
NBER WORKING PAPER SERIES

THE INTENSIVE MARGIN IN TRADE

Ana M. Fernandes
Peter J. Klenow

Sergii Meleshchuk
Denisse Pierola

Andrés Rodríguez-Clare

Working Paper 25195
http://www.nber.org/papers/w25195

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
October 2018

We are grateful to Arnaud Costinot, Caroline Freund, Cecile Gaubert, Keith Head, Sam Kortum, 
Thierry Mayer, Eduardo Morales and Jesse Perla for useful discussions, to seminar participants at 
various institutions, and to Matthias Hoelzlein and Nick Sander for outstanding research 
assistance. The World Bank provided access to the Exporter Dynamics Database. Research for 
this paper has in part been supported by the World Bank's Multidonor Trust Fund for Trade and 
Development and the Strategic Research Program on Economic Development, as well as the 
Stanford Institute for Economic Policy Research. The findings expressed in this paper are those 
of the authors and do not necessarily represent the views of the World Bank or its member 
countries, not those of the IMF, its Executive Board, or its management, nor those of the National 
Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2018 by Ana M. Fernandes, Peter J. Klenow, Sergii Meleshchuk, Denisse Pierola, and Andrés 
Rodríguez-Clare. All rights reserved. Short sections of text, not to exceed two paragraphs, may be 
quoted without explicit permission provided that full credit, including © notice, is given to the 
source.



The Intensive Margin in Trade
Ana M. Fernandes, Peter J. Klenow, Sergii Meleshchuk, Denisse Pierola, and Andrés Rodríguez-Clare
NBER Working Paper No. 25195
October 2018
JEL No. F00,F14

ABSTRACT

The Melitz model highlights the importance of the extensive margin (the number of firms 
exporting) for trade flows.  Using the World Bank's Exporter Dynamics Database (EDD) 
featuring firm-level exports from 50 countries, we find that around 50% of variation in exports is 
along the extensive margin --- a quantitative victory for the Melitz framework.  The remaining 
50% on the intensive margin (exports per exporting firm) contradicts a special case of Melitz with 
Pareto-distributed firm productivity, which has become a tractable benchmark. This benchmark 
model predicts that, conditional on the fixed costs of exporting, all variation in exports across 
trading partners should occur on the extensive margin. We find that moving from a Pareto to a 
lognormal distribution allows the Melitz model to match the role of the intensive margin in the 
EDD. We use likelihood methods and the EDD to estimate a generalized Melitz model with a 
joint lognormal distribution for firm-level productivity, fixed costs and demand shifters, and use 
"exact hat algebra" to quantify the effects of a decline in trade costs on trade flows and welfare in 
the estimated model. The welfare effects turn out to be quite close to those in the standard Melitz-
Pareto model when we choose  the Pareto shape parameter to fit the average trade elasticity 
implied by our estimated Melitz-lognormal model, although there are significant differences 
regarding the effects on trade flows.
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1. Introduction

Across trading partners, exports can vary along the extensive margin (number of exporting firms)

and along the intensive margin (average exports per exporting firm). The classic Krugman (1980)

model predicts all export variation will be on the intensive margin because all firms export to ev-

ery destination. Melitz (2003) brings the extensive margin to life with fixed costs of exporting,

and emphasizes the importance of selection of firms into exporting.

In this paper we document the importance of the two margins empirically and then study

the implications of our findings for quantitative trade theory. Exploiting data on a much larger

set of exporting countries than in the existing literature,1 we find that the intensive margin is

at least as important as the extensive margin in driving bilateral trade flows. The importance

of the intensive margin is at odds with the Melitz model if one assumes that firm productiv-

ity is distributed Pareto, as is customary in the quantitative trade literature. In the benchmark

Melitz-Pareto model, the extensive margin is dominant. In contrast, a lognormal distribution of

productivities allows the Melitz model to successfully match the empirical prominence of the

intensive margin. We finish by examining whether moving from a Pareto to a lognormal firm

productivity distribution alters how trade costs affect trade flows and welfare.

To elaborate, we use the World Bank’s Exporter Dynamics Database (hereafter EDD) to sys-

tematically examine the importance of the extensive and intensive margins. The EDD covers

firm-level exports from 59 (mostly developing) countries to all destination countries in most

years from 2003 to 2013. For 49 of the countries, every exporting firm’s exports to each desti-

nation in a given year can be broken down into HS 6-digit products.2 We add China to the 49

EDD countries to arrive at 50 countries for our analysis. Having many origin and destination

countries enables us to study the role of the intensive and extensive margins while allowing for

origin-year and destination-year fixed effects that control for differences in population, wages,

and other country characteristics that affect firm entry into exporting and exports per firm.

We find that between 40 and 60 percent of the variation in overall exports across origin-

destination pairs is accounted for by the intensive margin, with the rest accounted for by the

extensive margin. For reasons that will become clear in Section 2, we refer to these two shares

as the intensive margin and extensive margin elasticities. This breakdown into the intensive and

extensive margin elasticities is robust to using different country samples or sets of fixed effects,

1Most firm-level empirical trade studies have only one or at most a few exporting countries. Bernard, Jensen,
Redding and Schott (2007) decompose exports from the U.S. to other countries. Eaton, Eslava, Kugler and Tybout
(2008) analyze firm-level exports for Colombia, Eaton, Kortum and Kramarz (2011) do so for France, Eaton et al.
(2012a) for Denmark and France, Manova and Zhang (2012) for China, and Arkolakis and Muendler (2013) for Brazil,
Chile, Denmark and Norway.

2See Fernandes, Freund and Pierola (2016) for a detailed description of the dataset.
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excluding country pairs with few exporters or tiny exporters, and looking within industries.

We interpret the finding that up to 60 percent of the variation in bilateral trade flows are ex-

plained by the extensive margin as providing support for the Melitz (2003) model. But the finding

that at least 40 percent of that variation is explained by the intensive margin — even while allow-

ing for origin-year and destination-year fixed effects — contradicts an important special case of

the Melitz model, namely the one with Pareto-distributed firm productivity and fixed trade costs

that vary only because of separate origin and destination components. In this case all variation

in exports across trading partners should occur through the number of exporters (the extensive

margin). Lower variable trade costs should stimulate sales of a given exporting firm, but draw in

marginal exporting firms to the point that average exports per exporter (the intensive margin) is

unchanged. This exact offset is a special property of the Pareto distribution.3

We explore several potential explanations for the prominent intensive margin in the EDD

data while retaining a Melitz-Pareto core. We do this because Melitz-Pareto has become an

important benchmark model in international trade. It is consistent with many firm-level facts

(Eaton et al., 2011), generates a gravity equation (Chaney, 2008), and yields a simple summary

statistic for the welfare gains from trade (Arkolakis, Costinot and Rodrı́guez-Clare, 2012). We

want to make sure our empirical finding cannot be made compatible with Melitz-Pareto before

exploring an alternative productivity distribution.

First, we consider the possibility that fixed trade costs vary by origin-destination pair. Higher

fixed trade costs raise average exports per exporter, but lower total exports. For average exports

to be increasing in total exports, therefore, one needs variable trade costs to be very negatively

correlated with fixed trade costs. A corollary is that, whereas variable trade costs rise decisively

with distance between trade partners, fixed trade costs would need to fall with distance. We find

this rather implausible. More importantly, this model would imply that the intensive margin

elasticity should be equally important among the smallest and largest exporting firms; in the

data, the intensive margin elasticity rises steadily with exporting firm size when we put exporting

firms into size percentiles.

Second, we explore the role of multi-product firms. If the typical firm exports a higher num-

ber of products to destinations with larger overall exports, this could account for the importance

of the intensive margin for exports. We find that the number of HS 6-digit products per export-

ing firm does indeed account for about 12 percent of the variation in overall exports, or about

3This property of the Melitz-Pareto model extends to environments with demand and fixed costs that are idiosyn-
cratic to firm-destinations (Eaton et al., 2011); convex marketing costs (Arkolakis, 2010); non-CES preferences (Arko-
lakis, Costinot, Donaldson and Rodrı́guez-Clare, 2015); non-monopolistic competition (Bernard, Eaton, Jensen and
Kortum, 2003), and multinational production (Arkolakis, Ramondo, Rodrı́guez-Clare and Yeaple, 2014).
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one-fourth of the intensive margin elasticity we estimate. In the context of the multi-product

Melitz-Pareto model developed by Bernard, Redding and Schott (2011), however, this explana-

tion still requires firm-level fixed costs to fall with the distance between trading partners. And

the intensive margin elasticity per firm-product requires that fixed costs of exporting per product

also fall with distance.

A third hypothesis we investigate is granularity. With a finite number of firms, the intensive

margin (and overall exports) can be high because of favorable productivity draws from the Pareto

distribution within a country. We develop an estimator for the elasticity of fixed trade costs to

distance that is valid under granularity as in Eaton, Kortum and Sotelo (2012a), and continue to

find that fixed trade costs must fall with distance to explain a positive intensive margin elasticity.

Using simulations of finite draws from a Pareto distribution, we find that granularity generates

only a modest intensive margin elasticity, and — in contrast to the data — almost entirely in the

right tail of the exporter size distribution.

After these attempts to rescue the Melitz-Pareto special case, we entertain a lognormal distri-

bution of firm productivity. Head, Mayer and Thoenig (2014) analyze how the welfare gains from

trade in the Melitz model differ with a lognormal instead of a Pareto distribution. Bas, Mayer and

Thoenig (2015) show how the trade elasticity varies with a lognormal distribution. Both papers

marshal evidence from firms in France and China pointing to the empirical relevance of the

lognormal distribution.

We consider a Melitz model with demand and fixed trade cost shocks that are specific to each

firm-destination, as in Eaton et al. (2011), but with a firm productivity distribution that is lognor-

mal rather than Pareto. In particular, we assume that each firm is characterized by a productivity

parameter as well as an idiosyncratic demand shifter and fixed cost for each destination market,

all drawn from a multivariate lognormal distribution. We allow for a non-zero covariance be-

tween the demand shifter and the fixed cost in each destination, but set all other covariances to

zero. One appealing feature of this setup is that it is amenable to likelihood estimation methods.

As the likelihood is potentially not concave as a function of the parameters, and since we have a

large number of parameters to estimate (means, variances, covariance, and trade costs), we rely

on the estimation methodology proposed by Chernozhukov and Hong (2003).

Our estimation shows that a lognormal distribution for firm productivity can indeed gener-

ate a sizable intensive margin elasticity. When variable trade costs fall and fixed costs are con-

stant, the productivity cutoff falls and the ratio of mean to minimum exports per firm increases

under the lognormal distribution (while being constant under Pareto).4 Shifting to lognormal

4The result holds under other thin-tailed productivity distributions, such as bounded Pareto as in Feenstra (2014).
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productivity also changes our inference about fixed trade costs, so that now they are rising with

distance. As in the data, the intensive margin elasticity rises steadily with the size percentile of

exporters under a lognormal productivity distribution.

We finish by studying the implications of our empirical findings for the quantitative impact

of changes in trade costs. We show how to extend the “exact hat algebra” used in Dekle, Eaton

and Kortum (2008) to a Melitz model with a general distribution of firm-level productivity, fixed

export costs and destination-specific demand shifters. We then compute the effects of counter-

factual changes in trade costs on trade flows and welfare in our estimated full Melitz-lognormal

model. We compare these effects to those that obtain in the standard Melitz-Pareto model with

the Pareto shape parameter estimated to fit the average trade elasticity implied by our estimated

Melitz-lognormal model. The welfare effects in this Melitz-Pareto approximation are very close

to those in the Melitz-lognormal model, although there are significant differences regarding the

effects on trade flows.5

Our findings for the intensive margin and the importance of assuming a particular productiv-

ity distribution have implications beyond those from these counterfactual exercises. The Melitz

model has no frictions to reallocating inputs across firms, and takes firm productivities as ex-

ogenous. In the presence of reallocation frictions, whether the adjustment takes place along

the intensive or extensive margin could alter how trade liberalization impacts trade flows and

welfare. The distribution of firm productivity, meanwhile, affects technology diffusion through

trade in studies such as Buera and Oberfield (2015) and Perla, Tonetti and Waugh (2015), which

assume fat-tailed productivity distributions such as Pareto. In Perla et al. (2015), the gains from

trade are larger when trade liberalization raises average firm size relative to cutoff firm size —

which is closely tied to the intensive margin elasticity.

Our counterfactual analysis is related to Head et al. (2014) and Melitz and Redding (2015).

Using lognormal and bounded Pareto distributions, respectively, they show that the trade elas-

ticity is not constant across countries or time. They then draw implications for the welfare effects

of trade in calibrated symmetric two-country models. Our conclusion — that the Melitz-Pareto

model offers a good approximation to the welfare effects if the data generating process is our

estimated full Melitz-lognormal model — is consistent with the finding in Head et al. (2014)

that their “macro-data approach” to calibration leads to similar results across the lognormal

A bounded Pareto distribution loses the analytical convenience of the unbounded Pareto while lacking the estimation
convenience of the lognormal distribution.

5Our approach and findings bear some resemblance to those in contemporaneous work by Head and Mayer
(2018). They consider a model with rich patterns of substitutability across varieties and variable markups as the
true data generating process and explore the extent to which counterfactual implications are different if one wrongly
estimates and applies a simple CES-monopolistic competition model on the generated data. They find that the CES
model serves as a very good approximation.
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and Pareto models. In contrast, Melitz and Redding (2015) show that the formula proposed in

Arkolakis et al. (2012) to compute welfare changes given changes in trade shares (their formula

for “ex-post welfare evaluation”) is no longer accurate if the Pareto productivity distribution is

bounded from above. We find Melitz-Pareto a good approximation because variation in the trade

elasticity is much smaller in our full Melitz-lognormal model estimated on the EDD data than

in their symmetric Melitz model with a truncated Pareto distribution calibrated to match the

relative size of exporting and non-exporting U.S. firms.

To recap, this paper makes several contributions to the literature. First, we use the EDD to

establish a new stylized fact, namely that between 40% and 60% of the variation in exports across

country pairs takes place along the intensive margin, with this margin being important all along

the firm-size distribution. Second, we show that the Melitz-Pareto model cannot match this

fact, even allowing for ad hoc fixed trade costs, multi-product firms and granularity. Third, we

show that a lognormal firm productivity distribution generates a positive role for the intensive

margin as required by the data. Fourth, we use likelihood methods and the EDD to estimate a

Melitz model with a lognormal distribution for productivity plus idiosyncratic demand shocks

and fixed costs. Finally, we extend the exact hat algebra approach to a generalized Melitz model

and use it with the estimated Melitz-lognormal model to explore counterfactual trade flow and

welfare implications relative to those of the Melitz-Pareto model.

The rest of the paper is organized as follows. Section 2 describes the EDD data and document

the importance of the extensive and intensive margins in accounting for cross-country variation

in exports. Section 3 contrasts the predictions of the Melitz-Pareto model (with a continuum of

single product firms, multi-product firms or a finite number of firms) to the EDD facts. Section

4 shows how the implications of the Melitz model change when we drop the Pareto assumption

and instead assume that the firm productivity distribution is lognormal. Section 5 describes

the quantitative impact of trade cost shocks estimated based on “exact hat algebra.” Section 6

concludes.

2. The Intensive Margin in the Data

The Exporter Dynamics Database

We use the Exporter Dynamics Database (EDD) described in Fernandes et al. (2016) to study

the intensive and extensive margins of trade. The EDD is based on firm-level customs data cov-

ering the universe of export transactions provided by customs agencies from 59 countries (53

developing and 6 developed countries). For each country, the raw firm-level customs data con-
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tains annual export flows (in current values) disaggregated by firm, destination and Harmonized

System (HS) 6-digit product. Oil exports are excluded from the customs data due to lack of ac-

curate firm-level data for many of the oil-exporting countries. For most countries total non-oil

exports in the EDD are close to total non-oil exports reported in COMTRADE/WITS. More than

100 statistics from the EDD are publicly available at the origin-year, origin-product-year, origin-

destination-year, or origin-product-destination-year levels. These include average exports per

firm as well as the number of exporting firms.

For the descriptive analysis in this section as well as for the regression and simulation work in

the sections that follow we focus on a core sample that consists of 50 countries (49 from the EDD

and China) for which we have the firm-level data.6 However, to use the most comprehensive

sample of countries available we rely for the motivating plots below on an extended sample that

includes the 59 origin countries from the EDD plus China. Both samples cover a subset of years

from 2003 and 2013 — see Table 1 and Table I1 in the Online Appendix.

We focus on EDD statistics based on products belonging only to the manufacturing sector.

Specifically, relying on a concordance across the ISIC rev. 3 classification and the HS 6-digit

classification, we consider only exports of HS 6-digit products that correspond to ISIC manu-

facturing sub-sectors 15-37. Using these data we calculate variants of average exports per firm,

number of exporting firms, and total exports at the origin-destination-year level or at the origin-

product-destination-year level. The product disaggregations that we use are HS 2-digit for the

extended sample and HS 2-digit, HS 4-digit, or HS 6-digit for the core sample.

Importance of the intensive margin

LetXij ,Nij and xij ≡ Xij/Nij denote total exports, total number of exporting firms, and average

exports per firm from country i to country j, respectively.7 In Figure 1 we plot the intensive

margin (lnxij) and extensive margin (lnNij) vs. total exports (lnXij) for the extended sample of

countries. We restrict the sample to the origin-destination pairs with more than 100 exporting

firms (i.e., ij pairs for which Nij > 100) to reduce noise associated with country pairs with few

exporting firms.8 All variables plotted are demeaned of origin-year and destination-year fixed

effects. Each dot corresponds to (lnxij , lnXij) (Panel A) or (lnNij , lnXij) (Panel B). The lines can

be ignored for now.

6China is not included in the EDD due to confidentiality concerns.
7There is also variation in our data over time, so in principle we should add a time subscript as well, as inXijt. For

simplicity, we suppress the time subscript.
8The core sample includes 1,305 unique country pairs with Nij > 100 while the extended sample includes 2,087

unique country pairs withNij > 100. The total number of unique country-pairs is 8,401 in the core and 10,663 in the
extended sample.
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A key statistic that we use to summarize the pattern observed in Figure 1 is the intensive

margin elasticity (IME), which is the slope of the (not shown) regression line in Panel A. In a

given year, the IME can be obtained from an OLS regression of lnxij on lnXij with origin and

destination fixed effects:

lnxij = FEoi + FEdj + α lnXij + εij . (1)

The IME is the estimated regression coefficient

α̂ =
cov(ln x̃ij , ln X̃ij)

var
(

ln X̃ij

) , (2)

where we write ln z̃ij to denote variable ln zij demeaned by origin-year and destination-year

fixed effects. The complement of the IME is the extensive margin elasticity, defined as EME ≡
cov(ln Ñij ,ln X̃ij)

var(ln X̃ij)
. The EME corresponds to the slope of the (not shown) regression line in Panel B

of Figure 1 and satisfies EME = 1− IME.

Figure 1 demonstrates that both the IME and the EME are positive and large. As shown in

Panel A of Table 2, depending on the type of fixed effects included, the IME ranges from 0.4 to

0.46 in the core sample that we will use for the analysis in the next two sections. Our preferred

estimate of the IME is 0.4 based on the inclusion of origin-year and destination-year fixed ef-

fects (as in Figure 1).9 In this estimate, the intensive margin accounts for approximately 40% of

the variation in total exports across country pairs, while 60% is accounted for by the extensive

margin. As the focus has so far been on accounting for the variation in bilateral trade flows while

controlling for origin-year and destination-year fixed effects, it is natural to wonder how much

of that variation is absorbed by the fixed effects alone. The results in Table 2 show that this is

never more than 59 percent, implying that a large share of the variation in bilateral trade flows

comes from the forces behind the estimated IME.10

Robustness

The finding of a positive and large IME is robust to considering different samples. In Panel B

of Table 2 we estimate the IME including all country pairs — even those with less than 100 ex-

porting firms. The IME in this case reaches 0.58 when origin-year and destination-year fixed

effects are included. In the Online Appendix Table I2 we reproduce the regressions in Table 2

9To be specific, the equation estimated in this case is lnxijt = FEoit + FEdjt + α lnXijt + εijt using all years of
available data for the country pairs included in the core sample.

10This percentage comes from the R-squared of an OLS regression of bilateral total exports in logs (lnXijt) on
origin-year and destination-year fixed effects.
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but now for the extended sample of countries. In the preferred specification with origin-year

and destination-year fixed effects, the IME is 0.38 among origin-destination pairs with at least

100 exporting firms and 0.52 among all origin-destination pairs.11 To make sure the IME is not

driven by small exporting firms, we re-estimate it after excluding firms whose annual exports fell

below $1,000 in any year. The corresponding IME estimates in Table 3 (core sample) and Online

Appendix Table I4 (extended sample) change only slightly.

A separate concern is measurement error. Since total exports is the sum of firm-level exports,

classical measurement error in exports per exporter x would bias the IME upward, but classical

measurement error in the number of exporters N would bias the IME downward. Depending

on their relative importance compared to the true IME, classical measurement error could bias

the IME upward or downward. If the measurement error is serially uncorrelated, then instru-

menting total exports with its leads and/or lags should yield an unbiased estimate of the IME. As

shown in Online Appendix Table I5, the instrumented IMEs are very close to the OLS IME, both

economically and statistically.

Our results for the IME could be coming from country differences in industry composition

of exports combined with industry differences in average exports per firm. In Figure 2 we plot

the (demeaned) intensive and extensive margins against total exports at the origin-industry-

destination-year level using HS 2-digit industries. The pattern here is similar to that in Figure

1. Table 4 shows that the IME actually increases when moving to industry-level data. At the

lowest level of aggregation available (HS 6-digit), for the core sample of countries the IME is

0.51 with origin-year-industry and destination-year-industry fixed effects. The results also hold

in the extended sample, for which we calculated IME disaggregated at HS2 product level. As

reported in the Online Appendix Table I6, this IME is also close to 0.52.12

IME by percentiles

A positive IME could be due to the presence of export superstars that increase both average

exports per firm and total exports for some country pairs, as discussed in Freund and Pierola

(2015). We study this possibility by considering separate IME regressions for each exporter size

percentile. For each origin-destination-year combination we distribute the exporting firms into

percentiles based on the value of their exports. Denoting average exports per firm in percentile

11When we allow the IME to differ across origin countries depending on their GDP per capita, we find that IME
estimates are close to or larger than 0.4 for any group of countries, as shown in Online Appendix Table I3.

12The presence of large trading firms could lead to both high exports per firm and high total exports and explain
our IME estimates. While we are unable to identify large trading firms in the EDD data, we estimate the IME based
on a sample including only HS 2-digit industries with low shares of firms exporting via intermediaries, as defined in
Chan (2017). The results in Online Appendix Table I7 show an almost unchanged IME at 0.53.
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pct as xpctij , we run the regressions:

lnxpctij = FEoi + FEdj + αpct lnXij + εij .

We define the IME for each percentile as IMEpct ≡ α̂pct.

We plot the IMEpct for each percentile (with confidence intervals) in Figure 3 along with the

horizontal line at the overall IME of 0.4.13 The IME is 0.5 for the highest percentile. But the pos-

itive overall IME is not coming exclusively from the export superstars: the IMEpct rises steadily

from 0.2 at the 50th percentile to 0.3 at the 80th percentile.

IME for multi-product firms

We can dig deeper and study whether average exports per firm can be explained by the number

of products exported per firm or by exports per product per firm. Letmij be the average number

of products exported from i to j by firms exporting from i to j, and let xpij ≡ xij/mij be the

average exports per product per firm exporting from i to j. We define the IME at the product

level as IMEp ≡ cov(ln x̃pij , ln X̃ij)/var(ln X̃ij). Since xij = xpijmij , the IME is equal to the IMEp

plus the extensive product margin elasticity,

IME = IMEp +
cov(ln m̃ij , ln X̃ij)

var(ln X̃ij)
.

Table 5 reports the results for the IMEp for the core sample.14 Most of the IME is explained by the

systematic variation in average exports per product per firm, rather than in the average number

of products exported by firm.

Taking stock: the IME in the EDD

Summarizing the results so far, we find the intensive margin elasticity to be positive and sig-

nificant, both statistically and economically. This finding is robust to the inclusion of a variety

of fixed effects, various samples, exclusion of small firms, and disaggregation by industry. The

IME is positive and monotonically increasing across the whole distribution of exporter size. The

systematic cross-country-pair variation of average exports per firm comes primarily from the

behavior of average exports per product per firm.

13For exporter percentiles to be well-defined we focus on country pairs for which Nij > 100.
14Bernard et al. (2009) present a similar decomposition for U.S. exports. We compare their results to ours below.
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Correlation between intensive and extensive margin, and relation with distance

We now move beyond the intensive margin elasticities and report additional stylized facts on the

correlations between the intensive margin, the extensive margin, and distance. There is a pos-

itive and significant correlation between average exports per firm and the number of exporting

firms (0.25, standard error 0.01) after taking out origin-year and destination-year effects. Table 6

shows how these margins vary with log distance with alternative sets of fixed effects. The elastic-

ities are all negative and significant when controlling for origin-year and destination-year fixed

effects: average exports per firm, the number of firms, average number of products exported per

firm, and average exports per product per firm all decline with distance between trade partners.

Relation to previous empirical results

We finish this section by relating our stylized facts to those of EKK, EKS, Bernard et al. (2007) and

Bernard et al. (2009). EKK use firm-level export data for a single origin (France) and show that

average exports per firm increase with market size of the destination (measured as manufactur-

ing absorption) with an elasticity of 1/3. In Figure 4 we plot market size (horizontal axis) against

our estimated destination fixed effects (vertical axis) from a regression of average exports per

firm on origin, destination and year fixed effects based on the core sample and country pairs for

which Nij > 100. A regression line (not shown) through the points in the plot implies that aver-

age exports per firm increase with destination market size with an elasticity of 0.19, a bit lower

than the result in EKK.15

EKK also show that firms exporting to more destinations exhibit higher sales in the domestic

(French) market. Our data does not include domestic sales, but we can instead look at sales in

the most popular destination market for each origin. Let xil|j denote average exports to desti-

nation l computed across firms from i that sell in markets l and j and let l∗(i) ≡ arg maxkNik

be the most popular destination market for each origin country i (e.g., the United States (U.S.)

for Mexico). In Figure 5 we plot log
xil∗(i)|j

xil∗(i)|l∗(i)
(vertical axis) against log

Nij
Nil∗(i)

(horizontal axis) for

all i and j for the core sample.16 It is very clear that the results derived by EKK for French firms

remains valid for our data with many origin countries: firms that sell in more markets are more

productive as proxied by their sales in their origin country’s most popular destination market.

15Similar findings are obtained in unreported plots where the destination fixed effects are based on the extended
sample and all country pairs or based on the core sample and either country pairs for whichNij > 100 or all country
pairs.

16The EKK estimating sample includes only firms with sales in France. To implement an approach comparable to
theirs, we drop all firms from country i that do not sell to l∗(i), so the sample includes onlyNil∗(i) firms for country i.
This implies that all firms that make up Nij are also selling to l∗(i).
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EKS find that average exports per firm are very similar across four origin countries (Brazil,

Denmark, France and Uruguay) for which they have customs data. They regress average exports

per firm on origin and destination fixed effects and find that the origin fixed effects differ lit-

tle across their four origins. Running the same regression in our dataset (but pooling across

years and including year fixed effects), we find that origin fixed effects do vary significantly

across countries (the coefficient of variation in the estimated origin fixed effects ranges from

0.81 to 2.56, depending on the sample used) and are higher for countries with higher GDP per

capita and higher total exports.17 Moreover, origin-year and destination-year fixed effects are

not enough to capture the variation in lnxij : a regression of lnxij on origin-year and destination-

year fixed effects yields an R-squared of 0.65 when only country pairs withNij > 100 are consid-

ered and only 0.37 when all country pairs are considered.

Using firm-level export data for the U.S., Bernard et al. (2009) present a similar decompo-

sition to the one we present above for multi-product firms, except that they cannot allow for

destination fixed effects because their data is for a single origin. They find that IMEp is around

0.23, which is not far from our finding of around 0.29. On the other hand, contrary to our results,

Bernard et al. (2007) find that average exports per product per firm increase with distance. We

believe that the difference arises from the fact that, by having data for multiple origins, we are

able to control for destination fixed effects. In fact, Table 6 shows that regressing lnxpij on ln distij

with only origin and year fixed effects but without destination fixed effects yields a positive and

significant coefficient as in Bernard et al. (2007), whereas the coefficient becomes negative and

significant when destination fixed effects are added. The same happens when regressing lnxij

on ln distij .

3. The Intensive Margin in the Melitz-Pareto Model

In this section we ask how the Melitz model with Pareto distributed firm productivity stacks up

relative to the findings of the previous section. We focus on the implications of this model for

the intensive margin elasticity. We start with the simplest model, which entails a continuum of

single-product firms with a Pareto distribution for productivity as in Chaney (2008) and Arko-

lakis et al. (2008). We derive a series of properties of this model, and then explore their robust-

ness to allowing for destination-specific demand and fixed trade cost shocks at the firm level as

in EKK, for multi-product firms, and for granularity.

17For this purpose, we run regressions of the estimated origin fixed effects on population, GDP, GDP per capita,
and total exports, jointly and separately.
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3.1. The Basic Melitz-Pareto Model

Theory

As this is a well-known model, we will be brief in the presentation of the main assumptions.

There are many countries indexed by i, j. Labor is the only factor of production available in

fixed supply Li in country i and the wage is wi. Preferences are constant elasticity of substitu-

tion (CES) with elasticity of substitution across varieties σ > 1. Each firm produces one variety

under monopolistic competition. In each country i there is a large pool of firms of measure Ni

with productivity ϕ distributed Pareto with shape parameter θ > σ − 1 and scale parameter bi,

Pr (ϕ ≤ ϕ0) = Gi(ϕ0) = 1 − (ϕ0/bi)
−θ. Firms from country i also incur fixed trade costs Fij as

well as iceberg trade costs τij to sell in country j.18

Sales in destination j by a firm from origin i with productivity ϕ are

xij(ϕ) = Aj

(
σ̄
wiτij
ϕ

)1−σ
, (3)

where Aj ≡ P 1−σ
j wjLj , P

1−σ
j =

∑
iNi

∫
ϕ≥ϕ∗ij

(
σ̄
wiτij
ϕ

)1−σ
dGi(ϕ) is the price index in j, σ̄ ≡

σ/ (σ − 1) is the markup, and ϕ∗ij is the productivity cutoff for exports from i to j, which is deter-

mined implicitly by

xij(ϕ
∗
ij) = σFij . (4)

The value of overall exports and the number of firms that export from i to j are then Xij =

Ni

∫
ϕ≥ϕ∗ij

xij(ϕ)dGi (ϕ) and Nij = Ni

∫
ϕ≥ϕ∗ij

dGi (ϕ), respectively. Using again the fact that Gi(ϕ)

is Pareto and assuming that ϕ∗ij > bi for all i, j, we get that

Xij =

(
θ

θ − (σ − 1)

)
Aj (wiτij)

1−σ bθiNi

(
ϕ∗ij
)σ−θ−1 (5)

and

Nij = bθiNi

(
ϕ∗ij
)−θ

. (6)

Combining Equations (3) - (6), the extensive margin is

Nij = Ni

(
wi
bi

)−θ ( σ

Aj

)−θ/(σ−1)
τ−θij F

−θ/(σ−1)
ij , (7)

18Fij is in units of the numeraire. Since we focus on cross-section properties of the equilibrium, we do not need to
specify whether the fixed trade cost entails hiring labor in the origin or the destination country.
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while the intensive margin is

xij ≡
Xij

Nij
=

(
θσ

θ − (σ − 1)

)
Fij . (8)

We can always decompose variable and fixed trade costs as follows: τij = τ oi τ
d
j τ̃ij and Fij =

F oi F
d
j F̃ij . Taking logs in (7) and (8), and defining variables appropriately, we have

lnNij = µN,oi + µN,dj − θ ln τ̃ij − θ̄ ln F̃ij (9)

and

lnxij = µx,oi + µx,dj + ln F̃ij , (10)

where θ̄ ≡ θ
σ−1 . These are the two key equations that we use to derive the results in the rest of

this section.

Combining the definition of the intensive margin elasticity given in the previous section (i.e.,

IME =
cov(ln x̃ij ,ln X̃ij)

var(ln X̃ij)
) with equations (9) and (10), the model implies that

IME =
−
(
θ̄ − 1

)
var(ln F̃ij)− θcov(ln τ̃ij , ln F̃ij)

var
(
−θ ln τ̃ij −

(
θ̄ − 1

)
ln F̃ij

) . (11)

This result can be used to extract several implications of the model, which we present in the

form of four observations in the rest of this section.

Our first observation says that if all variation in fixed trade costs comes from origin and des-

tination fixed effects with no country-pair component, for example because Fij ∝ wγi w
1−γ
j (as in

Arkolakis (2010)), then the model implies that the intensive margin elasticity is zero.

Observation 1: If var
(

ln F̃ij

)
= 0 then IME = 0.

Since this is a key result, it is worth understanding it in more detail. Using Equation (3) to-

gether with the definition of xij , taking logs and differentiating w.r.t. ln τij we get

d lnxij
d ln τij

= 1− σ −
d ln

(
1−Gi(ϕ∗ij)

)
d lnϕ∗ij

(
1−

xij(ϕ
∗
ij)

xij

)
.

The first term is the direct effect on incumbent firms, while the second term captures selec-

tion. In turn, selection is the product of −d ln(1−Gi(ϕ∗ij))
d lnϕ∗ij

, which captures the effect of τij (and

hence ϕ∗ij) on average exports per firm through its impact on the share of firms that export, and(
1− xij(ϕ

∗
ij)

xij

)
, which captures how much less firms export at the cutoff relative to the average.
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Obviously, if xij = xij(ϕ
∗
ij) then there is no selection, while the effect of selection is maximized

if xij(ϕ∗ij)/xij = 0. With a Pareto distribution for productivity we have −d ln(1−Gi(ϕ∗ij))
d lnϕ∗ij

= θ and
xij

xij(ϕ∗ij)
= θ

θ−(σ−1) , therefore d lnxij
d ln τij

= 0.

Combined with the assumption that θ̄ > 1, the result in equation (11) also implies that if

the intensive margin elasticity is positive then there must be a negative correlation between the

variable and fixed trade costs (ignoring origin and destination fixed costs).

Observation 2: If IME > 0 then corr(ln F̃ij , ln τ̃ij) < 0.

Ignoring origin and destination fixed effects, equation (10) implies that

cov(ln F̃ij , ln d̃istij) = cov(ln x̃ij , ln d̃istij).

Thus, if average exports per firm fall with distance then fixed trade costs must also fall with

distance. This is captured formally by our third observation which is related to the fixed trade

costs elasticity with respect to distance.

Observation 3: cov(ln x̃ij ,ln d̃istij)
var(ln d̃istij)

=
cov(ln F̃ij ,ln d̃istij)

var(ln d̃istij)
.

We can go beyond the previous qualitative observations and derive the fixed and variable

trade costs implied by the model to compute values for corr(ln F̃ij , ln τ̃ij) and cov(ln F̃ij ,ln d̃istij)

var(ln d̃istij)
.

Combining equations (9) and (10) to solve for ln F̃ij and ln τ̃ij in terms of lnxij and lnNij yields

ln F̃ij = δF,oi + δF,dj + lnxij (12)

and

θ ln τ̃ij = δτ,oi + δτ,dj − θ̄ lnxij − lnNij . (13)

Model-implied values for ln F̃ij are (ignoring origin and destination fixed effects) directly given

by lnxij , but for ln τ̃ij a value for θ̄ is required to go from lnxij and lnNij in the data to model-

implied values for θ ln τ̃ij .

Exports of a firm in the pth percentile of the exporter size distribution are σFij
(
ϕp/ϕ∗ij

)σ−1
,

where ϕp is such that Pr
[
ϕ < ϕp|ϕ > ϕ∗ij

]
= p. Since productivity is distributed Pareto, the ratio

ϕp/ϕ∗ij and thus average exports per firm in each percentile should be the same for all ij pairs.

This implies that the intensive margin elasticity calculated separately for each exporter size per-

centile is the same as the overall intensive margin elasticity.

Observation 4: IMEpct = IME, for all pct.
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Data

We now use Observations 1 – 4 above to relate the simple Melitz-Pareto model to the data as

described in Section 2.

Observation 1 indicates that if fixed trade costs vary by origin and destination but not across

country pairs, i.e., var(F̃ij) = 0, then the IME should be equal to zero while the EME should be

equal to one. This is captured in Figures 1 and 2 by the horizontal line for the model-implied

intensive margin (panel a) and the line with unit slope for the model-implied extensive margin

(panel b). These implications of the model stand in sharp contrast to what is seen in the data,

both in Figures 1 and 2 and in Tables 2, 3, and 4, which reveal an IME of 0.4 or higher.

For the simple Melitz-Pareto model to be consistent with the data, we need to move away

from var(F̃ij) = 0. As per Observation 2, however, the positive IME seen in the data implies a

negative correlation between model-implied fixed and variable trade costs. Moreover, Observa-

tion 3 combined with the result in Table 6 of a negative distance elasticity of average exports per

firm implies that model-implied fixed trade costs fall with distance.

We explore these results further by using equations (12) and (13) to compute model-implied

fixed and variable trade costs.19 The correlation between the resulting fixed and variable trade

costs is −0.786 (with a standard error of 0.007). Figure 6 plots these trade costs against dis-

tance. The Figure shows that model-implied fixed trade costs are decreasing with distance, while

model-implied variable trade costs are increasing with distance.20 The distance elasticities cor-

responding to Figure 6 are reported in Table 7. For fixed trade costs this elasticity is −0.28 (as

per Observation 3, this is equal to the distance elasticity of average exports reported in Table 6)

while for variable trade costs the distance elasticity is 0.272, both statistically significant.

Finally, according to Observation 4, the simple Melitz-Pareto model implies that IMEpct =

IME for all pct. This theoretical prediction of a common elasticity across percentiles is captured

by the horizontal line red in Figure 3. This is at odds with the data.

To conclude, the simple version of the Melitz-Pareto model with fixed trade costs varying

only because of origin and destination fixed effects is clearly at odds with the data. One can of

course allow a richer pattern of variation in fixed trade costs across country pairs to make the

model perfectly consistent with the data, but then the positive IME has further puzzling implica-

tions for fixed trade costs, which should fall with distance and be very negatively correlated with

variable trade costs. To the best of our knowledge, there are no models that would microfound

19To compute model-implied variable trade costs as in equation (13), values for θ and θ̄ are required. We set θ = 5
from Head and Mayer (2014) and σ = 5 from Bas et al. (2015), which jointly imply θ̄ = 1.25.

20Variable trade costs must increase with distance so that total exports fall with distance, as implied by the results
in Table 6.
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such a strong and negative correlation between the two types of trade costs and a negative fixed

trade costs elasticity with respect to distance.21 The data is also at odds with the implication

from the Melitz-Pareto model of a constant IME across exporter size percentiles.

3.2. Multi-Product Extension of Melitz-Pareto

In this section we explore whether the puzzling implications for trade costs arising from the

Melitz-Pareto model can be avoided by extending the model to multi-product firms. The idea

would be that average exports per firm may fall along with total exports (thereby creating a pos-

itive IME) as firms facing higher product-level fixed trade costs export fewer products (even

though they export more per product). Roughly speaking, allowing for multi-product firms im-

plies that part of the extensive margin in the basic Melitz-Pareto model now operates inside the

firm and appears as an intensive margin. We will see, however, that under the Pareto assumption

the effect of higher product-level fixed trade costs on the number of products exported per firm

is exactly offset by higher average exports per product, so that Observation 1 in the basic model

will remain valid in this extension.

Theory

We consider an extension of the Melitz-Pareto model due to Bernard, Redding and Schott (2011).

Each firm can produce a differentiated variety of each of a continuum of products in the interval

[0,1] with productivity ϕλ, where ϕ is common across products and λ is product-specific. The

firm component ϕ is drawn from a Pareto distributionGf (ϕ) with shape parameter θf , while the

firm-product component λ is drawn from a Pareto distribution Gp(λ) with shape parameter θp.

To have well-defined terms given a continuum of firms, we impose θf > θp > σ − 1. To sell any

products in market j, firms from country i have to pay a fixed cost Fij , and to sell each individual

product requires an additional fixed cost of fij . Variable trade costs are still τij .

The cutoff λ for a firm from country i with productivity ϕ that wants to export to market j,

λ∗ij(ϕ), is given implicitly by

Aj

(
wiτij
ϕλ∗ij(ϕ)

)1−σ

= σfij . (14)

21Allowing for tariffs in addition to iceberg trade costs would naturally lead to a positive correlation between model-
implied variable and fixed trade costs. This is because a tariff affects trade flows both by increasing the price of the
affected good, as with iceberg trade costs, and by decreasing the net profits conditional on the quantity sold, as
with fixed trade costs. See the online appendix of Costinot and Rodrı́guez-Clare (2014), Felbermayr et al. (2015), and
Caliendo et al. (2015).
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We can then write the profits in market j for a firm from country i with productivity ϕ as

πij(ϕ) ≡
∫ ∞
λ∗ij(ϕ)

( λ

λ∗ij(ϕ)

)σ−1
− 1

 fijdGp(λ). (15)

The cutoff productivity for firms from i to sell in j is implicitly πij(ϕ∗ij) = Fij . As in the canonical

model, the number of firms from country i that export to market j is Nij =
[
1−Gf (ϕ∗ij)

]
Ni,

while the number of products sold by firms from i in j isMij = Ni

∫∞
ϕ∗ij

[
1−Gp

(
λ∗ij(ϕ)

)]
dGf (ϕ).

Combining the previous expressions, using the fact that Gp(λ) and Gf (ϕ) are Pareto, writing

fij = foi f
d
j f̃ij , Fij = F oi F

d
j F̃ij , and τij = τ oi τ

d
j τ̃ij , and defining variables appropriately we get

lnXij = µX,oi + µX,dj − θf ln τ̃ij −
(

θf

σ − 1
− θf

θp

)
ln f̃ij −

(
θf

θp
− 1

)
ln F̃ij , (16)

lnxpij ≡ lnXij − lnMij = µx
p,o
i + µx

p,d
j + ln f̃ij , (17)

lnxij ≡ lnXij − lnNij = µx
f ,d
i + µx

f ,d
j + ln F̃ij . (18)

It is easy to verify that if fij = 0 for all i, j then this model collapses to the canonical model with

single-product firms.

Recalling our definition of the intensive margin elasticity at the firm and product level intro-

duced in Section 2 and letting θ̄ ≡ θf/ (σ − 1) and χ ≡ θf/θp, then from equations (16) to (18) we

have

IME = −
(χ− 1) var

(
ln F̃ij

)
+
(
θ̄ − χ

)
cov(ln f̃ij , ln F̃ij) + θcov(ln F̃ij , ln τ̃ij)

var(ln X̃ij)
(19)

and

IMEp = −

(
θ̄ − χ

)
var

(
ln f̃ij

)
+ (χ− 1) cov(ln f̃ij , ln F̃ij) + θcov(ln f̃ij , ln τ̃ij)

var(ln X̃ij)
. (20)

Observation 1 in the single-product firm model remains valid in the multi-product firm model,

while we now have an analogous observation for the product-level intensive margin elasticity:

Observation 5: If var
(

ln f̃ij

)
= 0 then IMEp = 0.

The assumption θf > θp > σ − 1 implies that χ > 1 and θ̄ > χ > 1 and in turn this leads to

the following extensions of observation 2:

Observation 6: If IME > 0 then either cov(ln f̃ij , ln F̃ij) < 0 or cov(ln F̃ij , ln τ̃ij) < 0 (or both).

Observation 7: If IMEp > 0 then either cov(ln f̃ij , ln F̃ij) < 0 or cov(ln f̃ij , ln τ̃ij) < 0 (or both).

Observation 3 remains valid in the multi-product firm model, and we now also have an anal-

ogous observation for product-level fixed trade costs:



18 FERNANDES-KLENOW-MELESHCHUK-PIEROLA-RODRı́GUEZ-CLARE

Observation 8:
cov(ln x̃pij ,ln d̃istij))

var(ln d̃istij)
=

cov(ln f̃ij ,ln d̃istij))

var(ln d̃istij))
.

As in the single-product case, we can use the model to back out the implied trade costs.

Equation (18) can be used to obtain a model-implied F̃ij (which would be the same as the one

derived in the single-product model) while Equation (17) can be used to obtain a model-implied

f̃ij , and Equation (16) can then be used to obtain a model-implied τ̃ij .

Data

Since Observations 1 and 3 remain valid when the basic model is extended to allow for multi-

product firms, the conclusions regarding the necessity of having fixed trade costs decrease with

distance remain valid. Turning to the implications for product-level fixed trade costs, the finding

in Section 2 of a positive IME at the product level, IMEp > 0 in Table 5, combined with Observa-

tion 5 implies that, to be consistent with the data, the multi-product version of the Melitz-Pareto

model presented above requires var
(

ln f̃ij

)
> 0. However, observations 6 and 7 imply that the

two types of fixed trade costs would need to be negatively correlated, or that the covariances

between those fixed trade costs and variable trade costs would have to be negative. Moreover,

Observation 8 combined with the results in Table 6 implies that model-implied product-level

fixed trade costs decrease with distance with an elasticity of −0.071, as shown in the third col-

umn of Table 7 and illustrated in Figure 7. We conclude that the puzzling implications of the

Melitz-Pareto model remain valid when the model is extended to allow for multi-product firms.

3.3. Firm-Level Demand and Fixed-Cost Shocks

EKK extend the basic Melitz-Pareto model presented in Section 3.1 to allow for (log-normally

distributed) firm-level destination-specific demand and fixed-cost shocks. Except for constants

that capture the net effects of these shocks, our equations (7) and (8) remain valid in the EKK

environment, and hence so do observations 1-3.22

It is important to note, however, that if productivity is distributed Pareto then the presence

of log-normally distributed demand or fixed-cost shocks would imply that equations (7) and (8)

no longer hold. The critical assumption in EKK that allows their model to be consistent with our

equations (7) and (8) is that, loosely speaking, they consider the limit as the scale parameter of

the Pareto distribution converges to zero.23

22This can be confirmed by simple manipulation of equations (20) and (28) in EKK.
23More exactly, EKK specify a function for the measure of firms with productivity above some level, with that mea-

sure going to infinity as productivity goes to zero. This is equivalent to taking a limit with the (exogenous) measure
of firms going to infinity and the scale parameter of the Pareto distribution going to zero. Although equations (7) and
(8) do not hold anywhere in this sequence, they do hold in the limit.
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To formally establish this result, recall that to get equations (7) and (8) we assumed thatϕ∗ij >

bi. If instead ϕ∗ij ≤ bi then Nij = Ni and xij =
(

θ
θ−(σ−1)

)
Aj

(
wiτij
bi

)1−σ
. In the extreme, if ϕ∗ij ≤ bi

holds for all i, j pairs, then we would have IME = 1 rather than IME = 0. Now think about

the case with firm-specific demand and fixed-cost shocks. Specifically, assume that each firm is

characterized by a productivity level ϕ as well as a demand shock αj and a fixed cost shock fj in

each destination j, with ϕ drawn from a Pareto distribution (with scale parameter bi and shape

parameter θ) and αj and fj drawn iid from some distribution. Let xij(ϕ, αj) ≡ Ajαj(σ̄
wiτij
ϕ )(1−σ)

and let ϕ∗ij(αj , fj) be implicitly defined by xij(ϕ∗ij , αj) = σfj . By the same argument we used in

Section 3.1, if for all i, j and all possible (αj , fj) we have ϕ∗ij(αj , fj) > bi, we can easily show that

we still have IME = 0.24 However, if αj and fj are lognormally distributed, then for bi > 0 for all i

there must be a positive mass of firms for which ϕ∗ij(αj , fj) < bi, and for those firms there would

be a positive intensive margin elasticity. EKK essentially avoid this by taking the limit with bi → 0

for all i.

In principle, one could use this result to argue that a Melitz model with Pareto distributed

productivity but extended to allow for log-normally distributed demand and fixed-cost shocks

could match the positive IME that we see in the data. However, such a model would not exhibit

any of the convenient features of the canonical Melitz-Pareto model: the sales distribution is

not distributed Pareto, the trade elasticity is not common across country pairs and fixed, and

the gains from trade are not given by the ACR formula. Given that, our approach in this paper

is to move all the way to a model where productivity as well as destination-specific demand and

fixed-cost shocks are lognormally distributed. Such a model has at least the advantage that it

is computationally tractable, and amenable to likelihood estimation methods, as we show in

Section 4.

3.4. Granularity

The previous sections have considered a model with a continuum of firms. With a discrete and

finite number of firms it may be possible to generate a positive covariance between the intensive

margin and total exports that could in principle explain our empirical findings. To state this

formally, we rely on the extension of the Melitz-Pareto model to allow for granularity in Eaton et

24Consider the group of firms from country i that have some given draw {(αj , fj), j = 1, ..., n}. The exact same
argument used in Section 3.1 can be used to show that the sample of firms obtained by combining such firms across
all origins i satisfies IME = 0. One can then simply integrate across all possible draws {(αj , fj), j = 1, ..., n} to show
that IME = 0 for the whole set of firms.
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al. (2012b). Equations (9) and (10) now become

lnNij = µN,oi + µN,dj − θ ln τ̃ij − θ̄ ln F̃ij + ξij (21)

and

lnxij = µx,oi + µx,dj + ln F̃ij + εij , (22)

where ξij and εij are error terms arising from the fact that now the number of firms is discrete

and random. Using the same definition for the intensive margin elasticity as in Section 3, the

previous equations imply that

IME =
−
(
θ̄ − 1

)
var(ln F̃ij)− θcov

(
ln τ̃ij , ln F̃ij

)
+ var(εij) + COV

var
(
−θ ln τ̃ij −

(
θ̄ − 1

)
ln F̃ij + εij + ξij

) , (23)

where COV ≡ cov(ln F̃ij + εij , ξij) + cov(ln F̃ij + ln τ̃ij , εij). If var(εij) is large relative to -COV,

this could explain IME > 0 even with cov
(

ln F̃ij , ln τ̃ij

)
> 0. Thus, in theory, granularity could

explain the positive intensive margin elasticity that we find in the data without relying on im-

plausible patterns for fixed trade costs.

To check whether granularity is a plausible explanation for the positive IME in the data we

conduct two tests, whose details are show in the Online Appendix B. First, we estimate the elas-

ticities of model-implied firm-level and product-level fixed trade costs with respect to distance

taking into account granularity. The results shown in Table 8 imply that although the distance

elasticities are significantly lower than those estimated ignoring granularity in Table 7, they

remain negative, implying that model-implied fixed trade costs are decreasing with distance.

Hence granularity does not help to eliminate one of the puzzles emerging from the comparison

between the Melitz-Pareto model and the data.

Second, to assess how well granularity can explain a positive IME, we simulate exports ofNij

firms for each of the country pairs in the sample. To study the IME generated by granularity by

itself, we assume that there is no country-pair variation in fixed-trade costs, var
(
F̃ij

)
= 0. In

addition to the standard Melitz model, where firm sales are perfectly correlated across destina-

tion markets, we also allow for a case in which all heterogeneity comes from destination specific

demand shocks, so that sales are independent across destinations. Finally, we simulate produc-

tivities for 3 values of θ̄: an estimate of θ using the procedure in Eaton et al. (2011), as outlined

in the Online Appendix, A, which yields θ̄ = 2.4; the value that can be inferred from standard es-

timates of θ and σ in the literature (i.e., θ = 5, the central estimate of the trade elasticity in Head
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and Mayer (2014), and σ = 5 from Bas et al. (2015), so θ̄ = 1.25) (see footnote 19); and finally and

θ̄ = 1 (as in Zipf’s Law).

Table 9 reports the results of this simulation exercise. Two broad patterns emerge from the

table. First, the simulated IME decreases with θ̄. This is because the effect of granularity on the

IME is stronger when there is more dispersion in productivity levels. Second, the simulated IME

is highest when productivity is less correlated across destinations, again because this gives gran-

ularity more room to generate a covariance between average exports per firm and total exports.

For our estimate of θ̄ (θ̄ = 2.4) and with no demand shocks (so there is perfect correlation in

firm-level productivity across destinations), the simulated IME of 0.001 is quite low. The high-

est simulated IME occurs for the case in which θ̄ = 1 and there is no correlation between the

product of demand shocks and productivity across destinations. In this case the simulated IME

is 0.33, not too far from our preferred estimate based on the data of 0.4. But we think of this as

an extreme case because θ̄ = 1 is far from the estimates that come out of trade data, and be-

cause of the implausible assumption that firm-level exports are completely uncorrelated across

destinations. A low θ̄ also implies that, in contrast to the data, virtually all of the action behind a

positive IME comes from the superstar firms. To see that, we calculate average simulated exports

per firm in each percentile and use those to estimate an IME per percentile. We plot the resulting

100 IME estimates in Figure 8 along with the corresponding IME estimates based on the actual

data. The IME based on the actual data is increasing with a spike at the top percentile. Granu-

larity and the Pareto distribution fail to reproduce this pattern in the simulated data, since the

corresponding IME is much smaller than in the data for most percentiles. The IME in the sim-

ulated data is almost zero for small percentiles and is relatively high for a small number of top

percentiles. We conclude that granularity does not offer a plausible explanation for the positive

estimated IME in the data.

4. The Intensive Margin in the Melitz-Lognormal Model

In this section we depart from the assumption of a common Pareto distribution of firm-level pro-

ductivity and instead assume a lognormal distribution.25 In the theory section we start by show-

ing how this can lead to a positive IME in a simple Melitz model, and then propose a maximum-

25One could consider combining a lognormal distribution with a Pareto distribution on the right tail, as in Nigai
(2017). We have used Nigai’s Matblab code on our data to estimate the point of truncation (percentile) where the
lognormal ends and the Pareto begins. We find that for 75% of country pairs with more than a hundred exporters the
point of truncation occurs after the 99th percentile, and for the median country pair the truncation point is at the
99.9%. In light of these results, in the rest of the paper we focus on the case in which productivity is described by a
fully lognormal distribution.
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likelihood estimation procedure for a richer Melitz model with heterogeneous fixed costs and

demand shocks. The data section presents the results from the estimation and the implications

for the IME as well as for the model-implied trade costs.

We also develop a flexible methodology to calculate counterfactual changes in trade flows in

response to a change in trade costs. We improve Dekle et al. (2008) “exact hat algebra” approach

that can accommodate any distribution of productivity, demand, and fixed cost shocks. Using

this approach we emphasize important differences in counterfactual trade flows responses in

the Melitz-Pareto and lognormal models.

4.1. Theory

Melitz model with a lognormal distribution

Consider a model as that presented in Section 2 but with general CDF and PDF Gi(ϕ) and gi(ϕ).

The ratio of average to minimum exports per firm for each country pair can be written as

xij
xij(ϕ∗ij)

=

(
ϕ̃i(ϕ

∗
ij)

ϕ∗ij

)σ−1
, (24)

where ϕ̃i(ϕ∗) is the average productivity level defined in Melitz (2003),

ϕ̃i(ϕ
∗) ≡

(
1

1−Gi(ϕ∗)

∫ ∞
ϕ∗

ϕσ−1gi(ϕ)dϕ

) 1
σ−1

.

If firm productivity is distributed Pareto with parameter θ > σ − 1 (as in Section 2) then
ϕ̃(ϕ∗ij)

ϕ∗ij
=

θ
θ−(σ−1) for all ϕ∗ij , (see equation 8), so that the average to minimum ratio does not depend on

selection. This property only holds with a Pareto distribution of productivity.

As argued in footnote 15 of Melitz (2003),
ϕ̃(ϕ∗ij)

ϕ∗ij
is decreasing in the productivity cutoff if the

distribution gi(ϕ) “belongs to one of several common families of distributions: lognormal, ex-

ponential, gamma, Weibul, or truncations on (0,+∞) of the normal, logistic, extreme value, or

Laplace distributions. (A sufficient condition is that gi(ϕ)ϕ/(1 −Gi(ϕ)) be increasing to infinity

on (0,+∞).)” To understand the implication of this property, consider a decline in τij , so that ϕ∗ij

decreases with no effect on minimum sales (which remain at σFij). The decline in τij leads to

an increase in exports of incumbent firms (which increases average exports per firm) and entry

of low productivity firms (which decreases average exports per firm). Under Pareto these two ef-

fects exactly offset each other so there is no change in average exports per firm. If productivity is

distributed in such a way that
ϕ̃(ϕ∗ij)

ϕ∗ij
is decreasing then the second effect does not fully offset the
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first, and hence average exports per firm increase with a decline in τij . Since this also increases

the number of firms that export (and hence total exports), the result is a positive IME.

We now explore the magnitude of the implied IME in the case where gi(ϕ) is lognormal for

every origin country i. Assuming that gi(ϕ) is lognormal with location parameter µϕ,i and scale

parameter σϕ, and letting Φ(·) be the CDF of the standard normal distribution, then

Gi (ϕ) = Φ

(
lnϕ− µϕ,i

σϕ

)
. (25)

Letting h(x) ≡ Φ′(x)/Φ(x) be the ratio of the PDF to the CDF of the standard normal, Bas et al.

(2015) (henceforth BMT), show that

(
ϕ̃i(ϕ

∗
ij)

ϕ∗ij

)σ−1
=

h
[
−(lnϕ∗ij − µϕ,i)/σϕ

]
h
[
−(lnϕ∗ij − µϕ,i)/σϕ + σ̄ϕ

] , (26)

where σ̄ϕ ≡ (σ − 1)σϕ. Combined with 1−Gi(ϕ∗ij) = Nij/Ni, we have

xij
xij(ϕ∗ij)

= Ω

(
Nij

Ni

)
≡

h
(

Φ−1
(
Nij
Ni

))
h
(

Φ−1
(
Nij
Ni

)
+ σ̄ϕ

) . (27)

Thus, the average to minimum ratio of exports per firm for country pair ij only depends on the

share of total firms in i that export to j, with the relationship given by the function Ω(·). As argued

by BMT, Ω(·) is an increasing function, which is consistent with the observation by Melitz (2003)

above that
ϕ̃(ϕ∗ij)

ϕ∗ij
is decreasing in ϕ∗ij since Nij/Ni is decreasing in ϕ∗ij .

Given values of σ̄ϕ as well as Ni for every country, we can use our data on Nij to compute

Ω (Nij/Ni) for all country pairs. Combined with xij(ϕ
∗
ij) = σFij and imposing Fij = F oi F

d
j , we

can use equation (27) to get the model-implied average exports per firm (in logs),

lnxij = µx,oi + µx,dj + ln Ω (Nij/Ni) . (28)

In contrast to Observation 1 for the Melitz-Pareto model, under under lognormality we will have

a positive IME even with var(F̃ij) = 0.

We can also compute model-implied fixed and variable trade costs similarly to what we did

under the assumption of Pareto-distributed productivity. First, we obtain F̃ij from

ln F̃ij = δF,oi + δF,dj + lnxij − ln Ω

(
Nij

Ni

)
. (29)
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Second, to compute τ̃ij , we combine equations (3), (4), (25) and (27) to get (with appropriately

defined fixed effects)

(σ − 1) ln τ̃ij = δτ,oi + δτ,dj − lnxij + ln Ωi

(
Nij

Ni

)
+ σ̄ϕΦ−1

(
1− Nij

Ni

)
. (30)

Armed with estimates of F̃ij and (σ− 1)τ̃ij , we can compute their correlation and check whether

F̃ij increases or decreases with distance (demeaned by origin and destination fixed effects).

These empirical exercises require estimates for σ̄ϕ as well as Ni for every country. We use

Bento and Restuccia (2015) (henceforth BR) data to estimate a value for Ni for all the countries

in our sample.26 We acknowledge slippage between theory and data in that we obviously do not

have a measure of the entry level Ni, but (at best) only for the number of existing firms, which

in theory would correspond to (1−Gi(ϕ∗ii))Ni (our approach in the next subsection avoids this

problem). We use the QQ-estimation proposed by Head et al. (2014) (henceforth HMT) to obtain

estimates of σϕ and µϕ,i for every i (see Online Appendix C for a detailed description).

Full Melitz-lognormal model

The previous section has shown that a model with a lognormal distribution of firm productivity

is capable of generating a positive intensive margin elasticity conditional on fixed costs. How-

ever, the model we considered had two very stark predictions. First, fixed trade costs that are

common across firms lead to the prediction that sales of the least productive exporter from i to

j are equal to σFij . In the data we observe many firms with very small export sales (sometimes

as low as $1) which implies unrealistic fixed trade costs. Second, as shown by Eaton et al. (2011),

the model implies a perfect hierarchy of destination markets (i.e., destinations can be ranked

according to profitability, with all firms that sell to a destination also selling to more profitable

destinations) and perfect correlation of sales across firms that sell to multiple markets from one

origin. None of these predictions holds in the data.

In this section we consider a richer model with firm-specific fixed trade costs and demand

shocks that vary by destination. This is similar to the setup in Eaton et al. (2011). We assume

that firm productivity, demand shocks (denoted by αj) and fixed trade costs (denoted by fj) are

26Using census data as well as numerous surveys and registry data, BR compiled a dataset with the number of
manufacturing firms for a set of countries. Unfortunately, the sample in BR has missing observations for a number
of countries in the EDD. We impute missing values projecting the log number of firms on log population. There is
a tight positive relationship between log number of firms in the BR dataset and log population with an elasticity of
0.945, as reported in Table 10 and in Figure 9.
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distributed jointly lognormal, i.e., for each origin i:



lnϕ

lnα1

...

lnαJ

ln f1

...

ln fJ



∼ N





µϕ,i

µα

...

µα

µf,i1

...

µf,iJ



,



σ2ϕ,i 0 . . . 0 0 . . . 0

0 σ2α,i . . . 0 σαf,i . . . 0

...
...

. . .
...

...
. . .

...

0 0 . . . σ2α,i 0 . . . σαf,i

0 σαf,i . . . 0 σ2f,i . . . 0

...
...

. . .
...

...
. . .

...

0 0 . . . σαf,i 0 . . . σ2f,i





. (31)

Note that we allow mean log productivity to be origin-specific while imposing that the mean

of demand shocks be the same across origin-destination pairs (however, we cannot separately

identify these parameters). Mean fixed costs are allowed to vary across origin-destination pairs

and can be correlated with demand shocks within destinations. In our empirical estimation we

will not be able to separately identify mean productivity from wages and variable trade costs –

they will all be absorbed into an origin-destination fixed effect. Also, we allow the dispersion

of log productivity, log demand shocks and log fixed trade costs to differ across all origins. We

restrict the dispersion of log demand shocks and log fixed trade costs to be the same across

destinations within a given origin.

Without risk of confusion, we change notation in this section and use Xi ≡ (Xi1, ..., XiJ) to

denote the random variable representing log sales of a firm from i in each of the J destinations,

with xi ≡ (xi1, ..., xiJ) being a realization of Xi, and gXi(xi) being the associated probability

density function. According to the model, a firm does not export to destination j if it has a large

fixed trade cost draw fj relative to its productivity and its demand shock for that destination. Let

Dij ≡ ln
[
Aj (wiτij)

1−σ
]

and let Zij ≡ Dij + lnαj + (σ − 1) lnϕ be sales in destination j by a firm

from iwith productivity ϕ and demand shock αj . This is a latent variable that we observe only if

a firm actually exports,

Xij =

 Zij

∅

if lnσ + ln fij ≤ Zij

otherwise
,
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with Zi ≡ (Zi1, ..., ZiJ) distributed according to
Zi1

...

ZiJ


∼ N




di1

diJ


,


σ̄2ϕ,i + σ2α,i · · · σ̄2ϕ,i

...
. . .

...

σ̄2ϕ,i · · · σ̄2ϕ,i + σ2α,i




, (32)

where dij ≡ Dij + µα + (σ − 1)µϕ,i and σ̄ϕ,i ≡ (σ − 1)σϕ,i.

Using firm-level data from the EDD and China across different origins and destinations, we

can estimate the parameters in (32) as well as mean log fixed trade costs (up to a constant) and

their dispersion using maximum likelihood methods. The Online Appendix D shows how to

derive the density function gXi1,..,XiJ (x1i, ..., xiJ) for the case when we observe sales to J destina-

tions. We simplify the analysis by considering only data for fifteen destinations (USA, Germany,

Japan, France and the 11 largest destinations by exports value for each origin), which we label

j = 1, ..., 15 for the year 2007 for each of 39 origins. We compute gXi1,...,XiJ (x1i, ..., xiJ) for each

observation in our dataset (which is a realization of {Xi1, ..., XiJ} that we observe). Since all ran-

dom variables are independent across firms, we can compute the log-likelihood function as a

sum of log-densities,

lnL
(

Θi| {xi1 (ki) , ..., xiJ (ki)}i,ki
)

=

Ñi∑
ki=1

ln
[
g(Xi1,...,XiJ ) (xi1 (ki) , ..., xiJ (ki))

]
, (33)

where Ñi is the number of firms from i that sell to either of the fifteen destinations we consider,

and where ki is an index for a particular observation in our dataset (for origin i it takes values in

1, ..., Ni) and Θi is an origin-specific vector of parameters that we want to estimate,

Θi =
{
{dij , µ̄f,ij}i,j , σ̄ϕ,i, σα,i, σf,i, ρi

}
, (34)

where µ̄f,ij = lnσ + µf,ij and ρ =
σαf,i
σα,iσf,i

. As the likelihood is potentially not concave in θi and

because there are 34 parameters per origin to estimate, we rely on the estimation methodology

proposed by Chernozhukov and Hong (2003).27 We use the Metropolis-Hastings MCMC algo-

rithm to construct a chain of estimates Θ
(n)
i for each origin country. Chernozhukov and Hong

27Roughly speaking, this methodology uses the likelihood function as a probability distribution of the set of pa-
rameters to be estimated, and then via simulation finds the expectation of this distribution. This expectation is used
as the estimator for the parameters. Note that this is not maximum likelihood estimation, since we are not selecting
the point where the density is maximized. A detailed description of the estimation procedure can be found in the
Online Appendix E.
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(2003) show that Θ̄ ≡ 1
N

∑N
n=1 θ

(n)
i is a consistent estimator of Θi, while the covariance matrix

of Θ̄i is given by the variance of Θ
(n)
i , so we use this to construct confidence intervals for θ̄i. For

each origin, we run 5 different chains that start at a different random starting value θ(i)i . We then

explore whether the different parameters in θi converged to the same values across different

chains and discuss the convergence of the chains in the Online Appendix F.

Loosely speaking, identification works as follows. First, data on export flows and the number

of exporters across country pairs helps in identifying dij and µ̄f,ij . Second, the variance of firm

sales within each ij pair helps in identifying the sum of the dispersion parameters for productiv-

ity and demand shocks, σ̄ϕ,i +σα,i. Third, the extent of correlation of firm sales from a particular

origin across different destinations helps in identifying σϕ,i separately from σα,i: the more cor-

related firm sales are across destinations, the larger is σϕ,i relative to σα,i. Fourth, the correlation

between fixed costs and demand shocks can be inferred from the distribution of sales of small

firms. Intuitively, if correlation is negative, then a firm with a bad demand shock would also

likely draw a high fixed cost shock and thus will not export, hence, we would not see a lot of

small firms in the data. Finally, to understand how σf,i is identified, imagine for simplicity that

there is only one destination. We then have

gXi1 (xi1) =
gZi1 (xi1)× Pr {lnσ + ln fi1 ≤ xi1|Zi1 = xi1}

Ci

whereCi ≡ Pr{lnσ+ln fi1 ≤ Zi1} and gZi1() is the probability density function of the latent sales

Zi1. This implies that we can get the density of Xi1 by applying weights Pr{lnσ+ln fi1≤xi1|Zi1=xi1}
Ci

to the density of Zi1. The parameter σf,i regulates how these weights behave with xi1. In the

extreme case in which σf,i = 0 then the weights are 0 for xi1 ≤ µfi1 and 1/C for xi1 > µfi1 , while

in the other extreme with σf,i = ∞ the weights are all equal to 1. For intermediate cases the

density of Xi1 will be somewhere in the middle, with the left tail becoming fatter and the right

tail becoming thinner as σf,i increases. This suggests that we can identify σf,i from the shape of

the density of sales.

We will use the results of the estimation to conduct exercises similar to those in the previous

sections. First, we will compute the IME for all firms and for each percentile using the estimated

model. Second, after removing origin and destination fixed effects, we will compute the correla-

tion across the estimated values of dij and µ̄f,ij , and between them and distance.

4.2. Data
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Simple Melitz model with lognormal distribution

Online Appendix Table I9 reports the QQ-estimate of σ̄ϕ. We report three sets of estimates: for

the full sample, the largest 50% of firms and the largest 25% of firms for each origin-destination

pair in each year. These estimates are on the high side relative to the estimate obtained by HMT,

so we will use the minimum among them, σ̄ϕ = 4.02, which corresponds to the subsample with

the largest 25% of firms.28 We highlight three findings. First, a lognormal distribution allows the

intensive margin elasticity to be positive even under the assumption of a continuum of firms.

Second, for our estimate of the shape parameter (σ̄ϕ = 4.02), the implied IME is 0.28, which is

close to that from the data.29 Third, most of the action comes from the right tail of the exporter

size distribution, as seen in Figure 10.

We use equations (29) and (30) to compute the model-implied fixed and variable trade costs.

The correlations between those costs and distance are reported in Table 11 and plotted in Fig-

ure 11. In contrast to our results under Pareto, now under lognormal both the model-implied

variable and fixed trade costs are increasing with distance.

Overall, the model does much better in fitting the data when we assume that firm produc-

tivity is distributed lognormal than when we assume that it is distributed Pareto. However, the

IME for each percentile is not a perfect match to the data, and there is still a negative correlation

between the model implied variable and fixed trade costs, although it is much closer to zero than

with Pareto (-0.3 rather than -0.8). In any case, this is just a ”proof of concept” that lognormally-

distributed productivity can by itself improve the performance of the model relative to the data.

In the next subsection we present the results obtained with the estimated full Melitz-lognormal

model.

Full Melitz-lognormal model

To estimate the parameters of the full Melitz-lognormal model we use firm-level data from the

EDD and China for the year 2007.30 This entails 39 different origins, but we had to drop 2 origins

from our analysis due to convergence issues discussed in the Online Appendix F. As mentioned

above, we consider 15 destinations: USA, Germany, France, Japan, and the 11 largest destina-

tions by export value for each origin. Finally, we use the estimates of Bas et al. (2015) and set

σ = 5.

Before presenting the results of the estimation and discussing their implications for the IME,

28See the section in the Appendix titled QQ-Estimation of σ̄ϕ for a discussion of these estimates and their relation
to the estimate in HMT.

29Using Head et al. (2014) estimate of σ̄ϕ = 2.4 we get IME of around 0.12.
30For computational reasons, for China we considered only a random sample consisting of 5% of exporters.
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we show three figures revealing the fit of the estimated model with the data. Figure 12 shows a

plot of the density function for standardized firm-level log sales pooled across multiple origin

and destinations.31 We see that the model generates a distribution that closely fits the one in the

data.

We next look at deviations from the strict hierarchy of firms sales across destinations (for

each origin) in the data and in the estimated model. If there were no demand and fixed cost

shocks across firms, then all firms from a given origin that export to less popular destinations

would also export to the most popular destination. The share of firms that only sell in the less

popular destinations is then a measure of the extent to which this strict hierarchy predicted by

the simplest model is violated. According to Figure 13, the share predicted by the estimated

model is quite close to the one in the data.

Finally, Figure 14 shows, for each origin and any two destinations among the three most pop-

ular ones, the correlation in export value across all firms that sell in those two destinations. The

estimated model mostly implies positive correlation driven by firm-level productivity shocks,

while in the data this correlation exhibits more dispersion.

We now turn to our estimates of the variance-covariance parameters (σ̄ϕ,i, σα,i, σf,i, ρi). These

are shown in Table 12. The median estimated values for σ̄ϕ,i and σα,i across 37 origins are 3.18

and 2.67 respectively, while the median estimates for σf,i and ρi are 2.39 and 0.50. Even though

the variance-covariance parameters were precisely estimated for each of the origins, the param-

eters vary quite a bit across different origins.32 In general, there is a positive correlation between

demand and fixed costs shocks, but some origins exhibit a negative correlation.

Table 13 and Figure 15 show the implications of the estimated model for the IME. We com-

pute the IME implied by the estimated model by drawing one million firms for each origin (this

implies one million latent log sales and log fixed costs for each destination), computing aver-

age sales (taking into account selection), and then multiplying average sales by Nij in the data

to compute total exports.33 The IME implied by the model is 0.63. This is actually higher than

our preferred IME estimate of 0.4 in Section 2, but the gap comes in large part from the differ-

ent sample of origin-destination pairs used here. Using the same sample of 37 origins and 4

destinations for the year 2007 we estimate IME of 0.67 (with a standard error of 0.03) that is sta-

tistically indistinguishable from the one implied by our estimated lognormal model.34 We plot

31Standardized firm-level log sales are obtained by, for each origin-destination cell, subtracting the mean and di-
viding by the standard deviation.

32The estimates and confidence bands for each of the parameters are reported in the Online Appendix F.
33We pick one million because at this point we are not interested in granularity – this is just a numerical approxi-

mation to the case with a continuum of firms.
34The confidence interval in Table (13) comes 1000 random realizations of the parameters in our Markov chains.
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the associated IME for each percentile in Figure 15 – the pattern of the IME across percentiles is

remarkably close to what we see in the data.

Table 14 shows the elasticity of variable and fixed trade costs with respect to distance (con-

trolling for origin and destination fixed effects). Now both types of trade costs are strongly in-

creasing in distance. Surprisingly, however, we still get a negative correlation between fixed and

variable trade costs.

Overall, our estimated full lognormal-Melitz model does a very good job in fitting the EDD

data and in solving the puzzles associated with the Pareto model. The lognormal model gener-

ates an IME that is close to the one we see in the EDD and implies fixed trade costs that decrease

with distance. The implied pattern for the IME across different percentiles is also very similar to

what we see in the data.

5. Counterfactual Analysis

In this section we study whether the counterfactual implications of the Melitz-lognormal model

estimated as in the previous section differ from those of the Melitz-Pareto model estimated as

described below. To conduct counterfactual analysis, we need to close the model. We do so

in standard fashion by assuming that labor is the only factor of production, with wage wi and

perfectly inelastic labor supplyLi in country i, by assuming that entry costs are in terms of labor,

and that fixed exporting costs are in terms of labor of the exporting country. To make the model

be perfectly consistent with the data, we allow for trade imbalances via exogenous international

transfers, as in Dekle et al. (2008). Formally, letting Xi =
∑

lXli denote total sales by country i

and Yi =
∑

j Xij denote total expenditure, trade imbalances are equal to international transfers

∆i – that is, ∆i = Xi − Yi.

5.1. Exact Hat Algebra in the Generalized Melitz Model

Here we show how to extend the “exact hat algebra” for counterfactual analysis in Dekle et al.

(2008) to the Melitz model with a general productivity distribution (not necessarily lognormal)

and allowing for firm-level demand and fixed-cost shocks.

We start by introducing some notation. Let µϕ,i, µα and µf,ij denote the mean of lnϕi, lnα,

and ln fij , respectively, and let f̃ij ≡ ln fij − µf,ij , ϕ̃ij ≡ (σ − 1)(lnϕi − µϕ,i) + lnα− µα and

Aij ≡ ln

(
(σ̄wiτij)

1−σP σ−1j Xj

σwi

)
+ (σ − 1)µϕ,i + µα − µf,ij .
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Using this notation, firms from i export to j if and only if f̃ij ≤ Aij + ϕ̃ij . The fraction of

country i firms that export to country j is then

nij ≡
Nij

Ni
=

∫ +∞

−∞

∫ Aij+ϕ̃

−∞
gij(ϕ̃, f̃)df̃dϕ̃,

where gij is the joint pdf of f̃ij and ϕ̃ij . The previous equation implicitly defines a function

Hij(·) such that Aij = Hij(nij). Combining it with our definition of Aij above, we then have the

following equilibrium condition:

Hij(nij) = ln

(
(σ̄wiτij)

1−σP σ−1j Xj

σwi

)
+ (σ − 1)µϕ,i + µα − µf,ij . (35)

In turn, the price index is

P 1−σ
j =

∑
k

P 1−σ
kj , (36)

with

P 1−σ
ij = Ni(σ̄wiτij)

1−σe(σ−1)µϕ,i+µα
∫ ∞
−∞

eϕ̃
∫ Hij(nij)+ϕ̃
−∞

gij(ϕ̃, f̃)df̃dϕ̃. (37)

Free entry implies that profits net of fixed costs of exporting are equal to entry costs. Profits gross

of fixed costs are equal to 1
σ

∑
j λijXj and total fixed costs of exporting per destination are

Niwie
µf,ij

∫ ∞
−∞

∫ Hij(nij)+ϕ̃
−∞

ef̃g(ϕ̃, f̃)df̃dϕ̃,

hence the free entry condition is

F ewiNi =
∑
j

(
1

σ
λijXj −Niwie

µf,ij

∫ ∞
−∞

∫ Hij(nij)+ϕ̃
−∞

ef̃gij(ϕ̃, f̃)df̃dϕ̃

)
.

But using Equation 4 together with

λij =
P 1−σ
ij

P 1−σ
j

(38)

we get

eµf,ij =
λijXj

eHij(nij)Niσwi
∫∞
−∞ e

ϕ̃
∫Hij(nij)+ϕ̃
−∞ gij(ϕ̃, f̃)df̃dϕ̃

,

and so we can rewrite the free entry condition as

σF ewiNi =
∑
j

λijXj

(
1−

∫∞
−∞

∫Hij(nij)+ϕ̃
−∞ ef̃gij(ϕ̃, f̃)df̃dϕ̃

eHij(nij)
∫∞
−∞ e

ϕ̃
∫Hij(nij)+ϕ̃
−∞ gij(ϕ̃, f̃)df̃dϕ̃

)
. (39)
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An equilibrium is defined as variables {nij , λij , Pij} and {Xj , Pj , wi} such that Equations (4) -

(39) are satisfied for all i, j, and in addition

wiLi =
∑
j

λijXj , (40)

and

Xj = wjLj + ∆j (41)

are satisfied for all i.

We now transform this system of equations in levels into one in hat changes, with standard

hat notation x̂ = x′/x, where we use primes to denote counterfactual values. To quantify the

effect of changes in trade costs and trade imbalances, we take τ̂ij and ∆̂j as exogenous and solve

for changes in endogenous variables. Since nij always appears as an argument in the Hij(·)

function, it is convenient to focus instead on hij ≡ Hij(nij). The system of equations in hat

changes is then:

hij(ĥij − 1) = ln

(
(ŵiτ̂ij)

1−σP̂ σ−1j X̂j

ŵi

)
(42)

P̂ 1−σ
j =

∑
k

λkjP̂
1−σ
kj (43)

P̂ 1−σ
ij = N̂i(ŵiτ̂ij)

1−σ
∫∞
−∞ e

ϕ̃
∫ ĥijhij+ϕ̃
−∞ gij(ϕ̃, f̃)df̃dϕ̃∫∞

−∞ e
ϕ̃
∫ hij+ϕ̃
−∞ gij(ϕ̃, f̃)df̃dϕ̃

(44)

λ̂ij =
P̂ 1−σ
ij

P̂ 1−σ
j

(45)

ŵiN̂i

∑
j

λijXj

(
1−

∫∞
−∞

∫ hij+ϕ̃
−∞ ef̃gij(ϕ̃, f̃)df̃dϕ̃

ehij
∫∞
−∞ e

ϕ̃
∫ h(nij)+ϕ̃
−∞ gij(ϕ̃, f̃)df̃dϕ̃

)

=
∑
j

λijXj λ̂ijX̂j

1−
∫∞
−∞

∫ ĥijhij+ϕ̃
−∞ ef̃gij(ϕ̃, f̃)df̃dϕ̃

eĥij
∫∞
−∞ e

ϕ̃
∫ ĥijhij+ϕ̃
−∞ gij(ϕ̃, f̃)df̃dϕ̃

 (46)

ŵiYi =
∑
j

λijXj λ̂ijX̂j (47)

X̂jXj = ŵjYj + ∆̂j(Xj − Yj) (48)

Here σ is a known parameter and gij are known functions, λij , hij , Xj and Yi are data, τ̂ij and ∆̂j

reflect exogenous shocks, and ĥij , λ̂ij , ŵi, N̂i, P̂j , P̂ij and X̂j are the endogenous variables that

we solve for.



THE INTENSIVE MARGIN IN TRADE 33

5.2. Counterfactual Analysis in the Estimated Full-Lognormal Melitz Model

For our counterfactual analysis we need a set of countries for which we have λij , hij ,Xj and Yi, as

well as gij for all i and j in that set. Since we assume (see Section 4) that the variances ofϕi and fij

differ by origin but not by destination, then gij = gi for all i and j. We have estimated gi for a set

of 37 EDD countries, and we can infer the implied Ni for all those countries, so we can include

any subset of those countries in our analysis.35 We then construct hij using data for Nij and

hij ≡ Hij(Nij/Ni). Finally, we also need Xij and Nij for i = j. Following the approach proposed

by Ossa (2012), we construct Xii as manufacturing value-added in country i from the World

Development Indicators divided by 0.25, which is close to the average share of manufacturing

value-added in gross production from the World Input-Output Database (WIOD) for the set of

covered EDD countries in 2007. We set Nii = Ni, which would be true if there are no fixed costs

for domestic sales.

We conduct our counterfactual analysis for a world composed of the 12 Latin American

countries and China, for which we have estimated the full lognormal model.36 We do not con-

sider the whole EDD dataset for computational reasons. This is because some of the country

pairs in the whole EDD dataset trade very little and this makes our welfare calculations impre-

cise (since we need to use numerical approximation to compute some of the integrals).

We are interested in comparing the counterfactual implications of the full Melitz-lognormal

model with those of the Melitz-Pareto model. We proceed in three steps. First, we allow for some

change in trade costs and compute the counterfactual implications using the estimated full

Melitz-lognormal model. We consider four different trade costs shocks: a 1%, a 5%, a 10%, and a

25% uniform reduction in international trade costs – formally, τ̂ij = τ̂ ∈ {0.99, 0.95, 0.9, 0.75} if i 6=

j, while τ̂ii = 1. Second, we use these results to estimate the trade elasticity by running the OLS

regression

ln X̂ij = γoi + γdj − θ ln τ̂ij + ζij . (49)

This leads to four values of the trade elasticity, one for each τ̂ . Following ACR, we use these

values as estimates of the shape parameter of the Pareto distribution in the Melitz-Pareto model,

which we denote by θτ̂ for τ̂ ∈ {0.99, 0.95, 0.9, 0.75}.37 Finally, for each trade cost shock τ̂ we

35To see how we getNi, note that the estimated model provides us with a probability that a random firm from some
origin is selling to at least one of the 15 destinations we consider. Since we observe the total number of exporters to
those destinations, we can infer the total number of firms from which they are drawn. The more detailed procedure
is described in the Online Appendix D.

36Our procedure implicitly assigns trade flows between these countries and countries outside of this group to do-
mestic transactions.

37We get θ0.99 = 4.5; θ0.95 = 4.49; θ0.9 = 4.47; θ0.75 = 4.43.
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compute the counterfactual implications in the Melitz-Pareto model using both θ0.99 (a local

approximation) and θτ̂ (an average trade elasticity computed for the actual trade cost shock).

We expect θ0.99 to differ from θτ̂ because in the true model (i.e., the full Melitz-lognormal model)

the trade elasticty is not a constant, as emphasized by Melitz and Redding (2015).

We show the results of this exercise in Figures 16 and 17. We use Ŵm
i ≡ ŵmi /P̂

m
i and X̂m

ij to

denote the hat changes in welfare and trade flows for the lognormal model (m = LN ) and the

Pareto model (m = P ). Figure 16 plots ŴLN
i − 1 (horizontal axis) versus ŴP

i − 1 (vertical axis) in

response to the four different trade costs shocks, in each case reporting ŴP
i − 1 computed with

both θ0.99 and θτ̂ . It is evident that both models yield very similar results even when we only use

the local approximation θ0.99 for the trade elasticity in the Melitz-Pareto model. As is well known

from Arkolakis et al. (2012) and Melitz and Redding (2015), the welfare effects of trade liberal-

ization depend critically on the behavior of the trade elasticity, which is qualitatively different

across the two models: while the trade elasticity in the Melitz-Pareto model is common across

country pairs and invariant to shocks, this is no longer true in the Melitz-lognormal. However,

it turns out that the (average) trade elasticity (as implied by the regression in 49) does not vary

much in the estimated Melitz-lognormal model as we move from one equilibrium to the other,

as can be seen by noting that θ̂0.99 = 4.5 while θ̂0.75 = 4.43. We explore this further by using our

estimated gi and nij to compute the local trade elasticity for each country pair using the formula

derived by Bas et al. (2015) for the Melitz-lognormal model. The resulting elasticity ranges from

4 to 6.9 with a standard deviation of 0.59, with the higher values occurring for country pairs with

a low nij , as shown in the Online Appendix G. However, this variation in trade elasticities across

country pairs matters little for the gains from a uniform decline in trade costs, because the larger

gains obtained with partners for which the trade elasticity is higher is compensated by the lower

gains with partners for which the trade elasticity is lower. Loosely speaking, for a uniform trade

cost shock, what matters is the average trade elasticity, and so the Pareto model yields a good

approximation for the gains from uniform trade liberalization, and this holds even when using

the local trade elasticity θ0.99.

Even though gains from trade liberalization are very close across the two models, the Pareto

and the lognormal models differ in their implications for the counterfactual changes in bilateral

trade flows. Figure 17 plots the ratio of the difference between the counterfactual changes in

trade flows in the lognormal model, X̂LN
ij , and in the Pareto model, X̂P

ij , against the trade elas-

ticity implied by the lognormal model. We can see that Melitz-Pareto model can significantly

over- or underpredict changes in trade flows depending on the actual trade elasticity. Naturally,

the higher trade elasticity in the lognormal model leads to larger changes in trade flows relative
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to the Melitz-Pareto model.

What happens if trade liberalization is asymmetric? We consider an extreme case in which,

for each origin, trade costs decrease only for exports to the destination with the highest number

of exporters – formally, we consider 13 separate shocks, one for each Latin American country

and China as an origin, with the shock for origin i being that τ̂ij = 0.25 if j = arg maxlNil and

τ̂ij = 1 otherwise. Since the trade elasticity should be low for the affected pairs, we expect the

Melitz-lognormal model to deliver smaller welfare gains than the Melitz-Pareto model. This is

confirmed in Figure 18. However, the differences in welfare gains between the two models are

small. Again, as in the analysis with symmetric trade cost declines, we see bigger differences

regarding the effects on trade flows, as shown on Figure 19.

It is interesting to compare our results to those in Melitz and Redding (2015). They find that

the ACR ex-post formula for welfare evaluation does a poor job of capturing the true welfare

changes from a decline in trade costs in a symmetric Melitz model with a truncated Pareto dis-

tribution. In contrast, we find that the ACR formula does a good job in approximating welfare

changes in the estimated Melitz-lognormal model. The difference comes from how much the

trade elasticity varies in the two models: whereas it falls from 15 to 5 as trade costs decline in

the Melitz-Redding exercise, the trade elasticity shows little variation in our Melitz-lognormal

model. In particular, three quarters of bilateral trade elasticities lie between 4 and 4.8. Note

that after trade liberalization, elasticities can never fall below 4, and thus the local trade elastici-

ties are a good approximation to the average trade elasticities during the liberalization episodes.

We discuss this further in Appendix H, in which we show that we can reproduce the Melitz and

Redding (2015) results but only by setting parameters to values far from those we estimate.

6. Conclusion

The canonical Melitz model of trade with Pareto-distributed firm productivities has a stark pre-

diction: conditional on the fixed costs of exporting, all variation in exports across partners should

be due to the number of exporting firms (the extensive margin). There should be no variation

along the intensive margin (exports per exporting firm), again conditional on fixed costs.

We use the World Bank’s Exporter Dynamics Database plus China to test this prediction.

Compared to existing studies, this data allows us to look for systematic variation in the inten-

sive and extensive margins of trade — allowing for year, origin, and destination components of

fixed trading costs.

We find that at least 40% of the variation in exports occurs along the intensive margin. That is,
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when exports from a given origin to a given destination are high, exports per firm are responsible

for, on average, at least 40% of the high exports. This finding is robust to looking at all destina-

tions or only the largest destinations, including all firms or ignoring very small firms, including

all country pairs or only ones for which more than 100 firms export, and to disaggregating across

industries. When we look at average exports by percentile of exporting firms (rather than average

exports per firm), we find the intensive margin is more important the higher the percentile.

Although variation in fixed trade costs across country pairs can make the Melitz-Pareto model

fit the intensive margin in the data, such fixed trade costs would need to be negatively corre-

lated with distance. Moreover, variation in fixed trade costs does not reproduce the pattern of

a steadily rising intensive margin across exporter percentiles. Allowing firms to export multiple

products or taking into account granularity does not reverse these implications.

In contrast, moving away from a Pareto distribution and assuming that the productivity dis-

tribution is lognormal resolves the puzzles. Specifically, we estimate a Melitz model with log-

normally distributed firm productivity and idiosyncratic firm-destination demand shifters and

fixed costs. We estimate this model using likelihood methods on the EDD firm-level data. Our

estimated Melitz-lognormal model is consistent with the positive intensive margin overall and

with the intensive margin rising by exporting firm percentile. This specification also implies

fixed trade costs that increase with distance.

Since the trade elasticity is no longer a constant in the full Melitz-lognormal model, one

would expect from the analysis in Arkolakis et al. (2012) that the welfare effects of a trade cost

reduction would be different from those in the Melitz-Pareto model (see Melitz and Redding,

2015). However, extending exact the hat algebra approach popularized by Dekle et al. (2008)

to our estimated full Melitz-lognormal model, we find that the Melitz-Pareto model provides a

remarkably good approximation for the welfare effects of trade liberalization.

Looking ahead, moving from Pareto to lognormal firm productivity may matter more when

taking into account how domestic firms can learn from firms selling or producing in the domes-

tic market. In Alvarez et al. (2014), Buera and Oberfield (2015), and Perla et al. (2015), trade liber-

alization boosts the level or growth rate of technology through such learning spillovers. The size

of this dynamic gain should depend on whether the distribution of firm productivity is Pareto vs.

lognormal, as it interacts with how trade alters the distribution of producer and seller produc-

tivity. For example, trade liberalization induces more entry of marginal exporters under Pareto

than under lognormal — as illustrated by the unchanging exports per exporter under Pareto

(zero intensive margin elasticity, unit extensive margin elasticity) versus the sizable intensive

margin and weaker extensive margin under lognormal.
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Tables and Figures

Table 1: Core Sample of EDD countries+China, years firm-level data is available

ISO3 Country name 1st year Last year ISO3 Country name 1st year Last year

ALB Albania 2004 2012 KHM Cambodia 2003 2009

BFA Burkina Faso 2005 2012 LAO Laos 2006 2010

BGD Bangladesh 2005 2013 LBN Lebanon 2008 2012

BGR Bulgaria 2003 2006 MAR Morocco 2003 2013

BOL Bolivia 2006 2012 MDG Madagascar 2007 2012

BWA Botswana 2003 2013 MEX Mexico 2003 2012

CHL Chile 2003 2012 MKD Macedonia 2003 2010

CHN China 2003 2008 MMR Myanmar 2011 2013

CIV Cote d’Ivoire 2009 2012 MUS Mauritius 2003 2012

CMR Cameroon 2003 2013 MWI Malawi 2009 2012

COL Colombia 2007 2013 NIC Nicaragua 2003 2013

CRI Costa Rica 2003 2012 NPL Nepal 2011 2013

DOM Dominican Republic 2003 2013 PAK Pakistan 2003 2010

ECU Ecuador 2003 2013 PRY Paraguay 2007 2012

EGY Egypt 2006 2012 PER Peru 2003 2013

ETH Ethiopia 2008 2012 QOS Kosovo 2011 2013

GAB Gabon 2003 2008 ROU Romania 2005 2011

GEO Georgia 2003 2012 RWA Rwanda 2003 2012

GIN Guinea 2009 2012 THA Thailand 2012 2013

GTM Guatemala 2005 2013 TZA Tanzania 2003 2012

HRV Croatia 2007 2012 UGA Uganda* 2003 2010

IRN Iran 2006 2010 URY Uruguay 2003 2012

JOR Jordan 2003 2012 YEM Yemen 2008 2012

KEN Kenya 2006 2013 ZAF South Africa 2003 2012

KGZ Krygyztan 2006 2012 ZMB Zambia 2003 2011

* indicates that Uganda does not have data for 2006
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Table 2: IME regressions, core sample

Coefficient from lnxij on lnXij

(1) (2) (3)

Panel a: country pairs with Nij ≥ 100

IM elasticity 0.438*** 0.459*** 0.400***

Standard error [0.0058] [0.0041] [0.0049]

R2 0.55 0.74 0.85

Variation in lnXij explained by FE,% 0.01 0.20 0.59

Observations 7,781 7,768 7,324

Panel b: all country pairs

IM elasticity 0.503*** 0.530*** 0.579***

Standard error [0.0018] [0.0017] [0.0022]

R2 0.77 0.81 0.85

Variation in lnXij explained by FE, % 0.00 0.20 0.50

Observations 47,129 47,129 47,037

Year FE Yes

Origin× year FE Yes Yes

Destination× year FE Yes

Note: the table represents the estimated coefficients of the regression of
log average exports on log total exports with year fixed effects (column
1), origin × year fixed effects (column 2), origin × year and destination ×
year fixed effects (column 3). The data are aggregated at the year-origin-
destination level for a set of origin-years listed in Table 1. Panel a) rep-
resents the regression on the sample of country-pairs with at least 100
exporters. Panel b) represents the regression on the full sample. Robust
standard errors are reported in brackets. ∗, ∗∗, and ∗∗∗ represent the 5%,
1%, and 0.1% significance levels respectively.
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Table 3: IME regression, small firms excluded, core sample

Coefficient from lnxij on lnXij

Panel a: country pairs with Nij ≥ 100

IM elasticity 0.437*** 0.459*** 0.398***

Standard error [0.0058] [0.0042] [0.0050]

R2 0.54 0.74 0.85

Variation in lnXij explained by FE,% 0.01 0.19 0.59

Observations 7,698 7,684 7,234

Panel b: all country pairs

IM elasticity 0.497*** 0.525*** 0.573***

Standard error [0.0013] [0.0013] [0.0015]

R2 0.77 0.81 0.84

Variation in lnXij explained by FE, % 0.00 0.19 0.50

Observations 46,925 46,925 46,832

Year FE Yes

Origin× year FE Yes Yes

Destination× year FE Yes

Note: the table represents the estimated coefficients of the regression of
log average exports on log total exports with year fixed effects (column
1), origin × year fixed effects (column 2), origin × year and destination ×
year fixed effects (column 3). The data are aggregated at the year-origin-
destination level for a set of origin-years listed in Table 1. Average and
total exports per destination are calculated using the sales of firms with at
least $1000 to that destination. Panel a) represents the regression on the
sample of country-pairs with at least 100 exporters. Panel b) represents
the regression on the full sample. Robust standard errors are reported in
brackets. ∗, ∗∗, and ∗∗∗ represent the 5%, 1%, and 0.1% significance levels
respectively.
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Table 4: IME regression, disaggregated within manufacturing, core sample

Coefficient from lnxij on lnXij

Panel a: HS 2-digit

IM elasticity 0.569*** 0.510*** 0.467***

Standard error [0.0022] [0.0017] [0.0049]

Observations 37,321 35,621 10,732

Panel b: HS 4-digit

IM elasticity 0.651*** 0.569*** 0.515***

Standard error [0.0019] [0.0013] [0.0069]

Observations 62,776 58,516 4,640

Panel c: HS 6-digit

IM elasticity 0.664*** 0.593*** 0.508***

Standard error [0.0020] [0.0014] [0.0094]

Observations 67,967 61,501 2,972

Year×HS FE Yes

Origin× Year×HS FE Yes Yes

Destination× Year×HS FE Yes

Note: the table represents the estimated coefficients of the re-
gression of log average exports on log total exports with year
fixed effects (column 1), origin × year fixed effects (column 2),
origin × year and destination × year fixed effects (column 3).
The data are aggregated at the year-origin-destination-HS in-
dustry level for a set of origin-years listed in Table 1. Panels a),
b), and c) represent the regressions for industries defined at the
HS 2-digit, 4-digit, and 6-digit levels respectively. The sample
is restricted to the origin-destination-product cells with at least
100 exporters. Robust standard errors are reported in brackets.
∗, ∗∗, and ∗∗∗ represent the 5%, 1%, and 0.1% significance levels
respectively.
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Table 5: Product-level IME regression, core sample

Coefficient from lnxpij on lnXij

IM elasticity 0.380*** 0.397*** 0.288***

Standard error [0.0070] [0.0054] [0.0073]

R2 0.35 0.62 0.78

Variation in lnXij explained by FE,% 0.01 0.20 0.59

Observations 7781 7,768 7,324

Year FE Yes

Origin× year FE Yes Yes

Destination× year FE Yes

Note: the table represents the estimated coefficients of the regression of
log average exports per product (average exports divided by the number
of HS6 products exported by all firms from origin i to destination j in a
given year) on log total exports with year fixed effects (column 1), origin
× year fixed effects (column 2), origin× year and destination× year fixed
effects (column 3). The data are aggregated at the year-origin-destination
level for a set of origin-years listed in Table 1. The sample is restricted to
the origin-destination pairs with at least 100 exporters. Robust standard
errors are reported in brackets. ∗, ∗∗, and ∗∗∗ represent the 5%, 1%, and
0.1% significance levels respectively.
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Table 6: Margins of trade and distance

Elasticity with respect to distance

xij 0.123*** -0.280***

Standard error [0.0150] [0.0130]

Nij -0.416*** -1.010***

Standard error [0.0134] [0.0128]

xpij 0.288*** -0.071***

Standard error [0.0158] [0.0146]

mij -0.165*** -0.209***

Standard error [0.0059] [0.0051]

Observations 7,725 7,320

Origin× year FE Yes Yes

Destination× year FE Yes

Note: the table represents the estimated coefficients of the regression
of log average exports, number of firms, average exports per product,
and number of products on log distance between origins and desti-
nations with origin × year fixed effects (column 2), origin × year and
destination× year fixed effects (column 3). The data are aggregated at
the year-origin-destination level for a set of origin-years listed in Table
1. Population-weighted distance between origins and destinations is
taken from Mayer and Zignago (2011). The sample is restricted to the
origin-destination pairs with at least 100 exporters. Robust standard
errors are reported in brackets. ∗, ∗∗, and ∗∗∗ represent the 5%, 1%, and
0.1% significance levels respectively.
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Table 7: Trade costs and distance

ln F̃ij ln τ̃ij ln f̃ij

ln distij -0.280*** 0.272*** -0.071***

Standard error [0.0140] [0.0046] [0.0146]

Observations 7,320 7,320 7,320

Note: the table represents the estimated coefficients of the regression
of the implied log fixed firm-level trade costs (column 1), log variable
trade costs (column 2), and log fixed product-level trade costs (col-
umn 3) on log distance between origins and destinations. We calcu-
late trade costs as per equations 12 and 13 with θ = 5. The data are
aggregated at the year-origin-destination level for a set of origin-years
listed in Table 1. Population-weighted distance between origins and
destinations is taken from Mayer and Zignago (2011). The sample is
restricted to the origin-destination pairs with at least 100 exporters.
Robust standard errors are reported in brackets. ∗, ∗∗, and ∗∗∗ repre-
sent the 5%, 1%, and 0.1% significance levels respectively.

Table 8: Fixed trade costs distance elasticity and granularity

Fixed trade costs elasticity

Firm level Product level

ζ -0.022*** -0.007**

Standard error [0.0029] [0.0026]

Observations 7,320 7,320

Note: the table represents the estimated coefficients of the regression
of the implied log fixed firm-level trade costs and log fixed product-
level trade costs (column 2) on log distance between origins and
destinations using Poisson pseudo maximum likelihood procedure
discussed in the Online Appendix B. Population-weighted distance
between origins and destinations is taken from Mayer and Zignago
(2011). The sample is restricted to the origin-destination pairs with
at least 100 exporters. Robust standard errors are reported in brack-
ets. ∗, ∗∗, and ∗∗∗ represent the 5%, 1%, and 0.1% significance levels
respectively.
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Table 9: IME under granularity

corr(αjϕ, αkϕ)

0 1

θ̃ = 2.4 0.005 0.001

θ̃ = 1.25 0.133 0.036

θ̃ = 1 0.333 0.103

Note: the table represents the estimated coefficients of the regression
of the implied log average exports on log total exports using numeri-
cal simulations as discussed in the Online Appendix B. The sample is
restricted to the year 2007 and to the origin-destination pairs with at
least 100 exporters (867 observations). The first column reports the
results from the model with zero correlation between the product of
demand and productivity shocks across destinations. The second col-
umn reports the results for the model with perfect correlation. Four
different values of θ̃ were used.

Table 10: Number of firms and population

log number of firms

log population 0.945*** 0.944***

Standard error [0.0136] [0.0139]

Observations 468 468

Year FE Yes

Note: the table represents the regression of log number of firms,
taken from Bento and Restuccia (2015) on log population, taken from
World Development Indicators. Robust standard errors are reported
in brackets. ∗, ∗∗, and ∗∗∗ represent the 5%, 1%, and 0.1% significance
levels respectively.
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Table 11: Trade costs and distance, Melitz-lognormal model

log fixed costs log variable costs

ln dist 0.156*** 0.299***

Standard error [0.0155] [0.0051]

Observations 7738 7738

Note: the table represents the estimated coefficients of the regression
of the log fixed and variable trade costs implied by the Melitz model
with lognormal distribution of productivity as discussed in Section
4.1. on log distance. The sample is restricted to the origin-destination
pairs with at least 100 exporters. Robust standard errors are reported
in brackets. ∗, ∗∗, and ∗∗∗ represent the 5%, 1%, and 0.1% significance
levels respectively.

Table 12: Estimates of dispersion, full Melitz-lognormal model

mean median min max

σ̄ϕ 3.32 3.18 0.93 5.82

σα 2.72 2.67 1.94 3.64

σf 2.39 2.39 1.64 3.11

ρ 0.47 0.50 -0.33 0.90

Note: the table represents the estimates of the full lognormal model.
The estimation procedure is discussed in the Section 4.1.. The sample
includes 37 origin countries for which our estimates converged and
15 destinations per origin. The mean, median, min, and max statistics
are calculated across origins.
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Table 13: Implied IME in full Melitz-lognormal model

IME 95% CI

Data 0.67 [0.61, 0.73]

Full Melitz-lognormal model 0.63 [0.59, 0.67]

Note: the table represents the coefficient from the regression of log
average exports on log total exports with origin and destination fixed
effects implied by the simulated full Melitz-lognormal model. The
sample includes 37 origins and 4 main destinations (USA, Germany,
France, and Japan) in 2007. The IME in the data is estimated for the
same sample. The point estimates and 95% confidence intervals are
calculated based on 1,000 simulations based on random parameter
draws from the generated Monte-Carlo Markov chain.

Table 14: Implied trade costs in full Melitz-lognormal model

Estimate 95% CI

corr
(
F̃ij , τ̃ij

)
-0.31 [-0.45, -0.1]

Distance elasticity

Fixed costs 0.31 [0.18, 0.41]

Variable costs 0.34 [0.30, 0.37]

Note: the table represents the coefficient from the regression of log
fixed and variable trade costs on distance, origin, and destination
fixed effects implied by the simulated full lognormal model. The
sample includes 37 origins and 4 main destinations (USA, Germany,
France, and Japan) in 2007. The point estimates and 95% confidence
intervals are calculated based on 1,000 simulations based on random
parameter draws from the generated Monte-Carlo Markov chain.
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Figure 1: Intensive and Extensive margins of exporting

Panel A: Average size of exporters (intensive margin) and total exports

Panel B: Number of exporters (extensive margin) and total exports

Note: the source are the statistics in the Exporter Dynamics Database for the extended sample. The x-axis represents
log total exports at the origin country-destination country-year level demeaned by origin-year, and destination-year
fixed effects. Only origin-destination pairs with more than 100 exporting firms considered. The dots represent the
raw measures. The line is the slope predicted by the Melitz-Pareto model.
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Figure 2: Intensive and Extensive margins of exporting, by industry

Panel a: Average size of exporters (intensive margin) and total exports

Panel b: Number of exporters (extensive margin) and total exports

Note: the source are the statistics in the Exporter Dynamics Database for the extended sample. The x-axis represents
log total exports at the origin country-HS 2-digit product-destination country-year level demeaned by origin-HS 2-
digit-year and destination-HS 2-digit-year fixed effects. Only origin-HS 2-digit-destination triplets with more than
100 exporting firms are considered. The line is the slope predicted by the Melitz-Pareto model.
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Figure 3: IME for each percentile, data

Note: the source is the exporter-level data used for the Exporter Dynamics Database for the core sample. The x-
axis represents percentiles of the average exporter size distribution. Each dot represents the coefficient from the
regression of log average exports per firm in an exporter size percentile on log total exports. The data is demeaned by
origin-year and destination-year fixed effects.

Figure 4: Manufacturing absorption and averaged exports per firm (destination fixed effects)

Note: the source is the exporter-level data used for the Exporter Dynamics Database for the core sample. The x-
axis represents the log of manufacturing absorption in each destination country measured by manufacturing gross
production plus manufacturing imports minus manufacturing exports (measured in billions of USD). The y-axis rep-
resents the estimated destination fixed effects obtained from a regression of log average exports per firm on origin,
destination, and year fixed effects based on the core sample considering origin-destination pairs with more than 100
exporting firms. Manufacturing gross production is calculated as manufacturing value-added from the World Devel-
opment Indicators divided by 0.418 (the factor used by EKK). Manufacturing imports and exports are obtained from
COMTRADE/WITS.
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Figure 5: Exports to largest destination and market entry

Note: the source is the exporter-level data used for the Exporter Dynamics Database for the core sample. The x-axis
represents for each country i the log of the ratio of average exports per exporter to destination j to average exports
per exporter to i s most popular destination market, logmij . The y-axis represents for each country i the log of the
ratio of the number of exporters to destination j to the number of exporters to i s most popular destination market,
log zij . A more formal definition of the variables can be found in the Online Appendix A. For the calculation of both
average exports per exporter and number of exporters we focus only on firms from i that sell both in j and in the
most popular destination.
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Figure 6: Model-implied fixed and variable trade costs and distance

Panel a: fixed trade costs and distance

Panel b: variable trade costs and distance

Note: the source is the exporter-level data used for the Exporter Dynamics Database. The x-axis represents log dis-
tance demeaned by origin and destination fixed effects taken from Mayer and Zignago (2011). The y-axis represents
the fixed or variable trade costs implied by the basic Melitz-Pareto model demeaned by origin-year and destination-
year fixed effects. To calculate the model-implied fixed and variable trade costs we use θ = 5 from Head and Mayer
(2014) and σ = 5 from Bas et al. (2015)

.
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Figure 7: Fixed product-level trade costs and distance

Note: the source is the exporter-level data used for the Exporter Dynamics Database. The x-axis represents log dis-
tance taken from Mayer and Zignago (2011). The y-axis represents fixed product-level trade costs by the the multi-
product extension of the Melitz-Pareto model demeaned by origin-year and destination-year fixed effects.
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Figure 8: IME for each percentile, Pareto and granularity

Note: the source is the exporter-level data used for the Exporter Dynamics Database. The darker solid line corre-
sponds to IME for each percentile estimated using EDD and four main destinations: France, Germany, Japan and
the U.S.. Dashed lines indicate 95% confidence intervals. The lighter solid line is IME for each percentile implied
by the model with Pareto distribution of productivity and granularity, θ̃ = 1. The level of bilateral fixed trade costs
was chosen to match overall IME in the data. The number of draws for each origin-destination pair is equal to the
number of exporters from origin to destination in EDD as of 2007.

Figure 9: Number of firms and population

Note: the x-axis represents log of population taken from the World Development Indicators. The y-axis represents
the number of firms as computed by Bento and Restuccia (2015). The sample includes all country-years for which
EDD and data from Bento and Restuccia (2015) overlap.
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Figure 10: IME for each percentile, lognormal

Note: the source is the exporter-level data used for the Exporter Dynamics Database. The darker solid line corre-
sponds to IME for each percentile estimated using EDD and four main destinations: France, Germany, Japan and
the U.S.. Dashed lines indicate 95% confidence intervals. The lighter solid line is IME for each percentile implied
by the model with lognormal distribution of productivity, σ̄ϕ = 4.02 (our estimate) and σ = 5 from Bas et al. (2015).
The level of bilateral fixed trade costs was chosen to match overall IME in the data. The total number of firms was
imputed from Bento and Restuccia (2015).
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Figure 11: Fixed and variable trade costs and distance, lognormal

Panel a: fixed trade costs and distance

Panel b: variable trade costs and distance

Note: source is the exporter-level data used for the Exporter Dynamics Database. The x-axis represents log distance
taken from Mayer and Zignago (2011). Only four destination countries are considered: France, Germany, Japan, and
the U.S.. To calculate the model-implied fixed and variable trade costs we use our estimate of σϕ = 4.02 and σ = 5
from Bas et al. (2015), and the implied number of firms from Bento and Restuccia (2015).



THE INTENSIVE MARGIN IN TRADE 59

Figure 12: Full Melitz-lognormal model, pdf of log sales

Note: the source is the exporter-level data used for the Exporter Dynamics Database and authors calculations. The
black line corresponds to the standardized log sales (demeaned, divided by standard deviation) pooled across differ-
ent origin-destination cells. The blue line corresponds to the standardized log sales pooled across different cells in
the model. We used 1MM simulated draws for each origin-destination pair to calculated standardized log sales in the
full Melitz-lognormal model. The red line corresponds to the standard normal distribution.

Figure 13: Share of firms selling to destination X but not to destination Y

Note: the source is the exporter-level data used for the Exporter Dynamics Database and authors’ calculations. Each
point corresponds to the share of firms exporting only to less popular markets in the data (horizontal axis) and ac-
cording to the estimated model (vertical axis) for each origin. The figure also includes a 45o line.
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Figure 14: Correlation between log exports to top destinations

Note: the source is the exporter-level data used for the Exporter Dynamics Database and authors’ calculations. Each
point corresponds for each origin and any two destinations among the three most popular ones, the correlation in
export value across all firms that sell in those two destinations in the data (horizontal axis) and according to the
estimated model (vertical axis).

Figure 15: IME for each percentile, data and full Melitz-lognormal model

Note: the source is the exporter-level data used for the Exporter Dynamics Database and authors’ calculations. The
x-axis represent percentiles. The blue solid line represents coefficient from the regression of log average exports in
each percentile on log total exports in the model; the dashed red lines represent 95% confidence interval. The black
solid line represents coefficient from the regression of log average exports in each percentile on log total exports in
the data; the dashed black lines represent 95% confidence interval.
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Figure 16: Gains from trade liberalization

Note: the figure represents the change in welfare in response to a variable trade costs shock in the full Melitz-
lognormal model and the Melitz-Pareto model. To calculate welfare gains in the full Melitz-lognormal model we
used the parameter estimates from the Monte-Carlo Markov chain. Section 5.1. describes the procedure to calculate
gains from trade liberalization in the full Melitz-lognormal model. We used the Dekle et al. (2008) ‘exact hat’ algebra
to calculate changes in trade shares in the Melitz-Pareto model and the Arkolakis et al. (2012) formula to calculate the
gains from trade libetalization. The x-axis represents gains in the full Melitz-lognormal model. The y-axis represents
gains in the Melitz-Pareto model for different value of trade elasticity used to calculate the gains. Each of the four
panels reports the results for a different change in trade costs (1%, 5%, 10%, 25%). Blue crosses correspond to welfare
change in the Melitz-Pareto model when we use the trade elasticity estimated from equation 49 using changes in
trade flows implied by a full Melitz-lognormal model and a 1% reduction in trade costs. Orange circles correspond to
welfare change in the Melitz-Pareto model when we use the trade elasticity estimated from equation 49 using changes
in trade flows implied by a full Melitz-lognormal model and a reduction in trade costs that is indicated in the title of
each panel.
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Figure 17: Counterfactual changes in trade flows

Note: the figure represents the difference between changes in trade flows in the full Melitz-lognormal model and the
Melitz-Pareto model in response to a reduction of variable trade costs on the vertical axis, and the trade elasticity
implied by the full Melitz-lognormal model on the horizontal axis. To calculate changes in trade flows in the full
Melitz-lognormal model we used parameter estimates from the Monte-Carlo Markov chain. Section 5.1. describes
the procedure to calculate changes in trade flows in the full Melitz-lognormal model. We used equation 49 and
changes in trade flows implied by a 25% reduction in trade costs in the full Melitz-lognormal model to estimate the
trade elasticity that was used to calculate the changes in trade flows in the Melitz-Pareto model.
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Figure 18: Gains from asymmetric trade liberalization

Note: the figure represents the change in welfare in response to a variable trade costs shock in the full lognormal
Melitz model and the Melitz-Pareto model. Each dot represents a change in welfare in a given origin in response
to a 25% decline in costs of exporting to its biggest market. To calculate welfare gains in the full Melitz-lognormal
model we used the parameter estimates from the Monte-Carlo Markov chain. Section 5.1. describes the procedure
to calculate gains from trade liberalization in the full Melitz-lognormal model. We used the Dekle et al. (2008) ‘exact
hat’ algebra to calculate changes in trade shares in the Melitz-Pareto model and the Arkolakis et al. (2012) formula
to calculate the gains from trade libetalization. The x-axis represents gains in the full Melitz-lognormal model. The
y-axis represents gains in the Melitz-Pareto model. To calculate gains in the Melitz-Pareto model the left panel (right
panel) uses trade elasticity estimated from equation 49 using changes in trade flows implied by a 1% (25%) reduction
in trade costs in the full Melitz-lognormal model.
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Figure 19: Counterfactual changes in trade flows, asymmetric trade liberalization

Note: the figure represents changes in trade flows in response to a variable trade costs shock in the full lognormal
Melitz model and the Melitz-Pareto model. Each dot represents a change in welfare in a given origin in response to a
25% decline in costs of exporting to its biggest market. To calculate changes in trade flows in the full Melitz-lognormal
model we used the parameter estimates from the Monte-Carlo Markov chain. Section 5.1. describes the procedure
to changes in trade flows after trade liberalization in the full Melitz-lognormal model. We used the Dekle et al. (2008)
‘exact hat’ algebra to calculate changes in trade shares in the Melitz-Pareto model. The x-axis represents changes
in trade flows in the full Melitz-lognormal model. The y-axis represents changes in trade flows in the Melitz-Pareto
model. To calculate changes in trade flows in the Melitz-Pareto model the left panel (right panel) uses the trade
elasticity estimated from equation 49 using changes in trade flows implied by a 1% (25%) reduction in trade costs in
the full Melitz-lognormal model.




