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1 Introduction

Underlying the cross-section of stock returns is a universe of heterogeneous entities com-

monly referred to as firms. What is the most useful approach to modeling these firms?

For the aggregate market, there is a wide consensus concerning the form a model needs

to take to be a plausible account of the data. While there are important differences,

quantitatively successful models tend to feature a stochastic discount factor with station-

ary growth rates and permanent shocks, combined with aggregate cash flows that, too,

have stationary growth rates and permanent shocks.1 No such consensus exists for the

cross-section.

In this paper we argue that two types of cross-sectional skewness are important for

addressing the question of how to model the cross-section. These are the skewness in

short-term returns and the skewness in long-term returns. We argue that it is useful to

consider both types of skewness together, since explanations for one type of skewness

potentially lead to problems for the other type.

We start with a simple model for stock returns to illustrate the puzzle. Because

the literature has focused on the lognormal distribution, we assume asset returns have a

common lognormal shock and an idiosyncratic shock. This model is consistent with an

equilibrium where agents have constant relative risk aversion and dividends also feature

a common and idiosyncratic shock.

We calibrate this model to the CRSP universe on stock returns. Despite the fact that

the lognormal model implies return skewness, we find that the degree of skewness implied

by the model is far less than monthly cross-sectional skewness in the data. On the other

hand, there is a sense in which the model predicts too much skewness. While long-term

growth in market capitalizations and cumulative returns is highly skewed in the data, we

show that it is even more skewed in the model. The model implies that, relatively quickly,

one firm takes over the entire economy. This causes a problem for definitions of market

risk and idiosyncratic risks. We show that this result is robust to idiosyncratic risk that

1See, for example, Bansal and Yaron (2004), Campbell and Cochrane (1999), Wachter (2013).
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decreases in market size, and firm payout that policies that change based on the life cycle,

both features that are present in the data.

We then present an alternative model based on the binomial distribution, and on

shocks that are additive for individual firms but growing with the economy. In con-

trast to the lognormal model, the binomial model implies stationary dividend shares and

substantial cross-sectional skewness. It also implies decreasing standard deviation as a

function of size, and increasing payout through the life cycle. We show that this model

also implies a role for idiosyncratic risk in the aggregate economy.

Our paper relates to recent work by Bessembinder (2017), who shows that most stocks

underperform Treasury bills most of the time, thereby highlighting the importance of

skewness in the data. He also notes the high degree of skewness in market capitalizations.

Perhaps surprisingly, we show that the underperformance of most stocks in the data does

not pose a challenge to the lognormal model, while monthly and long-horizon skewness

do.

Our work also relates to the research on power laws and firm values (Axtell, 2001;

Gabaix, 2009) in that the same mechanism that generates the power law (independent,

permanent shocks to growth rates) lies behind our results on long-run returns. Like

Gabaix (2011), who focuses on GDP, we show how idiosyncratic volatility can play a role

in aggregate outcomes through a failure of diversification.

Since Fama (1965) established that stock returns did not approximate a normal dis-

tribution, the literature has examined the empirical linkages between this skewness and

expected returns. The initial focus was on co-skewness (Harvey and Siddique, 2000;

Dittmar, 2002), while more recent papers examine idiosyncratic skewness as well (Bali

et al., 2011; Boyer et al., 2010; Kapadia, 2006). Others work measures ex ante skewness

through options (Chang et al., 2013; Conrad et al., 2013). The focus of these papers is

on the measurement of conditional skewness for a particular stock at a given point in

time. This is a difficult measurement problem. In this paper, by contrast, we focus on the

degree of unconditional skewness relative to various benchmark hypotheses on the return

2



data generating process.2 We find that it is very large.

Indeed, while most of the literature has focused on the cross-section of expected re-

turns with the goal of establishing a correct pricing model, we focus on the measurement

of cross-sectional skewness for its own sake. Cross-sectional skewness has received little

attention, perhaps due to the view that it is not relevant in diversified portfolios because

of the central limit theorem; that is, a portfolio of sufficiently many assets is close to

normally distributed, and idiosyncratic risk does not matter. Our results indicate, how-

ever, that this reasonable intuition is model-dependent. There is no ex ante reason to

dismiss skewness as irrelevant in a diversified portfolio. Correctly characterizing the dis-

tribution of returns, therefore, is important for portfolio decisions; it is also important

for the reliability of statistics such as the mean and standard deviation, particularly the

conditional mean and standard deviation. Finally, if one wants to simultaneously under-

stand the cross-section of stock returns as well as the aggregate market, it is necessary to

model both simultaneously. In this regard, one must think about how the cross-section

aggregates, and here, the distributional assumptions on the cross-section are of first-order

importance.

The paper proceeds as follows. Section 2 describes the benchmark lognormal for asset

returns. Section 3 takes this model to the data on return skewness. Section 3.6 discusses

the mechanism in the model that leads to failure for long-horizon returns, and tests

various potential fixes. Section 5 builds an alternative model that matches cross-sectional

skewness, and nonetheless possesses stationary firm dynamics. We discuss a connection

between aggregate growth and idiosyncratic risk. Section 6 concludes.

2An underlying assumption in this literature, based on early work of Kraus and Litzenberger (1976),
is that non-increasing absolute risk aversion implies that positive co-skewness is negatively priced and
that positive idiosyncratic skewness has a price of zero. However, a lognormal distribution features both
types of skewness and admits a CAPM-type result with constant relative risk aversion. Thus the choice
of benchmark is important.
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2 The standard lognormal model

Recent research in finance provides numerous models for stock returns. Most of these

models, however, take a similar form. Stock returns are subject to a common shock and

an idiosyncratic shock. In many models, stock returns are an equilibrium outcome of an

economy populated by investors who receive an endowment or who make an investment

decision subject to a technology.

Assume there are N firms indexed by j.3 Specifically, let Rj,t+1 denote the gross

return on firm j between time t and t + 1. We assume a one-factor statistical model for

log returns:

logRjt = αj + βj logRMt + εjt, (1)

where εjt are mean zero and iid across time, where εjt and εkt are independent for j 6= k,

and where εjt is independent of RMt. We also assume a one-period riskfree asset with

constant (gross) return Rf . We use the notation RMt to denote the common factor

without, for now, taking a stance on whether this denotes the true market return. While

our main results do not depend on specific distributional assumptions, we assume that

εjt are normally distributed for all j and t, and that logRMt is also normally distributed.

That is, for each j = 1, . . . , N , and for all t, we assume εjt ∼ N
(
0, σ2

εj

)
. We assume, for

all t, logRMt ∼ N
(
µM − 1

2
σ2
M , σ

2
M

)
, so that µM = logE[RMt]. Under these assumptions

(1) is the discrete-time equivalent of a geometric Brownian motion for the stock price.

We assume a one-factor model for convenience, but our results do not depend on this

assumption.

To illustrate how this structure can arise, we consider an iid lognormal model. Assume

a complete-markets endowment economy with a representative agent with utility

∞∑
t=0

δt
C1−γ
t − 1

1− γ
, (2)

3We use the terminology firm and stock interchangeably to mean the entity with returns (1). In the
data, we identify firms with CRSP PERMNOs.
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where the growth of the aggregate endowment is lognormally distributed

log
Ct+1

Ct

iid∼ N
(
µc −

1

2
σ2
c , σ

2
c

)
. (3)

The parameter δ > 0 represents the time discount factor and γ > 0 the coefficient of

relative risk aversion. We consider assets whose dividends are characterized by:

log
Dj,t+1

Dj,t

=

(
µdj −

1

2
(σdj )

2

)
+ βdj

(
log

Ct+1

Ct
− µc −

1

2
σ2
c

)
+ εdj,t+1, (4)

with εdj,t+1 ∼ N(0, σ2
εdj

) are i.i.d across time, independent of logCt+1/Ct, and where εdjt

and εdkt are independent for j 6= k.4 We use the superscript d to denote dividend-related

parameters and shocks to distinguish them from return-related parameters and shocks.5

Appendix A shows that (1) holds with RMt being the return on the aggregate consump-

tion claim. Because the aggregate consumption claim, is, by definition, total wealth, this

justifies our use of the M subscript. Moreover, as we show in Appendix A, a capital-asset

pricing model holds. We summarize these results in Theorem 1.

Theorem 1. Assuming (2) characterizes utility, (3) characterizes consumption, and (4)

characterizes dividends, returns satisfy (1) with

logE[Rjt/Rf ] = βj logE[RMt/Rf ] (5)

and

logE[RMt/Rf ] = γσ2
M , (6)

where Rf is the equilibrium return on the riskfree asset, and where βj = βdj . Moreover,

εjt = εdjt.

4This is a “multiple-trees” model similar to that considered by Cochrane et al. (2008) and Martin
(2013).

5Recent work focuses on the separation between risk aversion and the inverse of the elasticity of
intertemporal substitution (Epstein and Zin, 1989). However, in this iid model, it is well-known that
allowing for this separation nonetheless is observationally equivalent to the form (2), with γ as risk
aversion.
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The model approximates the CAPM of Sharpe (1964). It is also a special case of

the Consumption CAPM of Breeden (1979) and the ICAPM of Merton (1973) when

investment opportunities are constant.6 While this model has been generalized in various

ways, these generalizations mainly pertain to the form of the utility function (2) or the

distribution of the aggregate endowment.7 These generalizations are unlikely to make a

difference in cross-sectional skewness of firms, which is our focus.

The results above sharpen predictions of previous work on skewness. Since the pi-

oneering work of Kraus and Litzenberger (1976), studies have linked a preference for

skewness, and thus deviations from the CAPM, to the condition of non-increasing abso-

lute risk aversion. Here, we assume utility with constant relative risk aversion, implying

strictly decreasing absolute risk aversion. Asset returns feature both co-skewness and id-

iosyncratic skewness through the lognormal distribution. However, (5) implies the CAPM

holds. How can this be? It turns out that a preference for skewness, and lognormal re-

turns interact precisely to as deliver the CAPM (5), which is of course not exactly the

same as the mean-variance CAPM of Sharpe (1964). In this study, we evaluate skewness

relative to the lognormal benchmark as opposed to the normal benchmark. Lognormality

is arguably a more plausible null hypothesis than normality.

While simple, this model captures some important features of asset price data. First,

gross returns always are positive, as they must be because of limited liability (this would

not be true if we assumed, for example, a normal distribution). Second, stock returns are

unpredictable. This assumption has been extensively evaluated in the data, and there

does appear to be statistically significant predictability. However, for our purposes what

is important is that most return variance arises from unpredictable changes in prices,

as one would expect in an environment with utility maximizing agents.8 Third, stocks

returns have heterogeneous volatilities and are subject to idiosyncratic risks. Fourth, the

6Campbell (2008) notes that (5) holds provided that returns are lognormal. The above result justifies
the assumption of lognormality.

7For example, it is will known that this model cannot explain the equity premium puzzle (Mehra and
Prescott, 1985) or the volatility puzzle (Shiller, 1981; Campbell and Shiller, 1988).

8See recent work by Cochrane (2008) and Welch and Goyal (2008) and the survey by Campbell (2008).
Wachter and Warusawitharana (2015) discuss economically motivated priors on predictability.
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distribution of stock returns is stationary. Consistent with this assumption, risk premia

and interest rates appear stationary in the data in spite of exponential growth in wealth

over the last century and longer (Shiller, 1989; Golez and Koudijs, 2017) and are also

similar internationally (Campbell, 2018, Chapter 6). Finally, the model is micro-founded

in a model with utility maximizing agents where consumption and dividends are also

consistent with important data features (i.e. dividends and consumption are positive,

growing over time, with rates of change that are largely unpredictable).9

3 Empirical results

3.1 Data

The data consists of monthly returns on ordinary common shares of stocks traded on all

major exchanges, available on CRSP, from July 1926 to December 2016. Unless stated

otherwise, we use holding period returns (i.e. with invested dividends). When computing

multi-period returns, we follow entities using PERMNO. We use one-month Treasury bill

returns from Kenneth French’s website. We also consider two subsets when calibrating

our simulations.

The first subset consists of all firms with at least 60 months of returns. We choose this

cutoff because it allows for plausible estimation of the parameters. This yields a universe

of 16,087 firms. We also consider a much smaller subset of the firms continuously in

existence between January 1973 and December 2016. For the second subset, we restrict

our universe to stocks without missing data for monthly returns. This gives us 404 firms.

This set of stocks is clearly subject to survivor bias. However, it has the advantage that

we can directly compare data to our simulated firms without the need to consider entry

and exit.

Table 1 reports return moments for all CRSP stocks, for the subset of stocks for which

9Like the predictability of stock returns, the predictability of consumption growth, and, more to our
point, dividend growth, has been extensively evaluated (van Binsbergen and Koijen, 2010). In Section 3.6
we discuss how introducing predictability in dividend growth affects our results.
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we have more than 5 years of data, and for the stocks with continuous returns between

1973 and 2016. The mean of monthly net returns is 1.1% across all stocks. It is slightly

higher–1.3%–across the stocks with more than 5 years of data. For both sets of stocks,

the median is indistinguishable from zero. The standard deviation of returns for both sets

is 17% per month. Both are quite positively skewed, with a skewness coefficient of about

6.

Overall, the stocks with more than 5 years of data have similar cross-sectional moments

compared with the full universe. The stocks in continuous existence, interestingly, have a

similar mean return. However, their median return is higher: it is 1% whereas the median

return is indistinguishable from zero for the wider population. The standard deviation is

10% versus 17% for the wider population, and the skewness is 1.3 versus 5.8.

In recent work, Bessembinder (2017) notes that on average, individual stocks do not

outperform Treasury bills. Because this finding has a connection to skewness, as Bessem-

binder discusses and as we elaborate on below, we follow his study and report the percent

of stock returns exceeding the one-month Treasury bill return. Confirming his results, we

find that only 48% of stock returns exceed the Treasury bill return of that month.

3.2 Simulation strategy

We now ask how likely these and other features of the data are to occur in the econ-

omy described in Section 2. To do this, we create fictitious samples using Monte Carlo

simulation.

An immediate question arises: how many stocks do we consider, and how do we handle

the fact that stocks move in and out of the sample? These questions make clear the benefit

of our small sample of 404 companies in continuous existence. In the case of this sample,

we can calibrate our firms to these companies. However, this approach has the problem of

survivorship bias. The distribution of means and standard deviations, for example, may

not represent the true ex-ante distribution facing investors.

Figure 1 illustrates one challenge in modeling the cross-section of individual stocks.
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This figure shows how the number of CRSP stocks has fluctuated over time. The number

of stocks, below 1000 prior to 1950, reached a peak of about 8000 in the late 1990s,

and has since declined to around 4000. There is a jump in the number in January 1973

corresponding to the establishment of the NASDAQ.

To roughly capture the number of firms trading in the stock market, we set the number

of firms in our simulation equal to the median value in Figure 1, which is 2,440. We then

estimate firm-level parameters as described in the next section. Clearly, there are many

more firms in the estimation than there are stocks in the simulation (16,087 versus 2,440).

We thus use the following bootstrap procedure. At the start of each fictitious sample,

we draw 2,440 stocks from the universe of 16,087 without replacement. To reflect the

fact that some firm-level parameters are statistically unlikely—the firms to which they

belong are only present on the exchanges for a small period of time— we assign different

probability weights to different firms. That is, if Nj is the number of months that firm

j is listed, we draw from the estimated parameters of firm j with probability
Nj∑16,087

i=1 Nj
.

Thus, across fictitious samples, we should roughly capture the true distribution of firms

in the cross section.

Given a set of firm-level parameters, we simulate fictitious samples assuming returns

are distributed as in Section 2. We consider samples of two different lengths to represent

the sample with 16,087 firms from January 1973 to December 2016 and the sample with

404 firms from July 1926 to December 2016. For each type of simulation, we consider 400

such fictitious samples.

For each sample, we draw random normal shocks εMt. We then draw Nfirm sequences

of iid idiosyncratic shocks εjt. Stock j’s time-t return is then

logRjt = µj −
1

2
σ2
j + βjσMεMt + σj,εεjt. (7)

Below, we describe the parameter estimation. We set the riskfree rate to a constant in

the simulations and equal to the average rate on the 1-month Treasury bill.
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3.3 Estimation

We estimate the firm-level parameters using CRSP data. We take the sample mean

return on the value weighted portfolio to estimate eµM = E[RMt] and the variance of the

log return to estimate σ2
M = Var(logRMt).

For each stock j, we estimate βj from the OLS regression (1). That is, we estimate

βj using log returns. While most studies use level returns, running the regression in log

returns is what the theory suggests. Given βj and µM , we compute the expected log

return on stock j as

µj = (1− βj) logRf + βjµM . (8)

We estimate σ2
j,ε as the variance of the residuals in (1). Then if σ2

j is the variance of the

total return of logRjt, it must be that

σ2
j = σ2

j,ε + β2
jσ

2
M ,

thus the estimates of βj, σ
2
M , and σ2

ε,i provide a sample estimate of σ2
j . Standard OLS

regression results tell us that this is the same estimate we would obtain if we estimated

the sample standard deviation of log returns directly. This completes the set of parameter

values we need to simulate from the model.

As a robustness check, we directly estimate µj using the sample average. Namely,

µj = E [logRj] +
1

2
σ2
j , (9)

where we compute E [logRj] using the sample average of log returns and σ2
j as the sample

variance of log returns.

3.4 Pooled monthly returns

In this section, we compare characteristics of monthly returns in the model and in the data.

In each fictitious sample path, we compute the mean, the variance, and other statistics.
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Thus for each statistic we have a sampling distribution consisting of 400 “observations.”

We report the median value, the 5th and 95th percentile values, and the minimum and

maximum across all 400 simulations. We also report population statistics computed from

pooling the entire set of simulations.

Table 2 reports the results from the simulations. Panel A and C rely on the CAPM for

estimation, while Panels B and D use direct estimation of mean returns. Direct estimation

successfully replicates the mean return, while relying on the CAPM appears to somewhat

understate the mean return. Both methods, and both types of simulations, replicate the

standard deviation of returns almost exactly. Thus the model can successfully capture

the first two moments of returns, perhaps not surprisingly.

The model cannot, however, capture the skewness of returns. For the full set of firms,

the skewness is 5.846, while the model predicts a skewness of mere 0.938. Moreover, the

model implies that skewness is well-estimated, with the minimum, across all 400 draws

being 0.849 while the maximum is 1.287. Skewness in the data is therefore far above what

could be possibly implied by the model. This discrepancy occurs whether or not the mean

is estimated using the CAPM or directly.

One may think that the skewness is a feature of the potentially short-lived firms that

populate the larger sample. However, skewness that is excessive relative to the model is

also present for the 404 long-lived firms. Here, the skewness is much smaller: 1.321. It

is still far above what the model generates, however (the maximum in this calibration is

0.561).

Note that the model fails to match skewness in the data despite the fact that returns

are positively skewed in the model due to the lognormal distribution. To highlight this

point, we also examine the skewness of log returns. Skewness of log returns in the model

is very slightly negative.10 Interestingly, skewness of log returns is also very slightly

negative in the data. Along this dimension, the model successfully matches the data, but

10Skewness is not exactly zero for log returns because we are sampling from a distribution with
heterogeneous variances. The skewness of the return distribution depends on properties of the variance
distribution.
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it is misleading: the low log skewness in the data apparently occurs not because there is a

heavy right tail, but because the left tail outweighs the right in the skewness calculation.

Looking purely at log returns, one would miss the important result that the model fails

to match the skewness of level returns.

Motivated by results of Bessembinder (2017), we also calculate the percent of obser-

vations that exceed the riskfree rate. The model succeeds in matching the data for both

sets of simulations. For the full set of firms, the fraction of returns exceeding the riskfree

rate is 48% in the data. It is also 48% in population in the model.

The model’s success in matching the proportion of returns exceeding the riskfree rate

is important for two reasons. First, it shows that it is possible, in an equilibrium model

with risk averse agents, to have returns on equities fall below the riskfree rate most of

the time. Second, the skewness in the data appears unrelated to this result; the model

can capture the percent of observations above the riskfree rate, but it fails to capture the

skewness.

How is it that, in the fully rational equilibrium model, in which there is an equity

premium, stocks underperform Treasury bills most of the time? There are two reasons

why this occurs: the first is due to lognormality, and the second, which enhances the first,

is due to undiversified risk.

Consider first the case of the market portfolio. In this case, there is no undiversified

risk.11 Define an N(0, 1) random variable εM and let rf = logRf . Because the log is a

monotonic transformation,

Pr(RM > Rf ) = Pr(logRM > rf ) = Pr
(
σMεM ≥ −(µM − rf ) +

1

2
σ2
M

)
.

Because εM ∼ N(0, 1), the probability that σMεM ≥ −(µM−rf )+ 1
2
σ2
M exceeds 50% if and

only if −(µM−rf )+ 1
2
σ2
M < 0, or equivalently if µM− 1

2
σ2
M−rf > 0. If µM− 1

2
σ2
M−rf < 0,

then we would expect the market portfolio to underperform Treasury bills more than half

11Bessembinder (2017) also analyzes this result, but assumes that the excess return is lognormally
distributed. This is a less appealing assumption because the excess return could, theoretically, be negative,
while the return itself cannot.
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of the time.

Is it possible, under the model above, to have µM − 1
2
σ2
M − rf < 0? It is, because the

model only requires that µM − rf > 0. The mean return is greater than the riskfree rate,

but the median return is not.

However, while this analysis shows that it is theoretically possible for more than half

of the observations on the market portfolio to fall below the riskfree rate, it is not likely

given the data. The equity premium, µM − rf is about 0.07 per annum, while 1
2
σ2
M is

about 0.02 per annum. The magnitude of the equity premium is simply too large.

However, for an individual stock, the effect above is enhanced because of idiosyncratic

volatility. Recall that, for the market return, the condition that returns exceed the riskfree

rate more than half the time is µM− 1
2
σ2
M−rf > 0. For an individual stock j, this condition

naturally becomes µj − 1
2
σ2
j − rf > 0. However, while µM is in some sense an average of

µj across j,12 σ2
M is far below the average of σ2

j on account of diversification.

Finally, note that none of this analysis depends on the horizon. If returns are log-

normally distributed, means and standard deviations both scale linearly in the horizon,

as does the riskfree rate return. The probability of long-horizon returns exceeding the

return on the Treasury bill position is the same as the probability of short-horizon returns

exceeding the Treasury bill position.

3.5 Monthly returns at a fixed point in time

So far we have reported that returns in the data are far more skewed than what the lognor-

mal model would predict. One possible reason for this skewness is that, in pooling returns

in the data, we have aggregated over many different idiosyncratic volatility regimes. If

firm-level volatilities become more dispersed—if idiosyncratic volatility is higher at some

points in time than in others (Campbell et al., 2001; Herskovic et al., 2016)—we might

expect to find skewness in pooled returns. However, at any particular point in time,

skewness in the population of returns would be much less.

12To be precise: µM = log(E[RM ]) = log(
∑
wjE[Rj ]) = log(

∑
wje

µj ).
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To test this hypothesis, we compute skewness in the cross-section at each point in

time. We calculate

skewcs
t =

1
n

∑n
i=1(Rj,t − R̄t)

3[
1
n

∑n
i=1(Rj,t − R̄t)2

]3/2 , (10)

where R̄t = 1
n

∑n
i=1 Ri,t, that is, the cross-sectional mean of the return. In a sample of

length T , we obtain T observations of cross-sectional skewness. We first examine results

for the 16,087 firms; Figure 2 shows a histogram of these skewness observations. Con-

sistent with time-varying idiosyncratic volatility, the majority of observations fall below

the pooled statistic, with a large cluster close to zero. Even so, the data firmly reject the

model. The dotted line in the figure shows the maximum skewness obtained in simula-

tions in the model. The vast majority of data observations exceed the maximum value

implied in the 400 model simulations. Figure 3, which shows analogous results for the 404

firms, tells a similar story. Finally, Table 3 shows that average cross-sectional skewness,

while below the pooled skewness, is far above what the model is capable of generating.

We can therefore conclude that the lognormal model is not capable of generating the

cross-sectional skewness observed in the data.13

3.6 Long horizon returns

The previous section shows that the lognormal model vastly under-represents positive

return skewness in monthly returns in the data.

We now consider long-horizon returns. One advantage of the iid lognormal model is

that it makes very clear predictions about long horizon returns. Both the mean and the

variance of log returns scale perfectly in T . For a given stock j, skewness increases in T

because

skew(σ2
j ) =

(
eσ

2
j + 2

)√
eσ

2
j−1.

13In this analysis, we simulate from a lognormal model with constant idiosyncratic volatilities. One
might argue then that we are not perhaps spikes in idiosyncratic volatility as documented by Herskovic
et al. (2016). Because of the infrequency of these spikes, however, they cannot account for the inability to
match cross-sectional skewness throughout the data sample. Moreover, the computation of idiosyncratic
volatility also depends on the underlying return generating process, a point to which we will return in
Section 5.
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However, the percent of returns of stock j exceeding the riskfree rate depends only on the

properties of the log return, and thus is horizon-invariant.

One striking feature of the data, is the skewness in the size of firms. The recent striking

growth in the stock-market capitalization of so-called FANG14 companies, despite their

already large size have called wide attention to this phenomenon. However, it is not a

new feature of the data. Axtell (2001) discusses the extreme skewness in firm sizes, which

he characterizes with a power law distribution.15 Bessembinder (2017) discusses the right

tail in a metric of wealth creation.

We now ask whether our model can capture this skewness. We examine the cross-

section of cumulative returns and growth in market capitalization implied by the model

of Section 2. We consider, for each statistic, the proportion of the total value of that

statistic captured by the top 10 firms. We first compute this quantity for cumulative

returns. Table 4 confirms the skewness reported in previous studies holds for cumulative

return measures: the ten firms with the highest returns constitute 29% of the total when

measured by growth in market capitalization and 72% of the total when measured by

cumulative return. It would seem unlikely that the model, which is unable to capture the

cross-sectional skewness, could capture how a small fraction of firms could so dominate

when measured according to these statistics.

To compare the model with the data, we cumulate returns in each simulation, with

returns given by the exponential of (1). This equation does not take a stand on whether

the return comes from price appreciation or from the dividend yield, and therefore we

report the same growth in market capitalization and cumulative return in the model. We

discuss how introducing dividend payouts would affect the model’s results later.

Table 4’s results for methods 1 and 2 illustrate that the model overstates long-run

skewness, rather than understating it. 16 In the data, the top 10 firms account for 72%

14Facebook, Amazon, Netflix, Google
15In our paper, firm sizes do not satisfy a power law distribution because there does not exist a

stationary distribution of firm sizes, as discussed below. From a technical point of view, it is helpful to
have a stationary distribution of firm sizes. It is less clear, however, that the true distribution of firm
sizes is in fact stationary.

16Independently and concurrently, Bessembinder (2017) shows that a model with normally distributed
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of the cumulative return and 29% of growth in market capitalization. For most samples

in the simulations, the top 10 firms account for a full 99% of the value.

4 Discussion

4.1 Skewness in long-horizon returns

Where does the skewness in long-horizon returns come from? It arises from the cumulative

effects of randomness. The log difference between any two returns is a random walk, and

thus, by a well-known mathematical result, must wander arbitrarily far away from zero.

It follows that “most” of the time, an economy that has run sufficiently long will feature

a highly skewed, and in fact nonconvergent distribution of returns.

To see this more precisely, define the cumulative return for asset j between t and T :

CRj,t,t+T =
T∏
i=1

Rj,t+i.

From (1), for any two firms j, k

log
CRk,t,t+T

CRj,t,t+T

= T (αk − αj) + (βk − βj) log CMRt,t+T +
T∑
i=1

(εk,t+i − εj,t+i) (11)

where CMR =
∏T

i=1Rm,t+i is the cumulative market return. We then have the following

result

Lemma 1. For any two firms j, k with j 6= k, the difference between log cumulative

returns is a random walk with drift.

Proof. The result follows because both log CMRt,t+T and
∑T

i=1(εk,t+i− εj,t+i) are random

walks.

The random walk is known to be nonstationary. The variance of
∑T

i=1(εk,t+i − εj,t+i)

idiosyncratic shocks but otherwise identical firms can also overstate the skewness in the data.
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is T (σ2
εi + σ2

εj), namely it increases linearly in the horizon. This means that the difference

between log returns can wander anywhere on the real line, and so in practical terms it will

spend most of its time at very large positive or large negative numbers. To be precise:

Corollary 1. There is a subsequence s(T ) such that for every j, k, j 6= k, log CRk,t,t+s(T )−

logCRj,t,t+s(T ) approaches negative or positive infinity as s(T ) approaches infinity.

Proof. The result follows from Lemma 1 and results in Feller (1968).

Now consider ratios of the form

CRj,t,t+T∑N
k=1(CRk,t,t+T )

,

which give the percent contribution of the cumulative return on firm j to the total across

the market. Corollary 1 implies that these ratios to be either very close to 1, or very

close to zero most of the time, provided that the economy has run long enough. The

large percentages of the total gain accounted for by merely ten assets shown in Table 4

demonstrate this effect in the simulations.

Skewness in cumulative returns is important for two reasons. First, it is at odds with

the data, as Table 4 shows. Even if we did not reject the lognormal model because it

delivers insufficient short-horizon skewness, we could reject it because of excessive long-

horizon skewness. Note, however, that while the data rejects the lognormal model, it is

not possible to tell from the data whether the underlying process for cumulative returns,

or for that matter, market capitalization growth, is stationary.

This leads to the second reason why skewness in cumulative returns is important:

because of what it says about market values. Divergent market values cause a theoretical

problem that we describe in the next section. One could, in a model, have divergent

cumulative returns, but a stationary distribution of relative market values. Unfortunately,

however, under the assumptions in Section 2, relative market values do diverge.
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4.2 Skewness in market capitalization

The model for returns in (1) does not distinguish between returns including and exclud-

ing dividends. To address the distinction between market capitalization and cumulative

return, we need a model for the dividend yield. The iid endowment economy model

described in Section 2 is one such model.

The model in Section 2 implies that ratios of prices to dividends are constant. Namely,

Pjt
Djt

=
1

Φj − 1
(12)

for an asset-specific constant Φj such that Φj > 1 (see Appendix A). The finding of a

constant price-dividend ratio is intuitive because the growth rate of dividends and the

discount rate applied to future cash flows are both constant. Equation (12) implies that

growth rates in dividends and in market capitalizations are the same. Moreover, (4)

implies that dividend growth follows a law of motion that is analogous to that of returns.

Therefore, the results for cumulative returns also hold for market capitalizations:

Lemma 2. For any two firms j, k with j 6= k, the log ratios of market capitalizations

logPjt/Pkt are a random walk with drift.

Proof. The result follows from (4) and the fact that the ratio of prices to dividends is a

constant (12).

Corollary 2. There is a subsequence s(T ) such that for every j, k, j 6= k, logPj,s(T )/Pk,s(T )

approaches negative or positive infinity as s(T ) approaches infinity.

This result once again follows from Feller (1968) and the fact that log price differences

are random walks. Thus a small number of firms, and eventually a single firm, will come

to dominate the economy.
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Finally note that cumulative returns and market capitalizations are closely related:

CRj,t,t+T =
T∏
i=1

(
Pj,t+i +Dj,t+i

Pj,t+i−1

)

=
T∏
i=1

(
Pj,t+i/Dj,t+i + 1

Pj,t+i−1/Dj,t+i−1

Dj,t+i

Dj,t+i−1

)
= ΦT

j

Dj,T

Dj,t

and thus

CRj,0,T = ΦT
j Dj,T = ΦT

j (Φj − 1)Pj,T

where we have normalized the initial price in the economy to equal 1.

Intuitively, since returns and dividends are driven, in equilibrium, by the same set of

shocks. Thus the cross-section of firm values is nonstationary and, as with cumulative

returns, with probability one a single firm will come to take over the economy.

4.3 Idiosyncratic and market risk

A consequence of divergent ratios of market capitalization is two incompatible notions of

a market portfolio. Consider two possible definitions:

(a) The claim to aggregate consumption

(b) The value-weighted portfolio of dividend claims.

Note that (a) is identified with RMt in (1). It is the common factor of returns and

dividends. It represents overall wealth in the economy. Relative to this notion of the

market portfolio, the terms εjt are idiosyncratic and unpriced.

That said, (b) is directly analogous to the CRSP value-weighted return typically used

in studies of the stock market. However, (b) is necessarily dominated by a very few firms.

For these firms εjt represents market risk, not idiosyncratic risk.

How is it possible that (a) and (b) are different? Recall that in this model, the CAPM

holds, at least approximately. It then seems that investors should indeed hold the value-
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weighted portfolio. The answer is that they do hold the portfolio with return RMt, which

pays the consumption claim as the dividend. The model in Section 2 does not enforce that

the the dividends add up to consumption. There must be another traded asset, a hidden

one, with potentially strange properties, that makes up the difference. The hypothesis

that the market portfolio does not correspond to the observed stock market is an old one

(Breeden, 1979; Jagannathan and Wang, 1996). This discussion shows not only that such

nontraded assets must exist, but that their share in the economy either goes to zero (in

which case consumption is negligible) or 1 (in which case the stock market is negligible)

as time goes by.

Even though the definitions of the market portfolio are incompatible, it may still

seem surprising that the idiosyncratic shocks εjt do not diversify away in the market

portfolio. After all, (1), because it is based on log returns, holds equally for long and

short-horizon returns. The Central Limit Theorem, and the Arbitrage Pricing Theory of

Ross (1976) should imply that εit is diversified away. The problem is that the variance

of the idiosyncratic risk grows linearly in the horizon. It is necessary to add assets at a

faster rate than the the length of the horizon for the diversification to take place. Figure 1

suggests that this has not occurred. 17

How then can one model the market and individual firms at the same time? There are

other modeling options, but these come at arguably greater cost. One partial solution is

to assume away permanent shocks, a standard approach in the macroeconomics literature

(Zhang (2005) is an example of such an approach in the finance literature). In such a model

the cross-section of cumulative returns still has a nonstationary distribution. However,

market capitalization does have a stationary distribution. This itself is at potentially at

odds with the data, which suggests a heavy right tail in cumulative growth rates, just

not as heavy as in the model. Moreover, in assuming away permanent economic shocks,

17Gabaix (2011) also argues that firm-level fluctuations could be important for aggregate shocks.
However, his argument is different from ours. He starts with the assumption of a stationary power law
distribution in firm sizes. Because some firms are very large, their contributions to GDP growth are
significant, are not diversified away. In our framework, there is a nonstationary distribution of firm sizes,
which creates a theoretical inconsistency in the definition of market risk.
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these models assume away a feature of the economy that is both undeniably present and

of great consequence to asset pricing.18

A second approach is to assume away idiosyncratic shocks. Many papers take this ap-

proach to modeling the cross section. Different implementations of this approach include

Hansen et al. (2008), Lettau and Wachter (2007), Santos and Veronesi (2010), Tsai and

Wachter (2016), Wachter and Zhu (2017).19 When one is modeling features of portfolios,

not individual firms, this is arguably reasonable, though it does take the distribution of

firm sizes in the data as given. However, in assuming away firm-specific shocks, this ap-

proach also assumes away an important feature of the economy: the empirical results in

Section 3.4 make clear that there do exist large, firm-specific shocks. By assuming them

away, we ignore the important question of the relation between these shocks and long-run

uncertain growth, which is ultimately what generates risk premia in the first place.

4.4 Mechanisms to reduce long-horizon skewness

In Section 3.6, we have seen that the lognormal model overstates long-run skewness: while

in the data the top ten firms account for 72% of the cumulative return and 29% of the

growth in market capitalization, in the simulations they account for a full 99% in most

samples. We now examine if such discrepancy persists even after incorporating mecha-

nisms that are designed to reduce the long-run skewness in our simulations. Specifically,

we consider the effect of dividends and time-varying idiosyncratic volatility.

In the first set of modified simulations, we consider dividends. While this would

not affect skewness in long-run returns, it has the potential to decrease skewness in the

growth rate of market capitalizations. There is empirical support for the argument that

18Under minor deviations from time-additive utility, temporary shocks receive a much reduced price
of risk relative to permanent shocks. Zhang (2005) and other papers avoid this problem by assuming an
exogenous stochastic discount factor.

19Hansen et al. (2008) model consumption-dividend ratios as stationary and do not address the question
of the market portfolio. Lettau and Wachter (2007) and Santos and Veronesi (2010) model portfolio
shares as stationary. Tsai and Wachter (2016) model two claims that by definition add up to the market.
While the sizes are non-stationary, claims are re-issued every time a shock takes place place, and so the
resulting distribution of portfolio market capitalization is in fact stationary. Wachter and Zhu (2017)
assume portfolios differ only in their exposure to a rare event which is not realized in the sample.
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firms initiate dividends after reaching maturity in their life cycles.20 Our simulation

procedure allows us to account for this. We use the following simple definition of maturity:

we assume firm has matured when its market capitalization exceeds that of the median

market capitalization in the previous month. We then subtract the dividend yield from the

return when computing growth in market capitalization. Once a firm initiates dividends,

it continues to pay, even if its value drops below the median in subsequent months.

For the purposes of calibration, we compute the monthly dividend-price ratio for the

16,087 firms from our baseline simulation.21 We set the dividend-price ratio used in our

simulation to be equal to the average value computed from the CRSP data, which is

0.1786%.

We also consider the possibility that idiosyncratic volatility might shrink as firms

become larger. Herskovic et al. (2016) document an inversely monotonic relation between

firm size quintile and return volatility. To account for this effect, we assign firms lower

values of idiosyncratic volatility as they become large relative to other firms. Specifically,

we sort firms into size deciles in the simulations. We assign firms an idiosyncratic volatility

based on their size decile. Those in the smallest market cap decile are assigned the highest

idiosyncratic volatility, and those in the largest market cap decile are assigned the smallest

idiosyncratic volatility.22 Firms idiosyncratic volatility can change, month-by-month in

the simulation.

We obtain the idiosyncratic volatilities through the following calibration procedure.

We calculate the idiosyncratic volatility for firms in our sample, and sort these into

idiosyncratic-volatility deciles. The equal-weighted average idiosyncratic volatility then

20Fama and French (2001) and Bulan et al. (2007) find that larger and mature firms are more likely
to initiate dividends.

21 We define the monthly dividend-price ratio as follows:

1

12

∑11
i=0Dt−i

Pt
,

where Pt and Dt are price and dividend in period t, respectively, and where we follow the standard
practice of using the previous twelve months of dividends to eliminate seasonality.

22In the first month of the simulation, all firms are identical and thus assigned the average of the
idiosyncratic volatility.
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becomes the assigned value for that decile. We report these values in Table 5.23

Note that our procedure biases us against finding skewness in the simulations in two

ways. First, we no longer capture the true dispersion in volatilities reflected in CRSP

data because we assign the same volatility to firms in the same decile. This dispersion

is crucial for capturing skewness. Second, we assign firms that are small to the highest

idiosyncratic volatility decile and those that are large to the lowest. This overstates the

relation between size and volatility, thereby shrinking the volatility of larger stocks by

more than they may shrink in the data. Our procedure allows us to conduct numerically

feasible simulations while capturing the size-volatility relation in a way that works in favor

of the lognormal model.

Results for both modifications are shown in Table 4. As might be expected, allowing

for monthly dividends implies that it is less likely for a small number of firms to take over

the economy. This is reflected in a lower percentage for the minimum and 5th percentile.

However, in most simulations, the top ten firms still entirely take over the economy when

the model is calibrated to the larger number of firms over the longer data sample. The

reason is that the effect of random growth described in the previous section still holds

among the very largest firms, even when firms pay dividends.24 Allowing for time-varying

volatility based on size has a more noticeable effect. In fact, market cap growth and

cumulative return in the data are now above the minimum that can be achieved in the

simulation. However, the median percentage, when the economy is calibrated to the larger

group of firms over the longer time period, is still 99%. The persistence of the discrepancy

between model and data seems to imply that understatement of skewness at short horizons

and its overstatement at long horizons require a more fundamental reconciliation.

23For our baseline simulation, we compute these parameters after we draw the 2,440 stocks that
constitute each sample; for the simulation with 404 firms, the parameters are computed beforehand to
circumvent any redundant calculations.

24We could have potentially found larger effects by forcing a strictly increasing relation between divi-
dend yield and size. However, not such relation exists in the data.
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5 A binomial model

In this section we present a simple model that qualitatively captures many features of

that the data that are out of reach for the lognormal model. Because our intent is to

capture cross-sectional skewness, we abstract away from features like aggregate volatility,

and therefore risk premia. As will be clear, incorporating these features into the model is

straightforward.

Consider a cross-section of firms indexed by j = 1, . . . n, and let Dj,t denote the

dividend paid by firm j at time t. For each j and t, define a Bernoulli random variable

Xj,t with parameter λ (that is, Xj,t = 1 with probability λ and zero otherwise). The

Bernoulli random variables are independently distributed across times t and firms j. Let

R denote the (constant) discount rate in the economy.

We recursively define the processes Dj,t and Dt as follows. Let D0 = 1 and Dj0 = 1/n.

Given Dt, define

Dj,t+1 = Dj,t +
1

n
Dte

zXjt (13)

Given Dj,t+1, define

Dt+1 =
n∑
j=1

Dj,t+1. (14)

By construction, individual firm dividends add up to the market dividend, which can then

be set equal to consumption in a representative agent model. Thus this model avoids the

pitfalls of the lognormal model described above.

The following results characterize the aggregate dividends.

Proposition 1. The aggregate dividend follows the process:

Dt+1 = Dt +Dte
z 1

n

n∑
j=1

Xj,t+1.

Standard binomial results can then be used to characterize 1
n

∑n
j=1 Xj,t+1. As n ap-

proaches infinity, this quantity converges quickly to a normal distribution with mean λ

and standard deviation which falls with
√
n. However, given that this quantity is easy to
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compute numerically, characterizing its distribution is not necessary for our purposes.

In this model, firms are subject to unusual large shocks represented by Xj,t. These

shocks generate a high degree of cross-sectional skewness, so much so that it is possible

to calibrate the skewness in the model to the data. Though shocks to the model are

identically distributed over time, firm-level volatility, as measured in the usual way by

squared differences in returns over short intervals, appears to be time-varying (Figure 4).

Time-varying volatility, however, simply reflects the rare realizations of the skewed shocks.

From the point of view of an individual firm, the realizations of Xj,t are rare and

unpredictable (in our calculation, they occur in 2.5% of simulation months for a given

firm). A calculation of growth rate in firm’s dividends, most of the time, would lead to a

conclusion of zero growth. Yet, from the point of view of the economy as a whole, growth

occurs with near-certainty, at a rate of λez. In this model, growth in the economy is due

entirely to the rare idiosyncratic firm-level shocks.

In expectation, firms do participate in economy-wide growth, and this is reflected in

their price:

Proposition 2. Given discount factor R, the ex-dividend price of firm j at time t equals

Pj,t =
Dj,t

R− 1
+

1

n
Dt

(
1 + λez

R− (1 + λez)
− 1

R− 1

)
, (15)

whereas the value of the aggregate market equals

Pt = Dt
1 + λez

R− (1 + λez)
. (16)

Equation 15 shows that the price of firm j is given by the sum of its “cash-cow”

value, namely, the value of its current dividend discounted into the future, plus a term

that accounts for future growth. In this simple model, the term that accounts for future

growth is equal across firms.

Define the share of firm j’s dividend in the aggregate economy as αjt = Djt/Dt. Then
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αjt evolves according to

αj,t+1 = (αjt +
1

n
eZXj,t+1)

(
Dt+1

Dt

)−1

(17)

Define κ = E [(Dt+1/Dt)
−1]. Assuming κ < 1, that is, assuming that on average the

economy grows over time, αjt has a stationary mean given by

ᾱ =
1

n
eZλ

1

1− κ
.

We can expect that this model will generate a well-defined stationary distribution.

By definition, the return on firm j equals

Rj,t+1 =
Pj,t+1 − Pjt +Dj,t+1

Pjt
(18)

It is straightforward to show that this model captures the dependence between size and

idiosyncratic volatility.

It follows from (13) that the the conditional variance of Dj,t+1 is the same for all

firms. Thus the conditional variance of Pj,t+1 is the same for all firms. It follows that the

conditional volatility of returns decreases in Pjt.

Intuitively, investment opportunities in this economy are of a fixed size. In contrast,

in the lognormal economy, the size of investment opportunities scales with the size of the

firm. The decreasing relation between firm size and idiosyncratic volatility suggests a

mechanism such as the one presented here might be at work.

Table 6 summarizes the properties of this model relative to the lognormal model. Un-

like the lognormal model, this model is capable of accounting for cross-sectional skewness.

It also accounts for the decreasing relation between firm size and volatility, which the log-

normal model in Section 2 does not do (in the simulations, we hard-wired this relation to

hold). It produces a stationary distribution of firm shares, which is convenient for model-

ing purposes. However, it does not produce the long-horizon skewness that characterizes
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the data.

The model has other potential implications. For instance, variation in the parameter λ

or z would lead to time-varying idiosyncratic volatility. If these shocks were priced (as they

would be under Epstein and Zin (1989) utility, or if they were correlated with realized

consumption), then the model would produce both common variation in idiosyncratic

volatility, and pricing effects for this factor, as shown in Herskovic et al. (2016).

Nonetheless, the lack of long-horizon skewness suggests that this model is not a suffi-

cient description of the data. It may be that the true process lies between this model and

the lognormal model.

6 Conclusion

We have investigated skewness in the cross section of asset returns through the lens of a

lognormal model of returns with common and idiosyncratic shocks. We show a seemingly

paradoxical result: the model both dramatically understates the skewness in the cross-

section and overstates the skewness in cumulative returns. The understatement is at short

horizons, while the overstatement is at long horizons.

The skewed long-run distribution creates an intriguing theoretical problem for the

micro-foundations of firms and the aggregate market. If firm dividends contain a per-

manent source of uncertainty, then some firms will inevitably grow and “take over” the

economy. In models, this creates a nonstationary distribution of relative firm values. As-

suming a separate market portfolio that is not the value-weighted average of firms solves

the problem in so far as one can proceed with the calculation of equilibrium expected

returns. However, such a market portfolio diverges from the value weighted portfolio of

firms, so that either the stock market, or consumption becomes negligible. Besides being

unrealistic, this inevitably creates difficulties in a true general equilibrium setting when

consumption is constrained to equal firms’ production. It also ignores the connection be-

tween innovation (which takes place at the firm level) and aggregate growth. We present

a model that confronts this problem by implying stationary firm sizes. However, this does
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not capture the long-horizon skewness in the data. The long-run distribution of firm sizes,

should it exist, and the mechanisms keeping that distribution stationary (if indeed it is

stationary) are thus of fundamental importance in asset pricing.
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A Asset prices in the lognormal model

Consider an infinite-horizon complete-markets endowment economy. Assume a represen-

tative agent with utility (2) and endowment with iid log growth rates logCt+1/Ct
iid∼

N
(
µc − 1

2
σ2
c , σ

2
c

)
.

Let RMt denote the gross return on the asset that pays consumption as its dividend

(namely, aggregate wealth). The Euler equation implies

Et

[
δ

(
Ct+1

Ct

)−γ
RM,t+1

]
= 1

Let PCt be the ex-dividend price of the consumption claim. Conjecture that PCt/Ct is a

constant, and define

ΦC ≡
PCt/Ct + 1

PCt/Ct

Then

Et

[
δ

(
Ct+1

Ct

)1−γ

ΦC

]
= 1.

Thus the price-dividend ratio is (indirectly) characterized by

Φ−1
C = Et

[
δ

(
Ct+1

Ct

)1−γ
]

(A.1)

which has a solution as long as parameters are such that the right hand side is less than

1. This confirms the conjecture. Because

RM,t+1 = ΦC
Ct+1

Ct
, (A.2)

RMt is also lognormally distributed. Equation A.2 also implies that RM,t+1 is perfectly

correlated with Ct+1

Ct
, and that logRM,t+1 and log Ct+1

Ct
have equal variance.
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The Euler equation for the riskfree asset equals

Et

[
δ

(
Ct+1

Ct

)−γ
Rf,t+1

]
= 1,

where Rf,t+1 is the return on the riskfree asset between time t and t+ 1. Note that Rf,t+1

is known at time t. Therefore Rf,t+1 equals a constant Rf with

logRf = − log δ + γ(µc −
1

2
σ2
c )−

γ2

2
σ2
c . (A.3)

The risk premium equation, (6), follows from

logEt [RM,t+1/Rf ] = logEt

[
ΦC

Ct+1

Ct

]
− logRf ,

(A.3), and (A.1). The fact that the risk premium is constant justifies replacing the

conditional expectation with the unconditional expectation.

Now consider an asset paying (4) as its dividend. Let Pjt be the ex-dividend price.

Conjecture that Pjt/Djt is a constant and define

Φj ≡
Pjt/Djt + 1

Pjt/Djt

Arguments similar to above show that the price-dividend ratio is characterized by

Φ−1
j = Et

[
δ

(
Ct+1

Ct

)−γ
Dj,t+1

Djt

]
(A.4)

provided again that the right hand side is less than 1. It follows that

logRj,t+1 = log Φj + log
Dj,t+1

Djt

.

Thus logRj,t+1 is normally distributed, and is perfectly correlated with log
Dj,t+1

Djt
. More-

over, they have equal variance. Because the same is true for logRM,t+1 and logCt+1/Ct,
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it follows that βj = βdj and εjt = εdjt.

To show the equilibrium expected return of Rjt, note that

Et

[
δ

(
Ct+1

Ct

)−γ
Rj,t+1

]
= 1,

and therefore

− log δ − γ(µC −
1

2
σ2
C) + γ2 1

2
σ2
C + µj + γβjσ

2
M = 1. (A.5)

We have used the fact that consumption growth and market returns are perfectly corre-

lated. Substituting in for (A.3) shows

µj − logRf = γβjσ
2
M .

Note that this is a restatement of the Consumption CAPM of Breeden (1979). In the

general case, σM is replaced by the standard deviation of consumption growth, and the β

is with respect to consumption growth. The CAPM (5) follows from substituting in for

γ using (6).

B Proofs for the binomial model

Proof of Proposition 1 It follows from (14) that

Dt+1 = Dt + (Dt+1 −Dt)

= Dt +

(
n∑
j=1

Dj,t+1 −
n∑
j=1

Dj,t

)

= Dt +
n∑
j=1

(Dj,t+1 −Dj,t)

= Dt +
1

n
Dte

z

n∑
j=1

Xj,t+1

Proposition 3. ∀s ≥ t, Et[Ds] = Dt(1 + λez)s−t
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Proof. Clearly the result holds for s = t. Assuming the result holds for s− 1,

Et[Dt+s] = Et[Et+s−1[Dt+s]] = Et[Dt+s−1](1 + λez) = Dt(1 + λez)t+s

Proof of Proposition 2

Pj,t =
∞∑

s=t+1

R−(s−t)Dj,t +
1

n
λez

∞∑
s=t+1

R−(s−t)Dt +
1

n
λez

∞∑
s=t+2

R−(s−t)Et [Dt+1] · · ·

= Dj,t

∞∑
s=t+1

R−(s−t) +
1

n
Dt

(
∞∑

s=t+1

R−(s−t)(1 + λez)s−t −
∞∑

s=t+1

R−(s−t)

)

= Dj,t
1

R− 1
+

1

n
Dt

(
1 + λez

R− (1 + λez)
− 1

R− 1

)
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Table 1: Selected Statistics on Pooled Monthly Level Returns

All CRSP

(1926 - 2016)

All CRSP

(1945 - 2016)

16,087 Select

(1926 - 2016)

404 Select

(1973 - 2016)

Mean (in %) 1.118 1.297 1.315 1.331

Median (in %) 0.000 0.000 0.000 0.936

Std. Dev (in %) 17.83 16.82 16.95 10.27

Skewness 6.335 5.987 5.846 1.321

% Positive 48.40 48.91 48.94 54.51

% ≥ 1-Month T-Bill 47.75 48.19 48.26 53.07

% ≥ VW Mkt Return 46.34 46.71 46.71 50.11

% ≥ EQ Mkt Return 45.83 46.19 46.13 49.26

Source: CRSP
Notes: The table reports selected statistics on pooled CRSP common stock monthly
level returns for different time horizons and different universe of stocks. The first and
second columns examine pooled monthly returns of all CRSP common stocks from July
1926 to December 2016 and November 1945 to December 2016, respectively. The third
column concerns pooled monthly returns of all CRSP common stocks with at least 60
monthly returns from July 1926 to December 2016. The fourth column concerns pooled
returns of all CRSP common stocks without missing data for monthly returns from
January 1973 to December 2016.

37



Table 2: Inference on Pooled Monthly Returns

Empirical

Value

Simulated Values Simulation
PopulationMin 5th 50th 95th Max

Panel A. Simulation with 16,087 Firms - Method 1 (CAPM)

E[R]− 1 1.315 0.51 0.71 1.056 1.36 1.59 1.00

σ[R] 16.95 16.00 16.18 16.46 16.75 16.97 16.42

skew[R] 5.846 0.849 0.882 0.938 1.043 1.287 0.942

skew[logR] -0.196 -0.214 -0.192 -0.166 -0.142 -0.122 -0.164

% logR > logRf 48.94 48.51 49.18 50.07 50.94 51.51 50.01

Panel B. Simulation with 16,087 Firms - Method 2 (Direct Estimation)

E[R]− 1 1.315 0.810 1.002 1.311 1.645 1.859 1.290

σ[R] 16.95 16.05 16.24 16.51 16.80 17.02 16.48

skew[R] 5.846 0.826 0.857 0.917 1.009 1.180 0.916

skew[logR] -0.196 -0.245 -0.225 -0.191 -0.166 -0.146 -0.192

% logR > logRf 48.94 49.59 50.30 51.20 52.11 52.67 51.13

Panel C: Simulation with 404 Firms - Method 1 (CAPM)

E[R]− 1 1.331 0.376 0.567 0.889 1.204 1.491 0.867

σ[R] 10.27 9.98 10.06 10.19 10.32 10.46 10.19

skew[R] 1.321 0.396 0.429 0.465 0.502 0.561 0.464

skew[logR] -0.423 -0.100 -0.073 -0.042 -0.010 0.036 -0.043

% logR > logRf 54.51 49.69 50.58 51.90 53.21 54.51 51.82

Panel D: Simulation with 404 Firms - Method 2 (Direct Estimation)

E[R]− 1 1.331 0.814 1.006 1.329 1.645 1.934 1.307

σ[R] 10.27 10.03 10.11 10.23 10.37 10.50 10.24

skew[R] 1.321 0.395 0.428 0.463 0.501 0.559 0.462

skew[logR] -0.423 -0.102 -0.076 -0.044 -0.012 0.034 -0.045

% logR > logRf 54.51 51.65 52.55 53.87 55.20 56.47 53.80

Source: CRSP and simulations
Notes: We conduct 400 monthly simulations of the stock market for the two methods of estimat-
ing the drift parameter (µi). Sampling distribution of each statistic is obtained from the simu-
lations. Panels A and B are relevant to simulations using 16,087 firms with at least 60 monthly
returns from July 1926 to December 2016; Panels C and D pertain to the simulations using 404
firms without missing data for monthly returns from January 1973 to December 2016. The first
column shows the statistic for the corresponding firms. The next five columns show the distri-
bution of the statistic obtained from the simulations, and the last column illustrates the statistic
for the pooled values of 100 simulations. E[R]− 1 and σ[R] are reported in percentages.
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Table 3: Inference on Monthly Cross-sectional Skew

Empirical γ̄cs

γ̄cs from Simulated Values % of Months with
Empirical γcs
≥ MaxMin 5th 50th 95th Max

Panel A. Simulation with 16,087 Firms (1926.07 - 2016.12)

skew[R] (Method 1) 2.381 0.804 0.844 0.894 0.965 1.044 69.15

skew[R] (Method 2) 2.381 0.766 0.816 0.871 0.934 1.015 70.26

Panel B. Simulation with 404 Firms (1973.01 - 2016.12)

skew[R] (Method 1) 0.961 0.348 0.374 0.400 0.426 0.453 86.19

skew[R] (Method 2) 0.961 0.349 0.375 0.401 0.427 0.454 86.19

Source: CRSP and simulations
Notes: We conduct 400 monthly simulations of the stock market for the two methods of esti-
mating the drift parameter (µi). The first column shows the average monthly cross-sectional
skewness (γ̄cs) for the corresponding universe of stocks and sample period. The next five
columns illustrate the distribution of γ̄cs obtained from simulations. The final column reports
the percentage of months in the sample period in which empirical γcs is greater than the max-
imum γ̄cs obtained from the simulations.
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Table 4: Percent of total increase in value accounted for by the top 10 firms

Empirical
Value

Simulated Values

Min 5th 50th 95th Max

Panel A. Simulation with 16,087 Firms (1926.07 - 2016.12)

Method 1 (Baseline)

Market Cap Growth 29.40 56.46 89.14 99.62 99.96 99.99

Cumulative Return 71.67 56.46 89.14 99.62 99.96 99.99

Method 2 (Direct Estimation)

Market Cap Growth 29.40 99.11 99.94 99.99 99.99 99.99

Cumulative Return 71.67 99.11 99.94 99.99 99.99 99.99

Method 3 (Baseline with Monthly Dividends)

Market Cap Growth 29.40 56.55 89.10 99.61 99.99 99.99

Cumulative Return 71.67 56.46 89.14 99.62 99.96 99.99

Method 4 (Baseline with Time-varying Volatility)

Market Cap Growth 29.40 45.95 76.39 98.98 99.99 99.99

Cumulative Return 71.67 45.95 76.39 98.98 99.99 99.99

Panel B: Simulation with 404 Firms (1973.01 - 2016.12)

Method 1 (Baseline)

Market Cap Growth 41.13 25.97 31.66 47.16 81.53 96.36

Cumulative Return 29.97 25.97 31.66 47.16 81.53 96.36

Method 2 (Direct Estimation)

Market Cap Growth 41.33 40.63 48.71 69.87 93.91 99.20

Cumulative Return 29.97 40.63 48.71 69.87 93.91 99.20

Method 3 (Baseline with Monthly Dividends)

Market Cap Growth 41.33 25.90 31.57 47.19 81.51 96.40

Cumulative Return 29.97 25.97 31.66 47.16 81.53 96.36

Method 4 (Baseline with Time-varying Volatility)

Market Cap Growth 41.33 15.92 21.62 23.86 32.35 38.60

Cumulative Return 29.97 15.92 21.62 23.86 32.35 38.60

Source: CRSP and simulations
Notes: We conduct 400 monthly simulations of the stock market for both methods of es-
timating the drift parameter (µi). We also consider simulations with monthly dividends
and time-varying volatility. For each simulation, we examine the percentage of the to-
tal increase in value contributed by the top ten firms, where we measure the increase in
value alternatively as market capitalization growth and cumulative return. Data values
assume we begin with an equal-weighted portfolio, and the sampling distributions of the
percentages are obtained from the simulations. A greater percentage contributed by the
top ten firms implies a greater asymmetry in the distribution of long-term returns.
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Table 5: Deciles for Stocks Formed on Idiosyncratic Volatility

Decile
Average Idiosyncratic Volatility (Monthly)

16,087 Select (1926 - 2016) 404 Select (1973 - 2016)

1 0.285 0.143

2 0.219 0.112

3 0.189 0.097

4 0.166 0.088

5 0.146 0.082

6 0.128 0.075

7 0.111 0.069

8 0.095 0.064

9 0.079 0.058

10 0.060 0.051

Source: CRSP
Notes: The table reports the deciles for stocks formed on monthly
idiosyncratic volatility (σj,ε) and its equal-weighted average within
each decile. The second column pertains to the set of 16,087 firms
with at least 60 monthly returns from July 1926 to December 2016,
the values of which are calculated across the entire universe. In the
simulations, the volatility parameters are estimated only from the
2,440 firms that constitute each sample. The third column pertains
to the set of 404 firms without missing data for monthly returns
from January 1973 to December 2016.
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Table 6: Comparison of Selected Features in Data and Models

Data
Model

(Lognormal)
Model

(Binomial)

Standard Deviation of
Monthly Returns (σ[R])

16.95 16.46 2.29

Skewness of Monthly
Returns (skew[R])

5.85 0.95 5.75

% of Market Cap. Growth
By Top Ten Firms

29.40 99.63 2.62

Stationary Distribution
of Market Cap.?

Unknown No Yes

Inverse Relationship in
Firm Volatility and Size?

Yes No Yes

Source: CRSP and simulations
Notes: The table compares selected features in the data and the
model. The first column examines monthly returns of all CRSP com-
mon stocks from July 1926 to December 2016. The second column
pertains to simulations using 16,087 firms from the lognormal model
and the CAPM. The third column pertains to simulations from the
binomial model, whose parameters were calibrated to match the skew-
ness in the data. The calibrated parameters are reported in Table 7.
For both models, the reported statistics are median values obtained
from 400 simulation samples.
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Table 7: Parameters for Binomial Model

Parameter Value

R 1.30

λ 0.3

λez 0.25

N 500

T 1200

Notes: The table shows the parameters used in
the binomial model (see Table 6), which were
calibrated to match the skewness in the data.
Reported values of R, λ, and λez have been an-
nualized.

43



1929 1939 1949 1959 1969 1979 1989 1999 2009 2019

1000

2000

3000

4000

5000

6000

7000

8000

Nu
m

be
r o

f S
to

ck
s

Nasdaq is founded →

Figure 1: Historical Number of CRSP Common Stocks
On the first day of each month from July 1926 to December 2016, we count the number of
unique common stocks in the cross-section, as available in CRSP. The jump on January
1973, from 2,623 to 5,494, roughly corresponds to the establishment of Nasdaq in February
of 1971.

44



0 10 20 30 40
Monthly Cross-sectional Skew

0

50

100

150

200

250

300

350

400

Co
un

ts

←  Maximum monthly skew
     across all simulated samples

Figure 2: Distribution of Monthly Cross-sectional Skewness (16,087 Firms)
The figure illustrates the distribution of monthly cross-sectional skewness, defined as the
skewness of monthly level returns for the cross-section of firms in each given month. The
graph pertains to set of 16,087 firms with at least 60 monthly returns from July 1926 to
December 2016. The vertical line on the graph represents the maximum of the average
monthly cross-sectional skewness obtained from the 400 simulations.
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Figure 3: Distribution of Monthly Cross-sectional Skewness (404 Firms)
The figure illustrates the distribution of monthly cross-sectional skewness, defined as the
skewness of monthly level returns for the cross-section of firms in each given month. The
graph pertains to set of 404 firms without missing data for monthly returns from January
1973 to December 2016. The vertical line on the graph represents the maximum of the
average monthly cross-sectional skewness obtained from the 400 simulations.
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Figure 4: Total Volatility by Size Group (Binomial Model)
The figure plots monthly firm-level total volatility averaged within the top and bottom
market capitalization quintiles. The returns are simulated from the binomial model with
500 fictitious firms and for 1,200 months, using the calibration in Table 7. At each month,
volatilities are estimated as the standard deviation of monthly returns over the next 60
months.
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