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ABSTRACT
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develop a model that shows how this leads to an underestimation of output and productivity in the 
early years of a new GPT, and how later, when the benefits of intangible investments are 
harvested, productivity will be overestimated. Our model generates a Productivity J-Curve that 
can explain the productivity slowdowns often accompanying the advent of GPTs, as well as the 
follow-on increase in productivity later. We use our model to assess how AI-related intangible 
capital is currently affecting measured total factor productivity (TFP) and output. We also 
conduct a historical analysis of the roles of intangibles tied to R&D, software, and computer 
hardware, finding substantial and ongoing effects of software in particular and hardware to a 
lesser extent.
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After I left academe in 2014, I joined the technical organization at iRobot. I quickly learned how challenging it is to 
build deliberative robotic systems exposed to millions of individual homes. In contrast, the research results presented in 
papers (including mine) were mostly linked to a handful of environments that served as a proof of concept. 

-Alexander Kleiner1  
 
 

I. Introduction 

In the late 1980s, Robert Solow (1987) famously pointed out that “a technological 

revolution, a drastic change in our productive lives” had curiously been accompanied by “a slowing-

down of productivity growth, not by a step up.” His famous productivity paradox, that one “can see 

the computer age everywhere but in the productivity statistics,” named a challenge for economists 

seeking to reconcile the emergence of exciting technological breakthroughs with tepid productivity 

growth. 

Solow’s Paradox was not unique. In this paper, we argue it was one example of a more 

general phenomenon resulting from the need for intangible investments in early stages of new 

general purpose technologies. General purpose technologies (GPTs) are “engines for growth.” They 

are pervasive, improve over time, and lead to complementary innovation (Bresnahan and 

Trajtenberg 1995). These are the defining technologies of their times and can radically change the 

economic environment. They have great potential from the outset, but realizing that potential 

requires larger intangible and often unmeasured investments and a fundamental rethinking of the 

organization of production itself. Thus, the usual measurement of productivity growth as a residual 

after accounting for input changes in the production function can fall short when the technology 

changes the production function itself. 

                                                 
1 Kleiner, Alexander. 2018. “The Low-Cost Evolution of AI in Domestic Floor Cleaning Robots” AI 
Magazine, (Summer). 
 



 3 

The extensive investment required to integrate GPTs into an organization is often forgotten. 

Along with installing more easily measured items like physical equipment and structures capital, 

firms must create new business processes, develop managerial experience, train workers, patch 

software, and build other intangibles. The difficulty for productivity measurement arises because 

intangible investments are not readily tallied on a balance sheet. The invention of a GPT can lead to 

the creation of entirely new asset classes and the transformation of existing capital varieties. It also 

presents abundant opportunity for entrepreneurs to discover new ways to deploy existing capital and 

labor. Moreover, these transformations of the production process do not occur overnight. 

Given all of this, it is easy to see how something like Solow’s Productivity Paradox can 

occur. There is a period during which measurable resources are committed (and measurable output 

forgone) to build new, unmeasured inputs that complement the new GPT. This period can be of 

considerable length. For example, the technologies driving the British industrial revolution led to 

“Engels’ Pause,” a half-century-long period of capital accumulation, industrial innovation, and wage 

stagnation (Allen 2009; Acemoglu and Robinson 2013). In the later GPT case of electrification, it 

took a generation as the nature of factory layouts was re-invented (David 1990). Solow was noting a 

similar phenomenon roughly two decades into the IT era. 

 We call this phenomenon the Productivity J-Curve. As firms adopt a new GPT, total factor 

productivity growth will initially be underestimated because capital and labor are spent to accumulate 

unmeasured intangible capital stocks. Later, measured productivity growth overestimates true 

productivity growth because the capital service flows from those hidden intangible stocks generates 

measurable output. The error in measured total factor productivity therefore follows a J-curve shape, 

initially dipping while the investment rate in unmeasured capital is larger than the investment rate in 

other types of capital, then rising as growing intangible stocks begin to affect measured production. 

As we will explain later, large capital adjustment costs, correlated intangible investments, and high 
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investment shares of income exacerbate the magnitude of the J-curve effect. In the long run, as 

investment quantities and capital stocks reach their steady-state, the mismeasurement problem 

disappears even if the intangible investments do not.  

We documented the basic idea of the Productivity J-Curve, along with a discussion of the 

Productivity Paradox in the context of Artificial Intelligence (AI), in Brynjolfsson, Rock, and 

Syverson (2017), building on earlier work by Yang and Brynjolfsson (2001). The current paper 

formalizes and expands on these ideas, offering a set of quantitative methods designed to measure 

the value and productivity effects of intangible investments. Namely, we propose using a set of 

forward-looking measures derived from stock market valuations as a means of assessing the 

magnitude of intangible investment value in the style of the traditional growth accounting 

framework. The basic idea is that these hidden intangibles are still captured by market valuations. As 

noted by Yang and Brynjolfsson (2001), a combination model of the Q-Theory of investment 

(Hayashi 1982; Wildasin 1984; Hayashi and Inoue 1991) and neoclassical growth accounting (Solow 

1956; Solow 1957; Barro 1998; Corrado, Hulten, and Sichel 2009; Oliner and Sichel 2000; Oliner, 

Sichel, and Stiroh 2008) can deal simultaneously with the magnitudes of the intangible component of 

GPT-related investment and lags in implementation. We extend the model in Yang and Brynjolfsson 

(2001) to adjust the traditional growth accounting methods to include unmeasured intangible capital 

investments, showing that the J-curve is a consequence of the growth of associated intangible 

investments. We use market value regressions (following Hall 2001 and 2004, and Hall 2006) to 

inform estimates of the currently installed value of intangible capital stocks. We show how one can 

use these estimates to infer more accurate measures of total factor productivity growth on a 

contemporaneous basis. 

  

II. Technology, Investment Theory, and Productivity Growth 
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  Economic historians have emphasized the transformative effects of GPTs in history. We 

mentioned the work of David (1990), Allen (2009), and Acemoglu and Robinson (2013) above. 

Rosenberg and Trajtenberg (2004) identify the Corliss steam engine as an “icon of the Industrial 

Revolution,” shifting population centers from rural to urban areas as water power was abandoned in 

favor of steam. Crafts (2004) explores the contribution of steam power to growth in greater detail 

for the British economy during the Industrial Revolution. Lipsey, Carlaw, and Bekar (2006) offer a 

list of possible GPTs (including electrification, mass production, and the factory system), also 

relating those inventions to the presence of the Productivity Paradox. Bresnahan (2010) conducts a 

wide review of the GPT concept, making the point that the modern era’s information and 

communication technologies (ICT) broadly constitute a GPT with transformative effects on the 

economy. Particularly relevant to our analysis work Helpman and Trajtenberg (1994) which notes 

how general purpose technologies can generate alternating periods of investment and harvesting. 

We focus in this paper on the most recent potential GPT: artificial intelligence. AI, and in 

particular the subfield of AI called machine learning (ML), is potentially pervasive, improves over 

time, and can spawn complementary innovation, meeting the Bresnahan and Trajtenberg (1995) 

criteria for a GPT. We would therefore expect, after an implementation lag period, for AI to 

significantly impact economic growth as other GPTs have (Brynjolfsson, Rock, and Syverson 2017; 

Cockburn, Henderson, and Stern 2018; Aghion, Jones, and Jones 2017; Agrawal, McHale, and Oettl 

2018; Trajtenberg 2018). Nevertheless, the formal arguments presented here are applicable to other 

technologies and intangible capital accumulation more generally. The GPT context is useful because 

this is where we expect firm investment in unmeasured intangible capital goods to be large. 

Incremental innovations that do not transform productive activity are likely well captured by 

standard models. The complementary innovations necessitated by GPTs motivate our approach. If 

it were not necessary to transform existing business processes via complementary intangible 
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investments, new GPTs would immediately boost output in straightforward and measurable ways. 

Creating complementary innovation both introduces implementation lags and predisposes the new 

intangible capital accumulation dynamics to mismeasurement.  

Part of the productivity growth slowdown of the past decade may be due to these dynamics.2 

We argued in earlier work that implementation and restructuring lags are a possible explanation for 

the juxtaposition of optimism about AI’s potential and currently low productivity growth 

(Brynjolfsson, Rock, and Syverson 2017). An alternative explanation is that the current technological 

promise is unfounded (Gordon 2015) and we are in a period of secular stagnation (Summers 2015). 

A third story is that mismeasurement of productivity growth can arise from changes in measures of 

output quality, consumer surplus, or price indices, particularly for digital goods (Brynjolfsson, 

Eggers, and Gannamaneni 2018a, 2018b; Goolsbee and Klenow 2018). Syverson (2017) shows that 

that these types of mismeasurement, while important, are likely to be insufficient to explain the 

productivity growth decline. We focus instead on a different type of mismeasurement: the forgone 

output due to investment in unmeasured capital goods. Identifying these hidden asset values makes it 

possible to better measure true productivity growth. 

Intangible assets are an increasingly important component of economic activity, especially 

IT-related intangibles (Brynjolfsson and Hitt, 2000; Hall 2000; Hall 2001; Brynjolfsson, Hitt, and 

Yang 2002; Tambe, Hitt, and Brynjolfsson 2012, Saunders and Brynjolfsson 2016). This has led to 

numerous updates to the standard growth accounting frameworks and an emphasis in recent 

productivity studies on IT’s role in productivity dynamics (Jorgenson and Stiroh 2000; Marrano, 

Haskel, and Wallis 2009; Corrado, Hulten, and Sichel 2009; Byrne, Oliner, and Sichel 2013; Byrne, 

Fernald, and Reinsdorf 2016), and specifically in the ICT-as-GPT case in (Basu, Fernald, Oulton, 

                                                 
2 Of course, there are many other possible explanations.  For instance, Acemoglu (2002) argues that “an acceleration in 
skill bias could cause a TFP slowdown because it creates an imbalance in the composition of R&D.” 
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and Srinivasan 2003). Haskel and Westlake (2017) argue that intangible capital tends to have high 

fixed costs, low marginal costs, spillovers, and complementarities with other assets.3 Further, the 

existence of significant intangible assets might explain the relatively poor historical performance of 

Tobin’s Q (the ratio of a firm’s market-to-book value) in explaining capital investment (Crouzet and 

Eberly 2018). Accounting for organizational investments, human capital, and business processes can 

strengthen the link between observed investment and asset prices (Eisfeldt and Papanikolaou 2013, 

2014; Peters and Taylor 2017; Kogan et al. 2017; Andrei, Mann, and Moyen 2018).  

Our approach applies the Q-theory of investment to recover the portion of productivity 

growth attributable to unmeasured intangible capital outputs. To adjust aggregate productivity 

estimates from a growth accounting framework for intangible output, we need to know 1) the 

growth rates of tangible investment and capital, and 2) the quantity of intangible investment per unit 

of correlated tangible investment. We empirically pin down this second component from the 

estimation of market value regressions. Part of Q is treated as intangible capital instead of excess 

valuation over asset replacement costs. When we observe a firm’s market value rise by an amount 

greater than observed investment, we infer the difference as reflecting the value of intangible capital 

investments that were correlated with the tangible investment. We call these correlated intangible 

investments intangible correlates. Our framework also handles the case in which intangible capital is 

used to produce more intangible capital.  

The Productivity J-Curve that we describe in this paper is related to, but distinct from, the 

trade balance J-curve discussed in Rose and Yellen (1989) and Magee (1973).4 Their J-curve 

describes how trade balances react over time to changes in real exchange rates.5 The similarity 

between the two J-curves is that there is a change in the sign of derivatives of focal quantities with 

                                                 
3 They refer to the “4 S’s” of intangible capital: sunk costs, scalability, spillovers, and synergies. 
4 We thank Larry Summers for suggesting how the dynamics we model are similar to the trade J-curve.. 
5 Assuming export prices between countries are sticky, one country depreciating its currency makes sticky-priced imports 
(exports) more (less) attractive, while later prices adjust and foreign import demand increases.  
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respect to time as time passes (trade balances in the earlier case, productivity in this one), reflecting 

the adjustment of production processes in response to an external shock. In Rose and Yellen, the 

shock comes from a large change in exchange rates. In our paper, it is from a large technological 

innovation. 

 

III. Growth Accounting in the Presence of Unmeasured Intangible Investment 

Our setup builds on the approach of Yang and Brynjolfsson (2001) as follows. 

Suppose a competitive firm produces output with a general constant returns to scale production 

function. Then  

𝑌𝑌 = 𝑝𝑝𝑝𝑝(𝐾𝐾,𝑁𝑁,𝐴𝐴)     (1) 

where Y is the final goods output of the firm, p is the price of final goods output (stable over time), 

K is the vector of capital goods, N is the vector of variable inputs (e.g., labor), and A represents the 

level of total factor productivity at time t. With flexible capital and input prices (r, w), we have the 

following, with g denoting a growth rate: 

𝑔𝑔𝑌𝑌 =
�̇�𝑌
𝑌𝑌

=
𝑝𝑝�𝑝𝑝𝐾𝐾�̇�𝐾 + 𝑝𝑝𝑁𝑁�̇�𝑁 + 𝑝𝑝𝐴𝐴�̇�𝐴�

𝑌𝑌
= �

𝑟𝑟𝐾𝐾
𝑌𝑌
�𝑔𝑔𝐾𝐾 + �

𝑤𝑤𝑁𝑁
𝑌𝑌
�𝑔𝑔𝑁𝑁 + 𝑔𝑔𝐴𝐴     (2) 

𝑔𝑔𝐾𝐾 =
�̇�𝐾
𝐾𝐾

;  𝑔𝑔𝑁𝑁 =
�̇�𝑁
𝑁𝑁

;  𝑔𝑔𝐴𝐴 =
�̇�𝐴
𝐴𝐴

 

Values with an upper dot represent the total derivative with respect to time. 

In words, one can decompose the growth in output over time into the growth in capital 

stock multiplied by capital’s share of output plus the growth in flexible input quantity multiplied by 

the expenditure share of flexible inputs and a final total factor productivity growth term. This last 

term is the familiar Solow Residual. It represents an improvement in productive efficiency, or more 
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modestly a kind of “measure of our ignorance” in how a firm converts inputs to outputs.6 Equation 

(2) is the basis for traditional growth accounting, which we revisit in equation (9) with an adjustment 

for unmeasured intangible investments. 

To incorporate adjustment costs, we modify (1) following Lucas (1967): 

𝑌𝑌 = 𝑝𝑝𝑝𝑝(𝐾𝐾,𝑁𝑁, 𝐼𝐼,𝐴𝐴)    (3)      

Now the production function incorporates an investment term I with market price z such that the 

total cost of investment in one unit of capital goods is (z – pFI). F is assumed non-increasing and 

convex in I to represent the idea that adjustment costs grow increasingly costly for larger I. In other 

words, the firm must forgo an increasing amount of output as its rate of capital investment 

increases. This helps explain why firms cannot, for example, instantaneously replicate the capital 

stocks of their competitors without incurring larger costs. 

 We can relate firm investment behavior to market value using this production function.7 For 

the price-taking firm, market value equals the sum of the capitalized adjustment costs. The firm 

must solve: 

max
𝐼𝐼,𝑁𝑁

�� 𝜋𝜋(𝑡𝑡)𝑢𝑢(𝑡𝑡)𝑑𝑑𝑡𝑡
∞

0
� = 𝑉𝑉(0) 

where      𝜋𝜋(𝑡𝑡) =  𝑝𝑝𝑝𝑝(𝐾𝐾,𝑁𝑁, 𝐼𝐼,𝐴𝐴) − 𝑤𝑤′𝑁𝑁 − 𝑧𝑧′𝐼𝐼 

and     
𝑑𝑑𝐾𝐾𝑗𝑗
𝑑𝑑𝑡𝑡

= 𝐼𝐼𝑗𝑗 − 𝛿𝛿𝑗𝑗𝐾𝐾𝑗𝑗  ∀𝑗𝑗 = 1, 2, … , 𝐽𝐽.    (4) 

That is, Kj is the capital stock of type j (indexes capital variety), N is a vector of flexible inputs, u(t) 

denotes the compound discount rate at time t, and δj is the depreciation rate of capital of type j. As 

in Yang and Brynjolfsson (2001), F is assumed non-decreasing and concave in K and N. With 

                                                 
6 Abramovitz, Moses. "Resource and output trends in the United States since 1870." In Resource and output trends in the 
United States since 1870, pp. 1-23. NBER, 1956. 
 
7 See, for example, Hayashi (1982), Wildasin (1984), and Hayashi and Inoue (1991). 
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homogeneity of degree one for F, we get the solution to the maximization of the Hamiltonian in (5) 

at time 0: 

𝐻𝐻(𝐾𝐾,𝑁𝑁, 𝐼𝐼,𝐴𝐴) = (𝑝𝑝𝑝𝑝(𝐾𝐾,𝑁𝑁, 𝐼𝐼,𝐴𝐴) − 𝑤𝑤′𝑁𝑁 − 𝑧𝑧′𝐼𝐼)𝑢𝑢(𝑡𝑡) + ∑ 𝜆𝜆𝑗𝑗(𝐼𝐼𝑗𝑗 − 𝛿𝛿𝑗𝑗𝐾𝐾𝑗𝑗)𝐽𝐽
𝑗𝑗=1      (5)  

with constraints: 

𝜕𝜕𝐻𝐻
𝜕𝜕𝜆𝜆𝑗𝑗

= 𝐾𝐾�̇�𝚥 = 𝐼𝐼𝑗𝑗 − 𝛿𝛿𝑗𝑗𝐾𝐾𝑗𝑗     ∀𝑗𝑗 ∈ {1,2, … , 𝐽𝐽},∀𝑡𝑡 ∈ [0,∞] 

𝜕𝜕𝐻𝐻
𝜕𝜕𝐾𝐾𝑗𝑗

= −𝜆𝜆�̇�𝚥 = 𝑝𝑝𝑝𝑝𝐾𝐾𝑗𝑗𝑢𝑢 − 𝜆𝜆𝑗𝑗𝛿𝛿𝑗𝑗      ∀𝑗𝑗,∀𝑡𝑡 

𝜕𝜕𝐻𝐻
𝜕𝜕𝐼𝐼𝑗𝑗

= 0 = �𝑝𝑝𝑝𝑝𝐼𝐼𝑗𝑗 − 𝑧𝑧𝑗𝑗� 𝑢𝑢 + 𝜆𝜆𝑗𝑗     ∀𝑗𝑗,∀𝑡𝑡 

𝜕𝜕𝐻𝐻
𝜕𝜕𝑁𝑁𝑖𝑖

= 0 = �𝑝𝑝𝑝𝑝𝑁𝑁𝑖𝑖 − 𝑤𝑤𝑖𝑖�𝑢𝑢     ∀𝑖𝑖 ∈ {1,2, … , 𝐿𝐿},∀𝑡𝑡 

lim
𝑡𝑡→∞ 

𝝀𝝀(𝑡𝑡)𝑲𝑲(𝑡𝑡) = 0 

leading to an equation for the value of the firm: 

𝑉𝑉(0) =  �𝜆𝜆𝑗𝑗(0)𝐾𝐾𝑗𝑗(0)
𝐽𝐽

𝑗𝑗=1

      (6) 

Equation (6) shows that the value of the firm at t = 0 is the sum over all varieties of the 

capital stock quantities multiplied by the “shadow price” of investment of the respective varieties. In 

our context, this shadow price reflects adjustment costs.8 

                                                 
8 Following equation (6) in Hall (2000), if 𝜆𝜆𝑗𝑗 represents the marginal q value (incremental market value created divided 
by asset replacement cost), then the marginal adjustment cost for the firm (set by the firms’ competitors) at its chosen 
capital investment rate is set by: 

𝑐𝑐′ �
𝑘𝑘𝑡𝑡 − (1 − 𝛿𝛿)𝑘𝑘𝑡𝑡−1

𝑘𝑘𝑡𝑡−1
� = 𝑞𝑞𝑡𝑡 − 1 = 𝜆𝜆𝑡𝑡 − 1 

Where c’(x) is the marginal adjustment cost function and 𝛿𝛿 is the depreciation rate of capital. In this case, there are no 
unmeasured intangible correlates, only adjustment costs of investment. Our framework below allows for both 
adjustment costs and unmeasured intangibles. In that case, the sum of these two elements is our 𝜆𝜆 value. (One 
interpretation of this summation is that capitalized convex adjustment costs are, in effect, a nonlinear component of 
correlated intangible investments.) 
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Assuming all asset stocks are measured correctly and market prices correctly represent the 

value of claims on publicly traded firms, equation (6) suggests that a regression of firm value on 

dollar quantities of asset varieties will yield a coefficient vector that represents the average present 

value of one unit of each type of capital. In a frictionless efficient market, that vector would contain 

values of one for all assets. In the presence of adjustment costs, however, the coefficient will be 

greater than one. 

We can extend this logic to unmeasured intangible GPT investments that are complementary 

to tangible assets. Suppose a firm adopting a new GPT must invest proportionately in two assets: 

computer equipment and firm-specific GPT specialist training (e.g., training AI engineers). For a 

firm with a measurable quantity of tangible computer equipment, the estimated shadow price 

coefficient for the computer equipment investment will exceed the “true” computer equipment 

coefficient by the amount necessary to represent the value of the complementary training as well. 

The specialist training is not capitalized on the firm’s formal balance sheet, yet the financial market 

must also value the future service flows from training if no arbitrage conditions are to hold. The 

market value premium over book value implies a Tobin’s Q above unity; the value of the firm is 

higher than the simple replacement cost of its observed assets. 

When we examine data from financial markets, we find that technology firms have, on 

average, considerably higher values of Q. This suggests that they have either higher levels of 

adjustment costs, intangible correlated investments relative to booked assets, or both. This is 

consistent with the idea that implementing a new GPT requires complementary intangible 

investment to reorganize production. 

In a growth accounting framework, the value of final goods in any given year is divisible into 

the value of consumption goods and the value of capital goods as follows: 

𝑝𝑝𝑐𝑐𝐶𝐶 + 𝑧𝑧𝐼𝐼 = 𝑌𝑌 = 𝑝𝑝𝑦𝑦𝑝𝑝(𝐾𝐾,𝑁𝑁, 𝐼𝐼) =  𝑝𝑝𝑦𝑦𝑝𝑝𝑛𝑛𝑁𝑁 + 𝑝𝑝𝑦𝑦𝑝𝑝𝑘𝑘𝐾𝐾 + 𝑝𝑝𝑦𝑦𝑝𝑝𝐼𝐼𝐼𝐼 = 𝑤𝑤𝑁𝑁 + 𝑟𝑟𝐾𝐾 + (𝑧𝑧 − 𝜆𝜆)𝐼𝐼     (7) 
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alternatively, the total payments to capital (including intangible stocks) and labor are: 

𝑝𝑝𝑐𝑐𝐶𝐶 + 𝑧𝑧𝐼𝐼 + (𝜆𝜆 − 𝑧𝑧)𝐼𝐼 = 𝑤𝑤𝑁𝑁 + 𝑟𝑟𝐾𝐾 

This is the growth accounting identity. The value of consumption goods plus the value of capital 

investment is equal to total output Y. This, in turn, is equal to the total income of flexible inputs, 

capital rental costs, and investment (both measured and unmeasured).9 

If the (λ–z)I value of capital goods production goes unmeasured, then part of the 

expenditure on capital goods is missing when the growth decomposition is performed. In the 

context of a GPT, this means that much of the training, the investment in implementing new 

decision processes, the reorganization costs, and the incentive designs necessary to generate 

productive service flows from GPT capital are left out. 

If the economy is accumulating the new GPT-related capital faster than it accumulates 

measurable capital, TFP will be underestimated. To see why, we can update the growth 

decomposition equation as follows: 

𝑔𝑔𝑌𝑌 =
�̇�𝑌
𝑌𝑌

=
𝑝𝑝�𝑝𝑝𝐾𝐾�̇�𝐾 + 𝑝𝑝𝑁𝑁�̇�𝑁 + 𝑝𝑝𝐼𝐼𝐼𝐼̇+ 𝑝𝑝𝐴𝐴�̇�𝐴�

𝑌𝑌
    (8) 

Following the first order conditions for the Hamiltonian above, we have 

𝜆𝜆𝑗𝑗(0) = (𝑧𝑧𝑗𝑗 − 𝑝𝑝𝑝𝑝𝐼𝐼𝑗𝑗)      and 

𝑔𝑔𝑌𝑌 = �
𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾
𝑌𝑌

��
�̇�𝐾
𝐾𝐾
� + �

𝑝𝑝𝑝𝑝𝑁𝑁𝑁𝑁
𝑌𝑌

��
�̇�𝑁
𝑁𝑁
� + �1 −

𝜆𝜆
𝑧𝑧
� �
𝑧𝑧𝐼𝐼
𝑌𝑌
� �
𝐼𝐼̇
𝐼𝐼
� + �

𝑝𝑝𝐴𝐴𝐴𝐴
𝑌𝑌
��
�̇�𝐴
𝐴𝐴
�      (9) 

 There are several differences between this expression and the typical growth accounting 

equation (2). Because expressions like (2) are the standard method of computing TFP growth, 

deviations between the true growth decomposition (9) and the decomposition as implemented (2) 

reflect the sources of TFP mismeasurement. 

                                                 
9 This framework assumes that the firm’s Hamiltonian can be aggregated to the economy level, as does the standard 
growth accounting framework. This is not always the case (Houthakker 1955; Basu and Fernald 1997). 
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The first difference is in the first term on the right side of (9). The capital services’ share of 

income needs to be adjusted to account for the capital services from intangibles. Given homogeneity 

of degree one in the production function, the adjustment is: 

𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾
𝑌𝑌

= 1 − �
𝑤𝑤𝑁𝑁
𝑌𝑌
� + ��

𝜆𝜆𝑗𝑗
𝑧𝑧𝑗𝑗
− 1� �

𝑧𝑧𝑗𝑗𝐼𝐼𝑗𝑗
𝑌𝑌
�

𝐽𝐽

𝑗𝑗=0

    (10) 

Where j indexes different capital varieties. In (2), the summation term was omitted from the value of 

capital’s output share and so in a standard growth decomposition would be rolled into measured 

productivity growth. The difference between the capital share of income without unmeasured 

intangibles and the adjusted capital share is equal to the summation term in (10). Labor’s share of 

income remains the same under either setup. This is why the left side of (10) is stated precisely as the 

residual income share without labor added to the summation term. 

 The true growth decomposition (9) also clearly shows in its second-to-last term the 

investment component missing from (2). The contribution to output growth of this term would also 

be subsumed into productivity growth when applying decomposition (2). 

Denote with g*
TFP the productivity growth measure derived from the true decomposition 

(9)—i.e., the final term in that expression. Denote the productivity growth measure derived from a 

standard decomposition (2) as gTFP. Taking the difference gives us an expression for the 

measurement error in productivity growth: 

𝑔𝑔𝑇𝑇𝑇𝑇𝑇𝑇∗ − 𝑔𝑔𝑇𝑇𝑇𝑇𝑇𝑇 =  ��
𝜆𝜆𝑗𝑗
𝑧𝑧𝑗𝑗
− 1� �

𝑧𝑧𝑗𝑗𝐼𝐼𝑗𝑗
𝑌𝑌
� (𝑔𝑔𝐼𝐼𝑗𝑗 −

𝐽𝐽

𝑗𝑗=0

𝑔𝑔𝑘𝑘)       (11) 

where j indexes the capital variety type. This equation states that the measurement error in TFP 

growth is the sum of the differences between investment growth rates in a given capital variety and 

the overall growth rate of capital, multiplied by the investment share of observable income and the 

per-observable–investment-unit value of intangible correlates and adjustment costs. With a fixed 
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multiplier and investment share of income, the growth rate differential between investment and 

overall capital drive the dynamics of measurement error. 

If the shadow price of technological investment is simply the market price of the investment 

good, so that λ/z = 1, there is no missing growth in output. However, for GPTs, it is likely that 

there will be a need for extensive unmeasured investments that correlate with tangible capital goods 

production, making λ/z greater than one. Because investment share of measurable output (zI/Y) is 

positive, the sign of productivity mismeasurement will depend on the difference between the growth 

rates of investment in GPT capital and the installed stock of GPT capital. Therefore, if GPT diffusion 

leads to a period of differential growth rates of intangible investments and intangible stocks—and 

we offer intuition below for why this is likely to be the case—then measured and true productivity 

growth will diverge during that period. In the long run, if the economy reaches steady state, the two 

growth rates will converge and productivity will no longer be mismeasured, even in the presence of 

unmeasured intangibles. 

 

IV. The Productivity J-Curve 

 The most straightforward way to understand the Productivity J-Curve is to consider 

foregone output used to produce unmeasured capital goods. Suppose a company wants to become 

more “data-driven” and reorganize its production processes to take advantage of new machine 

learning prediction technologies (Brynjolfsson and McElheran 2016). This firm might want, for 

example, to change its labor mix to build more software and to teach its customers to order 

products online instead of in person. While the company develops online product ordering 

applications and business processes for that purpose, it will not be able to use those investment 

resources to produce more final goods inventory. At the same time, though, the capital assets the 
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firm is building—institutional software knowledge in the company, hiring practices, organization 

building, and customer retraining to use digital systems—are left unmeasured on the balance sheet. 

On the margin, the (present-discounted and risk-adjusted) value of these unmeasured assets 

equals the costs incurred to produce them. But during the period in which that output is foregone, 

the firm’s (traditionally measured) productivity will suffer because it will seem as though the 

company produces proportionately less output relative to its inputs. Later, when those hidden 

intangible investments start to generate a yield as inputs, it will seem as though the measured capital 

stock and employed workers have become much more productive. Therefore, in early investment 

periods productivity is understated, whereas the opposite is true later when investment levels taper 

off. 

The mismeasurement in this example regards a J-curve in productivity levels, and we derive a 

general expression describing its evolution below. That said, a similar J-curve exists for productivity 

growth rates. The math behind this growth rate J-curve is precisely that from our analysis above and is 

summarized in equation (11). The underlying intuition is very much like that for the J-curve in the 

productivity level. Early in the GPT diffusion process, intangible investment growth is likely to be 

larger than intangible capital stock growth. With missed output growth dominating missed input 

growth, measured TFP growth is lower than true TFP growth. Later in the GPT diffusion process, 

investment growth slows below the growth rate of the installed intangible stock. Measured 

productivity growth then exceeds its true level. Eventually the growth rates equalize in steady state, 

and productivity mismeasurement disappears. 

 



 16 

  

The mathematics behind the J-curve in level terms follow from equation (7). Differentiating 

our earlier production function (assuming numeraire output price for simplicity) yields: 

𝑑𝑑𝑌𝑌 = 𝑝𝑝𝐾𝐾𝑑𝑑𝐾𝐾 + 𝑝𝑝𝑁𝑁𝑑𝑑𝑁𝑁 + 𝑝𝑝𝐼𝐼𝑑𝑑𝐼𝐼 + 𝑝𝑝𝐴𝐴𝑑𝑑𝐴𝐴 = 𝑟𝑟𝑑𝑑𝐾𝐾 + 𝑤𝑤𝑑𝑑𝑁𝑁 + (𝑧𝑧 − 𝜆𝜆)𝑑𝑑𝐼𝐼 + 𝑝𝑝𝐴𝐴𝑑𝑑𝐴𝐴     (12) 

If we have measured capital service flows, labor service flows, and we know investment prices and 

their installed shadow values, we can back out the component of output driven by productivity 

improvements dA. In efficiency units and log terms (for an ordinary Cobb-Douglas production 

function): 

ln(𝑌𝑌 + 𝜆𝜆𝐼𝐼) = ln(𝐴𝐴) + 𝛼𝛼 ln(𝐾𝐾) + (1 − 𝛼𝛼) ln(𝑁𝑁) 

ln(𝑌𝑌 + 𝑧𝑧𝐼𝐼) = ln �
𝑌𝑌 + 𝑧𝑧𝐼𝐼
𝑌𝑌 + 𝜆𝜆𝐼𝐼

� + ln(𝐴𝐴) + 𝛼𝛼 ln(𝐾𝐾) + (1 − 𝛼𝛼) ln(𝑁𝑁)      (13) 

That is, with factor shares of α and 1-α for capital (including investment) and labor (respectively), 

we now see that the productivity level decomposition in (13) has an additional term of the ratio of 

total measured output to total output including intangible correlates and adjustment costs. Fixing a 
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multiplier λ, this ratio is always going to be (weakly) less than one, implying a drag on the measured 

productivity level. But recall that the measure of capital stock K includes the intangible investment 

stock as well. We modify (13) to explicitly include the unmeasured intangible capital stock: 

ln(𝑌𝑌 + 𝑧𝑧𝐼𝐼) = ln �
𝑌𝑌 + 𝑧𝑧𝐼𝐼
𝑌𝑌 + 𝜆𝜆𝐼𝐼

� + ln(𝐴𝐴) + 𝜶𝜶 ln(𝑲𝑲) + (1 − 𝛼𝛼) ln(𝑁𝑁)    (14) 

K denotes the vector of ordinary capital stocks and unmeasured intangible capital stock. If we have 

the marginal condition that the present value of investment returns in unmeasured intangibles equals 

the cost of the investment, in the long run the positive and negative effects of these additional terms 

on the level of productivity must net out. This is because the total risk-adjusted net present value of 

capital service flows from unmeasured intangible capital investments must equal the costs to the 

firm of making those investments.  

To see the Productivity J-Curve, consider the case that the stock of intangible capital is zero. 

In this case, we only have the first negative term creating mismeasurement of productivity. Later, if 

net investment is zero instead, we only have the intangible component of the positive adjustment 

term 𝜶𝜶ln(K), causing an overestimate of the productivity level ln(A). 

Recall that the J-curve in productivity growth can be seen in the right-hand side of (11). When 

the growth rate of unmeasured intangible investments exceeds (is lower than) the growth rate of the 

total capital stock, the true productivity growth rate will exceed (be lower than) the measured 

productivity growth rate. This effect in either direction is amplified by 1) a large installed-to-

purchase price ratio λ/z of investment (or large quantities of unmeasured intangible investment 

required per unit of measured investment) and 2) a large measured investment share of measured 

output. This latter effect is part of the explanation for the Productivity Paradox; when the economy 

is in the early stages of accumulating GPT-related capital, measured investment’s share of measured 

output will be relatively low. The figure below shows the total factor productivity growth J-curve. 
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Because the values are in growth terms, the sum of overestimates and underestimates need not be 

zero over time. The level impact must necessarily be zero in expectation, however, if assets are 

efficiently priced. 

There is a similar description in equation (5) of Brynjolfsson, Rock, and Syverson (2017), 

where the mismeasured components of investment and capital stock work against each other to 

generate the difference between measured and actual productivity growth. In this case, r and z, 

respectively, represent the total prices of capital and investment (adjusted to account for intangible 

quantities).  

𝑔𝑔𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑔𝑔𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐 = �
𝑟𝑟𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖𝑛𝑛𝐾𝐾𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖𝑛𝑛

𝑌𝑌
�𝑔𝑔𝐾𝐾𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖𝑛𝑛 − �

𝑧𝑧𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖𝑛𝑛𝐼𝐼𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖𝑛𝑛
𝑌𝑌

�𝑔𝑔𝐼𝐼𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖𝑛𝑛     (15) 

Note the similarity with equation (11) above. We can extend (15) with (11) to situate this difference 

in terms of all intangible correlates associated with different capital varieties while separating capital 

and investment effects. Doing so gives: 

𝑔𝑔𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑔𝑔𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐 = ���
𝑧𝑧𝑗𝑗𝐼𝐼𝑗𝑗
𝑌𝑌
� �
𝜆𝜆𝑗𝑗
𝑧𝑧𝑗𝑗
− 1�

𝐽𝐽

𝑗𝑗=0

𝑔𝑔𝐾𝐾𝑗𝑗� − ���
𝑧𝑧𝑗𝑗𝐼𝐼𝑗𝑗
𝑌𝑌
� �
𝜆𝜆𝑗𝑗
𝑧𝑧𝑗𝑗
− 1�

𝐽𝐽

𝑗𝑗=0

𝑔𝑔𝐼𝐼𝑗𝑗�      (16) 

The difference in measurement between the standard approach and ours is just the investment share 

and intangible value-weighted difference in growth rates between capital stocks and investments. 

Note that (16) can be rearranged to form a regression specification, in which the intercept is 

defined by the corrected measure and the coefficient estimates are defined by the investment shares 

and lambda values: 

𝒈𝒈𝑻𝑻𝑻𝑻𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 = 𝒈𝒈𝑻𝑻𝑻𝑻𝑻𝑻𝒄𝒄𝒄𝒄𝒎𝒎𝒎𝒎𝒎𝒎𝒄𝒄𝒄𝒄𝒎𝒎𝒎𝒎 + (𝒈𝒈𝑲𝑲 − 𝒈𝒈𝑰𝑰)′𝜷𝜷 + 𝝐𝝐    (17) 

In steady state, the growth rates of capital and net investment converge, mitigating the 

mismeasurement problem. In the short run, the deployment of resources of different types to 

produce outputs of measured and unmeasured varieties can influence the degree to which 
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productivity growth is mismeasured. These unmeasured intangible capital stocks might be used to 

produce even more unmeasured intangible assets, in which case the hidden output and hidden input 

effects can offset each other somewhat. In the case that the rate of intangible capital production 

accelerates and uses measured capital and labor services in increasingly greater quantities, the J-curve 

effects are more pronounced.10 This will also occur if the quantity of intangible correlates (including 

adjustment costs) per unit of tangible investment increases. 

 

V. Is Hidden AI Capital Investment Already Causing a Productivity Shortfall? 

 Gross Domestic Product in the U.S. in 2017 was $19.5 trillion and in real terms grew at an 

average annual rate of 2.17% over 2010 to 2017, down from 2.72% per year from 2000 to 2007 (the 

eight years prior to the Great Recession).11 This implies that unmeasured intangible capital 

investment over 2010 to 2017 would need to average $107 billion per year (= 19.5 trillion * [2.72% - 

2.17%]) in 2017 dollars to explain the entire slowdown in in GDP growth. How much of this 

slowdown could a Productivity J-Curve for investment in AI and related intangibles explain? 

The economy is early in the AI adoption cycle, but recent growth has been impressive. There 

has been a rapid increase in the use of AI and robotics technology over the past decade (Furman 

and Seamans 2018). Startup funding for AI has increased from $500 million in 2010 to $4.2 billion 

by 2016 (growing by 40% between 2013 and 2016) (Himel and Seamans 2017). Though 

concentrated heavily in the information technology sector, overall measurable corporate investment 

in AI in 2016 was $26-39 billion, marking 300% growth since 2013 (Bughin et al. 2017). Similarly, 

international industrial robot shipments since 2004 have nearly doubled overall and almost 

quadrupled in the consumer electronics industry (Furman and Seamans 2018).  

                                                 
10 There is also a degenerate scenario in which firms shift toward focusing on intangible output production using 
intangible assets. In this case, the productivity measurement apparatus starts to lose its value. 
11 From the Bureau of Economic Analysis GDP statistics. 
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For AI to account for the 0.55% of “lost” output in 2017 GDP, the quantity of correlated 

intangible investments per unit of tangible investment must be between roughly 2.7 and 4.1 times 

the observable investment values (using the Bughin et al. (2017) estimate).12 This is not implausible. 

Brynjolfsson, Hitt, and Yang (2002) find that the total market value of measured computer capital 

investments is as much as $11.8 per $1 in measured expenditure, with a standard error of $4.025.13 

None of the intangible “shadow” value will show up in the productivity statistics. Because the 

foregone output cannot be explained by growth in labor or observable capital inputs alone, the 

output shortfall will be attributed to slower productivity growth. Further, this investment 

(discounted and risk-adjusted) will later generate a capital service flow that produces measurable 

output. 

Of course, these numbers are just for 2017, when measured AI investment was several 

multiples of what it was only a few years prior. Thus analogous pre-2017 values would be notably 

smaller, and it is unlikely that much of the GDP slowdown gaps in those earlier years would be 

attributable to AI-related intangibles. However, given that AI investments are likely to continue 

growing quickly, and the fact that where it exists, AI capital has a high market valuation and as such 

a considerable shadow value for intangible correlates, we could well be likely entering the period in 

which AI-as-GPT could have noticeable impacts on estimates of output and productivity growth.  

 

VI. Deploying the Framework Using R&D, Software, and Computer Hardware Investment 

 While the results in the previous section imply AI-related intangibles per se have only very 

recently been large enough to noticeably affect measured output and productivity, other technology-

                                                 
12 The required forgone output in 2017 was $107 billion. Dividing by the low observed investment figure of $26 billion 
implies a required intangible investment that was 107/26 = 4.1 times the observed investment. Using the larger $39 
billion figure implies intangibles that were 107/39 = 2.7 times observed investment. 
13 This uses a series of regression specifications motivated by a version of equation (6) in the previous section. 
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related investments may have had more substantial effects over greater horizons, creating their own 

J-curve dynamics as a result. We explore this possibility in this section. 

Specifically, we estimate the per unit magnitudes of intangible capital investment that 

coincides with observable R&D, software, and computer hardware capital. We then use those values 

to adjust total factor productivity estimates and explore if substantial J-curve effects exist for those 

capital types. To estimate the magnitude of intangible investments, we use the approach described 

above for obtaining intangible capital shadow values by comparing firms’ observable investments to 

their market capitalization.14 We obtain shadow values for R&D, software, and hardware (each) 

since 1961 and use these to build up time series estimates of intangible stocks from 1961-2017. 

 Our productivity baselines, net capital stock, and investment by capital variety estimates all 

come from Fernald (2014), extended through 2017.15 We take estimates of the total stock of 

research and development (R&D) capital and the total stock of capitalized selling, general, and 

administrative (SG&A) expense from the Peters and Taylor (2017) measures available in Wharton 

Research Data Services (WRDS) (we extend these measures through 2017 as well, following the 

guidelines in their paper). These estimates are joined to Compustat to construct a panel from 1961-

2017 of firm market value, total asset book value, total R&D capital, total “organizational” capital 

(the capitalized SG&A expenditure), and other firm identifiers of all publicly-held companies in the 

U.S. In our regressions, we define industry by four-digit NAICS code. 

 R&D capital provides a useful context for understanding Productivity J-curve dynamics for a 

few reasons. Corporate research leads to the development of new technologies that diffuse over 

time, and there has been a steady flow of investment into R&D for decades. Further, the link 

between R&D investment and market value is well established (Hall 1993, 2006). Because 

investment in R&D has persisted over the long term, we are more likely to find investment in R&D 
                                                 
14 Recall as discussed above that adjustment costs can be thought of as a nonlinear component of intangible investment. 
15 Capital stock estimates for this series are also available from the U.S. Bureau of Economic Analysis (BEA). 
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at nearly steady-state levels. This implies that the intangible-related challenges for productivity 

estimation coming from R&D are likely to be minimal at present. (Remember from our analysis 

above that as the growth rates of intangible investment and stocks converge, productivity 

mismeasurement falls to zero.) Nevertheless, the exercise presented here for R&D is applicable to 

other capital varieties. 

In contrast, heavy software and computer hardware capital investment is a more recent 

phenomenon in which firm behavior might (still) not have entirely matured, so J-curve dynamics 

may still be present. We find evidence of this further below after first demonstrating our approach 

with analysis of R&D-related intangibles. 

 The first step in estimating the productivity mismeasurement effect of intangible correlates is 

estimating how many units of intangible investment correspond to observable investment quantities. 

We begin with R&D and capitalized SG&A stock measures from Peters and Taylor (2017). For this, 

we run a market value regression of the style in Hall (1993) and Brynjolfsson, Hitt, and Yang (2002). 

The specification for firm i in industry j at time t is: 

𝑀𝑀𝑀𝑀𝑟𝑟𝑘𝑘𝑀𝑀𝑡𝑡 𝑉𝑉𝑀𝑀𝑉𝑉𝑢𝑢𝑀𝑀𝑖𝑖𝑗𝑗𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑇𝑇𝑡𝑡𝑀𝑀𝑉𝑉𝐴𝐴𝑇𝑇𝑇𝑇𝑀𝑀𝑡𝑡𝑇𝑇𝑖𝑖𝑡𝑡 + 𝛽𝛽2𝑅𝑅&𝐷𝐷𝑖𝑖𝑡𝑡 + 𝜂𝜂𝑗𝑗𝑡𝑡 + 𝜖𝜖𝑖𝑖𝑡𝑡     (18) 

The coefficient on R&D picks up the ratio of dollars of market value created per unit of R&D stock 

at the firm in a given year. This, which we refer to as the intangible multiplier, is the ratio (λ/z) from 

our analysis above. We estimate specifications both including and excluding capitalized SG&A and 

industry-year fixed effects. The results are in Table 1 below.  

 

Table 1: Market Value Regressions on R&D and SG&A Stocks 
 (1) (2) (3) (4) (5) (6) 

Market Value 
Regressions 

Basic 
R&D 

Basic 
R&D and 

SG&A 

Industry-
Year Fixed 

Effects: 
R&D 

Industry-
Year Fixed 

Effects: 
 R&D and 

SG&A 

Firm and 
Year Fixed 

Effects: 
R&D 

Firm and 
Year Fixed 

Effects: R&D 
and SG&A 
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Total Assets 1.019 1.002 1.018 1.002 1.019 1.004 
 (0.00125) (0.00163) (0.00992) (0.0119) (0.00740) (0.0102) 
R&D Stock 2.889 2.045 2.980 2.195 2.362 1.852 
 (0.0805) (0.0788) (0.510) (0.418) (0.332) (0.306) 
SG&A Stock  1.493  1.424  1.100 
  (0.0700)  (0.251)  (0.216) 
Constant 625.7 434.2     
 (9.699) (12.35)     
       
Observations 665,536 665,536 665,515 665,515 665,408 665,408 
R-squared 0.985 0.986 0.986 0.987 0.990 0.991 
Industry-
Year FE 

No No Yes Yes No No 

Firm and 
Year FE 

No No No No Yes Yes 

Robust standard errors in parentheses 
Total Assets are the total assets on the firm’s balance sheet, Industry is the four-digit NAICS code. Market Value is the 
sum of the book value of debt, preferred stock, and the end-of-year equity share price multiplied by common shares 
outstanding. Specifications (5) and (6) include firm and year fixed effects, but not firm-year fixed effects. Standard errors 
in parentheses (robust for (1) and (2), clustered by industry in (3) and (4), clustered by firm in (5) and (6)). 

 
 

The coefficients on Total Assets is very close to 1 as expected, whereas estimates for R&D are 2.89, 

2.98, and 2.36 for specifications without capitalized SG&A and with (respectively) no fixed effects, 

industry-year fixed effects, and firm and year fixed effects). Including capitalized SG&A, the 

estimates decrease somewhat to 2.04, 2.20, and 1.85 for the respective specifications, with the 

coefficients on capitalized SG&A picking up much of the difference. Thus, these models suggest 

that the market value of capitalized research and development expenses is between about two and 

three dollars per net dollar of investment. 

We also estimate a year-by-year regression of market value on total book assets and 

capitalized R&D with industry fixed effects. Figure 3 presents the time series of R&D coefficient 

estimates for that specification.16 The year-by-year regressions reveal substantial variation in the 

shadow value of R&D-related intangible assets, consistent with overall valuation dynamics. It is with 

                                                 
16 The full table of coefficients is available in the Online Appendix. Available: http://drock.mit.edu/Research  
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this set of values that we proceed to adjust productivity growth measurement. Figure 4 shows the 

same coefficient estimates for Total Assets, which are considerably lower in comparison (note the 

vertical scale is an order of magnitude smaller than Figure 3). 

Figure 3: R&D Market Value Year-by-Year Regression Coefficients 1962-2017 

 

Figure 4: Total Asset Market Value Regression Coefficients 1962-2017 
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 Given an estimate of the total amount of intangible correlates per unit of investment, we 

proceed to adjust the productivity level and growth estimates to include the missing intangible 

outputs and inputs using equation (16). Figure 5 shows the time series of TFP growth, both as 

measured in Fernald’s data and adjusting for unmeasured R&D-related intangibles. Figure 6 shows 

the effects in level terms, obtained by integrating the growth rates. 

The unadjusted series differs very little from the net adjusted series. The reason is that R&D 

capital investment rates have been steady over the observation period, roughly canceling out the 

countervailing influences of intangible outputs and intangible inputs. This is made clear by the 

dotted green and red lines in Figure 6, which isolate the influence of the two terms in equation (16). 

The red dotted line shows the downward adjustment to measured productivity due to the failure to 

measure intangible capital input service flows. The green dotted line reflects the nearly equal-sized 

upward adjustment to productivity due to uncounted outputs tied to intangible investment. 
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Figures 5 (top) and 6 (bottom): R&D-related Intangible Capital-adjusted Total Factor Productivity 

 

 

 
 Although the net measurement effects of R&D-related intangibles are negligible, the same is 

not true for software and computer investments. We do not have similar firm-level data on IT 

capital stocks and investment to run the market value regression in equation (18) for IT, so we apply 
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the productivity adjustment analysis under a series of plausible values for the intangible multiplier 

λ/z, guided by the Brynjolfsson, Hitt, and Yang (2002) estimate that each unit of observable 

software and computer hardware is associated with roughly $12 (standard error $4.02) of firm 

market value. 

In contrast to the adjustment for R&D-related intangibles, the Productivity J-curves for both 

software and computer hardware capital (we separately analyze each) have yet to reach positive 

territory in terms of levels. 

 Of the three capital varieties we investigate in this study, software’s J-curve is in the least 

mature stage. Software investment has been and continues to be growing faster than overall capital 

investment, and its level is sufficiently large to suggest that part of the productivity slowdown might 

be explained by a compositional shift of investment toward digital assets. Figures 7 and 8, 

analogously to Figures 5 and 6 for R&D-related intangibles, show the annualized quarterly growth 

rates and levels of measured TFP and software-intangible-adjusted TFP. The differences between 

measured and corrected estimates are starkly larger than those arising from R&D. 
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Figures 7 (top) and 8 (bottom): Software-related Intangible Capital-adjusted TFP 

 The J-curve dynamics of software investment began in the 1990s and have not waned since. 

If we assume an intangible multiplier of $10, roughly the level but somewhat lower than 

Brynjolfsson, Hitt, and Yang (2002), the net adjusted TFP level (163.9) is 18.2% higher than 

measured TFP (138.6) as of the beginning of 2017. Figure 9 shows the productivity level 

adjustments for more conservative intangible multipliers. Even for lower levels of the multiplier, the 

productivity level differences are notable and growing. 

 



 29 

Figure 9: Total Factor Productivity Levels Corrected for Different Software Intangible Multipliers 

The reason behind the growing understatement of productivity due to software-related 

intangibles is the growing rate of software investment. Aside from brief periods following the dot-

com bust and the financial crisis, investment in software has grown significantly. As a result, 

software-related intangible investment rates are not yet in steady state. As the analysis above shows, 

when the investment growth rate exceeds the growth rate of the intangible stock, productivity 

growth is understated. Since 2010, when the productivity growth mismeasurement effect was very 

nearly zero, annualized quarterly productivity growth underestimation increased to 0.86% by the end 

of 2016. The implied understatement was even larger at the end of the 1990s, where measured 

productivity was 1.6% lower than software-adjusted productivity. Figures 10 and 11 show the 

respective mismeasurements of TFP levels and growth for software-related intangible capital 

outputs (i.e., the vertical distances between the adjusted and measured series in Figures 7 and 8) 

since 1967. At least in level terms, we are still in the capital accumulation phase of a deep 

Productivity J-curve. Tables in the Online Appendix show the productivity growth adjustments for 

R&D, computer software, and computer hardware from 1967-2017.17  

 

                                                 
17 Available at http://drock.mit.edu/Research 
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Figures 10 (top) and 11 (bottom): Computer Software-related TFP Mismeasurement  
in Levels and Growth Terms (respectively) 

 

We extend our analysis to computer hardware-related intangible investment. Figures 12 and 

13 show adjusted and measured TFP growth and levels, again assuming an intangible multiplier of 

$10 for each dollar of hardware investment. Again, the divergence between measured and corrected 

TFP begins to become noticeable in the 1990s, after Solow’s famous quip. Figure 13 also shows 

where the TFP level would be without adjustment (purple), the net intangible-adjusted series (blue), 

isolating only the missing intangible inputs effect (dotted red), and isolating only the missing 

intangible outputs effect (dotted green). Figure 14 compares the adjusted series for an intangibles 

value of $10, $5, $3, $2, and $1 (unadjusted). 
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Figures 12 (top) and 13 (bottom): Computer-Hardware-Related Intangible Capital-adjusted TFP 
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Figure 14: Total Factor Productivity Levels Corrected for Different Computer Intangible Multipliers 

The quantitative patterns for hardware are different than what we found for software. First, 

the accumulated mismeasurement due to hardware-correlated intangibles is much more modest. 

Adjusted TFP at the end of 2016 is 4.4% higher than the measured series—a considerably smaller 

gap than that associated with software-related intangibles. Second, and interestingly, the recent 

slowdown in the rate of hardware investment has actually caused a small overstatement of productivity 

growth, and as a result, has started to bring the level difference back toward measured TFP. The 

reversal started following the dot-com bust, reverted as computer hardware investment rebounded 

in the following years, and then reversed again at the start of the Great Recession. Figures 15 and 16 

show the magnitudes of the deviations in TFP growth and levels between the measured and 

corrected series. In growth terms, the latter (overstatement) part of the Productivity J-curve (at least 

that component tied to hardware investment) appears to have begun, and in level terms productivity 

understatement has stabilized.18 Assuming an intangible multiplier on hardware capital of 10, the 

growth overestimate was about 0.2% in 2016. 

                                                 
18 Figure 15 is a trailing three-year average of quarterly annualized total factor productivity growth estimates. 
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Figures 15 (top) and 16 (bottom): Computer Hardware-related TFP Mismeasurement  
in Levels and Growth Terms (respectively) 

 

VII. Can Intangible Capital Outputs Explain the Productivity Slowdown? 

 We now take the above estimates of the TFP adjustments due to intangible capital related to 

R&D, software, and computer hardware to ask if the measured productivity slowdown after 2004 

(see, e.g., Gordon 2015; Summers 2015; Syverson 2017) can be accounted for by such intangibles. 

Some role seems plausible; while our calculations above imply intangibles related to software and (to 

a lesser extent) hardware started having a noticeable influence on true TFP in the 1990s, they also 
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made contributions in more recent periods. If these are larger than their earlier influence, they would 

in part explain the measured productivity slowdown. 

 The slowdown in measured annual TFP growth from 1995-2004 to 2005-2017 was 

approximately 1.23% per year.19 Had measured TFP grown since 2005 at the same rate it did from 

1995-2004, and holding labor and tangible capital inputs fixed at their observed levels, U.S. GDP at 

the end of 2017 would have been $3.46 trillion higher than it was.20 

To see if intangible capital accumulation tied to R&D, software, and computer hardware 

investments can account for any of this shortfall, we use our calculated TFP growth adjustments 

above to construct an intangible-adjusted TFP series. As discussed above, this series is substantially 

higher than the measured values in the post-slowdown period. Adjusted annual TFP growth over 

2005-2017 was 0.85%, up from the measured value of 0.40%. However, the adjusted series was also 

larger before the productivity slowdown, averaging 2.53% per year from 1995-2004, higher than the 

measured value of 1.63%. Thus the productivity slowdown also exists in the adjusted series. Indeed, 

at 1.68% per year it is larger than the measured slowdown of 1.23%.21 Of course, this analysis 

assumes that the multiplier for intangibles—the amount of intangibles associated with each dollar of 

tangible investments—is constant throughout the period. If it is higher in recent periods, 

mismeasurement would be greater in recent periods, and vice-versa.  

Note that the fact that intangibles, at least in the simplest formulation with a constant 

multiplier, do not explain the productivity slowdown (and actually somewhat deepen it) does not 

                                                 
19 We calculate this as the difference between the average quarterly TFP growth values for 1995-2004 and 2005-2017, 
respectively. We then annualize this average difference. 
20 At the end of 2017, counterfactual TFP would be 1.235 (= 1.00407^52) times its level at the end of 2004, where 
0.407% was average quarterly TFP growth over 1995-2004. Measured TFP was instead 1.052 times larger in 2017. Thus, 
assuming observed labor and capital inputs remain as observed, counterfactual GDP at the end of 2017 would be 1.174 
(= 1.235/1.052) times larger than the observed value of $19.83 trillion. The difference, $3.46 trillion, is 17.4% of $19.83 
trillion. 
21 For the adjusted series, counterfactual TFP is 1.388 (=1.00632^52) times its level at the end of 2004, where 0.632% 
was average quarterly adjusted TFP growth over 1995-2004. Measured TFP was 1.15 times larger in 2017 in adjusted 
terms.  
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imply that intangibles’ influence on productivity and GDP is small. Adjusted TFP (again holding 

observed labor and tangible capital constant) is 15.9% higher than observed at the end of 2004, and 

22% higher than observed at the end of 2017. To put it in other words, in addition to all the 

measured assets, including housing, property plant and equipment, and so on that the U.S. economy 

produced over the past several decades, it also produced trillions of dollars’ worth of unmeasured 

intangible capital. It is just that the long-lived nature of intangibles’ effects itself causes these upward 

adjustments to be differenced out when seeking to explain the slowdown.22 

   

VIII. Conclusion 
 
 Our approach has shown how accounting for intangible investments correlated with 

measurable ones can meaningfully change estimates of productivity growth and dynamics. Both 

capital inputs and capital outputs are affected by intangibles. Productivity is underestimated in cases 

where the growth rate of investment (which contributes to output) exceeds the growth rate of 

capital services (inputs), and overestimated when the investment growth rate it lower. The first of 

these effects tends to dominate early in the capital accumulation cycle, when firms and organizations 

devote resources to building unmeasured intangible capital. The second effect dominates later, when 

these unmeasured assets generate capital services that increase measured output. Finally, when the 

capital accumulation reaches steady state, there is no longer any mismeasurement. These dynamics 

generate what we call the Productivity J-curve. 

Because technological improvement often leads to the creation of new capital varieties and 

necessitates investment in intangible complements, the introduction of a new GPT often causes 

such a J-curve to occur. We show how this has been the case for IT-related capital in recent decades, 

                                                 
22 Our empirical framework can capture firm-specific intangible investments. However, if there are intangibles built at 
the industry- or economy-wide levels (perhaps by governments or other organizations that can solve free-riding 
problems), our empirics will miss them even if they create a large J-curve.. 
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for which our calculations suggest that trillions of dollars of intangibles output has been produced 

but not counted in the national income accounts. There is also some evidence that the phenomenon 

appears to have begun again, very recently, in AI-related intangible investments. 

 The mere presence of intangible correlate investment is not a guarantee of the existence of 

the Productivity J-curve. Although R&D investments are large and are associated with large 

intangibles, we find that mismeasurement related to R&D investments has a negligible effect on the 

estimation of productivity growth.23 On the other hand, computer hardware, and to a greater extent 

software, have a large effect. The difference reflects the interaction of three quantities: the 

investment share of output of the asset type, the intangible correlate quantity and adjustment costs 

per unit of observable investment, and the difference between the growth rate of investment in the 

asset and the growth rate of capital services. In the case of R&D, the investment share is large and 

the intangible multiplier is historically larger than two. But, as a mature asset type, the difference 

between the growth rate of R&D investment and the growth rate of capital is not very large. 

Software, in contrast, has a meaningfully large investment share of output, has intangible multipliers 

close to 10, and the investment growth rate in software has often exceeded the growth of capital 

services overall. 

 By integrating aspects of Q-theory of investment and traditional growth accounting 

methods, we offer a means of adjusting the productivity statistics such that new, seemingly 

omnipresent GPTs might show up in the productivity statistics. Assuming that capital markets price 

corporate securities efficiently, then market value regressions can estimate the value of intangible 

correlates and adjustment costs per unit of observable capital. The forward-looking nature of market 

valuation means that lags in capital services would rationally be considered correctly in expectation. 

Of course, these multipliers reflect a risk-adjusted discounted expected value of the accumulated 

                                                 
23 With a minor deviation present in the late 1990s and early 2000s. 
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asset stock which might to come to bear. The mismeasurement issues might accordingly be sensitive 

to differences in the timing of expected returns. Lower interest rates, for example, could encourage 

longer duration investments and therefore prolong the effects of the J-Curve. This investment 

timing component of productivity mismeasurement is left to future research. 

The J-Curve method also suggests an indicator of whether or not a new technology is indeed 

a general-purpose technology. If measures of the investment in a given new technology fail to generate 

economically significant intangibles, that particular technology at that moment in time would not 

qualify as general-purpose. Equation (17) offers a framework to use firm-level estimates of 

technological capital (e.g. AI, IT, or robotics capital) to determine if productivity growth estimation 

is need adjustment in the presence of that new capital type. This framework also might inform 

whether or not intangible capital accounts for the wide differences between frontier and median 

productivity firms (Andrews, Criscuolo, and Gal 2015). 

The Productivity J-curve explains why a productivity paradox can be both a recurrent and 

expected phenomenon when important new technologies are diffusing throughout the economy. 

Adjusting productive processes to take advantage of new types of capital requires the kind of 

investments the statistics miss. In future, after making appropriate adjustments accounting for the 

Productivity J-curve, we can see new technologies everywhere including the productivity statistics.  
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