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authors prefer them to be insignificant, the reverse of standard statistical tests. Collecting a 
sample of nearly 30,000 sniff tests across 60 economics journals, we provide the first estimate of 
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randomized controlled trials (for which the distribution of p-values is known to be uniform absent 
publication bias, allowing reduced-form methods to be employed) estimates suggest that 45% of 
failed tests remain in the "file drawer" rather than being published. For the remaining sample with 
an unknown distribution of p-values, structural estimates suggest an even larger file-drawer 
problem, as high as 91%. Fewer significant sniff tests show up in top-tier journals, smaller tables, 
and more recent articles. We find no evidence of author manipulation other than a tendency to 
overly attribute significant sniff tests to bad luck.
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1. Introduction

Readers naturally focus on the significance of the main results in empirical articles. Our pa-

per shifts the focus to the significance of auxiliary tests (including balance, specification, over-

identification, falsification, and placebo tests) supporting the credibility of papers’ main results.

We dub such auxiliary tests “sniff tests” because of the subjective standards for passing and the

bad news for the paper’s main results that comes with rejection. Sniff tests provide a new and

valuable lens through which to study publication bias in the academic literature.

Publication bias, formally defined as systematic error introduced by selective publication of

evidence that is not representative of all available evidence (see, e.g., Bax and Moons 2011), has

long been acknowledged as a threat to empirical inference. The large literature in the hard sci-

ences as well as economics that has studied publication bias has focused on canonical forms such

as the “file-drawer problem” (coined by Rosenthal 1979), whereby studies that find insignificant

treatment effects remain in the metaphorical file drawer rather than being published. Results from

published studies would thus constitute a sample selected on their significance, biasing the reported

significance levels upward. Authors may also contribute to publication bias through deliberate ac-

tions to boost significance and thus publication chances (e.g., data mining or outright manipulation

of data or results).

Sniff tests offer a unique lens through which to study publication bias. Authors have the reverse

of the usual preferences with sniff tests, preferring them to be statistically insignificant. With

standard tests of main treatment effects, published studies may only reveal a highly selected “tip

of the iceberg” of the most significant results. With sniff tests, by contrast, though publication bias

may chip away at the tip of the most significant results, it does not distort the bulk of insignificant

results that otherwise lies below view with standard tests. Furthermore, forces behind publication

bias may be more or less strong with sniff tests. An insignificant main result may be more likely

to ruin a paper’s chance of publication than a significant sniff test, leading to more publication

bias with standard tests. On the other hand, it may be easier for authors to manipulate how sniff

tests are reported. Editors always demand the reporting of main results but not necessarily every

imaginable sniff test, allowing authors some leeway to suppress or bury significant sniff tests. Such

considerations could potentially lead to greater publication bias with sniff tests.
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There are a number of other advantages to studying publication bias through the lens of sniff

tests. Perhaps the chief advantage is that the underlying distribution of probability values (p-

values) from sniff tests is known for certain subsamples under certain conditions. Specifically,

under the null hypothesis of no publication bias, p-values from tests of covariate balance between

treatment versus control samples in a randomized controlled trial (RCT) should have a uniform

distribution on [0,1] (as long as authors have not taken measures to improve balance). This property

offers a powerful, reduced-form test of publication bias, comparing the observed distribution of a

large number of test statistics against the theoretical distribution. Traditional methods to detect

publication bias such as meta-regression analysis (see Stanley and Jarrell 1989, Stanley 2005, and

Stanley 2008) operate on severely restricted samples—collections of studies that investigate the

same pair of dependent and independent variables.

Our dataset consists of a painstakingly collected sample of nearly 30,000 sniff tests from 900

articles published in 60 economics journals. We first identified candidate articles via a search over

relevant keywords. A team of research assistants scanned each of these candidate articles to verify

whether or not it contained one or more tables of sniff-test results; and if so, p-values, level of

significance, and other article and journal information was collected, down to details such as the

position of the table in the paper, the symbols used to highlight significance, even the nature of

author claims about how well the sniff test performed.

The analysis employs both reduced-form and structural methods. While we take an initial look

at the the full dataset, most of the analysis focuses on what we call the “pure” sample of sniff

tests, for which we are sure the authors did not take measures (re-randomization, stratification, or

matching) to lessen the p-values’ significance. We further break the pure sample down into balance

tests in RCTs and other tests. The reason for analyzing these subsamples separately is that, as

mentioned, the distribution of p-values is known to be uniform in the absence of publication bias

for the pure sample of RCT balance tests. For other tests, the p-value distribution is unknown in the

absence of publication bias. An unknown, perhaps substantial, number of studies may suffer flaws

such as pre-trends or other misspecification that are detected by sniff tests, leading to more than,

say, 10% of p-values being significant at the 10% level. Publication bias may reduce the excess of

significant p-values but perhaps not enough to be detected.

Our reduced-form methods are straightforward, amounting to visual inspection of kernel den-
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sities of various subsamples of p-values, and simple tests of the equality between the proportion

of significant p-values and the uniform benchmark. For the pure sample of RCT balance tests, the

mass missing from the [0,0.1) interval of p-values relative to the uniform case is consistent with

nearly 45% of significant RCT balance tests remaining in the file drawer. For the pure sample of

other tests, the kernel density of p-values looks quite different, with a huge spike of p-values near

0, consistent with a substantial number of studies suffering from flaws picked up by sniff tests.

For the subsample of tests other than of RCT balance, we employ structural methods to estimate

the rate of publication bias. We specify a two-stage model in which a flexible beta distribution

describes the rate of study flaws in the first stage. In the second stage, a proportion of studies with

significant sniff tests, whether due to random chance or study flaws, are assumed to be removed by

the publication process. Though simple, this model predicts a peculiar shape for the distribution of

p-values, which turns out to fit the data quite well, lending credibility to the structural estimates.

Our structural estimates imply that over 90% of significant tests in this subsample end up in the

“file drawer.” The overarching conclusion is that the publication process has a substantial, not an

ignorable, effect on the distribution of published test statistics.

We are able to obtain some insight into potential mechanisms behind publication bias by look-

ing at heterogeneity across categories. Reassuringly, we find no evidence author manipulation.

Authors do not appear to hide significant sniff tests in appendices, obscure them by omitting signif-

icance symbols, nor engage in fudging or mining to move close p-values over crucial significance

thresholds. We do find some evidence that sniff tests in top-tier journals are less significant than

those in lower-tier journals, consistent with top journals having more rigorous standards for all as-

pects of empirical studies—laudable, though suggestive that publication bias may be particularly

severe in the top tier. We also find that sniff tests are less significant in smaller tables and more

recent articles.

Our estimate of the aggregate distribution of sniff-test p-values—to our knowledge the first in

the literature—sheds further light on where individual sniff-test statistics stand in the empirical dis-

tribution and whether author claims associated with individual statistics are collectively justified.

Given that standards for passing are subjective, to evaluate the performance of sniff tests in any

individual paper, it is useful to know where those individual p-values fall in the broader distribution

in the economics literature. If the aggregate distribution turns out to be uniform, this would lend
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credence to claims that any individual sniff test that happens to be significant is a false positive

rather than an actual study flaw. For example, if 10% of tests of pre-trends are significant at the

10% level, assuming there is no publication bias, one can conclude that many of these are due to

random noise rather than a real trend in the data-generating process. Conversely, we can use the

aggregate distribution to check author claims that their studies have no more significant sniff tests

than would be expected at random. We end up rejecting such claims in the aggregate for the most

significant threshold (1% level of significance), finding more than double proportion of p-values

there than would be expected if such claims were true.

2. Literature Review

The large and growing literature on publication bias dates at least back to Sterling (1959); Rosen-

thal (1979); Begg and Berlin (1988); and, in the field of empirical economics, DeLong and Lang

(1992). As discussed in reviews by Rothstein et al. (2006) and Christensen and Miguel (2016), the

literature chiefly focuses on the bias arising from the predisposition of agents at all levels (authors,

reviewers, readers) to favor statistically significant results in tests of null hypotheses that the main

results of interest are zero. Statistically significant results are usually seen as more conclusive,

leading authors to mine the data for significant specifications, leading authors to to be more likely

to submit papers with significant results for publication, and leading journals to be more likely

to publish submitted papers with significant results.1 As modeled in Hedges (1992), this form of

publication bias will shift reported p-values from high to low values.

To our knowledge, ours is the first paper to study bias arising from sniff tests, for which a

statistically significant result is bad news for the study’s methodology, leading agents to have the

opposite predisposition, favoring insignificant results, providing a new window through which to

study publication bias.

The largest body of evidence on publication bias is in the field of medicine. Besides being a

large and high-stakes field, a further advantage is that medical trials often require prior registration.

This allows meta-researchers to study the universe of all registered projects, both unpublished and

1Card and Krueger (1995) identify two other sources of publication bias relevant in economics if not other fields.
First, reviewers may be predisposed to accept papers consistent with the conventional view; second, researchers may
use the presence of conventionally expected results as a model-selection test. See the surveys by Stanley (2005) and
Ioannidis and Doucouliagos (2013) for further discussion of publication bias in economics.
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published, determining whether the distribution of test statistics differs across these two groups.

Examples include Easterbrook et al. (1991); Dickersin, Min, and Meinert (1992); Stern and Simes

(1997); Hopewell et al. (2009), and Driessen et al. (2015). Dickersin et al. (1987) tracked the

progress of registered medical trials that failed to be published, finding that progress was typically

halted by author discretion, with the authors either deciding not to write up the paper or not to

submit a completed paper, rather than rejection of submitted manuscripts by the journals.

Opportunities to identify the universe of unpublished and published studies is rare for meta-

researchers. More commonly, only the selected set of published articles can be observed. To

facilitate the detection of publication bias in this selected set, meta-researchers have focused on

isolated cases in which many studies of the same pair of dependent and independent variables

have been published. Popular techniques used include the funnel plot (Egger, et al. 1997), rank

correlation tests (Begg and Mazumdar 1994; Egger, et al. 1997; Sterne, Gavaghan, and Egger

2000; Duvall and Tweedie 2000; Peters et al. 2006; Stanley and Doucouliagos 2014), and para-

metric selection models (Iyengar and Greenhouse 1988, Hedges 1992, Andrews and Kasy 2017).

Economists have applied these techniques to detect publication bias in a variety of applications

(see Stanley 2005 for a survey). Examples include meta-analyses by Card and Krueger (1995) on

the effect of minimum wage on employment; Ashenfelter, Harmon, and Oosterbeek (1999) on the

effect of schooling on earnings; Görg and Strobl (2001) on the effect of multinationals on domestic

productivity; Doucouliagos (2005) on economic freedom; Nelson (2014) on the price elasticity of

beer; and Havranek (2015) on intertemporal substitution.

Commentators have proposed a variety of solutions to the publication-bias problem. The pro-

posed methods include registering every trial, publishing every study (Thornton and Lee, 2000),

and improving reporting protocols (Moher, et al. 2010). In economics, Duflo, Glennerster, and

Kremer (2008) propose that granting agencies take the lead, requiring all studies they fund to be

archived, even those that end up not being published. Some recent work explores the possibility of

correcting for publication bias ex post (McCrary et al. 2016 and Andrews and Kasy 2017).

Besides making a novel contribution to the literature on publication bias, our paper provides

what to our knowledge is the first meta-analysis of the important class of tests we have labeled

sniff tests. Attempts have been made in the economic literature to study publication bias from the

aggregate distributions of tests (see Brodeur, et al. 2016 and Ioannidis, Stanley, and Doucouliagos
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2017). These articles focus on standard tests of main results, not sniff tests. As pointed out in

the introduction, there are several advantages to studying publication bias through the lens of sniff

tests. Perhaps most important is that the underlying theoretical distribution of certain sniff tests

in the absence of publication bias is known, allowing powerful identification of publication bias

using straightforward reduced-form methods. Closest in spirit to our paper is previous work by

Bruhn and McKenzie (2009). In addition to a valuable survey of practice among leading authors

and a Monte Carlo analysis, the authors review the results of balance tests in a collection of articles

in development economics. While that study examined 13 articles, our sample includes nearly 900

articles across all fields of economics, allowing us to obtain a broader view of the distribution of

p-values in the economics literature and to run formal statistical tests.

3. Data

We collected data on sniff tests by having a team of research assistants systematically examine an

initial, large pool of journal articles in economics. We identified this initial pool of articles from

ScienceDirect, Elsevier’s online database of journal articles. We collected PDF files for all eco-

nomics articles that were turned up by a search of related keywords such as “balance test,” “baseline

comparison,” “falsification test,” “placebo test,” “randomization,” “validation check,” etc. We sup-

plemented the Elsevier journals with five top-tier, general-interest journals in economics archived

on JSTOR (American Economic Review, Econometrica, Journal of Political Economy, Review of

Economic Studies, Quarterly Journal of Economics), performing the same keyword search as on

ScienceDirect. As the keywords were relatively uncommon before 2005, we restricted our pool to

articles published from 2005 to 2015.2

A team of research assistants browsed each article in this initial pool, determining whether it

contained a table reporting sniff tests. If so, the research assistant collected data on test statistics,

p-values, and significance levels reported in the table or tables containing the sniff tests along with

relevant table, article, and journal information. Only two-sided tests were included.3 All work was

2JSTOR is missing the 2013–15 volumes of the Quarterly Journal of Economics and the 2015 volume of the
Review of Economic Studies. We performed our standard keyword search on Google Scholar to identify the initial
pool of articles in these volumes.

3We omitted one-sided tests given the difficulties of analyzing publication bias in the context of one-sided tests,
outlined by DeLong and Lang (1992). However, we did notice some peculiar cases in our data collection in which

6



re-checked by supervising research assistants. We dropped 689 observations that either were not

structured as well-defined hypothesis tests with associated p-values or did not provide sufficient

information to glean an exact p-value or an interval for it. Dropping a further observation with a

p-value exceeding 1 leaves a final dataset of 29,812 sniff-test observations. These observations are

reported in 1,391 different tables from 890 articles published in 59 journals. Appendix Table A1

lists the journals and the contribution each makes to the sample. The Journal of Health Economics

contributes the most observations (16% of the sample), followed by the Journal of Public Eco-

nomics (11%), the Journal of Development Economics (10%), Labour Economics (8%), and the

American Economic Review (8%).

Figure 1 graphs the number of observations in our dataset by year of publication of the con-

taining article. To the extent the journals in our sample are representative, this figure provides a

picture of the growing use of sniff tests in the economics literature. Starting from few sniff tests in

2005, the number of sniff tests in our dataset grows at a 40% average annual rate.

Table 1 presents subsample breakdowns for the dataset. The first breakdown is by methodol-

ogy. This is a key breakdown: it will be important to distinguish among methodologies because

different types of tests can have very different distributions of p-values. Balance tests from random-

ized controlled trials (RCTs) will have a special place in our analysis because their p-values have

a known distribution under the null hypothesis of no publication bias, in particular, the uniform

[0,1] distribution. Other tests (balance tests from non-RCTs, placebo tests, and various types of

falsification and specification tests) do not necessarily entail a uniform distribution in the absence

of publication bias. Instead, the distribution will depend on the nature (unknown to us econo-

metricians) of the underlying data and model appearing in papers in our dataset. For example,

specification tests will exhibit a concentration of low p-values if many papers in our dataset hap-

authors used an inconsistent reporting convention, gauging significance levels for their sniff test according to the tight
thresholds of a two-sided test but then discussing the test as if it were one-sided. For example, the authors might test
for a pre-trend, discover its p-value is significant at the 5% level according to a two-sided test, but then argue that the
trend is in the opposite direction from their result of interest (say a downward trend working against a positive jump
at a regression discontinuity). If in fact the test cannot be rejected when a negative trend is found, it was a mistake to
have used two-sided rather than one-sided significance thresholds. Of course the one-sided null would not be rejected
in this particular test regardless of significance level used because the trend was on the “accept” side of the inequality.
The problem raised by this selective use of one- and two-sided tests is in the interpretation of other sniff tests in the
article: one-sided tests may have been appropriate for these, too, but rejections glossed over by the use of tighter
two-sided thresholds. It is unclear how best to treat these peculiar cases of one-sided tests posing as two-sided. We
checked the robustness of all of our results including and excluding them. The results are very similar in magnitude
and significance. All results presented in this paper include these observations.
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pen to suffer from misspecification. On the basis of these considerations, some of our analysis will

focus exclusively on balance tests in RCTs, which constitute 7,150 observations, or 24% of the

sample; analysis of other types of tests in the remaining 76% of the sample will require suitably

careful interpretation.

Valid techniques exist to improve balance in RCTs relative to what we will label the “pure”

case of a single randomization. These techniques including re-randomization (randomizing treat-

ment/control selection multiple times until a desired balance in covariates between groups is

achieved), stratification (randomizing treatment/control selection within covariate strata), and match-

ing (finding pairs of observations with the same covariates, making one a treatment and the other a

control).4 Tautologically, application of balance-improvement techniques raises the p-values of the

subsequent balance tests. If we included balance tests that have be run after balance improvement

in our sample of RCT balance tests, the distribution of p-values would no longer be expected to be

uniform in the absence of publication bias. Instead, some of the mass of low p-values would be

shifted to higher values, creating a false impression of the existence of publication bias. To avoid

this problem, we construct a pure subsample, separating the remaining items for which there had

been some balance improvement into different subsamples.5

Bruhn and McKenzie’s (2009) survey of leading researchers who conduct RCTs in develop-

ing countries reveals a hodgepodge of approaches toward balance. While it is not uncommon

for researchers to resort to a single randomization (80% did so for at least one past experiment;

40% did so for their most recent experiment), balance-improvement techniques are also widely

used. Their review of selected publications suggests that when authors used re-randomization, the

process was not described in detail. To account for opaque or even possibly missing mentions

of re-randomization, we are conservative in our formation of the pure subsample, only include

items in it when we can rule out re-randomization out on a priori grounds. Among other exam-

4For a recent, general discussion of these methods, see Athey and Imbens (2017).
5A potential concern is that the analysis of a subsample selected on the employment of balance-improvement

techniques could lead to an endogeneity bias. Supposing that better researchers are more likely to employ balance-
improvement techniques, the pure subsample would over-represent the work of less-skilled researchers. Supposing, in
turn, that researcher skill is correlated with the performance of the balance test—positively correlated if less-skilled
researchers botch the randomization procedure more often, negatively correlated if less-skilled researchers face stricter
standards on balance tests to offset problems elsewhere in the paper—this could bias the pure subsample toward more
or less significant balance tests. As discussed in the next paragraph, we select the pure sample based on whether or
not re-randomization was possible rather than whether or not it was actually undertaken, alleviating this endogeneity
problem.
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ples, this includes cases in which a public lottery determined treatment status and cases in which

treatment had been assigned by a third-party who was not concerned with statistical analysis. Our

pure subsample contains 42% of RCT balance test items. For 14% of RCT balance tests, though

re-randomization is not mentioned in the article, we cannot definitively rule it out because authors

had access to the baseline data to re-randomize before treatment assignment. We classify this

subsample as “possibly pure.” There is less concern about the opacity of the reporting of strat-

ification and matching; perhaps owing to the deliberation involved in their application, they are

thought to be reported whenever used. In sum, therefore, observations in our possibly pure sam-

ple are definitively not stratified or matched; no mention is made about re-randomization although

we cannot definitively rule it out. For the remaining 44% of RCT balance tests, one or more of

re-randomization, stratification, or matching was definitively used to improve balance.6

Turning to the subsample of tests other than balance in RCTs, re-randomization and stratifica-

tion are irrelevant in this context since authors do not have the required control over randomization

required by these techniques. Matching is the remaining, feasible method for p-value improve-

ment, which authors employ by restricting analysis to a matched subsample of their full sample. In

76% of these other tests, no matching, and thus no p-value improvement method, was employed.

The rest involve some matching. For 8% of other tests, matching is employed and results of sniff

tests prior to matching are reported. For 16% of other tests, matching is likewise employed but

results of sniff tests after matching are reported.

For the test statistics collected, we tried to glean p-values whenever possible, whether directly

reported by the authors or whether the authors supplied enough ancillary information for us to

compute the p-value. We were able to glean exact p-values for 41% of the observations. For 59%

of the observations, we were unable to glean an exact p-value but the authors did report the interval

in which the p-value fell, usually indicated by asterisks alongside the reported test statistic.

We break down our sample in several additional ways to be used for more nuanced tests of the

“file-drawer problem” and of manipulation. First, we compare test statistics reported in different

6Stratification need not compromise the uniform distributionof p-values under the null hypothesis of no publication
bias. Of course stratification improves treatment/control balance for the stratifying variables by construction, but these
variables are seldom included in subsequent balance tests. Instead, balance in other variables is tested. If these other
variables are uncorrelated with the stratifying variables, then balance-test p-values can still be uniform under the null
of no publication bias. On the other hand, if these other variables are correlated with the stratifying variables, balance
in the stratifying variables may be inherited by correlated variables, reducing the mass of significant p-values from
balance tests compared to a uniform distribution.
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locations in an article, body versus appendix. If reviewers are less likely to notice problematic

p-values reported in appendices, we may observe higher p-values in the body subsample (72% of

observations) than the appendix sample (28% of observations). The effect will be exacerbated if

the placement of results is endogenous, with authors more likely to shift problematic results into

the appendix. Second, we compare test statistics by the authors’ reporting convention. Using sym-

bols to highlight significant tests (65% of observations used such symbols either alone or together

with a report of the exact p-value) may draw more attention to unfavorable sniff tests than when

symbols are omitted (35% of observations). This may lead to a correlation between the report-

ing convention and p-values if publication bias or manipulation is present. Third, we compare

test statistics reported in different tiers of journals. The stringent requirements for publication at

top-tier may include less tolerance for low p-values. If so, we may see a systematic difference in

p-values across journal tiers, with lower p-values in lower-tier journals. We divided journals into

tiers on the basis of five-year impact factors from Thomson Reuters Journal Citation Reports 2015,

with tier-1 journals having a five-year impact factor above four, tier-2 journals between two and

four, and tier-3 journals below two. See Appendix Table A1 for the list of journals’ tiers and impact

factors. The resulting ranking is sensible, with tier 1 including the five general-interest journals

archived on JSTOR as well as the top Elsevier journals in the subfields of finance and account-

ing (respectively, the Journal of Financial Economics and Journal of Accounting and Economics).

Roughly a quarter of the observations are in the top tier, a quarter in the bottom tier, and half in the

middle tier.

We also collected information on authors’ stated satisfaction with the test outcome. Our re-

search assistants read the text passage in each article discussing the relevant test statistics and

rated the strength of authors claims according to four categories, “strong claim,” “weak claim,”

“no claim,” and “admit rejected,” based on the following rubric. The “strong claim” category

includes cases in which the authors express satisfaction with the test outcome. Authors express

satisfaction—with good reason—when the associated p-value under consideration is insignificant.

We also consider authors to be strongly satisfied whenever, faced with having to explain a signif-

icant p-value, they explicitly attribute it to random chance rather than some systematic feature of

the data. These cases are often associated with tables reporting multiple sniff tests, only a few

of which are significant. The “weak claim” category includes cases in which, faced with some
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significant sniff-test results to explain, perhaps too many to attribute to random chance, the au-

thors are forced to acknowledge possible problems at the same time mounting some defense of

their results. Typical of this category is for authors to acknowledge that the test outcome indicates

the existence of imbalance or pre-treatment effects but then argue that it does not undermine the

validity of their main results, often using the argument that the significant sniff-test results follow

no systematic patterns. When the authors do not discuss the specific test statistic, we classify it

as “no claim.” “Failed claim” includes cases when authors freely acknowledge that the significant

p-value indicates rejection of the sniff test and a potential problem for their study. The majority

of observations (71%) are classified as “strong claims,” reflecting in part the frequency of tables

lacking problematic p-values to begin with. “Weak claims” account for 9% of observations, “no

claims” for 7%, and “failed claim” for 13% of observations.

4. Theory

This section provides the theoretical underpinnings for our empirical analysis in a series of sub-

sections. The first subsection derives the distribution of our main object of study, the p-value,

under the null hypothesis of no publication bias or study flaws. The second subsection explores

which among alternative conditional expectations is the most natural measure of a departure of the

population of p-values from the null. The analysis in this subsection will help inform the appropri-

ate reduced-form estimator. The last subsection constructs a structural model illustrating possible

shapes of the p-value distribution when the null is violated.

4.1. Null Distribution of P-Values

Let i ∈ I index individual sniff-test observations, where I denotes the population of sniff tests. The

key variable in our analysis is the p-value, denoted pi, associated with sniff test i. To define pi

formally requires some notation. A sniff test is the test of the null hypothesis H0 of no study flaw

against the alternative H1 of a flaw of whatever sort under consideration. The author computes the

relevant test statistic, denoted Zi, from the data and sees whether it lies in rejection region Γ(α),

depending on a pre-specified significance level, α. For one-sided tests, Γ(α) typically includes all

test statistics above a threshold; for two-sided tests, Γ(α) typically includes all test statistics whose
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absolute value is above a threshold. If Zi ∈ Γ(α), then H0 is rejected in favor of H1 at the α level;

otherwise H0 cannot be rejected.

Assume the test statistic is continuously distributed. Under this assumption, the definition of

significance level entails

Pr(Z0 ∈ Γ(α)) = α, (1)

where Z0 is a draw of the test statistic under the null hypothesis. We will further require that to be

well-defined, Γ(α) must be an increasing correspondence; i.e., for α ′,α ′′ ∈ [0,1],

α ′ < α ′′ ⇐⇒ Γ(α ′) ⊂ Γ(α ′′). (2)

Define the significance A(Zi) of a test statistic Zi as the significance of the smallest rejection region

containing Zi:

A(Zi) = argmin
α∈[0,1]

{Γ(α)|Zi ∈ Γ(α)}. (3)

The p-value can then be defined as

pi = Pr(Z0 ∈ Γ(A(Zi))), (4)

i.e., the probability that the test statistic computed under the null is at least as significant as that

computed from the data.

The “textbook” result that p-values have a uniform [0,1] distribution under the null turns out to

hold in our model in the absence of publication bias. Appendix B provides a formal proof. This

result will lead us to use the uniform distribution as a natural benchmark in our subsequent analysis.

Unfortunately for authors in our data, the null is not guaranteed to hold in their studies; some

studies will exhibit failures of balance, misspecification, pre-trends, and so forth. In addition, a key

issue of interest to us, publication bias, will alter the distribution of p-values from the benchmark.

The next subsection discusses some econometric issues associated with reduced-form estimation

of p-values’ significance.
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4.2. Reduced-Form Model

Our estimates of the proportion of significant p-values in the population will depend on our sam-

pling frame. In this subsection, we provide a reduced-form model allowing us to determine which

sampling frame is most natural and characterize the biases arising from other sampling frames.

Besides clarifying the discussion, the model directly leads to the reduced-form estimator proposed

in Section 5.

The broad motive for our study is to detect whether the typical piece of scholarship exhibits

publication bias and/or misspecification. This naturally suggests a sampling frame in which schol-

arly works—we take tables as our unit of work—are collected and the average proportion of sig-

nificant p-values across them is compared to the null. An alternative sampling frame collects all

the sniff tests together and randomly sample from the collection. We will show that if different

scholarly works contain different numbers of sniff tests and the number of sniff tests presented in

the work is correlated with their significance, then the two sampling frames can generate different

expectations. It is thus important to choose the appropriate sampling frame and focus the analysis

on the expectation associated with that frame.

To formalize these ideas, let t ∈ T index tables, which we take as the unit of scholarly work,

where T denotes the population of tables. We sometimes emphasize the “containing” relation with

functional notation, letting t(i) denote the table containing sniff test i. Let nt denote the number of

sniff tests in table t.

The precision at which p-values are reported differs across tables, some specifying an interval

for pi, others the exact value. To formalize these reporting conventions, let Rt denote the signif-

icance thresholds reported by table t. For example, if table t does not directly report p-values,

only indicating significance at the 5% level with a star, then Rt = {0.05}. If table t again does not

directly report p-values but indicates significance at the 10%, 5%, or 1% levels with one, two, or

three stars, then Rt = {0.01,0.05,0.1}. If table t directly reports p-values, then, abstracting from

rounding issues, Rt = (0,1). Let α ∈ (0,1) denote the significance threshold that we want to study.

A table’s reporting convention may or may not line up with α. Let Tα = {t ∈ T |α ∈ Rt} denote

the subpopulation of tables reporting significance at the α level and Iα = {i ∈ I |α ∈ Rt(i)} denote

the subpopulation of sniff tests in that subpopulation of tables.

Let Siα = 1(pi < α) be the indicator of whether sniff test i is significant at the α level. We are
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interested in the proportion of significant sniff tests in the typical table, captured by the following

conditional expectation:

πα = Et∈Tα (E(Siα | i ∈ t)). (5)

This corresponds to the sampling frame that first samples tables and then sniff tests within tables.

An obvious alternative is to directly sample from the population of sniff tests, leading to the ex-

pectation Ei∈Iα (Siα). At first glance, this seems simpler than (5), but after rearranging into a form

more comparable to (5), we see it involves an extra factor:

Ei∈Iα (Siα) = Et∈Tα

(
nt

n̄α
E(Siα | i ∈ t)

)
, (6)

where n̄α = Et∈Tα (nt) denotes expected table size.

It is immediate that if tables are all the same size, then (5) equals (6) because nt = n̄α . To

provide a more general comparison of the two expectations, we introduce the following reduced-

form model. By equation (5), we can write Siα as

Siα = πα +uiα , (7)

where uiα is an error term with conditional expectation

Et∈Tα (E(uiα | i ∈ t)) = 0. (8)

Assume the error term can be decomposed as uiα = νt(i)α +εiα , where εiα is an idiosyncratic error

having mean zero within and across tables, i.e.,

E(εiα | i ∈ t) = 0, (9)

and where νt(i)α is unobserved table effect. By (8) and (9), νtα has mean zero across tables, but

we allow νtα �= 0 within any given table.

Substituting this series of assumptions into (6) and rearranging yields

Ei∈Iα (Siα ) =
1

n̄α
Et∈Tα (E(ntπα +ntνt(i)α +ntεiα | i ∈ t)) = πα +

1
n̄α

Covt∈Tα (ntνtα). (10)
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We see that (6) is biased relative to πα—positively biased if νtα covaries positively with table size

nt and negatively biased if νtα covaries negatively with nt .

An additional nuance in the expectation (5) is that, rather than being taken over the entire

population of tables T , the expectation is restricted to the subpopulation Tα . This is done for two

reasons. First, it is sometimes impossible to compute Siα for t(i)∈ T \Tα . For example, in studying

the threshold α = 0.05, suppose we have a starred observation i from a table that only reports

significance at the 10% level; formally, Si,0.10 = 1 and Rt(i) = {0.1}. We know pi ∈ [0,0.1) for that

observation but not whether pi ∈ [0,0.05) or pi ∈ [0.05,0.10). Hence, Siα cannot be computed in

this example. A second reason for conditioning on Tα rather than T can be understood by returning

to the previous example but modifying it so that i is now an unstarred entry in its containing table.

It is possible to compute Siα in this modified example: insignificance at the 10% level implies

insignificance at the 5% level, so Si,0.1 = 0 implies Si,0.05 = 0. However, such tables only supply

insignificant observations, biasing the estimate of πα downward. The bias can go the other way

as demonstrated in an example in which we are studying the threshold α = 0.05 and have a table

reporting significance at the 1% level; Siα can only be computed from starred sniff tests from that

table, leading to an upward selection bias. Restricting the population to Tα eliminates these biases.

4.3. Structural Model

In this subsection, we construct a structural model that illustrates what the distribution of p-values

looks like for different departures from the null hypothesis.

P-values are generated by a two-stage process. In the first stage, p-values are drawn from the

population of studies exhibiting a certain rate of flaws. We will adopt a specific functional form

both to fix ideas in the present discussion and to form the basis of the structural estimation in

Section 6. Building on Sellke, Bayarri, and Berger’s (2001) suggestion of using a beta distribution

with one free parameter as the alternative to a uniform distribution of p-values, assume that the

initial draw of p-values follows a the beta distribution with parameters 1/(1+m) and 1, having the

associated density

f1(pi;m) =
[
(1+m)p

m
1+m
i

]−1
. (11)

Parameter m ∈ [0,∞) captures the extent of flaws/mistakes in the population of studies. When
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m = 0, there are no flaws in the population of studies, and f1 reduces to the uniform density. On

the other hand, when m grows large, f1 piles up all the mass of the distribution on the lowest

p-values.

In the second stage, the file-drawer problem or other feature of the publication process results

in a proportion b ∈ [0,1] of the p-values significant at better than some cutoff level α̂ being re-

moved from the published sample. Applying Bayes Rule to the prior density in equation (11), the

posterior density emerging from the second stage, the density characterizing p-values observed in

our sample, is

f (pi;m,b, α̂) =
1−Siα̂b

1− α̂
1

1+m b
f1(pi;m). (12)

The assumption that parameters b and m are common across observations simplifies the anal-

ysis and the later structural estimation; but note this imposes a restriction on the reduced-form

model from the previous subsection, which allowed tables to have different values of νtα . (We

could adapt the structural model to allow for heterogeneity across tables by subscripting bt and mt

and specifying a joint distribution of these parameters across the population of tables T .)

Figure 2 illustrates the shape of this density for various parameters. The top panel illustrates

the density in the absence of publication bias but in the presence of study flaws, i.e., b = 0 but

m > 0. Note this just the first-stage density, as f (pi;m,0, α̂) = f1(pi;m). These densities have

disproportionately greater mass on low p-values than the uniform distribution, increasingly more

mass the higher is m.

The middle panel illustrates the density when there is publication bias but no study flaws,

i.e., b > 0 but m = 0. The cutoff for potential removal is set to α̂ = 0.1. These densities have

disproportionately less mass on p-values below α̂ than would the uniform distribution, with less

mass there the higher is b. Substantial publication bias can result in a quite substantial reduction

in the mass of p-values below α̂ .

The bottom panel illustrates the case with both publication bias and study flaws, i.e., b,m > 0.

In this case, the mass of p-values in the below α̂ may be greater or less than the uniform benchmark

since the two forces have opposing effects on this mass. For any degree of publication bias b and

any removal cutoff α̂ , one can compute the degree of study flaws M(b, α̂) that results in the two

forces exactly offsetting, so that the mass of p-values below α̂ equals the mass α̂ under a uniform
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distribution:

M(b, α̂) =
ln(1− (1− α̂)b))

ln α̂ − ln(1− (1− α̂)b))
. (13)

In the bottom panel of Figure 2, the exact balance between publication bias and study flaws has

been achieved by setting m = M(b, α̂) for α̂ = 0.1 and for various values of b. If m > M(b, α̂) in

a given sample, then the mass of p-values will exceed the uniform benchmark α̂; if m < M(b, α̂),

then the mass of p-values will be less than α̂ .

This discussion of the figure highlights some key issues in identifying publication bias in our

data. Finding that the mass of p-values in the interval [0,α) exceeds α is not necessarily evidence

against publication bias; it could be that there is substantial publication bias but it is masked by the

prevalence of study flaws. On the other hand, finding that the mass of p-values in the interval [0,α)

is significantly less than α is evidence of publication bias. However, this may be a low-power test

of publication bias because it would have to be extensive enough to overcome study flaws in the

population that would tend to produce the opposite result. We isolate a subsample that resemble

the middle panel of Figure 2, where we think m ≈ 0, so that publication bias is not masked by an

opposing effect. This will motivate our focus on the pure sample of balance tests in RCTs.

5. Reduced-Form Analysis

For most of our analysis, we are able to employ straightforward reduced-form methods, to which

we turn next. Section 5.1 describes the reduced-form methods used. Sections 5.2–5.7 present the

results for various subsamples and specifications.

5.1. Methodology

We previously argued that πα in equation (5) is the appropriate parameter to estimate to judge

whether sniff tests are disproportionately significant at the α level. This section presents the meth-

ods used to consistently estimate πα . We carry all the notation over from that earlier section with

the exception that T now represents the sample of tables and I the sample of sniff tests rather than

the respective populations. Similarly, we redefine Tα and Iα so that they are the subsamples rather

than subpopulations as they were formerly defined. Vertical bars denote the cardinality of sets, so

for example |T | denotes the number of tables and |I| the number of sniff tests in the sample.
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By the weak law of large numbers, a consistent estimator of πα can be obtained by replacing

the expectations in (5) by sample averages:

π̂α =
1

|Tα | ∑
t∈Tα

(
1
nt

∑
i∈t

Siα

)
. (14)

An equivalent expression for π̂α that is particularly convenient can be obtained by introducing

inverse frequency weights

wi =
|Iα |

|Tα |nt(i)
. (15)

These weights are inversely proportional to the number of sniff tests in the including table nt(i),

scaled by the constant necessary to have the weights sum to |Iα |, the number of relevant observa-

tions. The necessary scaling constant equals |Iα |/ |Tα |, as can be verified by summing (15):

∑
i∈Iα

wi =
|Iα |
|Tα | ∑

t∈Tα

(
∑
i∈t

1
nt

)
=

|Iα |
|Tα | ∑

t∈Tα

1 = |Iα | . (16)

Using (14) and (15), we have

π̂α =
1
|Iα | ∑

i∈Iα

wiSiα , (17)

the inverse-frequency-weighted average of Siα for the subsample of sniff tests in tables directly

reporting significance threshold α.

The estimator in (17) involves two departures from the simple average of Siα . The inclusion

of inverse frequency weights wi circumvents the potential bias that would arise from oversampling

results from large tables that turn out to contain more or less significant results than average. The

unweighted average, which does not correct for such oversampling, is an unbiased estimate of a

certain conditional expectation, namely (6), but not the conditional expectation of interest here,

πα .7

The second departure of (17) from the simple average of Siα is that only observations in Iα are

included; observations in tables not directly reporting significance at the level α under study are

7See Wooldridge (2010), chapter 20, for a textbook discussion of the need for weighting in various sampling
contexts. Equation (14) is an implementation of the estimator he suggests for cluster-sampling contexts (see his
equation (20.48)). Equation (17) is an implementation of the estimator he suggests for the standard-stratified-sampling
context (see his equation (20.13)). In our application, the two contexts are equivalent since, within each stratum (i.e.,
each table), all observations (i.e., all sniff tests) are collected.
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excluded. The selection bias that can arise when observations in I \ Iα are included was discussed

in Section 4.2. The subsequent analysis will focus on the three most widely used significance

thresholds in the literature: 1%, 5%, and 10%. Let R∗ = {0.01,0.05,0.10} denote the set of these

three thresholds. If the intersection between R∗ and Rt (the thresholds directly reported in table t)

is empty, then all the observations in table t are dropped from our analysis. Of the full sample of

29,812 observations described in Table 1, 101 do not report any threshold in R∗. Dropping them

results in a final sample of size 29,711 used in the subsequent analysis.

Regression-based methods can be used to recover π̂α . In particular, in the inverse-frequency-

weighted least squares (IFWLS) regression of Siα on a constant using the subsample i ∈ Iα , the

coefficient on the constant term is is numerically identical to π̂α in equation (14):

Ŝiα = π̂α ·1 i ∈ Iα . (18)

We use the notational convention of a hat on a dependent variable such as Ŝiα to denote its fitted

value from a regression, allowing us to distinguish estimating equations such as (18) from corre-

sponding population models such as (7). In practice we will used the regression-based method to

compute π̂α because this method conveniently generates clustered standard errors for hypothesis

testing and readily extends to more complex models considered below.8

Rather than running separate regressions for each α ∈ R∗, the estimates can be conveniently

recovered from a single regression in which multiple copies of each observation i are stacked,

one copy for each threshold α ∈ R∗ ∩Rt(i) that constitutes a match between our study set and the

containing table’s reporting convention:

Ŝiα = ∑
r∈R∗

π̂ r1(α = r) α ∈ R∗, i ∈ Iα . (19)

The estimates π̂α in (18) and (19) are numerically equal, both equal to the proportion in (17). The

clustered standard errors are also identical across equations (18) and (19). We cluster all standard

errors at the table (t) level; this clustering strategy correctly adjusts for the appearance of multiple

copies of each observation i in the stacked regression.

8IFWLS regressions can be run in Stata using the reg command, setting analytic weights (aweights) equal to
1/nt(i). Stata’s automatic scaling using this command generates weights wi.
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The null typically used for hypothesis testing, πα = 0, is of little interest here. Under this null,

there are no p-values in [0,α), more consistent with extreme publication bias than its absence.

A more natural null hypothesis for this analysis is πα = α, corresponding the mass of p-values

that would arise under a uniform [0,1] distribution, the distribution of p-values in the absence of

misspecification and publication bias. We will conduct separate tests of πα = α for each α ∈ R∗

as well as the joint test for all α ∈ R∗.

The joint test provides a qualitative measure of the overall departure from uniformity across

thresholds α ∈ R∗. To proceed to quantify the common departure from uniformity, suppose first

that the p-value proportions exceed the uniform thresholds by a constant level λ : i.e., πα = α +λ

for all α ∈ R∗. Substituting the analogous equation involving estimators into (19) and rearranging

yields Ŝiα = (α + λ̂)∑r∈R∗ 1(α = r) = α + λ̂ . Defining Yiα = Siα −α, the significance indicator

normalized by its expected threshold value under a uniform distribution, and Ŷiα = Ŝiα to be its

fitted value from a regression, the preceding calculations yield the following regression specifica-

tion:

Ŷiα = λ̂ ·1 α ∈ R∗, i ∈ Iα . (20)

According to this equation, an estimate of the common level departure from uniformity λ̂ can be

recovered from an IFWLS regression of the normalized significance indicator Yiα on a constant;

the coefficient on the constant term provides the desired estimate, λ̂ . Suppose instead that the

p-value proportions exceed the uniform thresholds by a constant proportion ρ: i.e., πα = (1+ρ)α

for all α ∈ R∗. Substituting the analogous equation involving estimators into (19) and rearranging

yields Ŝiα = (1+ ρ̂)α ∑r∈R∗ 1(α = r) = (1+ ρ̂)α, or upon further rearranging,

Ŷiα = ρ̂α α ∈ R∗, i ∈ Iα . (21)

According to this equation, an estimate of the common proportional departure from uniformity

ρ̂ can be recovered from regressing Ŷiα on α excluding a constant; the coefficient on α provides

the desired estimate, ρ̂ . Agnostic about whether the departure from uniformity is in levels or

proportions, we will estimate the departure both ways, as λ̂ and ρ̂ . The qualitative results turn out

to be similar either way.

It is straightforward to extend the methodology to allow for heterogeneity in λ or ρ across
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categories of observations and estimate differences across the categories. For simplicity, suppose

observations can be partitioned into two categories, say according to whether the observation ap-

pears in the body or appendix or whether its significance is highlighted by stars or not; the analysis

readily extends to partitions with more than two categories. Let Ck
i denote the indicator for whether

i belongs to category k. Suppose first that both categories depart from uniformity by different lev-

els. Letting λk denote the level departure from uniformity for category k, its estimate by λ̂ k, and

the difference between the estimates by Δλ̂ = λ̂ 2 − λ̂ 1, the following regression can be used to

recover the estimates:

Ŷiα = λ̂ 1 +Δλ̂C2
i α ∈ R∗, i ∈ Ωα . (22)

This equation implies that a consistent estimator of Δλ̂ can be obtained by simply adding an indi-

cator for the second group, C2
i , to the stacked regression with a constant term, (20); the coefficient

on the added indicator provides the desired estimate, Δλ̂ .

Suppose instead that both categories depart from uniformity by different proportions. Letting

ρk denote the proportional departure from uniformity for category k, its estimate by ρ̂k, and the

difference between the estimates by Δρ̂ = ρ̂2− ρ̂1, the following regression can be used to recover

the estimates:

Ŷiα = ρ̂1α +Δρ̂αC2
i α ∈ R∗, i ∈ Ωα . (23)

This equation implies that a consistent estimator of Δλ̂ can be obtained by simply adding the inter-

action between α and C2
i to the stacked regression on α alone in (21); the coefficient on the added

interaction term provides the desired estimate, Δρ̂ . Again, since we are agnostic about whether

the difference between categories should be a level or proportional effect, we will estimate the

difference both ways, as Δλ̂ and Δρ̂ . The qualitative results again turn out to be similar either way.

Whether the difference across categories is assumed to be in levels or proportions, the appropriate

null for testing these differences is the usual one: Δλ = 0 or Δρ = 0, .

At times, we will be interested in visualizing the whole distribution of p-values rather than

looking at the mass in a particular interval. To do so, we will plot histograms or, when smoothing

aids visualization, kernel density estimates.9 Both histograms and kernel density estimates are

9While the typical application of kernel density estimation is to random variables with unbounded supports, in
our application the support of the distribution of p-values is [0,1], having both lower and upper bounds. The kernel
density estimator must be modified to account for these bounds. We perform the kernel density estimation using

21



based on the subsample for which we have exact p-values rather than intervals.

5.2. Results for Combined Sample

Table 2 presents estimates π̂α of the proportion of p-values significant at various thresholds. The

estimates are computed using the stacked IFWLS regression (19). Standard error clustered at the

table (t) level are reported in parentheses below the estimates. The size of the underlying subsample

as well as the number of stacked observations and clusters are also reported.

Column (1) presents aggregate results for the full sample. The first entry shows that 6.1% of

tests are significant at the 1% level, 9.7% are significant at the 5% level, and 12.8% are significant

at the 10% level. If p-values were uniformly distributed on [0,1], we would expect the percent to

match the significance level, so 1% significant at the 1% level, 5% at the 5% level, and 10% at

the 10% level. Here we see that the observed percentages are much greater than these uniform

percentages, in all cases statistically significantly different in a two-tailed test at any conventional

level.

Given that authors are predisposed to report less significant results for sniff tests yet here we

see more significant results than expected from a uniform distribution, one might be tempted to

conclude that there is no evidence of publication bias—quite the reverse. However, we do not

know that the underlying distribution of the test statistics would be uniform in the absence of

publication bias. It could be that the typical study is badly balanced, badly specified, or shows

strong pre-trends. Indeed, column (1) forces us to conclude that the outcome of the typical test

is worse for the authors than would be expected from random statistical noise. How much worse

cannot be determined. It could be that publication bias counteracts what would have even been

even more significant results than shown in the column. We only know that publication bias is not

strong enough to reverse the outcome that the typical sniff test is significant as much as six times

more often that would be expected at random.

The kernel density plot in Panel (1) of Figure 3 spikes for the lowest p-values. The mountain

of extra mass for p-values below 0.05 is taken from the (0.05,0.2) interval. Above 0.2, the density

Jann’s (2005) add-on module for Stata, kdens. The default method in this module to account for bounds on supports
is renormalization, which takes the standard kernel density estimate and divides it by the amount of local kernel mass
lying inside the bounds of the support. See Jones (1993) for a detailed description. We use this default as well as the
default Epanechnikov kernel.
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is nearly collinear with the dotted horizontal line having height 1, the benchmark uniform density.

5.3. Results for Pure Subsample of RCT Balance Tests

A cleaner test of publication bias is provided by column (2) of Table 2, which focuses on the

subsample of RCT balance tests that is pure in the sense of not involving the p-value improving

measures of re-randomization, stratification, or matching. For this subsample, in the absence of

publication bias, p-values should be uniformly distributed, with the percentage of p-values sig-

nificant at each threshold level equaling the threshold. This is the case with the most stringent

threshold, with exactly 1.0% significant at the 1% level. For the other two, less-stringent thresh-

olds, the percentages are less than the thresholds, with 4.1% significant at the 5% level, and 5.8%

significant at the 10% level. The last 5.8% result is significantly different from the 10% threshold

at the 1% level.

An F test indicates that the three proportions jointly are different than the uniform benchmarks

at the 1% level. The estimate λ̂ = −0.017 implies that on average across the three thresholds,

the empirical proportions fall short of their respective benchmarks by 1.7 percentage points in

level terms. The estimate ρ̂ = −0.368 implies that on average acrsoss the three thresholds, the

empirical proportions fall short of their respective benchmarks by 36.8% in proportional terms.

Both estimates of common departures across thresholds are significant at the 1% level.

Panel (2) of Figure 3 shows a block of missing mass relative to the uniform benchmark for p-

values below 0.1. The kernel density plot rises quickly to the uniform benchmark, which it tracks

closely except for the highest p-values in the interval (0.9,1.0]. It appears that the block of mass

missing from [0,0.1) has been shifted to (0.9,1.0]. Of the densities generated by structural model

in Figure 2, the closest resemblance is to those in the middle panel, which posit only publication

bias (b > 0), no study flaws (m = 0). The resemblance between the empirical and model densities

are indeed quite close.

5.4. Results for Other Subsamples

The remaining columns in Table 2 explore the distribution of p-values in subsamples besides the

pure sample of RCT balance tests. Column (3) shows the results from RCT balance tests when a

balance improvement method (re-randomization, stratification, and/or matching) was possibly or
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definitively employed. The proportion of significant p-values is higher in column (3) than (2) for

all three thresholds, indicating that balance was worse in the improved than the pure sample. A

possible explanation is that authors applied improvement methods in the most problematic cases.

These cases may have been so problematic that they could not be fully corrected, remaining worse

even after improvement than in the pure sample.10

The remaining columns (4)–(6) in Table 2 analyze tests other than RCT balance. Unlike pure

RCT balance tests, for which the counterfactual distribution of p-values in the absence of pub-

lication bias is known to be uniform, for the hodgepodge of other tests in columns (4)–(6), the

counterfactual distribution is unknown to us econometricians.

Considering column (4), the results for the pure subsample of non-RCT balance tests sharply

contrast those in column (2) for the pure subsample of RCT balance tests. Rather than observing

proportions of p-values below the critical thresholds of 1%, 5%, and 10% as we did in column

(2), we see proportions far greater than the threshold values. Evidently, a substantial proportion of

studies are failing sniff tests because of specification or identification problems, enough to swamp

any publication biases that would tend to reduce the proportion of these significant p-values. The

failure is systematic enough to call into question claims made in individual articles that failure is

due to random bad luck. We will present additional evidence on the validity of such claims below

in Table 4. The kernel density estimate for this subsample in panel (4) of Figure 3 looks similar to

that for the full sample in panel (1), expected because this subsample constitutes the bulk of the full

sample. Both closely resemble the densities generated by the structural model in the bottom panel

of Figure 2, all having a spike for the lowest p-values which drops below the uniform benchmark

for slightly higher values still below 0.1, then increasing again, resulting in a hump in the region

above 0.1. The remarkable parallel between these highly nonlinear densities provides confidence

in the validity of the structural model. Structural estimation will later allow us to distill the relative

contributions of study flaws and publication bias from the shape of this density.

Columns (5) and (6) present results from subsamples where a technique to improve p-values

was definitively employed in the paper. Specifically, this technique is matching since, as discussed,

this is the only technique of relevance for the sample of non-RCT-balance tests. Column (5) shows

10Another possibility is that reviewers hold authors who have already applied balance-improving techniques to less
stringent standards, allowing a few more significant balance tests to be attributed to random chance.
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the huge proportion of significant p-values in matched samples before matching takes place. It is

no surprise that the proportions differ from the uniform benchmark given that problematic p-values

motivated authors to apply matching in the first place. Still, it is remarkable to see just how large

the proportion of failed sniff tests can be in a problematic subsample like this.

Column (6) shows that, after matching, the proportion of significant p-values is greatly reduced,

returning to values much closer to the thresholds. Matching appears to be an effective method to

improve p-values in originally problematic studies. Panel (6) of Figure 3 confirms this impression,

showing that p-values below 0.5 have a density considerably below the uniform line, much of this

mass shifted to a spike of p-values above 0.9. The exception to this pattern is the 2.6% of p-values

in the [0,0.01) interval, which column (6) of Table 2 shows is statistically significantly different

from the 1% that would be expected if p-values were uniformly distributed. Evidently, the most

severe flaws in some articles could not be addressed by matching alone.

5.5. Differences Across Categories

Table 3 provides additional evidence on publication bias by analyzing differences across various

categories. We focus the analysis on two subsamples. The first set of columns studies differences

across categories in the pure subsample of RCT balance tests. As before, these are good candidates

for focused study because the counterfactual distribution of p-values in absence of publication

bias is known to be uniform, and there is little reason to think that this uniformity would not

persist in divisions of the sample according to, say, the location in which the test is reported (body

versus appendix) or the tier of the journal publishing the containing article. The second set of

columns studies the pure sample of tests other than balance in RCTs. While we do not know the

counterfactual distribution of p-values for this subsample, we can still use it to test for publication

bias under the assumption that the counterfactual distribution is independent of where the test is

reported in the paper or the tier of the publishing journal. The subsample in the second set of

columns still focuses on pure tests, excluding observations where matching was involved.11 We

11We excluded matched samples for several reasons. First, all the articles eventually substitute post-match for pre-
match data, so the pre-match p-values do not bear on data used for actual analysis in any article. Second, as shown
in Table 2, the distribution of p-values for the pre-match subsample is wildly different from any other subsample.
Although the pre-match subsample is relatively small, including it might add undue noise, obscuring any clear findings.
Having excluded the pre-match subsample, it seemed natural to focus on a pure sample by excluding any matching
entirely.
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estimate the difference across categories in two ways, as a level effect Δλ̂ , applying IFWLS to the

stacked regression (22), and as a proportional effect Δρ̂ , applying IFWLS to the stacked regression

(23). For space considerations, we only report the proportional differences Δρ̂ in Table 3; results

for level differences Δλ̂ , which are qualitatively quite similar, are relegated to Appendix Table A2.

The table presents seven different specifications. Columns (1)–(5) examine category differ-

ences separately; column (6) combines them in a multiple regression; column (7) adds fixed

publication-year and threshold effects to the multiple regression. The general pattern that holds

for virtually all rows is that coefficients shrink in magnitude as more controls are added. The

standard errors also decline, but more slowly than the coefficients, so the statistical signficance of

the results decline as more controls are added. Indeed, the few significant results for pure RCT

balance tests disappear in columns (6) and (7). The sample of 2,974 observations does not appear

to provide sufficient power to detect the partial effect of category differences; none of the results

are significant in columns (6) and (7) for pure RCT balance tests. On the other hand, the sample of

other pure tests, with 17,175 observations, seems to provide enough power to detect some partial

effects, so we will focus on that panel of the table, noting that the panel of results for pure RCT

balance tests generally corroborate those for other pure tests regarding the sign and magnitude of

results.

Consider the row corresponding to the appendix versus body difference. One might look for

evidence of manipulation by authors in this comparison, hypothesizing that authors could try to

obscure poor sniff tests by shunting them into the appendix, leading the appendix to contain a

higher proportion of significant sniff tests than the body. The results provide no evidence of this

form of manipulation. Especially in the columns (6) and (7) presenting the multiple regressions,

the estimates of Δρ̂ are in fact negative, and in any event are small and statistically insignificant.

Consider the row corresponding to the omission versus inclusion of symbols highlighting sta-

tistical significance. One might look for evidence of manipulation by authors in this comparison as

well, hypothesizing that authors may avoid using symbols when faced with many or badly failing

sniff tests as the symbols would emphasize these failures, leading tables marked by symbols to

have a lower proportion of significant p-values. The results provide no evidence of this form of

manipulation either. The estimates of Δρ in this row are positive, the opposite of that predicted by

the manipulation hypothesis, and in any event are small and statistically insignificant.
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Some significant results emerge in the comparison across journal tiers. Other pure tests pub-

lished in tier-2 and tier-3 journals are on average more significant than in tier 1. While the dif-

ference between tier 3 and tier 1 is not statistically significant, the difference between tier 2 and

tier 1 is. In the specification (7) with the most controls, other pure tests in the average tier-2 journal

are 19.7% more significant than in the average tier-1 journal. One interpretation is that the higher

standards at better-tier journals lead to rejection of some studies with poorly performing sniff tests,

which fall to the next tier or into a file drawer. Contrasting evidence is provided in the set of results

for pure RCT balance tests. There we see that tier-1 journals publish 36.4% more significant sniff

tests than tier-3 journals, although this result only shows up in column (3), disappearing in the

columns (6) and (7) with more controls, and also does not show up in the comparison between

tier-2 and tier-1 journals. At best we can say that there is modest evidence that top journals select

on better sniff tests. It is worth emphasizing that this sort of selection does not necessarily distort

statistical inference at prestigious journals as would selecting main results of interest on the basis

of their t-statistics. However, it does support the possibility that rigorous standards at top journals

can exacerbate publication bias.

The most substantial results show up in the last two rows. Large tables are those containing

12 or more sniff tests, the median number across tables. Columns (4) and (6) suggest the average

large table has about twice the proportion of significant other pure tests than the average small

table. Adding more controls in column (7) reduces the gap, but we still see that large tables

exhibit 43.8% more significance than small. Several explanations are possible. It may be easier

for authors to claim that significant sniff tests are statistical anomalies in large tables, or it may be

more difficult for reviewers to focus on failed sniff tests in a complex paper with large tables. In

any event, the correlation between table size and sniff-test performance justifies the need to apply

inverse frequency weighting for unbiased estimation, as discussed in Section 4.2.

The last row of differences shows that tables in recent articles have less significant pure other

tests than earlier articles. The dividing line for an article to be recent is being published from 2011

on, the midpoint of our sample period. This result is consistent with a decrease in study flaws for

more recent articles. It is also consistent with an increase in publication bias over time.

27



5.6. Author Claims

Returning to the first results presented, those for the full sample in column (1) of Table 2, averaging

across the three thresholds under study, we saw more significant p-values than would be expected

under a uniform distribution by 4.2 percentage points in level terms and 45.1% in proportional

terms. Panel (1) of Figure 3 shows a mountain of excess mass for p-values below 0.1. The proba-

bility that this departure from uniformity for the population of sniff tests is due to random bad luck

is vanishingly small. In any individual case, however, authors may have the incentive to attribute

unfavorable sniff tests to random bad luck, and it would be hard to dispute such individual claims.

To investigate whether authors are overly willing to attribute unfavorable sniff tests to bad luck,

we asked our research assistants to read the discussions of sniff tests in the articles and rate the au-

thors’ confidence in the test result according to a rubric involving four categories: “strong claim”,

“weak claim”, “no claim” and “failed claim.” We then analyzed the distribution of p-values for

these categories. The proportions are reported in Table 4 and the differences in proportions across

author claims of different strengths are reported in Table 5.

The “strong claim” category covers the case in which authors make an explicit or implied

claim that unfavorable sniff-test results are due to random chance, not underlying imbalance or

pre-treatment effects. If this is the case, we should observe no worse than a uniform distribution

of p-values for this subsample and observe the proportion of significant p-values not to exceed

threshold values. Looking at the pure sample of RCT balance tests analyzed in column (1) of

Table 4, the strong claim seems to be justified. The proportion of p-values is significantly less than

each of the three threshold values. The claims find some further justification in the pure sample

of other tests analyzed in column (3). The proportions are lower than their corresponding 0.05

and 0.10 thresholds. The one place we see overclaiming is for the 0.01 threshold, with twice the

proportion of p-values significant at the 1% level than would be expected at random, a difference

significant at the 1% level. This suggests that, authors make overly strong claims for non-RCT-

balance tests, especially so when dealing with the most stringent 1% threshold.

The “weak claim” category covers the case in which authors acknowledge the potential for

imbalance or pre-treatment problems but go on to argue it does not completely undermine identi-

fication of their main results. Given that authors are acknowledging unfavorable sniff-test results,

we would not expect the p-values to follow a uniform distribution. Indeed they do not. Column
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(4) of Table 4 shows that the proportions greatly exceed threshold significance levels. For the “no

claim” category, authors provide no discussion of the sniff test. Here again, we see from column

(5) that the proportions of p-values exceed each of the three respective threshold values. For the

last category, “failed claim,” authors directly acknowledge that the sniff test failed and offer no

defense of their identification strategy. The distribution of p-values that drive authors to make this

admission is quite unfavorable indeed as shown in column (6).

Table 5 formally compares the differences across categories of author claims. The only dif-

ference that may run counter to expectations is that the “no claim” category has 72.2% fewer

significant p-values on average across the thresholds than the “weak claim” category. The differ-

ence between the two categories of claim is large but too noisy to be statistically significant. The

weak claim appears to be invoked as a defense against relatively poor sniff-test results, and can be

taken by readers as a negative signal of test performance in the population of articles compared to

when no claim is made—a feeble negative signal since the difference between “weak claim” and

“no claim” is not statistically significant. The other notable findings from Table 5 are as expected.

The performance of sniff tests in the “strong claim” category are significantly better, and “failed

claim” category significantly worse, than for any of the other claim categories.

5.7. Threshold Effects

So far, we have uncovered evidence of publication bias but no evidence that it stems from author

manipulation as opposed to some automatic processes generating the “file-drawer” problem. To

investigate possible author manipulation further, Figure 4 presents an extremely fine-grained his-

togram of p-values from the full sample of observations that report exact values. The bin size is

0.001, implying that the figure displays 500 bins in total (were the horizontal axis not truncated

for legibility, the figure would display 1,000 bins). If authors deliberately manipulated their data,

methods, or results to reduce the significance of their sniff tests, we should observe a dispropor-

tionate share of p-values on or slightly above the 0.01, 0.05, and 0.10 thresholds.12 The bars at

almost every 0.01 tick mark are taller than the surrounding ones. This is due to benign rounding

rather than devious manipulation as evidenced by the fact that the bars at these tick marks are as

12More precisely, the disproportionate share of p-values should show up exactly on the thresholds if manipulating
authors exclude the threshold from the interval of significance and should show up slightly above if manipulating
authors include the threshold in the interval of significance.
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high in the 0.20 to 0.50 range—where there is no gain from manipulation because these thresholds

have no reporting significance for such high p-values—as they are in the 0 to 0.10 range where

thresholds have reporting consequences. There are no disproportionately high bars on or slightly

above the thresholds of 0.01, 0.05, and 0.10. We treat the lack of disproportionately high bars

around these thresholds as “precise zeros” in what amounts to a visual test for manipulation. We

thus conclude from the figure that there was little or no effort to manipulate p-values from sniff

tests to beat the thresholds for significance, at least in the subsample of observations included in

the figure, for which the convention was to report exact p-values.

6. Structural Estimation

The structural model in Section 4.3 introduced parameters measuring the extent of publication bias

(b) and study flaws (m). We can obtain structural estimates of these parameters by taking the model

directly to the data. Equation (12) provides a density function that can be used in the construction

of a log-likelihood function. For any subsample under consideration, some of the observations i

will have exact p-values pi reported; for others all we can glean is the interval [� i,ui) containing

pi. The following log-likelihood function includes components for both sorts of observations:

lnL = ∑
pi exact

ln f (pi;m,b, α̂)+ ∑
pi∈[�i,ui)

ln
∫ ui

�i

f (p;m,b, α̂)d p (24)

= Npi<α̂ ln(1−b)−N ln(1− α̂
1

1+m b)− ∑
pi exact

[
ln(1+m)+

m
1+m

ln pi

]

+ ∑
pi∈[�i,ui)

ln
{
(1−b)

[
min(ui, α̂)

1
1+m −min(�i, α̂)

1
1+m

]
(25)

+ max(ui, α̂)
1

1+m −max(�i, α̂)
1

1+m

}
,

where α̂ denotes the cutoff below which there is potential removal, N denotes the number of

observations in the subsample under consideration, and Npi<α̂ the number of those reporting an

exact p-value that happens to be less than 0.1. Maximum likelihood estimates denoted with tildes, b̃

and m̃, can be obtained by maximizing lnL. The inverse-frequency weights wi used in the reduced-

form analysis will also be applied here in the maximum-likelihood procedure; see Section 5.1 for

a discussion of the rationale. Based on visual inspection of the kernel densities in Figure 3, we set
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α̂ = 0.1 to avoid having to estimate this additional parameter.

Table 6 reports the structural estimates. For the pure sample of RCT balance tests, we obtain

b̃ = 0.449 and m̃ = 0.054. The extremely low value of m̃, which is not statistically different from

0, implies that the pure sample of RCT balance tests exhibits almost no systematic failures of

randomization; the distribution of p-values would be nearly uniform in the absence of publication

bias. The value of b̃ is quite large, suggesting that publication bias removes 44.9% of p-values in

the significant [0,0.1) interval.

These estimates can be linked to the reduced-form results from Table 2. Assuming for simplic-

ity that all observations report exact p-values, it can be shown that

lim
m→0

b̃ =
α̂ − π̂α̂

α̂(1− π̂α̂)
, (26)

where recall πα̂ is the reduced-form estimate of the proportion of significant p-values below the

cutoff α̂ . Substituting α̂ = 0.1 and the estimate πα̂ = 0.058 from column (2) of Table 2 yields

α̂ − π̂α̂
α̂(1− π̂α̂)

=
0.1−0.058

0.1(1−0.058)
= 0.446, (27)

within a few hundredths of the structural estimate, b̃ = 0.449. That the limit in (27) is so close to

b̃ = 0.449 justifies our claim that the estimate m̃ = 0.054 is virtually 0, or in words that there are

virtually no study flaws in the sample of pure RCT balance tests.

Intuitively, the structural model identifies study flaws from features of the functional form: the

spikes in the density function around 0 and α̂ = 0.1 shown in the bottom panel of Figure 2. Absent

those spikes—which inspection of the kernel density in panel (2) of Figure 3 suggests are indeed

absent—the estimate m̃ will be close to 0. With essentially no study flaws, the rate of removal

is estimated from the amount of mass missing from below α̂ = 0.1 regardless of precisely from

where in the interval it is missing.

For the pure sample of tests besides balance in RCTs, we obtain b̃ = 0.913 and m̃ = 3.906. The

estimates suggest pervasive study flaws in this subsample, generating huge mass of p-values in the

significant [0,0.1) range that are then offset by a huge rate of publication bias. Published sniff

tests truly represent the the “tip of the iceberg”: less than 10% survive, with over 90% removed by

publication bias.
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Further confidence in the structural model can be obtained by comparing predicted to estimated

densities. Consider the density predicted by the structural model presence of both publication bias

and study flaws shown in the bottom panel of Figure 2. The density has a peculiar shape, spiking at

p = 0, decreasing on p ∈ (0,0.1), jumping upward at p = 0.1, and decreasing again for yet higher

p-values. The kernel density estimated for the sample of other pure tests in panel (4) of Figure 3

matches the predicted pattern. Contrast this shape with that of the kernel density estimated for pure

RCT balance tests in panel (2) of Figure 3. Rather than having spikes at 0 and 0.1, this density has a

block of mass missing from the interval below 0.1 but otherwise is fairly uniformly flat, resembling

the predicted density with no study flaws, only publication bias, in the middle panel of Figure 2.

It would be difficult to propose an alternative to our simple model delivering these non-monotonic

patterns. It is not that the theory provides a rich portfolio of shapes that we sifted through to pick

two that happen to match the empirical densities. Rather, the particular theoretical densities that

match the corresponding empirical ones are predicated on conditions that fit the empirical settings.

Balanced randomization is typically a much easier task and more likely to be successful than clean

identification or correct specification. It is reasonable to suppose that pure RCT balance tests

suffer from few study flaws compared to the specification, pre-trend, falsification tests, and non-

RCT balance tests that constitute the category of other pure tests. In formal terms, it is reasonable

to suppose m ≈ 0 for the pure sample of RCT balance tests and m > 0 for the pure sample of

other tests, the conditions behind the middle and bottom panels in Figure 2 matching the empirical

densities for the respective samples.

7. Conclusion

In this paper, we shifted the traditional focus on the statistical significance of published papers’

main results toward the p-values on auxiliary tests—including balance, over-identification, speci-

fication, falsification, and placebo tests—which we dubbed “sniff tests.” We had two motives for

studying sniff tests. First, since standards for passing are subjective, it is useful to have a picture

of the distribution of sniff-test p-values in the broader economics literature to evaluate the perfor-

mance of sniff tests in any individual paper. Second, since authors’ have the reverse of the usual

incentives regarding their p-values, preferring statistically insignificant values, sniff tests provide
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a unique window on publication bias.

We estimated the distribution of p-values using a sample of nearly 30,000 sniff tests from 900

articles published in 60 economics journals. The distribution differed across subsamples of sniff

tests. For the pure sample of RCT balance tests, there was little reason to expect randomization

failures, and so the distribution of p-values under the null of no publication bias was expected to

be uniform, allowing us to attribute departures from uniformity to publication bias. Our reduced-

form estimate of the missing mass from the interval of significant p-values [0,0.1) is consistent

with a rate of publication bias of around 45% (see equation (27)). That is, enough studies with

significant pure RCT balance tests end up in the “file drawer” (either thrown out or published

in a lower-tier journal outside of our sample) that there are 45% fewer significant such tests than

expected. Our structural estimates were exactly in line with these descriptive, reduced-form results,

finding m̃ = 0.054, consistent with negligible study flaws (so negligible randomization failures in

pure RCTs), and b̃ = 0.449. Re-expressed in percentage terms, this latter estimate is within a

percentage point of the rate of publication bias from the reduced-form estimates.

For the pure sample of other tests besides RCT balance, we saw a different pattern. Instead of

missing mass in the [0,0.1) interval of significant p-values, we saw a spike of excess mass near

0 dropping down into a trough around 0.1, consistent with the presence of both a high rate of

study flaws offset by publication bias removing mass from the significant interval. Our structural

estimates, identified off non-monotonicities in the density of p-values, uncovered a huge rate of

latent publication bias, as much as 91%, operating alongside a high rate of study flaws. If this

quantitative result can be believed, it means that virtually all of this sort of sniff test are in articles

that end up in the “file drawer” with only 9% being published in the tiers of journal in our sample.

Probing into the mechanisms behind the publication-bias process, reassuringly, we found no

evidence of author manipulation. Sniff tests placed prominently in the body of the paper were

no less significant than those potentially obscured in the appendix. Sniff tests with significance

highlighted by symbols were no less significant than those lacking the symbols. A fine-grained

histogram showed no extra mass of exact p-values right above thresholds that might be expected if

authors fudged results or mined data to obtain desirable, insignificant results for their sniff tests.

Comparing p-values across journal tiers in our sample, we found modest evidence of less sig-

nificant sniff tests in top than lower-tier journals, perhaps the result of top-tier journals maintaining
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higher publication standards. While a laudable outcome for the profession, this selectivity suggests

that the journals hierarchy can contribute to publication bias, with the best journals publishing re-

sults that are most likely to be selected on significance. There is no evidence that publication bias

is diminishing in the latter half of our sample; if anything we see more missing mass among sig-

nificant other pure tests more recently. An alternative explanation of the time trend is that studies

are improving over time, suffering from fewer specification and other flaws.

It deserves emphasizing that “publication bias” means something different for the sniff tests

studied here than the usual tests. “Publication bias” here refers to we mean a divergence between

the distribution of p-values between conducted and published studies. Inferences drawn from

sniff tests are not necessarily biased by selectivity. However, evidence of selectivity in sniff tests

suggests the scope of publication bias where it would be more problematic for inference—for tests

of the main results. Our results suggest that the process of publication bias leads to the removal

of a chunk of results from publication, as high as 91% for some subsamples. If a similar chunk

is removed from tests of central interest, there we may be getting a dangerously large proportion

of statistically significant results that are an artifact of noise, and the danger may be particularly

severe for the best journals.

Our analysis of how authors characterize their results suggests some care in interpreting author

claims. Faced with the most significant sniff tests, with p-values in the [0,0.01) interval, authors

tend to make overly strong claims that the results are due to statistical noise. The proportion of

p-values in that interval is more than double what would be expected under a uniform distribution.

We also saw that when authors make a “weak claim” about a sniff test, defending the validity of

the study in despite significant p-values, if anything this is a worse signal about the performance of

the sniff tests than when the author makes no claims about the results, suggesting that weak claims

should be read with skepticism.
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Table 1: Subsample Breakdowns

Refined breakdown

Number of Percent of Number of Percent of
observations total sample observations subsample

By methodology
• RCT balance tests
◦ Pure 2,981 42%
◦ Possibly pure 1,007 14%
◦ Improved 3,162 44%
◦ Subtotal 7,150 24% 7,150 100%

• Other tests
◦ Pure 17,210 76%
◦ Matched, pre-match sample 1,886 8%
◦ Matched, post-match sample 3,566 16%
◦ Subtotal 22,662 76% 22,662 100%

• Total 29,812 100%

By precision of p-value gleaned
• Exact value 12,157 41%
• Interval 17,655 59%
• Total 29,812 100%

By position in article
• Body 21,570 72%
• Appendix 8,242 28%
• Total 29,812 100%

By symbols highlighting significance
• Symbols used 19,410 65%
• Not used 10,402 35%
• Total 29,812 100%

By journal tier
• Tier 1 5,867 20%
• Tier 2 15,759 53%
• Tier 3 8,186 27%
• Total 29,812 100%

By author claim about sniff test
• Strong claim 21,260 71%
• Weak claim 2,727 9%
• No claim 1,959 7%
• Failed claim 3,866 13%
• Total 29,812 100%

Notes: Breakdowns of final dataset consisting of 29,812 observations for which an exact value or interval could be
gleaned for the p-value.
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Table 2: Proportion of Significant P-values in Various Subsamples

RCT balance tests Other tests

Full Possibly Matched, Matched,
sample Pure improved Pure pre-match post-match

(1) (2) (3) (4) (5) (6)

Proportion of significant p-values, π̂α

• α = 0.01 0.061∗∗∗ 0.010 0.021∗ 0.053∗∗∗ 0.472∗∗∗ 0.026∗∗
(0.004) (0.004) (0.006) (0.005) (0.034) (0.007)

• α = 0.05 0.097∗∗∗ 0.041 0.056 0.091∗∗∗ 0.562∗∗∗ 0.041
(0.005) (0.007) (0.008) (0.006) (0.033) (0.009)

• α = 0.10 0.128∗∗∗ 0.058∗∗∗ 0.085 0.124∗∗∗ 0.629∗∗∗ 0.060∗∗∗
(0.005) (0.008) (0.009) (0.006) (0.031) (0.011)

Combining results across thresholds

• Joint F-test 68.6∗∗∗ 15.4∗∗∗ 8.29∗∗∗ 38.9∗∗∗ 96.8∗∗∗ 17.9∗∗∗

• Linear departure 0.042∗∗∗ −0.017∗∗∗ 0.001 0.036∗∗∗ 0.500∗∗∗ −0.011
from uniform, λ̂ (0.004) (0.006) (0.008) (0.005) (0.031) (0.009)

• Proportional departure 0.451∗∗∗ −0.368∗∗∗ −0.082 0.393∗∗∗ 6.670∗∗∗ −0.343∗∗∗
from uniform, ρ̂ (0.060) (0.091) (0.106) (0.074) (0.402) (0.127)

Observation counts

• Sample size 29,711 2,974 4,110 17,175 1,886 3,566

• Stacked observations 82,484 7,895 12,022 47,007 5,354 10,206

• Clusters 1,387 103 141 988 97 157

Notes: Results are the weighted proportions π̂α of observations i that have p-values less than the threshold level α
in the row heading. Weights equal wi. Results can equivalently be obtained as coefficients from the stacked IFWLS
regression (19). Each sniff-test statistic i in the sample may contribute several observations to the stacked regression,
depending on the number of thresholds under study α ∈ R ∗ = {0.01,0.05,0.10} that overlap with the containing
table’s reporting convention, Rt(i). Column (3) combines possibly pure and definitively improved samples. Standard
errors, reported in parentheses below results, are clustered at the table level. Clustering correctly adjusts standard
errors for having multiple thresholds stacked per observation. Significantly different from α in a two-tailed test at the
∗ten-percent level, ∗∗five-percent level, ∗∗∗one-percent level.
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Table 3: Difference Across Categories in Proportion of Significant P-values

(1) (2) (3) (4) (5) (6) (7)

Differences for RCT balance tests, pure

• Appendix−Body 0.392 0.221 0.014
(0.273) (0.277) (0.132)

• No symbols−Symbols −0.075 0.051 0.024
(0.174) (0.172) (0.086)

• Tier 2−Tier 1 0.130 0.140 0.064
(0.243) (0.246) (0.144)

• Tier 3−Tier 1 −0.364∗ −0.221 −0.129
(0.198) (0.224) (0.102)

• Large table−Small table 0.342∗ 0.240 0.117
(0.177) (0.190) (0.103)

• Recent−Early −0.464∗ −0.358
(0.277) (0.265)

Differences for other tests, pure

• Appendix−Body −0.133 −0.207 −0.098
(0.173) (0.166) (0.081)

• No symbols−Symbols 0.200 0.057 0.049
(0.192) (0.191) (0.100)

• Tier 2−Tier 1 0.418∗∗ 0.365∗∗ 0.197∗
(0.184) (0.182) (0.114)

• Tier 3−Tier 1 0.058 0.116 0.060
(0.198) (0.201) (0.107)

• Large table−Small table 0.960∗∗∗ 0.908∗∗∗ 0.438∗∗∗
(0.146) (0.144) (0.126)

• Recent−Early −0.607∗∗ −0.501∗∗
(0.239) (0.238)

Fixed effects

• Publication year No No No No No No Yes

• Threshold α No No No No No No Yes

Notes: Proportional difference Δρ̂ estimated from regression (23). See Appendix Table A2 for analogous results for
level differences Δλ̂ . Regression stacks all test of the indicated type as well as all thresholds α ∈ R∗. The sample of
2,974 pure RCT balance tests generate 7,895 stacked observations and 103 clusters. The sample of 17,175 pure other
tests generate 47,007 stacked observations and 988 clusters. Standard errors, reported in parentheses below results, are
clustered at the table level. Significantly different from 0 in a two-tailed test at the ∗ten-percent level, ∗∗five-percent
level, ∗∗∗one-percent level.
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Table 4: Proportion of Significant P-values by Strength of Author Claim

RCT balance tests, pure Other tests, pure

Strong Non-strong Strong Weak No Failed
claim claim claim claim claim claim

(1) (2) (3) (4) (5) (6)

Proportion of significant p-values, π̂α

• α = 0.01 0.005∗∗∗ 0.063 0.021∗∗∗ 0.116∗∗∗ 0.089∗∗ 0.294∗∗∗
(0.002) (0.032) (0.003) (0.021) (0.033) (0.030)

• α = 0.05 0.029∗∗∗ 0.149∗ 0.044 0.208∗∗∗ 0.169∗∗∗ 0.390∗∗∗
(0.005) (0.050) (0.004) (0.025) (0.034) (0.026)

• α = 0.10 0.045∗∗∗ 0.202∗∗ 0.071∗∗∗ 0.282∗∗∗ 0.217∗∗∗ 0.474∗∗∗
(0.010) (0.036) (0.011) (0.025) (0.020) (0.041)

Combining results across thresholds

• Joint F-test 24.5∗∗∗ 2.31 41.8∗∗∗ 17.1∗∗∗ 4.6∗∗∗ 73.3∗∗∗

• Linear departure −0.027∗∗∗ 0.084∗ −0.008∗∗ 0.147∗∗∗ 0.105∗∗∗ 0.333∗∗∗

from uniform, λ̂ (0.004) (0.038) (0.004) (0.021) (0.031) (0.026)

• Proportional departure −0.521∗∗∗ 1.280∗∗ −0.246∗∗∗ 2.192∗∗∗ 1.470∗∗∗ 4.614∗∗∗
from uniform, ρ̂ (0.069) (0.538) (0.056) (0.308) (0.415) (0.335)

Observation counts

• Sample size 2,622 352 10,641 1,890 1,732 2,912

• Stacked observations 6,901 994 29,189 5,336 4,771 7,711

• Clusters 94 10 813 70 44 109

Notes: Notes from Table 2 apply. For RCT balance tests, pure, we combine weak claims, no claims, and failed claims
into single “non-strong claim” category since there are too few clusters to reliably estimate them separately.
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Table 5: Proportional Difference in Significance of P-values by Strength of Author Claims

Row heading − column heading
proportional difference Δρ̂

Strong claim Weak claim No claim

RCT balance tests, pure

• Non-strong claim 1.801∗∗∗
(0.512)

Other tests, pure

• Weak claim 2.439∗∗∗
(0.311)

• No claim 1.717∗∗∗ −0.722
(0.414) (0.512)

• Failed claim 4.861∗∗∗ 2.422∗∗∗ 3.144∗∗∗
(0.338) (0.453) (0.530)

Notes: Proportional difference estimated from regression (23). Regression stacks
all observations across author-claim categories as well as all thresholds α ∈ R∗.
Estimates can equivalently be computed by differencing ρ̂ from the previous ta-
ble. Entries above diagonal omitted for brevity; these have the same magnitude
and opposite sign of the corresponding, reversed entries below the diagonal. See
Appendix Table A3 for analogous results for level differences Δλ̂ . Standard errors,
reported in parentheses below results, are clustered at the table level. Observa-
tion counts (including sample size, number of stacked observations, and number
of clusters) can be computed from the previous table by summing the counts from
the columns corresponding to the two categories being compared. Stars represent
significant difference from 0 in a two-tailed test at the ∗ten-percent level, ∗∗five-
percent level, ∗∗∗one-percent level.
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Table 6: Structural Estimates

RCT balance Other tests,
tests, pure pure

Structural parameters

• Publication bias, b 0.449∗∗∗ 0.913∗∗∗
(0.132) (0.039)

• Study flaw, m 0.054 3.906∗∗
(0.107) (1.739)

Log-likelihood −403.2 −4,024.3

Observations 2,974 17,175

Clusters 103 988

Notes: Results from inverse-frequency-weighted maximization
likelihood (IFWML). Likelihood function given in equation (25).
Weights equal wi. Significance cutoff for potential removal set to
α̂ = 0.1 rather than estimated. For the small number of observa-
tions whose p-values are smaller than machine double precision,
producing an undefined natural logarithm, we rounded up to ma-
chine double precision; results nearly identical if these few obser-
vations are dropped. Standard errors clustered at the table t level
reported in parentheses. Stars indicate significant difference from
0 in a two-tailed test at the ∗ten-percent level, ∗∗five-percent level,
∗∗∗one-percent level.
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Figure 1: Trend in Sniff-Test Observations Over Time
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Note: Figure graphs the number of sniff-test observations in our dataset by the year that the containing article was
published.
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Figure 2: P-value Densities Generated by Model

(1) Study flaws only, b = 0
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(2) Publication bias only, m = 0
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(3) Offsetting flaws and publication bias, m = M(b, α̂)

m = 0.6
m = 0.4
m = 0.2

0
.5

1
1.

5
2

D
en

si
ty

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
P−value

Note: Plots of density f (p;m,b, α̂) for α̂ = 0.1 and for various values of m and b. Dotted line is benchmark uniform
distribution, corresponding to m = b = 0.
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Figure 3: Kernel Density Estimates of Distribution of P-values

(1) Full sample
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(2) RCT balance tests, pure
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(3) RCT balance tests, possibly improved
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(4) Other tests, pure
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(5) Other tests, matched sample, pre-match
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(6) Other tests, matched sample, post-match
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Notes: Each panel plots the kernel density estimate for the subsample of p-values analyzed in the corresponding
column of Table 2. Solid curve is kernel density, estimated using Jann’s (2005) kdens Stata module, accounting
for lower and upper bounds on the support using the renormalization described in Jones (1993) and specifying an
Epanechnikov kernel. To maintain consistent axes across panels, disproportionately high curve in panel (5) truncated
at maximum label on the vertical axis. For comparison, dotted line is uniform [0,1] density.
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Figure 4: Fine-Grained Histogram of Exact P-values
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Note: Figure shows a fine-grained histogram, with bin size equal to 0.001, for the sample of observations for which ex-
act p-values are reported. For legibility, only the distributionof p-values below 0.5 is shown and the disproportionately
tall bar at p-value of 0 has been truncated at the maximum label on the vertical axis.
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Table A2: Level Difference in Significance of P-values Across Categories

(1) (2) (3) (4) (5) (6) (7)

Differences for RCT balance tests, pure

• Appendix−Body 0.015 0.006 −0.002
(0.015) (0.012) (0.016)

• No symbols−Symbols −0.000 0.007 0.006
(0.011) (0.012) (0.012)

• Tier 2−Tier 1 0.007 0.007 0.005
(0.016) (0.016) (0.018)

• Tier 3−Tier 1 −0.019 −0.013 −0.015
(0.014) (0.015) (0.015)

• Large table−Small table 0.021∗ 0.018 0.017
(0.011) (0.013) (0.012)

• Recent−Early −0.022 −0.019
(0.015) (0.015)

Differences for Other tests, pure

• Appendix−Body −0.010 −0.015 −0.012
(0.012) (0.012) (0.012)

• No symbols−Symbols 0.020 0.012 0.011
(0.014) (0.014) (0.014)

• Tier 2−Tier 1 0.032∗∗ 0.029∗∗ 0.029∗∗
(0.013) (0.013) (0.013)

• Tier 3−Tier 1 0.004 0.008 0.008
(0.014) (0.014) (0.014)

• Large table−Small table 0.061∗∗∗ 0.057∗∗∗ 0.057∗∗∗
(0.010) (0.010) (0.010)

• Recent−Early −0.038∗∗ −0.030∗
(0.016) (0.016)

Fixed effects

• Publication year No No No No No No Yes

• Threshold α No No No No No No Yes

Notes: Complementary results to those in Table 5 except estimates of difference in levels, Δλ̂ , rather than proportions,
Δρ̂ . Notes from that table apply with the following modification: level difference estimated using regression (22).
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Table A3: Level Difference in Significance of P-values by Strength of Author Claim

Row heading − column heading
level difference Δλ̂

Strong claim Weak claim No claim

RCT balance tests, pure

• Non-strong claim 0.112∗∗∗
(0.036)

Other tests, pure

• Weak claim 0.155∗∗∗
(0.021)

• No claim 0.133∗∗∗ −0.042
(0.031) (0.038)

• Failed claim 0.340∗∗∗ 0.185∗∗∗ 0.227∗∗∗
(0.026) (0.033) (0.040)

Notes: Complementary results to those in Table 5 except estimates of difference in
levels, Δλ̂ , rather than proportions, Δρ̂ . Notes from that table apply with the fol-
lowing modifications. Level difference estimated using regression (22). Estimates
can equivalently be computed by differencing λ̂ from Table 4.
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Appendix B: Supplementary Technical Details

This appendix fills in several technical details omitted from the text.

Proof that P-Values Uniformly Distributed

Here we prove the claim in the text that pi, the p-value defined in equation (4), has a uniform
[0,1] distribution under the null of no study flaw and under the further condition that there is no
publication bias. We have

Pr(pi ≤ α|H0) = Pr(Γ(pi) ⊆ Γ(α)|H0) (B1)

= Pr(Γ(A(Zi)) ⊆ Γ(α)|H0) (B2)

= Pr(Γ(A(Z0)) ⊆ Γ(α)) (B3)

Equation (B1) follows from the fact that Γ(·) is an increasing correspondence, as stated in (2). To
see (B2), substituting pi for α in (1) yields pi = Pr(Z0 ∈ Γ(pi)). Combining this equation with (4),
we have pi = A(Zi), from which (B2) follows. Equation (B3) follows from imposing the null when
drawing test statistic Z0.

We proceed to bound (B3) above and below by α. By the definition of A(Zi) in (3), Z0 ∈
Γ(A(Z0)). But then

Γ(A(Z0)) ⊆ Γ(α) =⇒ Z0 ∈ Γ(α), (B4)

which implies
Pr(Γ(A(Z0)) ⊆ Γ(α)) ≤ Pr(Z0 ∈ Γ(α)) = α, (B5)

where the last equality holds by (1). To bound (B3) below by α, note

Γ(A(Z0)) �⊆ Γ(α) =⇒ Γ(α) ⊂ Γ(A(Z0)) (B6)

=⇒ Z0 �∈ Γ(α). (B7)

Implication (B6) follows from the fact that Γ(·) is an increasing correspondence. as stated in (2),
so that one of Γ(A(Z0)) or Γ(α) must be included in the other. Implication (B7) follows from the
fact that no smaller set than Γ(A(Z0)) can include Z0 by definition in (3). The chain of implications
(B6)–(B7) implies

Pr(Γ(A(Z0)) �⊆ Γ(α)) ≤ Pr(Z0 �∈ Γ(α)) (B8)

= 1−Pr(Z0 ∈ Γ(α)) (B9)

= 1−α, (B10)

where the last step follows from (1). But then

Pr(Γ(A(Z0)) ⊆ Γ(α)) = 1−Pr(Γ(A(Z0)) �⊆ Γ(α)) (B11)

≥ 1− (1−α) (B12)

= α, (B13)

where (B12) follows from (B8)–(B10). Equations (B5) and (B13) imply (B3) equals α, implying
Pr(pi ≤ α|H0) = α by (B1)–(B3). This proves pi is uniformly distributed. �
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