, the estimated coefficients on the log

backward and forward similarity are of similar magnitude—and opposite sign. These estimate

support the one-to-one ratio between the forward and the backward similarity that we use in

our baseline indicator of quality.

Our text-based measures are strongly related to the most commonly-used indicator of

patent quality, forward citations. Yet our quality measure has important advantages over

patent citations. First, unlike citations, text-based quality does not suffer from truncation bias.

Citations, on the other hand, are limited to the latter portion of the patent sample.

Second, citations tend to take small, discrete values (the median patent has one citation in

a 10-year forward window), while our quality measure is continuous. This property of citations

makes it a noisy measure for inferring patent quality, and the issue is exacerbated over short

horizons (the median citation count drops to zero with a five year post-filing window).

Third, our text-based measure has the advantage of not relying on the discretion of the

inventor or the patent examiner in choosing which prior patents to cite, or whether they are
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aware of the existence of closely related patents. This could introduce biases and idiosyncratic

variation in the nature of which patents are cited and by whom. As an example, patent

6,368,227 for “Method of swinging on a swing”, issued to Steven Olson (aged 5) in April 2002,

has 11 citations as of June 2018. It is cited, for example, by patent 8,420,782 for “Modular

DNA-binding domains and methods of use”; patent 8,586,526 for “DNA-binding proteins and

uses thereof”; and patent 8,697,853 for “TAL effector-mediated DNA modification”. Many of

these citations were added by the patent examiner.

Fourth, the results of Table 3 indicate that our quality measure incorporates information

much more quickly than forward citations. To further illustrate this point, Figure 6 reports

the rate at which text-based quality (and also patent citations) behave over the measurement

horizon τ . Specifically, the figure plots the average patent quality q0,t over different measurement

horizons (t = 1, . . . , 20 years) as a fraction of quality measured over the next 20 years q0,20.

We perform the same exercise for forward citations. We see that the amount by which the

total forward similarity FS0,t increases is strongly declining across horizons — that is, q0,t as a

fraction of q0,20 is concave in t. By contrast, over short horizons, forward citations C0,t are

convex in t. We also see that, over short horizons (0–5 years), measured quality accounts for a

higher fraction of the total than citations, which is consistent with the view that our quality

measure incorporates information faster than forward citations.

C. Patent Significance and Market Values

In this section, we discuss the relation between patent quality and market valuations. Market

values are by definition private values; they measure the present value of pecuniary benefits

to the holder of the patent. By contrast, our quality measure is designed to ascertain the

scientific importance of the patent. The relationship market value and scientific importance

can be ambiguous. For instance, a patent may represent only a minor scientific advance

while being very effective in restricting competition, thus generating large private rents. The

relation between the private and the scientific value of innovation—as measured by patent

citations—has been the subject of considerable debate in the literature.5

As an estimate of the market value of a patent we use the measure of Kogan et al. (2017)—

henceforth KPSS. The KPSS measure, V̂j, infers the value of patent j (in dollars) from stock

market reaction to the patent grant. KPSS interpret this measure as an ex-ante measure of

the private value of the patent. To investigate how text-based patent quality associates with

5For instance, Hall et al. (2005) and Nicholas (2008) document that firms owning highly cited patents have
higher stock market valuations. Harhoff et al. (1999) and Moser et al. (2011) provide estimates of a positive
relation using smaller samples that contain estimates of economic value. By contrast, Abrams et al. (2013)
use a proprietary dataset that includes estimates of patent values based on licensing fees and show that the
relation between private values and patent citations is non-monotonic.

17



estimated private value, we estimate the regression

log V̂j = α + β log qτj + γ Zj + εj. (13)

As before, we saturate our specifications with controls Zj, including fixed effects for grant

year, technology class, and, in this case, firm. The vector of control variables also includes

characteristics of the public firm that generates the patent, including the firm’s log market

capitalization prior to the patent grant (as larger firms may produce more influential patents)

and the firm’s log idiosyncratic volatility (fast-growing firms have more volatile returns and

may produce higher quality patents). Our most stringent specification also the interaction of

firm and year effects to account for the possibility that unobservable firm effects may influence

our results. We cluster standard errors by grant year to account for correlation in citations

among patents granted in the same given year. If multiple patents are issued to the same firm

in the same day, we collapse them to a single observation by averaging the dependent and

independent variables across patents.6

We present the results in Table 4. Columns (1) to (3) show a strong, statistically significant

relation between our text-based measure of impact and the KPSS measure of market value.

Their association strengthens as we increase the horizon over which we measure quality from 1

to 10 years after the filing date. In column (4), we include as an additional control the number

of forward citations the patent receives over the same horizon that quality is measured. Doing

so has little effect our point estimates, supporting the conclusion that our quality measure

incorporates information that patent citations fail to capture. In terms of magnitudes, our

estimates imply that an increase in log q from the median to the 90-th percentile is associated

with approximately 0.4–1.2% increase in market values. Though these estimates may appear

relatively modest, they are comparable in magnitude to the relation between patent values

and forward citations.

In sum, these results confirm our earlier findings that our patent quality indicators are

systematically related to market values, even controlling for patent citations. In Appendix

Table A.6, we provide additional evidence that the quality of firms’ patent portfolios correlates

with their market valuation ratios (Tobin’s Q), following the analysis of Hall et al. (2005).

Given that these estimates are based on data from the later part of the sample, when citation

data are broadly available, these results reinforce the view that our text-based measure captures

information about patent quality that is not fully incorporated in patent citations.

6The KPSS measure does not differentiate between two patents that are issued to the same firm on the
same day—it effectively assigns an equal fraction of the total dollar reaction to multiple patents in a given day
to each patent. Estimating (13) at the patent level thus effectively overweighs firms that file a large number of
patents. That said, this choice does not materially affect our findings. Appendix Table A.5 shows that results
are very similar when estimating (13) at the patent level.
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III. Measuring Innovation Over the Long Run

So far, our analysis has focused on developing and validating our patent quality measure. In

this section, we use our measure to create time-series indices of the intensity of technological

progress at the firm, sector, and aggregate economy levels, and investigate how these indices

associate with measured productivity growth.

A. Breakthrough Patents

Here, we construct indices of technological progress at firm, sector and aggregate level by

identifying and tracking breakthrough patents defined by our quality measure. Our findings so

far—particularly those in Section A—suggest that our quality measure is more useful than

forward citations in comparing patents across cohorts and is available over a longer time

period. In aggregating patent quality into time series indices, it is important to confront

shifts in language (or in the quality of the scanned patent documents) that may introduce

systematic errors and unduly influence the comparison of patents across cohorts. To address

this concern, we adjust our quality measure removing patent cohort year fixed effects. The

implicit assumption in doing so is that shifts in language are likely to symmetrically affect all

patents and will thus be absorbed by the fixed effect.

After this adjustment, we define a ‘breakthrough’ patent as one that falls in the top 10% of

the quality distribution (among all patents in all years). Our baseline results use quality with

a 10-year forward window. We also compare against an alternative definition of breakthrough

patents based on the 10% of patents with the most forward citations over the same horizon

(and likewise adjusted for year fixed effects).

B. Aggregate Index of Technological Progress

From our definition of breakthrough patents, we construct a time series of technological

improvements that spans the USPTO sample (1840–2010). Our index is defined as the number

of breakthrough inventions granted in each year, divided by the the US population. Panel A

of Figure 7 plots the resulting time-series of breakthroughs per capita. Our index displays

considerable fluctuations at relatively low frequencies. It identifies three main innovation

waves, lasting from 1870 to 1880; 1920 to 1935; and from 1985 to the present. These

periods line up with the major waves of technological innovation in the U.S. The first peak

corresponds to the beginning of the second industrial revolution, which saw technological

advances such as the telephone and electric lighting. The second peak corresponds to advances

in manufacturing, particularly in plastics and chemicals, consistent with the evidence of Field

(2003). The latest wave of technological progress includes revolutions in computing, genetics,
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and telecommunication.

For comparison, Panel B plots the resulting time-series when our index methodology is

instead constructed from forward citations (over the next five years after the patent is filed, line

in black). We see that this series essentially identifies no innovation prior to 1940s. Only when

citations are measured over the entire sample (blue line) does the index take non-zero values in

the pre-WW2 period, but even then the levels dwarf the values of the index post-1980. Given

that the importance of inventions in the 1850–1940 era are at least comparable to the those in

the last two decades (see, e.g. Gordon, 2016), this pattern mostly reflects the limitations of

forward citations as a measure of quality.

Constructing an innovation index has proven challenging in the past. In one approach, Shea

(1999) constructs an index of total patent counts, scaled by population growth. This series

is plotted in Panel C. Total patents per capita is essentially flat from 1870–1930, dips from

1930–1980, and displays significant spike post-1980. There are reasons to be skeptical that such

an index indeed measures the degree of underlying progress, since it implicitly assumes that all

patents are equally valuable. Kortum and Lerner (1998) show that there is wide heterogeneity

in the economic value of patents. Furthermore, fluctuations in the number of patents granted

are often the result of changes in patent regulation, or the quantity of resources available to

the US patent office (see e.g. Griliches, 1990; Hall and Ziedonis, 2001). As a result, a larger

number of patents does not necessarily imply greater technological innovation. One common

adjustment to simple patent counts is to weigh patents by their forward citations. As we see

in Panel B however, such an index is contaminated by the fact that citation propensities vary

over time.

Kogan et al. (2017) construct a time-series index that is based on the estimated market

values of patents that are granted. Their index is plotted in Panel D. Their index has the

advantage that it provides a dollar estimate of the value of innovation output in a given year.

However, it has several shortcomings. First, it is based on a measure that is confined to the

universe of publicly traded firms. Consequently, it omits not only innovations by private firms,

non-profit institutions and the government, but also innovation prior to 1927 since reliable

information on stock prices is available only after this year. Further, a direct corollary is that

its time-series behavior may be influenced by shifts in the fraction of firms in the economy

that are public, or variations in the degree of market efficiency.

1. Breakdown across technology classes and specific examples

Panel A of Figure 8 plots the breakdown across technology class of these breakthrough patents.

We see that the technology classes in which breakthrough inventions originated has varied

quite a bit over the last 170 years. By contrast, we see that the composition of technology

classes among all patents has remained relatively stable over time.
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In the 1840–70 period, we see that the most important inventions took place in engineering

and construction, consumer goods, and manufacturing. An example of an invention in

construction that scores high in terms of our quality measure is the ‘Bollman Bridge’ (patent

number 8,624), named after its creator Wendell Bollman, which was the first successful all-metal

bridge design to be adopted and consistently used on a railroad. In terms of manufacturing

processes, many of the important advances occur in textiles. Specifically, examples of the

important patents include various versions of sewing and knitting machines (patent numbers

7,931; 7,296; 7,509; and 60,310). Many of the important patents in consumer goods are also

related to new clothing items.

Starting around 1870, many more patents that score high in terms of our measure are

related to electricity, with some of the most important patents (based on our measure) relating

to the production of electric light (203,844; 210,380; 215,733; 210,213; 200,545; 218,167). Most

importantly, the same period saw the invention of a revolutionary method of communication:

the telephone. It is comforting that most of the patents associated with the telephone are

among the breakthrough patents we identify.7

Another industry that accounted for a significant share of the most important patents

during the 1860-1910 period is transportation. Many of the patents that fall in the top 5%

in terms of our measure include improvements in railroads (e.g., patents 207,538; 218,693;

422,976; and 619,320), and in particular, their electrification (patents 178,216; 344,962; 403,969;

465,407). Most importantly, the turn of the century saw the invention of the airplane. In

addition to the Wright brothers’ original patent (821,393), several other airplane patents also

score highly in terms of our quality indicator (1,107,231; 1,279,127; 1,307,133; 1,307,134). Our

measure also identifies other patents related to air transportation based on air balloons that are

similar to the Zeppelin (i.e., 678,114 and 864,672). Last, innovations in construction methods

continue to play a role in the 1870-1910 period. Among the patents that score in the top 1%

in terms of our quality indicator are those that are related to the use of concrete (618,956;

647,904; 764,302; 654,683; 747,652; and 672,176) as a material in the construction of buildings,

roads and pavements.

In the first half of the 20th century, chemistry emerges as a new area responsible for

important patents, many describing inventions of plastic compounds. Among our breakthrough

inventions is the patent for bakelite (942,699), the world’s first fully synthetic plastic. This

innovation opened the floodgates to a torrent of now-familiar synthetic plastics, including

the invention in the 1930’s of plasticized polyvinyl chloride (PVC) by Waldo Semon (patents

1,929,453 and 2,188,396) and nylon by Wallace H. Carothers (patent 2,071,250), all of which

7Specifically, the following patents associated with the telephone rank in the top 5% in terms of our baseline
quality measure among the patents granted in the same decade: 161,739; 174,465; 178,399; 186,787; 201,488;
213,090; 220,791; 228,507; 230,168; 238,833; 474,230; 203,016; 222,390. Source: https://en.wikipedia.org/
wiki/Invention_of_the_telephone#Patents
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are score highly according to our measure. Other important patents in chemistry continue

through the 1950’s in the form of drug patents, including Nystatin (2,797,183); improvements

in the production of penicillin (2,442,141 and 2,443,989); Enovid, the first oral contraceptive

(2,691,028); and Tetracyline, one of the most prescribed broad spectrum antibiotics (2,699,054).

Subsequent to the 1950’s, a large fraction of the important patents identified by our measure

are in the area of Instruments and Electronics, and are related to the arrival of the Information

Age. One of the most important patents according to our measure is the invention of the first

microchip by Robert Noyce in 1961 (patent 2,981,877). During the 1970s, firms such as IBM,

Xerox, Honeywell, AT&T, and Sperry Rand are responsible for some of the major innovations

in computing. Xerox, for example, is responsible for several high-scoring inventions such as

patent 4,558,413 for a management system software; patent 4,899,136 for improvements in

computer user interface; patent 4,437,122 for bitmap graphics; and patents 3,838,260 and

3,938,097 for improvements in the interface between computer memory and the processor. In

the 1980s and 1990s, several important patents that pertain to computer networks emerge

among the set of breakthrough patents—for instance, patents 4,800,488; 4,823,338; 4,827,411;

4,887,204; 5,249,290; 5,341,477; 5,544,322; and 5,586,260.

Improvements in genetics comprise a significant fraction of high quality patents in the

1980–2000 period. A few early examples that fall in the top 1% of the unconditional distribution

according to our quality indicator are: patent 4,237,224 for recombinant DNA methods (that is,

the process of forming DNA molecules by laboratory methods of genetic recombination, such as

molecular cloning, to bring together genetic material from multiple sources); patents 4,683,202;

4,683,195, and 4,965,188 for the polymerase chain reaction (PCR) method for rapidly copying

DNA segments with high fidelity and at low cost; patent 4,736,866 for genetically modified

animals; and patent 4,889,818 for heat-stable DNA-replication enzymes.

IV. Innovation and Measured Productivity

We next relate our innovation indices to measured productivity.

A. Aggregate Productivity

We begin by focusing on aggregate productivity growth. For the post-war sample, we use the

TFP measure constructed by Basu et al. (2006), which is available over the 1948-2018 period.

For the earlier sample, we measure productivity using output per hour using the data collected

by Kendrick (1961), which is available for the 1889 to 1957 period. Following Jorda (2005), we
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estimate the following specification,

1

τ
(xt+τ − xt) = a0 + aτ log BreakthroughIndext + ρτ xt + cτ Zt + ut+τ , (14)

where xt is log productivity, BreakthroughIndext refers to our innovation index, and Zt is a

vector of controls that includes the log number of patents per capita and the level of productivity.

We consider horizons of τ = 1 . . . 10 years and adjust the standard errors using the Newey-West

procedure. All independent variables are normalized to unit standard deviation. To ensure

that we are not capturing pre-existing trends, we also examine negative values of τ .

We plot the estimated coefficients in Figure 10. Panel A presents the results of estimating

(14) for the post-war sample. Focusing on horizons of five to ten years, we see that a one-

standard deviation increase in our technology index is associated with an increase in TFP of

0.5 percent per year—which is substantial given that the standard deviation in measured TFP

growth over this period is 1.8%. Importantly, there is no statistically significant correlation

between past changes in productivity and our innovation index. Panel B shows the results for

the earlier sample. Again focusing on horizons of five to ten years, we see that a one-standard

deviation in our innovation index is associated with an increase in labor productivity growth

of approximately 1.5–2% per year—compared to an annual standard deviation of 5.2% for

labor productivity growth.

B. Sector-level Analysis

We next construct indices of innovation at the sector level. One issue that arises is how to map

patents to industries in a way that is independent of the presence of an explicit assignee. We

do so by exploiting the mapping between patent technology classifications (CPC) and various

industry classifications constructed by Goldschlag et al. (2016). Because this is a probabilistic

mapping (there is no one-to-one correspondence between CPC and industry codes), we assign

a fraction of each patent to industry codes based on the given probability weights associated

with its (4-digit) CPC technology classification. Goldschlag et al. (2016) provide mappings to

NAICS industry definitions, at different levels of granularity.8

We begin by constructing long time-series indices of innovation using the 3-digit NAICS

classification. Figure 9 plots our industry indices. Our industry indices reveal that the

origin of breakthrough patents has varied considerably over time, consistent with our prior

results. Inventions related to electricity were important in the late 19th and early 20th century.

8Here, two caveats are in order. First, this mapping is based on post-1970 data, whereas our analysis spans
the entire period since the 1840s. Hence, there might be measurement error in our index since we assign a
fraction of patents to each of the industries that map to a CPC classification based the weights estimated from
only part of the sample. Second, this mapping is primarily available for manufacturing industries–which are
however the industries that patent most heavily.
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Innovations in agriculture played an important role in the beginning of the 20th century, while

advances in genetically modified food have peaked in the last two decades. Chemical and

petroleum-related innovations were particularly important in the 1920s and 1930s. Computers

and electronic products have peaked since the early 1990s. We next examine whether our

industry indices are related to measured productivity.

Panel A Figure 11 presents our results for the period from 1987 to the present. We use

the estimates of productivity at the NAICS 4-digit level from the Bureau of Labor Statistics

(BLS), which covers 86 manufacturing industries. For this period, we then estimate a panel

analogue of equation (14),

1

τ
(xt+τ − xt) = a0 + aτ log BreakthroughIndexi,t + ρτ xi,t + cτ Zi,t + ui,t+τ , (15)

where, as above, xi,t denotes (log) multi-factor productivity; BreakthroughIndexi,t is our

industry innovation index (count of breakthrough patents, scaled by population); and Zi,t is a

vector of controls that includes time and industry fixed effects, the log total number of patents,

scaled by population and the level of productivity. Standard errors are clustered by industry.

Given the shorter time-dimension of the data, we consider horizons of τ = 1 . . . 5 years. To

ensure that we are not capturing pre-existing trends at the industry level, we also examine the

relation between innovation and past productivity growth, that is, negative values of τ .

We find a strongly statistically positive relation between our innovation index and future

productivity growth—while the relation with past productivity growth is insignificant. In

terms of magnitudes, a one-standard deviation increase in our innovation index is associated

with approximately 1–1.2% higher productivity growth per year, over the next 5 years.

Panel B performs a similar exercise for the earlier sample. We use the labor productivity

data collected by Kendrick (1961), which covers 62 manufacturing industries for the years 1899,

1909, 1919, 1937, 1947, and 1954. Since the data is only available at discrete periods, we modify

our approach as follows: for each period (t, t+ τ), we regress the annualized difference in log

labor productivity on the log of the accumulated level of innovation (number of breakthrough

patents) in t± 2 years—controlling for period, industry dummies, the log number of patents

during the same period, and the log level of productivity at t.9

Examining Panel B, we again see a strong and statistically significant relation between our

industry innovation indices and measured productivity: a one standard deviation increase in

our innovation index is associated with a 1.4% higher growth rate in measured productivity

over the next period.

For comparison, Figure 12 performs the same exercise using a corresponding index based on

9To construct innovation indices for the Kendrick industries, which are defined at the SIC code level, we
use the concordance between 1997 NAICS and 1987 SIC codes from the Census Bureau. If NAICS industries
map into multiple SIC codes, we assign an equal fraction to each.
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citations (measured over a 10 year horizon). Examining Panels A and B, we see that there is

no statistically significant relation between the citations-based index and industry productivity

in either sample period.

V. Conclusion

We use textual analysis of high-dimensional data from patent documents to create new

indicators of patent quality. Our metric assigns higher quality to patents that are distinct from

the existing stock of knowledge (are novel) and are related to subsequent patents (have impact).

These estimates of novelty and similarity are constructed using a new methodology that builds

on recent advances in textual analysis. Our measure of patent significance is predictive of

future citations and correlates strongly with measures of market value.

We identify breakthrough innovations as the most significant patents—that is, patents in

the right tail of our measure—to construct indices of technological change at the aggregate

and sectoral. Our technology indices span two centuries (1840-2010) and cover innovation by

private and public firms, as well as non-profit organizations and the US government. These

indices capture the evolution of technological waves over a long time span and are strong

predictors of productivity.
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Tables and Figures

Table 1: Patent citations, impact and novelty, contemporaneous correlations

log(1 + Forward citations, 0-1 yr) (1) (2) (3) (4)

log(Patent quality, 0-1yr) 0.432∗∗∗ 0.255∗∗∗ 0.174∗ 0.127

(6.09) (4.17) (2.64) (1.73)

R2 0.072 0.106 0.177 0.235

Observations 6,017,673 5,981,174 4,492,964 4,054,639

log(1 + Forward citations, 0-5 yr) (1) (2) (3) (4)

log(Patent quality, 0-5yr) 1.295∗∗∗ 0.962∗∗∗ 0.780∗∗∗ 0.752∗∗∗

(34.15) (22.58) (14.29) (13.57)

R2 0.195 0.243 0.330 0.375

Observations 4,964,003 4,930,423 3,535,656 3,169,209

log(1 + Forward citations, 0-10 yr) (1) (2) (3) (4)

log(1 + Forward citations, 0-10 yr) 1.273∗∗∗ 1.040∗∗∗ 0.885∗∗∗ 0.879∗∗∗

(46.97) (61.98) (33.32) (30.91)

R2 0.263 0.311 0.397 0.437

Observations 4,135,358 4,104,591 2,811,353 2,509,928

Grant Year FE Y Y Y

Tech Class FE Y Y Y

Assignee FE Y

Grant Year × Assignee FE Y

Table reports the results of estimating equation (11) in the main text. The regression relates the log of (one

plus) the number of patent citations to our measures of patent impact (forward similarity) and lack of novelty

(inverse of backward similarity) constructed in equations (9) and (8), respectively. As controls, we include

dummies controlling for technology class (defined at the 3-digit CPC level), grant year, firm (assignee) and the

interaction of firm and year effects. Since patent citations are only consistently recorded after 1947, we restrict

the sample to the 1947–2016 period. As patents can be assigned to multiple assignees, observations are at

the patent–assignee level. Last, we cluster the standard errors by the patent grant year. See main text for

additional details on the specification and the construction of these variables.
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Table 2: Patent citations, impact and novelty, contemporaneous correlations

log(1 + Forward citations, 0-1 yr) (1) (2) (3) (4)

log(Patent impact (FS), 0-1yr) 0.389∗∗∗ 0.247∗∗∗ 0.170∗∗ 0.127

(6.02) (4.26) (2.78) (1.88)

log(Patent novelty (1/BS), 0-5yr) 0.351∗∗∗ 0.221∗∗∗ 0.149∗ -0.105

(5.68) (3.96) (2.52) (1.61)

R2 0.076 0.107 0.178 0.235

Observations 6,017,673 5,981,174 4,492,964 4,054,639

log(1 + Forward citations, 0-5 yr) (1) (2) (3) (4)

log(Patent impact (FS), 0-5yr) 1.169∗∗∗ 0.917∗∗∗ 0.740∗∗∗ 0.708∗∗∗

(31.04) (19.66) (13.11) (12.50)

log(Patent novelty (1/BS), 0-5yr) 1.075∗∗∗ 0.833∗∗∗ 0.671∗∗∗ 0.638∗∗∗

(30.47) (18.37) (12.03) (11.41)

R2 0.200 0.247 0.331 0.376

Observations 4,964,003 4,930,423 3,535,656 3,169,209

log(1 + Forward citations, 0-10 yr) (1) (2) (3) (4)

log(Patent impact (FS), 0-10yr) 1.183∗∗∗ 1.009∗∗∗ 0.853∗∗∗ 0.841∗∗∗

(52.15) (50.70) (29.05) (27.06)

log(Patent novelty (1/BS), 0-5yr) -1.092∗∗∗ -0.910∗∗∗ -0.769∗∗∗ -0.757∗∗∗

(-46.07) (-43.81) (-25.77) (-23.88)

R2 0.267 0.315 0.399 0.438

Observations 4,135,358 4,104,591 2,811,353 2,509,928

Grant Year FE Y Y Y

Tech Class FE Y Y Y

Assignee FE Y

Grant Year × Assignee FE Y

This Table is the counterpart to Table 1, in which we disaggregate our measure of patent quality into patent

impact (forward similarity) and of novelty (inverse of backward similarity) constructed in equations (9) and (8),

respectively. Table reports the results of estimating equation (11) in the main text. The regression relates the

log of (one plus) the number of patent citations to our measures of patent impact (forward similarity) and lack

of novelty (inverse of backward similarity) constructed in equations (9) and (8), respectively. As controls, we

include dummies controlling for technology class (defined at the 3-digit CPC level), grant year, firm (assignee)

and the interaction of firm and year effects. Since patent citations are only consistently recorded after 1947, we

restrict the sample to the 1947–2016 period. As patents can be assigned to multiple assignees, observations are

at the patent–assignee level. Last, we cluster the standard errors by the patent grant year. See main text for

additional details on the specification and the construction of these variables.
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Table 3: Patent quality and citations: predictive relation

log(1 + Forward citations, 2+ yr) (1) (2) (3) (4)

log(Patent quality, 0-1yr) 1.201∗∗∗ 1.009∗∗∗ 0.940∗∗∗ 0.981∗∗∗

(15.82) (17.18) (15.97) (15.55)

log(1 + Forward citations, 0-1 yr) 0.656∗∗∗ 0.604∗∗∗ 0.514∗∗∗ 0.506∗∗∗

(33.23) (36.25) (38.82) (35.30)

R2 0.314 0.368 0.479 0.517

Observations 6,017,673 5,981,174 4,492,964 4,054,639

log(1 + Forward citations, 6+ yr) (1) (2) (3) (4)

log(Patent quality, 0-5yr) 0.635∗∗∗ 0.724∗∗∗ 0.722∗∗∗ 0.782∗∗∗

(11.10) (13.72) (10.19) (10.56)

log(1 + Forward citations, 0-5 yr) 0.614∗∗∗ 0.581∗∗∗ 0.540∗∗∗ 0.547∗∗∗

(36.70) (36.66) (39.30) (37.56)

R2 0.319 0.377 0.472 0.506

Observations 4,964,003 4,930,423 3,535,656 3,169,209

log(1 + Forward citations, 11+ yr) (1) (2) (3) (4)

log(Patent quality, 0-10yr) 0.186∗∗∗ 0.391∗∗∗ 0.401∗∗∗ 0.418∗∗∗

(4.41) (14.42) (10.44) (9.67)

log(1 + Forward citations, 0-10 yr) 0.573∗∗∗ 0.539∗∗∗ 0.510∗∗∗ 0.512∗∗∗

(37.42) (37.37) (38.83) (37.88)

R2 0.300 0.363 0.448 0.482

Observations 4,135,358 4,104,591 2,811,353 2,509,928

Grant Year FE Y Y

Class Y

Assignee FE Y

Grant Year × Assignee FE Y

Table reports the results of estimating equation (12) in the main text. The regression relates the log of (one

plus) the number of patent citations after time t to our measures of patent quality (10) measured over a horizon

[0, t] and citations measured over the same interval [0, t]. As controls, we include dummies controlling for

technology class (defined at the 3-digit CPC level), assignee and issue year effects. Since patent citations are

only consistently documented after 1947, we restrict the sample to the 1947–2016 period. Last, we cluster the

standard errors by the patent grant year. See main text for additional details on the specification and the

construction of these variables.
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Table 4: Patent quality and value

log KPSS value (1) (2) (3) (4)

Log patent quality, 0-1 years -0.0028 0.0020 0.0041∗∗∗ 0.0041∗∗∗

(-1.10) (0.96) (3.37) (3.37)

Log forward citations, 0-1 years -0.0002

(-0.37)

R2 0.947 0.956 0.965 0.965

Observations 559,669 558,329 539,309 539,309

log KPSS value (1) (2) (3) (4)

Log patent quality, 0-5 years 0.0035 0.0052∗∗∗ 0.0084∗∗∗ 0.0077∗∗∗

(1.24) (2.91) (5.03) (4.59)

Log forward citations, 0-5 years 0.0044∗∗∗

(5.93)

R2 0.951 0.959 0.967 0.967

Observations 496,844 495,541 478,049 478,049

log KPSS value (1) (2) (3) (4)

Log patent quality, 0-10 years 0.0112∗∗∗ 0.0091∗∗∗ 0.0120∗∗∗ 0.0100∗∗∗

(5.33) (6.01) (7.49) (5.99)

Log forward citations, 0-10 years 0.0091∗∗∗

(9.29)

R2 0.953 0.960 0.966 0.966

Observations 430,211 428,948 413,458 413,458

Controls:

Grant Year FE Y Y

Class FE Y Y Y Y

Firm Size (market cap) Y Y Y Y

Firm Volatility Y Y Y Y

Firm FE Y Y Y

Grant Year × Firm FE Y Y

Table reports the results of estimating equation (13) in the main text. The regression relates the log of the

Kogan et al. (2017) estimate of the market value of the patent to our (log) measures of patent quality, which

combines the patent’s impact and novelty, constructed in equation (10). As controls, we include dummies

controlling for technology class (defined at the 3-digit CPC level), grant year, firm (CRSP: permco) and the

interaction of firm and year effects. Since multiple patents can be issued to a given firm in a given day (which

implies the same kpss value for these patents) we collapse the observations at the firm-date level. See Appendix

Table A.5 for the corresponding regressions at the patent level. We cluster the standard errors by the patent

grant year. All independent variables are normalized to unit standard deviation. See main text for additional

details on the specification and the construction of these variables.
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Figure 1: Pairwise similarity and citation linkages
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B. Probability of Citation Pair

Panel A plots the empirical CDF of our similarity measure ρi,j across patent citation pairs. Panel B plots

the conditional probability that patent j cites an earlier patent j as a function of the text-based similarity

score between the two patents, ρi,j , computed in equation (7) in the main text. For computational reasons, we

exclude similarity pairs with ρi,j ≤ 0.5%. Figure uses data only post 1945, since citations were not consistently

recorded prior to that year. We use data only post 1945, since citations were not consistently recorded prior to

that year.
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Figure 2: Similarity Networks, Examples
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Figure displays the similarity network for four patents: the patent for the first sewing machine (top left); one of the earlier patents for moving pictures (top right);
one of the early patents that led to the telephone (bottom left) and a randomly chosen patent from the 1800s (bottom right). In plotting the similarity links, we
restrict attention to patents pairs filed at most five years apart and with a cosine similarity greater than 50%.
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Figure 3: Distribution of Quality and Citations over time

A. Patent Quality (0-10 yr forward)
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Figure plots the cross-sectional distribution of our quality measure (Panel A) and forward citations (Panels B

and C) over time.
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Figure 4: Important Patents: Quality vs Citations

Panel A. Comparison across cohorts: no adjustment
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Figure compares the extent to which our quality indicator successfully identifies historically important patents,
and compares with patent citations. The figure plots the distribution of patent percentile ranks based on
our quality indicator (blue) and forward citations (light red) measured over a horizon of 10 years. A value
of x% indicates that a given patent scores higher than x% of all other patents unconditionally (panel A);
unconditionally, but adjust quality and citations by removing year-fixed effects (Panel B); or relative to patents
that are issued in the same year (panel C). The list of patents, along with their source, appears in Appendix
Table A.7
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Figure 5: Patent quality and citations
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B. Predictive Relation

6
8

1
0

1
2

1
4

1
6

F
o

rw
a

rd
 C

it
a

ti
o

n
s
, 

2
+

 y
e

a
rs

.15 .2 .25 .3
Patent Quality, 0−1 years

6
8

1
0

1
2

1
4

F
o

rw
a

rd
 C

it
a

ti
o

n
s
, 

6
+

 y
e

a
rs

.8 1 1.2 1.4 1.6 1.8
Patent Quality, 0−5 years

2
4

6
8

1
0

F
o

rw
a

rd
 C

it
a

ti
o

n
s
, 

1
1

+
 y

e
a

rs

1.5 2 2.5 3 3.5 4
Patent Quality, 0−10 years

Figure plots the relation between the number of forward citations to our quality measure (both in levels). Panel A relates our quality measure to patent citations,

when both are measured over the same horizon. The binned scatter plots control for fixed effects for technology class, and the interaction between assignee and

patent grant year. Panel B plots the predictive relation between our quality measure and future citations; in addition to technology and assignee-issue year fixed

effects, we also control for the number of citation the patent has received over the same horizon that our quality measure is computed.
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Figure 6: Pairwise similarity and citation linkages
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Figure examines the speed at which information about the quality of the patent is reflected in our quality

measure and in forward citations. Specifically, we plot the mean across patents of the ratio of x0,τ where x

refers to either our quality indicator or forward citations measured over τ years subsequent to the patent,

scaled by x0,20.
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Figure 7: Technological Innovation over the Long Run
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C. Total patent count, per capita D. KPSS Index
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Panel A plots the number of breakthrough patents, defined as the number of patents per year that fall in the

top 10% of the unconditional distribution of our quality measures—defined as the ratio of the 10-yr forward to

the 5-yr backward similarity, net of year fixed effects. We normalize by US population. In Panel B we plot the

number of patents that fall in the top 10% of the unconditional distribution of forward citations—measured

over the next 10 years, net of year fixed effects—again scaled by US population. Panel C plots the total number

of patents, scaled by population, while Panel D plots the KPSS Index (the sum of the estimated market value

of patents scaled by the total capitalization of the stock market.
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Figure 8: Breakdown by Technology Classes

Panel A: Breakthrough (Top 10%) Patents

1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

0.2

0.4

0.6

0.8

1

Decade

Panel B: All patents

1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

0.2

0.4

0.6

0.8

1

Decade

� Agriculture and Food (A0, A2) � Chemistry and Metallurgy (C) � Consumer Goods(A4)

� Electricity and Electronics (H0) � Engineering, Construction, and Mining (E0, E2, F0, F1)

� Health and Entertainment (A6) � Instruments, Information (G, Y1)

� Lighting, Heating, Nuclear (F2, G2) � Manufacturing Process (B0, B2, B3, B4, B8, D0, D1, D2)

� Transportation (B6) � Weapons (F4)
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Figure 9: Innovation across industries: Breakthrough patents
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Panel plots the number of breakthrough patents across industries. Industries are defined based on NAICS codes. Breakthrough patents are

those that fall in the top 10% of our baseline quality measure (defined as the ratio of the 10-yr forward to the 5-yr backward similarity)

net of year fixed effects. We construct industry indices using the CPC4 to NAICS crosswalk constructed by Goldschlag et al. (2016).
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Figure 10: Breakthrough Innovation Across Industries
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We plot the per capita number of breakthrough patents across industries. Industries are defined based on

NAICS codes. Breakthrough patents are those that fall in the top 10% of our baseline importance measure

(defined as the ratio of the 10-yr forward to the 5-yr backward similarity) net of issue year fixed effects. We

construct industry indices using the CPC4 to NAICS crosswalk constructed by Goldschlag et al. (2016).
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Figure 11: Breakthrough patents and Aggregate TFP

A. Post-war period—Total Factor Productivity (1948–2007)
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Figure plots the response of measured productivity to a unit standard deviation shock to our technological

innovation index (in logs). In Panel A, productivity is measured using total factor productivity from Basu et al.

(2006). In Panel B, productivity is measured by output per manhour in manufacturing (Kendrick, 1961, Table

D-II). We include 90% confidence intervals, computed using Newey-West standard errors. All specifications

control for the lag level of productivity.
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Figure 12: Breakthrough patents and Industry TFP

A. NAICS 4-digit Industries: 1987–2016 period
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Figure plots the response of industry total factor productivity to a unit standard deviation shock to our

technological innovation index. Panel A presents results for 86 manufacturing industries at the NAICS 4-digit

level using data from the Bureau of Labor Statistics. The data for Panel B (Kendrick data) is from Table D-V

in Kendrick (1961), and includes information for the level of labor productivity (output per manhour) for 62

manufacturing industries for the years 1899, 1909, 1919, 1937, 1947, and 1954. For each period (t, s), we regress

the annualized difference in log labor productivity on the log of the accumulated level of innovation (number of

breakthrough patents) in t ± 2 years—controlling for period, industry dummies, the log number of patents

during the same period, and the log level of productivity at t. Standard errors are clustered by industry. To

construct industry innovation indices for NAICS industries, we use the probabilistic mapping from CPC codes

to NAICS codes from Goldschlag et al. (2016). To construct innovation indices for the Kendrick industries,

which are defined at the SIC code level, we use the concordance between 1997 NAICS and 1987 SIC codes from

the Census Bureau. If NAICS industries map into multiple SIC codes, we assign an equal fraction to each.
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Figure 13: Breakthrough patents and Industry TFP—comparison to Citations

A. NAICS 4-digit Industries: 1987–2016 period
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Figure performs the same exercise as Figure 11, except that we now construct the industry innovation indices

based on citation counts.
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Appendix

We briefly overview our conversion of unstructured patent text data into a numerical format

suitable for statistical analysis. To begin, we build our collection of patent documents from two

sources. The first is the USPTO patent search website, which records all patents beginning

from 1976. Our web crawler collected the text content of patents from this site, which includes

patent numbers 3,930,271 through 9,113,586. The records in this sample are comparatively

easy to process as they are available in HTML format with standardized fields.

For patents granted prior to 1976, we collect patent text from our second main datasource,

Google’s patent search engine. For the pre-1976 patent records, we recover all of the fields

listed above with the exception of inventor/assignee addresses (Google only provides their

names), examiner, and attorney. Some parts of our analysis rely on firm-level aggregation of

patent assignments. We match patents to firms by firm name and patent assignee name. Our

procedure broadly follows that of Kogan et al. (2017) with adaptations for our more extensive

sample. In addition to the citation data we scrape from Google, we obtain complementary

information on patent citations from Berkes (2016) and the USPTO. The data in Berkes (2016)

includes citations that are listed inside the patent document and which are sometimes missed

by Google. Nevertheless, the likelihood of a citation being recorded is significantly higher in

the post-1945 than in the pre-1945. When this consideration is relevant, we examine results

separately for the pre- and post-1945 periods.

To represent patent text as numerical data, we convert it into a document term matrix

(DTM), denoted C. Columns of C correspond to words and rows correspond patents. Each

element of C, denoted cpw, counts the number of times a given one-word phrase (indexed by w)

is used in a particular patent (indexed by p), after imposing a number of filters to remove stop

words, punctuation, and so forth. We provide a detailed step-by-step account of our DTM

construction in Appendix V. Our final dictionary includes 1,685,416 terms in the full sample

of over nine million patents.

The next section provides additional details on the data construction, including the process

through which we convert the text of patent documents to a format that is amenable to

constructing similarity measures.

A. Text Data Collection, Additional Details

The Patent Act of 1836 established the official US Patent Office and is the grant year of patent

number one.10 We construct a dataset of textual content of US patent granted during the 180

year period from 1836-2015. Our dataset is built on two sources.

10The first patent was granted in the US in 1790, but of the patents granted prior to the 1836 Act, all but
2,845 were destroyed by fire.
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The first is the USPTO patent search website. This site provides records for all patents

beginning in 1976. We designed a web crawler collect the text content of patents over this

period, which includes patent numbers 3,930,271 through 9,113,586. We capture the following

fields from each record:

1. Patent number (WKU)

2. Application date

3. Granted date

4. Inventors

5. Inventor addresses

6. Assignees

7. Assignee addresses

8. Family ID

9. Application number

10. US patent class

11. CPC patent class

12. Intl. patent class

13. Backward citations

14. Examiner

15. Attorney

16. Abstract

17. Claims

18. Description

The only information available from USPTO that we do not store are image files for a patent’s

“figure drawing” exhibits.

For patents granted prior to 1976, the USPTO also provides bulk downloads of .txt files for

each patent. The quality of this data is inferior to that provided by the web search interface in

three ways. First, the text data is recovered from image files of the original patent documents

using OCR scans. OCR scans often contain errors. These generally arise from imperfections in

the original images that lead to errors in the OCR’s translation from image to text. Going

backward in time from 1976, the quality of OCR scans deteriorates rapidly due to lower quality

typesetting. Second, the bulk download files do not use a standardized format which makes it

difficult to parse out the fields listed above.

Rather than using the USPTO bulk files, we collect text of pre-1976 patents from our

second main datasource, Google’s patent search engine. Like post-1976 patents from USPTO,

Google provides patent records in an easy-to-parse HTML format that we collect with our

web crawler. Furthermore, inspection of Google records versus 1) OCR files from the USPTO

and 2) pdf images of patents that are the source of the OCR scans, reveals that in this earlier

period Google’s patent text is more accurate than the OCR text in USPTO bulk data. From

Google’s pre-1976 patent records, we recover all of the fields listed above with the exception of

inventor/assignee addresses (Google only provides their names), examiner, and attorney.

B. Cleaning Post-1976 USPTO Data

Next, we conduct a battery of checks to correct data errors. For the most part, we are able

to capture and parse of patent text from the USPTO web interface without error. When

there are errors, it is almost always the case that the patent record was incompletely captured,

and this occurs for one of two reasons. The first reason is that the network connection was

interrupted during the capture and the second is that the patent record on the UPSTO website
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is itself incomplete (in comparison with PDF image files of the original document, which are

also available from USPTO via bulk download).

Our primary data cleaning task was to find and complete any partially captured patent re-

cords. First, we find the list of patent numbers (WKUs) that are entirely missing from our data-

base, and re-run our capture program until all have been recovered. Many of the missing records

that we find are explicitly labeled as “WITHDRAWN” at the USPTO. Withdrawn information

can be found at https://www.uspto.gov/patents-application-process/patent-search/

withdrawn-patent-numbers. Next, we identify WKUs with an entirely missing value for the

abstract, claims, or description field. Fortunately, we find this to be very infrequent, occurring

in less than one patent in 100,000, making it easy for us to correct this manually.

Next, a team of research assistants (RA’s) manually checked 3,000 utility patent records,

1,000 design patent records, and 1,000 plant patents records against their PDF image files.

The RA task is to identify any records with missing or erroneous information in the reference,

abstract, claims, or description fields. To do this, they manually read the original pdf image

for the patent and our digitally captured record. We identify patterns in partial text omission

and update our scraping algorithm to reflect these. We then re-ran the capture program on all

patents and confirmed that omissions from the previous iteration were corrected.

C. Cleaning Pre-1976 Google Data

Fortunately, we find no instances of missing WKU’s or incomplete text from Google web

records. Next, we assess the accuracy of Google’s OCR scans by manually re-scanning a

random sample of 1,000 pre-1976 patents using more recent (and thus more accurate) ABBYY

OCR software than was used for most of Google’s image scans. We compare the ABBYY

scan to the pdf image to confirm the scan content is complete, the compare the frequency of

garbled terms in our scan versus that OCR text from Google. The distribution of pairwise

cosine similarities in our ABBYY text and Google’s OCR is reported below.
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Cosine Similarity

mean 0.957

std 0.073

P1 0.701

P5 0.863

P10 0.900

P25 0.951

P50 0.977

P75 0.991

P90 0.996

P95 0.998

P99 0.999

N 1000

Only 10% of sampled Google OCR records have a correlation with ABBYY below 90%.

Next, we manually compare both our OCR scans and those from Google against the pdf

image. We find that garble rate for ABBYY OCRed is 0.025 on average, with standard

deviation of 0.029. We find that Google has only slightly more frequent garbling than our

ABBYY scans. Of the term discrepancies in the two sets of scans, around 52% of these

correspond to a garbled ABBYY records and 83% to a garbled Google record. We ultimately

conclude that Google’s OCR error frequency is acceptable for use in our analysis.

D. Conversion from Textual to Numeric Data

We convert the text content of patents into numerical data for statistical analysis. To do

this, we use the NLTK Python Toolkit to parse the “abstract,” “claims,” and “description”

sections of each patent into individual terms. We strip out all non-word text elements, such as

punctuation, numbers, and HTML tags, and convert all capitalized characters to lowercase.

Next, we remove all occurrences of 947 “stop words,” which include prepositions, pronouns,

and other words that carry little semantic content.11

11We construct our stop word list as the union of terms in the following commonly used lists:

http://www.ranks.nl/stopwords

https://dev.mysql.com/doc/refman/5.1/en/fulltext-stopwords.html

https://code.google.com/p/stop-words/

http://www.lextek.com/manuals/onix/stopwords1.html

http://www.lextek.com/manuals/onix/stopwords2.html

http://www.webconfs.com/stop-words.php

http://www.text-analytics101.com/2014/10/all-about-stop-words-for-text-mining.html

http://www.nlm.nih.gov/bsd/disted/pubmedtutorial/020_170.html

https://pypi.python.org/pypi/stop-words

https://msdn.microsof,t.com/zh-cn/library/bb164590

http://www.nltk.org/book/ch02.html (NLTK list)
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The remaining list of “unstemmed” (that is, without removing suffixes) unigrams amounts

to a dictionary of 35,640,250 unique terms. As discussed in Gentzkow, Kelly, and Taddy (2017),

an important preliminary step to improve signal-to-noise ratios in textual analysis is to reduce

the dictionary by filtering out terms that occur extremely frequently or extremely infrequently.

The most frequently used words show up in so many patents that they are uninformative for

discriminating between patent technologies. On the other hand, words that show up in only a

few patents can only negligibly contribute to understanding broad technology patterns, while

their inclusion increases the computational cost of analysis.12

We apply filters to retain influential terms while keeping the computational burden of our

analysis at a manageable level, and focus on the number of distinct patents and calendar years

in which terms occur. Table A.1 reports the distribution across terms for number of patents

and the number of distinct calendar years in which a term appears. A well known attribute of

text count data is its sparsity—most terms show up very infrequently—and the table shows

that this pattern is evident in patent text as well. We exclude terms that appear in fewer than

twenty out of the more than nine million patents in our sample. These eliminate 33,954,834

terms, resulting in a final dictionary of 1,685,416 terms.13

After this dictionary reduction, the entire corpus of patent text is reduced in a D ×W
numerical matrix of term counts denoted C. Matrix row d corresponds to patent (WKU) d.

Matrix column w corresponds the wth term in the dictionary. Each matrix element cdw the

count of term w in patent d.

E. Matching Patents to Firms

Much of our analysis relies on firm-level aggregation of patent assignments. We match patents

to firms by merging firm names and patent assignee names. Our procedure broadly follows

that of Kogan et al. (2017) with adaptations for our more extensive sample.

The first step is extracting assignee names from patent records. For post-1976 data we

use information from the USPTO web search to identify assignee names. Due to the high

data quality in this sample, assignee extraction is straightforward and highly accurate. For

pre-1976, we use assignee information from Google patent search. While it is easy to locate

the assignee name field thanks to the HTML format, Google’s assignee names are occasionally

garbled by the OCR.

12Filtering out infrequent words also removes garbled terms, misspellings, and other errors, as their
irregularity leads them to occur only sporadically.

13The table also shows that there are some terms that appear in almost all patents. Examples of the
most frequently occurring words (that are not in the stop word lists) are “located,” “process,” and “material.”
Because these show up in most patents they are unlikely to be informative for statistical analysis. These terms
are de-emphasized in our analysis through the TFIDF transformation.
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Next, we clean the set of extracted assignee names. There are 766,673 distinct assignees

in patents granted since 1836. Most of the assignees are firm names and those that are not

firms are typically the names of inventors. We clean assignee name garbling using fuzzy

matching algorithms. For example, the assignee “international business machines” also appears

as an assignee under the names “innternational business machines,” “international businesss

machines,” and “international business machiness.” Garbled names are not uncommon,

appearing for firms as large as GE, Microsoft, Ford Motor, and 3M.

We primarily rely on Levenshtein edit distance between assignees to identify and correct

erroneous names. There are two major challenges to overcome in name cleaning. The first

choosing a distance threshold for determining whether names are the same. As an example,

the assignees “international business machines” (recorded in 103,544) and “ibm” (recorded in

547 patents) have a large Levenshtein distance. To address cases like this, we manually check

the roughly 3,000 assignee names that have been assigned at least 200 patents, correcting

those that are variations on the same firm name (including the IBM, GE, Microsoft, Ford,

and 3M examples). Next, for each firm on the list of most frequent assignees, we calculate

the Levenshtein distance between this assignee name and the remaining 730,000+ assignee

names, and manually correct erroneous names identified by the list of assignees with short

Levenshtein distances.

The second challenge is handling cases in which a firm subsidiary appears as assignee. For

example, the General Motors subsidiary “gm global technology operations” is assigned 8,394

patents. To address this, we manually match subsidiary names from the list of top 3,000+

assignees to their parent company by manually searching Bloomberg, Wikipedia, and firms’

websites.

After these two cleaning steps, and after removing patents with the inventor as assignee, we

arrive at 3,036,859 patents whose assignee is associated with a public firm in CRSP/Compustat,

for a total of 7,467 distinct cleaned assignee firm names. We standardized these names by

removing suffixes such as “com,” “corp,” and “inc,” and merge these with CRSP company

names. Again we manually check the merge for the top 3,000+ assignees, and check that name

changes are appropriately addressed in our CRSP merging step. Finally, we also merge our

patent data with Kogan et al. (2017) patent valuation data for patents granted between 1926

and 2012.

F. Patent Quality and Firm Valuation Ratios

Here, we examine the extent to which our text-based patent quality measure accounts for

differences in firm value. Our analysis closely follows that of Hall et al. (2005), who estimate

the relation between a firm’s Tobin’s Q and its “knowledge stock.” Hall et al. (2005) define
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knowledge stock as a depreciating balance of the firm’s investment in R&D, its number of

patents, or its patent citation count, according to the formula

SXf,t = (1− δ)SXf,t−1 +Xf,t (16)

where Xf,t represents either the flow of new R&D, successful patent applications, or citations

received by patents, for firm f in year t. SXf,t is thus the firm’s accumulated stock of X. We

use the same depreciation rate of δ = 15% as Hall et al. (2005).

We introduce a fourth knowledge stock variable based on our patent quality measure. First,

we define firm-level patent quality for firm f in year t as:

qτf,t =
∑
j∈Jf,t

qτj (17)

where, Jf,t is the set of patents filed for firm f in year t. We then create a “quality-weighted”

patent stock that accumulates (17) according to (16) (again using δ = 15%).14

Our firm-level regression specification, following Hall et al. (2005), is

logQf,t = log

(
1 + γ1

SRDf,t

Af,t
+ γ2

SPATf,t
SRDf,t

+ γ3

SCITESτf,t
SPATf,t

+ γ4

Sqτf,t
SPATf,t

)
+at +D (SRDf,t = 0) + εf,t (18)

where SRDf,t, SPATf,t, SCITESf,t, and qf,t are the stocks of R&D expenditure, number of

patents, patent citations, and the patent quality measures constructed as in (16). We follow

the Hall et al. (2005) choices for scaling knowledge stock variables, scaling R&D stock by total

assets (At,t), patent stock by R&D stock, and citation stock by patent stock. We scale our

patent quality stock by the stock of patents by count, giving it an interpretation as the average

quality of patents held by the firms. We estimate the market value regressions using quality

and citation stocks over horizons τ of 1, 5, or 10 years after the application date. For our

baseline results, we restrict the sample to patenting firms (that is, firms that have filed at

least one patent). As in Hall et al. (2005), at is the fixed effect for year t and accounts for

any time specific effect that moves around the value of all the firms in a given year. We also

include a dummy variable for missing R&D observations. Depending on the specification, we

also include industry-fixed effects, based on the 49 industry classification of Fama and French

(1997). We cluster standard errors by firm.

Our main coefficient of interest is γ4 which estimates the relationship between quality-

weighted patent stock and firm value. Table A.6 presents the results. Examining column (2), we

see a strong and statistically significant relation between Tobin’s Q and the patent quality stock.

14We have experimented with depreciation rates of 5, 10. 20 and 25% and found similar results.
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A one-standard deviation increase in the (per-patent) quality stock is associated with a 0.15 log

point increase in Tobin’s Q—evaluated at the median—which is economically significant given

that the unconditional standard deviation in log Tobin’s Q is equal to 0.63. For comparison,

a one-standard deviation increase in the citation-weighted stock in column (3) is associated

with a 0.13 log point increase. Column (4) shows that the our quality indicator contains

information that is complementary to citations, both variables are statistically significant and

account for a comparable share of the overall variation in Q—approximately 0.1 and 0.11 log

points, respectively. Column (5) shows that both variables also account for within-industry

variation in Tobin’s Q. Last, columns (6) through (8) show that both indicators of quality are

jointly statistically and economically significant when we restrict attention to manufacturing,

pharmaceutical, and the high-tech industry.
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Appendix Material

Table A.1: Distribution of document terms across patents

# Patents # Years

mean 124.03 3.33

std 12465.99 9.29

min 1 1

50% 1 1

75% 2 2

90% 7 6

95% 24 14

98% 69 24

max 8399814 182

Table reports the distribution across terms for number of patents and the number of distinct calendar years in

which a term appears.
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Table A.2: Historically Important Patents: Quality vs Citations

Mean Percentile Rank Quality Citations

(0–5years) (0–10years) (0–5years) (0–10years) (full sample)

A. Comparison across cohorts, no adjustment 0.739 0.742 0.334 0.369 0.548

(0.017) (0.016) (0.024) (0.025) (0.024)

B. Comparison across cohorts, remove year FE 0.774 0.780 0.680 0.699 0.758

(0.016) (0.016) (0.016) (0.017) (0.016)

C. Comparison within cohorts 0.772 0.779 0.425 0.490 0.688

(0.016) (0.016) (0.029) (0.029) (0.023)

Table compares the extent to which our quality indicator successfully identifies historically important patents, and compares with patent citations. The presents

mean patent percentile ranks based on our quality indicator (Column 1) and forward citations (Columns 2 and 3). A value of x% indicates that a given patent

scores higher than x% of all other patents unconditionally (row A); unconditionally, but adjust quality and citations by removing year-fixed effects (row B); or

relative to patents that are issued in the same year (row C). Standard errors are in parentheses. The list of patents, along with their source, appears in Appendix

Table A.7
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Table A.3: Patent impact and novelty predicts citations (includes old patents)

log(1 + Forward citations, 2+ yr) (1) (2) (3) (4)

log(Patent quality, 0-1yr) 0.788∗∗∗ 0.683∗∗∗ 0.709∗∗∗ 0.810∗∗∗

(9.42) (11.20) (11.03) (12.90)

log(1 + Forward citations, 0-1 yr) 0.660∗∗∗ 0.610∗∗∗ 0.516∗∗∗ 0.511∗∗∗

(32.77) (37.00) (40.97) (37.35)

Observations 8460384 8422712 3619813 3173149

R2 0.397 0.439 0.520 0.556

log(1 + Forward citations, 6+ yr) (1) (2) (3) (4)

log(Patent quality, 0-5yr) 0.451∗∗∗ 0.529∗∗∗ 0.563∗∗∗ 0.668∗∗∗

(8.17) (11.38) (9.15) (10.38)

log(1 + Forward citations, 0-5yr) 0.611∗∗∗ 0.581∗∗∗ 0.532∗∗∗ 0.541∗∗∗

(35.22) (36.02) (34.24) (33.01)

Observations 7432397 7397785 3165185 2756793

R2 0.398 0.442 0.522 0.557

log(1 + Forward citations, 11+ yr) (1) (2) (3) (4)

log(Patent quality, 0-10yr) 0.148∗∗∗ 0.309∗∗∗ 0.326∗∗∗ 0.375∗∗∗

(4.44) (13.25) (9.07) (9.43)

log(1 + Forward citations, 0-10yr) 0.561∗∗∗ 0.531∗∗∗ 0.503∗∗∗ 0.508∗∗∗

(35.20) (36.22) (32.21) (31.99)

Observation 6619620 6587879 2802615 2429734

R2 0.338 0.388 0.476 0.515

Grant Year FE Y Y

Class Y

Assignee FE Y

Grant Year × Assignee FE Y

Table reports the results of estimating equation (12) in the main text. The regression relates the log of (one

plus) the number of patent citations over a horizon [t, s] to our measures of patent quality (10) measured over

a horizon [0, t] and citations measured over the same interval [0, t]. As controls, we include dummies controlling

for technology class (defined at the 3-digit CPC level), application and grant year effects. Sample covers the

entire 1840–2015 period. Last, we cluster the standard errors by the patent grant year. See main text for

additional details on the specification and the construction of these variables.
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Table A.4: Patent quality predicts citations (all patents)

log(1 + Forward citations, 2+ yr) (1) (2) (3) (4)

log(Patent impact (FS), 0-1yr) 1.111∗∗∗ 0.952∗∗∗ 0.858∗∗∗ 0.908∗∗∗

(15.53) (17.38) (14.85) (16.03)

log(Patent novelty (BS), 0-5yr) -1.107∗∗∗ -0.908∗∗∗ -0.825∗∗∗ -0.873∗∗∗

(-15.33) (-16.66) (-14.14) (-15.30)

log(1 + Forward citations, 0-1 yr) 0.658∗∗∗ 0.602∗∗∗ 0.513∗∗∗ 0.509∗∗∗

(33.39) (36.27) (39.55) (36.59)

Observations 5959978 5922791 2788578 2495354

R2 0.310 0.366 0.462 0.501

log(1 + Forward citations, 6+ yr) (1) (2) (3) (4)

log(Patent impact (FS), 0-5yr) 0.621∗∗∗ 0.681∗∗∗ 0.651∗∗∗ 0.718∗∗∗

(10.26) (14.14) (10.97) (12.05)

log(Patent novelty (BS), 0-5yr) -0.696∗∗∗ -0.679∗∗∗ -0.647∗∗∗ -0.716∗∗∗

(-11.41) (-13.84) (-10.79) (-11.89)

log(1 + Forward citations, 0-5yr) 0.623∗∗∗ 0.581∗∗∗ 0.536∗∗∗ 0.545∗∗∗

(36.96) (36.49) (34.57) (32.88)

Observations 4931983 4897863 2333989 2079027

R2 0.321 0.375 0.468 0.504

log(1 + Forward citations, 11+ yr) (1) (2) (3) (4)

log(Patent impact (FS), 0-10yr) 0.204∗∗∗ 0.371∗∗∗ 0.366∗∗∗ 0.398∗∗∗

(4.39) (13.98) (10.13) (10.38)

log(Patent novelty (BS), 0-5yr) -0.313∗∗∗ -0.393∗∗∗ -0.383∗∗∗ -0.418∗∗∗

(-6.98) (-14.90) (-10.54) (-10.87)

log(1 + Forward citations, 0-10yr) 0.582∗∗∗ 0.540∗∗∗ 0.514∗∗∗ 0.517∗∗∗

(38.63) (37.62) (33.14) (32.32)

Observation 4119206 4087993 1971429 1751975

R2 0.306 0.362 0.448 0.483

Grant Year FE Y Y

Class Y

Assignee FE Y

Grant Year × Assignee FE Y

Table reports the results of estimating equation (12) in the main text. The regression relates the log of (one

plus) the number of patent citations over a horizon [t, s] to our measures of patent quality (10) measured over

a horizon [0, t] and citations measured over the same interval [0, t]. As controls, we include dummies controlling

for technology class (defined at the 3-digit CPC level), application and grant year effects. Sample covers the

entire 1840–2015 period. Last, we cluster the standard errors by the patent grant year. See main text for

additional details on the specification and the construction of these variables.
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Table A.5: Patent impact and value — patent-level regressions

log KPSS value (0-1) (0-5) (0-10)

Log patent quality 0.0015 0.0029∗∗ 0.0042∗∗∗

(1.58) (2.48) (2.83)

R2 0.948 0.947 0.940

Breakthrough Patent (quality, top 5%) 0.0025 0.0051∗∗∗ 0.0046∗

(1.13) (2.71) (1.94)

R2 0.948 0.947 0.940

log KPSS value (0-1) (0-5) (0-10)

Log patent quality 0.0016 0.0026∗∗ 0.0032∗∗

(1.59) (2.15) (2.05)

Log forward citations -0.0003 0.0017∗∗∗ 0.0039∗∗∗

(-0.68) (2.85) (4.15)

R2 0.948 0.947 0.940

log KPSS value (0-1) (0-5) (0-10)

Breakthrough Patent (quality, top 5%) 0.0026 0.0048∗∗ 0.0038

(1.16) (2.55) (1.59)

Breakthrough Patent (citations, top 5%) -0.0009 0.0033∗∗ 0.0065∗∗∗

(-0.64) (2.42) (3.33)

R2 0.948 0.947 0.940

N 1923629 1723891 1407564

Controls:

Class FE Y Y Y

Firm Size (market cap) Y Y Y

Firm Volatility Y Y Y

Grant Year × Firm FE Y Y Y

Table reports the results of estimating equation (13) in the main text. The regression relates the log of the

Kogan et al. (2017) estimate of the market value of the patent to our (log) measures of patent quality, which

combines the patent’s impact and novelty, constructed in equation (10). As controls, we include dummies

controlling for technology class (defined at the 3-digit CPC level) and the interaction of firm (CRSP: permco)

and grant year effects. The unit of observation is a patent. See Table 4 for a specification in which the unit of

observation is at the firm-patent grant date level. We cluster the standard errors by the patent grant year.

Independent variables are normalized to unit standard deviation. See main text for additional details on the

specification and the construction of these variables.
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Table A.6: Market Value and Patent Quality

logQ All Patenting Industries Manuf Health HiTech

(1) (2) (3) (4) (5) (6) (7) (8)

Capitalized R&D / Assets 0.491∗∗∗ 1.314∗∗∗ 0.542∗∗∗ 0.951∗∗∗ 0.262∗∗∗ 1.236∗∗∗ 0.347∗∗∗ 0.192∗∗∗

(17.20) (9.04) (16.53) (10.93) (8.54) (7.65) (7.13) (3.52)

Capitalized # Patents / Capitalized R&D 0.061∗∗∗ 0.208∗∗∗ 0.087∗∗∗ 0.166∗∗∗ 0.124∗∗∗ 0.182 10.266 7.250

(5.48) (6.82) (9.98) (8.94) (9.13) (0.64) (1.16) (0.67)

Patent portfolio, quality-weighted (novelty/impact) 0.602∗∗∗ 0.297∗∗∗ 0.103∗∗∗ 0.446∗∗∗ 0.075∗∗∗ 0.211∗∗∗

(7.02) (6.89) (6.17) (5.08) (2.80) (3.65)

Patent portfolio, citation-weighted 0.287∗∗∗ 0.356∗∗∗ 0.184∗∗∗ 0.855∗∗∗ 0.126∗∗∗ 0.140∗∗∗

(14.81) (9.52) (8.99) (7.89) (2.97) (4.63)

R&D=0 Dummy variable -0.067∗∗∗ -0.062∗∗∗ -0.052∗∗∗ -0.054∗∗∗ -0.010 0.012 0.106∗∗ 0.166∗∗∗

(-5.84) (-5.60) (-4.72) (-4.97) (-0.92) (0.88) (2.24) (5.71)

N 70,769 70,769 70,769 70,769 70,769 51,753 9,529 15,425

R2 0.189 0.227 0.223 0.237 0.317 0.250 0.133 0.203

Year FE Y Y Y Y Y Y Y Y

Industry FE Y

Table reports estimates of equation (18) in the text. The equation relates the logarithm of a firm’s Tobin’s Q to the stocks of R&D expenditure (SRDf,t), number

of patents (SPATf,t), patent citations (SCITESf,t), and the patent quality measures (Sqf,t) — constructed using a depreciation rate of δ = 15%. We restrict the

sample to patenting firms, that is, firms that have filed at least one patent. We cluster standard errors by firm. All independent variables are normalized to unit

standard deviation. Manufacturing includes SIC codes 2000-3999. Health is healthcare services, medical equipment, and pharmaceuticals (industries 11-13 in the

Fama and French (1997) 49 industry classification). HiTech is telecommunications, computer hardware and software, and electronic equipment (industries 32,

35–37 in the Fama and French (1997) 49 industry classification).
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Table A.7: Important Patents

Patent Year Inventor Invention Citations

Percentile Ranks

Source
No Adjustment Remove year FE

Quality Citations Quality Citations

(total) (0-5) (0-5) (total) (0-5) (0-5) (total)

1647 1840 Samuel F. B. Morse Morse Code 2 0.00 0.00 0.29 0.01 0.65 0.81 Reference

3237 1843 Nobert Rillieux Sugar Refining 0 0.24 0.00 0.00 0.77 0.65 0.44 Reference

3316 1843 Samuel F. B. Morse Telegraphy Wire 0 0.78 0.00 0.00 0.98 0.65 0.44 Reference

3633 1844 Charles Goodyear Vulcanized Rubber 3 0.97 0.00 0.38 0.99 0.65 0.88 Reference

4453 1846 Samuel F. B. Morse Telegraph Battery 0 0.98 0.00 0.00 0.98 0.65 0.44 Reference

4750 1846 Elias Howe, Jr. Sewing Machine 1 0.97 0.00 0.17 0.96 0.65 0.70 Reference

4834 1846 Benjamin Franklin Palmer Artificial Limb 0 0.94 0.00 0.00 0.87 0.65 0.44 Reference

4848 1846 Charles T. Jackson Anesthesia 0 0.90 0.00 0.00 0.75 0.65 0.44 Reference

4874 1846 Christian Frederick Schonbein Guncotton 0 0.94 0.00 0.00 0.88 0.65 0.44 Reference

5199 1847 Richard M. Hoe Rotary Printing Press 0 0.96 0.00 0.00 0.76 0.65 0.42 Reference

5711 1848 M. Waldo Hanchett Dental Chair 1 1.00 0.00 0.17 0.98 0.65 0.70 Reference

5942 1848 John Bradshaw Sewing Machine 0 1.00 0.00 0.00 0.97 0.65 0.44 Reference

6099 1849 Morey/Johnson Sewing Machine 1 1.00 0.00 0.17 0.99 0.65 0.69 Reference

6281 1849 Walter Hunt Safety Pin 0 1.00 0.00 0.00 0.97 0.65 0.42 Reference

6439 1849 John Bachelder Sewing Machine 0 1.00 0.00 0.00 0.98 0.65 0.42 Reference

7296 1850 D.M. Smith Sewing Machine 0 1.00 0.00 0.00 1.00 0.65 0.40 Reference

7509 1850 J. Hollen Sewing Machine 0 1.00 0.00 0.00 1.00 0.65 0.40 Reference

7931 1851 Grover and Baker Sewing Machine 0 1.00 0.00 0.00 0.99 0.65 0.40 Reference

8080 1851 John Gorrie Ice Machine 0 0.99 0.00 0.00 0.27 0.65 0.40 Reference

8294 1851 Isaac Singer Sewing Machine 0 1.00 0.00 0.00 0.98 0.65 0.40 Reference

9300 1852 Lorenzo L. Langstroth Beehive 1 0.93 0.00 0.17 0.00 0.65 0.69 Reference

13661 1855 Isaac M. Singer Shuttle Sewing Machine 1 0.98 0.00 0.17 0.03 0.63 0.63 Reference

15553 1856 Gail Borden, Jr. Condensed Milk 0 0.99 0.00 0.00 0.78 0.64 0.34 Reference

17628 1857 William Kelly Pneumatic Process of Making Steel 0 0.97 0.00 0.00 0.65 0.63 0.35 Reference

18653 1857 H.N. Wadsworth Toothbrush 6 0.94 0.00 0.58 0.30 0.63 0.94 Reference

23536 1859 Martha Coston System of Pyrotechnic Night Signals 1 0.89 0.00 0.17 0.82 0.64 0.58 Reference

26196 1859 James J. Mapes Artificial Fertilizer 1 0.90 0.00 0.17 0.85 0.64 0.58 Reference

31128 1861 Elisha Graves Otis Elevator 1 0.92 0.00 0.17 0.74 0.42 0.46 Reference

31278 1861 Linus Yale, Jr. Lock 10 0.76 0.00 0.72 0.20 0.42 0.94 Reference

31310 1861 Samuel Goodale Moving Picture Machine 0 0.98 0.00 0.00 0.96 0.42 0.18 Reference
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Table A.7: Important Patents (cont)

Patent Year Inventor Invention Citations

Percentile Ranks

Source
No Adjustment Remove year FE

Quality Citations Quality Citations

(total) (0-5) (0-5) (total) (0-5) (0-5) (total)

36836 1862 Richard J. Gatling Machine Gun 3 0.97 0.31 0.38 0.43 0.85 0.82 Reference

43465 1864 Sarah Mather Submarine Telescope 0 0.96 0.00 0.00 0.02 0.41 0.40 Reference

46454 1865 John Deere Plow 0 0.99 0.00 0.00 0.36 0.44 0.41 Reference

53561 1866 Milton Bradley Board Game 2 1.00 0.00 0.29 1.00 0.49 0.81 Reference

59915 1866 Pierre Lallement Bicycle 0 1.00 0.00 0.00 0.96 0.49 0.41 Reference

78317 1868 Alfred Nobel Dynamite 4 0.88 0.00 0.46 0.27 0.64 0.92 Reference

79265 1868 C. Latham Sholes Typewriter 1 0.96 0.00 0.17 0.81 0.64 0.69 Reference

79965 1868 Alvin J. Fellows Spring Tape Measure 2 0.75 0.00 0.29 0.06 0.64 0.82 Reference

88929 1869 George Westinghouse Air Brake 1 0.91 0.00 0.17 0.81 0.64 0.69 Reference

91145 1869 Ives W. McGaffey Vacuum Cleaner 4 0.81 0.00 0.46 0.53 0.64 0.92 Reference

110971 1871 Andrew Smith Hallidie Cable Car 1 0.76 0.00 0.17 0.71 0.42 0.67 Reference

113448 1871 Mary Potts Sad Iron 3 0.72 0.00 0.38 0.63 0.42 0.87 Reference

127360 1872 J.P. Cooley, S. Noble Toothpick-making machine 0 0.67 0.00 0.00 0.69 0.41 0.39 Reference

129843 1872 Elijah McCoy Improvements in Lubricators for Steam-Engines 1 0.63 0.00 0.17 0.63 0.41 0.66 Reference

135245 1873 Louis Pasteur Pasteurization 0 0.24 0.00 0.00 0.20 0.37 0.38 Reference

141072 1873 Louis Pasteur Manufacture of Beer and Treatment of Yeast 1 0.15 0.00 0.17 0.11 0.37 0.66 Reference

157124 1874 Joseph F. Glidden Barbed Wire 1 0.86 0.00 0.17 0.95 0.39 0.65 Reference

161739 1875 Alexander Graham Bell Telephone 7 0.95 0.00 0.62 0.98 0.40 0.96 Reference

171121 1875 George Green Dental Drill 2 0.52 0.31 0.29 0.54 0.84 0.79 Reference

174465 1876 Alexander Graham Bell Telephone 6 0.99 0.50 0.58 1.00 0.92 0.95 Reference

178216 1876 Alexander Graham Bell Telephone 0 0.97 0.00 0.00 0.99 0.42 0.38 Reference

178399 1876 Alexander Graham Bell Telephone 2 0.98 0.31 0.29 0.99 0.85 0.79 Reference

186787 1877 Alexander Graham Bell Electric Telegraphy 0 1.00 0.00 0.00 1.00 0.38 0.37 Reference

188292 1877 Chester Greenwood Earmuffs 17 0.92 0.00 0.84 0.93 0.38 0.99 Reference

194047 1877 Nicolaus August Otto Internal Combustion Engine 1 0.60 0.00 0.17 0.37 0.38 0.65 Reference

200521 1878 Thomas Alva Edison Phonograph 12 0.94 0.50 0.77 0.87 0.92 0.98 Reference

201488 1878 Alexander Graham Bell Telephone 2 1.00 0.00 0.29 1.00 0.36 0.78 Reference

203016 1878 Thomas Alva Edison Speaking Telephone 15 1.00 0.50 0.82 1.00 0.92 0.99 Reference

206112 1878 Thaddeus Hyatt Reinforced Concrete 0 0.83 0.00 0.00 0.48 0.36 0.36 Reference

220925 1879 Margaret Knight Paper-Bag Machine 4 0.92 0.62 0.46 0.56 0.95 0.90 Reference
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Table A.7: Important Patents (cont)

Patent Year Inventor Invention Citations

Percentile Ranks

Source
No Adjustment Remove year FE

Quality Citations Quality Citations

(total) (0-5) (0-5) (total) (0-5) (0-5) (total)

222390 1879 Thomas Alva Edison Improvement in carbon telephones 16 1.00 0.00 0.83 1.00 0.37 0.99 Reference

223898 1880 Thomas Alva Edison First Incandescent Light 20 1.00 0.00 0.87 1.00 0.43 0.99 Reference

224573 1880 Emile Berliner Microphone 0 0.92 0.00 0.00 0.44 0.43 0.36 Reference

228507 1880 Alexander Graham Bell Electric Telephone 3 1.00 0.50 0.38 1.00 0.93 0.85 Reference

237664 1881 Frederic E. Ives Halftone Printing Plate 1 0.92 0.31 0.17 0.64 0.85 0.64 Reference

304272 1884 Ottmar Mergenthaler Linotype 0 0.89 0.00 0.00 0.92 0.40 0.35 Reference

312085 1885 Edward J. Claghorn Seat Belt 13 0.28 0.00 0.79 0.25 0.38 0.98 Reference

322177 1885 Sarah Goode Folding Cabinet Bed 3 0.44 0.00 0.38 0.49 0.38 0.84 Reference

347140 1886 Elihu Thomson Electric Welder 16 0.64 0.94 0.83 0.58 1.00 0.99 Reference

349983 1886 Gottlieb Daimler Four Stroke Combustion Engine 4 0.99 0.00 0.46 0.99 0.39 0.89 Reference

371496 1887 Dorr E. Felt Adding Machine 6 0.84 0.71 0.58 0.79 0.97 0.94 Reference

372786 1887 Emile Berliner Phonograph Record 4 0.88 0.62 0.46 0.86 0.95 0.89 Reference

373064 1887 Carl Gassner, Jr. Dry Cell Battery 3 0.73 0.00 0.38 0.59 0.38 0.84 Reference

382280 1888 Nikola Tesla A. C. Induction Motor 2 0.93 0.31 0.29 0.95 0.84 0.76 Reference

386289 1888 Miriam Benjamin Gong and Signal Chair for Hotels 0 0.66 0.00 0.00 0.55 0.40 0.34 Reference

388116 1888 William S. Burroughs Calculator 3 0.80 0.00 0.38 0.78 0.40 0.84 Reference

388850 1888 George Eastman Roll Film Camera 1 0.93 0.00 0.17 0.95 0.40 0.62 Reference

395782 1889 Herman Hollerith Computer 1 0.45 0.31 0.17 0.31 0.85 0.61 Reference

400665 1889 Charles M. Hall Aluminum Manufacture 2 0.86 0.31 0.29 0.89 0.85 0.76 Reference

415072 1889 William Starley, Herbert Owen Tandem Bicycle 1 0.74 0.00 0.17 0.73 0.43 0.61 Reference

430212 1890 Hiram Stevens Maxim Smokeless Gunpowder 0 0.65 0.00 0.00 0.75 0.45 0.34 Reference

430804 1890 Herman Hollerith Electric Adding Machine 2 0.91 0.31 0.29 0.96 0.85 0.76 Reference

447918 1891 Almon B. Strowger Automatic Telephone Exchange 81 0.74 0.00 0.98 0.91 0.46 1.00 Reference

453550 1891 John Boyd Dunlop Pneumatic Tyres 1 0.75 0.31 0.17 0.92 0.85 0.61 Reference

468226 1892 William Painter Bottle Cap 7 0.77 0.00 0.62 0.96 0.35 0.94 Reference

472692 1892 G.C. Blickensderfer Typewriting Machine 4 0.23 0.31 0.46 0.58 0.84 0.88 Reference

492767 1893 Edward G. Acheson Carborundum 12 0.07 0.00 0.77 0.33 0.44 0.98 Reference

493426 1893 Thomas Alva Edison Motion Picture 1 0.56 0.00 0.17 0.92 0.44 0.60 Reference

504038 1893 Whitcomb L. Judson Zipper 6 0.19 0.00 0.58 0.65 0.44 0.93 Reference

536569 1895 Charles Jenkins Phantoscope 0 0.79 0.00 0.00 0.97 0.34 0.31 Reference
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Table A.7: Important Patents (cont)

Patent Year Inventor Invention Citations

Percentile Ranks

Source
No Adjustment Remove year FE

Quality Citations Quality Citations

(total) (0-5) (0-5) (total) (0-5) (0-5) (total)

549160 1895 George B. Selden Automobile 0 0.50 0.00 0.00 0.88 0.34 0.31 Reference

558393 1896 John Harvey Kellogg Cereal 3 0.41 0.00 0.38 0.69 0.49 0.83 Reference

558719 1896 C.B. Brooks Street Sweeper 2 0.37 0.50 0.29 0.65 0.93 0.75 Reference

558936 1896 Joseph S. Duncan Addressograph 3 0.09 0.00 0.38 0.16 0.49 0.83 Reference

586193 1897 Guglielmo Marconi Radio 4 0.76 0.71 0.46 0.89 0.97 0.88 Reference

589168 1897 Thomas A. Edison Motion Picture Camera 0 0.36 0.00 0.00 0.46 0.48 0.31 Reference

608845 1898 Rudolf Diesel Diesel Engine 8 0.67 0.00 0.66 0.73 0.47 0.95 Reference

621195 1899 Ferdinand Graf Zepplin Dirigible 1 0.80 0.00 0.17 0.70 0.35 0.57 Reference

644077 1900 Felix Hoffmann Aspirin 1 0.86 0.00 0.17 0.72 0.46 0.58 Reference

661619 1900 Valdemar Poulsen Magnetic Tape Recorder 15 0.89 0.71 0.82 0.80 0.97 0.98 Reference

708553 1902 John P. Holland Submarine 1 0.83 0.00 0.17 0.61 0.45 0.57 Reference

743801 1903 Mary Anderson Windscreen Wiper 2 0.29 0.00 0.29 0.04 0.50 0.73 Reference

745157 1903 Clyde J. Coleman Electric Starter 1 0.94 0.00 0.17 0.92 0.50 0.57 Reference

764166 1904 Albert Gonzales Railroad Switch 0 0.77 0.00 0.00 0.68 0.50 0.30 Reference

766768 1904 Michael J. Owens Automatic Glass Bottle Manufacturing 7 0.83 0.50 0.62 0.78 0.93 0.94 Reference

775134 1904 KC Gillette Razor (with removable blades) 4 0.91 0.31 0.46 0.92 0.85 0.87 Reference

808897 1906 Willis H. Carrier Air Conditioning 21 0.61 0.00 0.88 0.58 0.54 0.99 Reference

815350 1906 John Holland Submarine 0 0.64 0.00 0.00 0.63 0.54 0.28 Reference

821393 1906 Orville Wright Airplane 19 1.00 0.31 0.86 1.00 0.85 0.99 Reference

841387 1907 Lee De Forest Triode Vacuum Tube 5 0.16 0.00 0.52 0.08 0.56 0.90 Reference

921963 1909 Leonard H. Dyer Automobile Vehicle 0 0.58 0.00 0.00 0.71 0.54 0.26 Reference

942809 1909 Leo H. Baekeland Bakelite 3 0.91 0.00 0.38 0.97 0.54 0.80 Reference

970616 1910 Thomas A Edison helicopter (never flown) 2 0.98 0.00 0.29 0.99 0.58 0.71 Reference

971501 1910 Fritz Haber Ammonia Production 1 0.99 0.31 0.17 1.00 0.85 0.54 Reference

1000000 1911 Francis Holton Non-Puncturable Vehicle Tire 2 0.79 0.00 0.29 0.89 0.58 0.71 Reference

1005186 1911 Henry Ford Automotive Transmission 3 0.55 0.00 0.38 0.65 0.58 0.80 Reference

1008577 1911 Ernst F. W. Alexanderson High Frequency Generator 6 0.31 0.62 0.58 0.31 0.96 0.92 Reference

1030178 1912 Peter Cooper Hewitt Mercury Vapor Lamp 1 0.89 0.00 0.17 0.96 0.55 0.54 Reference

1082933 1913 William D. Coolidge Tungsten Filament Light Bulb 28 0.76 0.00 0.92 0.90 0.61 0.99 Reference

1102653 1914 Robert H. Goddard Rocket 58 0.48 0.62 0.97 0.71 0.96 1.00 Reference
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Table A.7: Important Patents (cont)

Patent Year Inventor Invention Citations

Percentile Ranks

Source
No Adjustment Remove year FE

Quality Citations Quality Citations

(total) (0-5) (0-5) (total) (0-5) (0-5) (total)

1103503 1914 Robert Goddard Rocket Apparatus 29 0.39 0.62 0.92 0.59 0.96 0.99 Reference

1113149 1914 Edwin H. Armstrong Wireless Receiver 11 0.86 0.31 0.75 0.96 0.85 0.97 Reference

1115674 1914 Mary P. Jacob Brassiere 1 0.65 0.00 0.17 0.85 0.61 0.53 Reference

1180159 1916 Irving Langmuir Gas Filled Electric Lamp 13 0.80 0.62 0.79 0.94 0.96 0.97 Reference

1203495 1916 William D. Coolidge X-Ray Tube 11 0.69 0.62 0.75 0.88 0.96 0.96 Reference

1211092 1917 William D. Coolidge X-Ray Tube 7 0.91 0.00 0.62 0.98 0.55 0.92 Reference

1228388 1917 Frederick C Bargar Fire Extinguisher 2 0.51 0.00 0.29 0.74 0.55 0.68 Reference

1254811 1918 Charles F. Kettering Engine Ignition 1 0.65 0.00 0.17 0.85 0.60 0.51 Reference

1279471 1918 Elmer A. Sperry Gyroscopic Compass 9 0.93 0.00 0.69 0.98 0.60 0.95 Reference

1360168 1920 Ernst Alexanderson Antenna 4 0.91 0.00 0.46 0.97 0.62 0.83 Reference

1394450 1921 Charles P Strite Bread Toaster 2 0.60 0.00 0.29 0.82 0.62 0.66 Reference

1413121 1922 John Arthur Johnson Adjustable Wrench 0 0.09 0.00 0.00 0.10 0.63 0.20 Reference

1420609 1922 Glenn H. Curtiss Hydroplane 2 0.72 0.00 0.29 0.89 0.63 0.65 Reference

1573846 1926 Thomas Midgley, Jr. Ethyl Gasoline 3 0.33 0.31 0.38 0.57 0.85 0.72 Reference

1682366 1928 Charles F. Brannock Foot Measuring Device 4 0.22 0.00 0.46 0.37 0.51 0.78 Reference

1699270 1929 John Logie Baird Television / TV 11 0.62 0.00 0.75 0.88 0.52 0.94 Reference

1773079 1930 Clarence Birdseye Frozen Food 10 0.73 0.31 0.72 0.95 0.85 0.93 Reference

1773080 1930 Clarence Birdseye Frozen Food 18 0.75 0.00 0.86 0.95 0.49 0.97 Reference

1773980 1930 Philo T. Farnsworth Television 29 0.91 0.62 0.92 0.98 0.96 0.99 Reference

1800156 1931 Erik Rotheim Aerosol Spray Can 30 0.76 0.31 0.93 0.97 0.85 0.99 Reference

1821525 1931 Nielsen Emanuel Hair Dryer 11 0.13 0.00 0.75 0.55 0.50 0.93 Reference

1835031 1931 Herman Affel Coaxial cable 15 0.46 0.77 0.82 0.90 0.98 0.96 Reference

1848389 1932 Igor Sikorsky Helicopter 5 0.47 0.00 0.52 0.94 0.47 0.78 Reference

1867377 1932 Otto F Rohwedder Bread-Slicing Machine 2 0.16 0.00 0.29 0.75 0.47 0.52 Reference

1925554 1933 John Logie Baird Color Television 1 0.37 0.00 0.17 0.92 0.44 0.33 Reference

1929453 1933 Waldo Semon Rubber 56 0.79 0.93 0.97 0.98 1.00 1.00 Reference

1941066 1933 Edwin H. Armstrong FM Radio 0 0.38 0.00 0.00 0.93 0.44 0.10 Reference

1948384 1934 Ernest O. Lawrence Cyclotron 96 0.27 0.00 0.99 0.87 0.42 1.00 Reference

1949446 1934 William Burroughs Adding and Listing Machine 1 0.06 0.31 0.17 0.55 0.85 0.31 Reference

1980972 1934 Lyndon Frederick Krokodil 1 0.76 0.00 0.17 0.98 0.42 0.31 Reference
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Table A.7: Important Patents (cont)

Patent Year Inventor Invention Citations

Percentile Ranks

Source
No Adjustment Remove year FE

Quality Citations Quality Citations

(total) (0-5) (0-5) (total) (0-5) (0-5) (total)

2021907 1935 Vladimir K. Zworykin Television 18 0.38 0.00 0.86 0.89 0.39 0.95 Reference

2059884 1936 Leopold D. Mannes Color Film 15 0.20 0.50 0.82 0.59 0.92 0.93 Reference

2071250 1937 Wallace H. Carothers Nylon 231 0.63 0.50 1.00 0.89 0.92 1.00 Reference

2087683 1937 PT Farnsworth Image Dissector 1 0.68 0.00 0.17 0.92 0.36 0.23 Reference

2153729 1939 Ernest H. Volwiler Pentothal (General Anesthetic) 2 0.81 0.00 0.29 0.96 0.33 0.38 Reference

2188396 1940 Waldo Semon Rubber 59 0.97 0.00 0.97 1.00 0.32 0.99 Reference

2206634 1940 Enrico Fermi Radioactive Isotopes 99 0.82 0.31 0.99 0.98 0.82 1.00 Reference

2230654 1941 Roy J. Plunkett Teflon 49 0.43 0.89 0.96 0.93 0.99 0.99 Reference

2258841 1941 Jozsef Bir— Laszlo Fountain Pen 20 0.02 0.77 0.87 0.23 0.97 0.94 Reference

2292387 1942 Hedwig Kiesler Markey Secret Communication System 71 0.45 0.31 0.98 0.95 0.76 0.99 Reference

2297691 1942 Chester F. Carlson Xerography 738 0.06 0.71 1.00 0.62 0.95 1.00 Reference

2329074 1943 Paul Muller DDT - Insecticide 48 0.05 0.99 0.96 0.56 1.00 0.98 Reference

2390636 1945 Ladislo Biro Ball Point Pen 27 0.34 0.97 0.92 0.79 1.00 0.95 Reference

2404334 1946 Frank Whittle Jet Engine 35 0.13 0.94 0.94 0.23 0.99 0.97 Reference

2436265 1948 Allen Du Mont Cathode Ray Tube 18 0.65 0.81 0.86 0.74 0.96 0.91 Reference

2451804 1948 Donald L. Campbell Fluid Catalytic Cracking 9 0.65 0.50 0.69 0.74 0.81 0.77 Reference

2495429 1950 Percy Spencer Microwave 15 0.22 0.87 0.82 0.21 0.98 0.89 Reference

2524035 1950 John Bardeen Transistor 132 0.60 1.00 0.99 0.75 1.00 1.00 Reference

2543181 1951 Edwin H. Land Instant Photography 116 0.44 0.99 0.99 0.63 1.00 1.00 Reference

2569347 1951 William Shockley Junction Transistor 140 0.45 1.00 0.99 0.63 1.00 1.00 Reference

2642679 1953 Frank Zamboni Resurfacing Machine 16 0.36 0.50 0.83 0.55 0.82 0.89 Reference

2668661 1954 George R. Stibitz Modern Digital Computer 14 0.95 0.31 0.80 0.98 0.71 0.86 Reference

2682050 1954 Andrew Alford Radio Navigation System 3 0.63 0.00 0.38 0.77 0.22 0.39 Reference

2682235 1954 Richard Buckminster Fuller Geodesic Dome 86 0.48 0.77 0.99 0.60 0.94 0.99 Reference

2691028 1954 Frank B. Colton First Oral Contraceptive 4 0.88 0.00 0.46 0.96 0.22 0.48 Reference

2699054 1955 Lloyd H. Conover Tetracycline 38 0.92 0.98 0.95 0.97 1.00 0.97 Reference

2708656 1955 Enrico Fermi Atomic Reactor 196 0.98 1.00 1.00 0.99 1.00 1.00 Reference

2708722 1955 An Wang Magnetic Core Memory 76 0.70 0.97 0.98 0.78 1.00 0.99 Reference

2717437 1955 George De Mestral Velcro 258 0.44 0.62 1.00 0.43 0.88 1.00 Reference

2724711 1955 Gertrude Elion Leukemia-fighting drug 6-mercaptopurine 1 0.74 0.31 0.17 0.82 0.71 0.13 Reference
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Table A.7: Important Patents (cont)

Patent Year Inventor Invention Citations

Percentile Ranks
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No Adjustment Remove year FE

Quality Citations Quality Citations

(total) (0-5) (0-5) (total) (0-5) (0-5) (total)

2752339 1956 Percy L. Julian Preparation of Cortisone 11 0.84 0.62 0.75 0.88 0.88 0.81 Reference

2756226 1956 Brandl/Margreiter Oral Penicillin 7 0.70 0.71 0.62 0.71 0.92 0.67 Reference

2797183 1957 Hazen/Brown Nystatin 13 0.86 0.31 0.79 0.90 0.69 0.85 Reference

2816721 1957 R. J. Taylor Rocket Engine 25 0.71 0.77 0.91 0.72 0.94 0.95 Reference

2817025 1957 Robert Adler TV remote control 27 0.70 0.96 0.92 0.71 1.00 0.95 Reference

2835548 1958 Robert C. Baumann Satellite 16 0.81 0.92 0.83 0.85 0.99 0.89 Reference

2866012 1958 Charles P. Ginsburg Video Tape Recorder 30 0.77 0.97 0.93 0.81 1.00 0.96 Reference

2879439 1959 Charles H. Townes Maser 24 0.72 0.96 0.90 0.77 0.99 0.94 Reference

2929922 1960 Arthur L. Shawlow Laser 122 0.82 1.00 0.99 0.89 1.00 1.00 Reference

2937186 1960 Burckhalter/Seiwald Antibody Labelling Agent 8 0.83 0.31 0.66 0.89 0.69 0.72 Reference

2947611 1960 Francis P. Bundy Diamond Synthesis 62 0.71 0.00 0.98 0.77 0.19 0.99 Reference

2956114 1960 Charles P. Ginsburg Wideband Magnetic Tape System 11 0.68 0.62 0.75 0.74 0.88 0.81 Reference

2981877 1961 Robert N. Noyce Semiconductor Device-And-Lead Structure 152 0.96 1.00 1.00 0.98 1.00 1.00 Reference

3057356 1962 Greatbatch Wilson Pacemaker 127 0.88 0.93 0.99 0.93 0.99 1.00 Reference

3093346 1963 Maxime A. Faget First Manned Space Capsule-Mercury 19 0.89 0.87 0.86 0.93 0.97 0.91 Reference

3097366 1963 Paul Winchell Artificial Heart 23 0.48 0.62 0.89 0.41 0.87 0.93 Reference

3118022 1964 Gerhard M. Sessler Electret Microphone 39 0.70 0.50 0.95 0.70 0.80 0.97 Reference

3156523 1964 Glenn T. Seaborg Americium (Element 95) 1 0.82 0.00 0.17 0.85 0.17 0.13 Reference

3174267 1965 Edward C Bopf, Deere & Co Cotton Harvester 4 0.62 0.71 0.46 0.55 0.91 0.47 Reference

3220816 1965 Alastair Pilkington Manufacture of Flat Glass 25 0.83 0.31 0.91 0.85 0.67 0.94 Reference

3287323 1966 Stephanie Kwolek, Paul Morgan Kevlar 1 0.70 0.00 0.17 0.70 0.15 0.12 Reference

3478216 1969 George Carruthers Far-Ultraviolet Camera 3 0.71 0.31 0.38 0.84 0.70 0.39 Reference

3574791 1971 Patsy Sherman Scotchguard 81 0.66 0.84 0.98 0.82 0.97 0.99 Reference

3663762 1972 Edward Joel Amos Jr Cellular Telephone 112 0.59 0.87 0.99 0.78 0.97 1.00 Reference

3789832 1974 Raymond V. Damadian MRI 59 0.42 0.71 0.97 0.74 0.90 0.98 Reference

3858232 1974 William Boyle Digital Eye 51 0.39 0.95 0.97 0.71 0.99 0.98 Reference

3906166 1975 Martin Cooper Cellular Telephone 219 0.38 0.81 1.00 0.71 0.95 1.00 Reference

4136359 1979 Stephen Wozniak, Apple Microcomputer 37 0.79 0.62 0.95 0.97 0.84 0.94 Reference

4229761 1980 Valerie Thomas Illusion Transmitter 3 0.59 0.00 0.38 0.92 0.11 0.21 Reference

4237224 1980 Boyer/Cohen Molecular chimeras 301 1.00 1.00 1.00 1.00 1.00 1.00 Reference
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Patent Year Inventor Invention Citations
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(total) (0-5) (0-5) (total) (0-5) (0-5) (total)

4363877 1982 Howard M. Goodman Human Growth Hormone 51 0.99 0.71 0.97 1.00 0.88 0.96 Reference

4371752 1983 Gordon Matthews Digital Voice Mail System 223 0.75 0.93 1.00 0.94 0.98 1.00 Reference

4399216 1983 Richard Axel Co-transformation 482 0.99 0.97 1.00 1.00 0.99 1.00 Reference

4437122 1984 Walsh/Halpert Bitmap graphics 178 0.99 0.90 1.00 1.00 0.97 1.00 Reference

4464652 1984 Apple Lisa Mouse 112 0.70 0.98 0.99 0.89 1.00 0.99 Reference

4468464 1984 Boyer/Cohen Molecular chimeras 109 1.00 0.50 0.99 1.00 0.74 0.99 Reference

4590598 1986 Gordon Gould Laser 20 0.70 0.31 0.87 0.58 0.29 0.80 Reference

4634665 1987 Richard Axel Co-transformation 183 0.99 0.62 1.00 0.99 0.77 1.00 Reference

4683195 1987 Kary B. Mullis polymerase chain reaction 2884 0.97 1.00 1.00 0.97 1.00 1.00 Reference

4683202 1987 (several) polymerase chain reaction 3328 0.95 1.00 1.00 0.94 1.00 1.00 Reference

4736866 1988 Leder/Stewart transgenic (genetically modified) animals 370 1.00 0.81 1.00 1.00 0.90 1.00 Reference

4744360 1988 Patricia Bath Cataract Laserphaco Probe 81 0.94 0.81 0.98 0.91 0.90 0.98 Reference

4799258 1989 Donald Watts Davies Packet-switching technology 153 0.96 0.95 0.99 0.95 0.98 0.99 Reference

4816397 1989 Michael A. Boss recombinant antibodies 567 0.97 0.81 1.00 0.98 0.90 1.00 Reference

4816567 1989 Shmuel Cabilly immunoglobulins 1785 0.99 0.77 1.00 0.99 0.87 1.00 Reference

4838644 1989 Ellen Ochoa Recognizing Method 22 0.94 0.81 0.89 0.92 0.90 0.81 Reference

4889818 1989 (several) polymerase chain reaction 366 0.98 0.99 1.00 0.98 1.00 1.00 Reference

4965188 1990 (several) polymerase chain reaction 1176 0.97 0.99 1.00 0.98 1.00 1.00 Reference

5061620 1991 Ann Tsukamoto Method for isolating the human stem cell 252 0.99 1.00 1.00 1.00 1.00 1.00 Reference

5071161 1991 Geoffrey L Mahoon Airbag 23 0.81 0.96 0.89 0.67 0.98 0.81 Reference

5108388 1992 Stephen L. Troke Laser Surgery Method 125 0.97 0.00 0.99 0.97 0.04 0.99 Reference

5149636 1992 Richard Axel Co-transformation 6 0.99 0.31 0.58 0.99 0.24 0.36 Reference

5179017 1993 Richard Axel Co-transformation 131 1.00 0.96 0.99 1.00 0.98 0.99 Reference

5184830 1993 Saturo Okada, Shin Kojo Compact Hand-Held Video Game System 201 0.98 0.98 1.00 0.98 0.99 1.00 Reference

5194299 1993 Arthur Fry Post-It Note 76 0.87 0.00 0.98 0.73 0.04 0.97 Reference

5225539 1993 Gregory P. Winter Chimeric, humanized antibodies 671 1.00 0.99 1.00 1.00 1.00 1.00 Reference

5272628 1993 Michael Koss Core Excel Function 94 0.99 0.92 0.99 0.99 0.95 0.98 Reference

5747282 1998 Mark H. Skolnick BRCA1 gene 15 0.98 0.71 0.82 0.97 0.72 0.67 Reference

5770429 1998 Nils Lonberg human antibodies from transgenic mice 248 0.91 0.84 1.00 0.61 0.84 1.00 Reference

5837492 1998 (several) BRCA2 gene 5 0.95 0.00 0.52 0.83 0.01 0.26 Reference
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Table A.7: Important Patents (cont)

Patent Year Inventor Invention Citations

Percentile Ranks

Source
No Adjustment Remove year FE

Quality Citations Quality Citations

(total) (0-5) (0-5) (total) (0-5) (0-5) (total)

5939598 1999 (several) Transgenic mice 262 1.00 0.31 1.00 1.00 0.09 1.00 Reference

5960411 1999 Hartman/Bezos/Kaphan/Spiegel 1-click buying 1387 1.00 1.00 1.00 1.00 1.00 1.00 Reference

6230409 2001 Patricia Billings Geobond 7 0.86 0.62 0.62 0.75 0.33 0.46 Reference

6285999 2001 Larry Page Google Pagerank 689 0.98 1.00 1.00 0.99 1.00 1.00 Reference

6331415 2001 Shmuel Cabilly Antibody molecules 243 0.98 0.00 1.00 0.99 0.01 1.00 Reference

6455275 2002 Richard Axel Co-transformation 7 0.97 0.31 0.62 0.98 0.12 0.52 Reference

6574628 2003 Robert Kahn, Vinton Cerf Packet-Switching Knowbot 61 0.99 0.95 0.97 1.00 0.96 0.98 Reference

6955484 2005 Nicholas D. Woodman Harness system for attaching camera to user 15 0.59 0.84 0.82 0.78 0.89 0.87 Reference

6985922 2006 Janet Emerson Bashen LinkLine 47 0.81 0.95 0.96 0.93 0.98 0.98 Reference
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