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1 Introduction

In most modern economies, central banks implement monetary policy indirectly, by interven-

ing in certain financial markets (e.g., in the United States, the federal funds market and the

market for treasury securities). The underlying idea is that the effects of those interventions

on asset prices are transmitted to the rest of the economy to help achieve the ultimate policy

objectives. Thus, the transmission mechanism of monetary policy to asset prices is important

for understanding how monetary policy actually operates.

In this paper, we conduct an empirical, theoretical, and quantitative study of the effects of

monetary policy on financial markets in general and the equity market in particular. We make

three contributions. First, we provide original empirical evidence of a novel channel through

which monetary policy influences financial markets: tight money increases the opportunity

cost of holding the nominal assets used routinely to settle financial transactions (e.g., bank

reserves, money balances), making these payment instruments scarcer. In turn, this scarcity

reduces the resalability of financial assets, and this increased illiquidity leads to a reduction in

price. We label this mechanism the turnover-liquidity (transmission) mechanism (of monetary

policy). Second, to gain a deeper understanding of this mechanism, we develop a theory of

trade in financial over-the-counter (OTC) markets (that nests the competitive benchmark as

a special case) in which money is used as a medium of exchange in financial transactions.

The model shows how the details of the market microstructure and the quantity of money

shape the performance of financial markets (e.g., as gauged by standard measures of market

liquidity), contribute to the determination of asset prices (e.g., through the resale option value

of assets), and—consistent with the evidence we document—offer a liquidity-based explanation

for the negative correlation between real stock returns and unexpected increases in the nominal

interest rate that is used to implement monetary policy. Third, we bring the theory to the

data. We calibrate a generalized version of the basic model and use it to conduct quantitative

theoretical exercises designed to assess the ability of the theory to match the empirical effects

of monetary policy on asset prices, both on policy announcement days and at longer horizons.

The rest of the paper is organized as follows. Section 2 presents the basic model. It

considers a setting in which a financial asset that yields a dividend flow of consumption goods

(e.g., an equity or a real bond) is demanded by investors who have time-varying heterogeneous

valuations for the dividend. To achieve the gains from trade that arise from their heterogeneous
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valuations, investors participate in a bilateral market with random search that is intermediated

by specialized dealers who have access to a competitive interdealer market. In the dealer-

intermediated bilateral market, which has many of the stylized features of a typical OTC

market structure but also nests the perfectly competitive market structure as a special case,

investors and dealers seek to trade the financial asset using money as a means of payment.

Periodically, dealers and investors are also able to rebalance their portfolios in a conventional

Walrasian market. Equilibrium is characterized in Section 3. Section 4 presents the main

implications of the theory. Asset prices and conventional measures of financial liquidity (e.g.,

spreads, trade volume, and dealer supply of immediacy) are determined by the (real) quantity

of money and the details of the microstructure where the asset trades (e.g., the degree of market

power of dealers and the ease with which investors find counterparties). Generically, asset prices

in the monetary economy exhibit a speculative premium whose size varies systematically with

the market microstructure and the monetary policy stance. For example, a high anticipated

opportunity cost of holding money reduces equilibrium real balances and distorts the asset

allocation by causing too many assets to remain in the hands of investors with relatively low

valuations, which depresses real asset prices.

Section 5 is empirical. In it we revisit the finding, documented in previous empirical work,

that surprise increases in the nominal policy rate cause sizable reductions in real stock returns

on announcement days of the Federal Open Market Committee (FOMC). A 1 basis point

unexpected increase in the policy rate causes a decrease of between 5 and 11 basis points in

the stock market return on the day of the policy announcement. In addition, this section

contains two new empirical findings. First, we document that episodes of unexpected policy

tightening are also associated with large and persistent declines in stock turnover. Second, we

find evidence that the magnitude of the reduction in return caused by the policy tightening is

significantly larger for stocks that are normally traded more actively, e.g., stocks with higher

turnover rates. For example, in response to an unexpected increase in the policy rate, the

announcement-day decline in the return of a stock in the 95th percentile of turnover rates is

about 2.5 times larger than that of a stock in the 5th percentile. The empirical evidence in this

section suggests a mechanism whereby monetary policy affects asset prices through a reduction

in turnover liquidity.

In Section 6 we formulate, calibrate, and simulate a generalized version of the basic model

and use it to assess the ability of the theory to fit the empirical evidence on the effects of
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monetary shocks on aggregate stock returns as well as the new cross-sectional evidence on

the turnover-liquidity transmission mechanism. Section 7 concludes. Appendix A contains

all proofs. Appendices B, C, D, and E, contain supplementary material. Appendix B covers

technical aspects of the data, estimation, and simulation. Appendix C contains additional

theoretical derivations and results. Appendix D verifies the robustness of the empirical and

quantitative findings. This paper is related to four areas of research: search-theoretic models

of money, search-theoretic models of financial trade in OTC markets, resale option theories of

asset price bubbles, and an extensive empirical literature that studies the effects of monetary

policy on asset prices. Appendix E places our contribution in the context of all these literatures.

2 Model

Time is represented by a sequence of periods indexed by t = 0, 1, .... Each period is divided

into two subperiods where different activities take place. There is a continuum of infinitely

lived agents called investors, each identified with a point in the set I = [0, 1]. There is also a

continuum of infinitely lived agents called dealers, each identified with a point in the set D =

[0, 1]. All agents discount payoffs across periods with the discount factor β ≡ 1/ (1 + r), where

r > 0 denotes the real interest rate. In every period, there is a continuum of active production

units with measure As ∈ R++. Every active unit yields an exogenous dividend yt ∈ R+ of a

perishable consumption good at the end of the first subperiod of period t. (Each active unit

yields the same dividend as every other active unit, so ytA
s is the aggregate dividend.) At the

beginning of every period, every active unit is subject to an independent idiosyncratic shock

that renders it permanently unproductive with probability 1 − δ ∈ [0, 1). If a production unit

remains active, its dividend in period t is yt = γtyt−1 where γt is a nonnegative random variable

with cumulative distribution function Γ, i.e., Pr (γt ≤ γ) = Γ (γ), and mean γ̄ ∈ (0, (βδ)−1).

The time t dividend becomes known to all agents at the beginning of period t, and at that

time each failed production unit is replaced by a new unit that yields dividend yt in the initial

period and follows the same stochastic process as other active units thereafter (the dividend of

the initial set of production units, y0 ∈ R++, is given at t = 0). In the second subperiod of

every period, every agent has access to a linear production technology that transforms effort

into a perishable homogeneous consumption good.

For each active production unit, there is a durable and perfectly divisible equity share

that represents the bearer’s ownership of the production unit and confers him the right to
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collect dividends. At the beginning of every period t ≥ 1, each investor receives an endowment

of (1− δ)As equity shares corresponding to the new production units. (When a production

unit fails, its equity share disappears.) There is a second financial instrument, money, that

is intrinsically useless (it is not an argument of any utility or production function, and unlike

equity, ownership of money does not constitute a right to collect any resources). The stock

of money at time t is denoted Amt . The initial stock of money, Am0 ∈ R++, is given and

Amt+1 = µAmt , with µ ∈ R++. A monetary authority injects or withdraws money via lump-sum

transfers or taxes to investors in the second subperiod of every period. At the beginning of

period t = 0, each investor is endowed with a portfolio of equity shares and money. All financial

instruments are perfectly recognizable, cannot be forged, and can be traded in every subperiod.

In the second subperiod of every period, all agents can trade the consumption good produced

in that subperiod, equity shares, and money in a spot Walrasian market. In the first subperiod

of every period, trading is organized as follows. Investors can trade equity shares and money

in a random bilateral OTC market with dealers, while dealers can also trade equity shares and

money with other dealers in a spot Walrasian interdealer market. We use α ∈ [0, 1] to denote

the probability that an individual investor is able to make contact with a dealer in the OTC

market. (The probability that a dealer contacts an investor is also α.) Once a dealer and an

investor have contacted each other, the pair negotiates the quantity of equity shares and money

that the dealer will trade in the interdealer market on behalf of the investor and a fee for the

dealer’s intermediation services. We assume the terms of the trade between an investor and a

dealer in the OTC market are determined by Nash bargaining where θ ∈ [0, 1] is the investor’s

bargaining power. The timing is that the round of OTC trade takes place in the first subperiod

and ends before production units yield dividends. Hence equity is traded cum dividend in

the OTC market (and in the interdealer market) of the first subperiod and ex dividend in the

Walrasian market of the second subperiod.1 Asset purchases in the OTC market cannot be

financed by borrowing (e.g., due to anonymity and lack of commitment and enforcement). This

assumption and the structure of preferences described below create the need for a medium of

exchange in the OTC market.

1As in previous search models of OTC markets, e.g., see Duffie et al. (2005) and Lagos and Rocheteau (2009),
an investor must own the equity share in order to consume the dividend.

5



An individual dealer’s preferences are represented by

Ed0
∞∑
t=0

βt(cdt − hdt),

where cdt is his consumption of the homogeneous good that is produced, traded, and consumed

in the second subperiod of period t, and hdt is the utility cost from exerting hdt units of effort

to produce this good. The expectation operator Ed0 is with respect to the probability measure

induced by the dividend process and the random trading process in the OTC market. Dealers

get no utility from the dividend good.2 An individual investor’s preferences are represented by

E0

∞∑
t=0

βt (εityit + cit − hit) ,

where yit is the quantity of the dividend good that investor i consumes at the end of the first

subperiod of period t, cit is his consumption of the homogeneous good that is produced, traded,

and consumed in the second subperiod of period t, and hit is the utility cost from exerting hit

units of effort to produce this good. The variable εit denotes the realization of a valuation shock

that is distributed independently over time and across agents, with a differentiable cumulative

distribution function G on the support [εL, εH ] ⊆ [0,∞], and ε̄ =
∫
εdG (ε). Investor i learns

his realization εit at the beginning of period t, before the OTC trading round. The expectation

operator E0 is with respect to the probability measure induced by the dividend process, the

investor’s valuation shock, and the random trading process in the OTC market.3

Consider a social planner who wishes to maximize the sum of all agents’ expected discounted

utilities subject to the same meeting frictions that agents face in the decentralized formulation.

Specifically, in the first subperiod of every period, the planner can only reallocate assets among

all dealers and the measure α of investors who contact dealers at random. In Appendix C

(Proposition 11 in Section C.1), we prove the allocation that solves the planner’s problem is

characterized by the following two properties: (a) only dealers carry equity between periods,

and (b) dealers do not carry assets after the OTC round of trade, and among those investors

2This assumption implies that dealers have no direct consumption motive for holding the equity share. It is
easy to relax, but we adopt it because it is the standard benchmark in the search-based OTC literature, e.g., see
Duffie et al. (2005), Lagos and Rocheteau (2009), Lagos, Rocheteau, and Weill (2011), and Weill (2007).

3The valuation shock stands in for the various idiosyncratic reasons why individual investors may wish to
hold different quantities of a certain asset at different points in time, such as differences in their liquidity
needs, financing or financial-distress costs, or hedging needs (e.g., correlation of asset returns with endowments).
Several papers that build on the work of Duffie et al. (2005) have formalized the “hedging needs” interpretation.
Examples include Duffie et al. (2007), Gârleanu (2009), and Vayanos and Weill (2008).
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who have a trading opportunity with a dealer in the OTC market, only those with the highest

valuation hold equity shares at the end of the first subperiod. The planner’s problem is useful

to highlight the two (re)allocation motives that will drive equilibrium outcomes in the following

section.4 First, the planner implements an efficient allocation of assets in the OTC trading

round: Since an investor’s utility from the dividend good is linear, and dealers get no utility

from the dividend good, the efficient allocation requires that all the assets held by dealers at

the beginning of the period are reallocated to the set of investors with the highest valuation

for the dividend. Second, by allocating all assets to dealers at the end of every period, the

planner ensures that all assets can be reallocated to the set of highest valuation investors in

the following OTC trading round with probability one (notice that if instead a set of investors

were to enter the OTC round holding the asset, most of these investors would draw valuation

shocks strictly lower than εH , and the planner would only be able to reallocate a fraction α < 1

of those assets to the highest valuation investors who contacted dealers).

3 Equilibrium

Consider the determination of the terms of trade in a bilateral meeting in the OTC round of

period t between a dealer with portfolio adt and an investor with portfolio ait and valuation ε.

Let at = (amt , a
s
t ) denote the investor’s post-trade portfolio and let kt denote the fee the dealer

charges for his intermediation services. The fee is expressed in terms of the second-subperiod

consumption good and paid by the investor in the second subperiod.5 We assume (at, kt) is

determined by the Nash bargaining solution where the investor has bargaining power θ ∈ [0, 1].

Let ŴD
t (adt, kt) denote the maximum expected discounted payoff of a dealer with portfolio adt

and earned fee kt when he reallocates his portfolio in the interdealer market of period t. Let

W I
t (ait, kt) denote the maximum expected discounted payoff at the beginning of the second sub-

period of period t (after the production units have borne dividends) of an investor who is holding

portfolio ait and has to pay a fee kt. For each t, define a pair of functions akt : R2
+×[εL, εH ]→ R+

for k = m, s and a function kt : R2
+ × [εL, εH ]→ R, and let at (ait, ε) = (amt (ait, ε) , a

s
t (ait, ε))

4Below we show that, under the Friedman rule, the decentralized monetary equilibrium implements the
planner’s allocation (see Corollary 1).

5In the working paper version of this model (Lagos and Zhang, 2015), we instead assume that the investor
must pay the intermediation fee on the spot, i.e., with money or equity. The alternative formulation we use
here makes the analysis and the exposition much simpler while the main economic mechanisms are essentially
unchanged.
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for each (ait, ε) ∈ R2
+ × [εL, εH ]. We use [at (ait, ε) , kt (ait, ε)] to represent the bargaining out-

come for a bilateral meeting at time t between an investor with portfolio ait and valuation ε,

and a dealer with portfolio adt. That is, [at (ait, ε) , kt (ait, ε)] solves

max
(at,kt)∈R2

+×R

[
εyta

s
t +W I

t (at, kt)− εytasit −W I
t (ait, 0)

]θ
[ŴD

t (adt, kt)− ŴD
t (adt, 0)]1−θ (1)

s.t. amt + pta
s
t ≤ amit + pta

s
it

ŴD
t (adt, 0) ≤ ŴD

t (adt, kt)

εyta
s
it +W I

t (ait, 0) ≤ εytast +W I
t (at, kt) ,

where pt is the dollar price of an equity share in the interdealer market of period t.

Let WD
t (at, kt) denote the maximum expected discounted payoff of a dealer who has earned

fee kt in the OTC round of period t and, at the beginning of the second subperiod of period t,

is holding portfolio at. Then the dealer’s value of trading in the interdealer market is

ŴD
t (at, kt) = max

ât∈R2
+

WD
t (ât, kt) (2)

s.t. âmt + ptâ
s
t ≤ amt + pta

s
t ,

where ât ≡ (âmt , â
s
t ). For each t, define a pair of functions, âkt : R2

+ → R+ for k = m, s, and let

ât (at) = (âmt (at) , â
s
t (at)) denote the solution to (2).

Let V D
t (at) denote the maximum expected discounted payoff of a dealer who enters the

OTC round of period t with portfolio at ≡ (amt , a
s
t ). Let φt ≡ (φmt , φ

s
t ), where φmt is the real

price of money and φst the real ex dividend price of equity in the second subperiod of period t

(both expressed in terms of the second subperiod consumption good). Then,

WD
t (at, kt) = max

(ct,ht,ãt+1)∈R4
+

[
ct − ht + βEtV D

t+1 (at+1)
]

(3)

s.t. ct + φtãt+1 ≤ ht + kt + φtat,

where ãt+1 ≡
(
ãmt+1, ã

s
t+1

)
, at+1 =

(
ãmt+1, δã

s
t+1

)
, Et is the conditional expectation over the next-

period realization of the dividend, and φtat denotes the dot product of φt and at. Similarly,

let V I
t (at, ε) denote the maximum expected discounted payoff of an investor with valuation ε

and portfolio at ≡ (amt , a
s
t ) at the beginning of the OTC round of period t. Then,

W I
t (at, kt) = max

(ct,ht,ãt+1)∈R4
+

[
ct − ht + βEt

∫
V I
t+1

(
at+1, ε

′) dG(ε′)

]
(4)

s.t. ct + φtãt+1 ≤ ht − kt + φtat + Tt,
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where at+1 = (ãmt+1, δã
s
t+1 + (1− δ)As) and Tt ∈ R is the real value of the time t lump-sum

monetary transfer.

The value function of an investor who enters the OTC round of period t with portfolio at

and valuation ε is

V I
t (at, ε) = α

{
εyta

s
t (at, ε) +W I

t [at (at, ε) , kt (at, ε)]
}

+ (1− α)
[
εyta

s
t +W I

t (at, 0)
]
.

The value function of a dealer who enters the OTC round of period t with portfolio at is

V D
t (at) = α

∫
ŴD
t [at, kt (ait, ε)] dHIt (ait, ε) + (1− α) ŴD

t (at, 0) ,

where HIt is the joint cumulative distribution function over the portfolios and valuations of the

investors the dealer may contact in the OTC market of period t.

Let j ∈ {D, I} denote the agent type, i.e., “D” for dealers and “I” for investors. Then for

j ∈ {D, I}, let Amjt and Asjt denote the quantities of money and equity shares, respectively, held

by all agents of type j at the beginning of the OTC round of period t (after production units have

depreciated and been replaced). That is, Amjt =
∫
amt dFjt (at) and Asjt =

∫
astdFjt (at), where

Fjt is the cumulative distribution function over portfolios at = (amt , a
s
t ) held by agents of type j

at the beginning of the OTC round of period t. Let Ãmjt+1 and Ãsjt+1 denote the total quantities

of money and shares held by all agents of type j at the end of period t, i.e., ÃkDt+1 =
∫
D ã

k
jt+1dj

and ÃkIt+1 =
∫
I ã

k
it+1di for k ∈ {s,m}, with AmDt+1 = ÃmDt+1, AsDt+1 = δÃsDt+1, AmIt+1 = ÃmIt+1,

and AsIt+1 = δÃsIt+1 + (1− δ)As. Let ĀmDt and ĀsDt denote the quantities of money and shares

held after the OTC round of trade of period t by all the dealers, and let ĀmIt and ĀsIt denote the

quantities of money and shares held after the OTC round of trade of period t by all the investors

who are able to trade in the first subperiod. For asset k ∈ {s,m}, ĀkDt =
∫
âkt (at) dFDt (at)

and ĀkIt = α
∫
akt (at, ε)dHIt(at, ε). We are now ready to define an equilibrium.

Definition 1 An equilibrium is a sequence of prices, {1/pt, φmt , φst}∞t=0, bilateral terms of trade

in the OTC market, {āt, kt}∞t=0, dealer portfolios, {〈âdt, ãdt+1,adt+1〉d∈D}∞t=0, and investor port-

folios, {〈ãit+1,ait+1〉i∈I}∞t=0, such that for all t: (i) the bilateral terms of trade {āt, kt}∞t=0 solve

(1), (ii) taking prices and the bargaining protocol as given, the portfolios 〈âdt, ãdt+1,adt+1〉 solve

the individual dealer’s optimization problems (2) and (3), and the portfolios 〈ãit+1,ait+1〉 solve

the individual investor’s optimization problem (4), and (iii) prices, {1/pt, φmt , φst}∞t=0, are such

that all Walrasian markets clear, i.e., ÃsDt+1 + ÃsIt+1 = As (the end-of-period t Walrasian mar-

ket for equity clears), ÃmDt+1 + ÃmIt+1 = Amt+1 (the end-of-period t Walrasian market for money
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clears), and ĀkDt + ĀkIt = AkDt + αAkIt for k = s,m (the period t OTC interdealer markets for

equity and money clear). An equilibrium is “monetary” if φmt > 0 for all t and “nonmonetary”

otherwise.

The following result characterizes the equilibrium post-trade portfolios of dealers and in-

vestors in the OTC market, taking beginning-of-period portfolios as given.

Lemma 1 Define ε∗t ≡
ptφmt −φst

yt
and

χ (ε∗t , ε)


= 1 if ε∗t < ε
∈ [0, 1] if ε∗t = ε
= 0 if ε < ε∗t .

Consider a bilateral meeting in the OTC round of period t between a dealer and an investor

with portfolio at and valuation ε. The investor’s post-trade portfolio, [amt (at, ε) , a
s
t (at, ε)], is

given by

amt (at, ε) = [1− χ (ε∗t , ε)] (amt + pta
s
t )

ast (at, ε) = χ (ε∗t , ε) (1/pt) (amt + pta
s
t ) ,

and the intermediation fee charged by the dealer is

kt (at, ε) = (1− θ) (ε− ε∗t )
[
χ (ε∗t , ε)

1

pt
amt − [1− χ (ε∗t , ε)] a

s
t

]
yt.

A dealer who enters the OTC market with portfolio adt exits the OTC market with portfolio

[âmt (adt) , â
s
t (adt)] = [amt (adt, 0) , ast (adt, 0)].

Lemma 1 offers a full characterization of the post-trade portfolios of investors and dealers in

the OTC market. First, the bargaining outcome depends on whether the investor’s valuation,

ε, is above or below a cutoff, ε∗t . If ε∗t < ε, the investor uses all his cash to buy equity. If ε < ε∗t ,

he sells all his equity holding for cash. The intermediation fee earned by the dealer is equal to

a share 1− θ of the investor’s gain from trade. The dealer’s post-trade portfolio is the same as

that of an investor with ε = 0.

We focus the analysis on recursive equilibria, that is, equilibria in which aggregate equity

holdings are constant over time, i.e., AsDt = AsD and AsIt = AsI for all t, and real asset prices

are time-invariant linear functions of the aggregate dividend, i.e., φst = φsyt, ptφ
m
t ≡ φ̄st = φ̄syt,

φmt A
m
It = Zyt, and φmt A

m
Dt = ZDyt, where Z,ZD ∈ R+ Hence, in a recursive equilibrium,

10



ε∗t = φ̄s−φs ≡ ε∗, φst+1/φ
s
t = φ̄st+1/φ̄

s
t = γt+1, φmt /φ

m
t+1 = µ/γt+1, and pt+1/pt = µ. Throughout

the analysis, we let β̄ ≡ βγ̄ and maintain the assumption µ > β̄ (but we consider the limiting

case µ→ β̄).

For the analysis that follows, it is convenient to define

µ̂ ≡ β̄

[
1 +

(1− αθ)
(
1− β̄δ

)
(ε̂− ε̄)

ε̂

]
and µ̄ ≡ β̄

[
1 +

αθ
(
1− β̄δ

)
(ε̄− εL)

β̄δε̄+
(
1− β̄δ

)
εL

]
, (5)

where ε̂ ∈ [ε̄, εH ] is the unique solution to

ε̄− ε̂+ αθ

∫ ε̂

εL

(ε̂− ε) dG(ε) = 0. (6)

Lemma 4 (in Appendix A) establishes that µ̂ < µ̄. The following proposition characterizes the

equilibrium set.

Proposition 1 (i) A nonmonetary equilibrium exists for any parametrization. (ii) There is no

recursive monetary equilibrium if µ ≥ µ̄. (iii) In the nonmonetary equilibrium, AsI = As−AsD =

As (only investors hold equity shares), there is no trade in the OTC market, and the equity price

in the second subperiod is

φst = φsyt, with φs =
β̄δ

1− β̄δ
ε̄. (7)

(iv) If µ ∈ (β̄, µ̄), then there is one recursive monetary equilibrium; asset holdings of dealers

and investors at the beginning of the OTC round of period t are AmDt = Amt −AmIt = 0 and

AsD = As −AsI


= δAs if β̄ < µ < µ̂
∈ [0, δAs] if µ = µ̂
= 0 if µ̂ < µ < µ̄

and asset prices are

φst = φsyt, with φs =


β̄δ

1−β̄δε
∗ if β̄ < µ ≤ µ̂

β̄δ
1−β̄δ

[
ε̄+ αθ

∫ ε∗
εL

(ε∗ − ε) dG(ε)
]

if µ̂ < µ < µ̄
(8)

φ̄st = φ̄syt, with φ̄s = ε∗ + φs (9)

φmt = Z
yt
Amt

(10)

pt =
φ̄s

Z
Amt , (11)
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where

Z =
αG (ε∗)AsI +AsD
α [1−G (ε∗)]

(ε∗ + φs) (12)

and for any µ ∈
(
β̄, µ̄

)
, ε∗ ∈ (εL, εH) is the unique solution to(

1− β̄δ
) ∫ εH

ε∗ (ε− ε∗) dG(ε)

ε∗ + β̄δ
[
ε̄− ε∗ + αθ

∫ ε∗
εL

(ε∗ − ε) dG(ε)
]
I{µ̂<µ}

− µ− β̄
β̄αθ

= 0. (13)

(v) (a) As µ→ µ̄, ε∗ → εL and φst →
β̄δ

1−β̄δ ε̄yt. (b) As µ→ β̄, ε∗ → εH and φst →
β̄δ

1−β̄δεHyt.

In the nonmonetary equilibrium, dealers are inactive and equity shares are held only by

investors. With no valued money, investors and dealers cannot exploit the gains from trade

that arise from the heterogeneity in investor valuations in the first subperiod, and the real asset

price is φs = β̄δ
1−β̄δ ε̄y, i.e., equal to the expected discounted value of the dividend stream since

the equity share is not traded. (Shares can be traded in the Walrasian market of the second

subperiod, but gains from trade at that stage are nil.) The recursive monetary equilibrium

exists only if the inflation rate is not too high, i.e., if µ < µ̄. In the monetary equilibrium,

the marginal valuation, ε∗, which according to Lemma 1 partitions the set of investors into

those who buy and those who sell the asset when they meet a dealer in the OTC market, is

characterized by (13) in part (iv) of Proposition 1. Unlike what happens in the nonmonetary

equilibrium, the OTC market is active in the monetary equilibrium, and it is easy to show

that the marginal valuation, ε∗, is strictly decreasing in the rate of inflation, i.e., ∂ε∗

∂µ < 0 (see

Corollary 3 in Appendix A). Intuitively, the real value of money falls as µ increases, so the

marginal investor valuation, ε∗, decreases, reflecting the fact that under the higher inflation rate,

the investor that was marginal under the lower inflation rate is no longer indifferent between

carrying cash and equity out of the OTC market—he prefers equity.

According to Proposition 1, 0 ≤ εL < ε∗t in the monetary equilibrium, so Lemma 1 implies

that dealers hold no equity shares at the end of the OTC round: all equity is held by investors,

in particular, by those investors who carried equity into the period but were unable to contact

a dealer, and by those investors who purchased equity shares in bilateral trades with dealers.

After the round of OTC trade, all the money supply is held by the investors who carried cash

into the period but were unable to contact a dealer, by the investors who sold equity shares

through dealers, and by those dealers who carried equity into the OTC market.

A feature of the monetary equilibrium is that dealers never hold money overnight: at the

beginning of every period t, the money supply is all in the hands of investors, i.e., AmDt = 0 and

12



AmIt = Amt . The reason is that access to the interdealer market allows dealers to intermediate

assets without cash. Whether it is investors or dealers who hold the equity shares overnight

depends on the inflation rate: if it is low, i.e., if µ ∈ (β̄, µ̂), then only dealers hold equity

overnight, that is, ÃsDt+1 = As and ÃsIt+1 = 0 for all t. Conversely, if the inflation rate is

high, i.e., if µ ∈ (µ̂, µ̄), then at the end of every period t, all equity shares are in the hands of

investors, i.e., ÃsDt+1 = 0 and ÃsIt+1 = As, so strictly speaking, in this case dealers only provide

brokerage services in the OTC market. The intuition for this result is as follows.6 For dealers,

the return from holding equity overnight is given by the resale price in the OTC market. If

inflation is low, ε∗t is high (the asset is priced by relatively high valuation investors), and this

means the resale price in the OTC market is high. Since dealers are sure to trade in the OTC

market every period while investors only trade with effective probability αθ, the former are

in a better position to reap the capital gains and end up holding all equity shares overnight.

Conversely, if inflation is high then ε∗t is low, so the capital gain to a dealer from carrying the

asset to sell in the OTC market is small. The benefit to investors from holding equity includes

not only the resale value in the OTC market (which is small at high inflation) but also their

own expected valuation of the dividend good, so for high inflation, the return that investors

obtain from holding equity overnight is higher than it is for dealers. For example, as µ→ µ̄ we

have ε∗t → εL, so the dealer’s expected return from holding equity overnight is (εL+φs)γ̄
φs , while

the investor’s is (ε̄+φs)γ̄
φs .

Given the marginal valuation, ε∗, part (iv) of Proposition 1 gives all asset prices in closed

form. The real ex dividend price of equity (in terms of the second subperiod consumption

good), φst , is given by (8). The cum dividend dollar price of equity in the OTC market, pt, is

given by (11). The real price of money (in terms of the second subperiod consumption good),

φmt , is given by (10). The real cum dividend price of equity (in terms of the second subperiod

consumption good) in the OTC market, ptφ
m
t = φ̄syt, is given by (9).

Finally, part (v)(a) states that as the rate of money creation increases toward µ̄, ε∗ ap-

proaches the lower bound of the distribution of valuations, εL, so no investor wishes to sell

equity in the OTC market, and as a result the allocations and prices of the monetary equilib-

rium approach those of the nonmonetary equilibrium. Part (v)(b) states that as µ decreases

toward β̄, ε∗ increases toward the upper bound of the distribution of valuations, εH , so only

investors with the highest valuation purchase equity in the OTC market (all other investors

6See Lagos and Zhang (2015) for a more detailed discussion.
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wish to sell it). Moreover, since β̄ < µ̂, as µ→ β̄ only dealers hold equity overnight. Thus, we

have the following result.

Corollary 1 The allocation implemented by the recursive monetary equilibrium converges to

the efficient allocation as µ→ β̄.

Let qBt,k denote the nominal price in the second subperiod of period t of an N -period risk-

free pure discount nominal bond that matures in period t + k, for k = 0, 1, 2, ..., N (so k is

the number of periods until the bond matures). Imagine the bond cannot be used as means of

payment in the first subperiod.7 Then in a recursive monetary equilibrium, qBt,k = (β̄/µ)k, and

i = µ/β̄ − 1 is the time t nominal yield to maturity of the bond with k periods until maturity.

Thus, the optimal monetary policy described in Corollary 1 and part (v)(b) of Proposition 1 in

which µ = β̄ can be interpreted as a policy that implements the Friedman rule, i.e., i = 0 for

all contingencies at all dates. Since the (gross) inflation rate is φmt /φ
m
t+1 = µ yt

yt+1
≡ 1 + πt+1,

1 + i = µ/β̄ is equivalent to

1 + i = (1 + r) (1 + π) , (14)

with 1 + π ≡
[
Et 1

1+πt+1

]−1
= µ/γ̄.

4 Implications

In this section, we discuss the main implications of the theory. Specifically, we show how asset

prices and trade volume are determined by monetary policy and the details of the microstructure

where the asset trades (e.g., the degree of market power of dealers and the ease with which

investors find counterparties).8

7Notice that even though the bond cannot be traded for equity in the OTC round of trade, it can be exchanged
(or redeemed) for money at the end of the period at no cost. Hence how “illiquid” we deem this bond depends
on the length of the model period. If, as in the quantitative analysis of Section 6, the model period corresponds
to one trading day, then the bond is in fact very liquid, or “very close to cash” according to the usual real-world
standards.

8We focus on trade volume as a measure of financial liquidity because it will be the relevant variable in
our empirical analysis. For completeness, in Appendix A (Section A.5) we show how conventional measures
of financial liquidity other than trade volume (e.g., spreads, and dealer supply of immediacy) are determined
by monetary policy and the details of the microstructure. In Appendix A (Section A.7) we also show that
generically, asset prices in the monetary economy exhibit a speculative premium whose size varies systematically
with monetary policy and the market microstructure.
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4.1 Asset prices

In this subsection, we study the asset-pricing implications of the theory. We focus on how the

asset price depends on monetary policy and on the degree of OTC frictions as captured by the

parameters that regulate trading frequency and the relative bargaining strengths of traders.9

The real price of equity in a monetary equilibrium is in part determined by the option

available to low-valuation investors to resell the equity to high-valuation investors. If the

growth rate of the money supply (and therefore the inflation rate) increases, equilibrium real

money balances decline and the marginal investor valuation, ε∗, decreases, reflecting the fact

that under the higher inflation rate, the investor valuation that was marginal under the lower

inflation rate is no longer indifferent between carrying cash and equity out of the OTC market—

he prefers equity. Since the marginal investor who prices equity in the OTC market has a lower

valuation, the value of the resale option is smaller, i.e., the turnover liquidity of the asset is

lower, which in turn makes the real equity price (both φs and φ̄s) smaller. Naturally, the real

value of money, φmt , is also decreasing in the growth rate of the money supply.10 All this is

formalized in Proposition 2.

Proposition 2 In the recursive monetary equilibrium: (i) ∂φs/∂µ < 0, (ii) ∂φ̄s/∂µ < 0, (iii)

∂Z/∂µ < 0 and ∂φmt /∂µ < 0.

Proposition 2 is useful for settings where monetary policy operates by changing the expected

inflation rate, i.e., settings where changes in i are associated exclusively with changes in π in

(14). The following result examines the behavior of real asset prices in settings where changes

in i are associated exclusively with changes in the real interest rate, r.11

Proposition 3 In the recursive monetary equilibrium: (i) ∂φs/∂r < 0, (ii) ∂Z/∂r < 0 and

∂φmt /∂r < 0.

9In Appendix A (Proposition 9) we also establish the effect of a mean-preserving spread in the distribution
of valuations on the equity price.

10The top row of Figure 8 (Appendix A) illustrates the typical time paths of the ex dividend equity price, φst ,
real balances, φmt A

m
t , and the price level, φmt , for different values of µ.

11The proof of Proposition 3 (Appendix A, Section A.4) is based on a continuous-time version of our discrete-
time economy. The continuous-time formulation can be interpreted as an approximation to our baseline discrete-
time model when the period length is small. Apart from allowing sharper analytical results, the continuous-time
formulation is useful since the model period in our quantitative implementation of the theory is very short
(specifically, a trading day; see Section 6.2 for details).
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In the OTC market, αθ is an investor’s effective bargaining power in negotiations with

dealers. A larger αθ implies a larger gain from trade for low-valuation investors when they sell

the asset to dealers. In turn, this makes investors more willing to hold equity shares in the

previous period, since they anticipate larger gains from selling the equity in case they were to

draw a relatively low valuation in the following OTC round. Hence, real equity prices, φs and

φ̄s, are increasing in α and θ.12 If α increases, money becomes more valuable (both Z and

φmt increase), provided we focus on a regime in which only investors carry equity overnight.13

Proposition 4 formalizes these ideas.

Proposition 4 In the recursive monetary equilibrium: (i) ∂φs/∂ (αθ) > 0, (ii) ∂φ̄s/∂ (αθ) > 0,

(iii) ∂Z/∂α > 0 and ∂φmt /∂α > 0, for µ ∈ (µ̂, µ̄).

4.2 Trade volume

Trade volume is commonly used as a measure of market liquidity because it is a manifestation

of the ability of the market to reallocate assets across investors. According to Lemma 1, any

investor with ε < ε∗t who has a trading opportunity in the OTC market sells all his equity

holding. Hence, in a recursive equilibrium, the quantity of assets sold by investors to dealers

in the OTC market is Qs = αG (ε∗)AsI . From Lemma 1, the quantity of assets purchased by

investors from dealers is Qb = α [1−G (ε∗)]Amt /pt. Thus, the total quantity of equity shares

traded in the OTC market is V = Qb +Qs, or equivalently14

V = 2αG (ε∗)AsI +AsD. (15)

Trade volume, V, depends on the growth rate of the money supply, µ, (or equivalently, expected

inflation), the real interest rate, r, and dealers’ market power θ indirectly, through the general

equilibrium effect on ε∗. A decrease in µ or r, or an increase in θ increases the expected return

to holding money relative to equity, which makes more investors willing to sell equity for money

in the OTC market, i.e., ε∗ increases and so does trade volume, provided G′ (ε∗) > 0. In other

12This finding is consistent with the behavior of the illiquidity premia in response to variations in the measures
of liquidity documented by Ang et al. (2013).

13Real balances can actually fall with α for µ ∈ (β̄, µ̂). The bottom row of Figure 8 (Appendix A) illustrates
the time paths of the ex dividend equity price, φst , real balances φmt A

m
t , and the price level, φmt , for two different

values of α.
14To obtain (15) we used the clearing condition for the interdealer market, Qb = Qs +AsDt. Also, note that V

is trade volume in the OTC market, but since every equity share traded in the first subperiod gets retraded in
the second subperiod, total trade volume in the whole time period equals 2V.
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words, the increase in turnover liquidity caused by a decrease in µ or r, or an increase in θ

will manifest itself through an increase in trade volume provided the cumulative distribution

of investors is strictly increasing over the relevant range. The indirect positive effect on V
(through ε∗) of an increase in the investors’ trade probability α is similar to an increase in θ,

but in addition, α directly increases trade volume, since with a higher α more investors are able

to trade in the OTC market. These results are summarized in the following proposition.

Proposition 5 In the recursive monetary equilibrium, provided provided G′ (ε∗) > 0: (i)

∂V/∂µ < 0, (ii) ∂V/∂r < 0, (iii) ∂V/∂θ > 0 and ∂V/∂α > 0.

4.3 Discussion

In this section we explain the economic rationale behind Propositions 2 and 3. To streamline the

exposition, focus on a recursive monetary equilibrium in which investors carry equity overnight.

In this case, the Euler equations for money and equity are:

φmt =
1

1 + r
Et
[
φmt+1 + αθ

∫ εH

ε∗

(ε− ε∗)yt+1

pt+1
dG(ε)

]
(16)

φst =
1

1 + r
δEt

[
ε̄yt+1 + φst+1 + αθ

∫ ε∗

εL

(ε∗ − ε) yt+1dG(ε)

]
. (17)

(See Corollary 2 in Appendix A for details.) On the left side of (16), φmt represents the cost

(in terms of the second-subperiod consumption good) of purchasing an additional dollar in

the competitive market of the second subperiod of period t. On the right side of (16) is the

discounted expected value of the additional dollar in period t + 1. This marginal value equals

the expected value from holding the dollar for a whole period (until the competitive trading

round at the end of period t+ 1), i.e., φmt+1, plus the expected value of the option to exchange

the dollar for equity shares in the OTC round at the beginning of period t + 1. This option

is executed provided the investor gets access to the interdealer market (with probability α),

gets a share θ of the gain from trade with the dealer, and gets a random valuation higher

than ε∗, so the expected gain from exchanging the dollar for equity is αθ
∫ εH
ε∗

(ε−ε∗)yt+1

pt+1
dG(ε).

Next, consider (17). On the left side, φst represents the cost (in terms of the second-subperiod

consumption good) of purchasing an additional equity share in the competitive market of the

second subperiod of period t. On the right side is the discounted (net of depreciation) expected

value of the additional equity share in period t + 1. This marginal value equals the expected
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cum-dividend value from holding the equity share for a whole period (until the competitive

trading round at the end of period t + 1), i.e., ε̄yt+1 + φst+1, plus the expected value of the

option to resell the asset in the OTC round at the beginning of period t+ 1. This resale option

is executed provided the investor gets access to the interdealer market (with probability α),

gets a share θ of the gain from trade with the dealer, and gets a random valuation lower than

ε∗, so the expected value of the resale option is αθ
∫ ε∗
εL

(ε∗ − ε) yt+1dG(ε). This additional term

that makes the equilibrium real value of an equity share larger than the discounted expected

value of the dividend stream is reminiscent of the value of the resale option in Harrison and

Kreps (1978). The novelty here is that the value of this resale option depends on monetary

policy—through the effect that monetary policy has on asset reallocation and the determination

of the marginal investor valuation, ε∗, in the OTC round.

Given ptφ
m
t ≡ (ε∗ + φs) yt, φ

m
t /φ

m
t+1 = µ/γt+1, Etyt+1 = Etγt+1yt = γ̄yt, and (14), the Euler

equation (16) can be written as

1 =
1

1 + i

[
1 + αθ

∫ εH

ε∗

ε− ε∗

ε∗ + φs
dG(ε)

]
. (18)

The left side is the real cost of purchasing an additional unit of real money balances (1 unit of

the numeraire good). The right side is the discounted expected value of bringing an additional

unit of real money balances into the OTC round of the following period. Condition (18) makes

clear that an increase in the nominal rate, i, acts as a tax on real money balances: it reduces

the incentives to carry money, which in turn reduces the valuation of the marginal investor,

ε∗. As a result, the real equity price falls, as is clear from (17). Notice that this result holds

both, if the increase in the nominal rate is associated with an increase in expected inflation,

π, as in part (i) of Proposition 2, and if the increase in the nominal rate is associated with an

increase in the real interest rate, r, as in part (i) of Proposition 3. The intuitive reason why ε∗

falls in response to an increase in the nominal rate has to do with the fact that while in general

equilibrium a change in i affects investors’ valuations of both equity and money, it affects the

incentive to hold money relatively more.

To understand this, first suppose the increase in i is associated with an increase in expected

inflation, π, or equivalently, the money growth rate, µ. The pricing equation (18) indicates that

the first-order (partial equilibrium) effect of π is to reduce the real value of a dollar, and that

this is achieved by a reduction in ε∗, i.e., a reduction in the equilibrium cum-dividend value

of an equity share that money is used to buy. The Euler equation for equity, (17) does not
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depend on π directly; only indirectly through the general equilibrium effect of π on real money

balances. The direct effect of expected inflation on the real value of money is larger than the

indirect effect on the price of equity, and the marginal investor valuation, ε∗, decreases as the

investor that was marginal under the lower inflation rate tilts his portfolio away from money

toward equity in an attempt to avoid the inflation tax.

For another angle on this logic, suppose the background monetary policy is the Friedman

rule, as in Corollary 1. In this case the opportunity cost of holding money is zero, i.e., i = 0,

so investors are willing to hold enough real money balances to satiate their random demand for

liquidity in the OTC round, i.e., (18) implies ε∗ = εH if i = 0. Intuitively, this means that the

highest valuation investors (those with valuations equal to εH) who contact dealers are able to

absorb the whole supply of equity shares in the interdealer market, and the equilibrium equity

price reflects only their valuation. If the inflation rate is higher than the target level prescribed

by the Friedman rule, then the opportunity cost of holding money is positive, and therefore the

highest valuation investors are budget contrained in the OTC round as they no longer choose

to hold enough real money balances to be financially unconstrained for every realization of the

next-period valuation (formally, (18) implies ε∗ < εH if i > 0). Since investors with valuation εH

are no longer able to absorb the whole asset supply traded in the interdealer market, investors

with lower valuations are now able to purchase some equity shares, and therefore the marginal

investor who prices equity has valuation ε∗ < εH . In sum, as π increases, aggregate real balances

fall, investors with relatively high valuations become less able to express their valuations, and

as a result, the asset is held—and priced—by investors with lower valuations.

To conclude, suppose the increase in i is associated with an increase in the real rate, r. In

this case we have shown that ε∗ also falls, again reflecting the fact that an increase in the real

rate reduces the value of money relatively more than the value of an equity share. The reason

is that, since equity dominates money in terms of rate of return (equity yields a real dividend

and money does not), an equilibrium with valued money necessarily requires that money be a

relatively better store of value than equity (formally, µ < µ̄). This means that while an increase

in r reduces investors’ valuations of both equity and money, it has a relatively smaller effect

on the incentive to hold equity—which necessarily has a more “front-loaded” payoff structure

than money in the monetary equilibrium.
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5 Empirical analysis

According to the theory, the real asset price decreases in response to an entirely unanticipated

and permanent increase in the nominal interest rate (part (i) of Proposition 2 and part (i) of

Proposition 3, together with (14)). The mechanism through which the increase in the nominal

rate is transmitted to the asset price is a reduction in turnover liquidity, i.e., a reduction in

the resale option value, accompanied by a nonpositive change in trade volume (parts (i) and

(ii) of Proposition 5). These two theoretical results suggest two hypotheses that can be tested

with price and turnover data: (a) surprise increases in the nominal rate reduce the marketwide

stock return (and possibly trade volume), and (b) the strength of the mechanism depends on

the turnover liquidity of the stocks (e.g., as proxied for by the turnover rate of the stock). The

following proposition (based on a generalization of the theory with multiple assets indexed by

s ∈ {1, 2, ..., N} that differ in terms of the trading frequency, αs) provides a formal theoretical

basis for these two hypotheses.

Proposition 6 In the recursive monetary equilibrium, (i) ∂ log φs/∂π < 0, (ii) ∂ log φs/∂r < 0,

(iii) ∂2 log φs/ (∂αs∂π) < 0, (iv) ∂2 log φs/ (∂αs∂r) < 0.

Thus, theory predicts a negative semi-elasticity of the real equity price with respect to the

nominal interest rate, regardless of whether the increase in the nominal rate is associated with

an increase in the expected inflation rate, π, or an increase in the real rate, r (parts (i) and

(ii) of Proposition 6). Moreover, since turnover is an increasing function of αs, theory predicts

that the magnitude of this semi-elasticity is larger for stocks with higher turnover (parts (iii)

and (iv) of Proposition 6).

5.1 Data

We use daily time series for all individual common stocks in the New York Stock Exchange

(NYSE) from the Center for Research in Security Prices (CRSP).15 The daily stock return

from CRSP takes into account changes in prices and accrued dividend payment, i.e., the return

of stock s on day t is Rst =
(
P st +Dst
P st−1

− 1
)
× 100, where P st is the ex dividend dollar price of

stock s on day t, and Ds
t denotes the dollar dividend paid per share of stock s on day t. As a

measure of trade volume for each stock, we construct the daily turnover rate from CRSP, i.e.,

15We report results for NASDAQ stocks in Appendix D (Section D.3).
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T st = Vst /Ast , where Vst is the trade volume of stock s on day t (measured as the total number

of shares traded) and Ast is the number of outstanding shares of stock s on day t. Whenever

we use an average, e.g., of equity returns or turnover rates across a set of stocks, we use the

arithmetic average, e.g., RIt = 1
n

∑n
s=1Rst and T It = 1

n

∑n
s=1 T st are the average return and the

average turnover rate for the universe of n common stocks listed in the NYSE.16

As a proxy for the policy (nominal interest) rate, we use the rate on the nearest Eurodollar

futures contract due to mature after the FOMC policy announcement, as in Rigobon and Sack

(2004).17 Specifically, we use the 3-month Eurodollar futures rate produced by the Chicago

Mercantile Exchange Group (CME Group) and supplied by Datastream. In some of our empir-

ical estimations, we use the tick-by-tick nominal interest rate implied by 30-day federal funds

futures and consider a high-frequency measure of the unexpected change in the nominal policy

rate in a narrow 30-minute time window around the FOMC announcement. The sample we

analyze runs from January 3, 1994 to December 31, 2007.18 The sample includes between 1300

and 1800 stocks (depending on the time period) and 133 FOMC announcement dates.19

16We report results for value-weighted returns in Appendix D (Section D.4).
17Eurodollar futures are based on a $1 million face value 3-month maturity Eurodollar time deposit. These

futures contracts mature during the conventional IMM (International Monetary Market) dates in the months of
March, June, September, or December, extending outward 10 years into the future. In addition, at any point
in time, there are so-called 3-month Eurodollar serial contracts extending 4 months into the future that mature
in months that are not conventional IMM dates. For example, at the beginning of January 2016, there are
contracts maturing in mid-March, mid-June, mid-September, and mid-December of 2016, through 2025. There
are also serial contracts maturing in mid-January, mid-February, mid-April, and mid-May of 2016. Thus, de-
pending on the timing of the FOMC announcement, the nearest contract to mature may expire between zero and
30 days after the announcement. Current quotes are available at http://www.cmegroup.com/trading/interest-
rates/stir/eurodollar quotes settlements futures.html. An advantage of using a futures rate as a proxy for the
“policy rate” is that its movement on dates of FOMC policy announcements reflects policy surprises only and
does not reflect anticipated policy changes. The importance of focusing on the surprise component of policy
announcements (rather than on the anticipated component) in order to identify the response of asset prices to
monetary policy was originally pointed out by Kuttner (2001) and has been emphasized by the literature since
then, e.g., Bernanke and Kuttner (2005) and Rigobon and Sack (2004). Gürkaynak et al. (2007) offer empirical
evidence supporting the use of futures contracts as an effective proxy for policy expectations and discuss their
use to define policy shocks.

18We start our sample period in 1994 because prior to 1994, policy changes in the federal funds target were
unannounced and frequently occurred between FOMC meetings. From 1994 onward, all changes are announced
and most coincided with FOMC meetings, so as policy announcement dates we use the dates of FOMC meetings
obtained from the website of the Board of Governors of the Federal Reserve System. The web address is
http://www.federalreserve.gov/monetarypolicy/fomccalendars.htm. See Bernanke and Kuttner (2005) for more
discussion on the exact timing of policy announcements.

19Our full sample contains 135 policy dates. We discard two dates: 9/13/2001 and 9/17/2001 (the two atypical
FOMC announcements in the immediate aftermath of 9/11/2001). One of our estimation procedures requires
data involving first differences in variables on the policy day and on the day preceding the policy day. In that
case, we follow Rigobon and Sack (2004) and discard three additional policy dates because they are preceded by
either one or two holidays in financial markets. Another of our estimation procedures relies on high-frequency
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In the following subsections, we use the data described above to estimate the sign and

magnitude of the effect of monetary policy on stock returns and turnover. In Subsection 5.2, we

estimate these effects for FOMC announcement days for a broad index of stocks. In Subsection

5.3, we document that the strength of the effect of monetary policy on stock returns differs

systematically with the turnover liquidity of the stock. In Subsection 5.4, we go a step further

and estimate the dynamic effects of the policy announcement on returns and turnover.

5.2 Aggregate announcement-day effects

The empirical literature has followed several approaches to estimate the impact of monetary

policy on the stock market. A popular one, known as event-study analysis, consists of estimating

the market reaction to monetary policy surprises on a subsample of trading days consisting

exclusively of the days of FOMC announcements (we denote this subsample S1). Let it denote

the day t “policy rate” (in our case, the CME Group 3-month Eurodollar future with closest

expiration date at or after day t, expressed in percentage terms) and define ∆it ≡ it − it−1.

The event-study analysis consists of running the following regression:

Y I
t = a+ b∆it + εt (19)

for t ∈ S1, with Y I
t = RIt , where εt is an exogenous shock to the asset price.20 We refer to the

estimator b as the event-study estimator (or “E-based” estimator, for short).

A concern with (19) is that it does not take into account the fact that the policy rate on

the right side may itself be reacting to asset prices (a simultaneity bias) and that a number

of other variables (e.g., news about economic outlook) are likely to have an impact on both

the policy rate and asset prices (an omitted variables bias). This concern motivates us to also

consider two other estimators: the heteroskedasticity-based estimator (“H-based” estimator,

for short) proposed by Rigobon and Sack (2004), and a version of the event-study estimator

that relies on an instrumental variable identification strategy that uses intraday high-frequency

tick-by-tick interest rate data. The H-based estimator identifies the response of asset prices

market activity in a narrow time interval around the exact time of the monetary policy announcement. In this
case, we use the data from Gorodnichenko and Weber (2016) that consists of 118 scheduled policy dates. For
each trading day, we discard observations whose return or turnover rate on that given day is in the top or bottom
1 percentile.

20In the context of monetary policy, this approach was originally used by Cook and Hahn (1989) and has been
followed by a large number of papers, e.g., Bernanke and Kuttner (2005), Cochrane and Piazzesi (2002), Kuttner
(2001), and Thorbecke (1997).
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based on the heteroskedasticity of monetary policy shocks. The high-frequency instrumental

variable estimator (“HFIV” estimator, for short) addresses the omitted variable bias and the

concern that the Eurodollar futures rate may itself respond to market conditions on policy

announcement days, by focusing on changes in a proxy for the policy rate in a very narrow

30-minute window around the time of the FOMC announcement.21

Table 1 presents the baseline results. The first column corresponds to the event-based

estimation, the second column corresponds to the heteroskedasticity-based estimation, and the

third column corresponds to the high-frequency instrumental variable estimation. Returns

are expressed in percentage terms. The first row presents estimates of the reaction of the

marketwide NYSE return to monetary policy. The point estimate for b in (19) is −5.47. This

means that a 1 basis point (bp) increase in the policy rate causes a decrease of 5.47 basis points

(bps) in the stock market return on the day of the policy announcement.22 The analogous

H-based point estimate is −11.31. These results are in line with those reported in previous

studies.23 The HFIV point estimate is −9.38, implying that a 25 bp surprise increase in the

policy rate causes a decrease in the stock market return of 2.34 percentage points (pps) on the

day of the policy announcement.24 Figure 1 shows a scatterplot with the unexpected change

in the policy rate (measure by the high-frequency change in the fed funds future rate) on the

horizontal axis, and the announcement-day marketwide stock return on the vertical axis, both

expressed in bps. The negative relationship between stock returns and fed funds rate suprises

is readily visible from the fitted line.

Previous studies have not clearly identified the specific economic mechanism that transmits

monetary policy shocks to the stock market. Conventional asset-pricing theory suggests three

broad immediate reasons why an unexpected policy nominal rate increase may lead to a decline

in stock prices. It may be associated with a decrease in expected dividend growth, with a rise

in the future real interest rates used to discount dividends, or with an increase in the expected

21In Appendix B we discuss the derivation of the H-based estimator (Section B.1) and describe the construction
of the HFIV estimator (Section B.2).

22The R2 indicates that 14 percent of the variance of equity prices in days of FOMC policy announcements is
associated with news about monetary policy.

23The comparable event-based estimates in Bernanke and Kuttner (2005), who focus on a different sample
period and measure stock returns using the value-weighted return from CRSP, range between −2.55 and −4.68.
The comparable heteroskedasticity-based estimates in Rigobon and Sack (2004), who use a different series for the
Eurodollar forward rate, are −6.81 for the S&P 500 index, −6.5 for the WIL5000 index, −9.42 for the NASDAQ,
and −4.85 for the DJIA.

24In comparing the E-based, H-based, and HFIV estimates, one should bear in mind that the number of policy
dates varies slightly between the three estimation methods, as explained in footnote 19.
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excess returns (i.e., equity premia) associated with holding stocks. Our theory formalizes a new

mechanism: the reduction in turnover liquidity caused by the increase in the opportunity cost

of holding the nominal assets that are routinely used to settle financial transactions. To begin

assessing this mechanism, we again estimate b in (19), and the analogous H-based and HFIV

estimates, but with Y I
t = T It −T It−1, i.e., we use the change in the daily turnover rate averaged

over all traded stocks as the dependent variable.

The estimated effects of monetary policy announcements on the daily marketwide NYSE

turnover rate are reported in the second row of Table 1. According to the E-based estimate, a

100 bp increase in the policy rate causes a change in the level of the marketwide turnover rate

on the day of the policy announcement equal to −.0021.25 The daily marketwide turnover rate

for our sample period is .0048 (i.e., on average, stocks turn over 1.22 times during a typical

year composed of 252 trading days), which means that according to the E-based estimate, an

increase in the policy rate of 25 bps causes a reduction in the marketwide turnover rate on the

day of the policy announcement of about 10 percent of its typical level. The HFIV estimate for

a 100 bp increase in the policy rate is −.0052, implying that a 25 bp increase in the policy rate

causes a reduction in the marketwide turnover rate of about 27 percent of its typical level.

5.3 Disaggregative announcement-day effects

Another way to inspect the turnover-liquidity transmission mechanism of monetary policy is

to exploit the cross-sectional variation in turnover rates that exists across stocks. Our theory

implies that the magnitude of the change in the stock return induced by a change in the policy

rate will depend on the turnover liquidity of the stock (e.g., as measured by the turnover rate

of the stock). To test this prediction, we sort stocks into portfolios according to their turnover

liquidity, as follows. For each FOMC announcement date, t, we calculate T st as the average

turnover rate of an individual stock s over all trading days during the four weeks prior to the

day of the policy announcement. We then sort all stocks into 20 portfolios by assigning stocks

with T st ranked between the [5 (i− 1)]th percentile and (5i)th percentile to the ith portfolio,

for i = 1, ..., 20. Hence, the average turnover rate over the four-week period prior to the

announcement date for a stock in the ith portfolio is at least as large as that of a stock in the

(i− 1)th portfolio. In Table 2, the column labeled “Turnover” reports the annual turnover rate

25The R2 indicates that 3 percent of the variance of the daily turnover rate in days of FOMC policy announce-
ments is associated with unexpected changes in monetary policy.
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(based on 252 trading days per year) corresponding to each of the 20 portfolios. For example,

portfolio 1 turns over .17 times per year while portfolio 20 turns over 3.57 times per year.26

For each of the 20 portfolios, Table 2 reports the E-based, H-based, and HFIV estimates of

the annuncement-day responses of the return to a 1 percentage point (pp) increase in the policy

rate. All the estimates are negative, as predicted by the theory. Also, the magnitude of the

(statistically significant) estimates increases with the turnover liquidity of the portfolio. For

example, according to the HFIV estimates, a 1 bp increase in the policy rate causes a decrease

of 6.44 bps in the return of portfolio 1 and a decrease of 16.40 bps in the return of portfolio

20. For all three estimation methods, the relative differences in responses across portfolios are

of similar magnitude. For example, the response of the return of the most liquid portfolio is

about 2.5 times larger than the response of the least liquid portfolio.27 Figure 2 shows the

announcement-day returns of portfolio 1 (the crosses) and portfolio 20 (the circles), along with

their respective fitted lines. The larger magnitude of the response of the more liquid portfolio

is evident.

As an alternative way to estimate the heterogeneous responses of returns to monetary policy

shocks for stocks with different turnover liquidity, we ran an event-study regression of individual

stock returns (for the universe of stocks listed in the NYSE) on changes in the policy rate, an

interaction term between the change in the policy rate and individual stock daily turnover rate,

and several controls. As before, ∆it denotes the monetary policy shock on policy announcement

day t (measured by the change between day t and day t− 1 in the 3-month Eurodollar futures

contract with nearest expiration after the day t FOMC policy announcement), and T st is the

average turnover rate of the individual stock s over all the trading days during the four weeks

prior to the day of the policy announcement of day t. Let ∆i and T denote the sample averages

of ∆it and T st , respectively, and define T st ≡ (T st − T ) and ∆it ≡ (∆it −∆i). The regression

26Our motivation for constructing these liquidity-based portfolios is twofold. First, at a daily frequency,
individual stock returns are extremely noisy; by grouping stocks into portfolios based on some characteristic(s)
related to returns, it becomes possible to see average return differences. Second, stock-specific turnover measures
are time-varying, i.e., the turnover rate of a particular stock may change over time. Bernanke and Kuttner
(2005) also examine the responses of more disaggregated indices to monetary policy shocks. Specifically, they
estimate the responses of 10 industry portfolios constructed from CRSP returns as in Fama and French (1988)
but find that the precision of their estimates is not sufficient to reject the hypothesis of an equal reaction for all
10 industries.

27In Appendix B (Section B.3), we report similar results from an alternative procedure that sorts stocks into
portfolios according to the strength of individual stock returns to changes in an aggregate (marketwide) measure
of turnover. This alternative sorting criterion allows us to control for other differences across stocks, such as the
conventional risk factors used in empirical asset-pricing models.
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we fit is

Rst = β0 + β1∆it + β2T st + β3T st ×∆it

+Ds +Dt + β4 (∆it)
2 + β5 (T st )2 + εst, (20)

where Ds is a stock fixed effect, Dt is a quarterly time dummy, and εst is the error term

corresponding to stock s on policy announcement day t. The time dummies control for omitted

variables that may affect the return of all stocks in the NYSE over time. The stock fixed

effects control for the effects that permanent stock characteristics not included explicitly in the

regression may have on individual stock returns. We include the interaction term T st × ∆it

to estimate how the effect of changes in the policy rate on individual stock returns varies

across stocks with different turnover liquidity. The coefficient of interest is β3, i.e., we want

to test whether changes in the policy rate affect individual stock returns through the stock-

specific turnover-liquidity channel. The estimate of β3 can help us evaluate whether increases

(reductions) in the policy rate cause larger reductions (increases) in returns of stocks with a

larger turnover rate, i.e., whether β3 < 0.

Table 3 reports the results from estimating nine different specifications based on (20). Spec-

ification (I) excludes Ds, Dt, the interaction term, T st ×∆it, and the squared terms, (∆it)
2 and

(T st )2. Specification (II) adds the interaction term to specification (I). Specification (III) adds

Ds to specification (II). Specification (IV) adds Dt to specification (II). Specification (V) adds

Ds to specification (IV). Specifications (VI), (VII), (VIII), and (IX) each add the squared terms

(∆it)
2 and (T st )2 to specifications (II), (III), (IV), and (V), respectively. In all specifications,

all estimates are significant at 1 percent level.

The estimates of β1 lie near −5.5 in all specifications, implying that a 1 bp increase in the

policy rate reduces the return of a stock with average turnover by about 5.5 bps on the day of the

policy announcement.28 The estimate of interest, β3, is large and negative in all specifications.

The negative and statistically significant estimates of β3 indicate that the magnitude of the

negative effect of unexptected changes in the policy rate on announcement-day equity returns

is larger for stocks with higher turnover liquidity. To interpret the magnitude of the estimates,

consider a stock A with a daily turnover rate equal to .014 (i.e., a stock in liquidity portfolio

20) and an equity B with an annual turnover rate equal to .0007 (i.e., a stock in liquidity

portfolio 1). Then, for example, according to specification (IX), the estimate of β3 is −487,

28Recall the average daily turnover in our sample is .0048.
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implying that a 1 bp increase in the policy rate reduces the announcement-day return by

β1 + 2β4 + β3

(
T At − T

)
≈ −10 bps for equity A and by β1 + 2β4 + β3

(
T Bt − T

)
≈ −3 bps

for equity B. These estimates are quite close to the E-based estimates for portfolio 20 and

for portfolio 1 reported in Table 2. Together with the findings reported in Table 1 and Table

2, the results in Table 3 provide additional evidence that turnover liquidity is a quantitatively

important channel that transmits monetary policy shocks to asset prices.29

5.4 Dynamic effects

In the previous section we documented the effect of monetary policy shocks on equity returns

and turnover on the day the policy announcement takes place. While the turnover liquidity

channel highlighted by our theory can generate the effects on announcement days documented

in the previous section, the theoretical channel is eminently dynamic. In the theory, persistent

changes in the nominal rate affect stock returns because they imply persistent changes in the

future resale value of the stock. To study the dynamic effects of monetary policy on prices and

turnover rates, we conduct a vector autoregression (VAR) analysis on the sample consisting of

all trading days between January 3, 1994 and December 31, 2007.

The baseline VAR we estimate consists of three variables, i.e.,
{
it,RIt , T It

}
, where it, RIt ,

and T It are the daily measures of the policy rate, the stock return, and turnover described

in Section 5.1 and Section 5.2.30 The lag length is set to 10.31 To identify the effects of

monetary policy shocks, we apply an identification scheme based on an external high-frequency

instrument.32

29In Appendix 5.2 (Section D.2) we show that our estimates of β3 based on (20) are robust to including
a number of additional controls, such as sensitivity to the three most common Fama-French factors, industry
dummies, and a firm-specific measure of leverage (reliance on bank debt).

30In Section 5.2, we used the change in the 3-month Eurodollar futures rate on the day of the FOMC an-
nouncement as a proxy for the unexpected component of the change in the true policy rate, i.e., the effective
federal funds rate. In this section, we instead regard the 3-month Eurodollar futures rate as the policy rate itself.
We do this because, at a daily frequency, the effective federal funds rate is very volatile for much of our sample,
e.g., due to institutional considerations, such as “settlement Wednesdays.” The path of the 3-month Eurodollar
futures rate is quite similar to the effective federal funds rate, but it does not display the large regulation-induced
weekly swings. In any case, we have also performed the estimation in this section using the daily effective federal
funds rate instead of the Eurodolar futures rate, and the results for returns and turnover are quite similar.

31The Akaike information criterion (AIC) suggests 10 lags, while Schwarz’s Bayesian information criterion
(SBIC) and the Hannan and Quinn information criterion (HQIC) suggest 5 lags. We adopted the formulation
with 10 lags, but both formulations deliver similar estimates.

32See Appendix B (Section B.4.1) for details. The basic idea of structural vector autoregression (SVAR)
identification using instruments external to the VAR can be traced back to Romer and Romer (1989) and has
been adopted in a number of more recent papers, including Cochrane and Piazzesi (2002), Hamilton (2003),
Kilian (2008a, 2008b), Stock and Watson (2012), Mertens and Ravn (2013), and Gertler and Karadi (2015).
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Figure 3 reports the impulse responses of the policy rate, the average cumulative stock return

between day t and day t + j defined by R̄It,t+j ≡
∏j
s=1RIt+s, and the average turnover rate,

to a 1 bp increase in the policy rate.33 The 99 percent confidence intervals for
{
it,RIt , T It

}
are computed using a recursive wild bootstrap based on 10,000 replications.34 The top and

bottom rows show responses for forecast horizons of 30 days and 120 days, respectively. The

path of the policy rate is very persistent (it remains significantly above the level prevailing

prior to the shock for about 18 months). The middle panels in Figure 3 show the response of

daily cumulative stock returns. On impact, in response to the 1 bp unexpected increase in the

nominal rate, the stock return falls by about 9.4 bps. The magnitude of this response on the day

of the policy shock is basically the same as the HFIV point estimate reported in Table 1. The

negative effect on the stock price is persistent (the upper bound of the 99 percent confidence

remains below zero for about 30 days). The right panels in Figure 3 show the response of the

level of the daily turnover rate. On impact, a 1 bp surprise increase in the nominal rate causes

a change in the level of the turnover rate equal to −.00005, which is the same as the HFIV point

estimate reported in Table 1. According to the estimated impulse response, it takes about 1

day for the turnover rate to recover half of the initial drop. However, beyond that point, the

negative effect of the increase in the policy rate on turnover is persistent (e.g., it takes 43 days

for it to become statistically insignificant).

In order to inspect the turnover-liquidity transmission mechanism further, we exploit the

cross-sectional variation in turnover rates across stocks and carry out the same VAR analysis

of this section but individually on each of 20 liquidity portfolios of stocks, sorted on turnover

liquidity.35 Figure 4 shows the estimated impulse responses (to a 1 bp unexpected increase in

the policy rate) of the cumulative returns of each of the twenty liquidity portfolios for a forecast

horizon of 30 days. In the figure, the darker impulse responses correspond to the portfolios with

33The impulse response for the cumulative return illustrates the path of {R̄I−1,j−1}, where j = 1, 2, ... indexes
the number of days after the policy announcement.

34The procedure is described in Appendix B (Section B.4.2). See Gonçalves and Kilian (2004) for a formal
econometric analysis of this method. We compute the confindence bands for {R̄It,t+j} by compounding the
confidence bands of the return response {RIt } (i.e., in the same way we compute {R̄It,t+j} from {RIt }).

35In Section 5.3 we re-sorted stocks into liquidity portfolios for each day in our sample of FOMC announcement
dates (based on the average daily turnover rate over the four weeks prior to each FOMC announcement). For
the high-frequency VAR that we estimate in this section, stocks are resorted into one of 20 liquidity portfolios
every day. On days with no FOMC announcement, the sorting is based on daily turnover rate. On FOMC
announcement days, stocks are sorted based on their turnover rate two days prior to the announcement. Since
the ranking of a given stock in terms of turnover tends to be quite persistent, all the sorting schemes described
here deliver similar results.
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higher turnover liquidity (e.g., the lightest impulse response is for portfolio 1 and the darkest,

for portfolio 20). To further illustrate the results, Figure 5 reports the impulse responses and

the corresponding 99 percent confidence intervals of the cumulative portfolio return to a 1 bp

unexpected increase in the policy rate for a forecast horizon of 30 days, for portfolios 1, 10,

and 20. Notice that the announcement-day portfolio-by-portfolio responses estimated by the

VAR line up well with the portfolio-by-portfolio HFIV estimates reported in Table 2. As in

Section 5.3, we again find that on the announcement day, the negative responses of returns

to an unexpected increase in the nominal rate tend to be larger in magnitude for portfolios

with higher turnover liquidity. However, here these responses appear to be estimated much

more precisely than in Table 2.36 Also, notice that—as will be the case in the quantitative

theory—the price responses of the portfolios with larger turnover liquidity are not only larger

in magnitude on impact, but also tend to be more persistent.37

In this section we have provided empirical evidence consistent with the turnover-liquidity

transmission mechanism of monetary policy: a persistent increase in the nominal rate reduces

the resale value of stocks, and this reduction in turnover liquidity is reflected in a persistent

price reduction and higher future stock returns.38

6 Quantitative analysis

The theoretical results we used to motivate the empirical analysis of Section 5 (e.g., part (i) of

Proposition 2, part (i) of Proposition 3, and parts (i) and (ii) of Proposition 5) correspond to

36Aside from the fact that the VAR specification is more flexible than (19), our VAR estimation also relies on
the HFIV identification scheme. In fact, notice that even for the simple specification (19), Table 1 and Table 2
show that in general, the HFIV identification strategy by itself already delivers estimates that are more precise
and more statistically significant than the E-based and H-based estimates.

37Based on the announcement-day evidence alone, one might conjecture that the differential return response
on impact across liquidity portfolios may simply reflect that the prices of stocks with lower turnover liquidity
take longer to react to the FOMC shock. This conjecture, however, does not seem to be supported by the VAR
evidence in Figure 4 and Figure 5. The conjecture is also not supported by the additional regression analysis we
carry out in Appendix D (Section D.1), where we estimate the effect of an unexpected policy shock on day t on
R̄It−1,t+1, i.e., the cumulative stock return for the two-day horizon after the policy announcement.

38Bernanke and Kuttner (2005) is one of a few papers that has tried to identify the economic forces behind the
negative effect of nominal rate increases on stock returns. They use a VAR to decompose excess equity returns
into components attributable to news about dividends, real interest rates, and future excess returns. They
find the component associated with future excess returns accounts for the largest part of the response, i.e., an
increase in the policy rate lowers stock prices mostly by increasing the expected equity premium. Bernanke and
Kuttner speculate this could come about via some unspecified mechanism through which tight money increases
the riskiness of stocks (or decreases the investor’s willingness to bear risk). The turnover-liquidity mechanism
we have identified is consistent with Bernanke and Kuttner’s decomposition.
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a permanent, unanticipated increase in the nominal rate, which while suggestive, is somewhat

different from the policy shocks underlying the empirical estimates of Section 5. Thus in order to

assess the predictions and quantitative performance of the theory, in this section we formulate,

calibrate, and simulate a generalized version of the model of Section 2.

We generalize the model along three dimensions. First, we incorporate aggregate uncertainty

in the path of monetary policy, represented by changes in the nominal interest rate implemented

via open-market operations. This extension allows us to consider theoretical experiments that

resemble more closely what goes on in financial markets, in the sense that while investors may

be surprised by the timing and size of changes in the nominal rate, they take into account

a probability distribution over future paths of the monetary policy so these changes are not

entirely unexpected. Second, we extend the model so that the innovations to the nominal policy

rate may be associated with innovations to the expected inflation rate (as in the propositions

of Section 4), as well as with innovations to the real interest rate. This extension allows us

to quantify the turnover-liquidity mechanism for settings where changes in the nominal rate

may be associated with changes in the expected inflation rate as well as with changes in the

real rate. Third, we extend the model to the case of multiple equity classes that differ in their

liquidity properties. This extension allows us to provide additional evidence for the turnover-

liquidity mechanism by exploiting the cross-sectional heterogeneity and using it to assess the

quantitative theoretical effects of monetary policy on the cross section of equity returns.

6.1 Generalized model

There are N equity classes, each indexed by s ∈ N = {1, 2, ..., N}. The outstanding quantity

of equity shares of class s is As. Since the focus is on the implication of liquidity differences

across equity classes, we assume each class gives the same dividend yt, which follows the same

stochastic process described in the one-asset model of Section 2. An investor’s period t valuation

of the dividend of any equity is distributed independently over time and across investors, with

cumulative distribution function G, just as in the one-asset setup.

We model liquidity differences as follows. In each round of OTC trade, each investor can

trade equity class s ∈ N with probability αs ∈ [0, 1]. The event that the investor is able to

trade equity class s is independent of the event that he is able to trade any other equity class

n ∈ N. We interpret αs as the probability that an individual investor contacts a dealer with

whom he can trade equity class s. This captures the idea that dealers are specialized in trading
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a particular equity class.39 In the OTC trading round there is a competitive interdealer market

for each equity class. These markets are segmented in the following sense: (i) in the OTC

trading round, equity s can only be traded in market s, and (ii) at the beginning of the period,

investors partition the money they will use for trading stocks in the first subperiod into a cash

portfolio with N components, i.e., {amst }s∈N, where amst is the amount of money the investor

chooses to have available to trade equity class s in the OTC market of period t. Each investor

makes this cash rebalancing decision after having observed the realization of the aggregate

state, but before learning which equity classes he will be able to trade, and before learning

his individual valuation of the dividend (the last two assumptions keep the ex post number of

investor types to a minimum). For simplicity, in this section we assume dealers do not hold

asset inventories overnight (and without loss, also that they do not hold money overnight).

In Section 2, we assumed a constant growth rate of the money supply, i.e., Amt+1 = µAmt ,

where µ ∈ R++. In this section we broaden the analysis of monetary policy along three

dimensions: (a) We allow the monetary authority to inject or withdraw money not only with

lump sum taxes, but also via open-market operations. This is a more realistic implementation

of monetary policy, and makes the theory more flexible in that it can encompass a wider range

of responses to monetary policy shocks. (b) We model monetary policy as a stochastic process.

This allows the theory to exhibit monetary policy shocks that resemble the policy surprises in

the empirical analysis of Section 5. (c) We allow monetary policy to affect market outcomes

by influencing the nominal rate through both of its components: the expected inflation rate,

and the real interest rate. This allows us to assess the robustness of the turnover-liquidity

mechanism to different degrees of passthrough from nominal rates to real rates. In summary,

we will consider general monetary policy processes that consist of three components: an open-

market operation, a change in expected inflation, and a change in the real rate. Each of these

components of the monetary policy process is modeled as follows.

In the first subperiod, each investor can always trade in a competitive market where the

39In the theory, differences in α, θ, or G all give rise to differences in turnover across assets. We focus on
differences in α because it is conceptually the simplest and analytically the most direct way to construct asset
classes that differ in turnover liquidity. However, one could carry out the theoretical analysis by constructing asset
classes based on differences in G and θ. Differences in G work similarly to differences in α (see the equivalence
result proved in Proposition 10, Appendix A). With regard to differences in θ, in a large class of models that
includes this one, Duffie et al. (2005) and Lagos and Rocheteau (2009), the equilibrium asset price does not
depend on α and θ independently, but on their product, αθ. Thus, for asset-pricing purposes, differences in α can
be interpreted as capturing differences in the trading probability or in the bargaining power. The quantitative
response of turnover to money shocks will typically depend on whether assets differ in α or θ, however.
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monetary authority sells Bt one-period risk-free pure-discount nominal bonds. A bond issued

in the first subperiod of t yields one dollar with certainty in the following subperiod. The

dollar price of a bond in this market is denoted qt. The bond market is segmented in the same

way as the markets for equity shares, i.e., at the beginning of period t, having observed the

realization of the monetary policy variables (but before knowing which equity classes he will be

able to trade or his dividend valuation), each investor chooses a partition of his money holdings,

{amst }s∈N̄, where N̄ ≡ N ∪ {b}, and ambt denotes the amount of money the investor chooses to

have available to trade bonds in the first subperiod of t. The size of the bond issue, Bt, relative

to the size of the beginning-of-period money supply, Amt , is denoted ωt. That is, if there are

Amt dollars outstanding at the beginning of period t, in the bond market of the first subperiod

t the government sells claims to Bt = ωtA
m
t dollars payable in the following subperiod.

The beginning-of-period money supply evolves according to Amt+1 = [1 + (1− qt)ωt] µ̃tAmt ,

where µ̃t ∈ R++ denotes the growth rate of the money supply between the end of period t and

the beginning of period t+ 1 (implemented via lump-sum transfers in the second subperiod of

t). The monetary authority can implement any arbitrary process for the growth rate of the

beginning-of-period money supply, i.e., can set, Amt+1 = µtA
m
t for any positive path {µt}∞t=1,

despite the random changes in the money supply induced by the open-market operations.40

Finally, to allow for the possibility that monetary policy can affect outcomes by influencing the

real rate as well as expected inflation, we generalize the constant interest rate r of Section 2 to

a stochastic process {rt}∞t=1.

To summarize, we model monetary policy as a stochastic process {τ t}∞t=1, where τ t ≡
(ωt, µt, rt). This formulation is general enough to encompass situations where monetary policy

amounts to changing expected inflation (as in monetarist models) as well as settings where

monetary policy amounts to directly influencing real rates (as in New Keynesian models). We

assume {τ t}∞t=1 follows a Markov chain with transition matrix σij = Pr (τ t+1 = τ j |τ t = τ i),

where τ i ≡ (ωi, µi, ri) ∈ R3
++ and τ j ≡ (ωj , µj , rj) ∈ R3

++ for i, j ∈ M = {1, . . . ,M}. The

realization of τ t is known at the beginning of period t.

We specialize the analysis to recursive equilibria in which prices and portfolio decisions are

time-invariant functions of an aggregate state vector that follows a time-invariant law of motion.

The state vector is xt = (Amt , yt, τ t) ∈ R5
+. Asset prices in a recursive equilibrium will be

40Specifically, µ̃t = µt/ [1 + (1− qt)ωt] implies Amt+1 = µtA
m
t for any {µt}∞t=1. The government budget con-

straint is Bt + Tt/φ
m
t = Amt+1 − (Amt − qtBt), so the real lump-sum transfer (expressed in terms of the second-

subperiod consumption good) needed to implement Amt+1 = µtA
m
t is Tt = [(µt − 1)− (1− qt)ωt]φmt Amt .
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denoted φst = φs (xt), φ̄
s
t = φ̄s (xt), φ

m
t = φm (xt), p

s
t = ps (xt), qt = q (xt), and εs∗t = εs∗ (xt).

Let Amkt denote the amount of money that investors have available to trade asset k ∈ N̄ at the

beginning of period t (i.e., the bond, if k = b, or equity, if k ∈ N). The laws of motion for the

state variables Amt , yt, and τ t are exogenous (as described above), while Amkt = Ψk (xt) for

k ∈ N̄, where the decision rule Ψk is determined in equilibrium. Suppose xt = (Amt , yt, τ i) and

focus on a recursive equilibrium with the property that real prices are linear functions of the

aggregate dividend, and Ψk (xt) = λkiA
m
t for all k ∈ N̄, where λsi ∈ [0, 1] denotes the fraction of

the beginning-of-period money holdings that investors have chosen to have available to trade

asset class k in the OTC round of period t. Then, φs (xt) = φsiyt, φ̄
s (xt) ≡ ps (xt)φ

m (xt) =

φ̄siyt, φ
m (xt)A

m
t = Ziyt, q (xt) = qi, and εs∗ (xt) ≡ [φ̄s (xt)− φs (xt)]/yt = φ̄si − φsi ≡ εs∗i .

In Appendix C (Section C.3), we show that an equilibrium is characterized by a vec-

tor {φsi , εs∗i , Zi, λsi}i∈M,s∈N̄ of M (3N + 2) unknowns that solves the following system with

M (3N + 2) independent equations:

φsi =
γ̄δ

1 + ri

∑
j∈M

σij

[
ε̄+ φsj + αsθ

∫ εs∗j

εL

(εs∗j − ε)dG(ε)

]
(21)

Zi =
γ̄

(1 + ri)µi

∑
j∈M

σij

[
1 + αsθ

∫ εH

εs∗j

ε− εs∗j
εs∗j + φsj

dG(ε)

]
Zj (22)

max(ωi/λ
b
i , 1) = 1 + αsθ

∫ εH

εs∗i

ε− εs∗i
εs∗i + φsi

dG(ε) for all (i, s) ∈M× N (23)

Ziλ
s
i =

G (εs∗i )As

1−G (εs∗i )
(εs∗i + φsi ) for all (i, s) ∈M× N (24)

1− λbi =
∑
s∈N

λsi for all i ∈M. (25)

In the following subsections, we calibrate and simulate this model to assess the ability of the

theory to account for the empirical findings reported in Section 5. Before doing so, it is useful

to define the theoretical analogues of the variables we studied in the empirical section.

The return of stock s at date t+ 1 is Rst+1 = φ̄st+1/φ
s
t − 1, where φ̄st ≡ ptφ

m
t = φst + ε∗t yt is

the cum dividend price of equity at date t defined in Section 3. The real return from holding a

dollar between the end of period t and the end of period t+1 is φmt+1/φ
m
t ≡ (1 + πt+1)−1, where

πt+1 denotes the (net) inflation rate between t and t + 1. In a recursive equilibrium, suppose
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the state is xt = (Amt , yt, τ j) at t, and xt+1 = (µjA
m
t , yt+1, τ k) at t+ 1, then

1 +Rst+1 =
φsk + εs∗k
φsj

yt+1

yt

1 + πt+1 =
Zj
Zk

yt
yt+1

µj .

So far we have implicitly assumed that As, i.e., all outstanding equity shares of class s,

are actively traded every day. In actual markets, however, a fraction of the outstanding equity

shares are seldom traded (stocks held in 401(k) accounts, for example). Our theory remains

unchanged if we replace As with κAs for some κ ∈ [0, 1] that represents the proportion of the

universe of outstanding stocks that are actively traded, and think of the remaining (1− κ)As

as being held by nontraders outside the model. In an equilibrium in which dealers do not

hold assets (as is the case in this section), trade volume for asset class s at date t is Vst =

2αsG (εs∗t )κAs. A conventional measure of trade volume is the turnover rate used in the

empirical work of Section 5.1. According to the theory, the turnover rate on date t is

T st = Vst /As = 2αsG (εs∗t )κ.

Naturally, a nonzero fraction of inactive stocks (i.e., κ < 1) lowers the measured level of the

turnover rate.41 In a recursive equilibrium, suppose the state at date t is xt = (Amt , yt, τ j), then

the turnover rate can be written as T sj = 2αsG(εs∗j )κ. In the theory as in our empirical work,

whenever we use an average, e.g., of equity returns or turnover rates across a set of stocks, we

use the arithmetic average, e.g., RIt = 1
N

∑
s∈NRst and T It = 1

N

∑
s∈N T st are the average return

and the average turnover rate for the universe of stocks in the theory.

The (net) nominal rate on the government bond in state xt = (Amt , yt, τ j) is q (xt)
−1− 1 =

max(ωj/λ
b
j , 1) − 1 ≡ ij . Then (22) and (23) imply the Fisher equation (the generalization of

(14))

1 =
∑
k∈M

σjk
1 + ik

(1 + rj) (1 + π̄jk)
(26)

where π̄jk ≡ µjZj/(γ̄Zk) − 1 is the average inflation rate between state xt = (Amt , yt, τ j) and

state xt+1 = (µjA
m
t , yt+1, τ k).

41The first column labeled “Turnover” in Table 2 reports the annual turnover rates corresponding to each of
the 20 portfolios we studied in Section 5.3. Notice that the turnover rates appear to be quite low: even the top
5 percent most traded stocks are only traded about 3 times per year, on average, which suggests that the model
should allow for the possibility of κ < 1.
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6.2 Calibration

We think of one model period as being one day. We set θ = 1 in our baseline and abstract from

micro-level pricing frictions induced by bargaining. The dividend growth rate is independently

lognormally distributed over time, with mean .04 and standard deviation .12 per annum (e.g.,

as documented in Lettau and Ludvigson (2005), Table 1). That is, yt+1 = ext+1yt, with xt+1 ∼
N
(
γ̄ − 1,Σ2

)
, where γ̄ − 1 = E (log yt+1 − log yt) = .04/365 and Σ = SD (log yt+1 − log yt) =

.12/
√

365. The parameter δ can be taken as a proxy of the riskiness of stocks; a relatively low

value ensures the monetary equilibrium exists even at relatively high inflation rates. We choose

δ = (.7)1/365, i.e., a productive unit has a 70 percent probability of remaining productive each

year. The number of outstanding shares of stocks of every class is normalized to 1, i.e., As = 1

for all s ∈ N. We set N = 20 so the number of asset classes in the theory matches the number

of synthetic liquidity portfolios considered in the cross-sectional analysis of Section 5.3.

We normalize α20 = 1 and calibrate {αs}19
s=1 so that the long-run time-average (under the

invariant distribution of monetary policy shocks) of the equilibrium turnover rate of portfolio

s ∈ {1, ..., 19} relative to portfolio 20 (i.e., T̄ s/T̄ 20, where T̄ s ≡ limT→∞
1
T

∑T
t=1 T st ) matches

the ratio of the average turnover rate of the sth and the 20th synthetic liquidity portfolio

in our sample. Idiosyncratic valuation shocks are drawn from a lognormal distribution. The

parameters of the lognormal and the fraction of actively traded stocks, κ, are chosen so that

under the baseline monetary policy process, in response to an unexpected innovation to the

policy rate, the theory generates: (i) a marketwide stock return (i.e., RIt ) on the day of the

policy change that matches the corresponding empirical HFIV estimate documented in Table

1, and (ii) a change in the marketwide turnover rate (i.e., T It ) on the fifth day after the policy

change that matches the corresponding empirical estimate from the VAR in Section 5.4.42

We estimate the stochastic process for the nominal policy rate, {ı̂t}∞t=0, using data for the

rate on the 3-month Eurodollar future contract. We formulate that the logarithm of the policy

rate follows an AR(1) process, we estimate this process at a daily frequency for every trading

day between January 3, 1994, and December 31, 2007, and approximate it with a 7-state Markov

chain, {ı̂j , [σ̂jk]}7j,k=1.43 We then use this estimated policy process to calibrate the theoretical

42This procedure delivers κ = .016, ln εt ∼ N (−0.2332, 1.5705), α1 = .1218, α2 = .1707, α3 = .1972,
α4 = .2224, α5 = .2438, α6 = .2590, α7 = .2748, α8 = .2939, α9 = .3121, α10 = .3306, α11 = .3492, α12 = .3679,
α13 = .3899, α14 = .4149, α15 = 0.4445, α16 = .4821, α17 = .5284, α18 = .6011, α19 = .7151.

43Specifically, the process we estimate is ln it = (1− ξ) ln i0 + ξ ln it−1 + εt, where εt is Gaussian white noise.
With it denominated in bps, the estimates are ξ = .9996695, E (ln it) = ln i0 = 5.990701, and

√
E (ε2t ) =
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monetary policy process, 〈(ωj , µj , rj), [σjk]〉j,k∈M, as follows. We set [σjk] = [σ̂jk], and choose the

process of open-market operations, {ωj}j∈M, that implements an aggregate real value of money

that is constant across states, i.e., Zj = Z for all j ∈M.44 Then (26) implies ιk ≈ rk+πk for all

k ∈M, where ιk ≡
∑

j∈M σkj (1 + ij) is the expected one-period-ahead nominal rate conditional

on the current state xt = (Amt , yt, τ k), and πk ≡ µk/γ̄ − 1 is the average inflation rate between

state xt = (Amt , yt, τ k) and any state xt+1. Let ı̄, r̄, and π̄, denote the empirical means of

the nominal policy rate, the real interest rate, and the inflation rate, respectively. Over the

sample period 1994-2007, the average nominal policy rate was .0447 and the average inflation

rate was .0269, so (14) implies a real rate of .0178 per annum.45 Hence, 1 + ı̄ = (1.0447)1/365,

1 + r̄ = (1.0178)1/365, and 1 + π̄ = (1.0269)1/365. For each k ∈ M, we set rk = r̄ + wη̂k and

πk ≡ π̄ + (1− w) η̂k, where η̂k ≡ ı̂k − ı̄, and w ∈ [0, 1] indexes the degree of passthrough from

nominal rates to real rates. We use w = .8 as baseline, which implies a 100 bp increase in

the nominal rate is associated with a 80 bp increase in the real rate and a 20 bp increase in

expected inflation.46

6.3 Simulation

In this section we conduct two experiments to assess the ability of the theory to match the

evidence documented in Section 5. In both experiments, we simulate the calibrated model as

.0114289. Hence the estimated mean and standard deviation of the nominal rate, it, are E (it) = 441 and√
V ar (it) =

√
E(ε2t )

1−ξ2 = 206.2516. The estimated AR(1) process is very persistent so, as suggested by Galindev

and Lkhagvasuren (2010), we use the Rouwenhorst method to compute the approximating Markov matrix and
states. The code for the Rouwenhorst method is also from Galindev and Lkhagvasuren (2010).

44The precise process of open-market operations is described in Appendix C (Proposition 12 in Section C.3).
This policy implies the real price of money does not change at the times when monetary policy switches
states. Consider a state xt = (Amt , yt, τ i). The relevant nominal prices in the model are the dollar price
of the second-subperiod consumption good, 1/φm (xt) = Amt / (Ziyt), and the dollar price of an equity share,
ps (xt) = Amt (εs∗i + φsi ) yt/ (Ziyt). Under the policy {ωj}j∈M that implements Zj = Z for all j ∈ M, φm (xt) is
invariant to monetary policy surprises on impact, and ps (xt) responds only if the policy surprise has an effect on
the real cum-divided equity price. Thus this process of open-market operations makes our flexible-price model
consistent with the fact that nominal prices in the data typically do not jump when there is a surprise change in
the nominal policy rate, even when the policy shock may imply a change in the path of expected inflation.

45As in Section, 5.1 for the policy rate we use the 3-month Eurodollar futures rate (series IEDCS00 pro-
duced by the CME Group available via Datastream). The annual average inflation rate is imputed as

[CPI(January 2008)/CPI(January 1994)]1/14 − 1, where CPI(Month Y ear) is monthly CPI index available
from FRED at https://fred.stlouisfed.org/series/CPIAUCSL.

46This choice is guided by the passthrough estimates in Gertler and Karadi (2015) at a two-year horizon. As a
robustness check, we have also set w = 1 and recalibrated the model to fit the same data targets as the baseline
calibration, and found that the quantitative performance of the theory is very similar to the case with w = .8.
In Appendix D (Section D.6) we report results for the case with w = 0.
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follows. First, compute the equilibrium functions characterized by (21)-(25). Second, simulate

1,000 samples of the dividend, each of length equal to our data sample. Then set the path of

the nominal rate in the model equal to the actual empirical path of the policy rate used in our

empirical work. Finally, compute the equilibrium path of the model 1,000 times (one for each

realization of the simulated dividend path), and for each simulated equilibrium path, compute

the average daily equity return for each asset class.

6.3.1 Experiment 1: Disaggregative announcement-day effects

The first experiment is the model analogue of the cross-sectional analysis of Section 5.2. For

each of the 20 asset classes, we run an event-study regression for announcement-day returns

1,000 times (one for each of the 1,000 simulated equilibrium paths for daily stock return for

that particular asset class). The results are illustrated in Figure 6, which reports the empirical

HFIV estimates from Table 2 along with the regression estimates from the simulated model.47

For each theoretical portfolio, the value displayed in Figure 6 is the average E-based estimate

over the model 1,000 simulations. The 99% confidence intervals for the theoretical estimates

are constructed using the distribution of estimates from the 1,000 model simulations. The 99

percent confidence intervals for the empirical estimates are from the HFIV regressions from

Section 5.3. The model was calibrated so that the marketwide response to the policy shock on

the announcement day matches the empirical HFIV estimate of Table 1. We are interested in

whether the theory can account for the profile of returns across stocks with different turnover

liquidity—the hallmark of the turnover-liquidity transmission mechanism. Figure 6 shows the

theory is able to generate most of the announcement-day tilting in cross-sectional returns. The

fit is excellent for the first fourteen liquidity portfolios. For the six most liquid portfolios, the

model predicts a bit less tilting than the data.

6.3.2 Experiment 2: Impulse responses

The second experiment is the model analogue of the VAR analysis of Section 5.4. Figure 7

reports the model-generated impulse responses for the policy rate, the cumulative marketwide

stock return, and the average turnover rate to a 1 bp increase in the policy rate, along with

the corresponding empirical impulse responses and 99 percent confidence intervals estimated

47Since the monetary policy is exogenous in the model, the E-based estimates based on the synthetic data are
not subject to the biases discussed in Section 5.2. For this reason, here we use the HFIV empirical estimates as
a benchmark for comparison.
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from actual data (those described in Section 5.4). The top and bottom panels show responses

for forecast horizons of 30 days and 120 days, respectively. The path of the policy rate from

the model is quite close to the empirical path. The middle panels show the response of the

daily cumulative stock return. On impact, in response to the 1 bp unexpected increase in the

nominal rate, the model stock return falls by 9.38 bps—the same as the HFIV estimate of Table

1, as targeted by the calibration. Since persistence (of the policy shock and turnover liquidity)

is an essential element of the theoretical mechanism, we are interested in whether the model

can account for the dynamics of the response of the cumulative return. The theoretical and

empirical impulse responses for subsequent days after the policy shock remain quite close. For

example, the theoretical impulse response can account for over 80% of the empirical response

for the first 30 days, and for at least 66% of the empirical response for the subsequent 90 days.48

The right panels of Figure 7 show the response of the level of the daily turnover rate.

The model was calibrated so that the response of turnover on day 5 after the announcement

matches the empirical estimate. On impact, in response to a 1 bp unexpected increase in the

nominal rate, the turnover rate falls by −6.8502× 10−6 in the model. The model response for

turnover is about seven times smaller than the empirical estimate (−4.8692×10−5 according to

the empirical impulse response). However, although the model response for turnover is much

smaller on impact, it is very persistent and remains relatively close to the empirical response at

longer horizons. For example, the difference between the empirical path for the turnover rate

and the theoretical path becomes statistically insignificant for all days after day 3. Both the

empirical and the theoretical responses are quite persistent. This persistent effect of policy on

the turnover rate is consistent with a response in return that is quantitatively in line with the

data, even though the announcement-day effect on turnover is much smaller than in the data.

7 Conclusion

We conclude by mentioning what we think are three promising avenues for future work. First,

in the model we have presented, all asset purchases are paid for with outside money. In other

words, the theory focuses on the relevant margin for settings, transactions, or traders for which

credit limits have become binding. While arguably stark, we think this formulation is a useful

benchmark to contrast with the traditional asset-pricing literature that abstracts from the role

48The simulated theoretical cumulative return is -8.7 bp on day 30, and -7.7 bp on day 120. The estimated
empirical cumulative return is -11.0 bp on day 30, and -11.7 bp on day 120.
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of costly or scarce payment instruments. Having said this, we think it would be useful to extend

the theory to allow for credit arrangements. The possibility of buying on margin, for example,

is likely to interact with the monetary mechanisms we have emphasized here in interesting

ways (see Lagos and Zhang (2019) for work along these lines). Second, given that trading

frictions in the exchange process are at the center of the analysis (e.g., the likelihood of finding

a counterparty, or the market power of dealers who intermediate transactions), it would be

interesting to endogenize them (see Lagos and Zhang (2015) for work in this direction). Third,

while we have focused on stocks in our empirical work, the transmission mechanism we have

identified is likely to be operative—and possibly even more conspicuous—in markets for other

assets, such as Treasury securities and assets that trade in more frictional over-the-counter

markets.
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[19] Gonçalves, Śılvia, and Lutz Kilian. “Bootstrapping Autoregressions with Conditional Het-

eroskedasticity of Unknown Form.” Journal of Econometrics 123(1) (November 2004):

89-120.

[20] Gorodnichenko, Yuriy, and Michael Weber. “Are Sticky Prices Costly? Evidence from the

Stock Market.” American Economic Review 106(1) (January 2016): 165-199.

[21] Gorton, Gary, and Andrew Metrick. “Getting Up to Speed on the Financial Crisis: A One-

Weekend-Reader’s Guide.” Journal of Economic Literature 50(1) (March 2012): 128-150.

[22] Gürkaynak, Refet S., Brian P. Sack, and Eric T. Swanson. “Do Actions Speak Louder

Than Words? The Response of Asset Prices to Monetary Policy Actions and Statements.”

International Journal of Central Banking 1(1) (May 2005): 55-94.

[23] Gürkaynak, Refet S., Brian P. Sack, and Eric T. Swanson. “Market-Based Measures of

Monetary Policy Expectations.” Journal of Business and Economic Statistics 25(2) (April

2007) 201-212.

41



[24] Hamilton, James D. “What is an Oil Shock?” Journal of Econometrics 113(2) (April 2003):

363-398.

[25] Hanson, Samuel G., and Jeremy C. Stein. “Monetary Policy and Long-Term Real Rates.”

Journal of Financial Economics 115(3) (March 2015): 429-448.

[26] Harrison, J. Michael, and David M. Kreps. “Speculative Investor Behavior in a Stock

Market with Heterogeneous Expectations.” Quarterly Journal of Economics 92(2) (May

1978): 323-336.

[27] He, Chao, Randall Wright, and Yu Zhu. “Housing and Liquidity.” University of Wisconsin,

mimeo, 2012.

[28] Ippolito, Filippo, Ali K. Ozdagli, and Ander Perez. “Is Bank Debt Special for the Trans-

mission of Monetary Policy? Evidence from the Stock Market.” Federal Reserve Bank of

Boston Working Paper No. 13-17, September 2013.

[29] Ippolito, Filippo, Ali K. Ozdagli, and Ander Perez. “The Transmission of Monetary Policy

Through Bank Lending: The Floating Rate Channel.” Journal of Monetary Economics 95

(May 2018): 49-71.

[30] Jacquet, Nicolas L. and Serene Tan. “Money and Asset Prices with Uninsurable Risks.”

Journal of Monetary Economics 59(8) (December 2012): 784-797.

[31] Kilian, Lutz. “Exogenous Oil Supply Shocks: How Big Are They and How Much Do They

Matter for the U.S. Economy?” Review of Economics and Statistics 90(2) (May 2008):

216-240.

[32] Kilian, Lutz. “The Economic Effects of Energy Price Shocks.” Journal of Economic Liter-

ature 46(4) (December 2008): 871-909.

[33] Kuttner, Kenneth N. “Monetary Policy Surprises and Interest Rates: Evidence from the

Fed Funds Futures Market.” Journal of Monetary Economics 47(3) (June 2001): 523-544.

[34] Lagos, Ricardo. “Some Results on the Optimality and Implementation of the Friedman

Rule in the Search Theory of Money.” Journal of Economic Theory 145(4) (July 2010):

1508-1524.

42



[35] Lagos, Ricardo. “Asset Prices and Liquidity in an Exchange Economy.” Journal of Mone-

tary Economics 57(8) (November 2010): 913-930.

[36] Lagos, Ricardo. “Asset Prices, Liquidity, and Monetary Policy in an Exchange Economy.”

Journal of Money, Credit and Banking 43(7) (October 2011): 521-552.

[37] Lagos, Ricardo, and Guillaume Rocheteau. “Money and Capital as Competing Media of

Exchange.” Journal of Economic Theory 142(1) (September 2008): 247-258.

[38] Lagos, Ricardo, and Guillaume Rocheteau. “Liquidity in Asset Markets with Search Fric-

tions.” Econometrica 77(2) (March 2009): 403-426.

[39] Lagos, Ricardo, Guillaume Rocheteau, and Pierre-Olivier Weill. “Crises and Liquidity in

Over-the-Counter Markets.” Journal of Economic Theory 146(6) (November 2011): 2169-

2205.

[40] Lagos, Ricardo, and Randall Wright. “A Unified Framework for Monetary Theory and

Policy Analysis.” Journal of Political Economy 113(3) (June 2005): 463-484.

[41] Lagos, Ricardo, and Shengxing Zhang. “Monetary Exchange in Over-the-Counter Markets:

A Theory of Speculative Bubbles, the Fed Model, and Self-Fulfilling Liquidity Crises.”

NBER Working Paper 21528, September 2015.

[42] Lagos, Ricardo, and Shengxing Zhang. “On Money as a Medium of Exchange in Near-

Cashless Credit Economies.” Working paper, September 2019.

[43] Lester, Benjamin, Andrew Postlewaite, and Randall Wright. “Information, Liquidity, Asset

Prices, and Monetary Policy.” Review of Economic Studies 79(3) (July 2012): 1208-1238.

[44] Lettau, Martin, and Sydney C. Ludvigson. “Expected Returns and Expected Dividend

Growth.” Journal of Financial Economics 76(3) (June 2005): 583-626.

[45] Li, Ying-Syuan, and Yiting Li. “Liquidity, Asset Prices, and Credit Constraints.” National

Taiwan University, mimeo, 2012.

[46] Mattesini, Fabrizio, and Ed Nosal. “Liquidity and Asset Prices in a Monetary Model with

OTC Asset Markets.” Journal of Economic Theory, 2016, forthcoming.

43



[47] Mertens, Karel, and Morten O. Ravn. “The Dynamic Effects of Personal and Corporate

Income Tax Changes in the United States.” American Economic Review 103(4) (June

2013): 1212-1247.

[48] Nakamura, Emi, and Jón Steinsson. “High-Frequency Identification of Monetary Non-

Neutrality.” Manuscript, 2015.

[49] Nosal, Ed, and Guillaume Rocheteau. “Pairwise Trade, Asset Prices, and Monetary Policy.”

Journal of Economic Dynamics and Control 37(1) (January 2013): 1-17.

[50] Piazzesi, Monika, and Martin Schneider. “Payments, Credit and Asset Prices.” Stanford

University Working Paper, 2016.

[51] Rigobon, Roberto, and Brian Sack. “The Impact of Monetary Policy on Asset Prices.”

Journal of Monetary Economics 51(8) (November 2004): 1553-1575.

[52] Romer, Christina D., and David H. Romer. “Does Monetary Policy Matter? A New Test

in the Spirit of Friedman and Schwartz.” In NBER Macroeconomics Annual 1989, Volume

4, edited by Olivier J. Blanchard and Stanley Fischer, 121-184. MIT Press, 1989.
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