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1 Introduction

Instrumental variables methods are widely used to address omitted variables and measurement

error problems in reduced-form models. In this paper, we show that instrumental variables can

play the same role in structural dynamic discrete choice (DDC) models, as long as the measurement

problems involve market-level state variables (also known as forcing variables), i.e., variables that

evolve exogenously from the perspective of individual agents. To that end, we define a class

of linear IV regression estimators for structural dynamic discrete choice models, which we call

Euler Equations in Conditional Choice Probabilities (ECCP) estimators. ECCP estimators are a

discrete-choice analog to the Euler equation approach for models with continuous choice variables

developed by Hall (1978), Hansen and Sargent (1980), Hansen and Sargent (1982), and Hansen

and Singleton (1982).1

Structural DDC models have proven useful in a variety of important fields – for example, in the

study of labor markets, firm dynamics, consumer demand, and environmental problems. Standard

methods for estimating DDC models require the computation of continuation value functions,

by either solving the full dynamic problem (Rust, 1987) or measuring the continuation values

by forward-solving (Hotz and Miller, 1993; Pesendorfer and Schmidt-Dengler, 2008) or forward-

simulating (Hotz et al., 1994; Bajari et al., 2007). In this context, Arcidiacono and Miller (2011)

and Aguirregabiria and Magesan (2013) represent two major departures from prior work, provid-

ing strategies for estimating model parameters without calculating continuation values, thereby

reducing the computational burden of estimating DDC models substantially. Arcidiacono and

Miller (2011) define the finite dependence property and show how it allows the econometrician to

construct conditions from an agent’s optimization problem in which the continuation values cancel

out.2 Aguirregabiria and Magesan (2013) propose a representation of the discrete choice problem

as a continuous decision problem in which the decision variables are choice probabilities. Based on

this representation, they derive first-order conditions for optimization that are expressed in terms

of choice probabilities, and that are similar to Euler equations for continuous decision problems.

We build on these methodological contributions to allow for measurement problems in market-

level state variables, including serially correlated unobserved states, endogeneity problems, and

measurement error. It is widely acknowledged that the presence of such unobservables is an

important concern in empirical applications, and that ignoring them may lead to biased estimates

and misleading inference. Empirical work exploring finite dependence in structural DDC models

that allows for such measurement problems has appeared in the recent applied literature (Scott,

1Euler equation estimators rely on agents’ behavior in adjacent time periods, drawing on restrictions that are
necessary for dynamic optimization.

2Finite dependence requires that, starting from any two different states, there exist two finite sequence of actions
that will lead to the same distribution over states. See Altug and Miller (1998) for an early application exploiting
finite dependence, and Arcidiacono and Ellickson (2011) for further discussion of the role of finite dependence in
DDC models.
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2013; Traiberman, 2018; De Groote and Verboven, 2018; Diamond et al., 2018).3 However, the

underlying class of models has yet to receive a comprehensive econometric treatment. This paper

aims to fill that gap.

To that end, we provide sufficient conditions for both parametric and nonparametric identifi-

cation of DDC model primitives. The identification arguments are constructive and lead naturally

to an estimator, the ECCP estimator. Like other conditional-choice-probability-based estimators

(Hotz and Miller, 1993; Aguirregabiria and Mira, 2002; Pesendorfer and Schmidt-Dengler, 2008),

the ECCP estimator involves two steps: first estimating conditional choice probabilities, and then

estimating parameters of the model. Unlike other CCP estimators, the second step amounts to

estimating a linear regression equation, making it easy to implement and computationally light.4

Both steps can be implemented using standard tools available in econometrics software packages

such as STATA and R. We establish the consistency and asymptotic normality of the estimator,

and we illustrate the finite-sample performance of the ECCP estimator in a Monte Carlo study of

dynamic demand for durable goods. We find that it performs well in finite samples while estimation

techniques ignoring measurement problems in state variables can be substantially biased.

To identify and estimate structural parameters, the ECCP approach exploits moment restric-

tions implied by dynamic optimization. These moment restrictions can be constructed as long

as (a) the state variables can be decomposed into agent-specific state variables and market-level

states, and (b) there is finite dependence in the agent-specific state variables. Under these con-

ditions, ECCP equations (like Euler equations in general) involve relationships between current

behavior and expected future behavior. Assuming that agents have rational expectations, the

ECCP equation with observed (rather than expected) behavior in successive time periods can

serve as a valid estimating equation. Furthermore, unobserved variables and measurement error

can be represented in ECCP equations in the same way that they are represented in standard

regression equations, and handled similarly through the use of instrumental variables.5

The ECCP approach allows researchers to deal with endogeneity problems using standard

linear instrumental variables techniques. No assumptions are needed regarding the evolution of

the unobservable shocks, except that they satisfy exclusion restrictions (i.e., they are uncorrelated

with instrumental variables). For example, cost shifters may be used as instruments for unobserved

demand shocks (De Groote and Verboven, 2018); lagged observed states form another possible

source of instruments available to researchers.

Unlike other approaches to estimating DDC models, the ECCP approach does not require a

3Scott (2013) studies how US agricultural policies affect farmers’ land use choices; De Groote and Verboven
(2018) investigate the adoption of solar photovoltaic systems for electricity production; Traiberman (2018) focuses
on workers’ occupational reallocations from trade liberalization; Diamond et al. (2018) study the welfare impacts
of rent control on tenants and landlords.

4As long as agents’ payoffs are linear-in-parameters, the resulting ECCP equation will also be linear-in-
parameters.

5The estimating equations involve CCPs in successive time periods, and so require sufficiently rich panel data
so that CCPs can be estimated separately for each cross section.
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full model of the agent’s information set. This is a significant advantage, as modeling market-levels

state variables can be both conceptually and computationally demanding in many applications. For

instance, it may be difficult for the econometrician to model the evolution of certain state variables

(e.g., when government policy is in flux as in De Groote and Verboven (2018)); observed market

states may be insufficient to capture the true extent of market heterogeneity (e.g., unobserved local

price variation as in Scott (2013)); or it may be difficult to reliably estimate how market-level state

variables evolve, as when the dimensionality of the state space is large relative to the length of the

panel data (e.g., when the state-space involves industry-level productivity shocks for a variety of

industries as in Traiberman (2018)).

While ECCP estimators avoid the need for a full model of how state variables evolve, coun-

terfactual analysis typically requires a full model to solve and simulate a counterfactual dynamic

problem. Thus, while the ECCP approach has an advantage in requiring weaker modeling as-

sumptions for estimation, it is not immediately clear whether that advantage carries through to

counterfactual analysis. In our Monte Carlo exercise, we consider a dynamic demand model with

correlation between the observed price and an unobserved demand shock. In computing long-run

demand elasticities from this model, we find that using the ECCP approach for estimation and

then imposing restrictive assumptions on unobservable shocks only for counterfactuals outperforms

an approach that imposes the same restrictive assumptions in both estimation and counterfactual

simulation.6

Related Literature. This paper relates to several important prior studies examining the identi-

fication and estimation of structural DDC models. In addition to the previously mentioned con-

tributions (which focused mostly on estimation), there exists a growing literature on identification

that builds on the seminal work of Rust (1994) and Magnac and Thesmar (2002). Arcidiacono and

Miller (2017) investigate the nonparametric identification of DDC models for both stationary and

nonstationary environments in the presence of long and short panel data, relying on single-action

finite dependence to eliminate continuation values.7 Our results build on those of Arcidiacono

and Miller (2017) by (a) allowing for endogeneity problems in market-level state variables, and

(b) showing that parametric restrictions commonly imposed in applied work allow researchers to

relax the single-action requirement and identify model parameters under general patterns of finite

dependence. Blevins (2014) shows how models with discrete and continuous choice variables can

be identified in the presence of (observed) continuous states under the conditional independence

assumption on the unobservables. Our results can be combined with those of Blevins (2014) to gen-

6Specifically, we set the unobserved demand shock at its long-run mean when calculating the long-run demand
elasticity. The unobserved demand shock has zero mean with no loss of generality, given that a non-zero mean term
is absorbed by the constant term in the linear regression.

7Single-action finite dependence requires that the same action must be chosen repeatedly finitely many times
in order to reset the distribution of the state variables. The empirical papers cited above (Scott, 2013; Traiberman,
2018; De Groote and Verboven, 2018; Diamond et al., 2018) make use of one-period finite dependence (specifically,
terminal or renewal actions), which is a special case of single-action finite dependence.
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erate an augmented set of moment restrictions that incorporates both the ECCP and the standard

Euler equations for continuous variables.

Serially correlated unobserved state variables in structural dynamic models are a widespread

problem without a standard econometric solution. Arcidiacono and Miller (2011), Hu and Shum

(2012), Blevins et al. (2017), and Berry and Compiani (2017) represent four other approaches to

estimating DDC models with unobserved state variables. Arcidiacono and Miller (2011) restrict

individual unobserved heterogeneity to have a discrete distribution that is invariant over time (see

also Kasahara and Shimotsu (2009)). Hu and Shum (2012) allow the unobserved state to follow

a Markov process, but require it to be a scalar, to have the same cardinality as the action space,

and to be realized before the realization of the observed states. Blevins et al. (2017) use particle

filtering methods to allow for an unobservable state that follows a first-order autoregressive process.

Berry and Compiani (2017) propose the use of lagged exogenous state variables as instrumental

variables and obtain partial identification of payoff function parameters in a discrete choice setting.

Whereas the ECCP approach allows for market-level unobserved heterogeneity very flexibly, these

papers allow for individual-level unobserved heterogeneity with stronger restrictions on the nature

of that heterogeneity. As such, the ECCP approach complements, and can be combined with,

these other contributions.

Models of dynamic demand is one area where dynamic discrete choice models have been esti-

mated while allowing for endogeneity concerns with market-level variables (i.e., prices being corre-

lated with market demand shocks). Existing studies impose strong functional form restrictions on

how observed and unobserved state variables evolve (Hendel and Nevo, 2006; Gowrisankaran and

Rysman, 2012; Melnikov, 2013). Such restrictions – in particular, inclusive value sufficiency – limit

the dimensionality of the state space to render the problem tractable, facilitating an estimation

approach that relies on solving agents’ dynamic problem. However, such restrictions effectively

impose that in two different states (e.g., high price with low unobserved product quality vs. low

price with high unobserved product quality), consumers must have the same expectations. The

ECCP approach avoids both the need to solve the dynamic problem and the need to specify a

restrictive process for how state variables evolve in the estimation procedure.8

Morales et al. (2015) and Dickstein and Morales (2018) pioneered the use of Euler-equation-like

estimators for DDC models using moment inequalities. The ECCP approach, like most estimation

approaches for DDC models since Rust (1987), relies on the existence of conditionally independent

individual payoff shocks with a distribution that is known ex-ante (e.g., logit). In contrast, the

moment inequalities approach allows researchers to impose less structure on payoff shocks, requiring

minimal distributional assuptions on the error term. However, the moment inequalities approach

yields only partially identified parameter estimates, and it has only been shown to be robust to

8Although the ECCP approach can accommodate finitely many unobserved types, as in Scott’s (2013) use
of Arcidiacono and Miller’s (2011) strategy, it does not, on its own, accommodate richer unobserved consumer
heterogeneity (e.g., continuously distributed random coefficients on flow utilities). We regard extensions of the
ECCP approach that incorporate richer forms of consumer heterogeneity as an important avenue for future work.

5



a limited set of endogeneity concerns (e.g., when the error terms are fixed effects that can be

differenced out; see Pakes (2010)).

The remainder of the paper is organized as follows. Section 2 describes the framework, and

introduces three applied examples (demand for durable goods, dynamic land use choice, and adop-

tion of technology). Section 3 derives the ECCP equations, and illustrates them in the context of

the applied examples. Section 4 discusses the identification results. Section 5 presents the ECCP

estimator and establishes its asymptotic properties. Section 6 presents the Monte Carlo evidence,

and Section 7 concludes. (All proofs can be found in the Appendix.)

2 Model

Time is discrete and the horizon is infinite. There are N agents operating independently in M

independent markets, such as geographical locations. Every period t, agent i in market m chooses

an action aimt ∈ A = {0, ..., A}, A <∞, with the goal of maximizing her expected discounted sum

of payoffs

E

[
∞∑
τ=0

βτΠim,t+τ |Iimt

]
,

where Πimt denotes per-period payoffs, β ∈ (0, 1) is the discount factor, and E [·|Iimt] denotes the

expectation operator conditioned on the information set Iimt available to agent i in market m at

time t.

The payoff function Πimt depends on the state variables simt = (kimt, wmt, ηmt, εimt), where

(kimt, wmt) are observed by the econometrician, while (ηmt, εimt) are not. The observed states

kimt ∈ K are “controlled”: their evolution can be affected by the agent’s actions; such states

may include a firm’s capital stock, size or type of product. The market-level observed as well

as unobserved states, wmt and ηmt, cannot be affected by the agent’s actions; such states may

include market demand variables, aggregate input prices, or the government policy environment.

We collect these market-level states into the vector ωmt = (wmt, ηmt) ∈ Ω. We assume K is

finite, as usually done in the literature, but we allow ωmt to be continuous. Neither assumption

is important and our results apply to both discrete and continuous states. Our results do not

require us to specify the dimension of ηmt, so there may be many unobserved market-level state

variables. Finally, the unobservable state εimt = (ε0imt, ..., εAimt) is i.i.d. across agents and time

with a distribution function that is absolutely continuous with respect to Lebesgue measure in

RA+1.

As usual, in each period t agents observe the state variables simt, make choices aimt, flow payoffs

are then realized, and states evolve. Agent’s information set Iimt therefore includes all current and

past state variables simt, as well as all past actions. We assume simt follows a controlled first-order
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Markov process with transition distribution function that factors as,

F (simt+1|a, simt) = F k (kimt+1|a, kimt, wmt)F ω (ωmt+1|ωmt)F ε (εimt+1) . (1)

Equation (1) limits our focus to settings with small decision makers, as opposed to dynamic games.

It says that market-level state variables are perceived as exogenous by individual agents, ruling

out settings where an individual agent’s decision can have aggregate impacts. It also rules out

settings where there are externalities acting through the agent-level state variables k, such as when

one agent’s state depends on a neighbor’s decision.

The per period payoff is given by,

Π (a, simt) = π (a, kimt, wmt) + ξ (a, kimt, ωmt) + εaimt. (2)

While it is standard practice to include additively separable idiosyncratic shocks εimt in dynamic

discrete choice models, the other unobserved term of the payoff function, ξ, deserves some dis-

cussion. The π (a, k, w) term depends on observed market-level state-variables, w, and so the

ξ (a, k, ω) term captures the impact of unobserved market-level state variables on the flow payoff.

Thus, ξ may reflect mis-measured profits or unobservable costs. It is important to stress that ξ

is a function of state variables, and it need not be a state variable itself. That is, the value of ξ

at time t may not be a sufficient statistic for the distribution of future values of ξ at time t + 1.

In the background, there are some (potentially) more informative state variables ω that agents

use to form their expectations about the future. Consequently, ξ need not evolve according to a

first-order Markov process, while ω does.

In addition, π and ξ may be correlated because they may depend on the same state variables

w, or because w and η may not be independent to each other. These are reasons to consider

the use of instrumental variables to identify and estimate the model. Finally, note that ξ may

accommodate measurement errors in π. Without loss of generality, we assume that ξ is mean zero,

and, to simplify notation, define

π ≡ π + ξ.

Next, we introduce three applied examples to illustrate what the ξ term can capture in practice,

and we preview the advantages of the ECCP approach in the context of each example.

Example 1: Durable Demand. In our Monte Carlo study, we consider a model of dynamic

demand for a durable good. Each period, a consumer chooses whether or not to purchase the good,

in turn discarding the old version of the good if she already owns a unit. The state variable that

a consumer controls is a dummy variable indicating whether or not she owns the good. When the

consumer owns the good, there is a chance of product failure, leaving the consumer without the

product in the subsequent period.

We consider two exogenous state variables: an observable price, and an unobservable quality
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shock captured by ξ. Other approaches to estimating dynamic demand systems (e.g. Hendel and

Nevo (2006); Gowrisankaran and Rysman (2012)) rely on solving a consumer’s dynamic problem

and imposing strong functional form restrictions on how observed and unobserved state variables

evolve. Such restrictions – the so-called “inclusive value sufficiency” – limit the dimensionality

of the state space to render the problem tractable. However, they effectively impose that in two

different states (e.g., high price with low quality vs. low price with high quality), consumers must

have the same expectations. The ECCP approach avoids both the need to solve the dynamic

problem and the need to specify a restrictive process for how state variables evolve.

Example 2: Land Use Change. Scott (2013) adopts this framework to model farmers’ land use

choices. In each period, each farmer chooses whether to plant crops or not. The farmer’s controlled

state variable is the number of years since the field was last in crops (reflecting the condition of the

plot). The farmer’s payoff consists of returns from the chosen land use and involve both observed

(e.g. crop prices and yields) and unobserved revenues and costs – for example, expected returns

may be calculated based on input and output prices, but price data may only be available at a

regional level, leading to measurement error in returns coming from the unobserved local price

variation. The ξ term captures this measurement error in expected returns.

Measurement error can plausibly render ξ serially correlated. High-priced localities in one year

are likely to be high-priced localities the next year. The ECCP approach can be implemented in

the presence of such serially correlated unobserved local price variation.

Furthermore, in the context of agricultural markets, it is difficult to model the evolution of

observed market-level state variables, given the large set of variables that can influence farmers’

expected returns (e.g., technological conditions, uncertain government policies, crop stocks, etc.).9

As previously mentioned, the ECCP approach does not require specifying what all the relevant

market-level state variables are in the decision making process, nor specifying (and estimating)

how all such variables evolve.

Example 3: Technology Adoption. De Groote and Verboven (2018) study the adoption of

renewable energy technologies for electricity production: the solar photovoltaic (PV) systems. In

every period, a household may either choose to not adopt a PV, or it may choose to adopt one

of several available PV alternatives. The adoption decision is a terminating state; not adopting

provides the option of waiting for decreased prices or increased adoption subsidies. In this context,

the ξ term captures unobserved quality shocks (or it could be interpreted as unobserved adop-

tion cost shocks). These quality shocks could be correlated with price, and the ECCP makes it

straightforward for De Groote and Verboven to instrument for price using cost shifters.

Given that the adoption subsidies are large (and that their levels change substantially over

time), government policy is an important observable state variable. The ECCP approach allows for

9For example, see Wright (2014) for a discussion of how traditional models of competitive storage fail to explain
recent grain price movements. Wright argues that changes in government policy are crucial in explaining recent
grain market behavior.
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the estimation of the dynamic model without requiring an explicit specification of the law of motion

for government policy. Traditional approaches would either assume that changes in government

policy are either fully anticipated or complete surprises (Kalouptsidi, 2018); the ECCP approach

only requires an assumption that agents have rational expectations about such changes.

2.1 Value Functions and Choice Probabilities

Let V (simt) be the value function of the dynamic programming problem, i.e., the expected dis-

counted stream of payoffs under optimal behavior. By Bellman’s principle of optimality,

V (simt) = max
a∈A
{Π (a, simt) + βE [V (simt+1) |a, simt]} .

Following the literature, we define the ex ante value function:

V (kimt, ωmt) ≡
∫
V (kimt, ωmt, εimt) dF

ε (εimt) ,

and the conditional value function:

va (kimt, ωmt) = π (a, kimt, ωmt) + βE [V (kimt+1, ωmt+1) |a, kimt, ωmt] . (3)

The agent’s optimal policy is given by the conditional choice probabilities (CCPs):

pa (k, ω) =

∫
1 {va (k, ω) + εa ≥ vj (k, ω) + εj, for all j ∈ A} dF ε (ε) , (4)

where 1 {·} is the indicator function. Define the (A+ 1)×1 vector of conditional choice probabilities

p (k, ω) = {pa (k, ω) : a ∈ A}.10

Finally, it is worth noting that for any (a, k, ω), there exists a real-valued function ψa (.) derived

only from F ε that satisfies the following equality (Arcidiacono and Miller (2011, Lemma 1)):

V (k, ω)− va (k, ω) = ψa (p (k, ω)) . (5)

When εimt follows the type 1 extreme value distribution, then ψa (p (k, ω)) = γ− ln pa (k, ω), where

γ is the Euler constant.11

10Choice probabilities are invariant to scale normalizations; here we normalize the scale parameter to one. I.e.,
we take Πa = πa + ξa + σεa, with σ = 1.

11The Arcidiacono-Miller Lemma can be derived from the Hotz-Miller inversion (Proposition 1 of Hotz and Miller
(1993)). Chiong et al. (2016) propose a novel approach that can calculate ψa for a broad set of distributions F ε.
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3 ECCP Equations

Assume the available data set is {yimt = (aimt, kimt, wmt, zmt) : i = 1, ..., N ;m = 1, ...,M ; t =

1, ..., T}, where the vector zmt consists of instrumental variables, as explained below. For our

identification arguments (presented in Section 4), we assume the joint distribution of yimt, Pr (y),

is known.

Even though the market state ωmt is not fully observed, the conditional choice probabilities

pa (k, ωmt) for a particular market m and time period t can be estimated given a sufficiently rich

cross section of agents within market m. That is, if we observe many agents with each value of the

individual state within each market and time period, then pa (k, ωmt) can be estimated using a sim-

ple frequency estimator. The law of motion for the agent-controlled states, F k (kimt+1|a, kimt, wmt),
can also be estimated using a simple frequency estimator (when it is not known in advance). For

our identification results, we treat pa (.) and F k (.) as known objects.12 In contrast, the law of

motion for market-level states F ω (ωmt+1|ωmt) cannot be estimated without strong assumptions.

(As state ωmt is not fully observed, F ω cannot be estimated directly from the data.) Following

the literature, we assume that the discount factor β and the distribution of idiosyncratic shocks

F ε are known (which implies ψa (.), for all a, are known as well).

The objective is to identify the per-period payoff function π. It is well-known that the standard

dynamic discrete choice model, in which ω = w and ξ = 0, so that there are no unobserved states,

is nonparametrically not identified (Rust, 1994; Magnac and Thesmar, 2002). Indeed, intuitively,

π has (A+ 1)S parameters (where S is the size of the state space), while there are only AS

independent CCPs (given that the CCP’s have to add up to unity conditional on each state).

Thus, there are S free payoff parameters and S restrictions will need to be imposed. Although

there are several ways to do so, restrictions that suffice to identify the model parameters are all

equivalent to pre-specifying the payoff for some reference action J in all states (for a detailed

discussion see Kalouptsidi et al. (2017)).

Since the model here is more general that the standard model without unobserved states, we

need to impose such restrictions for identification. In addition, we assume rational expectations,

finite dependence, and valid instruments, which we discuss in detail next.

Assumption 1. (Rational expectations) Agent’s expectations conditional on the information set

Iimt correspond to the conditional expectations of the true data generating process given Iimt.

Rational expectations is a common assumption in the literature. However, in contrast to the

standard procedure (Rust, 1987; Aguirregabiria and Mira, 2002), we make use of realized values

of agents’ future expected payoffs as a noisy measure of agents’ expected future payoffs. The

use of realized values allows us to relax typical assumptions about how agents form beliefs about

12See Appendix A.3 for a formal justification. In practice, some smoothing across markets or individual states
may be needed.
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the evolution of the state variables. To that end, we rely on expectational errors (also known as

forecast errors), defined as follows:

Definition 1. (Expectational error) For any function h (k, ω) and particular realization ω∗ ∈ Ω,

eh (k′, ω, ω∗) ≡ Eω′|ω [h (k′, ω′) |ω]− h (k′, ω∗) ,

eh (a, k, ω, ω∗) ≡
∑
k′

eh (k′, ω, ω∗)F k (k′|a, k, w) ,

where k′ and ω′ denote next period values for k and ω.

The expectational error eh (k′, ω, ω∗) is the prediction error of h (k′, ω′) for a particular realized

value of the individual state k′; and eh (a, k, ω, ω∗) is the corresponding prediction error conditioned

on k, w, and a, integrating over the realizations of the individual state k′. An important property

of the expectational error (and that we make use of later on) is that it is mean independent of

variables that belong to the agent’s information set.13

Lemma 1. Suppose Assumption 1 holds. Then,

(i) For any action a and individual state k, the expectational error term eh
(
a, k, ωmt, ω

∗
mt+1

)
is

mean zero given the information set available to the agent: E
[
eh
(
a, k, ωmt, ω

∗
mt+1

)
|Iimt

]
= 0.

(ii) For zmt ∈ Iimt, E[eh
(
a, k, ωmt, ω

∗
mt+1

)
|zmt] = 0, for all a and k.

(iii) Expectational errors are serially uncorrelated.

Expectational errors are useful as they allow us to “dispose” of the actual expectations. Indeed,

combining the conditional value function (3) with the Arcidiacono-Miller Lemma (5), we obtain:

π (a, kimt, ωmt) = V (kimt, ωmt)− βE [V (kimt+1, ωmt+1) |a, kimt, ωmt]− ψa (kimt, ωmt) , (6)

where ψa (k, ω) is a short-cut notation for ψa (p (k, ω)). Next, note that the expectation

E [V (kimt+1, ωmt+1) |a, kimt, ωmt] is given by:

∑
k′

∫
ω′
V (k′, ω′) dF ω (ω′|ωmt)F k (k′|a, kimt, wmt)

=
∑
k′

(
Eω′|ωmt [V (k′, ω′) |ωmt]

)
F k (k′|a, kimt, wmt)

=
∑
k′

V (k′, ωmt+1)F k (k′|a, kimt, wmt) + eV (a, kimt, ωmt, ωmt+1) , (7)

where eV (·) is the expectational error of the value function V (·). Substituting (7) in (6), we obtain

13In models in which agents have perfect foresight, there is no prediction error and so eh (·) = 0. In contrast,
when agents have biased beliefs, their conditional expectations do not necessarily coincide with the true (data
generating) conditional expectations, which implies E

[
eh
(
a, kimt, ωmt, ω

∗
mt+1

)
|Iimt

]
6= 0 .
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the following equation, which is the basis for our identification results:

π (a, kimt, ωmt) + βeV (a, kimt, ωmt, ωmt+1)

= V (kimt, ωmt)− β
∑
k′

V (k′, ωmt+1)F k (k′|a, kimt, wmt)− ψa (kimt, ωmt) . (8)

Next, we simplify the notation and use (m, t) subscripts to denote functions that depend on

ωmt. We rewrite payoffs as πmt (a, kimt) ≡ π (a, kimt, ωmt), while πamt, ξamt , Vmt (kimt), pamt (kimt)

and ψamt (kimt) are similarly defined. We also make use of matrix notation, so that πamt is a K×1

vector that stacks πmt (a, kimt) for all k ∈ K (and similarly for the vectors Vmt, pamt and ψamt).

Therefore, (8) in matrix form becomes:

πamt + βeVam,t,t+1 = Vmt − βF k
amtVmt+1 − ψamt (9)

for all a, where eVam,t,t+1 stacks eVmt,t+1 (a, k) ≡ eV (a, kimt, ωmt, ωmt+1) for all k ∈ K, and F k
amt

is the K × K transition matrix for market m at time period t with (n, l) element equal to

Pr (kimt+1 = kl|a, kimt = kn, wmt).

Note that the time-t value function term, Vmt, can be removed by simply differencing equation

(9) across two different actions, a and j:

ψjmt − ψamt = πamt − πjmt + β
(
eVam,t,t+1 − eVjm,t,t+1

)
− β

(
F k
jmt − F k

amt

)
Vmt+1. (10)

Finally, separating payoffs into the observable and unobservable components:

ψjmt − ψamt = πamt − πjmt + ξamt − ξjmt + β
(
eVam,t,t+1 − eVjm,t,t+1

)
− β

(
F k
jmt − F k

amt

)
Vmt+1. (11)

Equation (11) is one step away from being a regression equation. Indeed, in a static model

(i.e., β = 0), equation (11) simplifies further to ψjmt−ψamt = πamt−πjmt+ξamt−ξjmt. On the left

hand side we have an observed dependent variable; in the logit model, ψjmt − ψamt = ln
(
pamt
pjmt

)
.

The right-hand side includes the payoff functions π, and the unobservables ξ. If the payoffs for

one reference action were known or pre-specified (e.g., set πjmt = 0, which is common practice),

then πamt can be estimated using standard methods for regression models. When the ξmt terms

are correlated with wmt (which is an argument of πamt), then we need instruments for wmt. In this

case, we can estimate the model parameters using standard instrumental variables estimators.

Thus, the remaining term to be dealt with before (11) can be used for identification and

estimation of a dynamic model are the time-(t + 1) value function terms. As we show below,

these terms can be eliminated using applications of the Arcidiacono-Miller Lemma, as long as the
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transition process F k satisfies the finite dependence property.14

Definition 2. (Finite Dependence) A pair of choices a and j satisfies τ -period finite dependence

if there exists two sequences of actions (a, a1, . . . , aτ ) and (j, j1, . . . , jτ ) such that, for all t,

F k
amtF

k
a1mt+1 . . . F

k
aτmt+τ = F k

jmtF
k
j1mt+1 . . . F

k
jτ t+τ . (12)

We say that τ -period finite dependence holds for the model if all pairs of actions satisfy τ -period

finite dependence.

Specifically, the τ -period finite dependence property holds if, starting from any two distribu-

tions of individual states at the beginning of time period t, there are sequences of actions (not

necessarily optimal) that result in the same distribution of state variables at t+ τ .15 Single-action

τ -period finite dependence is a special case that requires the sequences of actions to be of the type

(a, J, . . . , J) and (j, J, . . . , J), for any actions a and j, and some action J .

Common special cases of one-period dependence are renewal and terminal actions. Action J is

a renewal action if, taking action J in period t + 1 leads to the same distribution of states at the

beginning of time period t+2, regardless of which state the agent was in during period t. Examples

of renewal actions are replacing the bus engine (Rust, 1987), planting crops (Scott, 2013), choosing

occupations (Traiberman, 2018), and migration decisions (Diamond et al., 2018). A terminal action

ends the decision making process. Examples of terminal actions include a worker retiring (Rust

and Phelan, 1997), a mortgage owner defaulting (Bajari et al., 2016), and a household adopting a

PV system (De Groote and Verboven, 2018). For both renewal and terminal actions, (12) simplifies

to

F k
amtF

k
Jmt+1 = F k

jmtF
k
Jmt+1. (13)

for all t and all a, j.

Other models require more than one period to eliminate dependence in state variables. Altug

and Miller (1998) consider female labor supply with human capital appreciation and depreciation

(in which full depreciation of human capital occurs if a woman stays out of the workforce for

τ periods). Bishop (2008) considers a model of migration with relocation costs that depend on

whether the household previously lived in the same region they move to.

ECCP estimation with one-period finite dependence. For the sake of exposition, we

first focus on deriving a ECCP regression equation with one-period finite dependence (i.e., for

14See Arcidiacono and Ellickson (2011) for further discussion of finite dependence. Note that we make use
of deterministic sequences of actions in Definition 2, while Arcidiacono and Miller (2011) allows for stochastic
sequences. Our parametric identification result can be extended to incorporate stochastic sequences.

15The terms in the sequences (a, a1, . . . , aτ ) and (j, j1, . . . , jτ ) depend on the particular initial pair of actions
(a, j) chosen; for ease of exposition, we do not incorporate this dependence on the initial pairs into our notation.
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models with renewal and terminal actions). In Section 4, we show that the ECCP approach

extends to models with τ -period finite dependence.

Let J be a renewal or terminal action, and take two sequences (a, J) and (j, J), for any actions

a and j. If we recursively substitute Vmt+1, in equation (11), we obtain

ψjmt − ψamt = πamt − πjmt + ξamt − ξjmt + β
(
eVam,t,t+1 − eVjm,t,t+1

)
(14)

− β
(
F k
jmt − F k

amt

)
(πJmt+1 + ξJmt+1 + ψJmt+1) .

because the Vt+2 portions of the value function cancel conditional on action J being chosen in

period t+ 1.16

One can view (14) as an Euler equation. Traditionally, Euler equations express intertemporal

first-order conditions implied by optimal dynamic behavior. While equation (14) is derived di-

rectly from optimality conditions, and while the condition relates choice probabilities in different

time periods, it is not immediately obvious that it can be viewed as a first-order condition. How-

ever, following Aguirregabiria and Magesan (2013), if we treat the choice probabilities as choice

variables themselves, we could derive equation (14) as a first-order condition, formalizing the anal-

ogy between (14) and traditional Euler equations for dynamic problems with continuous choice

variables.17

Rearranging (14) we obtain

ψjmt − ψamt + β
(
F k
jmt − F k

amt

)
ψJmt+1 = πamt − πjmt − β

(
F k
jmt − F k

amt

)
πJmt+1 + uajmt, (15)

where the unobservable term is uajmt = ξ̃ajmt + ẽVajmt, with

ξ̃ajmt = (ξamt − ξjmt) + β(F k
amt − F k

jmt)ξJmt+1, (16)

ẽVajmt = β(eVam,t,t+1 − eVjm,t,t+1). (17)

The Euler equation (15) can be used to construct moment restrictions that are well-suited

for identification and estimation of the payoff function π. More simply, we can treat it as a

(nonparametric) regression model, where the right-hand-side contains the parameters of interest

π and the unobservables u, while the left-hand-side contains the endogenous observed variables.

Next, we return to each of our applied examples, illustrating the regression equations from the

ECCP equation (15) in each context. For the first example, we also outline the steps involved in

16Formally, use (9) for J in t+ 1 to solve for Vmt+1 and replace the latter in (9) for any a in t:

πamt + βeVam,t,t+1 = Vmt − ψamt
−βF kamt

[
πJmt+1 + βF kJmt+1Et+1 [Vmt+2] + ψJmt+1

]
.

Next, evaluate the above at a and j and subtract to obtain (14) using property (13).
17Aguirregabiria and Magesan (2013) do not allow for unobserved state variables as we do, but their approach

to deriving Euler equations by treating choice probabilities as choice variables could be applied in our setting.
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the derivation of the ECCP equation, for the derivation for the special case is considerably simpler

than the general derivation above.

Example 1 (continued): Dynamic Demand. Each period t, consumer i in market m decides

whether or not to purchase a unit of a durable good at price wmt. The choice set is A = {b, nb},
where b means buying the good, and nb means not buying the good.

Consumer i controls state kimt ∈ {0, 1} where kimt = 0 if the consumer does not have a unit of

the good at the beginning of time period t, and kimt = 1 when she already owns it. If consumer

i chooses not to buy a new unit of the good (aimt = nb) when she already owns it (kimt = 1),

then there is probability φ of product failure, resulting in kimt+1 = 0. Formally, state k evolves as

follows:

Pr (kimt+1 = 1|kimt, aimt, wmt) =


1 if aimt = b

0 if aimt = nb, kimt = 0

1− φ if aimt = nb, kimt = 1.

Note that action aimt = b is a renewal action.

There is one observed exogenous state variable, the price wmt, and one unobserved exogenous

state, a quality shock ξmt.
18 The consumer enjoys the following flow utility if purchasing the

product:

π (b, kimt, ωmt) = θ0 + θ1wmt + ξmt,

where θ1 < 0 so that demand slopes down. When not purchasing the product, the consumer enjoys

utility

π (nb, kimt, ωmt) =

θ0 if kimt = 1

0 if kimt = 0.

Notice that the θ0 term appears in the utility function when the good is being consumed, either

through purchase or because the consumer already owns the good. θ0 can be interpreted as the

flow value of consumption. Since the demand shock ξ enters into consumption only conditional

on purchase, we can interpret it as a quality shock that the consumer only cares about when the

product is newly purchased, such as the quality of the in-store experience or some non-durable

services associated with the durable good.

As an illustration, we derive the Euler equation (14) and corresponding regression in the context

of this model. Assume logit errors. Starting with the Arcidiacono-Miller Lemma (5), we have the

following relationship between choice probabilities and conditional value functions:

ln

(
pb (kimt, ωmt)

pnb (kimt, ωmt)

)
= vb (kimt, ωmt)− vnb (kimt, ωmt) .

18Formally, we can define ηmt as the unobserved quality of the product (the state variable), while the function
ξ(a, k, ωmt) equals ηmt when a = b, and equals zero when a = nb.

15



In estimating this model, it suffices to focus on kimt = 0. Notice that when kimt = 0 (when the

agent does not own a unit of a good), the state variable kimt is a deterministic function of aimt.

(This simplifies the derivation of the Euler equation substantially.) We expand the conditional

value function given kimt = 0, and introduce expectational errors, as follows:

ln

(
pb (0, ωmt)

pnb (0, ωmt)

)
= θ0 + θ1wmt + ξmt + β (V (1, ωmt+1)− V (0, ωmt+1))

+β
(
eV (1, ωmt, ωmt+1)− eV (0, ωmt, ωmt+1)

)
. (18)

We now exploit the fact that purchasing the good is a renewal action, resulting in the state

k′ = 1 regardless of what the initial state k is. As a result, when we substitute for V (1, ωmt+1)

and V (0, ωmt+1) in equation (18) using the Arcidacono-Miller Lemma (5), the time-(t+ 2) value

functions cancel, leaving

ln

(
pb (0, ωmt)

pnb (0, ωmt)

)
= θ0 + θ1wmt + ξmt + β [− ln pb (1, ωmt+1) + ln pb (0, ωmt+1)]

+β
(
eV (1, ωmt, ωmt+1)− eV (0, ωmt, ωmt+1)

)
. (19)

Equation (19) is the Euler equation for this model, and we can construct a regression equation by

rearranging it to have all the choice probabilities on the left-hand side:

Ymt = θ0 + θ1wmt + umt, (20)

where

Ymt = ln

(
pb (0, ωmt)

pnb (0, ωmt)

)
+ β ln

(
pb (1, ωmt+1)

pb (0, ωmt+1)

)
, (21)

and

umt = ξmt + β
(
eV (1, ωmt, ωmt+1)− eV (0, ωmt, ωmt+1)

)
. (22)

Given an instrumental variable that is correlated with the price wmt but not with the error

term umt, we can estimate equation (20) using a linear instrumental variables regression.

Example 2 (continued): Land Use Change. Scott (2013) assumes that in every period t,

farmer i in county m chooses whether to plant crops or not, A = {crops, other}. The state

kimt ∈ {0, 1, . . . , K} equals the number of years since the field was last in crops, up to some limit

K. This field state reflects vegetal cover and the state of the terrain. Formally, k′ (a, k) = 0 if

a = crops, and k′ (a, k) = min {k + 1, K} if a = other. Note that crops is a renewal action. The

farmer’s payoff consists of expected returns from the chosen land use and involve both observed

(e.g. crop prices and yields), represented by R, and unobserved returns and costs, represented by
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ξ. The payoff function can be written

π (a, k, ωmt) = θ0 (a, k) + θ1R (a, wmt) + ξmt (a, k) ,

where θ0 are switching costs parameters. Assuming logit errors, equation (15) can be rewritten for

each k as

Ymt (k) = θ̃0 (k) + θ1 [R (crops, wmt)−R (other, wmt)] + umt,

where
Ymt (k) = ln

(
pcrops,mt(k)

pother,mt(k)

)
+ β ln

(
pcrops,mt+1(0)

pcrops,mt+1(k′(other,k))

)
,

θ̃0 (k) = θ0 (crops, k)− θ0 (other, k)

+β (θ0 (crops, 0)− θ0 (crops, k′ (other, k))) ,

umt = ξmt (crops, k)− ξmt (other, k)

+β (ξmt+1 (crops, 0)− ξmt+1 (crops, k′ (other, k)))

+β
(
eVm,t,t+1 (0)− eVm,t,t+1 (k′ (other, k))

)
.

Again, given estimates of CCPs, one can construct Ymt (k) and estimate θ̃0 (k) and θ1 using

linear IV regressions. Under the assumption that θ0 (other, k) = 0 for all k, we can recover the

switching costs parameters θ0 (crops, k) from the regression equation intercepts θ̃0 (k).

Example 3 (continued): Technology Adoption. In every period t, a household i in region

m may either choose to not adopt a photovoltaic system, a = 0, or it may choose to adopt one of

the available PV alternatives, so that A = {0, 1, ..., A}. The adoption decision (a > 0) leads to a

terminal state; not adopting provides the option of waiting for when the prices may have decreased

or when the subsidies for adoption (or the quality) may have increased. Each alternative a 6= 0 is

characterized by observable attributes wamt (including capacity sizes, upfront investment prices,

electricity cost savings, benefits from subsidies for adoption), and by the unobserved quality (which

can be captured by ξ). The vector of observed state variables is given by wmt = (w1mt, . . . , wAmt).

De Groote and Verboven (2018) assume the state kimt is a dummy variable equal to zero if no

solar panel has been installed, and equal to the type of solar panel installed (i.e., the corresponding

action in A) if one is already installed. The household no longer makes a PV adoption decision

when kimt ≥ 1.

De Groote and Verboven assume logit errors and specify a linear-in-parameters flow payoff.

Specifically, if no PV has been adopted at t (i.e., kimt = 0), the payoff from adopting option a 6= 0

is

π (a, 0, ωmt) = wamtθ + ξamt,

and the payoff of the outside option is set to zero: π (0, k, ωmt) = 0 for all k and ωmt.
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Given that all actions a > 0 are terminal, (15) can be established for any a given k = 0. Here

we take j = 0 and use J = 1 as the terminal action in period t+ 1 to obtain for any a ≥ 2,

Yamt = (wamt − βw1mt+1) θ + ua0mt,

where
Yamt = ln

(
pamt(0)
p0mt(0)

)
− β ln p1mt+1 (0) ,

ua0mt = ξamt − βξ1mt+1 + β
(
eVm,t,t+1 (a)− eVm,t,t+1 (0)

)
,

noting that there is no time-t+ 1 choice probability term corresponding to kimt+1 = a because no

decision is made once a PV system has been installed; i.e., p1mt+1 (k) = 0 for k ≥ 1.19

As usual, prices may correlate with unobserved quality ξamt (which are part of the error term

ua0mt); one needs therefore to instrument for prices to estimate the model parameters. De Groote

and Verboven use the prices of Chinese modules as instruments, arguing that these prices are

plausibly exogenous to demand shocks in the Belgian market (and therefore a valid instrument)

and that the modules are an important component of solar PV installation costs (therefore, making

module prices a strong instrument).

4 Identification

We now discuss the identification of the payoff function π under more general forms of finite

dependence. As the above examples demonstrate finite dependence allows us to cancel continuation

values and construct valid estimating equations while allowing for unobservable market-level states

(and measurement errors) without having to specify how those states evolve exactly.

Take two sequences of actions (a, a1, . . . , aτ ) and (j, j1, . . . , jτ ) satisfying τ -period finite de-

pendence (see Definition 2).20 Extending equation (15) to τ -period dependence, we obtain the

19In deriving the regression equation with terminal actions, it is convenient to assume that the idiosyncratic
errors have a mean-zero distribution, e.g., the standard type-1 extreme value distribution demeaned by Euler’s
constant. As a result, the expected flow payoffs in the terminal state do not depend on whether or not the agent
still receives an idiosyncratic shock in that state.

20Recall that the sequences depend on the particular initial pair of actions (a, j) chosen. That is, we use ad to
denote the d−th action following the initial action a when the alternative initial action is j. Note that we must
assume access to a panel data with T > τ .
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following equation (see Appendix A.1 for a detailed derivation):

ψjmt − ψamt + F k
jmt

τ∑
d=1

βdΛjmtd ψjdmt+d − F k
amt

τ∑
d=1

βdΛamtd ψadmt+d

= πamt − πjmt + F k
amt

τ∑
d=1

βdΛamtd πadmt+d − F k
jmt

τ∑
d=1

βdΛjmtd πjdmt+d

+ uajmt (23)

where the K ×K matrix Λamtd is observed (estimable), and is defined recursively

Λamtd = I, for d = 1,

Λamtd = Λamt,d−1 F
k
admt+d

, for d ≥ 2,

and the unobservable term is now uajmt = ξ̃ajmt + ẽVajmt, with

ξ̃ajmt = ξamt + F k
amt

τ∑
d=1

βdΛamtd ξadmt+d

− ξjmt − F k
jmt

τ∑
d=1

βdΛjmtd ξjdmt+d, (24)

ẽVajmt = βeVam,t,t+1 + F k
amt

τ∑
d=1

βd+1Λamtd e
V
ad,m,t+d,t+d+1

− βeVjm,t,t+1 − F k
jmt

τ∑
d=1

βd+1Λjmtd e
V
jd,m,t+d,t+d+1. (25)

As discussed in the context of the applied examples, to identify and estimate the model pa-

rameters based on the regression equation (23), it is key to access valid and relevant instrumental

variables. We therefore assume the researcher has access to such instruments.

Assumption 2. (Instrumental Variables) There exist instruments zmt such that:

(i) For all functions q (wmt) with finite expectation, if E [q (wmt) |zmt] = 0 almost surely, then

q (wmt) = 0 almost surely,

(ii) E[ξ̃ajmt|zmt] = 0, for all a and j, and

(iii) E[ẽVajmt|zmt] = 0, for all a and j.

Assumption 2.(i) is the well-known “completeness condition,” which is the nonparametric ana-

log of the standard rank condition for linear models (Newey and Powell, 2003). Assumptions 2.(ii)

and 2.(iii) are usual exclusion restrictions, requiring mean independence between the instruments

and both the structural errors ξ and the expectational errors eV . Recall that Lemma 1 shows that,
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when agents have rational expectations, and when instruments belong to agents’ information set,

expectational errors eV are mean independent of zmt, which implies Assumption 2.(iii).21

We now turn to our main identification results.

Proposition 1. Suppose (β, F ε) are known and Assumption 2 holds. Assume that, for all pair

of actions a and j, the single-action τ -period finite dependence property holds for action J . As-

sume also that the payoff π (J, k, w) is known for all (k, w). Then, given the joint distribution of

observables Pr (y), where yimt = (aimt, kimt, wmt, zmt), the flow payoff π (a, k, w) is identified for all

(a, k, w).

The primitive of interest π is nonparametrically identified provided that the flow payoff of action

J is known and that single-action finite dependence holds for that same action J . Arcidiacono

and Miller (2017) have obtained identification results under similar conditions for nonstationary

models with short panels (but with no endogeneity problems).

In general, DDC models require restrictions on the payoff function for identification (Rust,

1994; Magnac and Thesmar, 2002). In the literature, identification typically relies on a restriction

of the form π (J, s) = 0 for all states s and an arbitrary action J .22 Proposition 1, however, requires

such a restriction on a specific action J ; this is an unusually strong requirement in the dynamic

discrete choice literature. For instance, in a setting with a renewal or terminal action, Proposition

1 requires that the renewal or terminal action’s payoffs to be known (i.e., restricted ex-ante). The

applied examples presented above do not impose this restriction on payoffs. This means that, while

sufficient for identification, assuming π (J, k, w) is known for the specific action J is not necessary

for identification.

Similarly, while single-action finite dependence is part of the sufficient conditions for identifi-

cation, it is not necessary. The next proposition shows that, at the cost of imposing parametric

restrictions on payoffs, identification can be obtained under more general notion of finite depen-

dence, and it does not require the payoff of a specific action J to be known. There exists therefore

a clear trade-off between the identification of parametric and nonparametric models in the present

context.

Proposition 2. Suppose (β, F ε) are known and that τ -period finite dependence holds. Assume

a linear-in-parameters flow payoff: π (a, k, w) = x (a, k, w) θ, where θ ∈ RP , and x (a, k, w) is

a known function. Let Xamt be a K × P matrix with elements given by x (a, k, wmt), so that

21Strictly speaking, Lemma 1 implies that E[eVajmt|zmt] = 0 while condition (iii) of Assumption 2 requires

E
[
ẽVajmt|zmt

]
= 0, where ẽVajmtincludes eVajmt as well as potentially eVajm,t+d terms with d ≥ 1. As discussed

in the proof of Lemma 1, an instrument zmt in the time-t information set will also be uncorrelated with future
expectational error terms.

22Such identifying restrictions matter for some, but not all counterfactuals; see Aguirregabiria (2010), Norets
and Tang (2014), Arcidiacono and Miller (2017), and Kalouptsidi et al. (2017) for more details.
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πamt = Xamtθ, and define

X̃ajmt ≡ Xamt + F k
amt

τ∑
d=1

βdΛamtd Xadmt+d

−Xjmt − F k
jmt

τ∑
d=1

βdΛjmtd Xjdmt+d. (26)

Denote the K × 1 vector on the left hand side of (23) by Yajmt. Stack equation (23) for all feasible

combinations of actions (a, j) ∈ A to obtain the following equation

Ymt = X̃mtθ + umt, (27)

where Ymt, X̃mt, and umt stack the vectors Yajmt, X̃ajmt and uajmt, respectively. Let Zmt be an

L × K matrix of instrumental variables with L ≥ P . The parameter θ is identified provided

E [Zmtumt] = 0 and rank(E[ZmtX̃mt]) = P .

While Proposition 2 does not require the payoff parameters of a particular action to be known,

the rank condition rank(E[ZmtX̃mt]) = P still implicitly limits the number of parameters than

can be identified (see, e.g., the dynamic land use change model discussed in Example 2). However,

the condition is straightforward to check for a given data set and parametric specification.

We now discuss the two components of the residual, umt = ξ̃mt+ ẽ
V
mt, in turn. We start with the

expectational error term, ẽVmt. As previously mentioned, when the instruments belong to the agent’s

contemporaneous information set, and when agents have rational expectations, the instruments

are uncorrelated with ẽVmt. Yet, it is important to note that, while the expectational error terms

are mean-zero given Iimt, there is a distinction between the way eV averages out in cross-sectional

dimension M and the way it averages out in the time-series dimension T . For instance, if in a

given time period t, a macro shock affects all agents in all markets, then the prediction errors eV

do not average out to zero asymptotically when M → ∞. For this averaging out to happen as

the cross-section becomes large, we do indeed need to make a substantive assumption about the

correlation across markets. Such type of assumption may be appropriate for some applications,

but it may not be appropriate when, for example, markets are geographically defined and state

variables include prices whose movements over time are strongly correlated around the world (e.g.,

transportable commodities).

In contrast, in a large-T setting, asymptotic convergence of eV terms does not require a sub-

stantive assumption about how markets are correlated. Instead, rational expectations guarantees

that expectational error terms are serially uncorrelated (see Lemma 1). Intuitively, when T →∞,

macro shocks wash out in the limit. We investigate this possibility in our Monte Carlo exercise by

exploring the finite sample performance of the ECCP estimator with different sample sizes M and

T , both in the presence and absence of macro shocks.
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Another concern is that, in some applications, the right-hand side variable X̃mt from equation

(26) may include covariates observed at (t+ 1) or subsequent periods. Such variables will gen-

erally be correlated with the expectational error component of the residual ẽVmt. Recall that the

expectational error term at t captures the difference between realized value functions at (t+ 1)

and their time-t expectations, and note that the realization of the value function at (t+ 1) will be

correlated with realized covariates at (t+ 1). Thus, even if the unobserved shock component of the

residual ξ̃mt is exogenous, expectational error terms can create a mechanical endogeneity problem

if future values of covariates are included in the regressors X̃mt. This problem can be avoided

when future values of covariates difference out of the regressors X̃mt (as is the case in Examples 1

and 2 above), or when appropriate instruments in the contemporaneous information set exist for

those future values of covariates. While this endogeneity problem does not arise in some applied

examples we consider, it is a central concern in Dickstein and Morales (2018).

We now turn the discussion to the unobservable term ξ̃mt. Recall that ξmt is a function of ob-

served and unobserved market-level states ωmt = (wmt, ηmt). If (a) ξmt depends on ηmt, but not on

wmt, and (b) the observed and unobserved market-level states, wmt and ηmt, evolve independently,

then, for any (a, k), wmt and ξmt are independent and wmt can be taken as exogenous in the regres-

sion (23). In contrast, if ξmt depends on wmt, or if wmt and ηmt do not evolve independently, then

wmt and ξmt are correlated, in which case it may be reasonable to use lagged wmt as instruments,

as done by Scott (2013).23

Another possibility is identification of demand by using supply shifters as instruments (or vice

versa). To instrument for PV installation costs and electricity prices, De Groote and Verboven

(2018) use supply cost shifters such as the Chinese price index of PV modules on the European

market (which are the most important cost component of PV installations), and oil prices.

The linear regression approach can be combined with randomized control trials or quasi-natural

experiments to identify the model parameters. For instance, Diamond et al. (2018) extend the

linear IV approach to a set of differences-in-differences regressions that explore variation in the

assignment of rent control due to a 1994 ballot initiative in San Francisco. Combining quasi-

experiments with structural dynamic models in the present context seems to be a promising venue

for future applied research.

We have assumed rational expectations throughout the paper so far; the following remarks

discuss the possibility of implementing the ECCP approach with other notions of agents’ beliefs.

23While lagged values of wmt are in the contemporaneous information set, and therefore uncorrelated with ẽVmt
given rational expectations, it places strong restrictions on the evolution of ξ to assume that lagged values of wmt
are uncorrelated with ξ̃mt. For instance, if ξmt is serially correlated, and the reason for considering instruments is

to deal with potential correlation between ξ̃mt and wmt, then ξ̃mt and wmt−1 will typically be correlated (which
means further lags of wmt may be needed to obtain valid instruments). However, if wmt is serially correlated but

ξ̃mt is not, as when ξ̃mt = ξmt captures i.i.d. measurement error in w, then lagged values of w may serve as valid

instruments. Finally, note that if ξ̃mt involves an additive market-level fixed-effect, it is possible to differenced-out
the fixed-effect as usually done in panel data settings.
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Remark 1. (Biased Beliefs). It is clear that Propositions 1 and 2 do not require rational expecta-

tions. Identification of model primitives can therefore be obtained under biased beliefs. While under

the rational expectation assumption, eV is mean zero given current and all past states (Lemma 1),

under biased beliefs the true conditional expectation of eV may not be zero. In such contexts, one

may still find plausible instruments that do not correlate with systematic errors eV .24 An alterna-

tive is to construct other moment restrictions based on (23) or (26) that do not require rational

expectations. Indeed, Diamond et al. (2018) allow for biased beliefs: they only need to assume that

difference in expectations between treatment and control households in the same year are zero on

average.

Remark 2. (Perfect Foresight). We derive our estimators based on the assumption that agents

have rational expectations, but the same estimators can also be derived from the assumption that

agents have perfect foresight about the market state ωmt. Recall that our regression equations have

residuals for the form umt = ξ̃mt + ẽVmt, where ξ̃mt involves unobserved shocks to payoffs, and the

expectational error term ẽVmt comes from uncertainty in the market state ωmt. When agents have

perfect foresight about ωmt, the unobservable component of the payoff becomes the entire residual,

i.e., umt = ξ̃mt. This reinterpretation of the residual is of no consequence for the method-of-

moments estimators we propose, for the moments depend only on the value of the entire residual

umt.

Note however that in a setting where the potential instruments in Zmt include future values of

observables, there will generally be a mechanical endogeneity problem coming from the expectational

error terms (as discussed above, expectational error terms are generally correlated with realized

values of future variables), but a misspecified perfect foresight model would ignore this endogeneity

problem and result in biased parameter estimates.

5 Two-stage Estimation

We follow the tradition of Hotz and Miller (1993) and estimate conditional choice probabilities and

transition probabilities in the first step, and estimate the model parameters in the second step. To

simplify exposition, we assume a large number of individuals N and markets M , but we hold the

number of time periods T fixed.25

Although it is possible to nonparametrically estimate payoff functions π (following Proposition

1), here we consider a parametric model π (a, k, w; θ0), where θ0 ∈ Θ ⊂ RP is the parameter of

interest. Parametric models estimated using panel data involving large number of cross-sectional

observations and small number of time periods is common in applied work.26

24For instance, assumptions on the learning process about the evolution of states may suggest possible sources
of instruments. We leave this possibility for future research.

25Asymptotic results can be extended to large T by imposing stationarity and ergodicity assumptions.
26Nonparametric payoff functions π can be estimated in the second step using estimators proposed by Newey and
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5.1 First Stage

In the first stage, we estimate pamt (.) and F k
amt (.) in all markets m and all available time periods

t. Denote the estimators for the CCPs and transition probabilities by p̂amt and F̂ k
amt. Because K

is finite, we consider the frequency estimators:27

p̂amt (k) =

∑N
i=1 1 {aimt = a, kimt = k}∑N

i=1 1 {kimt = k}
,

F̂ k
amt (k′|k) =

∑N
i=1 1 {aimt = a, kimt = k, kimt+1 = k′}∑N

i=1 1 {aimt = a, kimt = k}
.

We impose the following condition for each market m and each time period t.

Condition 1. The observations {aimt, kimt : i = 1, ..., N} are i.i.d. conditional on the market level

state ωmt.

Condition 1 formalizes the idea that ωmt is a common shock affecting all agents i in market

m at time period t. As shown in Andrews (2005), this assumption is valid when the sample of

individuals are drawn randomly from the population. (Sources of spatial dependence among agents

within markets other than the common shock ω can be accommodated in our framework, but is

beyond the scope of the paper.)

The probability limits of p̂amt and F̂amt can be determined following the Law of Large Numbers

for exchangeable random variables (see Hall and Heyde (1980)). In addition, the result can be

strengthened to a law of iterated logarithm, which is an important input to derive the asymptotic

results for the second step. To simplify notation, stack the vectors (p̂amt, F̂
k
amt) and

(
pamt, F

k
amt

)
for

all actions and states, and denote them, respectively, by δ̂mt and δmt. Note that δmt is itself random

because
(
pamt, F

k
amt

)
depends on the realization of ωmt. In what follows, we use the Euclidean norm

‖.‖.28

Lemma 2. Suppose Condition 1 holds. Then,

δ̂mt → δmt a.s., (28)

Powell (2003) or by Escanciano et al. (2016). While the former involves ill-posed inverse issues, the latter combines
standard kernel estimation with the computation of a matrix eigenvector problem in a way that avoids the ill-
posed inverse problem. Aradillas-Lopez (2015) investigates the semiparametric efficiency properties of estimators of
parametric models with rational expectations in which agents’ beliefs are treated nonparametrically as “generated
regressors.” This approach may be useful in our context when k is a continuous variable.

27Results can be adapted to more complicated estimators of CCP and transitions. For instance, we can incorpo-
rate time-invariant observables that affect individuals’ choices, as well as unobservable heterogeneity as in Kasahara
and Shimotsu (2009), and Arcidiacono and Miller (2011).

28Although we do not exploit the asymptotic distribution of δ̂mt in this paper, note that it can be obtained
following the arguments in Andrews (2005). Specifically, under the regularity conditions stated in Andrews (2005),√
N(δ̂mt − δmt) converges in distribution to a mixture of normal distributions that depend on the common shock

ωmt.
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as N →∞. Moreover, ∥∥∥δ̂mt − δmt∥∥∥ = Oa.s.

(√
log logN

N

)
. (29)

5.2 Second Stage

Recall that, for each combination of a and j, the unobservable uajmt is the K × 1 vector satisfying

(23). Define the vector umt(θ, δmt) that stacks uajmt for all feasible combinations of (a, j), and

define the function gmt (θ) = h (zmt)umt(θ, δmt), where h (zmt) is a conformable function of the

instrumental variables. The unconditional moment restriction (implied by Assumption 2) is then

E [h (zmt)umt(θ0, δmt)] = 0. (30)

Define the function g (θ) ≡ E [gmt(θ)]; the GMM population criterion function is given by

Q (θ) = g (θ)′Wg (θ) , (31)

where W is a (non-stochastic) positive-definite weighting matrix. By the identification results, θ0

is the unique minimizer of Q (θ).

Next, consider the sample analogue of (31). Define the functions

ĝmt (θ) = h (zmt)umt(θ, δ̂mt), and (32)

ĝM (θ) =
1

M (T − τ)

M,(T−τ)∑
m=1,t=1

ĝmt (θ) , (33)

where τ reflects the τ -finite dependence assumption (see Definition 2). The GMM criterion function

is then given by

Q̂M (θ) = ĝM (θ)′WM ĝM (θ) , (34)

where WM is a positive-definite weighting matrix that may depend on data. The estimator θ̂M

minimizes Q̂M (θ) over Θ.

The next set of conditions suffices for consistency of θ̂M .

Condition 2. Conditions for consistency:

(i) The vector (wmt, zmt) is i.i.d. across markets m.

(ii) WM
p→W as M →∞.

(iii) Θ is compact.

(iv) θ0 uniquely minimizes Q (θ) over Θ.

(v) πamt (θ) is continuous at each θ ∈ Θ for all a ∈ A.

(vi) E [supθ∈Θ ‖h (zmt)umt(θ, δmt)‖] <∞.

(vii) E
[
supθ∈Θ ‖h (zmt)∇δumt(θ, δmt)‖2] ≤ B <∞, where B is a finite constant.
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Condition 2 establishes standard regularity conditions that guarantee the problem is well-

behaved. The assumption that market-level variables are independent across markets simplifies

the derivation of the asymptotic results (Condition 2(i)), but results can be extended to allow for

spatial dependence across markets (Conley, 1999; Andrews, 2005; Kuersteiner and Prucha, 2013).

Condition 2(ii)–(v) are standard. Condition 2(vii) is used in conjunction with equation (28) in

Lemma 2 of Section 5.1, to guarantee uniform convergence in probability of the criterion function

to its population version. The term ∇δumt is the derivative of the vector umt with respect to

δ, which in turn, depends on the derivative of ψa with respect to the CCPs (see equation (23)).

As shown in Kalouptsidi et al. (2017), ψa is indeed a differentiable function of p (k, ω), provided

p (k, ω) lies strictly between zero and one (which is satisfied when payoffs are bounded and εimt

has full support on RA+1).

Proposition 3. Under Conditions 1 and 2, θ̂M
p→ θ0 as (M,N)→∞.

To obtain the asymptotic distribution of θ̂M , we impose the following:

Condition 3. Conditions for asymptotic distribution:

(i) θ0 ∈ interior (Θ).

(ii) πamt (θ) is continuously differentiable in a neighborhood N of θ0 with probability approaching

one for all a ∈ A.

(iii) E[‖h (zmt)umt(θ0, δmt)‖2] <∞, and E [supθ∈N ‖h (zmt)∇θumt(θ, δmt)‖] <∞.

(iv) G′WG is nonsingular for G = E
[

1
T−τ

∑T−τ
t=1 h (zmt)∇θumt(θ0, δmt)

]
.

Similar to Condition 2, Condition 3 imposes standard regularity conditions to make the problem

well-behaved. The next proposition follows.

Proposition 4. Suppose Conditions 1, 2 and 3 hold. Assume (M log logN)/N → 0, as (M,N)→
∞. Then, √

M
(
θ̂M − θ0

)
p→ N (0,V)

where

V = (G′WG)
−1

G′WΣWG (G′WG)
−1
,

and

Σ = E

[(
1

T − τ

T−τ∑
t=1

gmt (θ0)

)(
1

T − τ

T−τ∑
t=1

gmt (θ0)

)′]
.

The asymptotic distribution of θ̂M in Proposition 4 is the same as the distribution of an

unfeasible estimator in which δmt is observed instead of estimated in the first step. The first step

estimators δ̂mt, for all markets and time periods, do not affect the asymptotic variance of θ̂M when

the within markets observations N is sufficiently large compared to the number of markets M .

The rate at which N must increase to eliminate the influence of the first step on the variance of
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the second step is M log logN
N

→ 0 as (M,N)→∞. This rate is a direct result of the Law of Iterated

Logarithm obtained in Lemma 2.

Consistent estimators for V can be obtained using standard arguments and are omitted here

(see, e.g., Theorem 4.5 in Newey and McFadden (1994)).

6 Monte Carlo

In this section, we present a Monte Carlo experiment to illustrate the performance of the ECCP

estimator. We consider the dynamic demand model for a durable good discussed in details in

Example 1.

As previously mentioned, the choice set is A = {b, nb}, where a = b if the consumer buys the

good, and a = nb if she does not buy it. The individual-level state kimt reflects whether she already

owns the product or not at the beginning of time period t. We consider two market-level state

variables: observed price wmt and unobservable quality ξmt.
29 We also consider an observed cost

shifter zmt (that will play the role of an instrumental variable). The price is a function of zmt and

ξmt, determined as follows:

wmt = γ0 + γ1zmt + γ2ξmt + εwmt, (35)

where εwmt is a mean-zero normally distributed i.i.d. price shock with variance σ2
w. Note that γ1

represents how variation in the observed cost shifter zmt passes through to prices. ξmt is included

in the price equation to capture the idea that demand shocks may influence the price.

The supply shifter zmt and unobserved quality ξmt follow independent AR(1) processes:

ξmt+1 = ρ1 + ρ2ξmt + εξmt,

zmt+1 = ρ3 + ρ4zmt + εzmt,

where εξmt and εzmt are normally distributed zero-mean i.i.d. shocks with variances σ2
ξ and σ2

z ,

respectively. Recall that, because ξmt has mean zero by assumption, we take ρ1 = 0.

We consider two settings in our simulations, depending on whether the unobservable state ξ is

present in the data generating process or not. When there is no unobserved states, we set ξmt = 0

for all m and t (or, equivalently, we set σ2
ξ = 0).

As many applications may feature aggregate shocks, we also consider two scenarios: with and

without macro shocks. In the scenario with aggregated shocks, we incorporate them into the term

εzmt. Specifically, we simulate εzmt = εzm,t,1 + εzt,2, where the (mean-zero) macro shock εzt,2 accounts

for a fraction λz of the variance in εzmt. (Recall that macro shocks wash out in the limit when

29Recall that, formally, we can define ηmt as the state variable, while the function ξ(a, k, ωmt) equals ηmt when
a = b, and equals zero when a = nb. I.e., the unobserved quality enters into the utility of purchasing the good and
not into the utility of not purchasing (whether the good is already owned or not). To simplify notation, we take
ξmt as the state variable.
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the number of time periods goes to infinity, but they may not wash out in the limit when the

asymptotics is in the number of markets.)

We consider several possible sample sizes with different combinations of M and T . For each

sample structure, we generate 5,000 Monte Carlo replications. For the first sample period, we

generate the value of the state variables from their steady-state distributions. The supports of the

market-level state variables are discretized to take integer values. We solve the individual dynamic

optimization problem by value function iteration on the discretized state space.30 The parameters

of the data generating process in our Monte Carlo study is summarized in Table 1.

Table 1: Parameters of the Monte Carlo Data Generating Process

Payoff Parameters: θ0 1 ξ ∼ Normal AR(1) ρ1 0
θ1 −.1 ρ2 .2

σ2
ξ 0 or 16

Prob. of Product Failure: φ .1
z ∼ Normal AR(1) ρ3 0

Discount Factor: β .95 ρ4 .7
σ2
z 25

Process for price wmt: γ0 40
γ1 1 Aggregate Shocks λz 0 or .7
γ2 1
σ2
w 4

The main parameters of interest are the payoff parameters θ = (θ0, θ1), which are estimated

based on the regression equation (20). We estimate θ using two ECCP estimators: the first

estimator is based on the Ordinary Least Squares (OLS) estimator, while the second one is based

on instrumental variables – specifically, the Two-Stage Least Squares (2SLS) estimator.

We also estimate θ using a standard CCP estimator similar to Hotz and Miller (1993). This

procedure relies on a full specification of what the state variables are and how they evolve. To

implement this procedure, we assume that the price wmt is the only market-level state variable and

model its evolution as a first-order Markov process. So, when the unobserved quality is a relevant

state (i.e., when σ2
ξ > 0), this strategy is based on a mis-specified model. See Appendix A.4 for

details.

Table 2 presents results for a model with no unobservable demand shocks (i.e., σ2
ξ = 0). For

each model parameter, each sample structure, and each estimator, we report the average estimate,

the relative mean bias (as a percentage of the true parameter), the standard deviation, and the

root-mean squared error (RMSE) of the estimator. On the left panel, we present results for the

scenario with no macro shocks (i.e., λz = 0), and on the right panel, we present the estimated

30We simulate conditional choice probabilities for each market-period and assume these CCPs are observed by
the econometrician. Thus, we abstract away from any first-stage sampling uncertainty in the estimation of choice
probabilities and effectively assume a (sufficiently) large number of agents N within each market-year.
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results with aggregated shocks (λz 6= 0).

Table 2: Monte Carlo Experiments without Unobserved Demand Shock

σ2
ξ = 0 True Parameters: θ0 = 1, θ1 = −.1

λz = 0 λz = .7

Estimator T 40 160 10 40 160 10 160
M 40 10 160 40 10 160 160

ECCP: θ0 Mean Est. 1.01 1.01 1.01 0.92 0.99 0.75 0.99
OLS Rel. Bias 0.64% 0.74% 0.81% -8.05% -1.49% -24.6% -1.38%

SD 0.04 0.04 0.04 0.17 0.09 0.29 0.09
RMSE 0.04 0.04 0.04 0.19 0.10 0.38 0.09

θ1 Mean Est. -0.10 -0.10 -0.10 -0.10 -0.10 -0.09 -0.10
Rel. Bias 0.16% 0.18% 0.20% -1.98% -0.38% -6.20% -0.33%
SD 1.01e-3 1.04e-3 9.97e-4 4.05e-3 2.22e-3 6.78e-3 2.05e-3
RMSE 1.02e-3 1.06e-3 1.02e-3 4.50e-3 2.26e-3 9.19e-3 2.07e-3

ECCP: θ0 Mean Est. 1.01 1.01 1.01 0.91 0.98 0.72 0.98
IV (2SLS) Rel. Bias 0.70% 0.79% 0.87% -9.0% -1.66% -28.2% -1.57%

SD 0.04 0.04 0.04 0.19 0.10 0.33 0.09
RMSE 0.04 0.05 0.04 0.21 0.10 0.43 0.10

θ1 Mean Est. -0.10 -0.10 -0.10 -0.10 -0.10 -0.09 -0.10
Rel. Bias 0.18% 0.19% 0.22% -2.22% -0.42% -7.08% -0.38%
SD 1.06e-3 1.08e-3 1.03e-3 4.46e-3 2.40e-3 7.67e-3 2.23e-3
RMSE 1.07e-3 1.10e-3 1.06e-3 4.98e-3 2.44e-3 0.01 2.26e-3

Standard θ0 Mean Est. 1.00 1.00 1.00 1.00 1.00 1.00 1.00
CCP Rel. Bias -0.29% -0.27% -0.11% -0.49% -0.31% -0.02% -0.19%

SD 9.22e-3 8.45e-3 0.01 0.04 0.02 0.07 0.02
RMSE 9.66e-3 8.87e-3 0.01 0.04 0.02 0.07 0.02

θ1 Mean Est. -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10
Rel. Bias -0.48% -0.51% -0.30% -0.70% -0.60% -0.64% -0.25%
SD 4.40e-4 3.88e-4 6.41e-4 7.96e-4 5.27e-4 1.33e-3 5.18e-4
RMSE 6.48e-4 6.42e-4 7.08e-4 1.06e-3 7.95e-4 1.48e-3 5.73e-4

Notes: 5000 Monte Carlo replications for each sample structure. SD is the
standard deviation of the estimators across replications. RMSE is root-mean

squared error. Relative Bias is bias as percentage of the true parameter.

In the absence of macro shocks, all estimation strategies appear to be consistent, as expected.

Not surprisingly, the standard CCP approach exhibits smaller standard deviations and RMSE

when compared to the ECCP OLS and IV estimators.
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Table 2 also illustrates that there can be a difference between the number of markets and

time periods for the asymptotic properties of ECCP estimators in the scenario with macro shocks

(λz = .7). We have several columns with the same sample size M × T = 1600, and within these

columns, there is non-trivial bias in the OLS and IV estimates for short panels when the aggregate

shocks are present. However, the bias is reduced when the time dimension increases, and for long

panels, the ECCP estimators have little or no bias.31

Table 3 presents the results for the main specification, where the unobserved demand shock

ξmt is present. Because price wmt and the unobserved quality ξmt are correlated by construction

(since γ2 6= 0), we expect OLS to be biased. Indeed, the OLS estimator is now highly biased for

both the intercept θ0 and price coefficient θ1.

The supply shifter zmt provides a valid instrument given that it correlates with prices wmt and

is independent of ξmt. When using the cost shifter as an instrument for price, we see that the

ECCP IV estimator has little-to-no bias, either in the absence of aggregate shocks or when T is

large (aggregate shocks still pose problems for short panels, as expected).

The standard CCP estimator is now severely biased, for it treats the market state space as

including only the observable price wmt while the unobservable demand shock ξmt also plays a

role. The mis-specification is important regardless of the presence or absence of macro shocks. In

particular, the relative bias of the standard CCP estimator is larger than the bias of the ECCP

IV estimator in the presence of aggregated shocks in short panels.

6.1 Counterfactuals

So far, we have considered only the estimation of the parameters of agents’ utility function. Typ-

ically, applied researchers are also interested in the outcomes of policy simulations or counterfac-

tuals. In this section, we will consider how the biases in the parameter estimates pass through

to biases in countefactuals, but first, we must consider the question of how to do counterfactuals

within the ECCP framework.

Much of the ECCP approach’s appeal comes from the fact that it takes seriously the possibility

that the econometrician might be facing important measurement issues; e.g., some market-level

state variables might not be observed, and/or it might be difficult to specify how they evolve.

However, when doing counterfactuals, researchers typically solve for a new equilibrium of the

model, which normally involves fully specifying all the relevant state variables and how they evolve.

Thus, prima facie, ECCP estimation seems to be at odds with doing counterfactual simulations.

A counterfactual is a function of the model parameters, and sometimes that function does not

depend (or depends only minimally) on the presence of unobservable variables or on the precise

31In our simulations, aggregate shocks only affect the evolution of the observable variables (zmt directly, and wmt
indirectly). However, these aggregate shocks in the observables lead to aggregate shocks in the expectational error
terms. In turn, aggregate shocks in the expectational error terms implies that our regression equation’s residual
features aggregate shocks.
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Table 3: Monte Carlo Experiments with Unobserved Demand Shock

σ2
ξ = 16 True Parameters: θ0 = 1, θ1 = −.1

λz = 0 λz = .7

Estimator T 40 160 10 40 160 10 160
M 40 10 160 40 10 160 160

ECCP: θ0 Mean Est. -8.62 -8.63 -8.61 -9.54 -8.81 -11.60 -8.85
OLS Rel. Bias -962% -963% -961% -1050% -981% -1260% -985%

SD 0.59 0.58 0.57 1.79 1.03 2.77 0.89
RMSE 9.64 9.64 9.62 10.70 9.86 12.90 9.89

θ1 Mean Est. 0.14 0.14 0.14 0.16 0.15 0.22 0.15
Rel. Bias -240% -241% -240% -264% -245% -315% -246%
SD 0.01 0.01 0.01 0.04 0.02 0.06 0.02
RMSE 0.24 0.24 0.24 0.27 0.25 0.32 0.25

ECCP: θ0 Mean Est. 1.02 1.00 1.02 0.97 1.02 0.87 0.99
IV (2SLS) Rel. Bias 1.62% -0.20% 1.82% -3.49% 1.97% -12.8% -0.76%

SD 0.77 0.77 0.75 0.83 0.78 0.90 0.20
RMSE 0.77 0.77 0.75 0.83 0.78 0.91 0.20

θ1 Mean Est. -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10
Rel. Bias 0.50% -0.05% 0.42% -1.00% 0.44% -3.25% -0.19%
SD 0.02 0.02 0.02 0.02 0.02 0.02 4.96e-3
RMSE 0.02 0.02 0.02 0.02 0.02 0.02 4.96e-3

Standard θ0 Mean Est. 0.26 0.26 0.25 0.26 0.26 0.26 0.17
CCP Rel. Bias -74.4% -74.4% -74.7% -74.3% -74.3% -73.5% -83.3%

SD 0.03 0.03 0.03 0.04 0.03 0.05 0.02
RMSE 0.75 0.75 0.75 0.74 0.74 0.74 0.83

θ1 Mean Est. -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 2.12e-3
Rel. Bias -88.1% -87.8% -89.2% -88.4% -87.8% -89.9% -102%
SD 5.38e-3 5.12e-3 5.74e-3 6.33e-3 5.41e-3 9.24e-3 3.66e-3
RMSE 0.09 0.09 0.09 0.09 0.09 0.09 0.10

Notes: 5000 Monte Carlo replications for each sample structure. SD is the
standard deviation of the estimators across replications. RMSE is root-mean

squared error. Relative Bias is bias as percentage of the true parameter.

specification of how state variables evolve. Therefore, the modeling issues that motivate the

ECCP approach need not undermine the use of parameter estimates for counterfactual analysis.

De Groote and Verboven (2018) provide a clear example. They use an ECCP estimator to estimate

the rate of time discounting of Belgian households in deciding whether to install solar photovoltaic
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systems (the ECCP estimator allows them to flexibly include demand shocks and avoid specifying

a process for how government policy evolved). They find that households’ estimated discount rate

is considerably lower than the interest rate that the Belgian government can borrow at. As they

argue, this disparity means that it would be more cost effective for the government to support solar

PV installations with up-front payments, rather than the ongoing payments that the government

actually used. This conclusion follows intuitively from the disparity in discount rates and plausibly

is not affected in an important way by how government policy and unobservable states evolve. The

conclusion, however, may be highly sensitive to biases in the estimation of the discount factor. In

other words, the estimation of a mis-specified model may crucially affect policy recommendations.

In what follows, we show that some counterfactuals – specifically, long-run demand elasticities

from our durable good demand model – are robust to the omission of unobservable state variables

that are present in the data generating process. Or more specifically, long-run demand elasticities

are well approximated by a model in which we set ξ at its long-run mean (i.e., ξ = 0). Furthermore,

we show that the biases that result from leaving the unobservable shocks out of the counterfactual

simulations can be smaller than the biases that result from using an estimation approach that is

not robust to their presence.

We perform both a real and feasible counterfactuals for the durable good demand model. Our

real counterfactuals take the parameter estimates from various estimations above and plug them

into a counterfactual that uses the true data generating process (notably including the true law

of motion for the unobservable demand shock ξmt). That is, the real counterfactuals rely on our

understanding of an unobservable that an econometrician who was not simulating the data would

not have access to. Our feasible counterfactuals, in contrast, simulate a simple model that an

econometrician could easily implement: a model that sets ξ = 0.32

The counterfactual we consider is an increase in the mean price level (formally, we increase

γ0 by .01), and we calculate the long-run change in the demand level. That is, we calculate the

unconditional probability of purchase Pr (a = b) in the steady state after solving the consumer’s

dynamic problem. We present this counterfactual in the form of a long-run demand elasticity, i.e.,

the ratio of the percentage change in the probability of purchase to the percentage change in the

long-run price.

Table 4 shows the counterfactuals from the ECCP (OLS and IV) and standard CCP estimators

based on the parameter estimates from the above simulations with M = 160 and T = 160. A first

observation is that the real and feasible counterfactuals at the true parameters differ by a factor

of about 10%. Second, consistent with the biases in the underlying parameter estimates, we find

that the ECCP IV estimates yield very little bias in the counterfactuals relative to the true values

while the other estimators result in substantially biased counterfactuals. Furthermore, the biases

32To solve the feasible counterfactual, we need to specify how the exogenous state variable wmt evolves. We
consider the residual from the pricing equation (35) as the econometrician can measure it. I.e., w = γ0 + γ1z + ν,
where ν = γ2ξ + εw. So, we calculate the true evolution of ν given the underlying processes and assume the
econometrician is able to estimate it.
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Table 4: Sample size, structure and bias

ECCP Standard
True value OLS IV CCP

Real LRE -1.106 Mean Estimate 60.15 -1.104 0.01471
Relative Bias -5540% -0.1561% -101.3%
SD 16.62 0.04227 0.02545
RMSE 63.48 0.04231 1.121

Feasible LRE -1.022 Mean Estimate -1.187e4 -1.064 0.03888
Relative Bias 1.162e6% 4.114% -103.8%
SD 1.382e6 0.1184 0.06774
RMSE 1.382e6 0.1256 1.063

Notes: 5000 replications with sample structure M = T = 160. SD is the standard
deviation across replications. RMSE is root-mean squared error.

Relative Bias is bias as percentage of the true parameter.

in the long-run elasticities from the OLS and standard CCP estimators (whether we consider the

real or feasible versions) are larger than the gap between the real and feasible estimators.

Evidently, counterfactuals are not always robust to setting ξ at its unconditional mean. The

broader point we make in this section is that robustness to the presence of unobserved shocks

can be assessed through a procedure similar to what we do here. That is, when researchers are

concerned about the presence of unobservables, they might adopt a robust estimation approach

that delivers consistent estimates of important parameters despite the unobservables. Then, when

it comes to counterfactual simulations, they can perform the simulation in several ways to assess

whether and how the results of interest might be sensitive to the presence of unobservables and

how they evolve.

7 Conclusion

In this paper we propose (and provide a comprehensive econometric treatment of) a class of

linear instrumental variables estimators for structural dynamic discrete choice models: the ECCP

estimators. This class of estimators shares many of the advantages of the continuous-choice Euler

equation approach originally developed by Hall (1978), Hansen and Sargent (1980), Hansen and

Sargent (1982), and Hansen and Singleton (1982).

We provide constructive identification results that lead naturally to estimators, we establish

the consistency and asymptotic normality of the estimators, and we provide evidence that they

perform well in finite-samples based on a Monte Carlo study of a dynamic demand for durable

goods.
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A Appendix

A.1 General ECCP Equation Derivation

In this section, we offer a general derivation of Euler equations in conditional choice probabilities

relying on finite dependence as defined in Section 3.33

Arcidiacono and Miller (2011) show that the conditional value functions, va, can be represented

by functions of flow payoffs and conditional choice probabilities for any sequence of future choices,

optimal or not. To derive such a representation, begin with an arbitrary initial state ωmt. Consider

a sequence of actions from t to t+τ (where τ ≥ 1). Suppose the initial choice is a, and let j denote

another arbitrary element of the choice set A. Let ad ∈ A denote the d−th choice in the sequence

following a.

Recall equation (9), which is a vector across rows of the individual state k and absorbs the

aggregate state ωmt into mt subscripts:

πamt + βεVam,t,t+1 = Vmt − βF k
amtVmt+1 − ψamt.

We then substitute for Vmt+1 using equation (9) again, using a1 as the action instead of a:

πamt + βεVam,t,t+1 = Vmt − ψamt − βF k
amt

(
πa1mt+1 + βεVa1,m,t+1,t+2 + ψa1mt+1

)
−β2F k

amtF
k
a1mt+1Vmt+2.

Repeated substitution of Vmt+d above leads to:

πamt + βεVam,t,t+1 = Vmt − ψamt

−F k
amt

[
τ∑
d=1

βdΛamtd

(
πadmt+d + βεVad,m,t+d,t+d+1 + ψadmt+d

)]
−βτ+1F k

amtΛamtτVmt+τ+1 (36)

where the matrices Λamtd are defined recursively:

Λamtd = I, for d = 1,

Λamtd = Λamt,d−1 F
k
admt+d

, for d ≥ 2,

Next, finite dependence allows us to eliminate the Vmt+τ+1, resulting in an ECCP equation

that forms the basis of our identification arguments. Given τ -period finite dependence, for a pair

33This derivation (and Proposition 2) can be extended to a notion of finite dependence in which the sequence of
actions leading to convergence of the individual state variables may be mixed actions.
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of actions (a, j), we can construct sequences (a, a1, . . . , aτ ) and (j, j1, . . . , jτ ) such that34

F k
amtF

k
a1mt+1 . . . F

k
aτmt+τ = F k

jmtF
k
j1mt+1 . . . F

k
jτmt+τ ,

i.e.,

F k
amtΛamtτ = F k

jmtΛjmtτ . (37)

We then difference equation (36) across the two sequences of actions. Because of (37), the last

term cancels, and the result is equation (23).

A.2 Identification

A.2.1 Proof of Lemma 1

We omit the subscripts i and m to simplify notation. Suppose Assumption 1 holds.

(i) From the definition of eh
(
a, k, ωt, ω

∗
t+1

)
,

E
[
eh
(
a, k, ωt, ω

∗
t+1

)
|It
]

= E

[∑
k′

eh
(
k′, ωt, ω

∗
t+1

)
F k (k′|a, k, ωt) |It

]

= E

[∑
k′

(∫
ω′
h (k′, ω′) dF ω (ω′|ωt)− h

(
k′, ω∗t+1

))
F k (k′|a, k, ωt) |It

]

=
∑
k′

∫
ω′
h (k′, ω′) dF ω (ω′|ωt)F k (k′|a, k, ωt)

−
∑
k′

∫
ω∗t+1

h
(
k′, ω∗t+1

)
dF ω

(
ω∗t+1|ωt

)
F k (k′|a, k, ωt)

= 0.

(ii) By the law of iterated expectations,

E
[
eh
(
a, k, ωt, ω

∗
t+1

)
|zt
]

= E
[
E
[
eh
(
a, k, ωt, ω

∗
t+1

)
|It
]
|zt
]

= 0,

where the second equality follows from (i).

Note also that, given that the time-t information set It includes current and past variables,

Lemma 1 also implies that E
[
eh
(
a, k, ωt, ω

∗
t+1

)
|zt−d

]
, for all a, k and any d ≥ 1. In particular,

E
[
eh
(
a, k, ωt+d, ω

∗
t+d+1

)
|zt
]
.

(iii) Next, fix a and k, and simplify notation further by defining eh
(
a, kt, ωt, ω

∗
t+1

)
= eht+1. Note

that not only current and past states (k, ω) belong to the information set available to agents It,
but also past prediction errors. I.e.,

{
eht , e

h
t−1, ..., e

h
1

}
∈ It. We can then let zt = eht−d for d ≥ 1

and use result (ii) above to establish that E
[
eht−de

h
t

]
= 0. Thus, expectational errors are serially

34Recall that the terms in the sequences depend on the particular initial pair of actions (a, j) chosen.
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uncorrelated.

A.2.2 Proof of Proposition 1

Assume single-action τ -period dependence holds for action J . Then, equation (23) simplifies to

(ψjmt − ψamt) +
(
F k
jmt − F k

amt

) τ∑
d=1

βdΛJmtd ψJmt+d

= πamt − πjmt −
(
F k
jmt − F k

amt

) τ∑
d=1

βdΛJmtd πJmt+d + uajmt. (38)

where the matrix ΛJmtd is defined recursively

ΛJmtd = I, for d = 1

ΛJmtd = ΛJmt,d−1 F
k
Jmt+d, for d ≥ 2,

and the unobservable term is uajmt = ξ̃ajmt + ẽVajmt, with

ξ̃ajmt = (ξamt − ξjmt)− (F k
jmt − F k

amt)
τ∑
d=1

βdΛJmtd ξJmt+d, (39)

ẽVajmt = β
(
eVam,t,t+1 − eVjm,t,t+1

)
−
(
F k
jmt − F k

amt

) τ∑
d=1

βdΛJmtd e
V
Jm,t+d,t+d+1. (40)

For any known (and comformable) function h (zmt), multiply both sides of (38) and take the

expectation. We eliminate the error terms ξ̃ajmt and ẽVajmt by Assumption 2.(ii)–(iii). Then,

E

[
h (zmt)

(
(ψjmt − ψamt) +

(
F k
jmt − F k

amt

) τ∑
d=1

βdΛJmtd ψJmt+d

)]

= E

[
h (zmt)

(
πamt − πjmt −

(
F k
jmt − F k

amt

) τ∑
d=1

βdΛJmtd πJmt+d

)]
, (41)

where the expectations are taken over (zmt, wmt, ..., wmt+τ ).

The LHS of (41) can be recovered from the data (using the results of Lemma 3, in Appendix

A.3.3). Then, for any two primitives π and π′,

E

[
h (zmt)

(
πamt − πjmt −

(
F k
jmt − F k

amt

) τ∑
d=1

βdΛJmtd πJmt+d

)]

= E

[
h (zmt)

(
π′amt − π′jmt −

(
F k
jmt − F k

amt

) τ∑
d=1

βdΛJmtd π
′
Jmt+d

)]
.
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By the completeness condition (Assumption 2.(i)),

πamt − πjmt −
(
F k
jmt − F k

amt

) τ∑
d=1

βdΛJmtd πJmt+d

= π′amt − π′jmt −
(
F k
jmt − F k

amt

) τ∑
d=1

βdΛJmtd π
′
Jmt+d, (42)

for almost all (wmt, . . . , wmt+τ ). Consider (42) for j = J . Because πJ (k, w) is known for all

observed states (k, w), we conclude that πamt = π′amt almost surely.

A.2.3 Proof of Proposition 2

Equation (27) is a linear regression equation, and E [Zmtuajmt] = 0 and rank(E[ZmtX̃ajmt]) = P

are the standard orthogonality and rank conditions, respectively, for parameter identification.

A.3 Estimation

A.3.1 First Step

Proof of Lemma 2. Given that {aimt, kimt : i = 1, ..., N} are i.i.d. conditional on ωmt, the first

part of the Lemma (the almost sure convergence) follows by an immediate application of the Law

of Large Numbers for exchangeable random variables (see Hall and Heyde (1980), p. 202, (7.1)).

The second part is obtained in three steps. First, Horvath and Yandell (1988) presents a Law

of Iterated Logarithm (LIL) applied to both kernel and nearest neighbor estimators for conditional

probabilities (see their Corollary 5.1). The i.i.d. sample in Horvath and Yandell (1988) can be

replaced by the assumption that the sample is i.i.d. conditional on the common shocks following

the arguments in Souza-Rodrigues (2016).35 The LIL then holds for almost all ωmt. Finally, it

is straightforward to adapt the kernel regression results to simple frequency estimators (i.e., use

simple indicator functions as kernel functions).

A.3.2 Second Step

Recall that gmt (θ) = h (zmt)umt(θ, δmt). Define the following functions:

g̃M (θ) =
1

M (T − τ)

M,(T−τ)∑
m=1,t=1

gmt (θ) . (43)

and

Q̃M (θ) = g̃M (θ)′WM g̃M (θ) . (44)

35Souza-Rodrigues (2016) establishes the asymptotic properties of the kernel regression estimator for cross-
sectional data in the presence of common shocks.
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The criterion function Q̃M (θ) is similar to Q̂M (θ) but makes use of δmt instead of the estimator

δ̂mt. I.e., Q̃M (θ) is an unfeasible GMM criterion function, while Q̂M (θ) is feasible. The unfeasible

estimator θ̃M (approximately) minimizes Q̃M (θ) over Θ.

Proof of Proposition 3. A straightforward application of Theorem 2.6 in Newey and McFadden

(1994) proves that the unfeasible estimator θ̃M is a consistent estimator of θ0. To show that the

feasible estimator θ̂M is consistent as well, it suffices to show that Q̂M (θ) converges in probability

to Q̃M (θ) uniformly over Θ. To do so, define the difference vmt = ĝmt (θ)− gmt (θ), and

vM (θ) =
1

M (T − τ)

M,(T−τ)∑
m=1,t=1

vmt (θ) .

Then,

Q̂M (θ) = [g̃M (θ) + vM (θ)]′WM [g̃M (θ) + vM (θ)]

= Q̃M (θ) + vM (θ)′WMvM (θ) + 2g̃M (θ)′WMvM (θ) .

Given Condition 2(ii), it suffices to show that both g̃M (θ) and vM (θ) converge to zero in probability

uniformly over Θ.

By Conditions 2(i),(iii),(v), and (vi), g̃M (θ) satisfies the uniform Weak Law of Large Numbers,

and therefore converges in probability to zero uniformly over Θ as M →∞. Now consider vM (θ).

Note that

vmt = h (zmt)
(
umt(θ, δ̂mt)− umt(θ, δmt)

)
,

and take a mean-value expansion of umt(θ, δ̂mt) about δmt:

umt(θ, δ̂mt)− umt(θ, δmt) = ∇δumt(θ, δ
∗
mt)
(
δ̂mt − δmt

)
,

where δ∗mt lies between δ̂mt and δmt. Next, note that

E

[
sup
θ∈Θ
‖vM (θ)‖

]
≤ 1

M (T − τ)

M,(T−τ)∑
m=1,t=1

E

[
sup
θ∈Θ
‖h (zmt)∇δumt(θ, δ

∗
mt)‖

∥∥∥δ̂mt − δmt∥∥∥]

≤ B

M (T − τ)

M,(T−τ)∑
m=1,t=1

E

[∥∥∥δ̂mt − δmt∥∥∥2
]

(45)

where the second inequality follows from the Cauchy–Schwarz inequality and Condition 2(vii).

Because
∥∥∥δ̂mt − δmt∥∥∥ p→ 0, as N →∞, by Lemma 2, we have that E

[∥∥∥δ̂mt − δmt∥∥∥2
]

= o (1), and,
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so, the right-hand-side of (45) converges to zero as N →∞ for all M and T . We conclude that

sup
θ∈Θ

∥∥∥Q̂M (θ)− Q̃M (θ)
∥∥∥ p→ 0, as (M,N)→∞.

Proof of Proposition 4. By standard arguments (see Theorem 3.2 in Newey and McFadden

(1994), the unfeasible estimator θ̃M satisfies

θ̃M − θ0 = − [G′WG]
−1

G′Wg(θ0) + op

(
1/
√
M
)
, (46)

and is asymptotically normal, √
M
(
θ̃M − θ0

)
p→ N (0,V) ,

under Conditions 3(i)-(iv). The asymptotic distribution of the feasible estimator θ̂M is the same

as the asymptotic distribution of the unfeasible θ̃M provided∥∥∥θ̂M − θ̃M∥∥∥ = op

(
1√
M

)
.

From (46), it is clear that

θ̃M − θ̂M = [G′WG]
−1

G′WvM(θ0) + op

(
1/
√
M
)
.

So, ∥∥∥θ̂M − θ̃M∥∥∥ ≤ ∥∥∥[G′WG]
−1
∥∥∥ ‖G‖ ‖W‖ ‖vM(θ0)‖+ op

(
1/
√
M
)
.

Note that

E [‖vM (θ0)‖] ≤ B

M (T − τ)

M,(T−τ)∑
m=1,t=1

(
E

[∥∥∥δ̂mt − δmt∥∥∥2
])1/2

by Condition 2(vii). Because E

[∥∥∥δ̂mt − δmt∥∥∥2
]

= O
(

log logN
N

)
, by Lemma 2, we have that

‖vM(θ0)‖ = Op

(√
log logN

N

)
, which implies

√
M
∥∥∥θ̂M − θ̃M∥∥∥ = Op

(√
M log logN

N

)
= op (1)

provided M log logN
N

→ 0.

A.3.3 Additional Result

The next lemma provides a result that is used in Proposition 1. Proposition 1 claims that, for a

known function f of δτmt = (δmt, ..., δmt+τ ), quantities of the type E [h (zmt) f (δτmt)] can be recovered
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from the data. (More specifically, f (δτmt) in the proof of Proposition 1 corresponds to the term in

parenthesis on the LHS of equation (41).)

Lemma 3. Suppose the vector (wmt, zmt) is i.i.d. across markets m. Assume

E
[
‖h (zmt)∇δf (δτmt)‖

2] ≤ C <∞.

Then
1

M

M∑
m=1

h (zmt) f(δ̂
τ

mt)
p→ E [h (zmt) f(δτmt)] ,

as (M,N)→∞.36

Proof. First, note that

1

M

M∑
m=1

h (zmt) f(δ̂
τ

mt) =
1

M

M∑
m=1

h (zmt) f (δτmt) +
1

M

M∑
m=1

h (zmt)
[
f(δ̂

τ

mt)− f (δτmt)
]
.

The first term on the right-hand-side converges in probability to E [h (zmt) f (δm)] as M →∞ by

the Weak Law of Large Numbers. Applying a mean-value expansion on the second term, we get

1

M

M∑
m=1

h (zmt)
[
f(δ̂

τ

mt)− f (δτmt)
]

=
1

M

M∑
m=1

h (zmt)∇δf (δτ∗mt)
[
δ̂
τ

mt − δτmt
]

where δτ∗mt lies between δ̂
τ

mt and δτmt. Next, note that

E
[∥∥∥h (zmt)∇δf(δτ∗mt)

[
δ̂
τ

mt − δτmt
]∥∥∥] ≤ (

E
[
‖h (zmt)∇δf (δτ∗mt)‖

2]E [∥∥∥δ̂τmt − δτmt∥∥∥2
])1/2

≤ C

(
E

[∥∥∥δ̂τmt − δτmt∥∥∥2
])1/2

,

where the first inequality follows from the Cauchy–Schwarz inequality, and the second inequality

from the regularity condition E
[
‖h (zmt)∇δf (δτmt)‖

2] ≤ C <∞. By Lemma 2, E

[∥∥∥δ̂τmt − δτmt∥∥∥2
]

converges to zero as N →∞, which implies

1

M

M∑
m=1

h (zmt)
[
f(δ̂

τ

mt)− f (δτmt)
]

p→ 0, as N →∞, for all M .

36The same result applies if (wmt, zmt) is stationary and ergodic, if we average the term [h (zmt) f(δ̂
τ

mt)] over
T − τ time periods, and if we take (T,N)→∞.
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A.4 The Standard CCP Estimator

Here we explain the standard CCP approach implemented in the Monte Carlo experiment to

estimate the model parameters. By “standard,” we mean involving a full specification of how

all state variables evolve, and not relying on Euler equations. Following Hotz and Miller (1993),

this CCP approach avoids the computational burden of solving the dynamic problem within the

estimation algorithm associated with Rust’s (1987) nested fixed point approach.

The estimation here follows section 2.1 of Kalouptsidi et al. (2017) and we refer readers to it

for details. Estimation begins by estimating choice probabilities conditional on individual states

and the modeled exogenous state variable, i.e., p (k, w). Let Fb represent the stochastic matrix

for observable state variables (k, w) conditional on buying the product, and let Fnb represent the

stochastic matrix when the action is not buying the product. Kalouptsidi et al. (2017) shows that

πb = Aπnb + b,

where A = (I − βFb) (I − βFnb)−1 and b = Aψnb − ψb, where ψa stacks ψa (p (k, w)) across all

values of (k, w).

We estimate the payoff parameters θ using a Minimum Distance estimator, i.e., by minimizing

the L2 norm of

πb (θ)− Aπnb (θ)− b.

Given the parameterization, this is achieved by a linear regression of the vector b on the matrix[
(1− Ak) ,w

]
,

where 1 is a vector of ones, k is a dummy vector equal to one in states where the good is owned,

and w is the vector of prices.37

37Note that one can estimate the model parameters either by minimizing the distance between b and πb(θ) −
Aπnb(θ), or by minimizing the distance between the (nonparametrically) estimated CCP, p, and the CCP generated
by the model, p(θ). See Pesendorfer and Schmidt-Dengler (2008).
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