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ABSTRACT

Researchers often present treatment-control differences or other descriptive statistics alongside 
structural estimates that answer policy or counterfactual questions of interest. We ask to what 
extent confidence in the researcher's interpretation of the former should increase a reader's 
confidence in the latter. We consider a structural estimate ĉ that may depend on a vector of 
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assumed model. We then compare the bounds on the bias of ĉ due to misspecification across all 
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does not affect ̂γ. Our main result shows that the ratio of the lengths of these tight bounds depends 
only on a quantity we call the informativeness of ̂γ for ĉ, which can be easily estimated even for 
complex models. We recommend that researchers report the estimated informativeness of 
descriptive statistics. We illustrate with applications to three recent papers.
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1 Introduction

Empirical researchers often present treatment-control differences or other descriptive statistics

alongside structural estimates that answer policy or counterfactual questions of interest. One lead-

ing case is where the structural model is estimated on data from a randomized experiment, and

the descriptive statistics are treatment-control differences (e.g., Attanasio et al. 2012a; Duflo et

al. 2012; Alatas et al. 2016). A second leading case is where the structural model is estimated

on observational data, and the descriptive statistics are regression coefficients or correlations that

capture important relationships (e.g., Gentzkow 2007a; Einav et al. 2013; Gentzkow et al. 2014;

Morten forthcoming).

An appeal of this approach is that transparent, convincing descriptive statistics may lend cred-

ibility to the related structural estimates. Focusing on the case of randomized experiments, At-

tanasio et al. (2012a) write, “One can think of using experimental variation... so as to estimate

more credibly structural models capable of richer policy analysis.... Experimental variation can

help identify economic effects under more general conditions than the observational data, while

the structural model can help provide an interpretation of the experimental results and broaden

the usefulness of the experiment” (p. 39). In the case of observational data, reporting descrip-

tive statistics like regression coefficients can help readers evaluate the causal interpretation of key

relationships in the data, which in turn may affect readers’ views of the credibility of structural

estimates.

While this logic has intuitive appeal, the formal sense in which it holds is typically not made

precise. Let γ̂ denote a vector of descriptive statistics, and let ĉ denote a structural estimate of

interest, which may depend on γ̂ as well as other features of the data. Under the model assumed by

the researcher, ĉ and γ̂ are consistent for values (c0,γ0). A reader is concerned about the possibility

that the model may be misspecified. Should the knowledge that γ̂ is indeed a valid estimator of

γ0—for example, because it comes from a randomized experiment and the economic assumptions

linking γ0 to c0 are correct—increase the reader’s confidence in the validity of ĉ? If so, to what

extent?

In this paper, we introduce a framework for answering these questions. We consider a reader

who entertains a class of potential true models in a neighborhood of the researcher’s assumed

model. We follow a large literature in focusing on local misspecification that shrinks with the

sample size, so the effect of misspecification remains on the same order as sampling variation, and
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thus may lead to asymptotic bias in the parameter estimates. We show that the space of such local

perturbations can be indexed so that each element is defined by a direction ϕ (capturing the nature

of the misspecification) and a magnitude µ (capturing the degree of misspecification). Our main

object of interest is the comparison of (i) the maximal asymptotic bias across all local perturbations

of magnitude µ and (ii) the maximal asymptotic bias across the subset of these perturbations under

which the descriptive statistics γ̂ are asymptotically unbiased estimators of γ0. The ratio of (ii) to

(i) captures the extent to which the reader’s confidence in the structural estimate ĉ is improved by

knowing that the statistics γ̂ are unbiased for γ0.

Our main result shows that this ratio depends only on a scalar ∆, which we call the informa-

tiveness of the descriptive statistics γ̂ for the structural estimate ĉ. Informativeness is the R2 from

a regression of the structural estimate on the descriptive statistics when both are drawn from their

joint asymptotic distribution. The ratio of (ii) to (i) is given by
√

1−∆. Intuitively, when infor-

mativeness is high, γ̂ captures most of the information in the data that drives ĉ, so knowing that

the former is correctly described by the model significantly reduces the scope for bias in the latter.

When informativeness is low, ĉ is mainly driven by features of the data orthogonal to γ̂ , so lack

of bias in γ̂ does not meaningfully reduce the scope for bias in ĉ. We recommend that researchers

report an estimate of informativeness whenever they present descriptive evidence as support for

structural estimates.

Informativeness can be estimated at low cost even for computationally challenging models.

We show that a consistent estimator of ∆ can be obtained from manipulation of the estimated

influence functions of ĉ and γ̂ . In the large range of settings in which estimated influence functions

are available from the calculations used to obtain ĉ and γ̂ , the additional computation required to

estimate ∆ is trivial. This tractability is a benefit of our focus on local perturbations.

Importantly, the value of ∆, and the consistency of the proposed estimator for ∆, are preserved

under all local perturbations. Moreover, we show that the ranking of local perturbations implied

by the magnitude µ coincides asymptotically with that implied by all divergences in the Cressie-

Read (1984) family, including the Kullback-Leibler divergence. Hence, µ has a natural scale, and a

reader need not take a strong stand on the perturbation of interest, or on the notion of magnitude, in

order to interpret and estimate ∆. For readers interested in using our results to construct quantitative

bounds on asymptotic bias, we provide an interpretation of the magnitude µ in terms of the power

of the most powerful test of the researcher’s base model against the perturbation. We also show

a sense in which ∆ approximates its non-local analogue, when the degree of misspecification is
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small.

The set of local perturbations of a given magnitude µ defines a class of potential true models

from a purely statistical or probabilistic point of view, without reference to any particular economic

setting. We argue that this class provides a useful and tractable default for the analysis of misspec-

ification that can be readily applied in a wide range of settings of interest. We note, however, that

a researcher who is prepared to impose restrictions (say, from economic theory) on the likely form

of misspecification may be able to improve on the bounds we characterize. We also stress that the

economic content of the restriction that γ̂ is asymptotically unbiased for γ0 depends on the setting.

Informativeness ∆ helps a reader to use her prior information about the plausibility of this restric-

tion to assess the credibility of an estimator, but high or low values of informativeness do not on

their own imply high or low credibility.

As a more concrete illustration of our proposed approach, consider an example based on At-

tanasio et al. (2012a), where a parametric structural model is estimated by maximum likelihood

using individual-level data from a randomized experiment. The randomized treatment is an incen-

tive offered to parents to keep their children in school, where the amount of the incentive varies

according to characteristics such as the children’s age and grade. The descriptive statistics γ̂ are

treatment-control differences in school attendance for different age-grade cells. The structural es-

timate ĉ is the impact of a counterfactual policy that would change the allocation of the incentives.

This estimate ĉ is related to γ̂ , but since it is estimated by maximum likelihood, it may depend

on other features of the data as well. How should believing that the experimental treatment effect

estimates γ̂ are well-specified affect a reader’s confidence in the counterfactual?

Our informativeness measure offers a precise answer. At one extreme, we could imagine that

the structural estimate ĉ depends only on γ̂ , as it would if it were estimated by indirect inference

based on γ̂ alone. In this case, ĉ is equal to some function c̃(γ̂), and informativeness is ∆ = 1. So

long as the reader believes that the randomization was carried out correctly and the assumptions

mapping γ to c through the function c̃(·) are correct, she can be confident in the structural estimate.

At the other extreme, we could imagine that the structural estimates are completely unrelated to the

sample treatment-control differences. In this case, informativeness would be ∆= 0, and confidence

in the validity of the experiment and the way the model relates γ to c would not translate into

confidence in the structural estimate.

This example highlights an important subtlety. Informativeness captures the extent to which

knowing that γ̂ is correctly described by the model limits the potential bias due to misspecification.
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Here, correctly described means that γ̂ is an asymptotically unbiased estimator of the value γ0 pre-

dicted by the model at base parameter values consistent with c0. That γ̂ is an estimated treatment

effect from a randomized experiment, or from a valid natural experiment, is not on its own suffi-

cient for this condition to hold. It must also be the case that the population value of this treatment

effect aligns with the prediction γ0 of the model. In the example above, this means that the function

c̃(·) is correctly specified. The need for this requirement should be clear. If we use an economic

model to map from observed data to predictions of counterfactuals that are never observed, sta-

tistical information alone cannot confirm or challenge those predictions. Thus, knowledge of ∆

does not eliminate the need to think about the validity of structural assumptions. It does, however,

allow the reader to judge whether assessing a subset of those assumptions—those that determine

the behavior of γ̂—is sufficient to form a good sense of the credibility of the estimate ĉ.

Our results are related to Andrews et al. (2017). In that paper, we propose a measure Λ of

the sensitivity of a parameter estimate ĉ to a vector of statistics γ̂ , focusing on the case where γ̂

are estimation moments that fully determine the estimator ĉ (and so ∆ = 1). Here, we propose a

complementary measure of the extent to which a vector of descriptive statistics γ̂ determines the

value of ĉ.1 In an extension, we generalize our main result to allow γ̂ to have possibly nonzero

asymptotic bias γ . In this case, the set of possible asymptotic biases in ĉ is an interval centered

at Λγ , with width proportional to
√

1−∆. This extension thus provides a unified treatment of

sensitivity and informativeness.

We implement our proposal for three recent papers in economics, each of which reports or

discusses descriptive statistics alongside structural estimates. In the first application, to Attanasio

et al. (2012a), the parameter estimate ĉ of interest is the effect of a counterfactual redesign of the

PROGRESA cash transfer program, and the descriptive statistics γ̂ are sample treatment-control

differences for different groups of children. In the second application, to Gentzkow (2007a), the

parameter estimate ĉ of interest is the effect of removing the online edition of the Washington Post

on readership of the print edition, and the descriptive statistics γ̂ are linear regression coefficients.

In the third application, to Hendren (2013a), the parameter estimates ĉ of interest are estimates

of a model parameter and of a key quantity governing the existence of insurance markets, and

the descriptive statistics γ̂ summarize the joint distribution of self-reported probabilities of loss

events and the realizations of these events. In each case, our choice of γ̂ is guided by the authors’

discussion. In each case, we report an estimate of ∆ for various combinations of ĉ and γ̂ , and we

1Our work here draws on the analysis of “sensitivity to descriptive statistics” in Gentzkow and Shapiro (2015).
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discuss the implications for a reader’s confidence in the conclusions. These applications illustrate

how estimates of ∆ can be presented and discussed in applied research.

In a related paper, Mukhin (2018) derives informativeness and sensitivity from a statistical-

geometric perspective, and notes strong connections to semiparameteric efficiency theory. Mukhin

also shows how to derive sensitivity and informativeness measures based on alternative metrics for

the distance between distributions, and discusses the use of these measures for local counterfactual

analysis.

Our work is also closely related to the large literature on local misspecification (e.g., Newey

1985; Conley et al. 2012; Andrews et al. 2017). Much of this literature focuses on testing and

confidence set construction (e.g. Berkowitz et al. 2008; Guggenberger 2012; Armstrong and Kole-

sar, 2018) or robust estimation (e.g., Rieder 1994; Kitamura et al. 2013; Bonhomme and Weidner

2018). Rieder (1994) studies the choice of target parameters and proposes optimal robust testing

and estimation procedures under the same form of local misspecification that we consider here.

Bonhomme and Weidner (2018) derive minimax robust estimators and accompanying confidence

intervals for economic parameters of interest under a form of local misspecification closely related

to the one we study. Armstrong and Kolesar (2018) consider a class of ways in which the model

may be locally misspecified that nests the one we consider, derive minimax optimal confidence

sets, and show that there is little scope to improve on their procedures by “estimating” the degree

of misspecification, motivating a sensitivity analysis. In contrast to this literature, we focus on

characterizing the relationship between a set of descriptive statistics and a given structural estima-

tor, with the goal of allowing consumers of research to sharpen their opinions about the reliability

of the researcher’s conclusions.

Finally, our work relates to discussions about the appropriate role of descriptive statistics in

structural econometric analysis (e.g., Pakes 2014).2 It is common in applied research to describe

the data features that “primarily identify” structural parameters or “drive” estimates of those pa-

rameters.3 As Keane (2010) and others have noted, such statements are not directly related to the

formal notion of identification in econometrics. Their intended meaning is therefore up for grabs.

If researchers are prepared to reinterpret these as statements linking correct specification of de-

scriptive statistics to confidence in related structural estimates, then our approach provides a way

to sharpen and quantify these statements at low cost to researchers.

2See also Dridi et al. (2007) and Nakamura and Steinsson (2018) for discussion of the appropriate choice of
moments to match when fitting macroecnoomic models.

3Andrews et al. (2017, footnotes 2 and 3) provide examples.
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2 Setup and Main Result

2.1 Setup

A researcher observes an i.i.d. sample Di ∈D for i = 1, ...,n. The researcher’s model implies that

Di ∼ F (η), for η ∈ H a potentially infinite-dimensional parameter. The implied distribution for

the sample is Fn (η) =×nF (η). We fix a base distribution F0 = F (η0) consistent with the model,

and let η0 denote the base value of η .

The key quantity of interest c = c(η) is a scalar that may be an element of η , a counterfactual

prediction, or any other function of the model’s parameters. Because we are interested in model

misspecification, we assume that the true value c0 = c(η0) of c is defined outside the model—for

example, from some ideal experiment—and thus that we can meaningfully discuss the true value

of c even when the model may be incorrect. Note that we do not exclude the possibility that

c0 = c(η ′) for some η ′ 6= η0. The researcher computes (i) an estimate ĉ of c and (ii) a pγ × 1

vector of descriptive statistics γ̂ .

We assume that under Fn
0 , the estimator ĉ and the descriptive statistics γ̂ are jointly asymptoti-

cally normal,

(1)
√

n

 ĉ− c0

γ̂− γ0

→d N (0,Σ) ,

where γ0 is the probability limit of γ̂ under Fn
0 and the asymptotic variance Σ is finite. We assume

throughout that the asymptotic variances σ2
c and Σγγ corresponding to ĉ and γ̂ are positive and full-

rank, respectively. We let Σcγ denote the off-diagonal block of Σ corresponding to the asymptotic

covariance of ĉ and γ̂ .

Definition. The informativeness of γ̂ for ĉ is

∆ =
ΣcγΣ−1

γγ Σ
′
cγ

σ2
c

.

Informativeness measures the extent to which variation in ĉ is explained by variation in γ̂ . It

corresponds to the R2 from the population regression of ĉ on γ̂ in their joint asymptotic distribution

under Fn
0 . It is immediate that ∆ ∈ [0,1].

To introduce the possibility that the model may be misspecified, we follow a standard approach
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in the literature (e.g., Newey 1985; Andrews et al. 2017) and consider misspecification that is on

the same order as sampling uncertainty. We consider sequences of alternative models that approach

the base distribution at a
√

n rate. We call such a sequence a local perturbation.4 We index each

local perturbation by its direction ϕ ∈Φ and magnitude µ ∈R. The magnitude µ is defined so that

a perturbation of magnitude µ = 0 coincides with the base distribution, and so that the ranking of

perturbations implied by µ coincides asymptotically with the ranking based on Kullback-Liebler

divergence. In Section 3.2 we show that this ranking also coincides asymptotically with that im-

plied by a large class of divergences, and that µ has an interpretation in terms of the most powerful

test of the base distribution against a perturbation.

More precisely, for each direction ϕ in the possibly infinite-dimensional set Φ, we define a

family of distributions Fϕ (ϑ) indexed by a scalar parameter ϑ ∈ R+ such that Fϕ (0) = F0. Each

Fϕ (·) defines a one-dimensional family of distributions, which one can think of as a path passing

through the base distribution. The local perturbation with direction ϕ and magnitude µ is then

defined to be the sequence of joint distributions Fn
ϕ

(
µ√
n

)
=×nFϕ

(
µ√
n

)
. When µ > 0, the model

may be misspecified in the sense that Fϕ

(
µ√
n

)
/∈ {F (η) : c(η) = c0,η ∈ H}, or even Fϕ

(
µ√
n

)
/∈

{F (η) : η ∈ H} . Thus the true distribution of the data may be inconsistent with the restrictions

implied by c0 under our assumed model, or inconsistent with the model altogether.

The interpretation of the values c0, η0, and γ0 in the presence of misspecification is important

in what follows, and it is worth pausing to reiterate. The true value c0 of c is assumed to be an

economic quantity defined outside the model, and so it is meaningful to ask how well ĉ estimates

c0 under misspecification. By contrast, η need not be defined outside the model—for example, it

might include coefficients whose values are only defined relative to the distribution of various error

terms—and so we do not interpret η0 as a true value. Instead, our local misspecification approach

assumes that the true data generating process is close to some (unknown) base distribution F0 =

F (η0) consistent with the assumed model and with the true value c0 (in the sense that c0 = c(η0)).

Likewise, γ0 denotes the probability limit of γ̂ under the base distribution, while γ may or may not

be defined outside the model. We hold c0, η0, and γ0 fixed for simplicity, but show in Appendix

B.1 that our results are robust to instead considering (η0,n,c0,n,γ0,n) that converge to (η0,c0,γ0).

Example. Say that η is finite-dimensional and that γ̂ is a vector of regression coefficients estimated

on the sample, such as treatment-control differences from a randomized experiment. The quantity

4Rieder (1994) defines a subset of these perturbations called “simple perturbations” and derives results for this
class.
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c describes an unobserved counterfactual and is estimated with ĉ = c(η̂) where η̂ is an estimator

of η that is jointly asymptotically normal with ĉ and γ̂ . We can now consider three cases:

1. (Minimum distance) The estimator η̂ can be written as η̂ = η (γ̂)+op (1/
√

n) where η is a

nontrivial, smooth function. This is the case when, for example, η̂ is estimated via classical

minimum distance, or simulated analogues such as indirect inference, using the descriptive

statistics γ̂ as the target moments. In this case, under sufficient regularity we will have ∆ = 1.

2. (MLE) The estimator η̂ is the maximum likelihood estimator of the model. In many cases

this estimator cannot be expressed asymptotically as a function only of γ̂ , and in such cases

∆ < 1.

3. (Irrelevant descriptive statistics) The estimator η̂ can be written as a function of a set of

moments that are statistically independent of γ̂ , say because η̂ is estimated using data from

one population (e.g., males) and γ̂ is estimated using data from another (e.g., females). In

this case ∆ = 0.

2.2 Main Result

We introduce two conditions that are sufficient for our main result. In Section 3, we revisit these

conditions and give primitive assumptions under which they are guaranteed to hold.

Condition 1. Under a local perturbation with direction ϕ and magnitude µ ,

(2)
√

n

 ĉ− c0

γ̂− γ0

→d N

 µcϕ

µγϕ

 ,Σ

 ,

for some cϕ ∈ R and γϕ ∈ Rpγ , and for Σ the same as in (1).

The term µcϕ is the first-order asymptotic bias (“asymptotic bias,” for short) of the estimator ĉ

under a given local perturbation. Because Σ is unaffected by the perturbation, the asymptotic bias

is the only asymptotic effect of misspecification on the researcher’s conclusions. Our main goal in

this section is to bound the size of this bias. Condition 1 implies that this bias is the product of the

magnitude µ of the perturbation and a term cϕ that depends only on the perturbation’s direction.
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Condition 2. If ∆ < 1, the set of values
(

cϕ ,γϕ

)
associated with the set of all directions ϕ ∈Φ is

(3) B =

(c,γ) ∈ R×Rpγ :

 c

γ

′Σ−1

 c

γ

≤ 1

 .

If ∆ = 1, this set of values is

(4) B =
{
(c,γ) ∈ R×Rpγ : c̄ = Λγ̄, γ̄ ′Σ−1

γγ γ̄ ≤ 1
}
,

for Λ = ΣcγΣ−1
γγ .

The set defined by (3) is an ellipsoid. Figure 1 shows an example for the case in which pγ = 1.

As this figure illustrates, the range of possible values of cϕ grows tighter the more we can restrict

the value of γϕ . Our main question of interest is to what extent the bounds on cϕ are tightened

by assuming γϕ = 0. This is illustrated in the figure by the comparison of the length of the inner

interval (“γϕ = 0”) to the length of the outer interval (“γϕ unconstrained”). When ∆ = 1, this

ellipsoid collapses and the value of c̄ϕ is fully determined by γ̄ϕ , with c̄ϕ = Λγ̄ϕ for a vector of

coefficients Λ. We discuss the role of Λ at length in Section 4.

Our main result shows that in the general case, the analogues of the two intervals in Figure 1

are simple functions of informativeness ∆, the magnitude of the perturbation µ , and the standard

error σc, and that the ratio of the widths of the intervals depends only on ∆. Proofs for this, and

other results, are in Appendix A.

Proposition 1. Suppose Conditions 1 and 2 hold, and consider the set of local perturbations with

magnitude µ . The asymptotic biases in ĉ associated with perturbations in this set are

Bµ = [−σcµ,σcµ] .

The asymptotic biases in ĉ associated with the subset of these perturbations for which γϕ = 0 are

Bµ

0 =
[
−σcµ

√
1−∆,σcµ

√
1−∆

]
.

The ratio of the widths of these intervals is∣∣Bµ

0

∣∣
|Bµ | =

√
1−∆.
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Thus, the extent to which knowing that γϕ = 0 constrains the potential bias due to misspeci-

fication depends on the informativeness of γ̂ for the outcome of interest. When ∆ = 0, knowing

that γ̂ is asymptotically unbiased for γ0 tells us nothing about potential bias in ĉ. When ∆ = 1,

knowing that γ̂ is asymptotically unbiased for γ0 implies that there is no bias in ĉ under any local

perturbation, regardless of its direction or magnitude.

Figure 2 illustrates the conclusions of Proposition 1 by plotting the limits of the intervals Bµ

and Bµ

0 (normalized with respect to the standard error σc of ĉ) as a function of µ . The figure is

drawn for the case ∆ = 0.75. When µ = 2, the unconstrained range of asymptotic biases is plus or

minus two standard errors. Knowing that γ̂ is asymptotically unbiased for γ0 reduces the width of

this interval to plus or minus 2
√

1−0.75 = 1 standard error. We return to the interpretation of µ

in Section 3.2 below.

We propose that researchers interested in linking a structural estimate ĉ to a vector of descrip-

tive statistics γ̂ report an estimate of informativeness ∆. We show below that it can be trivial to

estimate ∆ even when ĉ is costly to compute. Having an estimate of informativeness permits a

reader to gauge the extent to which confidence in the model’s predictions about γ̂ translate into

confidence in the researcher’s inferences about c0.5

Example. (continued) Recall the three cases from the earlier example:

1. (Minimum distance) Here, ∆ = 1. Therefore by Proposition 1, if γ̂ is correctly specified

(γϕ = 0), then there is no asymptotic bias in ĉ (cϕ = 0). Intuitively, this is because γϕ = 0

implies both that γ̂ is asymptotically unbiased for γ0 and that the relation c0 = c(η (γ0)) is

correctly specified.

2. (MLE) Here, ∆ < 1. Therefore, by Proposition 1, |B
µ

0 |
|Bµ | =

√
1−∆ > 0. Knowing that γϕ = 0

still leaves open the possibility that ĉ is asymptotically biased. Intuitively, this is because ĉ

depends on information in the data that is not fully captured in γ̂ . Note that this is true even if

there exists some relation c0 = c(η (γ0)) that is correctly specified as in the preceding case,

and hence estimation could in principle have been based only on γ̂ .

3. (Irrelevant descriptive statistics) Here, ∆ = 0. Therefore, by Proposition 1, knowing that

γϕ = 0 does not restrict cϕ at all. Intuitively, this is because ĉ depends entirely on features

5If we impose an upper bound on µ , we can use the bounds in Proposition 1 to directly adjust our confidence
intervals for misspecification, with or without the assumption that γϕ = 0; see Armstrong and Kolesar (2018) for a
discussion of such adjustments.
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of the data unrelated to γ̂ .

3 Regularity Conditions and Interpretation of Perturbations

3.1 Regularity Conditions

This subsection develops asymptotic results that provide the foundation for our analysis. In partic-

ular, we introduce assumptions that imply Conditions 1 and 2.

Perturbations

We assume the distributions Fϕ (ϑ) have densities fϕ (ϑ) with respect to a dominating measure

ν . That is, sets that are assigned zero mass by ν are likewise assigned probability zero under

all Fϕ (ϑ) . Note that ν need not be Lebesgue measure, so we do not require that the data be

continuously distributed. The information matrix for ϑ , treating ϕ as known, is

Iϕ (ϑ) = EFϕ (ϑ)

( ∂

∂ϑ
fϕ (Di;ϑ)

fϕ (Di;ϑ)

)2
 .

We impose the following regularity condition on the paths
{

Fϕ (·) : ϕ ∈Φ
}

:

Assumption 1. For ϑ in an open neighborhood of zero and all ϕ ∈Φ; (i)
√

fϕ (d;ϑ) is continu-

ously differentiable with respect to ϑ for all d ∈ D; (ii) Iϕ (ϑ) is finite and continuous in ϑ ; and

(iii) Iϕ (0) ∈ {0,1} .

Parts (i) and (ii) of Assumption 1 are standard conditions used in deriving asymptotic results,

and hold in a wide variety of settings; see Chapter 7.2 in van der Vaart (1998) for further discussion.

Part (iii) is a normalization which, for ϑ close to zero, allows us to interpret the magnitude of ϑ as

a measure of the degree of misspecification.6

We consider local perturbations Fn
ϕ

(
µ√
n

)
, which imply that the degree of misspecification is of

the same order as the Cramer-Rao lower bound on the standard deviation for unbiased estimators

of ϑ , provided the usual regularity conditions for this bound hold.7 As we show in Section 3.2

6Formally, if we begin with a perturbation F̃ϕ

(
ϑ̃
)

satisfying parts (i) and (ii) of Assumption 1 but not part (iii),

and define Fϕ (ϑ) = F̃ϕ

(
ϑ/
√

Ĩϕ (0)
)

for Ĩϕ

(
ϑ̃
)

the information matrix for ϑ̃ , then Fϕ (·) satisfies parts (i)-(iii).
7When the information matrix is zero, this lower bound is infinite.
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below, this in turn implies that the magnitude µ has an interpretation as a measure of the degree of

misspecification based both on widely studied measures for the divergence between distributions

and on the power of tests to detect this local perturbation.

Our second assumption requires that the set of perturbations be sufficiently rich.

Assumption 2. The set of score functions sϕ (Di)=
∂

∂ϑ

(
log fϕ (Di;0)

)
includes all those consistent

with Assumption 1, in the sense that for any s(·) with EF0 [s(Di)] = 0 and EF0

[
s(Di)

2
]
∈ {0,1}

there exists ϕ ∈Φ with EF0

[(
s(Di)− ∂

∂ϑ
log
(

fϕ (Di;0)
))2
]
= 0.

Assumption 2 requires that Φ imply a rich enough set of Fϕ (·) that the corresponding score

functions include all those consistent with Assumption 1.8 While allowing a rich set of pertur-

bations is important to capture the many ways in which the model could be misspecified, if in a

particular setting we know more about the form of misspecification, this will restrict Φ. In such

settings, the bounds we derive below will be valid, but may no longer be tight.

Estimators

Our key assumption on the estimators ĉ and γ̂ is that they behave, asymptotically, like averages of

functions over the observations.

Assumption 3. Under Fn
0 ,

(5)
√

n(ĉ− c0, γ̂− γ0) =
1√
n

(
n

∑
i=1

φc (Di) ,
n

∑
i=1

φγ (Di)

)
+op (1) ,

for functions φc (Di) and φγ (Di) such that EF0 [φc (Di)] = 0, EF0

[
φγ (Di)

]
= 0, EF0

[
φc (Di)

2
]
=

σ2
c , and EF0

[
φγ (Di)φγ (Di)

′] = Σγγ , for σ2
c and Σγγ finite. Moreover, pγ + 1 <

∣∣suppF0
(Di)

∣∣ for

suppF0
(Di) the support of Di under F0.

The functions φc (Di) and φγ (Di) are called the influence functions for the estimators ĉ and γ̂ ,

respectively. Asymptotic linearity of the form in (5) holds for an extremely wide range of estima-

tors (see e.g. Ichimura and Newey 2015). This representation will be the key to our analysis in

this section and the next, and immediately implies that ĉ and γ̂ are jointly asymptotically normal

8That the score function s(Di) for any perturbation satisfying Assumption 1 has mean zero follows from Lemma
7.6 and Theorem 7.2 in van der Vaart (1998).
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under F0 as in (1). Sufficient conditions for asymptotic linearity when ĉ and γ̂ are based on mini-

mum distance estimators are given in Section 5. The second part of the assumption requires that

the dimension of (c,γ ′)′ be smaller than the cardinality of the support of Di, and holds trivially if

Di has at least one continuously distributed component. If this condition fails, our bounds remain

valid but some interior values for the bias may not be achievable.

Verifying Conditions 1 and 2

We next show that Assumptions 1-3 imply Conditions 1 and 2.

Lemma 1. Assumptions 1 and 3 imply Condition 1. In particular, under Fn
ϕ

(
µ√
n

)
√

n

 ĉ− c0

γ̂− γ0

→d N

 µcϕ

µγϕ

 ,Σ

 .

where  cϕ

γϕ

=

 EF0

[
φc (Di)sϕ (Di)

]
EF0

[
φγ (Di)sϕ (Di)

]
 ,

and

Σ =

 σ2
c Σcγ

Σγc Σγγ

=

 EF0

[
φc (Di)

2
]

EF0

[
φc (Di)φγ (Di)

′]
EF0

[
φγ (Di)φc (Di)

]
EF0

[
φγ (Di)φγ (Di)

′]
 .

Lemma 1 shows that Assumptions 1 and 3 imply Condition 1, and characterizes the form of the

bias. As in Andrews et al. (2017) the asymptotic variance is unaffected by the local perturbation

Fn
ϕ

(
µ√
n

)
. The asymptotic distributions of

√
n(ĉ− c0) and

√
n(γ̂− γ0), on the other hand, are

shifted by µcϕ and µγϕ respectively, where the effect on each estimator depends on the covariance

of its influence function with the score.9 We next verify Condition 2.

Lemma 2. For
(

cϕ ,γϕ

)
and Σ as defined in Lemma 1, Assumption 2 implies Condition 2.

Lemma 2 shows that Assumption 2 implies Condition 2. Without Assumption 2 we can still

show that the left hand side of (3) is a subset of the right hand side, but it may be strictly contained,

in which case our bounds on bias may not be tight.

9Lemma 1 considers behavior under local perturbations Fn
ϕ

(
µ√
n

)
. Rieder (1994, Chapter 6) provides stronger

conditions on the estimators ĉ and γ̂ such that an analogous result holds uniformly over shrinking nonparametric
neighborhoods of F0.
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3.2 Scaling of Perturbations

We have interpreted the parameter µ as a measure of the “size” of the perturbation Fn
ϕ

(
µ√
n

)
. Con-

dition 1 and Lemma 1 show that this interpretation is reasonable for fixed ϕ , since the shift in the

asymptotic distribution of (ĉ, γ̂) scales with µ . For Proposition 1, however, we consider all pertur-

bations consistent with a given µ , so it is important that µ measures the degree of misspecification

in a way that is meaningful across values ϕ as well.

This section shows that this interpretation is justified under two natural measures for the degree

of misspecification. First, we show that µ determines the highest possible asymptotic power for

any test to distinguish the perturbation Fn
ϕ

(
µ√
n

)
from the base distribution Fn

0 . Second, we show

that for a family of divergences measuring the difference between Fϕ

(
µ√
n

)
and F0, including

Kullback-Leibler divergence and squared Hellinger divergence, the scaled divergence converges to

µ2 under mild regularity conditions.

Throughout this section we limit attention to non-trivial perturbations, which we define as those

with ϕ such that EF0

[
sϕ (Di)

2
]
6= 0, for sϕ (Di) the score as defined in Assumption 2. For trivial

perturbations one can show (see the proof of Proposition 5) that c̄ϕ = γ̄ϕ = 0, so the perturbation

has no first-order asymptotic effect on (ĉ, γ̂). Trivial perturbations are likewise asymptotically

indistinguishable from the base distribution according to both measures we consider in this section.

Asymptotic Distinguishability

One natural measure for the size of the perturbation Fn
ϕ

(
µ√
n

)
is the power of tests of Fn

0 against

Fn
ϕ

(
µ√
n

)
.

Proposition 2. Under Assumption 1 the most powerful level α test of the null hypothesis H0 :

(D1, ...,Dn) ∼ Fn
0 against the non-trivial alternative H1 : (D1, ...,Dn) ∼ Fn

ϕ

(
µ√
n

)
has asymptotic

power 1−FN(0,1) (cα −µ) for cα the 1−α quantile of the standard normal distribution.

The proof of Proposition 2 shows that the most powerful test corresponds asymptotically to a

z-test, where the z-statistic has mean µ under H1. Hence, we can interpret a value of µ = 1 as

corresponding to a one-standard-error shift in the z-statistic, putting µ on a conventional scale.

The optimal test derived in the proof of Proposition 2 relies on knowledge of F0 and so is

infeasible in practice. However, the problem of testing Fn
0 against Fn

ϕ

(
µ√
n

)
is statistically easier

than the problem of testing {Fn (η) : c(η) = c0,η ∈ H} or {Fn (η) : η ∈ H} against Fn
ϕ

(
µ√
n

)
.
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Hence, the power bound in Proposition 2 is an upper bound on the power of tests of either the

hypothesis that the data generating process is consistent with the model and c0 or the hypothesis

that the model is correctly specified without restrictions on c0.

Asymptotic Divergence

Divergence measures provide an alternative quantification for the difference between F0 and Fϕ

(
µ√
n

)
,

and hence for the degree of misspecification. We consider divergences of the form

(6) r
(
F0,Fϕ (ϑ)

)
= EF0

[
ψ

(
dFϕ (ϑ)

dF0

)]
= EF0

[
ψ

(
fϕ (Di;ϑ)

fϕ (Di;0)

)]
for ψ (·) a function. We impose the following condition on ψ (·).

Assumption 4. The function ψ (·) is twice continuously differentiable with ψ (1) = 0 and ψ ′′ (1) =

2.

Given a twice continuously differentiable function ψ̃ (·) with ψ̃ ′′ (1) 6= 0, there always exist

(a,b) so that ψ (·) = a+b · ψ̃ (·) satisfies Assumption 4. Hence, in addition to imposing differen-

tiability the role of Assumption 4 is to fix the level and scale of ψ (·) .
A common class of divergences is the Cressie-Read (1984) family, which nests widely studied

measures including the Kullback-Leibler divergence, Hellinger divergence, and many others, up

to a monotone transformation. Kullback-Leibler divergence was recently used to measure the

degree of misspecification by Hansen and Sargent (2016), while Hellinger divergence was used by

Kitamura et al. (2013). A Cressie-Read (1984) divergence between F0 and Fϕ (ϑ) takes

ψ (x) =
2

λ (λ +1)

(
x−λ −1

)
.

Remark. All of the Cressie-Read (1984) divergences satisfy Assumption 4.

We are interested in the divergence between F0 and Fϕ

(
µ√
n

)
in large samples, and impose the

following regularity conditions.

Assumption 5. fϕ (Di;ϑ) is twice continuously differentiable in ϑ at 0, and there exists an open

neighborhood Nϑ of zero such that

EF0

[
sup

ϑ∈Nϑ

(∣∣∣∣ ∂

∂ϑ
fϕ (Di;ϑ)

∣∣∣∣+ ∣∣∣∣ ∂ 2

∂ϑ 2 fϕ (Di;ϑ)

∣∣∣∣+
∣∣∣∣∣ ∂

∂ϑ
fϕ (Di;ϑ)

fϕ (Di;0)

∣∣∣∣∣
)]
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and

EF0

 sup
ϑ∈Nϑ

∣∣∣∣∣∣ψ ′
(

fϕ (Di;ϑ)

fϕ (Di;0)

) ∂ 2

∂ µ2 fϕ (Di;ϑ)

fϕ (Di;0)
+ψ

′′
(

fϕ (Di;ϑ)

fϕ (Di;0)

)( ∂

∂ µ
fϕ (Di;ϑ)

fϕ (Di;0)

)2
∣∣∣∣∣∣


are finite.

Proposition 3. Under Assumptions 1, 4, and 5,

lim
n→∞

n · r
(

F0,Fϕ

(
µ√
n

))
= µ

2

for all non-trivial perturbations Fϕ

(
µ√
n

)
.

Proposition 3 shows that nontrivial perturbations have scaled divergence converging to µ2,

where we scale by n to ensure a nontrivial limit. Hence, in large samples the Cressie-Read (1984)

divergences yield the same ranking over perturbations as that implied by µ .

3.3 Non-Local Misspecification

To clarify the role of local misspecification in our results it is helpful to consider the analogue of ∆

under non-local misspecification. Suppose that the data now follow Fn, where F does not change

with the sample size, and we may again have F 6∈ {F (η) : c(η) = c0,η ∈ H} . In this case ĉ and

γ̂ will typically be inconsistent for c0 and γ0, so let us denote their probability limits under Fn by

c̃(F) and γ̃ (F) , respectively. We assume for ease of exposition that these probability limits exist

on the neighborhoods of F0 that we consider.

Suppose that for a divergence r defined as in Section 3.2 we are willing to assume that r (F0,F)≤
r̄ for r̄ a known scalar. For F =

{
Fϕ (ϑ) : ϑ ∈ R+,ϕ ∈Φ

}
the set of potential distributions for

the data under misspecification, the set of possible probability limits for ĉ− c0 is

B̃r̄ = {c̃(F)− c0 : F ∈F ,r (F0,F)≤ r̄} .

This is the non-local analogue of the set of asymptotic biases Bµ defined in Section 2. We can

likewise consider the set of probability limits for ĉ−c0 under forms of misspecification that do not
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affect the probability limit of γ̂:

B̃r̄
0 = {c̃(F)− c0 : F ∈F ,r (F0,F)≤ r̄, γ̃ (F)− γ0 = 0} .

This is the non-local analogue of the set Bµ

0 .

Provided that
∣∣B̃r̄

∣∣ and
∣∣B̃r̄

0

∣∣ are both finite and non-zero, we can define a non-local analogue

∆̃(r̄) of informativeness ∆ by √
1− ∆̃(r̄) =

∣∣B̃r̄
0

∣∣∣∣B̃r̄
∣∣ .

Intuitively, ∆̃(r̄) measures the extent to which, for base distribution F0 and neighborhood size r̄,

limiting attention to forms of misspecification that do not affect γ̂ limits the scope for inconsistency

of the estimator ĉ.

Observe that, whereas under our assumptions ∆ does not depend on the degree µ of the local

perturbation, ∆̃(r̄) will typically depend on r. Moreover, calculation of ∆̃(r̄) typically requires

specifying the base distribution F0 (since this isn’t generally uniquely determined from F and r̄),

and may be computationally difficult.

Appendix B.2 shows that, under regularity conditions, an analogue of ∆̃(r̄) based on finite col-

lections of directions ϕ converges to ∆ for r̄ small. This provides a sense in which ∆ approximates

∆̃(r̄) when the degree of non-local misspecification is small.

4 Sensitivity and Informativeness

Proposition 1 considers the effect of limiting attention to perturbations with γ̄ϕ = 0. In some cases,

however, researchers may be interested in forms of misspecification with a non-zero, but known,

asymptotic effect on γ̂. In such cases, our assumptions again imply a relationship between the

biases in ĉ and γ̂ .

This relationship depends on the sensitivity of ĉ to γ̂ . This is the natural extension of the

sensitivity measure proposed in Andrews et al. (2017) to the current setting.

Definition. The sensitivity of ĉ with respect to γ̂ is

Λ = ΣcγΣ
−1
γγ .

To build intuition, note that sensitivity characterizes the relationship between ĉ and γ̂ in the
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asymptotic distribution under the base model. Let c̃ and γ̃ denote the normally distributed random

variables to which
√

n(ĉ− c0) and
√

n(γ̂− γ0) converge in distribution under Fn
0 . The sensitivity

Λ is simply the vector of coefficients from the population regression of c̃ on γ̃ . An element Λ j of

Λ is the effect of changing the realization of a particular γ̃ j on the expected value of c̃, holding the

other elements of γ̃ constant.

Andrews et al. (2017) show that for ĉ = c(η̂), η̂ a minimum distance estimator based on

moments ĝ(η), and γ̂ = ĝ(η0) the estimation moments evaluated at the true parameter value,

sensitivity allows us to relate the effect of misspecification on γ̂ (i.e., µγϕ ) to the effect on ĉ (i.e.,

µcϕ ).

Proposition 4. (Andrews et al. 2017) For ĉ = c(η̂), η̂ a minimum distance estimator satisfying

Assumption 7 below, and γ̂ = ĝ(η0), under Assumption 1 and local perturbations Fn
ϕ

(
µ√
n

)
we

have µ c̄ϕ = Λµγ̄ϕ .

Hence, Andrews et al. (2017) show that the asymptotic bias in ĉ is equal to Λ times the asymp-

totic bias in γ̂. Our next proposition extends this result.

Proposition 5. Suppose that Assumptions 1-3 hold, and consider the set of local perturbations

with magnitude µ and µγϕ = γ . The asymptotic biases in ĉ associated with perturbations in this

set are

Bµ

γ̄
=
[
Λγ̄−σcµ (γ̄)

√
1−∆,Λγ̄ +σcµ (γ̄)

√
1−∆

]
,

for µ (γ̄) =
√

µ2− γ̄ ′Σ−1
γγ γ̄ , provided µ2− γ̄ ′Σ−1

γγ γ̄ ≥ 0. If µ2− γ̄ ′Σ−1
γγ γ̄ < 0, then Bµ

γ̄
= /0.

The ratio of the width of Bµ

γ̄
to the width of the interval when γϕ is unconstrained is

∣∣∣Bµ

γ̄

∣∣∣∣∣Bµ(γ̄)
∣∣ =√1−∆,

where Bµ(γ̄) = [−σcµ (γ̄) ,σcµ (γ̄)] is the set of asymptotic biases associated with all local pertur-

bations of magnitude µ (γ̄).

Proposition 5 extends the results of Andrews et al. (2017) to the case where γ̂ need not be a

vector of estimation moments, and thus we may have ∆ < 1. It likewise extends Proposition 1 to

perturbations with a non-zero effect on γ̂, so µγ̄ϕ 6= 0. The resulting set of first-order asymptotic

biases µ c̄ϕ for ĉ is centered at Λγ̄ with width proportional to
√

1−∆.
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Unlike in Proposition 1, the degree of misspecification now enters the width through µ (γ̄) =√
µ2− γ̄ ′Σ−1

γγ γ̄. Intuitively, µ (γ̄) measures the degree of excess misspecification beyond γ̄ ′Σ−1
γγ γ̄,

which is the minimum necessary to allow µγ̄ϕ = γ̄. If the degree of excess misspecification is small

then the first-order asymptotic bias of ĉ is close to Λγ̄ , while if the degree of excess misspecification

is large then a wider range of biases are possible.

The second part of the proposition compares the range of biases under perturbations with mag-

nitude µ and first-order bias γ̄ for γ̂ with the range of biases under unrestricted perturbations with

magnitude µ (γ̄), and finds that the ratios of their widths is
√

1−∆. This result highlights that the

degree of excess misspecification µ (γ̄) plays the same role in the class of perturbations with a

known nonzero effect on γ̂ as the degree of misspecification µ plays in the class of perturbations

with either a zero or unrestricted effect on γ̂.

Example. (continued) Recall the three examples from Section 2.1.

1. (Minimum distance) Here Λ is the sensitivity measure of Andrews et al. (2017). Since ∆= 1,

Proposition 5 (or the main result of Andrews et al. 2017) implies that µ c̄ϕ = Λµγ̄ϕ . Hence,

if we know the asymptotic effect of model misspecification on γ̂ , we know its effect on ĉ as

well.

2. (MLE) Here Λ will depend on the definition of ĉ. Since ∆ < 1, however, the value of µγ̄ϕ

does not fully determine the asymptotic bias of ĉ. The range of asymptotic biases for ĉ is

centered at Λµγ̄ϕ , and has width that depends on ∆ and the degree of excess misspecification

µ (γ̄) .

3. (Irrelevant descriptive statistics) Here Λ = 0. Since ∆ = 0 as well, knowing that µγ̄ϕ = γ̄

does not restrict the asymptotic bias of ĉ except through µ (γ̄).

5 Implementation

Given an estimate Σ̂ of Σ, it is straightforward to derive estimates ∆̂ and Λ̂ of informativeness and

sensitivity, respectively. In a wide range of applications, convenient estimates of Σ under Fn
0 are

available following standard asymptotic results (e.g., Newey and McFadden 1994). Given such an
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estimate one can construct plug-in estimates

(7) ∆̂ =
Σ̂cγ Σ̂−1

γγ Σ̂
′
cγ

σ̂2
c

, Λ̂ = Σ̂cγ Σ̂
−1
γγ .

Provided Σ̂ is consistent under Fn
0 , consistency of Σ̂, ∆̂, and Λ̂ under any local perturbation follows

immediately under our maintained assumptions that σ2
c > 0 and Σγγ has full rank.

Assumption 6. Σ̂
p→ Σ under Fn

0 .

Proposition 6. Under Assumptions 1 and 6, Σ̂
p→ Σ, ∆̂

p→ ∆, and Λ̂
p→ Λ under any local perturba-

tion Fn
ϕ

(
µ√
n

)
.

5.1 Implementation with Minimum Distance Estimators

We have so far imposed only high-level assumptions (specifically Assumptions 3 and 6) on ĉ, γ̂ ,

and Σ̂. While these high-level assumptions hold in a wide range of settings, minimum distance

estimation is an important special case that encompasses a large number of applications. In this

section we consider the case where c0 can be written as a function of a finite-dimensional vector

of parameters that are estimated by GMM or another minimum distance approach (Newey and

McFadden 1994), and γ̂ is likewise estimated via minimum distance. Note that this encompasses

the case, discussed in examples above, where the structural parameters η are estimated via MLE

and the descriptive statistics γ̂ are regression coefficients or comparisons of means. To facilitate

application of our results, we provide sufficient conditions for Assumptions 3 and 6 in this setting.

Formally, suppose that we can decompose η = (θ ,ω) where θ is finite-dimensional and c(η)

depends on η only through θ . We can then, in a slight abuse of notation, write c0 = c(θ0), where

θ0 is defined by η0 = (θ0,ω0) .

The researcher forms an estimate ĉ = c
(
θ̂
)

where θ̂ solves

(8) min
θ∈Θ

ĝ(θ)′Ŵ ĝ(θ)

for Θ a compact set, ĝ(θ) a kg-dimensional continuously differentiable vector of moments with

Jacobian Ĝ(θ), and Ŵ a kg× kg-dimensional weighting matrix.

21



The researcher computes γ̂ by solving

(9) min
γ∈Γ

m̂(γ)′Ûm̂(γ) ,

for Γ a compact set, m̂(γ) a km-dimensional continuously differentiable vector of moments with

Jacobian M̂ (γ), and Û a km× km-dimensional weighting matrix.

We impose several regularity conditions:

Assumption 7. Under Fn
0 :

(A) (i) both ĝ(θ) and Ĝ(θ) converge uniformly in probability to continuous functions g(θ) and

G(θ) ; (ii) Ŵ →p W for a positive semi-definite matrix W ; (iii) g(θ)′Wg(θ) has a unique

minimum at θ0; (iv) θ0 lies in the interior of Θ; (v)
√

nĝ(θ0)→d N (0,Σgg) for full-rank Σgg;

and (vi) G′WG = G(θ0)
′WG(θ0) is nonsingular.

(B) (i) both m̂(γ) and M̂ (γ) converge uniformly in probability to continuous functions m(γ) and

M (γ); (ii) Û →p U for a positive semi-definite matrix U ; (iii) m(γ)′Um(γ) has a unique

minimizer γ0; (iv) γ0 lies in the interior of Γ; (v)
√

nm̂(γ0)→d N (0,Σmm) for full-rank Σmm;

and (vi) M′UM = M (γ0)
′UM (γ0) is nonsingular.

(C) The function c(·) is continuously differentiable with gradient C (θ) such that C = C (θ0) is

nonzero.

(D) ĝ(θ0) and m̂(γ0) are asymptotically linear in the sense that

√
n(ĝ(θ0) , m̂(γ0)) =

1√
n

(
n

∑
i=1

φg (Di) ,
n

∑
i=1

φm (Di)

)
+op (1) ,

where φg (Di) and φm (Di) have mean zero and variance Σgg and Σmm.

(E) For known estimators φ̂g (·) and φ̂m (·),

(10)
1
n

 ∑i
[
φ̂g (Di) φ̂g (Di)

′]
∑i
[
φ̂g (Di) φ̂m (Di)

′]
∑i
[
φ̂m (Di) φ̂g (Di)

′]
∑i
[
φ̂m (Di) φ̂m (Di)

′]
 p→

 Σgg Σgm

Σmg Σmm

 ,
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where  Σgg Σgm

Σmg Σmm

=

 EF0

[
φg (Di)φg (Di)

′] EF0

[
φg (Di)φm (Di)

′]
EF0

[
φm (Di)φg (Di)

′] EF0

[
φm (Di)φm (Di)

′]
 .

Parts (A) and (B) of Assumption 7 are standard regularity conditions. Part (C) allows us to

apply the delta method to the estimator ĉ, and will hold in the wide range of situations in which

the parameter of interest is a smooth, nontrivial function of model primitives. Part (D) is straight-

forward to verify in many situations, and holds with no remainder when θ̂ and γ̂ are GMM or ML

estimators. Part (E) requires that we be able to consistently estimate the asymptotic variance of
√

nĝ(θ0) and
√

nm̂(γ0) , and again holds under mild conditions. In particular, sufficient conditions

for Assumption 7 parts (A), (B), and (E) for the case where θ̂ and γ̂ are GMM estimators are

imposed in Theorems 3.4 and 4.5 of Newey and McFadden (1994).

Assumption 7 implies Assumption 3:

Lemma 3. Under Assumption 7 parts (A)-(D), if pγ +1 <
∣∣suppF0

(Di)
∣∣ then Assumption 3 holds

for φc (Di) = Λcgφg (Di) and φγ (Di) = Λγmφm (Di) , where Λcg = −C (G′WG)−1 G′W and Λγm =

−(M′UM)−1 M′U are the sensitivities of ĉ with respect to ĝ(θ0) and of γ̂ with respect to m̂(γ0) as

defined in Andrews et al. (2017). Thus, σ2
c = ΛcgΣggΛ′cg and Σγγ = ΛγmΣmmΛ′γm, σ2

c > 0, and Σγγ

has full rank.

Assumption 7 likewise implies Assumption 6:

Lemma 4. Under Assumption 7 parts (A)-(E), Assumption 6 holds for

(11) Σ̂ =
1
n

 ∑i
[
φ̂c (Di) φ̂c (Di)

′]
∑i
[
φ̂c (Di) φ̂γ (Di)

′]
∑i
[
φ̂γ (Di) φ̂c (Di)

′]
∑i
[
φ̂γ (Di) φ̂γ (Di)

′]
 ,

where for Ĉ =C
(
θ̂
)
, Ĝ = Ĝ

(
θ̂
)
, and M̂ = M̂ (γ̂),

φ̂c (·) = Λ̂cgφ̂g (·) =−Ĉ
(
Ĝ′Ŵ Ĝ

)−1
Ĝ′Ŵ φ̂g (·)

and

φ̂γ (·) = Λ̂γmφ̂m (·) =−
(
M̂′ÛM̂

)−1 M̂′Û φ̂m (·) .
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Corollary 1. Under Assumptions 1 and 7, for Σ̂ defined as in (11) and ∆̂ and Λ̂ defined as in (7),

Σ̂
p→ Σ, ∆̂

p→ ∆, and Λ̂
p→ Λ under any local perturbation Fn

ϕ

(
µ√
n

)
.

Mukhin (2018) provides alternative sufficient conditions for consistent estimation of sensitivity

and informativeness. Mukhin (2018) also derives results applicable to GMM models with non-

local misspecification.

Lemma 4 provides a convenient recipe for estimation of Σ and hence of ∆ and Λ. In the case

where θ̂ and γ̂ are GMM or ML estimators, we can write

ĝ(θ) =
1
n

n

∑
i=1

φg (Di;θ)

m̂(γ) =
1
n

n

∑
i=1

φm (Di;γ)

so Assumption 7 holds with φg (Di) = φg (Di;θ0) and φm (Di) = φm (Di;γ0). If θ̂ is an MLE, then

the function φg (Di;θ) is the score.10 Therefore, in the case of GMM, estimates φ̂g (·) = φg
(
·; θ̂
)

and φ̂m (·) = φm (·; γ̂) are available immediately from the computation of the final objective of the

solver for (8) and (9), respectively. In the case of MLE, the score is likewise often computed as part

of the numerical gradient for the likelihood. In both cases Assumption 7 is implied by standard

regularity conditions (as in, e.g., Newey and McFadden 1994).

The other elements of the calculation of φ̂c (·) and φ̂m (·) are also commonly precomputed.

The weights Ŵ and Û are directly involved in the calculation of the objectives in (8) and (9),

respectively. The gradients Ĝ and M̂ are used in standard formulae for asymptotic inference on θ0

and γ0, and the gradient Ĉ is used in delta-method calculations for asymptotic inference on c0.11

In this sense, in many applications estimation of Σ will involve only manipulation of vectors

and matrices already computed as part of estimation of, and inference on, the parameters θ0, γ0 ,

and c0.

10Note that we can characterize the first-order asymptotic behavior of θ̂ even when the first-order conditions do not
uniquely determine θ̂ (e.g., when the likelihood has multiple local optima). See Section 1 of Newey and McFadden
(1994) for discussion.

11Note that in cases where the function c(θ) depends on the distribution of exogenous covariates, our formulation
implicitly treats those covariates as fixed at the sample distribution for the purposes of estimating ∆ and Λ. Appendix
B.3 discusses how to allow for uncertainty in the distribution of covariates in a special case, and presents corresponding
calculations for our applications.
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Recipe. (GMM/MLE)

1) Estimate θ̂ and γ̂ following (8) and (9), respectively and compute ĉ = c
(
θ̂
)
.

2) Collect
{

φg
(
Di; θ̂

)}n
i=1 and {φm (Di; γ̂)}n

i=1 from the calculation of the objective functions

in (8) and (9), respectively.

3) Collect the numerical gradients Ĝ = Ĝ
(
θ̂
)
, M̂ = M̂ (γ̂), and Ĉ =C

(
θ̂
)

from the calculation

of asymptotic standard errors for θ̂ , γ̂ , and ĉ.

4) Compute Λ̂cg = −Ĉ
(
Ĝ′Ŵ Ĝ

)−1
Ĝ′Ŵ and Λ̂γm = −

(
M̂′ÛM̂

)−1 M̂′Û using the weights Ŵ

and Û from the objective functions in (8) and (9), respectively.

5) Compute φ̂c (Di) = Λ̂cgφg
(
Di; θ̂

)
and φ̂γ (Di) = Λ̂γmφm (Di; γ̂) for each i.

6) Compute Σ̂ as in (11).

7) Compute ∆̂ and Λ̂ as in (7).

6 Applications

6.1 The Effects of PROGRESA

Attanasio et al. (2012a) use survey data from Mexico to study the effect of PROGRESA, a random-

ized social experiment involving a conditional cash transfer aimed in part at increasing persistence

in school. The paper estimates a parametric model via maximum likelihood. The paper uses the es-

timated model to conduct a counterfactual experiment in which total school enrollment is increased

via a budget-neutral reallocation of program funds.

The estimate of interest ĉ is the partial-equilibrium effect of the counterfactual rebudgeting on

the school enrollment of eligible children, accumulated across age groups (Attanasio et al. 2012a,

sum of ordinates for the line labeled “fixed wages” in Figure 2, minus sum of ordinates for the line

labeled “fixed wages” in the left-hand panel of Figure 1).

Attanasio et al. (2012a) discuss the “exogeneous variability in [their] data that drives [their]

results” as follows (p. 53):

The comparison between treatment and control villages and between eligible and

ineligible households within these villages can only identify the effect of the existence
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of the grant. However, the amount of the grant varies by the grade of the child. The

fact that children of different ages attend the same grade offers a source of variation

of the amount that can be used to identify the effect of the size of the grant. Given

the demographic variables included in our model and given our treatment for initial

conditions, this variation can be taken as exogenous. Moreover, the way that the grant

amount changes with grade varies in a non-linear way, which also helps identify the

effect.

Thus, the effect of the grant is identified by comparing across treatment and control

villages, by comparing across eligible and ineligible households (having controlled for

being “non-poor”), and by comparing across different ages within and between grades.

(p. 53)

Motivated by this discussion, we define three vectors γ̂ of descriptive statistics, which correspond

to sample treatment-control differences from the experimental data. The first vector (“impact on

eligibles”) consists of the age-grade-specific treatment-control differences for eligible children (in-

teracting elements of Attanasio et al. 2012a, Table 2, single-age rows of the column labeled “Im-

pact on Poor 97,” with the child’s grade). The second vector (“impact on ineligibles”) consists of

the age-grade-specific treatment-control differences for ineligible children (interacting elements of

Attanasio et al. 2012a, Table 2, single-age rows of the column labeled “Impact on non-eligible,”

with the child’s grade). The third vector consists of both of these groups of statistics.

We estimate the informativeness of each vector γ̂ for the estimate ĉ following the recipe in

Section 5.1. Because model estimation is via maximum likelihood and γ̂ can be represented as

GMM, the recipe applies directly.

Table 1 reports the estimated informativeness of each vector of descriptive statistics. The es-

timated informativeness for the combined vector is 0.28. This is largely accounted for by the

age-grade-specific treatment-control differences for eligible children.12

This result shows that the authors’ estimator does indeed depend on the treatment-control dif-

ferences γ̂ , but that it also depends to a substantial degree on other features of the data orthogonal to

γ̂ . A reader wishing to evaluate the credibility of the conclusions will gain only limited confidence

12The estimated informativeness is slightly higher, at 0.31, if we define ĉ to be the partial-equilibrium effect of the
program on the school enrollment of eligible children, accumulated across age groups (Attanasio et al. 2012a, sum of
ordinates for the line labeled “fixed wages” in the left-hand panel of Figure 1). The corresponding parameter c0 can
be estimated without most of the structure of the model, by comparing the school enrollment of eligible children in
treatment and control villages (as in Attanasio et al. 2012a, Table 2, column labeled “Impact on Poor 97”).
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from believing that the elements of γ̂ are valid estimates of treatment effects, and that the model

links these treatment effects correctly to the counterfactual c0 of interest. In particular, Proposition

1 tells us that knowing that γ̂ is correctly specified reduces the width of the bounds on bias in ĉ by

a factor of only 1−
√

1−0.28 ≈ 0.15. To gain more confidence in the estimates, a reader would

need to evaluate the other assumptions in the model, specifically those that relate c0 to features of

the data orthogonal to γ̂ .

6.2 Newspaper Demand

Gentzkow (2007a) uses survey data from a cross-section of individuals to estimate demand for print

and online newspapers in Washington DC. The paper estimates a parametric model via maximum

likelihood. A central goal of Gentzkow’s (2007a) paper is to estimate the extent to which online

editions of papers crowd out readership of the associated print editions, which in turn depends on

a key parameter governing the extent of print-online substitutability.

The estimate of interest ĉ is the change in readership of the Washington Post print edition that

would occur if the Post online edition were removed from the choice set (Gentzkow 2007a, Table

10, row labeled “Change in Post readership”).

Gentzkow (2007a) discusses two features of the data that can help to distinguish correlated

tastes from true substitutability: (i) a set of instruments—such as a measure of Internet access at

work—that plausibly shift the utility of online papers but do not otherwise affect the utility of print

papers; and (ii) a coarse form of panel data—separate measures of consumption in the last day and

last five weekdays—that make it possible to relate changes in consumption of the print edition to

changes in consumption of the online edition over time for the same individual (p. 730).

Motivated by Gentzkow’s (2007a) discussion, we define three vectors γ̂ of descriptive statistics.

The first vector (“IV coefficient”) is the coefficient from a 2SLS regression of last-five-weekday

print readership on last-five-weekday online readership, instrumenting for the latter with the set of

instruments (Gentzkow 2007a, Table 4, Column 2, first row). The second vector (“panel coeffi-

cient”) is the coefficient from an OLS regression of last-one-day print readership on last-one-day

online readership controlling for the full set of interactions between indicators for print readership

and indicators for online readership in the last five weekdays. Each of these regressions includes

the standard set of demographic controls from Gentzkow (2007a, Table 5). The third vector γ̂ con-

sists of both the IV coefficient and the panel coefficient. Thus, the first two vectors have dimension
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1, and the third has dimension 2.

We estimate the informativeness of each vector γ̂ for the estimate ĉ following the recipe in

Section 5.1. Because model estimation is via maximum likelihood and γ̂ can be represented as

GMM, the recipe applies directly.

Table 2 reports the estimated informativeness of each vector of descriptive statistics. The es-

timated informativeness of the combined vector is 0.51. This is accounted for almost entirely by

the panel coefficient, which alone has estimated informativeness of 0.50. The IV coefficient, by

contrast, has estimated informativeness of only 0.01.

These results clarify the relative importance of the model’s assumptions. Gentzkow’s (2007a)

discussion of identification highlights both the exclusion restrictions underlying the IV coefficient

and the panel variation underlying the panel coefficient as sources of identification, and if anything

places more emphasis on the former. Given this, a reader interested in assessing the credibility of

the estimates might naturally focus most of her attention on the exclusion restrictions and other

assumptions relevant to the IV coefficient.

Our results here suggest that this could be a mistake. While exclusion restrictions alone may

be sufficient for identification of the substitution patterns in the model, the estimator ĉ is in fact

much more related to the panel coefficient than to the IV coefficient, and knowing that the IV

coefficient alone is correctly specified should have little effect on a reader’s confidence in the

estimator ĉ. By contrast, confidence in the model’s interpretation of the panel coefficient—which

we can loosely interpret as confidence in the model’s assumptions about the time structure of

preference shocks—delivers significant additional confidence in the estimator. A reader may also

wish to consider other assumptions beyond those that relate to the panel coefficient, given that the

value of informativeness is well below one.

6.3 Long-term Care Insurance

Hendren (2013a) uses data on insurance eligibility and self-reported beliefs about the likelihood of

different types of “loss” events (e.g., becoming disabled) to recover the distribution of underlying

beliefs and rationalize why some groups are routinely denied insurance coverage. The paper esti-

mates a parametric model via maximum likelihood. We focus here on Hendren’s (2013a) model

of the market for long-term care (LTC) insurance, and define two estimates ĉ of interest.

The first ĉ, the fraction focal point respondents, is an estimated parameter of the model (Hen-
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dren 2013a, Table A-V, row labeled “Fraction focal respondents,” Column labeled “LTC-Reject”).

In Hendren’s (2013a) data, many respondents give “focal” responses of 0, 0.5, or 1 to survey elic-

itations of probabilistic beliefs. To allow for the possibility that these focal responses are not the

respondents’ actual beliefs, Hendren’s (2013a) model assumes that with some probability each re-

spondent is a “focal point respondent” whose response is 0, 0.5, or 1, depending on which of three

intervals her true beliefs falls into. This probability is the fraction focal point respondents.

The second ĉ, the minimum pooled price ratio among rejectees, is a function of the estimated

parameters of the model (Hendren 2013a, Table V, row labeled “Reject,” column labeled “LTC”).

The minimum pooled price ratio determines the range of preferences for which insurance markets

cannot exist (Hendren 2013a, Corollary 2 to Theorem 1). This ratio is a key output of the analysis,

as it provides an economic rationale for the insurance denials that are the paper’s focus.

Hendren (2013a) writes that “the fraction of focal point respondents...and the focal point win-

dow...are identified from the distribution of focal points and the loss probability at each focal point”

(p. 1752). Hendren (2013a) also explains that the parameters that determine the minimum pooled

price ratio are identified from the relationship of elicited beliefs to the eventual realization of loss

events such as long term care (pp. 1751-2).

Motivated by Hendren’s (2013a) discussion, we define four vectors γ̂ of descriptive statistics.

The first vector (“fractions in focal-point groups”) consists of the fraction of respondents who re-

port exactly 0, the fraction who report exactly 0.5, and the fraction who report exactly 1. The sec-

ond vector (“fractions in non-focal-point groups”) consists of the fractions of respondents whose

reports are in each of the intervals (0.1, 0.2], (0.2, 0.3], (0.3, 0.4], (0.4, 0.5), (0.5, 0.6], (0.6, 0.7],

(0.7, 0.8], (0.8, 0.9], and (0.9, 1). The third vector (“fraction in each group needing LTC”) consists

of the fraction of respondents giving each of the preceding reports who eventually need long-term

care. The fourth vector γ̂ consists of all three of the other vectors.

Hendren’s (2013a) discussion suggests that the first two vectors γ̂ will be especially informative

for the fraction focal point respondents, and that the third vector will be especially informative for

the minimum pooled price ratio.

We estimate the informativeness of each vector γ̂ for each estimate ĉ following the recipe in

Section 5.1. Because model estimation is via maximum likelihood and γ̂ can be represented as

GMM, the recipe applies directly.

Table 3 reports the estimated informativeness of each vector of descriptive statistics for each

estimate of interest.
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For the fraction focal point respondents, the estimated informativeness is 0.63. The estimated

informativeness is 0.35 with respect to the fractions in focal point groups, 0.30 with respect to the

fractions in non-focal-point groups, and 0.08 with respect to the fraction in each group needing

LTC.

These results show that the focal point parameter is strongly related to the fraction of focal

point responses, as expected from the structure of the model and from the author’s discussion.

For the minimum pooled price ratio, the estimated informativeness is 0.70. The estimated

informativeness is 0.01 with respect to the fractions in focal point groups, 0.02 with respect to the

fractions in non-focal-point groups, and 0.68 with respect to the fraction in each group needing

LTC.

This suggests that, consistent with what one might expect given the author’s discussion, the

estimated minimum pooled price ratio is strongly connected to the relationship between elicited

beliefs and eventual use of LTC. A reader willing to entertain the possibility that the model is

locally misspecified will gain meaningful confidence in the estimated minimum pooled price ratio

if she is willing to entertain that the full vector γ̂ of descriptive statistics is correctly specified under

the model.

7 Conclusions

We propose a measure ∆ of the informativeness of a vector γ̂ of descriptive statistics for a parameter

estimate ĉ of interest. Informativeness is the R2 from a regression of ĉ on γ̂ under their joint

asymptotic distribution. For any given degree of local misspecification, we show that ∆, and only

∆, governs the ratio of the maximal asymptotic bias in ĉ under all possible local perturbations to the

maximal asymptotic bias in ĉ under those perturbations which imply that γ̂ is correctly specified.

We provide a convenient recipe for computing a consistent estimator ∆̂ of ∆. We apply the recipe

to three recent papers and interpret the results. We propose that applied researchers wishing to

relate some descriptive statistics to some estimate of interest should report the corresponding ∆̂.
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A Proofs

A.1 Proof of Proposition 1

We first consider the case with γ̄ unrestricted and ∆ < 1, noting that ∆ < 1 implies that Σ has full

rank.13 Define Λ∗ = Σγcσ−2
c and B =

[
1 0
−Λ∗ I

]
. The triangular matrix B has full rank since its

diagonal entries are strictly positive, so(
c

γ

)′
Σ
−1

(
c

γ

)
=

(
B

(
c

γ

))′ (
BΣB′

)−1 B

(
c

γ

)
.

Note, however, that

B

(
c

γ

)
=

(
c̄

γ̄−Λ∗c̄

)
while

BΣB′ =

[
σ2

c 0
0 Σγγ −Λ∗σ2

c Λ∗
′

]
.

Hence, (
c

γ

)′
Σ
−1

(
c

γ

)
=

c̄2

σ2
c
+(γ̄−Λ

∗c̄)′
(

Σγγ −Λ
∗
σ

2
c Λ
∗′
)−1

(γ̄−Λ
∗c̄) .

The matrix Σγγ −Λ∗σ2
c Λ∗

′
is the asymptotic variance of

√
n(γ̂−Λ∗ĉ) and so is positive semi-

definite. Since one can choose γ̄ to set the second term to zero for all values c̄, the range of values
of c̄ϕ consistent with the restriction in Condition 2 is [−σc,σc] . The form of Bµ then follows
immediately from Condition 1.

We next consider the case with γ̄ unrestricted and ∆ = 1. Let O be a full-rank matrix with
first row proportional to Λ and remaining rows Λ⊥ such that Λ⊥ΣγγΛ′ = 0.14 We therefore have

OΣγγO′ =

[
σ2

c 0
0 Λ⊥ΣγγΛ⊥

′

]
. Consequently, we can write

γ̄
′
Σ
−1
γγ γ̄ = (Oγ̄)′

(
OΣγγO′

)−1 Oγ̄

=
(Λc̄)2

σ2
c

+
(

Λ
⊥

γ̄

)′(
Λ
⊥

ΣγγΛ
⊥′
)−1

Λ
⊥

γ̄.

13To see that this is case, note that we have already assumed Σgg has full rank, and ∆ < 1 implies that
√

n(ĉ− c0)
cannot be expressed (asymptotically under Fn

0 ) as a linear combination of
√

n(γ̂− γ0). Hence, when ∆ < 1 no element
of the vector (

√
n(ĉ− c0) ,

√
n(γ̂− γ0)) can be expressed (asymptotically under Fn

0 ) as a linear combination of the
other elements, which is equivalent to Σ having full rank.

14For example, we can take any basis for the null space of ΛΣγγ .
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As above, Λ⊥ΣγγΛ⊥
′

is positive semi-definite, and we can always set Λ⊥γ̄ = 0 by picking γ̄ pro-
portional to ΣγγΛ′, so this decomposition makes clear that the range of values consistent with the
restriction in Condition 2 is [−σc,σc] .

To consider the case with γ̄ = 0 and ∆ < 1, define Λ = ΣcγΣ−1
γγ and A =

[
1 −Λ

0 I

]
. A has

full rank, so (
c

γ

)′
Σ
−1

(
c

γ

)
=

(
A

(
c

γ

))′ (
AΣA′

)−1 A

(
c

γ

)
.

Note, however, that

A

(
c

γ

)
=

(
c̄−Λγ̄

γ̄

)
while

AΣA′ =

[
σ2

c −ΛΣγγΛ′ 0
0 Σγγ

]
=

[
σ2

c (1−∆) 0
0 Σγγ

]
.

Hence, (
c

γ

)′
Σ
−1

(
c

γ

)
=

(c̄−Λγ̄)2

σ2
c (1−∆)

+ γ̄
′
Σ
−1
γγ γ̄.

Thus, if we impose γ̄ = 0, then under Condition 2 the range of values of c̄ϕ is
[
−σc
√

1−∆,σc
√

1−∆
]
,

and the form of Bµ

0 follows immediately from Condition 1.
Finally, in the case where γ̄ = 0 and ∆ = 1, under Condition 2 we have c̄ = 0, and the result is

immediate.

A.2 Proof of Lemma 1

By Lemma 7.6 of van der Vaart (1998), Assumption 1 implies that
√

fϕ (Di;ϑ) is differentiable in
quadratic mean in the sense that for all ϕ,

∫ (√
fϕ (d;ϑ)−

√
fϕ (d;0)− 1

2
ϑsϕ (d)

√
fϕ (d;0)

)2

dν (d) = o
(
ϑ

2)
as ϑ → 0. Theorem 7.2 of van der Vaart (1998) then implies that under Fn

0 we have a quadratic
approximation to the log likelihood ratios

(12) log

dFn
ϕ

(
µ√
n

)
dFn

0

=
n

∑
i=1

log

 fϕ

(
Di;

µ√
n

)
fϕ (Di;0)

=
µ√
n

n

∑
i=1

sϕ (Di)−
µ2

2
EF0

[
sϕ (Di)

2
]
+op(1)
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and that EF0

[
sϕ (Di)

]
= 0. Since EF0

[
sϕ (Di)

2
]

is finite, Assumption 3, the Central Limit Theorem
and Slutsky’s Lemma imply that under Fn

0(
log

(
dFn

ϕ

(
µ√
n

)
dFn

0

)
1√
n ∑φc (Di)

1√
n ∑φγ (Di)

)
→d

(
ζ ξc ξγ

)
∼

N



−µ2

2 EF0

[
sϕ (Di)

2
]

0
0

 ,


µ2EF0

[
sϕ (Di)

2
]

µEF0

[
sϕ (Di)φc (Di)

]
µEF0

[
sϕ (Di)φγ (Di)

′]
µEF0

[
φc (Di)sϕ (Di)

]
EF0

[
φc (Di)

2
]

EF0

[
φc (Di)φγ (Di)

′]
µEF0

[
φγ (Di)sϕ (Di)

]
EF0

[
φγ (Di)φc (Di)

]
EF0

[
φγ (Di)φγ (Di)

′]

 .

By Le Cam’s first lemma (see Example 6.5 of van der Vaart 1998) the convergence in distri-
bution of log

(
dFn

ϕ

(
µ√
n

)
/dFn

0

)
to a normal with mean equal to−1

2 of its variance implies that the

sequences Fn
0 and Fn

ϕ

(
µ√
n

)
are mutually contiguous. Le Cam’s third lemma (see Example 6.7 of

van der Vaart 1998) then implies that under Fn
ϕ

(
µ√
n

)
,

(
log

(
dFn

ϕ

(
µ√
n

)
dFn

0

)
1√
n ∑φc (Di)

1√
n ∑φγ (Di)

)
→d

(
ζ ∗ ξ ∗c ξ ∗γ

)
∼

N




µ2

2 EF0

[
sϕ (Di)

2
]

µEF0

[
φc (Di)sϕ (Di)

]
µEF0

[
φγ (Di)sϕ (Di)

]
 ,


µ2EF0

[
sϕ (Di)

2
]

µEF0

[
sϕ (Di)φc (Di)

]
µEF0

[
sϕ (Di)φγ (Di)

′]
µEF0

[
φc (Di)sϕ (Di)

]
EF0

[
φc (Di)

2
]

EF0

[
φc (Di)φγ (Di)

′]
µEF0

[
φγ (Di)sϕ (Di)

]
EF0

[
φγ (Di)φc (Di)

]
EF0

[
φγ (Di)φγ (Di)

′]

 .

Contiguity of Fn
0 and Fn

ϕ

(
µ√
n

)
implies that any quantity that converges in probability under

Fn
0 converges in probability to the same limit under Fn

ϕ

(
µ√
n

)
. Combined with Assumption 3,

however, this means that under Fn
ϕ

(
µ√
n

)
√

n(ĉ− c0, γ̂− γ0) =
1√
n

(
n

∑
i=1

φc (Di) ,
n

∑
i=1

φγ (Di)

)
+op (1) ,

and thus that
√

n

(
ĉ− c0

γ̂− γ0

)
→d N

((
µcϕ

µγϕ

)
,

(
σ2

c Σcγ

Σγc Σγγ

))
,

for (
cϕ

γϕ

)
=

(
EF0

[
φc (Di)sϕ (Di)

]
EF0

[
φγ (Di)sϕ (Di)

] ) ,
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and (
σ2

c Σcγ

Σγc Σγγ

)
=

(
EF0

[
φc (Di)

2
]

EF0

[
φc (Di)φγ (Di)

′]
EF0

[
φγ (Di)φc (Di)

]
EF0

[
φγ (Di)φγ (Di)

′]
)
.

This completes the proof.

A.3 Proof of Lemma 2

We first consider the case with ∆ < 1, and show that for any (c̄, γ̄) consistent with (3) we can find
ϕ ∈Φ such that

(
c̄ϕ , γ̄ϕ

)
= (c̄, γ̄) . First consider any

(13) (c,γ) ∈

(c,γ) ∈ R×Rpγ :

√√√√( c

γ

)′
Σ−1

(
c

γ

)
= 1

 .

Define

s(Di;c,γ) =
(

φc (Di) φγ (Di)
′
)

Σ
−1

(
c

γ

)
and note that EF0 [s(Di;c,γ)] = 0 and

EF0

[
s(Di;c,γ)2

]
=

(
c

γ

)′
Σ
−1

(
c

γ

)
= 1.

Hence, by Assumption 2 there exists ϕ ∈ Φ with sϕ (Di) = s(Di;c,γ) F0-almost everywhere. By
construction (

cϕ

γϕ

)
=

(
EF0

[
φc (Di)sϕ (Di)

]
EF0

[
φγ (Di)sϕ (Di)

] )=

(
c

γ

)
,

so we can attain any (c,γ) satisfying (13).
Next, consider any

(c,γ) ∈

(c,γ) ∈ R×Rpγ :

√√√√( c

γ

)′
Σ−1

(
c

γ

)
< 1

 ,

and note that by Assumption 3 (and in particular the assumption that dim(γ)+1 <
∣∣suppF0

(Di)
∣∣),

there exists a function ε∗ (·) with EF0 [ε
∗ (Di)] = 0, EF0

[
ε∗ (Di)

2
]
= 1, EF0 [ε

∗ (Di)φc (Di)] = 0,
EF0

[
ε∗ (Di)φγ (Di)

]
= 0, and therefore EF0 [ε

∗ (Di)s(Di;c,γ)] = 0. Let us consider ϕ ∈ Φ corre-
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sponding to

sϕ (Di) = s(Di;c,γ)+

√√√√1−

(
c

γ

)′
Σ−1

(
c

γ

)
ε
∗ (Di) ,

noting that since the right hand side has mean zero and variance one, such a ϕ again exists by
Assumption 2. The corresponding score sϕ (Di) again delivers the desired

(
c̄ϕ , γ̄ϕ

)
.

We next establish the result in the other direction (again for the case of ∆ < 1), and show that
for any ϕ ∈Φ,

(
c̄ϕ , γ̄ϕ

)
satisfy (3). Consider any ϕ , and note that we can write

sϕ (Di) = s
(

Di;cϕ ,γϕ

)
+ εϕ (Di)

for εϕ (Di) = sϕ (Di)− s
(

Di;cϕ ,γϕ

)
. Note that by the definition of s

(
Di;cϕ ,γϕ

)
,

(
EF0

[
φc (Di)sϕ (Di)

]
EF0

[
φγ (Di)sϕ (Di)

] )=

 EF0

[
φc (Di)s

(
Di;cϕ ,γϕ

)]
EF0

[
φγ (Di)s

(
Di;cϕ ,γϕ

)]  ,

and thus (
EF0

[
φc (Di)εϕ (Di)

]
EF0

[
φγ (Di)εϕ (Di)

] )= 0.

Hence, εϕ (Di) is orthogonal to φc (Di) and φγ (Di) , and thus to s
(

Di;cϕ ,γϕ

)
. In particular, we

can interpret s
(

Di;cϕ ,γϕ

)
as the projection of sϕ (Di) onto

(
φc (Di) ,φγ (Di)

)
, and εϕ (Di) as the

residual from this projection. Using this orthogonality, note that

√
EF0

[
sϕ (Di)

2
]
=

√
EF0

[
s
(

Di;cϕ ,γϕ

)2
]
+EF0

[
εϕ (Di)

2
]

≥

√
EF0

[
s
(

Di;cϕ ,γϕ

)2
]
=

√√√√( cϕ

γϕ

)′
Σ−1

(
cϕ

γϕ

)
.

Thus, for ∆ < 1,
√

EF0

[
sϕ (Di)

2
]
≤ 1 implies that

(
cϕ ,γϕ

)
satisfies (3). This completes the proof

for the case with ∆ < 1.
We finally consider the case with ∆ = 1. In this case, we can repeat the argument above

(dropping c̄ and replacing Σ with Σγγ ) to show that a value γ̄ is consistent with
√

EF0

[
sϕ (Di)

2
]
≤ 1

if and only if
√

γ̄ ′Σ−1
γγ γ̄ ≤ 1. The proof of Proposition 5 below shows, however, that c̄ϕ =Λγ̄ϕ when

∆ = 1, which completes the proof.
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A.4 Proof of Proposition 2

By the Neyman-Pearson Lemma (see Theorem 3.2.1 in Lehmann and Romano 2005), the most
powerful level-α test of H0 : (D1, ...,Dn)∼Fn

0 against H1 : (D1, ...,Dn)∼Fn
ϕ

(
µ√
n

)
rejects when the

log likelihood ratio log
(

dFn
ϕ

(
µ√
n

)
/dFn

0

)
exceeds a critical value cα,n chosen to ensure rejection

probability α under H0 (and may randomize when the log likelihood ratio exactly equals the critical
value).

From the proof of Lemma 1, however, we see that since we limit attention to non-trivial
perturbations,

log

dFn
ϕ

(
µ√
n

)
dFn

0

→d

N
(
−µ2

2 ,µ2
)

under Fn
0

N
(

µ2

2 ,µ2
)

under Fn
ϕ

(
µ√
n

) .
Hence, since cα,n corresponds to the 1−α quantile of the log likelihood ratio under the null, we
see that it converges to the 1−α quantile of a N

(
−µ2

2 ,µ2
)

distribution. Thus,

log

(
dFn

ϕ

(
µ√
n

)
dFn

0

)
− cα,n

µ
→d

N (−cα ,1) under Fn
0

N (µ− cα ,1) under Fn
ϕ

(
µ√
n

)
for cα the 1−α quantile of a standard normal distribution, from which the result follows.

A.5 Proof of Proposition 3

Assumption 5 and Leibniz’s rule implies for n sufficiently large we can exchange integration and
differentiation twice in the definition of r

(
F0,Fϕ

(
µ√
n

))
, so by Taylor’s Theorem

n · r
(

F0,Fϕ

(
µ√
n

))
=

n ·EF0

 ψ

(
fϕ (Di;0)
fϕ (Di;0)

)
+ψ ′

(
fϕ (Di;0)
fϕ (Di;0)

) ∂

∂ϑ
fϕ (Di;0)

fϕ (Di;0)
µ√
n

+1
2

(
ψ ′
(

fϕ(Di;ϑ̃n)
fϕ (Di;0)

)
∂2

∂ϑ2 fϕ(Di;ϑ̃n)
fϕ (Di;0)

+ψ ′′
(

fϕ(Di;ϑ̃n)
fϕ (Di;0)

)(
∂

∂ϑ
fϕ(Di;ϑ̃n)
fϕ (Di;0)

)2
)

µ2

n


for ϑ̃n a sequence of values with ϑ̃n ∈

[
0, µ√

n

]
. Thus, since ψ (1) = 0 by Assumption 4,

n ·EF0

ψ

dFϕ

(
µ√
n

)
dF0

=
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EF0


√

nµψ ′ (1)sϕ (Di)

+µ2

2

(
ψ ′
(

fϕ(Di;ϑ̃n)
fϕ (Di;0)

)
∂2

∂ϑ2 fϕ(Di;ϑ̃n)
fϕ (Di;0)

+ψ ′′
(

fϕ(Di;ϑ̃n)
fϕ (Di;0)

)(
∂

∂ϑ
fϕ(Di;ϑ̃n)
fϕ (Di;0)

)2
)  .

Assumption 5 and Leibniz’s rule implies that

∂

∂ϑ

∫
fϕ (d;ϑ)dν (d) =

∫
∂

∂ϑ
fϕ (d;ϑ)dν (d) .

This can also be verified using Assumption 1 together with Lemma 7.6 and Theorem 7.2 of van
der Vaart (1998). Hence, we see that

EF0

[
sϕ (Di)

]
=
∫

∂

∂ϑ
fϕ (d;0)dν (d) =

∂

∂ϑ

∫
fϕ (d;0)dν (d) = 0,

and thus that

n ·EF0

ψ

dFϕ

(
µ√
n

)
dF0

=

µ2

2
EF0

ψ
′

(
fϕ

(
Di; ϑ̃n

)
fϕ (Di;0)

)
∂ 2

∂ϑ 2 fϕ

(
Di; ϑ̃n

)
fϕ (Di;0)

+ψ
′′

(
fϕ

(
Di; ϑ̃n

)
fϕ (Di;0)

)(
∂

∂ϑ
fϕ

(
Di; ϑ̃n

)
fϕ (Di;0)

)2
 .

The Dominated Convergence Theorem then implies that (since ψ ′′ (1) = 2 by Assumption 4, and
the expression in brackets is uniformly bounded on Nϑ by a random variable with finite expecta-
tion by Assumption 5)

µ2

2
EF0

ψ
′

(
fϕ

(
Di; ϑ̃n

)
fϕ (Di;0)

)
∂ 2

∂ϑ 2 fϕ

(
Di; ϑ̃n

)
fϕ (Di;0)

+ψ
′′

(
fϕ

(
Di; ϑ̃n

)
fϕ (Di;0)

)(
∂

∂ϑ
fϕ

(
Di; ϑ̃n

)
fϕ (Di;0)

)2
→

µ2

2
EF0

[
ψ
′
(

fϕ (Di;0)
fϕ (Di;0)

) ∂ 2

∂ϑ 2 fϕ (Di;0)

fϕ (Di;0)
+ψ

′′
(

fϕ (Di;0)
fϕ (Di;0)

)
sϕ (Di)

2

]

= µ
2EF0

[
ψ ′ (1)

2

∂ 2

∂ϑ 2 fϕ (Di;0)

fϕ (Di;0)
+ sϕ (Di)

2

]
.

However,

EF0

[
∂ 2

∂ϑ 2 fϕ (Di;0)

fϕ (Di;0)

]
=
∫

∂ 2

∂ϑ 2 fϕ (d;0)dν (d) =
∂ 2

∂ϑ 2

∫
fϕ (d;0)dν (d) = 0,
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so
lim
n→∞

n · r
(

F0,Fϕ

(
µ√
n

))
= µ

2EF0

[
sϕ (Di)

2
]
= µ

2,

where the last equality follows from Assumption 1 and the fact that we have limited attention to
non-trivial perturbations.

A.6 Proof of Proposition 5

For trivial perturbations (i.e. perturbations with EF0

[
sϕ (Di)

2
]
= 0) the Cauchy-Schwarz inequal-

ity implies that c̄ϕ = 0 and γ̄ϕ = 0, since for example
∣∣c̄ϕ

∣∣ ≤ σc

√
EF0

[
sϕ (Di)

2
]
. Hence, for the

remainder of the proof we consider non-trivial perturbations with EF0

[
sϕ (Di)

2
]
= 1.

Define s(Di; γ̄) = φγ (Di)
′
Σ−1

γγ γ, and

εϕ (Di) = sϕ (Di)− s
(
Di; γ̄ϕ

)
.

Note that EF0

[
φγ (Di)εϕ (Di)

]
= 0 and EF0

[
s
(
Di; γ̄ϕ

)
εϕ (Di)

]
= 0 by construction. We can write

cϕ = EF0

[
φc (Di)sϕ (Di)

]
= EF0

[
φc (Di)φγ (Di)

]
Σ
−1
γγ γ̄ϕ +EF0

[
φc (Di)εϕ (Di)

]
= Λγ̄ϕ +EF0

[
φc (Di)εϕ (Di)

]
.

Next, define
φ̃c (Di) = φc (Di)−Λφγ (Di)

and note that
EF0

[
φc (Di)εϕ (Di)

]
= EF0

[
φ̃c (Di)εϕ (Di)

]
.

The Cauchy-Schwarz inequality then implies that

∣∣EF0

[
φ̃c (Di)εϕ (Di)

]∣∣≤√EF0

[
φ̃c (Di)

2
]√

EF0

[
εϕ (Di)

2
]

=
√

σ2
c −ΛΣγγΛ′

√
EF0

[
εϕ (Di)

2
]

= σc
√

1−∆

√
1− γ̄ ′ϕΣ

−1
γγ γ̄ϕ .

Combining these results we see that for (µ,ϕ) such that µγ̄ϕ = γ̄

µ c̄ϕ ∈
[

Λγ̄−σc
√

1−∆

√
µ2− γ̄ ′Σ−1

γγ γ̄,Λγ̄ +σc
√

1−∆

√
µ2− γ̄ ′Σ−1

γγ γ̄

]
,
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which are the bounds stated in the proposition. In particular,

0≤ EF0

[
εϕ (Di)

2
]
= 1− γ̄

′
ϕΣ
−1
γγ γ̄ϕ ,

so if µγ̄ϕ = γ̄, we must have γ̄ ′Σ−1
γγ γ̄ ≤ µ2. Hence, if µ2− γ̄ ′Σ−1

γγ γ̄ < 0 then there exists no ϕ with
µγ̄ϕ = γ̄, so the set of possible values for µ c̄ϕ is empty.

To complete the proof it remains to show that these bounds are tight, so that for any (c̄, γ̄,µ)

with

(14) c̄ ∈
[

Λγ̄−σc
√

1−∆

√
µ2− γ̄ ′Σ−1

γγ γ̄,Λγ̄ +σc
√

1−∆

√
µ2− γ̄ ′Σ−1

γγ γ̄

]
there exists ϕ ∈Φ with µ c̄ϕ = c̄ and µγ̄ϕ = γ̄. To prove that this is the case, let us assume without
loss of generality that µ = 1 (the result in other cases corresponds to a rescaling of this case). If
∆ < 1, define

s∗ (Di; c̄, γ̄) = s(Di; γ̄)+ φ̃c (Di)
c̄−Λγ̄

σ2
c (1−∆)

.

Note that
EF0

[
φγ (Di)s∗ (Di; c̄, γ̄)

]
= γ̄

while
EF0 [φc (Di)s∗ (Di; c̄, γ̄)] = Λγ̄ +EF0

[
φ̃c (Di)

2
] c̄−Λγ̄

σ2
c (1−∆)

= c̄.

Moreover,

EF0

[
s∗ (Di; c̄, γ̄)2

]
= EF0

[
s(Di; γ̄)2

]
+EF0

[
φ̃c (Di)

2
] (c̄−Λγ̄)2

σ4
c (1−∆)2

= γ̄
′
Σ
−1
γγ γ̄ +

(c̄−Λγ̄)2

σ2
c (1−∆)

.

However, by (14) we know that

|c̄−Λγ̄| ≤ σc
√

1−∆

√
1− γ̄ ′Σ−1

γγ γ̄

and thus that
(c̄−Λγ̄)2

σ2
c (1−∆)

≤
(

1− γ̄
′
Σ
−1
γγ γ̄

)
so EF0

[
s∗ (Di; c̄, γ̄)2

]
≤ 1. Hence, for ε∗ (Di) such that EF0

[
φγ (Di)ε∗ (Di)

]
= 0, EF0 [φc (Di)ε∗ (Di)]=

0, and EF0

[
ε∗ (Di)

2
]
= 1 (which exists as argued in the proof of Lemma 2), by Assumption 2 there
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exists ϕ with score corresponding to

s∗ (Di; c̄, γ̄)+

√
1−EF0

[
s∗ (Di; c̄, γ̄)2

]
ε
∗ (Di)

and this ϕ yields EF0

[
φc (Di)sϕ (Di)

]
= c̄, EF0

[
φγ (Di)sϕ (Di)

]
= γ̄ , as desired. In cases with ∆= 1,

on the other hand, we can repeat the same argument with s∗ (Di; c̄, γ̄) = s(Di; γ̄) . That Bµ

γ̄
gives

the range of asymptotic biases for ĉ under perturbations with µγ̄ϕ̄ = γ̄ then follows from Lemma
1.

The result for Bµ(γ̄) is immediate from Lemma 2 and Proposition 1.

A.7 Proof of Proposition 6

The proof of Lemma 1 shows that the distribution of the data under Fn
ϕ

(
µ√
n

)
is mutually contigu-

ous with that under Fn
0 . Hence, to establish convergence in probability under all local perturbations,

it suffices to establish convergence in probability under Fn
0 . Consistency of ∆̂ and Λ̂ under Fn

0 is
implied by the Continuous Mapping Theorem (see e.g. Theorem 2.3 of van der Vaart 1998) and
the maintained assumptions that σ2

c > 0 and Σγγ has full rank.

A.8 Proof of Lemma 3

The proof of Proposition 1 in Andrews et al. (2017) along with Remark 1 in that paper (or, alter-
natively, the proof of Theorem 3.2 of Newey and McFadden 1994), implies that

√
n(ĉ− c0, γ̂− γ0) =

√
n
(
Λcgĝ(θ0) ,Λγmm̂(γ0)

)
+op (1) .

The result then follows immediately from Assumption 7.

A.9 Proof of Lemma 4

Note, first, that Λ̂cg
p→ Λcg and Λ̂γm

p→ Λγm by Assumption 7 parts (A)-(C) along with the Contin-
uous Mapping Theorem (see e.g. Theorem 2.3 of van der Vaart 1998). Next, for

Σ
∗ =

(
Σgg Σgm

Σmg Σmm

)

and Σ̂∗ the estimator on the left hand side of (10), Assumption 7 part (E) implies that Σ̂∗→p Σ∗.

By Lemma 3,
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Σ =

[
EF0

[
φc (Di)

2
]

EF0

[
φc (Di)φγ (Di)

′]
EF0

[
φγ (Di)φc (Di)

]
EF0

[
φγ (Di)φγ (Di)

′]
]
=

[
Λcg 0
0 Λγm

]
Σ
∗

[
Λcg 0
0 Λγm

]′
.

Finally, note that we can write Σ̂ as

Σ̂ =

[
Λ̂cg 0
0 Λ̂γm

]
Σ̂
∗

[
Λ̂cg 0
0 Λ̂γm

]′
,

so Σ̂→p Σ by the Continuous Mapping Theorem.

A.10 Proof of Corollary 1

Follows immediately from Lemma 4 and Proposition 6.

B Additional Results

B.1 Non-constant η

In the main text we assume that the true data generating process lies in a neighborhood of a fixed
distribution F0 =F (η0) , and compare ĉ and γ̂ to fixed values c0 and γ0. In this section we show that
our results are robust to instead allowing the “centering” value of η (and thus the corresponding c

and γ) to vary with the sample size, local to a fixed η0.

Assumptions

Define H as a set of values such that for all h ∈H , η0 + ς · h ∈ H for ς > 0 sufficiently small.
Define Fh,ϕ (ς ,ϑ) to perturb F (η0 + ς ·h) by ϑ in the direction ϕ .15 We again assume the distribu-
tions Fh,ϕ (ς ,ϑ) have densities fh,ϕ (ς ,ϑ) with respect to a dominating measure ν . The information
matrix for (ς ,ϑ), treating (h,ϕ) as known, is

Ih,ϕ (ς ,ϑ) = EFh,ϕ (ς ,ϑ)


(

∂

∂ς
fh,ϕ (Di;ς ,ϑ)

fh,ϕ (Di;ς ,ϑ)

)2 ∂

∂ς
fh,ϕ (Di;ς ,ϑ)

fh,ϕ (Di;ς ,ϑ)

∂

∂ϑ
fh,ϕ (Di;ς ,ϑ)

fh,ϕ (Di;ς ,ϑ)

∂

∂ς
fh,ϕ (Di;ς ,ϑ)

fh,ϕ (Di;ς ,ϑ)

∂

∂ϑ
fh,ϕ (Di;ς ,ϑ)

fh,ϕ (Di;ς ,ϑ)

(
∂

∂ϑ
fh,ϕ (Di;ς ,ϑ)

fh,ϕ (Di;ς ,ϑ)

)2

 .

15If η0 + ς ·h 6∈ H we may define this distribution arbitrarily.
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Define sh (Di) =
∂

∂ς

(
log fh,ϕ (Di;0,0)

)
and sϕ (Di) =

∂

∂ϑ

(
log fh,ϕ (Di;0,0)

)
. We impose the fol-

lowing assumption, which extends Assumption 1 to the present setting:

Assumption 8. For (ς ,ϑ) in an open neighborhood of zero and all h∈H , ϕ ∈Φ; (i)
√

fh,ϕ (d;ς ,ϑ)

is continuously differentiable with respect to (ς ,ϑ) for all d ∈D; (ii) Ih,ϕ (ς ,ϑ) is finite and con-

tinuous in (ς ,ϑ); and (iii) EF0

[(
sϕ (Di)

)2
]
∈ {0,1}.

We likewise extend Assumption 2, while Assumption 3 does not require modification.

Assumption 9. The set of score functions sϕ (Di) includes all those consistent with Assumption 8,

in the sense that for any s(·) with EF0 [s(Di)] = 0 and EF0

[
s(Di)

2
]
∈ {0,1} there exists ϕ ∈Φ with

EF0

[(
s(Di)− ∂

∂ϑ
log
(
sϕ (Di)

))2
]
= 0.

Finally, we need an assumption to control the behavior of c and γ as η varies. Formally, we
define γ (η) as the probability limit of γ̂ under Fn (η) (which we assume exists for η sufficiently
close to η0) and impose the following:

Assumption 10. For any h∈H and τ ≥ 0, if η0,n = η0+
τ√
nh, c0,n = c(η0,n) , and γ0,n = γ (η0,n),

then under Fn (η0,n),
√

n

(
ĉ− c0,n

γ̂− γ0,n

)
→d N (0,Σ)

for

Σ =

(
σ2

c Σcγ

Σγc Σγγ

)
=

(
EF0

[
φc (Di)

2
]

EF0

[
φc (Di)φγ (Di)

′]
EF0

[
φγ (Di)φc (Di)

]
EF0

[
φγ (Di)φγ (Di)

′]
)
.

This assumption implies that (ĉ, γ̂) are regular (see e.g., Newey 1994) and is required for
standard inference procedures based on (ĉ, γ̂) to be valid under the model.

With these assumptions, we obtain a generalization of Lemmas 1 and 2.

Lemma 5. If Assumptions 3, 8, and 10 hold, then under Fn
h,ϕ

(
τ√
n ,

µ√
n

)
,

√
n

(
ĉ− c0,n

γ̂− γ0,n

)
→d N

((
µcϕ

µγϕ

)
,Σ

)
,

for
(

cϕ ,γϕ

)
and Σ as in Lemma 1.
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Lemma 6. For
(

cϕ ,γϕ

)
and Σ as defined in Lemma 1, Assumption 9 implies that for ∆ < 1 the set

of values
(

cϕ ,γϕ

)
associated with the set of all directions ϕ ∈Φ is

B =

{
(c,γ) ∈ R×Rpγ :

(
c

γ

)′
Σ
−1

(
c

γ

)
≤ 1

}

If ∆ = 1, this set of values is

B =
{
(c,γ) ∈ R×Rpγ : c̄ = Λγ̄, γ̄ ′Σ−1

γγ γ̄ ≤ 1
}

for Λ = ΣcγΣ−1
γγ .

These lemmas verify the analogue of Conditions 1 and 2 for the setting with drifting η , so
Propositon 1 immediately generalizes as well.

Proposition 7. Suppose Assumptions 3 and 8-10 hold, and consider the set of local perturba-

tions Fn
h,ϕ

(
τ√
n ,

µ√
n

)
with τ unrestricted and µ fixed. The asymptotic biases in ĉ associated with

perturbations in this set are

Bµ = [−σcµ,σcµ] .

The asymptotic biases in ĉ associated with the subset of these perturbations for which γϕ = 0 are

Bµ

0 =
[
−σcµ

√
1−∆,σcµ

√
1−∆

]
.

The ratio of the widths of these intervals is∣∣Bµ

0

∣∣
|Bµ | =

√
1−∆.

B.1.1 Proofs

Proof of Lemma 5 The proof for this result follows by the same argument as the proof of Lemma
1. Lemma 7.6 and Theorem 7.2 of van der Vaart (1998) imply that under Fn

0

log

dFh,ϕ

(
τ√
n ,

µ√
n

)
dFn

0

=
1√
n

n

∑
i=1

(
τsh (Di)+µsϕ (Di)

)
− 1

2

(
τ

µ

)′
Ih,ϕ (0,0)

(
τ

µ

)
+op (1)
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and that EF0 [sh (Di)] = EF0

[
sϕ (Di)

]
= 0. By the same argument used in the proof of Lemma 1, Le

Cam’s Third Lemma then implies that under Fn
h,ϕ

(
τ√
n ,

µ√
n

)
,

(15)
√

n

(
ĉ− c0

γ̂− γ0

)
→d N

((
τ c̄h +µcϕ

τγ̄h +µγϕ

)
,Σ

)
,

for (
c̄h

γ̄h

)
=

(
EF0 [φc (Di)sh (Di)]

EF0

[
φγ (Di)sh (Di)

] ) .

If we consider (15) in the special case with µ = 0, Assumption 10 implies that under Fn (η0,n) ,

√
n


ĉ− c0

γ̂− γ0

ĉ− c0,n

γ̂− γ0,n

→d N




τ c̄h

τγ̄h

0
0

 ,

(
Σ Σ

Σ Σ

)
and hence that

√
n

(
c0,n− c0

γ0,n− γ0

)
→

(
τ c̄h

τγ̄h

)
.

Consequently, under Fn
h,ϕ

(
τ√
n ,

µ√
n

)
,

√
n

(
ĉ− c0,n

γ̂− γ0,n

)
→d N

((
µcϕ

µγϕ

)
,Σ

)
.

This completes the proof.

Proof of Lemma 6 This lemma follows by the same argument as in the proof of Lemma 2.

Proof of Proposition 7 Given the results of Lemmas 5 and 6, this proposition follows by the
same argument as in the proof of Proposition 1.

B.2 Non-Local Misspecification

Under Assumptions 1-3, provided the estimators ĉ and γ̂ are regular in the sense discussed in
Newey (1994), Theorem 2.1 of Newey (1994) implies that the probability limits c̃(·) and γ̃ (·) are
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asymptotically linear functionals, in the sense that

(16)
limϑ→0

∥∥c̃
(
Fϕ (ϑ)

)
− c0−ϑEF0

[
sϕφc (Di)

]∥∥/ϑ = 0 for all ϕ ∈Φ

limϑ→0
∥∥γ̃
(
Fϕ (ϑ)

)
− γ0−ϑEF0

[
sϕφγ (Di)

]∥∥/ϑ = 0 for all ϕ ∈Φ.

See Newey (1994) and Rieder (1994) for discussion.
Since (16) only restricts behavior as ϑ → 0 along fixed paths Fϕ (·), rather than working with

∆̃r̄ as defined in the main text, here we instead work with misspecification measures defined using
finite collections of paths. Specifically, for each ϕ ∈Φ let

ϑ̄ϕ (r̄) = inf
{

ϑ ∈ R+ : r
(
F0,Fϕ (ϑ)

)
≥ r̄
}

denote the largest value of ϑ such that r
(
F0,Fϕ (ϑ)

)
< r̄ for all ϑ < ϑ̄ϕ (r̄) . Let Φ+ ⊂ Φ de-

note the set of values ϕ corresponding to non-trivial perturbations (that is, perturbations with
EF0

[
sϕ (Di)

2
]
= 1) which also satisfy Assumption 5. Let Q ⊂ Φ+ denote a finite subset of Φ+,

and let Q denote the set of all such finite subsets. Finally, let

B̃r̄ (Q) =
{

c̃
(
Fϕ (ϑ)

)
− c0 : ϕ ∈ Q,ϑ < ϑ̄ϕ (r̄)

}
denote the analogue of B̃r̄ based on the finite set of paths Q, and for ε > 0 let

B̃r̄
ε (Q) =

{
c̃
(
Fϕ (ϑ)

)
− c0 : ϕ ∈ Q,ϑ < ϑ̄ϕ (r̄) ,

∥∥γ̃
(
Fϕ (ϑ)

)
− γ0

∥∥≤ ε
√

r̄
}
,

denote the analogue of B̃r̄
0 based on Q which allows inconsistency in γ̂ of at most ε

√
r̄. Because

B̃r̄
0 (Q) may equal {0} even for large r̄ due to the approximation error in (16), we consider limits

as ε ↓ 0 (i.e., as ε → 0 from above).
Based on these objects, we define the analogue of ∆̃(r̄) as

∆̃(r̄,Q) = sup
Q1∈Q

inf
Q2∈Q

lim
ε↓0

∣∣Conv
(
B̃r̄

ε (Q1)
)∣∣∣∣Conv

(
B̃r̄ (Q2)

)∣∣ ,
provided the limit exists, where Conv(A) denotes the convex hull of the set A. We work with
convex hulls because the sets B̃r̄ (Q) and B̃r̄

ε (Q) need not be intervals.

Proposition 8. Suppose Assumptions 1-3 hold, and that the estimators ĉ and γ̂ are regular. For

r (F0,F) = EF0

[
ψ

(
dF
dF0

)]
and ψ satisfying the conditions of Proposition 3 in the paper,

sup
Q1∈Q

inf
Q2∈Q

lim
ε↓0

lim
r̄↓0

∣∣Conv
(
B̃r̄

ε (Q1)
)∣∣∣∣Conv

(
B̃r̄ (Q2)

)∣∣ =√1−∆.
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It is important that we take the limit as r̄ ↓ 0 inside the limit as ε ↓ 0 and the sup and inf, since
this order of limits allows us to take advantage of the approximation result (16).

Proof of Proposition 8 Note, first, that our Assumptions 1-3 imply the conditions of Theorem
2.1 of Newey (1994) other than regularity of (ĉ, γ̂). Specifically, our Assumption 1 imposes that
our paths are what Newey (1994) terms “regular.” Condition (i) of Theorem 2.1 in Newey (1994)
is then immediate from our Assumption 2, up to the scale normalization we impose on the scores,
which only affects the interpretation of the parameter ϑ . Condition (ii) follows from the same
observation. Condition (iii) is implied by our Assumption 3. Regularity of (ĉ, γ̂) is assumed, so
Theorem 2.1 of Newey (1994) implies (16).

Note, next, that for any ϕ ∈Φ+, the proof of Proposition 3 implies that

lim
ϑ↓0

r
(
F0,Fϕ (ϑ)

)
/ϑ

2 = 1.

Hence, as r̄ ↓ 0, ϑ̄ϕ (r̄)/
√

r̄→ 1. For all ϕ ∈Φ+, (16) implies that

limr̄↓0 sup
ϑ≤ϑ̄ϕ (r̄)

∣∣c̃(Fϕ (ϑ)
)
− c0−ϑEF0

[
sϕ (Di)φc (Di)

]∣∣/ϑ = 0

limr̄↓0 sup
ϑ≤ϑ̄ϕ (r̄)

∣∣γ̃ (Fϕ (ϑ)
)
− γ0−ϑEF0

[
sϕ (Di)φγ (Di)

]∣∣/ϑ = 0,

and thus that {
1√
r̄

(
c̃
(
Fϕ (ϑ)

)
− c0, γ̃

(
Fϕ (ϑ)

)
− γ0

)
: ϑ ≤ ϑ̄ϕ (r̄)

}
→
{

ϑ̃
(
EF0

[
sϕ (Di)φc (Di)

]
,EF0

[
sϕ (Di)φγ (Di)

])
: ϑ̃ ≤ 1

}
in the Hausdorff sense as r̄ ↓ 0. Correspondingly, for any Q ∈Q,{

1√
r̄

(
c̃
(
Fϕ (ϑ)

)
− c0, γ̃

(
Fϕ (ϑ)

)
− γ0

)
: ϕ ∈ Q,ϑ ≤ ϑ̄ϕ (r̄)

}
→
{

ϑ̃
(
EF0

[
sϕ (Di)φc (Di)

]
,EF0

[
sϕ (Di)φγ (Di)

])
: ϕ ∈ Q, ϑ̃ ≤ 1

}
.

In particular, this implies that for Q ∈Q,

1√
r̄

Conv
(
B̃r̄ (Q)

)
→
[(

min
ϕ∈Q

EF0

[
sϕ (Di)φc (Di)

])
−
,

(
max
ϕ∈Q

EF0

[
sϕ (Di)φc (Di)

])
+

]
where (A)− = min{A,0} and (A)+ = max{A,0}. Hence,

1√
r̄

∣∣Conv
(
B̃r̄ (Q)

)∣∣→ (max
ϕ∈Q

EF0

[
sϕ (Di)φc (Di)

])
+

−
(

min
ϕ∈Q

EF0

[
sϕ (Di)φc (Di)

])
−
.
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Matters are somewhat more delicate for B̃r̄
ε (Q) . Note, in particular, that for ε > 0,

1√
r̄
B̃r̄

ε (Q)→
{

ϑ̃EF0

[
sϕ (Di)φc (Di)

]
: ϕ ∈ Q, ϑ̃ ≤ 1, ϑ̃

∥∥EF0

[
sϕ (Di)φγ (Di)

]∥∥≤ ε
}

=

{
ϑ̃EF0

[
sϕ (Di)φc (Di)

]
: ϕ ∈ Q, ϑ̃ ≤min

{
1,

ε∥∥EF0

[
sϕ (Di)φγ (Di)

]∥∥
}}

,

where we define ε/0 = ∞ for ε > 0. Consequently,

1√
r̄

∣∣Conv
(
B̃r̄

ε (Q)
)∣∣

→

∣∣∣∣∣
{

ϑ̃EF0

[
sϕ (Di)φc (Di)

]
: ϕ ∈ Q, ϑ̃ ≤min

{
1,

ε∥∥EF0

[
sϕ (Di)φγ (Di)

]∥∥
}}∣∣∣∣∣ .

Note, however, that by the Cauchy-Schwarz inequality and E
[
sϕ (Di)

2
]
≤ 1 by Assumption 1,

EF0

[
sϕ (Di)φc (Di)

]
is finite for all ϕ ∈Φ, so for any ϕ with EF0

[
sϕ (Di)φγ (Di)

]
6= 0,

ε∥∥EF0

[
sϕ (Di)φγ (Di)

]∥∥EF0

[
sϕ (Di)φc (Di)

]
→ 0

as ε ↓ 0. Hence, as ε ↓ 0,∣∣∣∣∣
{

ϑ̃EF0

[
sϕ (Di)φc (Di)

]
: ϕ ∈ Q, ϑ̃ ≤min

{
1,

ε∥∥EF0

[
sϕ (Di)φγ (Di)

]∥∥
}}∣∣∣∣∣

→
∣∣{ϑ̃EF0

[
sϕ (Di)φc (Di)

]
: ϕ ∈ Q0, ϑ̃ ≤ 1

}∣∣ ,
for Q0 =

{
ϕ ∈ Q : EF0

[
sϕ (Di)φγ (Di)

]
= 0
}

.
This immediately implies

lim
ε↓0

lim
r̄↓0

1√
r̄

∣∣Conv
(
B̃r̄

ε (Q)
)∣∣= (max

ϕ∈Q0
EF0

[
sϕ (Di)φc (Di)

])
+

−
(

min
ϕ∈Q0

EF0

[
sϕ (Di)φc (Di)

])
−
.

Hence,

lim
ε↓0

lim
r̄↓0

∣∣Conv
(
B̃r̄

ε (Q1)
)∣∣∣∣Conv

(
B̃r̄ (Q2)

)∣∣ =
(
maxϕ∈Q1,0 EF0

[
sϕ (Di)φc (Di)

])
+
−
(
minϕ∈Q1,0 EF0

[
sϕ (Di)φc (Di)

])
−(

maxϕ∈Q2 EF0

[
sϕ (Di)φc (Di)

])
+
−
(
minϕ∈Q2 EF0

[
sϕ (Di)φc (Di)

])
−

,

for Q1,0 =
{

ϕ ∈ Q1 : EF0

[
sϕ (Di)φγ (Di)

]
= 0
}
, provided the denominator on the right hand side
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is non-zero.16

To complete the proof, note that for Q0 the set of possible Q0,

sup
Q1∈Q

inf
Q2∈Q

lim
ε↓0

lim
r̄↓0

∣∣Conv
(
B̃r̄

ε (Q1)
)∣∣∣∣Conv

(
B̃r̄ (Q2)

)∣∣
=

supQ0∈Q0

{(
maxϕ∈Q0 EF0

[
sϕ (Di)φc (Di)

])
+
−
(
minϕ∈Q0 EF0

[
sϕ (Di)φc (Di)

])
−

}
supQ∈Q

{(
maxϕ∈Q EF0

[
sϕ (Di)φc (Di)

])
+
−
(
minϕ∈Q EF0

[
sϕ (Di)φc (Di)

])
−

} .

The proof of Proposition 5 shows, however, that

max
ϕ∈Φ

EF0

[
sϕ (Di)φc (Di)

]
=−min

ϕ∈Φ
EF0

[
sϕ (Di)φc (Di)

]
= σc

and

max
ϕ∈Φ:EF0[sϕ φγ (Di)]=0

EF0

[
sϕ (Di)φc (Di)

]
=− min

ϕ∈Φ:EF0[sϕ φγ (Di)]=0
EF0

[
sϕ (Di)φc (Di)

]
= σc
√

1−∆.

Hence,

sup
Q1∈Q

inf
Q2∈Q

lim
ε↓0

lim
r̄↓0

∣∣Conv
(
B̃r̄

ε (Q1)
)∣∣∣∣Conv

(
B̃r̄ (Q2)

)∣∣ =√1−∆,

as we wanted to show.

B.3 Accounting for Richer Dependence of ĉ on the Data

In Section 5, for cases where the function c(θ) depends on the distribution of exogenous covariates,
our formulation implicitly treats those covariates as fixed at the sample distribution for the purposes
of estimating ∆ and Λ. Here we discuss how to allow for uncertainty in the distribution of covariates
in a special case, and present corresponding calculations for our applications.

Suppose in particular that

(17) ĉ =
1
n ∑

i
c
(
θ̂ ;Di

)
for some function c(). In contrast to the setup in Section 5, here we allow that ĉ depends on the
data directly, and not only through the dependence of ĉ on θ̂ .

16If the denominator on the right hand side is zero, we define the limit as +∞.
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In this case, one can show that the recipe in Section 5 applies, with the modification that

(18) φ̂c (Di) = c
(
θ̂ ;Di

)
+ Λ̂cgφg

(
Di; θ̂

)
where φg

(
Di; θ̂

)
and Λ̂cg are as defined in Section 5, and Ĉ in the definition of Λ̂cg is now given

by the gradient of 1
n ∑i c(θ ;Di) with respect to θ at θ̂ .

The proof of this result, which we omit, proceeds by noting that we can augment the GMM pa-
rameter vector as (c,θ), and correspondingly augment the moment equation as (c(θ ;Di) ,φg (Di;θ)),
following which we can derive the estimated influence function for ĉ as we would for any element
of θ̂ .

In the cases of Attanasio et al. (2012a) and Gentzkow (2007a), we can represent the calcu-
lation of ĉ in the form given in (17) and thus calculate ∆̂ using the modified estimated influence
function in (18). In the case of Attanasio et al. (2012a), the estimates in Table 1 change from 0.283,
0.227, and 0.056, respectively, to 0.277, 0.221, and 0.055. In the case of Gentzkow (2007a), the
estimates in Table 2 change from 0.514 , 0.009, and 0.503, respectively, to 0.517, 0.008, and 0.507.
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Table 1: Estimated informativeness of descriptive statistics for the effect of a counterfactual rebud-
geting of PROGRESA (Attanasio et al. 2012a)

Descriptive statistics γ̂ Estimated informativeness ∆̂

All 0.283
Impact on eligibles 0.227
Impact on ineligibles 0.056

Notes: The table shows the estimated informativeness ∆̂ of three vectors γ̂ of descriptive statis-
tics for the estimated partial-equilibrium effect ĉ of the counterfactual rebudgeting on the school
enrollment of eligible children, accumulated across age groups (Attanasio et al. 2012a, sum of
ordinates for the line labeled “fixed wages” in Figure 2, minus sum of ordinates for the line la-
beled “fixed wages” in the left-hand panel of Figure 1). Vector γ̂ “impact on eligibles” consists of
the age-grade-specific treatment-control differences for eligible children (interacting elements of
Attanasio et al. 2012a, Table 2, single-age rows of the column labeled “Impact on Poor 97,” with
the child’s grade). Vector γ̂ “impact on ineligibles” consists of the age-grade-specific treatment-
control differences for ineligible children (interacting elements of Attanasio et al. 2012a Table 2,
single-age rows of the column labeled “Impact on non-eligible,” with the child’s grade). Vector
γ̂ “all” consists of both of these groups of statistics. Estimated informativeness ∆̂ is calculated
according to the recipe in Section 5.1 using the replication code and data posted by Attanasio et al.
(2012b).
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Table 2: Estimated informativeness of descriptive statistics for the effect of eliminating the Post
online edition (Gentzkow 2007a)

Descriptive statistics γ̂ Estimated informativeness ∆̂

All 0.514
IV coefficient 0.009
Panel coefficient 0.503

Notes: The table shows the estimated informativeness ∆̂ of three vectors γ̂ of descriptive statis-
tics for the estimated effect ĉ on the readership of the Post print edition if the Post online edition
were removed from the choice set (Gentzkow 2007a, table 10, row labeled “Change in Post read-
ership”). Vector γ̂ “IV coefficient” is the coefficient from a 2SLS regression of last-five-weekday
print readership on last-five-weekday online readership, instrumenting for the latter with the set
of excluded variables such as Internet access at work (Gentzkow 2007a, Table 4, Column 2, first
row). Vector γ̂ “panel coefficient” is the coefficient from an OLS regression of last-one-day print
readership on last-one-day online readership controlling for the full set of interactions between
indicators for print readership and for online readership in the last five weekdays. Each of these
regressions includes the standard set of demographic controls from Gentzkow (2007a, Table 5).
Vector γ̂ “all” consists of both the IV coefficient and the panel coefficient. Estimated informa-
tiveness ∆̂ is calculated according to the recipe in Section 5.1 using the replication code and data
posted by Gentzkow (2007b).
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Table 3: Estimated informativeness of descriptive statistics for key estimates from Hendren (2013a)

Descriptive statistics γ̂ Estimated informativeness ∆̂ for
Fraction focal point Minimum pooled

respondents price ratio
All 0.627 0.700
Fractions in focal point groups 0.351 0.005
Fractions in non-focal point groups 0.300 0.018
Fraction in each group needing LTC 0.076 0.676

Notes: The table shows the estimated informativeness ∆̂ of four vectors γ̂ of descriptive statistics
for each of two estimates ĉ of interest from Hendren (2013a). The first estimate of interest ĉ is
the “fraction focal point respondents” (Hendren 2013a, Table A-V, row labeled “Fraction focal
respondents,” column labeled “LTC-Reject”). The second estimate of interest ĉ is the “minimum
pooled price ratio” (Hendren 2013a, Table V, row labeled “Reject,” column labeled “LTC”). Vector
γ̂ “fractions in focal point groups” consists of the fraction of respondents who report exactly 0, the
fraction who report exactly 0.5, and the fraction who report exactly 1. Vector γ̂ “fractions in
non-focal point groups” consists of the fractions of respondents whose reports are in each of the
intervals (0.1, 0.2], (0.2, 0.3], (0.3, 0.4], (0.4, 0.5), (0.5, 0.6], (0.6, 0.7], (0.7, 0.8], (0.8, 0.9], and
(0.9, 1). Vector γ̂ “fraction in each group needing LTC” consists of the fractions of respondents
giving each of the preceding reports who eventually need long-term care. Vector γ̂ “all” consists
of all three of the other vectors. Estimated informativeness ∆̂ is calculated according to the recipe
in Section 5.1 using the replication code and data posted by Hendren (2013b), supplemented with
additional calculations provided by the author.
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Figure 1: Set of possible values of
(

cϕ ,γϕ

)
under local perturbations

Notes: Figure shows the ellipsoid defined in (3) for the case with pγ = 1 and ∆= 0.64. The interval
labeled “γϕ unconstrained” characterizes the set of all possible values of cϕ . The interval labeled
“γϕ = 0” characterizes the set of possible values of cϕ when γϕ = 0. The diagonal line through
the ellipsoid connects the points on the ellipsoid that achieve the minimum and maximum values
of c̄ϕ .
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Figure 2: Asymptotic bias cϕ of estimator under local perturbations

Notes: Figure shows the limits of the intervals Bµ (labeled “γϕ unconstrained”) and Bµ

0 (labeled
“γϕ = 0”) defined in Proposition 1 for the case of ∆ = 0.75. The intervals are normalized by the
standard error σc, so that a value of 1 on the y-axis indicates a first-order asymptotic bias of one
standard error σc.
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