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1 Introduction

The asset market view of exchange rates, whereby the depreciation rate is computed as
the ratio of foreign and domestic pricing kernels, has become a dominant paradigm in
financial economics following the influential work of Backus, Foresi, and Telmer (2001)
(B/F/T hereafter). Thus, empirical applications require estimates of the pricing kernels,
and looking to bond prices as the relevant source of information appears to be a natural
step. Indeed, it was pursued by B/F/T, among others.

A typical finding is that the variation in depreciation rates, inferred via the asset market
view, has little to do with that of the observed ones, referred to as the FX volatility anomaly
(Brandt and Santa-Clara, 2002), and that the inferred depreciation rates cannot replicate
the FX forward premium anomaly, that is, the well-documented violations of the uncovered
interest parity (UIP) hypothesis (B/F/T).

In this paper we argue that one must use information about depreciation rates jointly with
bond prices in order to understand the cross-country differences between bonds and their
connection to exchange rates. That is because, as we show, depreciation rates are not
spanned by bonds. As a result, one cannot use information in bonds alone to infer the
dynamics of depreciation rates. This focus is distinct from exploration of market incom-
pleteness as a potential source of FX anomalies (e.g., Lustig and Verdelhan, 2015). Market
incompleteness does not imply lack of FX spanning. Lack of FX spanning does imply mar-
ket incompleteness with respect to bonds, but not necessarily with respect to a larger set
of assets.1

Further, using bonds to infer pricing kernels naturally connects to the literature on no-
arbitrage models of international yield curves. Typically, this research focuses on similar-
ities between the different countries by modeling global/US and local/foreign factors and
quantifying their contribution to the overall variation of the curves. The conclusion is that
common variation is the major driver of interest rates.

We show that the differences in domestic and foreign bonds must be related to depreciation
rates. Indeed, cross-country differences between yields reflect expected depreciation rates
and the associated currency risk premiums. Cross-country differences between bond risk
premiums reflect currency risk premiums. We demonstrate that in our sample of three
countries (USA, Germany, and UK) the second and third principal components of the joint
set of three yield curves are approximated by these differences. This evidence suggests
an important role for depreciation rates and the associated currency risk premiums in
understanding international yield curves.

1Markets are complete if there is a price for any asset in any state of the world, in other words one can
trade a given set of assets to achieve any possible payoff and, therefore, know its value. If an exchange rate
is unspanned by bonds, then the market cannot be complete with respect to bonds alone. The market could
still be complete with respect to bonds and exchange rates.
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We implement the joint modeling of bonds and currencies using the no-arbitrage affine
framework. This approach allows us to estimate the USD-denominated pricing kernels
using data on USD-denominated domestic and foreign bond prices, and on exchange rates
(referred to as the WFX approach, estimation With FX rates). This is in contrast to the
predominant approach that estimates the pricing kernel denominated in currency of a given
country using data on bonds of the same country that are denominated in the currency
of that country (referred to as the NFX approach, No FX rates used in estimation). This
helps us with matching the observed FX rates and, therefore, the differences between the
different yield curves.

We show that there is no difference in how the two approaches match yields, consistent
with currencies that are unspanned by bonds. However, the exchange rate implied by the
NFX approach is grossly misspecified. Its behavior is in line with findings reported by
previous studies. In contrast, the WFX approach implies realistic exchange rate behavior.
In particular, we can match all the FX moments discussed by B/F/T.

The NFX approach does not allow one to address how currency risk premiums connect
bond yields and risk premiums of different countries. We use the WFX model to interpret
the differences between the international yield curves. We derive currency and bond risk
premiums from our model and we find that they (i) have exposures to factors that were not
previously considered in the literature, e.g., differences in long-term interest rate spreads in
addition to the usual interest rate differential considered in the UIP literature, and (ii) the
factors that are affecting the two types of premiums are not necessarily the same. Thus,
studying currency risk premiums or bond risk premiums in isolation does not offer a full
picture.

The main lesson from our empirical study is that augmenting the set of assets by exchange
rates makes a big difference in the implications for the analysis of international asset mar-
kets. In particular, this suggests that a rich collection of international bonds does not
complete the markets. Market incompleteness with respect to bonds should be a starting
point for an equilibrium model of exchange rates.

Our paper connects with several research themes. We do not provide a grand literature
review. Instead, in an attempt to offer clarity, we describe the related work when we cover
an appropriate subtopic.

2 Preliminary analysis

The purpose of this section is to connect two observations. First, loosely speaking, the
differences between bonds of different countries reflect FX-related quantities. Differences
in yields reflect expectations of depreciation rates and currency risk premiums. Differences
in bond risk premiums reflect currency risk premiums. Second, despite these relationships,
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one cannot use bond data alone to say something useful about currencies. This is because
depreciation rates are not spanned by yields. The implication is that one has to use FX-data
in conjunction with bond data to produce accurate currency-related measurements, or to
use properties of currencies to say something about bond behavior.

2.1 Bonds and currencies

Suppose Mt,t+i is a USD-denominated i-period pricing kernel. Then the USD-denominated
value of any zero-coupon bond of maturity n is

Pn
t = Et(Mt,t+n · Ct,t+n),

where Ct,t+i is the cash flow growth between time t and t+ i. If the bond is issued in USD,
then Ct,t+i = 1; we denote its price by Qn

t and its yield is ynt = −n−1 logQn
t . If the bond is

issued in foreign currency, then Ct,t+i = St+i/St with St representing the value of one unit

of foreign currency in USD; we denote the foreign bond price by Q̂n
t and its yield is ŷnt in

this case.

The USD bond one-period excess returns, in logs, are:

rxnt+1 ≡ pn−1
t+1 − p

n
t + p1

t = −(n− 1)yn−1
t+1 + nynt − y1

t (1)

with a similar expression for the foreign currency, r̂xnt+1. Note that the reference rate for
foreign excess returns is the short rate of the respective country, ŷ1

t . Therefore, r̂xnt+1 does
not depend on the currency of that country. In logs, this is equivalent to using the US short
rate y1

t as a reference irrespective of the country and then constructing currency-hedged
bond returns.

2.2 Differences between international yields

The yields ynt and ŷnt share a simple relationship. We use ∆ to denote the one-period time-
series difference operator, ∆c to denote the cross-country difference operator, and lowercase
letters to denote logs of variables. We have, under conditional log-normality,

q̂nt = logEt

(
e
∑n
i=1 mt+i−1,t+i+∆st+i

)
= qnt + Et

(
n∑

i=1

∆st+i

)
+

1

2
vart

(
n∑

i=1

∆st+i

)
+ covt

(
n∑

i=1

mt+i−1,t+i,

n∑
i=1

∆st+i

)
.

After multiplying both sides by −n−1, we get the interest rate differential (IRD):

∆cy
n
t ≡ ynt − ŷnt = esnt − srpnt + vsnt . (2)
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Here esnt ≡ n−1Et (
∑n

i=1 ∆st+i) is the average expected depreciation rate, and srpnt ≡
−n−1covt (

∑n
i=1mt+i−1,t+i,

∑n
i=1 ∆st+i) is the (ex-ante) currency “risk premium.” We

use the quotation marks because srpnt does not reflect the convexity term vsnt ≡
(2n)−1vart (

∑n
i=1 ∆st+i). The currency risk premium measures the additional compen-

sation that an investor in foreign bonds requires in order to be exposed to future shocks to
the exchange rate.

Likewise, there is a simple currency-related connection between the excess returns on bonds
from different countries. Combining equations (1) and (2) we get:

∆crx
n
t+1 ≡ rxnt+1 − r̂x

n
t+1 = (n− 1) · srpn−1

t+1 − n · srp
n
t + srp1

t (3)

− (n− 1) · vsn−1
t+1 + n · vsnt − vs1

t

− unt+1 + u1
t+1,

where, for a given horizon j, ujt+1 = Et+1

(∑j
i=1 ∆st+i

)
− Et

(∑j
i=1 ∆st+i

)
– is the sur-

prise in expectations of the depreciation rate. Therefore, ignoring convexity, differences in
expected log excess returns are driven by the differences in currency risk premiums across
different horizons.

These expressions highlight that differences in international yield curves are driven by either
investors’ expectations of future depreciation rates or by currency risk premiums. Thus the
observed differences in yield curves or excess returns, tell us about some combination of
them.

2.3 Data

We work with monthly data from the US, UK, and Germany/Eurozone from January 1983
to December 2015 making for T = 396 observations per country. All data is aligned to the
end of the month. US government yields are downloaded from the Federal Reserve and are
constructed by Gurkaynak, Sack, and Wright (2007). All foreign government zero-coupon
yields with maturities 12, 24, 36, 48, and 60 months are downloaded from their respective
central banks (Federal Reserve, Bank of England, and Bundesbank). The corresponding
nominal exchange rates are from the Federal Reserve Bank of St. Louis. Prior to the
introduction of the Euro, we use the German Deutschemark and splice these series together
beginning in 1999.

Additionally, we use data on one-month yields to connect our approach to the evidence on
UIP regressions. US one month yields are downloaded from CRSP. UK and German yields
are harder to obtain. We obtain two data sources for each (investing.com for both; Bank
of England for the UK; Federal Reserve Bank of St. Louis for Germany) and use only data
that match across the two sources. This approach produces a nearly full sample for the UK,
and some missing observations for Germany from September 2007 through October 2010.
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2.4 Principal components

We consider three variations of the PC-construction. First, we extract six PCs from US
bonds and the bonds of the country corresponding to the depreciation rates. Second, we
extract six PCs from bonds of all three countries. Lastly, we extract nine PCs from bonds of
all three countries. Table 1 reports the results. Six PCs explain 99.98% of variation in the
yields of all three countries. Nine PCs across the three countries explain as much variation
as six PCs do for yields of two countries (99.9995%).

Next, we approximate PCs with more simple linear combinations of yields to facilitate
interpretation. Specifically, we introduce a vector

ft =



y1
t

∆ec y
1
t

∆£
c y

1
t

y60,1
t

∆ec y
60,1
t

∆£
c y

60,1
t


=



US 1 month yield
US 1 month yield - Euro 1 month yield
US 1 month yield - UK 1 month yield

US slope = US 60 month yield - US 1 month yield
US slope - Euro slope
US slope - UK slope

 .

Figure 1 shows that the PCs and these factors are similar.

The combination of the last column of Table 1 and Figure 1 tells us that the short-term
IRDs, ∆cy

1
t , serve as PC2 and PC3, approximately. Because of the connection of this spread

to expected depreciation rates via equation (2), it is immediately clear that exchange rates
play an important role in the behavior of international yield curves. While the US level
obviously plays the major role by explaining 93.5% of variation, PC2 and PC3 contribute
4.4% and 1.4%, respectively. These are non-trivial amounts as is well known from the
literature on US-only yield curve modeling.

2.5 Using bond data to infer properties of currencies

We argue that, in order to use the differences between international yield curves to char-
acterize exchange rates, one needs to incorporate exchange rate data into a model of yield
curves. That is because exchange rates are hidden in the yield curve. An exchange rate is
hidden if the exchange rate cannot be replicated by a linear combination of yields (Duffee,
2011). That implies that an exchange rate cannot be spanned by bonds.

This concept is different from market completeness. If the market is complete with respect
to bonds and currencies, and currencies are spanned by bonds, then the market is complete
with respect to the bonds only. However, if exchange rates cannot be spanned by bonds
then the market could still be complete, just with respect to a larger set of assets (bonds
and exchange rates). Further, markets may be incomplete regardless of the bonds’ ability
to span exchange rates.
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We proceed in three steps. First, we motivate our unspanning assertion in three ways.
We argue that the existing evidence is already pointing that way. Then, we implement
motivating regressions along the lines of regressions that are used to motivate unspanned
macro variables in the term structure literature. Finally, we offer a fully-worked analytical
example of a two-factor model with unspanned exchange rates.

Second, we implement an affine term structure model. We specify the dynamic properties
of Mt,t+i and St+i, and estimate the model using data on bonds Q = {Qn

t }, Q̂ = {Q̂n
t }, and

the corresponding exchange rate S = {St}. To emphasize the data used in estimation, we
denote the estimated pricing kernel by Mt,t+i(Q, Q̂, S) (or subset of these assets) in contrast
to the true (unknown) pricing kernel Mt,t+i. We test whether exchange rates are hidden in
this setting.

Third, we show what happens if the pricing kernel is estimated using bond data alone,
Mt,t+i(Q, Q̂). We discuss the benefits of adding the exchange rate data for both models of
the term structure and for capturing the exchange rate puzzles.

3 Motivating unspanned exchange rates

3.1 Relation to the literature

A long-standing tradition in the reduced-form no-arbitrage literature is to specify dynamics
of Mt,t+i and a foreign-currency-denominated i-period pricing kernel, M̂t,t+i. The latter
implies a value of a foreign-currency-denominated foreign-issued bond

Q̂n
t = Et(M̂t,t+n).

Estimating a model of Mt,t+1 and M̂t,t+1 using data on Q and Q̂, one obtains estimates of

the pricing kernels Mt,t+1(Q), and M̂t,t+1(Q̂).

Next, researchers infer the depreciation rate via

St+1/St = M̂t,t+1(Q̂)/Mt,t+1(Q). (4)

This relationship is valid under two assumptions. First, the markets are complete. Second,
the estimated pricing kernel matches the true pricing kernel up to estimation noise, that is,
Q and Q̂ span the space of all assets. Put differently, the markets are complete with respect
to bonds.

There are variations in this approach where Mt,t+1 and M̂t,t+1 are estimated simultaneously

resulting in Mt,t+1(Q, Q̂) and M̂t,t+1(Q, Q̂). Examples include, but are not limited to, Ahn
(2004); Backus, Foresi, and Telmer (2001); Brennan and Xia (2006); Jotikasthira, Le, and
Lundblad (2015); Kaminska, Meldrum, and Smith (2013). Sarno, Schneider, and Wagner
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(2012) are similar, but they also incorporate information about conditional expectations of
the depreciation rates into their estimation procedure.

Most papers report that the depreciation rate from (4) does not resemble the observed depre-
ciation rates. Most prominently, researchers document the forward premium and volatility
anomalies. These results might simply manifest a model misspecification. However, the
inherent empirical flexibility of affine models and sophistication of the authors involved
suggest to us that bonds, on their own do not posses the information needed to capture the
behavior of exchange rates.

3.2 Regressions

One way to establish whether an asset (exchange rate) is spanned by other assets (bonds)
is to regress returns of the former on the returns of the latter. To realize a return on an
exchange rate, one must convert domestic currency into foreign currency, purchase a foreign
(riskless) bond, sell it at a later date and then convert the proceeds back to the domestic
currency. In order to avoid exposure to interest rate risk, this has to be a buy-and-hold
strategy: RFX

t+1 = St+1/St/Q̂
1
t . A return on a domestic n−period bond is Rn

t+1 = Qn−1
t+1 /Q

n
t .

Thus, one can regress RFX
t+1 on a set of Rn

t+1 for a variety of horizons n.

One practical problem with these regressions is that we do not have data on bonds with
maturities that are one month apart to compute monthly returns. Thus, the regression could
be implemented at an annual frequency only. We regress RFX

t+12 on Rn
t+12, n = 24, 36, 48, 60.

The R2, regular and adjusted, from these regressions are reported in Table 2A, in the column
labeled “$ returns.” The amount of variation in currency returns that can be hedged with
bonds is quite modest, 16% at most.

To check if the exchange rate is spanned by foreign bonds, one must take the perspective
of a foreign-currency investor: R̂FX

t+1 = St/St+1/Q
1
t , and R̂n

t+1 = Q̂n−1
t+1 /Q̂

n
t ; and implement

a regression on these returns. Table 2A, column labeled “e or £ returns” reports the
R2, which are of the same magnitude as the USD-denominated returns. This evidence
establishes that bonds are unable to span the space of currency payoffs.

In addition, we would like to use our regressions results to understand how to model bonds
and currencies in an affine context. Consequently, we will focus on establishing whether
the depreciation rate is a hidden factor in domestic and foreign yield curves, i.e. that it
does not appear as a factor in the cross-section (Duffee, 2011). As we demonstrate in the
next subsection, a variable that is hidden in the yield curve is not spanned dynamically by
a portfolio of bonds.

There is a well-established literature that primarily focuses on US bonds and seeks to
identify hidden variables. Joslin, Priebsch, and Singleton (2014) refer to them as unspanned
and use regressions of inflation or output growth on yields to motivate their use in a term
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structure model. We follow these authors and implement a regression to motivate our
conjecture that depreciation rates are unspanned by yields. We regress the individual log
depreciation rate on the three versions of principal components (PC) constructed from yields
discussed in section 2.4. The timing is ∆st ∼ ft at a monthly frequency.

Table 2B displays the regression results. The largest R2 is 6.38%.2 Depreciation rates have
very little to do with bond yields. To be clear, we are not imposing this conclusion on our
main term structure model that we introduce in the next section. This conclusion serves as
a motivation for considering different versions of that model. We will be formally testing,
in the context of our model, whether depreciation rates are unspanned.

3.3 Illustration of unspanned exchange rates

We consider a simple example in order to demonstrate the effects of unspanned exchange
rates and to preview the Gaussian term structure framework. We emphasize four main
points. First, even if markets are complete and one knows the true model, the estimated
depreciation rate cannot be identified if it is not observed. As a result, the estimated
expected depreciation rate and its volatility are biased. Second, because of that, one cannot
realistically decompose yield or bond premium spreads into the expected depreciation rate
and currency risk premium. Third, the modeling of bond yields is unaffected by unobserved
exchange rates. Fourth, once the exchange rate is introduced into the set of observations,
one does not need market completeness to estimate its dynamics.

Setup

Consider a vector xt = (y1
t ,∆st)

> that follows a VAR(1):

xt = µx + Φxxt−1 + Σxεt εt ∼ N (0, I) , (5)

where the vector µx has elements µx,i, matrix Φx has elements φx,ij , and matrix Σx has
elements σx,ij .

We model the dynamics of the true USD-denominated log pricing kernel

mt,t+1 = −y1
t −

1

2
λ>t λt − λ>t εt+1, (6)

with market prices of risk

λt = Σ−1
x (λ0 + λxxt) .

2As a reference, Joslin, Priebsch, and Singleton (2014), who argue that inflation and output growth are
unspanned by bonds, report R2 of 86% and 32%, respectively.
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For the purposes of this section only, we assume that the matrix λx has a special form:

λx =

(
λx,11 φx,12

λx,21 φx,22

)
.

In words, changes in risk premiums due to variations in the depreciation rate exactly offset
changes in expectations of future short interest rates and future depreciation rates.

Bond yields

The prices of zero-coupon USD-denominated bonds with maturity n are given by the stan-
dard pricing condition

Qn
t = Et

(
Mt,t+1Q

n−1
t+1

)
.

As a result, because λx,12 = φx,12, US yields are linear functions of y1
t only

ynt = an + bny
1
t . (7)

See Duffee (2011).

Let ej denote a unit vector with a one in location j and zeros in all other entries. The
currency risk premium is

srp1
t = −covt(mt,t+1,∆st+1) = e>2 Σxλt = λ0,2 + λx,21y

1
t + φx,22∆st. (8)

We can express the USD-denominated pricing kernel in foreign currency:

m̂t,t+1 = mt,t+1 + ∆st+1 = mt,t+1 + e>2 xt+1

= −ŷ1
t −

1

2
λ̂>t λ̂t − λ̂>t εt+1, (9)

where

ŷ1
t = α+ βy1

t , (10)

α = −e>2 (µx − λ0)− e>2 ΣxΣ>x e2/2 = −µx,2 + λ0,2 − (σ2
x,21 + σ2

x,22)/2, (11)

β = 1− φx,21 + λx,21, (12)

λ̂t = Σ−1
x

(
λ̂0 + λxxt

)
, (13)

λ̂0 = λ0 − Σx[e>2 Σx]>. (14)

The foreign interest rate ŷ1
t in (10) does not depend on the depreciation rate because

λx,22 = φx,22.

The prices of zero-coupon foreign currency bonds with maturity n are given by

Q̂n
t = Et

[
M̂t,t+1Q̂

n−1
t+1

]
.

As a result, because λx,22 = φx,22, foreign yields are linear functions of ŷ1
t only

ŷnt = ân + b̂nŷ
1
t . (15)
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Spanning

Equations (7) and (15) imply that the depreciation rate is hidden in the yield curves. We
can characterize the implication of these relationships for spanning of currency returns with
a portfolio of bonds that was described in section 3.2:

RFX
t+1 = e∆st+1+ŷ1

t spanned with Rn
t+1 = ean−an−1+bny1

t−bn−1y1
t+1 ;

R̂FX
t+1 = e−∆st+1+y1

t spanned with R̂n
t+1 = eân−ân−1+b̂nŷ1

t−b̂n−1ŷ1
t+1 .

The analytics simplify if we express the return on a portfolio of bonds with a vector of
weights wt in logs. The switch to logs can be justified via a log-linearization: log(w̃>t e

rt+1) ≈
wt0 + w>t rt+1. We use additional notation: b (̂b) for a vector of loadings bn−1 (̂bn−1) for a
range of maturities n, and rt+1 (r̂t+1) for a vector of log returns logRn

t+1 (log R̂n
t+1). Then,

|corrt(rFX
t+1 , w

>
t rt+1)| =

covt(∆st+1, w
>
t by

1
t+1)

var
1/2
t (∆st+1)var

1/2
t (w>t by

1
t+1)

=
σx,21

(σ2
x,21 + σ2

x,22)1/2
< 1,

|corrt(r̂FX
t+1 , w

>
t r̂t+1)| =

covt(∆st+1, w
>
t b̂ŷ

1
t+1)

var
1/2
t (∆st+1)var

1/2
t (w>t b̂ŷ

1
t+1)

=
σx,21

(σ2
x,21 + σ2

x,22)1/2
< 1.

These correlations imply that R2 < 1 for the spanning regressions.3

Thus, a conditional portfolio of bonds cannot span an exchange rate if it is hidden in the
yield curve. Nevertheless, if we assume existence of the currency market and the ability
to trade an infinite number of bonds, the markets would be complete. In that case m̂t,t+1

would be the true foreign pricing kernel.

Estimation, NFX approach

Suppose we ignore information in the depreciation rates to estimate the term structure
model. The issue is whether we can identify the true dynamics of ∆st:

∆st = µx,2 + φx,21y
1
t + φx,22∆st−1 + σx,21ε1t + σx,22ε2t. (16)

Suppose that, in addition, depreciation rates do not predict interest rates (consistent with
the evidence to be discussed in a later section), that is, φx,12 = 0, and Σx is lower triangular
(recursive identification). Then equation (5) implies that the interest rate y1

t follows a
process

y1
t = µx,1 + φx,11y

1
t−1 + σx,11ε1t,

3If the depreciation rate were not hidden, then the conditional correlations above would depend on the
portfolio weights. These weights then could be chosen to maximize the correlation with a possibility of
reaching the value of 1 (if markets are complete with respect to bonds and currencies).
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which can be easily estimated. In addition to the parameters in this equation, the coefficients
an and bn in equation (7) depend on λ0,1 and λx,11. These parameters can be estimated
using US bond data.

The estimated USD pricing kernel is

mt,t+1(Q, Q̂) = mt,t+1(Q) = −y1
t − [σ−1

x,11(λ0,1 + λx,11y
1
t )]2/2− σ−1

x,11(λ0,1 + λx,11y
1
t )ε1t+1.

The foreign rate ŷ1
t is a linear transformation of y1

t , equation (10). If we do not use ∆st in
estimation, we can only identify α and β. Coefficients ân and b̂n in equation (15) depend
on λ̂0,1 and λx,11. These parameters can be estimated from foreign bonds. Equation (14)
implies that

λ̂0,1 = λ0,1 − σx,11σx,22,

Given that we can identify λ0,1 and σx,11 from US bonds, we can infer σx,22.

The estimated foreign currency pricing kernel is

m̂t,t+1(Q, Q̂) = −ŷ1
t − [σ−1

x,11(λ̂0,1 + λx,11y
1
t )]2/2− σ−1

x,11(λ̂0,1 + λx,11y
1
t )ε1t+1.

Thus, if one were to assume complete markets, the estimated depreciation rate would be

∆st+1(Q, Q̂) = m̂t,t+1(Q, Q̂)−mt,t+1(Q, Q̂)

= µx,2 − λ0,2 + σ−1
x,11σx,22λ0,1 + σ2

x,21/2

+ (φx,21 − λx,21 + σ−1
x,11σx,22λx,11)y1

t + σx,22ε1t+1.

The implied currency risk premium is

srp1
t (Q, Q̂) = −covt(mt,t+1(Q, Q̂),∆st+1(Q, Q̂)) = σ−1

x,11σx,22λ0,1 + σ−1
x,11σx,22λx,11y

1
t .

Comparing that with the true depreciation rate in (16) and true currency premium in (8) we
see that we get a bias in both expected depreciation rate, risk premium (forward premium
anomaly), and volatility (volatility anomaly).

Ahn (2004) makes depreciation rate a hidden factor by allowing ∆st to be affected by a
shock that does not affect the USD pricing kernel mt,t+1. If we set risk premium parameters
λ0,2, λx,21, λx,12, λx,22 and persistence parameters φx,12, φx,22 to zero, we obtain a simple
version of that model (it has three factors). In this case the NFX method recovers the USD
pricing kernel, but not the depreciation rate.

These biases take place even if the markets are complete, but some of the assets needed for
market completion (exchange rates) are not used in estimation. The problem is exacerbated
if the markets are incomplete. If ∆st is spanned (matrix λx is unrestricted), then ∆st still
cannot be recovered if one uses bonds only for estimation and the markets are incomplete.
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Estimation, WFX approach

The WFX approach uses observations on ∆st for estimation. As a result one can estimate
the full dynamics of xt in (5). The transition from mt,t+1(Q, Q̂, S) to m̂t,t+1(Q, Q̂, S) by

changing denomination via m̂t,t+1(Q, Q̂, S) = mt,t+1(Q, Q̂, S) + ∆st+1 does not require any
assumptions because it is a simple change in the denomination of the pricing kernel. Once
the parameters of ∆st are estimated, one can use α in (11) to back out the risk premium
parameter λ0,2 and β in (12) to back out λx,21.

Implications for international yield curves and currencies

If the depreciation rate is unspanned by bonds, then both estimation approaches would
produce identical domestic and foreign yields curves. The WFX approach would allow one
to use equations (2) and (3) to decompose the cross-country differences in yields into the
currency premium and expected currency components.

From the currency-modeling perspective, the WFX approach allows for identification of
realistic dynamics of the depreciation rate. It also allows researchers to connect currency
risk premiums to factors driving bond premiums. That is not feasible if one uses observations
on currencies alone.

4 The full model

We model the dynamics of the state vector xt as a Gaussian VAR given by (5). We use µ̄x
to denote the unconditional mean of the state.

4.1 Bonds denominated in US dollars

We model the dynamics of the USD-denominated log pricing kernel

mt,t+1(·) = −δi,0 − δ>i,xxt −
1

2
λ>t λt − λ>t εt+1,

with market prices of risk in equation (7). The notation (·) highlights that we are not
specifying the true pricing kernel Mt,t+1, but only its component that correctly prices a set

of assets to be specified later, either (Q, Q̂), or (Q, Q̂, S). Regardless of the choice of assets,
our model of the component of the USD pricing kernel that values them correctly is the
same.
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The prices of zero-coupon USD-denominated bonds with maturity n are given by the stan-
dard pricing condition

Qn
t = Et

(
Mt,t+1(·)Qn−1

t+1

)
.

As a result, US yields are linear functions of the factors

ynt = an + b>n,xxt.

Expressions for the bond loadings can be found in Appendix A.1.

4.2 Bonds denominated in foreign currency

4.2.1 The NFX approach

In this case Mt,t+1(·) = Mt,t+1(Q, Q̂). Here the state vector xt is presumed to span all
bonds. We model the dynamics of the log pricing kernel denominated in foreign currency
as

m̂t,t+1(Q, Q̂) = −δ̂i,0 − δ̂>i,xxt −
1

2
λ̂>t λ̂t − λ̂>t εt+1 (17)

with market prices of risk

λ̂t = Σ−1
x

(
λ̂0 + λ̂xxt

)
.

We suppress country-specific notation for simplicity.

The prices of zero-coupon foreign currency bonds with maturity n are given by

Q̂n
t = Et

[
M̂t,t+1(Q, Q̂)Q̂n−1

t+1

]
.

As a result, foreign yields are linear functions of the factors

ŷnt = âNn + b̂N>n,x xt.

where the bond loadings can be found in Appendix A.2.

This strategy is similar to the ones undertaken in the literature on international yield
curves. There is some variation: some authors distinguish between global and country-
specific factors; some authors estimate the USD-denominated kernel using USD bond data
only, Mt,t+1(Q), as a first step, and then proceed with estimating M̂t,t+1(Q, Q̂). We use the
joint data and allow yields from each country to load on all the factors allowing the data to
speak to which bonds load on which factors. Assuming market completeness with respect
to bonds, one can infer the log depreciation rate as:

∆st+1 = m̂t,t+1 −mt,t+1 = m̂t,t+1(Q, Q̂)−mt,t+1(Q, Q̂). (18)
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4.2.2 The WFX approach

In this case Mt,t+1(·) = Mt,t+1(Q, Q̂, S). Here the state vector xt is presumed to span all
bonds and exchange rates. The log depreciation rate ∆st is assumed to be a linear function
of the state vector:

∆st = δs,0 + δ>s,xxt. (19)

The prices of zero-coupon foreign currency bonds with maturity n are given by

Q̂n
t = Et

(
Mt,t+1(Q, Q̂, S)

St+1

St
Q̂n−1

t+1

)
. (20)

As a result, foreign yields are linear functions of the factors

ŷnt = âWn + b̂W>n,x xt.

where the bond loadings can be found in Appendix A.3. Bauer and de los Rios (2014);
Graveline and Joslin (2011) model the FX rate directly as well, but do not explore the
implications of such an approach for the FX anomalies, or differences between the yield
curves.

Given the estimated model, we can express the USD-denominated pricing kernel in foreign
currency:

m̂t,t+1(Q, Q̂, S) = mt,t+1(Q, Q̂, S) + ∆st+1. (21)

This equation is an accounting identity that does not require any assumptions in contrast
to (18). Combining equations (19) and (21), we can write

m̂t,t+1(Q, Q̂, S) = −ŷ1
t −

1

2
λ̂>t λ̂t − λ̂>t εt+1,

where λ̂t has the same functional form as (13), and

λ̂0 = λ0 − Σx[δ>s,xΣx]>. (22)

Thus, in contrast to many theoretical models of exchange rates, M(Q, Q̂, S) and M̂(Q, Q̂, S)
are asymmetric. The asymmetry arises via the constant component of the risk premium –
an implication of the constant volatility model of depreciation rates. Changing that feature
would introduce further asymmetry via the time-variation in risk premium.

4.3 Discussion

Our approach appears similar to the exploration of incomplete markets in affine settings
studied by B/F/T and Lustig and Verdelhan (2015). However, there is an important con-
ceptual difference. These authors specify a model of the true domestic and foreign pricing
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kernels, Mt,t+1 and M̂t,t+1, respectively. Then they discuss conditions under which the
markets could be incomplete and how many assets are required to span the markets.

Despite similar-looking equations, we do not assert dynamics of the full pricing kernel.
Instead, we specify the dynamics of that part of the kernel that matches the properties of
a given set of assets: domestic and foreign bonds in the NFX case; domestic and foreign
bonds, and exchange rates in the WFX case. Intuitively, we are constructing something
similar to the pricing kernel projection on a given set of assets. It is not a literal projection
because we are using a model and the full sample of data to estimate it.

Each approach has its virtues. Which one is the most relevant depends on the research
question being asked. Our approach is attractive because we do not have to take a stance
on market completeness to estimate Mt,t+1(Q, Q̂, S), or Mt,t+1(Q, Q̂) and M̂t,t+1(Q, Q̂). As
a result, we can characterize the joint behavior of bonds and exchange rates. A drawback of
our approach is that we cannot determine which assets are needed to complete the markets.
We cannot give a full characterization of market incompleteness and how it impacts one’s
ability to understand some of the currency puzzles.

It has been argued in the literature that one needs to incorporate time-varying volatility
to resolve the FX volatility anomaly in the context of the NFX approach (Anderson, Ham-
mond, and Ramezani, 2010; Brandt and Santa-Clara, 2002). Of course, FX volatility is
time-varying and adding that feature is an obvious extension if one is interested in FX
option valuation or other aspects of FX dynamics. We do not model stochastic volatility
to emphasize the point that there is no volatility anomaly even in a Gaussian model if the
WFX approach is used.

Finally, B/F/T and many authors following them explore so-called square-root, or CIR,
state variables instead of the Gaussian ones used here. This distinction plays no role here.
We are simply looking for models that are capable of realistic fit to the yield curve data.
Starting from Dai and Singleton (2000) and many papers following them, the literature has
concluded that Gaussian models are more flexible in capturing yield co-movement and risk
premiums. These models have been a de-facto standard for the last 15 years. A square-root
factor could be helpful in capturing time-varying volatility of interest rates, but, absent data
on interest rate derivatives, it is very hard to identify empirically (Bikbov and Chernov,
2011).

5 Results

5.1 Empirical approach

We extend the estimation procedure of Joslin, Singleton, and Zhu (2011) to international
yield curves and use Bayesian MCMC to implement it. The approach has two ingredients.
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First, risk premiums λt and λ̂t are estimated by specifying risk-adjusted dynamics of the
state that is implied by the specification of the pricing kernels. The mapping into risk-
adjusted parameters and identifying restrictions are discussed in Appendix B.1. Second,
the state xt is observable and is a linear transformation of yields and, in our case, exchange
rates.

The choice of state vector is motivated by the PC analysis in section 2.4. Specifically, in
the case of the NFX model, the state is xNt = ft. In the WFX model, we complement the
state vector by adding the two depreciation rates

xWt =
(

∆set ,∆s
£
t , x

N>
t

)>
.

Because all the state variables in xt are observable, the free parameters that govern the
dynamics of the state, µx,Φx,ΣxΣ>x , are identifiable directly from the VAR in equation (5).
These parameters therefore require no identifying restrictions. Restrictions are required
on the factor loadings and the risk-premium parameters λ0 and λx. These restrictions are
necessary to exactly identify the model and are not over-identifying restrictions. Here we
highlight those restrictions that are easy to explain and will be helpful in interpreting some
of the evidence.

The choice of depreciation rates as state variables implies that factor loadings and intercepts
for the exchange rates are restricted as follows:

δes,0 = 0, δes,x = e1, (23)

δ£s,0 = 0, δ£s,x = e2. (24)

The IRDs ∆ec y
1
t and ∆£

c y
1
t are the 4th and 5th elements of the state vector in (5). That

imposes restrictions on the risk premium parameters. Equation (20) implies, for n = 1,

ŷ1
t = − logEt(Mt,t+1(Q, Q̂, S)e∆st+1)

= y1
t − δs,0 − δ>s,xµx − δ>s,xΦxxt + δ>s,xλ0 + δ>s,xλxxt − δ>s,xΣxΣ>x δs,x/2

= y1
t − e>j (µx + ΣxΣ>x ej/2− λ0)− e>j (Φx − λx)xt,

where we imposed restrictions (23), (24) in the last row and j = 1, or 2, depending on the
exchange rate. Therefore, the elements of the first two rows of λx are equal to the elements
of the first two rows of Φx with the exception of the (1,4) and (2,5) elements that have to
be equal to the corresponding element of Φx minus 1. Likewise, we can derive restrictions
on λ0.

Similar restrictions are obtained by recalling that the differences in slopes are part of the
state vector as well. Following similar derivation steps, one can show that

∆cy
60
t −∆cy

1
t = const + 60−1e>j

(
[Φx − λx] + . . .+ [Φx − λx]60 − 60[Φx − λx]

)
xt.

So, all the loadings on xt have to be equal to zero, except for the 7th and 8th entries
(depending on whether j = 1 or 2) where they have to be equal to 1. That requirement
places non-linear restrictions on λx.
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5.2 Basic properties of the estimated models

5.2.1 Estimates and fit

We report the estimated parameters in Tables 3 - 5. Table 6 displays pricing errors. The
overall message from this set of Tables is that both models fit the given collection of domestic
and foreign yields similarly in terms of small errors and similarity of estimated parameters
that correspond to yield-based states.

The differences in the approaches are manifested by two extra sets of risk premium param-
eters in Table 4 for the NFX model and by extra parameters corresponding to depreciation
rates in Table 5 for the WFX model. The WFX model exhibits a slight deterioration in
fitting yields at shorter maturities suggesting some tension in fitting yields and depreciation
rate with the same set of states.

5.2.2 Exchange rates are unspanned by bonds

From the perspective of modeling the yield curve, the two depreciation rates are the new
factors in the WFX model as compared to the NFX model. Figure 2 demonstrates that they
are unspanned by showing how bonds of different countries load on the two depreciation
rates in the WFX model. While there are some departures from zero, none of them are
statistically significant. Given that the monthly standard deviation of each depreciation
rate is about 0.029 (10% per year), the largest monthly movement in a yield (UK at 5
months) is 0.2 basis points (0.7× 10−3 × 0.029× 1002) for one standard deviation move in
a depreciation rate. This is not an economically significant amount either.

In contrast to the literature on hidden/unspanned variables that focusses on their ability
to forecast bond excess returns, we make no such claims here. Inspection of the estimated
persistence matrix Φx in Table 5 suggests that the depreciation rates have little to do
with forecasting of future yields. Indeed, the first two columns of Φx are statistically
indistinguishable from zero.4 There is one exception: the lagged GBP depreciation rate
predicts the EUR one. Depreciation rates do not help forecasting bond risk premiums
either as the relevant elements of the risk premium matrix λx are zero as well.

5.2.3 The role of other factors

We describe how the other factors impact yields by reporting the term structure of factor
loadings in Figure 3. We show these loadings for the WFX model, while the NFX model
(not reported) displays similar patterns. At some level, the figure should not be surprising.

4That is consistent with our assumption φx,12 = 0 in section 3.3.

17



It shows that the US short interest rate and slope act as level and slope factors for all
countries. The departures from the US factors, differences in short rates or differences in
slopes, primarily affect yields of the corresponding foreign country.

These bond loadings could tempt a researcher to label US variables as global and the other
variables as local, a language that is commonly used in the literature on international yield
curve models. One has to be careful with such an interpretation because the choice of US
factors as a de-facto reference is arbitrary. We could have considered an equivalent factor
rotation where the German short rate and slope are the reference factors and the rest are
defined relative to that. Nevertheless, these loadings suggest a modular approach towards
modeling multiple yield curves: start with a benchmark and its yield-based factors, then
add as many countries as needed via factors that increment over the benchmark. One has
to deal with parameter proliferation when more than three countries are considered at once.
There is no choice but to impose overidentifying parameter restrictions; a problem we do
not address in this paper. See Graveline and Joslin (2011) for a recent effort along these
lines.

5.2.4 Implications for exchange rates

From the perspective of modeling depreciation rates, yields are an important ingredient in
their dynamics. While risk-adjusted expected depreciation rates depend on their respective
interest rate differential (IRD) only, an implication of covered interest parity (CIP), the
true expectations depend on other yield factors as well. At first glance, the model cannot
replicate the violations of uncovered interest parity (UIP) documented by Bilson (1981);
Fama (1984); Tryon (1979). For instance, the loading of the expected Euro depreciation
rate on the respective IRD is positive. However, the estimated model is consistent with a
multivariate regression with potentially correlated regressors, while the original UIP regres-
sions are simple linear regressions with one regressor. In the next section, we explore what
the WFX model implies for the specific univariate regressions studied in the literature.

While the WFX model matches the depreciation rate by construction, we need to infer them
in the case of the NFX model. As pointed out in equation (18), we can do so only under the
assumption of complete markets. Figure 4 displays the inferred and observed depreciation
rate. They are clearly different in terms of their scale and dynamic patterns. In the next
section we provide more details on these differences.

As noted in the context of equation (22), the modeled pricing kernels are asymmetric. The
estimated model verifies that indeed estimated parameter values are such that asymmetry
between M(Q, Q̂, S) and M̂(Q, Q̂, S) holds. Thus, depending on the setup of the general
equilibrium model, the marginal rates of substitution of domestic and foreign economic
agents might have to be asymmetric to capture the behavior of exchange rates.
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5.3 B/F/T

Results of B/F/T represent a challenge to affine no-arbitrage models. It appears to be
difficult to replicate a certain set of stylized facts about interest rates and exchange rates
simultaneously. They propose a model that succeeds in matching some of the properties
of FX and yet generates unrealistic yield curves. Indeed, B/F/T state: “The implied yield
curve, for instance, is hump shaped with long yields reaching as high as 80 percent per
annum.” We revisit their analysis in the context of our models.

Table 7 replicates Table I of B/F/T in our sample and complements it by displaying model
implications for the same set of facts. Both models do well in replicating facts about interest
rates. This is not surprising given that B/F/T focused on short rates and they serve as
state variables in our model. There is some deterioration for Euro/Germany because of the
aforementioned missing observations on one-month yields.

The differences in FX implications are drastic. This is consistent with Figure 4, but offers
other angles. The inferred depreciation rate is 25 times more volatile in the NFX model
than in the data, and the mean is greater by two orders of magnitude. The NFX model is
nowhere close to the results of UIP regressions.

The WFX model replicates all of these moments perfectly, by construction. Does it come
at the cost of a poor fit of the yield curve as in B/F/T? Table 6 foreshadows the answer.
Table 8 reports the yield-curve summary statistics in the B/F/T style. There is not much
of a trade-off in fitting both yields and FX rates for the WFX model.

One way to interpret the NFX results is that markets are in fact incomplete with respect
to bonds, so it is incorrect to use equation (18) to infer FX rates.

To clarify, while the B/F/T methodology is close to NFX, it is not identical. B/F/T
construct their model to match the UIP violations and volatility of the depreciation rate.
Thus, they use information about depreciation rates, but not about their joint dynamics
with yields. That is why they can match some basic facts about currencies, but the resulting
model cannot match yields. That is a manifestation unspanned currencies. The only way
for B/F/T to succeed empirically is to incorporate this lack of spanning into their model of
exchange rates.

More generally, one might wonder if it is possible to use the presented evidence to construct
M and M̂ such that they produce a realistic depreciation rate via (18). It is possible to

do so, in theory, by taking the estimated M(Q, Q̂, S) and M̂(Q, Q̂, S). Section 3.3 offers a
more explicit version of that in equations (6) and (9). The issue is, as pointed out in section
3.3, that one cannot estimate these models without the joint data on yields and currencies.
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5.4 International yields and risk premiums

This section studies how the differences between foreign and US bonds relate to FX rates.
The connection is highlighted in equations (2) and (3). The discussion in section 2.4 demon-
strates that, at the most basic level, expectations about future depreciation rates and the
associated currency risk premiums that drive the second and third principal components of
yields is an important building block for international yield curves. We use the estimated
WFX model to illustrate how the relationships between yields and currencies may work.

5.4.1 Differences in yields

Figure 5 displays the time-series properties of the IRDs for three maturities (n = 1, 12, and
60 months) and their respective ingredients. Both the Euro and UK IRDs could be negative
and positive. Their time-variation has a strong cyclical component. Their local minimums
coincide with the peak of foreign recessions.

We compute the decomposition of the yield differentials via (2). Given that the volatility is
constant in our model, we focus on srpnt and esnt . Alvarez, Atkeson, and Kehoe (2007) point
out that if exchange rates are random walks (in logs), then esnt is constant and the time-
variation in the IRDs is driven by srpnt . The Figure shows that there is strong time-variation
in both components, and the two have a strong positive correlation.

The cyclical properties of IRDs are driven by the fact that, despite the strong correlation,
currency risk premiums become much larger than expected depreciation rates during the
recessions. To understand this pattern, we have to establish which variables drive the two
ingredients. Thus, we establish elements of xt that affects esnt and srpnt significantly.

Empirically, factors that have the same economic meaning, relative to the respective country,
load similarly across the UK and EUR. For example, each of these countries have similar
loadings on the US level and slope factors. Likewise, the interest rate differential, ∆cy

1
t ,

slope differential, ∆cy
60,1
t , and depreciation rate ∆st each load on their own country in

a way that is similar in magnitude across countries. To make inference more precise, we
follow the spirit of pooled or fixed-effects regressions used in the context of currency risk
premiums (Ang and Chen, 2010; Bansal and Dahlquist, 2000) and take an average of the
loadings across the UK and EUR at each maturity for those factors that have the same
economic interpretation.5

Table 9 shows the averaged loadings of expected future depreciation rates esnt and srpnt on
xt across horizons. We display only those elements of xt that have a significant loading for

5It is straightforward to conduct inference from a Bayesian perspective that we take in this paper.
The factor loadings are a function of the posterior distribution of the model parameters. Our estimates
of the country-specific loadings are averages across the draws of the Markov-chain Monte Carlo (MCMC)
algorithm. Thus an average loading is the average of the averages, which allows to take into account
parameter uncertainty in a natural fashion.
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at least one horizon. We see that departures of the depreciation rates from random walk,
or, equivalently, departures of esnt from a constant, are affected by two foreign variables.
Those are the depreciation rate of the other country and the spread in slopes of the other
country and the US – variables that one would not be able to identify in a bilateral model
of exchange rates.6

These two foreign variables appear in srpnt as well. That is the driving force behind the
strong correlation between es and srp evident in Figure 5. The loadings on these two
variables are approximately the same for both ingredients of the IRD (they must be the
same for n = 1 and n = 60 because of the assumptions required to identify the model, see
section 5.1).

As a result of the similarities, the difference esnt −srpnt from equation (2) is a linear combina-
tion of ∆cy

1
t and ∆cy

60,1
t of the respective country. That is intuitive because the difference

is equal to ∆cy
n
t , up to a constant, and exchange rates are not spanned by yields. So ∆st

should not be affecting this variable. The US factors y1
t and y60,1

t are common to all bonds
and should roughly cancel out in the difference ∆cy

n
t . Finally, the Euro variables should

have a small impact on the UK variables and vice versa.

The aforementioned cyclical differences between the curves is driven not only by ∆cy
1
t – a

traditional variable used to gauge currency risk premiums. The long term ∆cy
60,1
t plays a

role as well. This conclusion highlights the advantage of bringing in information from bonds
to speak to the properties of currencies.

Using currencies is useful to speak to bond properties as well. Because there are no common
variables correlated with esnt and ∆cy

n
t in a significant fashion, it would have been impossible

to decompose ∆cy
n
t into the FX-related components had we studied bonds only. More

generally, this is a manifestation of bonds’ inability to span currencies.

5.4.2 Differences in risk premiums

Currency risk premiums, srpnt , are at the center of bond risk premium differentials as
well, equation (3). Most of the research in international bond risk premiums does not
exploit that connection to currencies. The focus in this literature is largely on the extent to
which the risk premiums are influenced by global vs local factors. Usually the US variables
stand in for global variables. The research settings vary from global only (Ilmanen, 1995)
to a mix of global and local (Dahlquist and Hasseltoft, 2013) to local only (Brooks and
Moskowitz, 2017). Driessen, Melenberg, and Nijman (2003) look for a common structure in
bond returns thereby using a mix of the US and non-US variables. Ang and Chen (2010)
use bond-inspired factors that go beyond the IRDs of UIP regressions to predict currency
premiums.

6While this evidence is based on a modest cross-section of only two countries, it is sufficiently promising
to be pursued in future research.
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Our estimated no-arbitrage model implies how srpnt and Et∆crx
n
t+1 relate to the state vari-

ables. Thus, we can discuss these interrelationships within the model. Thus, our approach
is similar to that of Driessen, Melenberg, and Nijman (2003) as our model allows a UK
variable to affect Euro objects and vice-versa. Our approach extends that of Ang and Chen
(2010) as we rely on an explicitly estimated model to select the candidate forecasting vari-
ables. Further, we study the cross-country differences between the bond risk premiums.
That allows us to amplify the variables that are relevant for predicting foreign bond returns
beyond what is needed for the US ones.

Table 9 shows how srpnt and Et∆crx
n
t+1 load on the state variables in the model. We display

only those elements of xt that have at least one significant loading. We also show loadings
for Etsrp

n
t+1 as it is one of the building blocks for Et∆crx

n
t+1.

The key lesson from this table is that, despite using the same model to derive these quan-
tities, a different set of factors could be important even for closely related objects. First,
moving from srpnt to Etsrp

n
t+1 we retain significance only in the variables of the respective

country: one-period IRD and difference in slopes. The importance of the IRD is, of course,
in line with the UIP literature. The difference in slopes is significant at longer maturities.

Second, we combine currency risk premiums of different maturities to obtain the bond
premiums’ differential via equation (3). As a result, we gain a new significant variable
– the level of interest rates. Methodologically, this is possible because the original set of
considered variables, xt, is the same. It is just that different linear combinations of these
variables appearing in srpnt vs Et∆crx

n
t+1 lead to varying significance levels.

Economically, the currency and bond risk premiums are related to different variables. The
difference between the US and foreign bond premiums is, in particular, related to the
“global” factor, that is, the level of US interest rates. None of these conclusions would have
emerged if one studied currency or bond premiums separately.

6 Conclusion

We connect differences in international yield curves to exchange rates. In order to account
for these risks, we combine estimation of yield curves with estimation of exchange rate
dynamics. This exercise is unnecessary if bonds span exchange rates. We find drastic
differences in results relative to a benchmark model estimated without exchange rates.
Both models fit yields accurately, but the benchmark implies exchange rates that are grossly
incompatible with observed behavior. Besides capturing realistic behavior of exchange rates,
our main model speaks to the sources of the differences between the US and foreign yield
curves, and their respective bond risk premiums.

Both differences are driven by currency risk premiums, and our model suggests factors that
are correlated with these premiums. Specifically, the currency risk premium is not only
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affected by the interest rate differential that appears in UIP regressions. Among other
variables, it is affected by the difference in the US and foreign 5-year term spreads. That
exposure to long-term interest rates drives cyclical patterns in the yield-curve differences.
The differences in bond risk premiums are not only affected by “local” variables, that
is, departures of foreign variables from their US counterparts. The differences are also
correlated with the US short interest rate suggesting a global importance of the US markets.
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Appendix A Bond prices

Appendix A.1 U.S. bonds

The price of a one month bond is

Q1
t = Et [exp (mt,t+1)] = exp

(
ā1 + b̄>1,xxt

)
where ā1 = −δi,0 and b̄1,x = −δi,x. The U.S. short rate is

it = δi,0 + δ>i,xxt

The price of an n-period U.S. bond is

Qnt = Et
[
exp (mt,t+1)Qn−1

t+1

]
= Et

[
exp

(
−δi,0 − δ>i,xxt −

1

2
λ>t λt − λ>t εt+1 + ān−1 + b̄>n−1,xxt+1

)]
= exp

(
ān−1 − δi,0 − δ>i,xxt −

1

2
λ>t λt

)
Et
[
exp

(
−λ>t εt+1 + b̄>n−1,x [µx + Φxxt + Σxεt+1]

)]
= exp

(
ān−1 − δi,0 − δ>i,xxt + b̄>n−1,x [µx + Φxxt]− λ>t Σ>x b̄n−1,x +

1

2
b̄>n−1,xΣxΣ>x b̄n−1,x

)
= exp

(
ān + b̄>n,xxt

)
where the loadings are

ān = ān−1 − δi,0 + b̄>n−1,x (µx − λµ) +
1

2
b̄>n−1,xΣxΣ>x b̄n−1,x

b̄n,x = (Φx − λφ)> b̄n−1,x − δi,x

We can write this in terms of the U.S. risk neutral parameters

ān = ān−1 − δi,0 + b̄>n−1,xµ
∗
x +

1

2
b̄>n−1,xΣxΣ>x b̄n−1,x

b̄n,x = Φ∗,>x b̄n−1,x − δi,x

U.S. yields are yt = an + b>n,xxt with an = −n−1ān and bn,x = −n−1b̄n,x.

Appendix A.2 Foreign bonds in the NFX model

The price of a one month bond is

Q̂1
t = Et [exp (m̂t,t+1)] = exp

(̂̄aN1 + ̂̄bN,>1,x xt

)
where ̂̄aN1 = −δ̂i,0 and ̂̄bN1,x = −δ̂i,x. The foreign short rate is

ît = δ̂i,0 + δ̂>i,xxt

Using the same calculations as above, the price of an n-period foreign bond in the NFX model is

Q̂nt = Et
[
exp (m̂t,t+1) Q̂n−1

t+1

]
= Et

[
exp

(
−δ̂i,0 − δ̂>i,xxt −

1

2
λ̂>t λ̂t − λ̂>t εt+1 + ̂̄aNn−1 + ̂̄bN,>n−1,xxt+1

)]
= exp

(̂̄aNn−1 − δ̂i,0 − δ̂>i,xxt + ̂̄bN,>n−1,x [µx + Φxxt]− λ̂>t Σ>x
̂̄bNn−1,x +

1

2
̂̄bN,>n−1,xΣxΣ>x

̂̄bNn−1,x

)
= exp

(̂̄aNn + ̂̄bN,>n,x xt

)
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where the loadings are

̂̄aNn = ̂̄aNn−1 − δ̂i,0 + ̂̄bN,>n−1,x

(
µx − λ̂µ

)
+

1

2
̂̄bN,>n−1,xΣxΣ>x

̂̄bNn−1,x

̂̄bNn,x =
(

Φx − λ̂φ
)> ̂̄bNn−1,x − δ̂i,x

We can write this in terms of the foreign risk neutral parameters

̂̄aNn = ̂̄aNn−1 − δ̂i,0 + ̂̄bN,>n−1,xµ̂
∗
x +

1

2
̂̄bN,>n−1,xΣxΣ>x

̂̄bNn−1,x̂̄bNn,x = Φ̂∗,>x
̂̄bNn−1,x − δ̂i,x

Foreign yields are ŷt = âNn + b̂N,>n,x xt with âNn = −n−1̂̄aNn and b̂Nn,x = −n−1̂̄bNn,x.

Appendix A.3 Foreign bonds in the WFX model

The price of a one month bond is

Q̂1
t = Et [exp (mt,t+1 + ∆st+1)] = exp

(̂̄aW1 + ̂̄bW,>1,x xt

)

where ̂̄aW1 = δs,0 − δi,0 + δ>s,x (µx − λµ) + 1
2
δ>s,xΣxΣ>x δs,x and ̂̄bW1,x = (Φx − λφ)> δs,x − δi,x. Using the

same calculations as above, the price of an n-period foreign bond in the WFX model is

Q̂nt = Et
[
exp (mt,t+1 + ∆st+1) Q̂n−1

t+1

]
= exp

(̂̄aWn−1 + δs,0 − δi,0 − δ>i,xxt +

(̂̄bWn−1,x + δs,x

)>
[µx + Φxxt]

)

exp

(
−λ>t Σ>x

(̂̄bWn−1,x + δs,x

)
+

1

2

(̂̄bWn−1,x + δs,x

)>
ΣxΣ>x

(̂̄bWn−1,x + δs,x

))

= exp

(̂̄aWn + ̂̄bW,>n,x xt

)
where the loadings are

̂̄aWn = ̂̄aWn−1 − δi,0 +

(̂̄bWn−1,x + δs,x

)>
(µx − λµ) +

1

2

(̂̄bWn−1,x + δs,x

)>
ΣxΣ>x

(̂̄bWn−1,x + δs,x

)
̂̄bWn,x = (Φx − λφ)>

(̂̄bWn−1,x + δs,x

)
− δi,x

We can write this in terms of the U.S. risk neutral parameters

̂̄aWn = ̂̄aWn−1 − δi,0 +

(̂̄bWn−1,x + δs,x

)>
µ∗x +

1

2

(̂̄bWn−1,x + δs,x

)>
ΣxΣ>x

(̂̄bWn−1,x + δs,x

)
̂̄bWn,x = Φ∗,>x

(̂̄bWn−1,x + δs,x

)
− δi,x

Foreign yields are ŷt = âWn + b̂W,>n,x xt with âWn = −n−1̂̄aWn and b̂Wn,x = −n−1̂̄bWn,x.

27



Appendix B Estimation

Appendix B.1 Parameterization and identification

In the main text, we report estimates of the market price of risk parameters λ0 and λx that enter the
stochastic discount factor. These parameters are defined in terms of the observable state vector xt as
defined in the text. In practice, these parameters λ0 and λx require identifying restrictions that are not easy
to impose directly. The term structure literature solves the problem of imposing the necessary identifying
restrictions by parameterizing the model in terms of the identifiable risk neutral parameters under a latent
factor rotation. Under the latent factor rotation, the restrictions are easy to impose. We follow this literature
and explain how to impose these restrictions in this appendix.

First, we note that the risk neutral parameters µ∗x and Φ∗x of the observable state vector xt are related to
the market prices of risk as

µ∗x = µx − λ0

Φ∗x = Φx − λx

where µx and Φx are the drift and autocovariance of xt under the “real-world” probabilities.

In this appendix, we use a ‘tilde’ to denote any parameters θ̃ or state variables x̃t under the latent factor
rotation. In our implementation, we make one minor change relative to the term structure literature. We
define x̃t such that the first two elements are the observed depreciation rates while the remaining yield
factors are latent, i.e. we have

x̃t =

(
∆st
g̃t

)
where g̃t are latent yield factors. Therefore, when we rotate from x̃t to xt, the first two elements of the state
remain the same.

With this definition of x̃t in hand, the observed factors xt are related to the latent factors x̃t through the
linear transformation

xt = Γ0 + Γ1x̃t

where the vector Γ0 and matrix Γ1 are described below in Appendix B.3.

The risk neutral dynamics under the latent factor rotation are

∆st = δ̃s,0 + δ̃>s,xx̃t

it = δ̃i,0 + δ̃>i,xx̃t

x̃t = µ̃∗x + Φ̃∗xx̃t−1 + Σ̃xε
∗
t

Under this rotation, the identifying restrictions require imposing the following restrictions

δ̃s,0 = 0

δ̃s,x = ei i = 1, 2

δ̃i,x =

(
δ̃i,s
ι

)
µ̃∗x =

(
µ̃∗s
µ̃∗g

)
=

(
µ̃∗s
0

)
Φ̃∗x =

(
Φ̃∗s Φ̃∗sg
Φ̃∗gs Φ̃∗g

)
=

(
Φ̃∗s Φ̃∗sg
0 Φ̃∗g

)
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In addition, the matrix Φ̃∗g is restricted to be a matrix of eigenvalues. In general, the eigenvalues may be
distinct and real, complex, or repeated. We follow the standard approach in the term structure literature
and assume that this matrix is diagonal with distinct, real eigenvalues ordered from largest to smallest.

For the loadings on the U.S. short rate δ̃i,x, the first 2 elements associated with depreciation rate are
estimable while the remaining loadings are restricted to be a vector of ones ι.

Appendix B.2 Observables

We stack the U.S. and foreign nominal yields of different maturities into vectors yt =
(
y1
t , . . . , y

60
t

)
and

ŷt =
(
ŷ1
t , . . . , ŷ

60
t

)
as well as their bond loadings, e.g. A = (a1, . . . , a60)> , B = (b1,x, . . . , b60,x)> and

Â = (â1, . . . , â60)> , B̂ =
(
b̂1,x, . . . , b̂60,x

)>
.

The system of observation equations used in the model are

∆st = δs,0 + δs,xxt

yt = A+Bxt

ŷt = Â+ B̂xt

where, in our application, the vector ŷt includes both Euro and U.K. yields. We define the overall vector of
observables as

Yt =

 ∆st
yt
ŷt


Next, we define two selection matrices W1 and W2 that select out of Yt linear combinations of depreciation

rates and yields. Together, the matrices
(
W>1 ;W>2

)>
must be full rank. These linear combinations are

Y
(1)
t = W1Yt

Y
(2)
t = W2Yt

The vector Y
(1)
t is a linear combination of observables that we assume to be measured without error. The

vector Y
(2)
t is observed with error.

Appendix B.3 Rotating the state vector to observables

In our implementation, we choose W1 so that the state vector is xt = Y 1
t = W1Yt with xt defined as in the

text

xt =



∆set
∆s£t
y1
t

y1
t − ŷe,1t

y1
t − ŷ£,1t

y60,1
t

y60,1
t − ŷe,60,1

t

y60,1
t − ŷ£,60,1

t


In order for xt to have exactly this definition, we follow the term structure literature and assume that this
linear combination of the observables Yt is observed without measurement error.
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The matrix W2 is a selection matrix full of zeros and ones that selects unique linear combinations out of
Yt that are not used in xt. Specifically, W2 is defined such that the second set of linear combinations
Y

(2)
t = W2Yt includes the 12, 24, 36, and 48 month U.S. yields as well as the 12, 24, 36, and 48 month

foreign yields (both Euro and U.K.).

To implement this rotation in practice, we note that the observables Yt are related to the latent state vector
x̃t as

Yt =

 ∆st
yt
ŷt

 =

 δ̃s,0
Ã
˜̂
A

+

 δ̃>s,x
B̃
˜̂
B

 x̃t = C̃ + D̃x̃t

where the vector C̃ and matrix D̃ are appropriately defined. In this case, the bond loadings Ã,
˜̂
A, B̃,

˜̂
B are

calculated under the latent factor rotation. Next, we pre-multiply Yt above by W1 and substitute in for the
observed state variables

W1Yt = W1C̃ +W1D̃x̃t

= W1C̃ +W1D̃Γ−1
1 (xt − Γ0)

= W1

(
C̃ − D̃Γ−1

1 Γ0

)
+W1D̃Γ−1

1 xt.

In order for xt = W1Yt, it implies that the rotation matrices Γ0 and Γ1 must satisfy the restrictions

Γ0 = W1C̃

Γ1 = W1D̃

Given these matrices, we can map between the parameters of the observable rotation of the state vector xt
and the latent factor rotation x̃t through the transformations

Φ∗x = Γ1Φ̃∗xΓ−1
1

µ∗x = (I − Φ∗x) Γ0 + Γ1µ̃
∗
x

Appendix B.4 Prior distributions

• Let Sy = ΣyΣ>y with dimension dy2 × dy2 . Note that Y
(2)
t has dimension dy2 × 1. We assume Sy has

a diffuse inverse Wishart distribution Sy ∼ Inv-W
(
Ωy, νy

)
with degrees of freedom νy = 0 and scale

matrix Ωy = 0.

• The matrix Σx is lower triangular. We place inverse Gamma σ2
i ∼ IG (αi, βi) on each of the diagonal

elements where i = s, g. The subscript s stands for depreciation rate while the subscript g stands for
yield factor. We set αs = 3.3 and βs = 0.0015. We set αg = 3.05 and βg = 8e−8.

• We place a prior on the free parameters of the unconditional means
(
µ̄x, ¯̃µ∗x

)
directly instead of the

drifts (µx, µ̃
∗
x). First, we calculate the unconditional sample mean of the factors ˆ̄µx. Our prior for each

element of µ̄x is a normal distribution centered at the sample mean. Then, we choose the variance of
this distribution to be large enough to cover the support of the data. Our priors are

– depreciation rates: µ̄s ∼ N
(
ˆ̄µs, 0.0003

)
– U.S. level: µ̄i ∼ N

(
ˆ̄µi, 0.000003

)
– Foreign Level differentials: µ̄∆ci ∼ N

(
ˆ̄µ∆ci, 0.000003

)
– U.S. slope: µ̄sl ∼ N

(
ˆ̄µsl, 0.000003

)
– Foreign slope differential: µ̄∆csl ∼ N

(
ˆ̄µ∆csl, 0.000003

)
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Identifying restrictions on ¯̃µ∗x only allow for only 2 free parameters, which are the parameters as-
sociated with the depreciation rates (i.e. the first two factors in x̃t). Our prior for this variable is
the same as the unconditional depreciation rate under the real world probability but multiplied by a
factor of 100.

– depreciation rates: ¯̃µs ∼ N
(
ˆ̄µs, 0.03

)
• We parameterize the matrix Φ̃∗x as

Φ̃∗x =

(
Φ̃∗s Φ̃∗sg
0 Φ̃∗g

)
Our priors on the sub-matrices are as follows:

– Φ̃∗g is a diagonal matrix of real, ordered eigenvalues. Let a1 = −1 and b = 1. We parameterize

them as Φ̃∗g,11 = a1 + (b − a1)U1 and Φ̃∗g,jj = aj−1 + (b − aj−1)Uj for j = 2, . . . , dg. This
transformation ensures that they are increasing and contained in the interval [−1, 1]. We then
place priors on Φ̃∗g,jj via Uj ∼ Beta (12, 12).

– We place the same prior on Φ̃∗s and Φ̃∗sg as under the risk neutral dynamics but where the
covariance matrix is multiplied by a factor of 100.

• We separate δ̃i,x into two sub-vectors δ̃i,s and δ̃i,g. We place a prior on the free parameters of the
factor loadings δ̃i,s. Our identifying restriction is that δ̃i,g = ι. The parameters of δ̃i,s are estimable
and we assume that each entry is independent and distributed as δ̃i,g ∼ N (0, 0.01).

Appendix B.5 Log-likelihood function

The log-likelihood function is

L = log p (Y1, . . . , YT |θ) =

T∑
t=1

log p (xt|xt−1, θ) +

T∑
t=1

log p
(
Y

(2)
t |xt; θ

)
where x0 are assumed to be known. The density p (xt|xt−1; θ) is determined by the VAR dynamics of the
factors xt while the second term comes from the linear combination of yields observed with error

Y
(2)
t = C(2) +D(2)xt + Σyηt, ηt ∼ N (0, I) ,

where C(2) = W2C and D(2) = W2D and

C = C̃ − C̃Γ−1
1 Γ0,

D = D̃Γ−1
1 .

This likelihood function assumes that there are no missing values in either Y
(1)
t or Y

(2)
t . In practice, this is

not the case. We impute these missing values during the MCMC algorithm using the Kalman filter.

Appendix B.6 Estimation

Let θ denote all the parameters of the model and define f1:T = (f1, . . . , fT ) and Y1:T = (Y1, . . . , YT ). In
practice, some data points are missing which implies that some of the factors ft are missing. We use Y o1:T

and Y m1:T to denote the observed and missing data, respectively. The joint posterior distribution over the
parameters and missing data is given by

p (θ, Y m1:T |Y o1:T ) ∝ p (Y o1:T |θ) p (θ) ,

where p (Y o1:T |θ) is the likelihood and p (θ) is the prior distribution. We use Markov-chain Monte Carlo to
draw from the posterior.
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Appendix B.6.1 MCMC algorithm

We provide a brief description of the MCMC algorithm. Let Sy = ΣyΣ′y and Sx = ΣxΣ′x denote the
covariance matrices. We use a Gibbs sampler that iterates between drawing from each of the full conditional
distributions.

• Place the model in linear, Gaussian state space form as described in Appendix B.6.2. Draw the
missing data and unconditional means (Y m1:T , µ̄x, µ̄

∗
x) from their full conditional distribution using the

Kalman filter and simulation smoothing algorithm. Given the full data Y o,mt = (Y ot , Y
m
t ), we can

recalculate the factors xt = W1Y
o,m
t .

• Let x̄t = xt − µ̄x denote the demeaned factors. We draw the free elements of Φx from their full
conditional distribution using standard results for Bayesian multiple regression. We write the VAR
as a regression model

x̄t = Xtφx + Σxεt

where φx = vec (Φx) and the regressors Xt contain lagged values of x̄t−1. Draws from this model are
standard.

• Draw the free elements of Sx from their full conditional using a random-walk Metropolis algorithm. In
this step, we avoid conditioning on the parameters Sy,Φx by analytically integrating these parameters
out of the likelihood.

• Draw the eigenvalues Λ∗x from their full conditional using random-walk Metropolis. To avoid condi-
tioning on Sy,Φx, we draw from the marginal distribution that analytically integrates these values
out of the likelihood.

• Draw the elements of δ̃s,x from their full conditional using random-walk Metropolis. To avoid con-
ditioning on Sy,Φx, we draw from the marginal distribution that analytically integrates these values
out of the likelihood.

• The full conditional posterior of Sy is an inverse Wishart distribution Sy ∼ Inv-Wish
(
ν̄, Ω̄

)
where

ν̄ = ν + T and Ω̄ = Ω +
∑T
t=1 ηtη

>
t .

Appendix B.6.2 State space form

In our data set, some of the yields contain missing values. We impute them using the Kalman filter. Given
that xt = Y

(1)
t , we can write the model in VAR form as(

Y
(1)
t

Y
(2)
t

)
=

(
µx

A(2) +B(2)µx

)
+

(
Φx 0

B(2)Φx 0

)(
Y

(1)
t−1

Y
(2)
t−1

)
+

(
Σx 0

B(2)Σx Σy

)(
εt
ηt

)
Next we translate this system back into Yt using the fact that

Yt =

(
W1

W2

)−1
(

Y
(1)
t

Y
(2)
t

)
to get

Yt =

(
W1

W2

)−1(
µx

A(2) +B(2)µx

)
+

(
W1

W2

)−1(
Φx 0

B(2)Φx 0

)(
W1

W2

)
Yt−1

+

(
W1

W2

)−1(
Σx 0

B(2)Σx Σy

)(
εt
ηt

)
This structure implies that Yt is a reduced-rank VAR of the form

Yt = µY + ΦY Yt−1 + ΣY εY,t εY,t ∼ N (0, I)
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where

µY =

(
W1

W2

)−1(
µx

A(2) +B(2)µx

)
ΦY =

(
W1

W2

)−1(
Φx 0

B(2)Φx 0

)(
W1

W2

)

ΣY =

(
W1

W2

)−1(
Σx 0

B(2)Σx Σy

)
εY,t =

(
εt
ηt

)

We place this model in the following linear, Gaussian state space form

Yt = Zαt + d+ ut ut ∼ N (0, H) , (B.1)

αt+1 = Tαt + c+Rvt vt ∼ N (0, Q) . (B.2)

where the initial condition is α1 ∼ N
(
a1|0, P1|0

)
.

Let µ̄ =
(
µ̄>x,u µ̄

∗,>
x,u δĉ,0

)>
denote the vector of unrestricted unconditional means that enter µ̄x and µ̄∗x plus

the intercept δĉ,0. The vector of intercepts µY can be written as a linear function of the unconditional means

µY = Sµ,0 + Sµ,1µ̄

We draw unconditional means jointly with the missing data by including them in the state vector. We define
the system matrices from (B.1)-(B.2) as

d = 0 Z =
(

I 0
)

H = 0 Q = ΣY Σ>Y

αt =

(
Yt
µ̄

)
T =

(
ΦY Sµ,1
0 I

)
c =

(
Sµ,0

0

)
R =

(
I
0

)
a1|0 =

(
Sµ,1m̄µ

m̄µ

)
P1|0 =

(
ΣY Σ>Y + Sµ,1VµS

>
µ,1 Sµ,1Vµ

VµS
>
µ,1 Vµ

)
where the prior on the unconditional means is µ̄ ∼ N (m̄µ, Vµ). We use the Kalman filter and simulation
smoothing algorithm to draw the missing values and the unconditional means jointly.
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Figure 1
Principal components and yield factors
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Notes: Plots of the first six principal components (blue) and the yield factors in the state vector xt.

All variables have been standardized to have mean zero and variance one in the plot to make them

comparable.
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Figure 2
Depreciation rate loadings for the WFX model
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Notes: We plot loadings on depreciation rates that are used by the WFX model to establish U.S. and

foreign bond yields for multiple horizons (0-60 month, x-axis). Different lines represent loadings for

bonds of different countries. None of the lines are signifciantly different from zero. We do not report

confidence intervals to avoid clutter.

35



Figure 3
Yield factor loadings for the WFX model
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Notes: We plot yield factor loadings that are used by the WFX model to establish U.S. and foreign

bond yields for multiple horizons (0-60 month, x-axis). Different lines represent loadings for bonds

of different countries.
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Figure 4
NFX-implied and observed FX rates
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Notes: We plot the depreciation rates ∆st+1 = m̂t,t+1(Q, Q̂) − mt,t+1(Q, Q̂) implied by the NFX

model (blue, vertical axis left) against the observed depreciation rates (red, vertical axis right).

37



Figure 5
Decomposition of the time-series of differences in yield curves

1990 2000 2010

-0.2

-0.1

0

0.1

0.2

0.3

Euro risk premia decomp, 1 month

1985 1990 1995 2000 2005 2010 2015

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

UK risk premia decomp, 1 month

1985 1990 1995 2000 2005 2010 2015

-0.1

-0.05

0

0.05

0.1

0.15

Euro risk premia decomp, 12 months

1985 1990 1995 2000 2005 2010 2015
-0.1

-0.05

0

0.05

0.1

UK risk premia decomp, 12 months

1985 1990 1995 2000 2005 2010 2015
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Euro risk premia decomp, 60 months

1985 1990 1995 2000 2005 2010 2015

-0.04

-0.02

0

0.02

0.04

0.06

0.08

UK risk premia decomp, 60 months

Notes: We plot the conditional differences in the yield curves across maturities and its components.

All values have been multiplied by 12. Vertical gray bars are U.S. recessions as measured by the

NBER. Vertical yellow bars are German and U.K. recessions.
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Table 1: Principal components

PC’s 6 PCs 6 PCs 9 PCs
(US + e) (US + £) (all countries)

1 91.5142 96.1800 93.4792
2 99.3414 99.3000 97.9044
3 99.7994 99.8800 99.3445
4 99.9820 99.9800 99.8226
5 99.9924 99.9960 99.9304
6 99.9995 99.9995 99.9807
7 - - 99.9923
8 - - 99.9969
9 - - 99.9995

We report per cent of variation in international yield curves explained by principal components for various
scenarios of data used.
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Table 2: R2 from spanning regressions, %

Panel A. Regression of currency returns on bond returns

FX Type of R2 $ returns e or £ returns

e R2 15.65 12.80
R2

adj 14.53 11.65

£ R2 9.59 14.42
R2

adj 8.39 13.28

Panel B. Regression of depreciation rate on principal components of yields

FX Type of R2 6 PCs 6 PCs 9 PCs
(US + country) (all countries) (all countries)

e R2 2.90 5.01 6.38
R2

adj 1.40 3.54 4.20

£ R2 0.98 2.78 2.92
R2

adj -0.55 1.28 0.65

We report R2, regular and adjusted, expressed in percent for spanning regressions. In panel A we regress
annual currency returns of a given country (obtained by investing in a foreign one-period bond) on annual
bond returns of maturities n = 2, 3, 4, and 5 years expressed in the same units (USD or foreign). In
panel B we regress monthly depreciation rate of a given country vis-a-vis the USD on principal components
constructed from yields on US bonds, bonds of that country, and, in the last column, bonds of the third
country as well.
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Table 3: Posterior mean and standard deviation, state dynamics; NFX model.

xNt x1t x2t x3t x4t x5t x6t

µ̄x × 1200 Φx

x1t 3.814 0.976 -0.005 0.045 0.075 -0.051 0.064
(0.791) (0.015) (0.034) (0.041) (0.043) (0.062) (0.057)

x2t 0.389 -0.025 1.052 -0.029 0.024 0.137 -0.062
(0.584) (0.012) (0.026) (0.031) (0.033) (0.047) (0.043)

x3t -2.262 -0.021 -0.029 1.037 0.054 -0.022 0.110
(0.624) (0.015) (0.034) (0.039) (0.041) (0.060) (0.055)

x4t 1.603 0.008 -0.052 0.009 0.955 -0.117 0.015
(0.248) (0.012) (0.027) (0.032) (0.034) (0.048) (0.045)

x5t 0.477 0.020 -0.118 0.062 0.060 0.694 0.099
(0.221) (0.014) (0.032) (0.038) (0.040) (0.057) (0.053)

x6t 1.403 0.002 0.081 -0.146 -0.093 0.089 0.752
(0.358) (0.013) (0.030) (0.036) (0.037) (0.054) (0.049)

δi,x Σx ×
√

12× 100

x1t 1 0.161 0 0 0 0 0
(—) (0.006) (—) (—) (—) (—) (—)

x2t 0 0.098 0.076 0 0 0 0
(—) (0.005) (0.003) (—) (—) (—) (—)

x3t 0 0.029 0.083 0.125 0 0 0
(—) (0.008) (0.007) (0.004) (—) (—) (—)

x4t 0 -0.034 -0.064 -0.015 0.100 0 0
(—) (0.006) (0.006) (0.005) (0.004) (—) (—)

x5t 0 -0.057 -0.098 0.009 0.066 0.070 0
(—) (0.007) (0.006) (0.005) (0.004) (0.003) (—)

x6t 0 -0.029 -0.067 -0.084 0.045 0.012 0.068
(—) (0.007) (0.006) (0.005) (0.004) (0.004) (0.002)

Posterior mean and standard deviations of µ̄x,Φx,Σx from the NFX model. The state variables are:

x1t = y1
t , x2t = y1

t − ŷe,1t , x3t = y1
t − ŷ£,1t , x4t = y60

t − y1
t , x5t =

(
y60
t − y1

t

)
−
(
ŷe,60
t − ŷe,1t

)
,

x6t =
(
y60
t − y1

t

)
−
(
ŷ£,60
t − ŷ£,1t

)
.
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Table 4: Posterior mean and standard deviation, risk premiums; NFX model.

xNt x1t x2t x3t x4t x5t x6t

λ0 × 1200 λx

x1t 0.154 -0.038 -0.005 0.032 -0.046 -0.012 0.040
(0.066) (0.015) (0.034) (0.041) (0.043) (0.062) (0.057)

x2t -0.279 -0.018 0.055 -0.026 0.052 0.053 -0.063
(0.073) (0.012) (0.026) (0.031) (0.033) (0.047) (0.043)

x3t 0.037 -0.023 -0.026 0.039 0.043 -0.017 0.016
(0.077) (0.015) (0.034) (0.039) (0.041) (0.061) (0.055)

x4t -0.057 0.024 -0.053 0.024 0.059 -0.158 0.043
(0.054) (0.012) (0.027) (0.032) (0.034) (0.049) (0.045)

x5t 0.083 0.017 -0.114 0.063 0.058 -0.250 0.097
(0.065) (0.014) (0.032) (0.038) (0.040) (0.058) (0.053)

x6t 0.089 0.003 0.081 -0.144 -0.088 0.087 -0.165
(0.061) (0.014) (0.031) (0.036) (0.037) (0.054) (0.050)

λ̂e0 × 1200 λ̂ex

x1t -0.203 -0.029 0.012 0.041 0.005 0.005 0.049
(0.084) (0.015) (0.034) (0.041) (0.043) (0.062) (0.057)

x2t -0.288 -0.022 0.064 -0.027 0.035 0.109 -0.058
(0.075) (0.012) (0.026) (0.031) (0.033) (0.047) (0.043)

x3t 0.017 -0.023 -0.018 0.042 0.043 -0.002 0.063
(0.083) (0.015) (0.034) (0.039) (0.041) (0.060) (0.055)

x4t 0.060 0.017 -0.057 0.016 0.016 -0.152 0.036
(0.054) (0.012) (0.027) (0.032) (0.034) (0.049) (0.045)

x5t 0.054 0.019 -0.117 0.063 0.059 -0.278 0.097
(0.064) (0.014) (0.032) (0.038) (0.040) (0.058) (0.053)

x6t 0.087 0.003 0.080 -0.145 -0.088 0.085 -0.201
(0.060) (0.013) (0.030) (0.036) (0.037) (0.054) (0.050)

λ̂£0 × 1200 λ̂£x

x1t 0.130 -0.044 0.013 0.033 -0.087 0.022 0.028
(0.083) (0.015) (0.035) (0.041) (0.044) (0.063) (0.059)

x2t -0.434 -0.016 0.062 -0.025 0.058 0.038 -0.060
(0.090) (0.012) (0.026) (0.031) (0.033) (0.048) (0.043)

x3t -0.091 -0.025 -0.015 0.038 0.033 0.004 -0.010
(0.083) (0.015) (0.034) (0.039) (0.041) (0.061) (0.056)

x4t -0.061 0.029 -0.057 0.028 0.089 -0.173 0.060
(0.058) (0.012) (0.027) (0.032) (0.034) (0.049) (0.046)

x5t 0.112 0.017 -0.113 0.064 0.057 -0.233 0.097
(0.066) (0.014) (0.032) (0.038) (0.040) (0.058) (0.053)

x6t 0.088 0.004 0.081 -0.143 -0.084 0.082 -0.141
(0.063) (0.014) (0.031) (0.036) (0.037) (0.055) (0.050)

The state variables are: x1t = y1
t , x2t = y1

t − ŷe,1t , x3t = y1
t − ŷ£,1t , x4t = y60

t − y1
t ,

x5t =
(
y60
t − y1

t

)
−
(
ŷe,60
t − ŷe,1t

)
, x6t =

(
y60
t − y1

t

)
−
(
ŷ£,60
t − ŷ£,1t

)
.



Table 5: Posterior mean and standard deviation; WFX model.

xWt ∆set ∆s£t x1t x2t x3t x4t x5t x6t

µ̄x × 1200 Φx

∆set 0.974 0.019 0.204 -0.696 0.725 -3.710 -0.230 0.274 -2.029
(2.911) (0.054) (0.053) (0.891) (1.706) (1.953) (2.139) (2.891) (2.663)

∆s£t -0.019 0.061 0.010 -0.869 0.510 -0.678 2.211 -4.172 1.589
(2.568) (0.057) (0.056) (0.933) (1.774) (2.010) (2.217) (2.993) (2.766)

x1t 3.802 -4.61e-04 4.57e-04 0.976 1.39e-04 0.038 0.068 -0.036 0.054
(0.784) (9.53e-04) (9.20e-04) (0.015) (0.034) (0.041) (0.041) (0.060) (0.057)

x2t 0.395 -6.73e-05 6.86e-05 -0.026 1.055 -0.033 0.022 0.142 -0.067
(0.567) (7.65e-04) (7.28e-04) (0.012) (0.026) (0.031) (0.032) (0.047) (0.044)

x3t -2.248 -0.001 5.70e-04 -0.022 -0.026 1.030 0.052 -0.018 0.103
(0.605) (9.30e-04) (8.96e-04) (0.015) (0.034) (0.040) (0.041) (0.059) (0.056)

x4t 1.603 -3.99e-04 2.81e-04 0.009 -0.056 0.010 0.958 -0.123 0.017
(0.246) (7.42e-04) (7.16e-04) (0.012) (0.027) (0.032) (0.033) (0.047) (0.044)

x5t 0.465 -6.38e-04 2.26e-04 0.021 -0.120 0.060 0.059 0.694 0.098
(0.219) (9.17e-04) (8.82e-04) (0.014) (0.032) (0.038) (0.039) (0.057) (0.053)

x6t 1.393 -2.49e-04 3.85e-04 0.002 0.077 -0.145 -0.088 0.081 0.754
(0.352) (8.27e-04) (7.99e-04) (0.013) (0.030) (0.036) (0.037) (0.053) (0.050)

λ0 × 1200 λx

∆set -1.469 0.019 0.204 -0.696 -0.275 -3.710 -0.230 0.274 -2.029
(3.925) (0.054) (0.053) (0.891) (1.706) (1.953) (2.139) (2.891) (2.663)

∆s£t -1.803 0.061 0.010 -0.869 0.510 -1.678 2.211 -4.172 1.589
(4.136) (0.057) (0.056) (0.933) (1.774) (2.010) (2.217) (2.993) (2.766)

x1t 0.093 2.19e-04 -1.84e-04 -0.029 -0.006 0.040 -0.019 -0.044 0.050
(0.064) (0.001) (0.001) (0.015) (0.034) (0.041) (0.042) (0.060) (0.057)

x2t 0.024 -3.83e-04 -2.85e-04 -0.025 0.044 -0.031 0.009 0.050 -0.051
(0.052) (0.001) (0.001) (0.012) (0.026) (0.031) (0.033) (0.047) (0.044)

x3t -0.041 -3.20e-04 7.00e-04 -0.020 -0.037 0.027 0.065 -0.023 -0.013
(0.066) (0.002) (0.001) (0.015) (0.034) (0.040) (0.041) (0.059) (0.056)

x4t 0.004 -0.001 9.26e-04 0.015 -0.048 0.008 0.024 -0.114 0.022
(0.053) (0.001) (0.001) (0.012) (0.027) (0.032) (0.033) (0.047) (0.044)

x5t -0.020 -3.21e-04 5.81e-04 0.019 -0.106 0.058 0.072 -0.234 0.080
(0.064) (0.001) (0.001) (0.014) (0.032) (0.038) (0.040) (0.057) (0.053)

x6t 0.063 -9.88e-04 2.56e-04 7.70e-04 0.090 -0.142 -0.103 0.089 -0.150
(0.060) (0.002) (0.001) (0.014) (0.030) (0.036) (0.037) (0.053) (0.051)

δi,x Σx ×
√

12× 100

∆set 0 9.728 0 0 0 0 0 0 0
(—) (0.352) (—) (—) (—) (—) (—) (—) (—)

∆s£t 0 5.311 8.714 0 0 0 0 0 0
(—) (0.477) (0.310) (—) (—) (—) (—) (—) (—)

x1t 1 -0.006 -0.018 0.157 0 0 0 0 0
(—) (0.008) (0.008) (0.005) (—) (—) (—) (—) (—)

x2t 0 -0.005 -0.015 0.096 0.076 0 0 0 0
(—) (0.006) (0.006) (0.005) (0.003) (—) (—) (—) (—)

x3t 0 -0.006 0.002 0.030 0.083 0.125 0 0 0
(—) (0.008) (0.008) (0.008) (0.007) (0.004) (—) (—) (—)

x4t 0 -0.006 2.59e-04 -0.041 -0.060 -0.015 0.096 0 0
(—) (0.006) (0.006) (0.006) (0.005) (0.005) (0.003) (—) (—)

x5t 0 -0.009 0.007 -0.062 -0.095 0.008 0.063 0.070 0
(—) (0.008) (0.008) (0.007) (0.006) (0.005) (0.004) (0.003) (—)

x6t 0 -0.006 -0.006 -0.036 -0.063 -0.084 0.041 0.011 0.068
(—) (0.007) (0.007) (0.007) (0.006) (0.005) (0.004) (0.004) (0.003)

Posterior mean and stand. dev. of the WFX model. The state variables are: x1t = y1
t , x2t = y1

t − ŷe,1t ,

x3t = y1
t − ŷ£,1t , x4t = y60

t − y1
t , x5t =

(
y60
t − y1

t

)
−
(
ŷe,60
t − ŷe,1t

)
, x6t =

(
y60
t − y1

t

)
−
(
ŷ£,60
t − ŷ£,1t

)



Table 6: Pricing errors across countries

NFX WFX
US Euro UK US Euro UK

y12
t 0.11 0.09 0.10 0.12 0.09 0.10
y24
t 0.08 0.07 0.08 0.09 0.07 0.09
y36
t 0.05 0.05 0.06 0.06 0.05 0.06
y48
t 0.02 0.02 0.03 0.03 0.02 0.03

Posterior mean estimates of the pricing errors in annualized percentage points, 100 ×
√

diag
(
ΣyΣ′y × 12

)
,for the US, Euro, and UK for both the NFX and WFX model. These are reported for yields of different
maturity that are not part of the state xt.

Table 7: Properties of Currency Prices and Interest Rates

Panel A: Summary statistics

mean NFX WFX st.dev. NFX WFX autocorr NFX WFX

∆st
Euro 0.909 478.258 0.909 9.99 250.73 9.99 0.150 0.346 0.150
UK -0.264 -703.672 -0.264 10.18 249.25 10.18 0.055 0.181 0.055

Short rates
US 3.725 3.725 3.725 0.79 0.79 0.79 0.985 0.985 0.985

Euro 3.673 3.475 3.459 0.69 0.69 0.70 0.988 0.992 0.992
UK 5.942 5.942 5.942 1.16 1.16 1.16 0.990 0.990 0.990

y1
t − ŷ1

t

Euro 0.364 0.251 0.266 0.56 0.55 0.55 0.974 0.974 0.974
UK -2.217 -2.217 -2.217 0.61 0.61 0.61 0.969 0.969 0.969

Panel B: UIP regressions

∆st+1 = a+ b(y1
t − ŷ1

t ) + εt+1

â NFX WFX b̂ NFX WFX

Euro 0.0014 0.4123 0.0009 -1.2169 -103.9271 -0.9458
(0.0017) (0.0017) (0.0501) (1.1654) (27.1927) (1.1422)

UK -0.0016 -0.6529 -0.0016 -0.8387 -33.9749 -0.8387
(0.0019) (0.0533) (0.0019) (1.1580) (25.6371) (1.1580)

We replicate Table I of B/F/T. We report the sample mean, sample standard deviation, and sample
autocorrelation.
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Table 8: Sample moments of data versus model-implied yields

mean st.dev. autocorr

data NFX WFX data NFX WFX data NFX WFX

US

y1
t 3.725 3.725 3.725 0.791 0.791 0.791 0.985 0.985 0.985

y12
t 4.354 4.160 4.159 0.877 0.848 0.820 0.991 0.989 0.989
y24
t 4.652 4.542 4.534 0.885 0.867 0.839 0.990 0.989 0.989
y36
t 4.907 4.852 4.842 0.874 0.865 0.846 0.989 0.989 0.989
y48
t 5.130 5.109 5.103 0.856 0.853 0.844 0.989 0.989 0.989
y60
t 5.326 5.326 5.326 0.837 0.837 0.837 0.988 0.988 0.988

Euro

ŷ1
t 3.673 3.476 3.459 0.690 0.693 0.698 0.992 0.992 0.992

ŷ12
t 3.817 3.772 3.787 0.736 0.716 0.720 0.991 0.992 0.992
ŷ24
t 4.022 4.030 4.047 0.734 0.727 0.727 0.990 0.992 0.992
ŷ36
t 4.228 4.243 4.253 0.727 0.725 0.724 0.990 0.991 0.991
ŷ48
t 4.413 4.422 4.425 0.716 0.716 0.715 0.989 0.990 0.990
ŷ60
t 4.573 4.573 4.573 0.702 0.702 0.702 0.989 0.989 0.989

UK

ŷ1
t 5.942 5.942 5.942 1.163 1.163 1.163 0.990 0.990 0.990

ŷ12
t 5.785 5.841 5.887 1.070 1.087 1.065 0.990 0.991 0.991
ŷ24
t 5.895 5.913 5.934 1.028 1.032 1.014 0.990 0.991 0.991
ŷ36
t 6.010 6.022 6.022 0.992 0.994 0.984 0.990 0.990 0.990
ŷ48
t 6.116 6.123 6.118 0.964 0.966 0.961 0.990 0.990 0.990
ŷ60
t 6.208 6.208 6.208 0.942 0.942 0.942 0.989 0.989 0.989

Reduced-form moments vs model-implied moments from the main model.
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Table 9: Significant factors

esnt srpnt Etsrp
n
t+1 Et∆crx

n
t+1

n ∆crossst ∆cross
c y60,1

t ∆crossst ∆own
c y1

t ∆own
c y60,1

t ∆cross
c y60,1

t ∆own
c y1

t ∆own
c y60,1

t y1
t ∆own

c y1
t ∆cross

c y1
t ∆own

c y60,1
t ∆cross

c y60,1
t

1 0.133 -3.097 0.133 -0.979 0.925 -3.097 -1.356 -0.138 0 0 0 0 0
(0.035) (1.877) (0.035) (1.180) (1.862) (1.877) (1.026) (1.554)

2 0.068 -2.707 0.068 -1.150 0.403 -2.704 -1.424 -0.281 0.022 -0.035 0.034 -0.018 0.037
(0.019) (1.695) (0.019) (1.091) (1.687) (1.695) (1.000) (1.454) (0.12) (0.020) (0.019) (0.032) (0.032)

11 0.013 -1.418 0.013 -1.552 -0.785 -1.406 -1.593 -0.938 0.196 0.138 0.032 0.567 0.018
(0.004) (1.055) (0.004) (0.892) (1.053) (1.055) (0.880) (0.986) (0.089) (0.161) (0.150) (0.255) (0.257)

12 0.012 -1.350 0.012 -1.559 -0.840 -1.337 -1.589 -0.972 0.212 0.196 0.008 0.692 -0.010
(0.004) (1.022) (0.004) (0.883) (1.021) (1.022) (0.874) (0.961) (0.096) (0.175) (0.163) (0.276) (0.279)

23 0.006 -0.911 0.006 -1.512 -1.183 -0.903 -1.473 -1.175 0.369 1.113 -0.409 2.499 -0.482
(0.002) (0.800) (0.002) (0.817) (0.810) (0.801) (0.815) (0.788) (0.168) (0.322) (0.311) (0.511) (0.519)

24 0.006 -0.887 0.006 -1.503 -1.200 -0.880 -1.461 -1.185 0.381 1.212 -0.455 2.690 -0.534
(0.002) (0.788) (0.002) (0.812) (0.797) (0.788) (0.811) (0.777) (0.175) (0.336) (0.326) (0.534) (0.542)

59 0.003 -0.490 0.003 -1.218 -1.389 -0.490 -1.128 -1.256 0.732 5.089 -2.268 9.964 -2.681
(0.001) (0.539) (0.001) (0.670) (0.550) (0.539) (0.669) (0.547) (0.455) (0.885) (0.910) (1.435) (1.460)

60 0.002 -0.484 0.002 -1.212 -1.389 -0.484 -1.122 -1.254 0.741 5.201 -2.321 10.171 -2.748
(0.001) (0.535) (0.001) (0.666) (0.546) (0.535) (0.666) (0.543) (0.463) (0.902) (0.927) (1.462) (1.487)

We display factors that affect various objects of interest with significant loadings at least at one of the
horizons. The loadings are implied by the WFX model, and computed as cross-country averages. Superscripts
“cross” refers to our factor from a different country, and “own” to the factor from the same country. The
objects affected by these factors are listed in first row of the table.
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