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ABSTRACT
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that departs from conventional assumptions of full annuitization and deterministic mortality. In 
contrast to conventional theory, we find a given mortality improvement may be worth more, not 
less, to patients facing shorter lives. Using real-world data, we calculate that severe illness can 
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research on preferences for life-extension. Moreover, our framework can value the prevention of 
mortality and of illness. We calculate that treating illness is up to an order of magnitude more 
valuable to consumers than prevention, even when both extend life equally. This asymmetry 
helps explain low observed investment in preventive care. Finally, we show that retirement 
annuities boost aggregate demand for life-extension. For instance, Social Security adds $11.5 
trillion (10.5 percent) to the value of post-1940 longevity gains.
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I. INTRODUCTION 
The economic analysis of risks to life and health has made enormous contributions to both academic 

discussions and public policy. Economists have used the standard tools of life-cycle consumption theory to 

propose a transparent framework that measures the value of improvements to both health and longevity. 

Economic concepts such as the value of statistical life play central roles in public policy discussions 

surrounding investments in medical care, public safety, environmental hazards, and countless other arenas. 

The standard framework, however, assumes full annuitization and deterministic mortality risk. While 

analytically convenient and useful for illustrating some of the underlying economics, these assumptions are 

not realistic: it is well known that most people are far from fully annuitized (Brown et al. 2008), and that 

mortality risk depends on one’s health state. Moreover, these assumptions hamper explanatory power in 

several ways: the standard framework cannot investigate what happens to the value of life upon falling ill, 

cannot meaningfully distinguish between preventive care and medical treatment, and glosses over policy-

relevant relationships between the value of life and the structure of the annuity market. These issues are 

empirically relevant. Prior research suggests the value placed on life-extension varies considerably with 

health state (Nord et al. 1995). And, an array of evidence suggests that society invests less in preventive 

care than in medical treatment, even when both have the same consequences for health and longevity 

(Weisbrod 1991; Dranove 1998; Pryor and Volpp 2018). 

This paper develops a general economic framework for valuing health improvements and applies it to data. 

We establish three main results. First, we derive conditions under which the value of life can rise following 

a negative health shock, and we demonstrate that this effect is economically significant. For example, we 

calculate that the value of statistical life (VSL) for a 70-year-old soars by over $1 million (50 percent) 

following the development of chronic conditions that impair her everyday living. Second, we introduce the 

value of statistical illness (VSI), which captures the willingness to pay to avoid sickness and includes VSL 

as a special case. We calculate that—holding wealth constant—a sick individual’s initial willingness to pay 

for medical treatment is several times greater than a healthy individual’s willingness to pay for preventive 

care that improves longevity by the same amount. Third, we calculate that the US Social Security program 

adds $11.5 trillion (10.5 percent) to the value of post-1940 longevity gains. 

Incomplete annuitization drives all three of these results. A very simple example illustrates the intuition. 

Imagine a 60-year-old retiree with no bequest motive and a flat optimal consumption profile. If she fully 

annuitizes her savings, her consumption remains flat at, say, $30,000 annually. Now suppose she cannot 

annuitize any of her wealth. In this case, it is well known that the optimal consumption profile shifts forward 

(Yaari 1965), in response to the risk of dying with money still left in the bank (see Figure 1). Because VSL 
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depends greatly on consumption, it too will shift forward. Thus, reductions in annuitization lower VSL at 

older ages, and increase VSL at younger ages. Conversely, retirement savings programs such as Social 

Security that increase annuitization levels will raise VSL at older ages and lower it at younger ages.  

Our other results follow from the simple observation that it is optimal for an incompletely annuitized 

individual to shift her consumption forward, i.e., to spend down her wealth, following an adverse shock to 

life expectancy. At least for some initial period of time, the shock increases consumption, and thus reduces 

the marginal utility of consumption. An important insight of our paper is that although a negative shock to 

longevity always reduces lifetime utility, the accompanying reduction in the contemporaneous marginal 

utility of consumption can be large enough to cause VSL to increase even though life expectancy has fallen. 

Indeed, we show using real-world data that VSL is frequently higher for an individual diagnosed with a 

more fatal illness. Similarly, a sick individual’s willingness to pay for treatment is frequently higher using 

real-world data than a healthy individual’s willingness to pay for preventive care, even when both add the 

same number of life-years. This is in stark contrast to the conventional model with full annuitization, where 

a reduction in longevity always reduces VSL. 

The first half of this paper provides a formal framework that yields these insights. We first demonstrate that 

consumption increases following an adverse shock to longevity, and we then derive sufficient conditions 

under which that shock also generates an accompanying increase in VSL.1 These conditions are satisfied 

by the standard CRRA preferences used in prior value of life studies. We focus on mortality shocks, but 

our framework allows for shocks to quality of life and income as well. We then show how our framework 

leads to a more general concept, the value of statistical illness, which can be interpreted as an individual’s 

willingness to pay for a marginal decrease in the risk of acquiring an illness. This allows us to compare the 

value of prevention to the value of treatment. In general, prevention and treatment are not valued equally 

unless consumers are fully annuitized. If VSL rises following a health shock, then the value of treatment 

can exceed the value of prevention. This result sheds new light on why consumers, firms, and health insurers 

appear reluctant to invest in prevention, even when there are considerable private life expectancy benefits 

(Weisbrod 1991; Dranove 1998; Pryor and Volpp 2018). 

The second half of the paper applies our model to data. Our first empirical exercise incorporates detailed 

microsimulation data from the Future Elderly Model into a stochastic life-cycle model that allows mortality 

and quality of life to vary across 20 different health states. We demonstrate that our key theoretical result—

                                                      
1 The sign depends on whether the loss in lifetime utility is offset by a corresponding decrease in marginal utility. 
Specifically, an adverse mortality shock increases VSL when demand for current consumption is sufficiently inelastic, 
or when the marginal utility of demand is sufficiently linear (as measured by relative prudence). 
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that VSL can rise when life expectancy falls—is economically significant under reasonable 

parameterizations. For instance, we calculate that VSL rises from $2.9 million to $4.3 million for a 70-year-

old who suffers a debilitating health shock that reduces her life expectancy by nearly 7 years and also 

worsens her quality of life. This relationship between health shocks and VSL generates substantial 

variability in the aggregate: Monte Carlo simulations performed on a population of initially healthy 50-

year-olds predict that health shocks generate an inter-vigintile (middle 90 percent) VSL range of $4.2 to 

$5.3 million by age 60. In addition, we show that longevity gains are more valuable in states with lower 

remaining life expectancy. Finally, we calculate that the value of treating life-threatening conditions like 

cancer is worth up to 10 times more than equivalent preventive care that adds the same number of years to 

an individual’s life expectancy. Our results are robust to including wealth shocks and a bequest motive. 

Our second exercise illustrates the connections between public annuity programs and the societal value of 

increases in longevity, defined as individuals’ private willingness to pay for life-extension plus the effect 

of life-extension on expected future consumption and income. We calculate that Social Security adds $11.5 

trillion (10.5 percent) to the value of post-1940 longevity gains, relative to a setting with no annuity markets, 

by raising the value of life at older ages. This gain is worth over $35,000 per person to the current 

population, or about half as much as the longevity insurance value of Social Security. Moreover, Social 

Security increases the aggregate value of potential future increases in longevity by over 10 percent, so that 

a 1 percent reduction in population-wide mortality is $138 billion more valuable than it would have been 

without the program. Increasing the size of Social Security pensions by 50 percent would add a further $72 

billion of value to this mortality decline. Finally, we show that a strong bequest motive reduces the effect 

of Social Security on the value of longevity improvements by half. This suggests the effect of annuitization 

on the value of life matters most for low-income individuals, who are less likely to have a significant 

bequest motive. 

The economic literature on the value of life reaches back to Schelling (1968) and includes seminal studies 

by Arthur (1981), Rosen (1988), Murphy and Topel (2006), and Hall and Jones (2007). A few studies have 

considered departures from the assumption of full annuitization, but only under specialized preferences 

(Shepard and Zeckhauser 1984; Ehrlich 2000; Ehrlich and Yin 2005). Our framework builds on this 

literature by providing expressions for VSL under general preferences. We also further extend the 

conventional model to accommodate stochastic health shocks by exploiting recent advances in the systems 

and control literature (Parpas and Webster 2013). We view our application of these tools as a useful 

demonstration for other researchers working in stochastic settings. Our more general setting leads to the 

novel finding that VSL can rise following a health shock, and it allows us to introduce the concept of VSI. 

To the best of our knowledge, we provide the first life-cycle analysis of the value of preventing illness. 
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Our findings have two significant implications for cost-effectiveness analysis, which governs the allocation 

of healthcare resources in many “single-payer” countries such as the United Kingdom and Canada 

(Dranitsaris and Papadopoulos 2015) and continues to grow in importance in the multi-payer US healthcare 

marketplace (Goldman, Nussbaum, and Linthicum 2016). First, conventional cost-effectiveness analysis 

assumes that the value of extending life is insensitive to the severity of illness: providing X aggregate 

(quality-adjusted) life-years by extending life slightly for a large population of hypertension patients is 

worth the same as providing X aggregate life-years by extending life substantially for a proportionally 

smaller population of cancer patients. Unless individuals are fully annuitized, this equivalence is incorrect 

in our framework. In fact, it is often more valuable to provide larger life expectancy gains to smaller 

populations. This suggests that the traditional cost-effectiveness approach underinvests in the treatment of 

the most life-threatening illnesses relative to less severe conditions. This insight is also consistent with 

survey data on how consumers view the value of life-extension (Nord et al. 1995; Green and Gerard 2009; 

Linley and Hughes 2013), and can better inform the way economists and healthcare payers assess the value 

of medical technologies. 

Second, cost-effectiveness analysis traditionally values life-years gained by prevention and treatment 

equally (Drummond et al. 2015). However, in our model these values depend on baseline health status, 

which creates a wedge between prevention and treatment. In contrast to Benjamin Franklin’s adage that “an 

ounce of prevention is worth a pound of cure” (Labaree 1960), we find that treatment is frequently much 

more valuable to consumers than prevention, even when it produces the same longevity gain. Of course, 

this does not preclude the possibility of positive externalities, such as the “herd immunity” of vaccines, or 

the relative clinical or cost-effectiveness of prevention versus treatment. Rather, it implies that longevity 

gains of fixed size are more valuable when gained through treatment instead of prevention.2 

The remainder of this paper is organized as follows. Section II reviews the predictions of the conventional 

theory on the value of life and demonstrates how relaxing its assumption of full annuitization alters these 

predictions. Section III then generalizes the framework further by allowing health and income to be 

stochastic. Section IV presents empirical analysis that: (1) shows how health shocks can increase the value 

of statistical life; (2) illustrates how more severe health shocks cause consumers to place higher value on a 

given mortality reduction; (3) calculates the value of preventing different kinds of illness; and (4) quantifies 

the effect of Social Security on the value of statistical life. Section V concludes. 

                                                      
2 This valuation differential depends on the individual’s current health state and is therefore most relevant for assessing 
the value of current medical R&D. The difference in the values of preventives and treatments developed in the distant 
future is negligible because they are necessarily valued from an ex ante (healthy) perspective. 
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II. DETERMINISTIC MODEL 
Consider an individual who faces mortality risk. We are interested in analyzing the value of a marginal 

reduction in this risk. We first quantify this value in the conventional setting where markets are complete 

and the consumer has access to actuarially fair annuities (Rosen 1988; Murphy and Topel 2006). We then 

repeat this exercise in a “Robinson Crusoe” economy where the consumer cannot purchase annuities to 

insure against her uncertain lifetime (Shepard and Zeckhauser 1984; Ehrlich 2000; Johansson 2002). We 

compare our findings for these two polar cases to illustrate the basic insights of the paper. We focus on 

improvements in longevity and their relationship to annuity insurance markets, but we allow for 

improvements in quality of life as well. Section III then extends the model to accommodate stochastic health 

shocks and introduces the value of statistical illness.  

Although it is optimal for a consumer to fully annuitize in the canonical life-cycle model (Yaari 1965), real-

world annuitization rates are quite low. This “annuity puzzle” is the subject of numerous papers. Many 

explanations have been suggested, but there is no consensus on what drives incomplete annuitization 

(Brown et al. 2008). Our study takes the low rate of annuitization as a given empirical fact and illustrates 

its significance for the value of life. Section IV uses a numerical model to probe the sensitivity of our results 

to different assumptions about consumer preferences, such as the presence of a bequest motive, which prior 

studies have argued might rationalize low observed rates of annuitization. There continues to be debate 

over why real-world consumption profiles and annuity purchase decisions look the way they do. However, 

as we show, the implications for life-extension depend primarily on the real-world consumption profiles 

themselves, not the reasons that lie beneath. 

Like prior studies on the value of life, we focus throughout this paper on the demand for health and 

longevity. Quantifying optimal health spending requires additionally modeling the supply of health care 

(Hall and Jones 2007). In light of all the variation in healthcare delivery systems, a wide variety of plausible 

approaches can be taken to this modeling problem, which we leave to future research. 

II.A. The fully annuitized value of life 
Let 𝑐𝑐(𝑡𝑡) be consumption at time 𝑡𝑡, 𝑊𝑊0 be baseline wealth, 𝑚𝑚(𝑡𝑡) be exogenously determined income, 𝜌𝜌 be 

the rate of time preference, and 𝑟𝑟 be the rate of interest.3 Let 𝑊𝑊 be the net present value of wealth and future 

earnings at baseline. Finally, define 𝑞𝑞(𝑡𝑡) as health-related quality of life at time 𝑡𝑡. Since it sacrifices little 

generality in our application, we take 𝑞𝑞(𝑡𝑡) as exogenous. As needed, one can consider any relevant quality 

                                                      
3 It is straightforward to incorporate endogenous labor supply (Murphy and Topel 2006). In the stochastic mortality 
model presented in Section III, we allow income to depend on the health state. 
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of life profile in concert with a given profile of mortality, and we investigate this issue in our empirical 

analysis later. The maximum lifespan of a consumer is 𝑇𝑇, and her mortality (hazard) rate at any point in 

time is given by 𝜇𝜇(𝑡𝑡), where 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇. The probability that a consumer will be alive at time 𝑡𝑡 is: 

𝑆𝑆(𝑡𝑡) = exp �−� 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑠𝑠
𝑡𝑡

0
� 

At time 𝑡𝑡 = 0 , the consumer fully annuitizes. We assume that annuitization is actuarially fair. The 

consumer’s maximization problem is: 

𝑉𝑉(0) = max
𝑐𝑐(𝑡𝑡)

� 𝑒𝑒−𝜌𝜌𝑡𝑡𝑆𝑆(𝑡𝑡)𝑢𝑢(𝑐𝑐(𝑡𝑡), 𝑞𝑞(𝑡𝑡))𝑑𝑑𝑡𝑡
𝑇𝑇

0
 

subject to the budget constraint: 

� 𝑒𝑒−𝑟𝑟𝑡𝑡𝑆𝑆(𝑡𝑡)𝑐𝑐(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑇𝑇

0
= 𝑊𝑊 = 𝑊𝑊0 + � 𝑒𝑒−𝑟𝑟𝑡𝑡𝑆𝑆(𝑡𝑡)𝑚𝑚(𝑡𝑡)𝑑𝑑𝑡𝑡

𝑇𝑇

0
 

The consumer’s utility function, 𝑢𝑢(𝑐𝑐(𝑡𝑡), 𝑞𝑞(𝑡𝑡)), depends on both consumption and health-related quality of 

life. We assume throughout that 𝑢𝑢(⋅) is strictly increasing and concave in its first argument, and twice 

continuously differentiable. Let 𝑢𝑢𝑐𝑐(⋅)  denote the marginal utility of consumption. Associating the 

multiplier 𝜃𝜃 with the wealth constraint, optimal consumption is characterized by the first-order condition: 

𝜕𝜕𝑉𝑉(0)
𝜕𝜕𝑊𝑊

= 𝜃𝜃 = 𝑒𝑒(𝑟𝑟−𝜌𝜌)𝑡𝑡𝑢𝑢𝑐𝑐(𝑐𝑐(𝑡𝑡), 𝑞𝑞(𝑡𝑡)) 

To analyze the value of life, let 𝛿𝛿(𝑡𝑡) be a perturbation on the mortality rate with ∫ 𝛿𝛿(𝑡𝑡)𝑑𝑑𝑡𝑡𝑇𝑇
0 = 1, and 

consider: 

𝑆𝑆𝜀𝜀(𝑡𝑡) = exp �−� (𝜇𝜇(𝑠𝑠)− 𝜀𝜀𝛿𝛿(𝑠𝑠))𝑑𝑑𝑠𝑠
𝑡𝑡

0
� , 𝜀𝜀 > 0 

Let 𝑐𝑐𝜀𝜀(𝑡𝑡) represent the equilibrium variation in 𝑐𝑐(𝑡𝑡)  caused by this perturbation. As shown in Rosen 

(1988), the marginal utility of this life-extension is given by: 

𝜕𝜕𝑉𝑉
𝜕𝜕𝜀𝜀 �𝜀𝜀=0

=
𝜕𝜕
𝜕𝜕𝜀𝜀
� 𝑒𝑒−𝜌𝜌𝑡𝑡𝑆𝑆𝜀𝜀(𝑡𝑡)𝑢𝑢�𝑐𝑐𝜀𝜀(𝑡𝑡), 𝑞𝑞(𝑡𝑡)�𝑑𝑑𝑡𝑡
𝑇𝑇

0
�
𝜀𝜀=0

 

= � �𝑒𝑒−𝜌𝜌𝑡𝑡𝑢𝑢(𝑐𝑐(𝑡𝑡), 𝑞𝑞(𝑡𝑡)) + 𝑒𝑒−𝑟𝑟𝑡𝑡𝜃𝜃�𝑚𝑚(𝑡𝑡) − 𝑐𝑐(𝑡𝑡)�� �� 𝛿𝛿(𝑠𝑠)𝑑𝑑𝑠𝑠
𝑡𝑡

0
� 𝑆𝑆(𝑡𝑡)𝑑𝑑𝑡𝑡

𝑇𝑇

0
 

The marginal value of life-extension is equal to the marginal rate of substitution between longer life and 

wealth: 
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 𝜕𝜕𝑉𝑉/𝜕𝜕𝜀𝜀
𝜕𝜕𝑉𝑉/𝜕𝜕𝑊𝑊�

𝜀𝜀=0
= � 𝑒𝑒−𝑟𝑟𝑡𝑡𝑆𝑆(𝑡𝑡)�

𝑢𝑢(𝑐𝑐(𝑡𝑡), 𝑞𝑞(𝑡𝑡))
𝑢𝑢𝑐𝑐(𝑐𝑐(𝑡𝑡), 𝑞𝑞(𝑡𝑡)) +𝑚𝑚(𝑡𝑡) − 𝑐𝑐(𝑡𝑡)� �� 𝛿𝛿(𝑠𝑠)𝑑𝑑𝑠𝑠

𝑡𝑡

0
� 𝑑𝑑𝑡𝑡

𝑇𝑇

0
         (1) 

The value of a life-year is the value of a one-period change in survival from the perspective of current time: 

 
𝑣𝑣(𝑡𝑡) =

𝑢𝑢�𝑐𝑐(𝑡𝑡), 𝑞𝑞(𝑡𝑡)�
𝑢𝑢𝑐𝑐�𝑐𝑐(𝑡𝑡), 𝑞𝑞(𝑡𝑡)�

+ 𝑚𝑚(𝑡𝑡) − 𝑐𝑐(𝑡𝑡)         (2) 

The value of a life-year, 𝑣𝑣(𝑡𝑡), is equal to the value of consumption in that year plus net savings, 𝑚𝑚(𝑡𝑡) −

𝑐𝑐(𝑡𝑡). The net savings term is a consequence of the requirement that annuities be actuarially fair. The value 

of a life-year can be rewritten as:  

𝑣𝑣(𝑡𝑡) = 𝑚𝑚(𝑡𝑡) + 𝑐𝑐(𝑡𝑡)�
𝑢𝑢�𝑐𝑐(𝑡𝑡), 𝑞𝑞(𝑡𝑡)�

𝑐𝑐(𝑡𝑡)𝑢𝑢𝑐𝑐�𝑐𝑐(𝑡𝑡), 𝑞𝑞(𝑡𝑡)�
− 1� = 𝑚𝑚(𝑡𝑡) + 𝑐𝑐(𝑡𝑡)𝜙𝜙(𝑐𝑐, 𝑞𝑞) 

where 𝜙𝜙(𝑐𝑐, 𝑞𝑞) represents the consumer surplus value per unit of consumption. It is positive if average utility 

exceeds marginal utility. A life-year thus adds value through two different channels: an increase in earnings, 

𝑚𝑚(𝑡𝑡), which can finance additional consumption, and an increase in consumer surplus, 𝑐𝑐(𝑡𝑡)𝜙𝜙(𝑐𝑐, 𝑞𝑞).4 

A canonical choice for 𝛿𝛿(⋅) in equation (1) is the Dirac delta function, so that the mortality rate is perturbed 

at 𝑡𝑡 = 0 and remains unaffected otherwise. This then yields an expression that is commonly called the value 

of statistical life (VSL): 

 
𝑉𝑉𝑆𝑆𝑉𝑉 = � 𝑒𝑒−𝑟𝑟𝑡𝑡𝑆𝑆(𝑡𝑡)𝑣𝑣(𝑡𝑡)𝑑𝑑𝑡𝑡

𝑇𝑇

0
         (3) 

VSL corresponds to the value that the individual places on a marginal reduction in the risk of death in the 

current period. For example, it is the amount that 1,000 people are collectively willing to pay to eliminate 

a current risk that is expected to kill one of them. It is equal to the present discounted value of lifetime 

consumption, plus the change in net savings. Holding wealth constant, VSL increases with survival, which 

implies increasing returns in health improvements (Murphy and Topel 2006). Conversely, this leads to the 

conventional result that VSL falls when mortality rises. 

VSL depends on how substitutable consumption is at different ages, i.e., on how easily an individual can 

reallocate consumption over time. Intuitively, if present consumption is a good substitute for future 

consumption, then living longer is less valuable. Define the elasticity of intertemporal substitution, 𝜎𝜎, as: 

1
𝜎𝜎
≡ −

𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐
𝑢𝑢𝑐𝑐

 

                                                      
4 Positive consumer surplus may require that consumption remain above a “subsistence” level, 𝑐𝑐 > 0. 
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In addition, define the elasticity of quality of life with respect to the marginal utility of consumption as: 

𝜂𝜂 ≡
𝑢𝑢𝑐𝑐𝑐𝑐𝑞𝑞
𝑢𝑢𝑐𝑐

 

When 𝜂𝜂 is positive, the marginal utility of consumption is higher in healthier states, and vice-versa. Taking 

logarithms of the first-order condition for consumption and differentiating with respect to time yields the 

rate of change for consumption over the life cycle: 

 �̇�𝑐
𝑐𝑐

= 𝜎𝜎(𝑟𝑟 − 𝜌𝜌) + 𝜎𝜎𝜂𝜂
�̇�𝑞
𝑞𝑞

         (4) 

If one assumes that 𝑟𝑟 > 𝜌𝜌, and that the marginal utility of consumption is higher when health status is better, 

then life-cycle consumption will have the inverted U-shape observed in real-world data.5 

A crucial feature of the conventional model is that consumption growth over the life-cycle is independent 

of the mortality rate, because the individual is fully insured against longevity risk. This feature in turn 

implies that the rate of change in the value of a life-year is also not a function of the mortality rate: 

�̇�𝑣
𝑣𝑣

= �
1
𝜎𝜎𝑣𝑣

𝑢𝑢
𝑢𝑢𝑐𝑐
�
�̇�𝑐
𝑐𝑐

+ �
−𝜂𝜂
𝑣𝑣

𝑢𝑢
𝑢𝑢𝑐𝑐

+
𝑞𝑞
𝑣𝑣
𝑢𝑢𝑐𝑐
𝑢𝑢𝑐𝑐
�
�̇�𝑞
𝑞𝑞

+
�̇�𝑚
𝑣𝑣

 

In sum, we have identified two major features of the theory on the value of life under the conventional 

assumptions of full annuitization and deterministic mortality risk:  

• The relative value of a life-year within a lifetime is independent of the mortality rate. 

• The value of statistical life falls when mortality rises. 

II.B. The uninsured value of life 
Next, we consider a setting where the consumer lacks access to annuity markets and cannot borrow against 

future income. (We will consider various partial annuitization schemes in our empirical exercises.) To 

characterize this model without annuitization, we employ the Yaari (1965) model of consumption behavior 

under survival uncertainty. Let the state variable 𝑊𝑊(𝑡𝑡) represents current wealth at time 𝑡𝑡. The consumer’s 

maximization problem is: 

                                                      
5 Under these assumptions, consumption will climb early in life as the benefits to savings diminish, and then decline 
later in life when quality of life deteriorates. This inverted U-shape for the age profile of consumption has been widely 
documented across different countries and goods (Carroll and Summers 1991; Banks, Blundell, and Tanner 1998; 
Fernandez-Villaverde and Krueger 2007). 
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𝑉𝑉�0,𝑊𝑊(0)� = max
𝑐𝑐(𝑡𝑡)

� 𝑒𝑒−𝜌𝜌𝑡𝑡𝑆𝑆(𝑡𝑡)𝑢𝑢(𝑐𝑐(𝑡𝑡), 𝑞𝑞(𝑡𝑡))𝑑𝑑𝑡𝑡
𝑇𝑇

0
 

subject to: 

𝑊𝑊(0) = 𝑊𝑊0, 

𝑊𝑊(𝑡𝑡) ≥ 0,𝑊𝑊(𝑇𝑇) = 0, 
𝜕𝜕𝑊𝑊(𝑡𝑡)
𝜕𝜕𝑡𝑡

= 𝑟𝑟𝑊𝑊(𝑡𝑡) + 𝑚𝑚(𝑡𝑡) − 𝑐𝑐(𝑡𝑡) 

If the non-negative wealth constraint binds, then the solution to the consumer’s problem is to set 𝑐𝑐(𝑡𝑡) =

𝑚𝑚(𝑡𝑡). Otherwise, the solution is to maximize subject to the constraint on the law of motion for wealth. We 

focus here on the latter, nontrivial case.  

Optimal consumption is again characterized by the first-order condition: 

𝜕𝜕𝑉𝑉�0,𝑊𝑊(0)�
𝜕𝜕𝑊𝑊(0) = 𝜃𝜃 = 𝑒𝑒(𝑟𝑟−𝜌𝜌)𝑡𝑡𝑆𝑆(𝑡𝑡)𝑢𝑢𝑐𝑐(𝑐𝑐(𝑡𝑡), 𝑞𝑞(𝑡𝑡)) 

Unlike in the case of perfect markets, the survival function enters the consumer’s first-order condition for 

consumption. Instead of setting the discounted marginal utility of consumption equal to the marginal utility 

of wealth, the consumer sets the expected discounted marginal utility of consumption at time 𝑡𝑡 equal to the 

marginal utility of wealth. This shifts consumption to earlier ages in the life-cycle, which is rational because 

consumption allocated to later time periods will not be enjoyed in the event of an early death. 

The expression for the marginal utility of life-extension is: 

𝜕𝜕𝑉𝑉
𝜕𝜕𝜀𝜀 �𝜀𝜀=0

=
𝜕𝜕
𝜕𝜕𝜀𝜀
� 𝑒𝑒−𝜌𝜌𝑡𝑡𝑆𝑆𝜀𝜀(𝑡𝑡)𝑢𝑢�𝑐𝑐𝜀𝜀(𝑡𝑡), 𝑞𝑞(𝑡𝑡)�𝑑𝑑𝑡𝑡
𝑇𝑇

0
�
𝜀𝜀=0

 

= � 𝑒𝑒−𝜌𝜌𝑡𝑡 �� 𝛿𝛿(𝑠𝑠)𝑑𝑑𝑠𝑠
𝑡𝑡

0
� 𝑆𝑆(𝑡𝑡)𝑢𝑢(𝑐𝑐(𝑡𝑡), 𝑞𝑞(𝑡𝑡))𝑑𝑑𝑡𝑡

𝑇𝑇

0
+ � 𝑒𝑒−𝜌𝜌𝑡𝑡𝑆𝑆(𝑡𝑡)𝑢𝑢𝑐𝑐(𝑐𝑐(𝑡𝑡), 𝑞𝑞(𝑡𝑡))

𝜕𝜕𝑐𝑐𝜀𝜀(𝑡𝑡)
𝜕𝜕𝜀𝜀 �

𝜀𝜀=0
𝑑𝑑𝑡𝑡

𝑇𝑇

0
 

= � 𝑒𝑒−𝜌𝜌𝑡𝑡 �� 𝛿𝛿(𝑠𝑠)𝑑𝑑𝑠𝑠
𝑡𝑡

0
� 𝑆𝑆(𝑡𝑡)𝑢𝑢(𝑐𝑐(𝑡𝑡), 𝑞𝑞(𝑡𝑡))𝑑𝑑𝑡𝑡

𝑇𝑇

0
+ 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜀𝜀
� 𝑒𝑒−𝑟𝑟𝑡𝑡𝑐𝑐𝜀𝜀(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑇𝑇

0
 

= � 𝑒𝑒−𝜌𝜌𝑡𝑡 �� 𝛿𝛿(𝑠𝑠)𝑑𝑑𝑠𝑠
𝑡𝑡

0
� 𝑆𝑆(𝑡𝑡)𝑢𝑢(𝑐𝑐(𝑡𝑡), 𝑞𝑞(𝑡𝑡))𝑑𝑑𝑡𝑡,

𝑇𝑇

0
 

where the last equality follows from application of the budget constraint.6  

                                                      
6 The budget constraint 𝑊𝑊(𝑇𝑇) = 0 implies ∫ 𝑒𝑒−𝑟𝑟𝑡𝑡𝑐𝑐𝜀𝜀(𝑡𝑡)𝑑𝑑𝑡𝑡𝑇𝑇

0 = 𝑊𝑊0 + ∫ 𝑒𝑒−𝑟𝑟𝑡𝑡𝑚𝑚(𝑡𝑡)𝑑𝑑𝑡𝑡𝑇𝑇
0 , a value which does not depend 

on survival and thus is unaffected by life extension. 
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Dividing this result by the marginal utility of wealth, 𝜃𝜃, then yields the marginal value of life-extension: 

 𝜕𝜕𝑉𝑉/𝜕𝜕𝜀𝜀
𝜕𝜕𝑉𝑉/𝜕𝜕𝑊𝑊�

𝜀𝜀=0
= � 𝑒𝑒−𝜌𝜌𝑡𝑡 �� 𝛿𝛿(𝑠𝑠)𝑑𝑑𝑠𝑠

𝑡𝑡

0
� 𝑆𝑆(𝑡𝑡)

𝑢𝑢�𝑐𝑐(𝑡𝑡), 𝑞𝑞(𝑡𝑡)�
𝑢𝑢𝑐𝑐�𝑐𝑐(0), 𝑞𝑞(0)�

𝑑𝑑𝑡𝑡
𝑇𝑇

0
 

= � 𝑒𝑒−𝑟𝑟𝑡𝑡 �� 𝛿𝛿(𝑠𝑠)𝑑𝑑𝑠𝑠
𝑡𝑡

0
�
𝑢𝑢�𝑐𝑐(𝑡𝑡), 𝑞𝑞(𝑡𝑡)�
𝑢𝑢𝑐𝑐�𝑐𝑐(𝑡𝑡), 𝑞𝑞(𝑡𝑡)�

𝑑𝑑𝑡𝑡
𝑇𝑇

0
 

        (5) 

 

In this setting, the value of a life-year from the perspective of current time is: 

 
𝑣𝑣(𝑡𝑡) =

𝑢𝑢�𝑐𝑐(𝑡𝑡), 𝑞𝑞(𝑡𝑡)�
𝑢𝑢𝑐𝑐�𝑐𝑐(𝑡𝑡), 𝑞𝑞(𝑡𝑡)�

         (6) 

When the consumer is uninsured, the value of a life-year depends only on the value of consumption. The 

net savings term is absent in equation (6) because life-extension has no effect on the consumer’s budget 

constraint.7 

Choosing again the Dirac delta function for 𝛿𝛿(⋅) yields an expression for VSL that differs from the perfect 

markets case: 

 
𝑉𝑉𝑆𝑆𝑉𝑉 = � 𝑒𝑒−𝑟𝑟𝑡𝑡𝑣𝑣(𝑡𝑡)𝑑𝑑𝑡𝑡

𝑇𝑇

0
         (7) 

The value of statistical life is proportional to (expected) lifetime utility, and inversely proportional to the 

marginal utility of consumption. It is well known that removing annuity markets lowers lifetime utility 

(Yaari 1965). As we show more formally below, removing these markets also shifts consumption to earlier 

ages, thereby lowering the marginal utility of consumption at earlier ages. When consumers shift 

consumption forward, near-term life-years rise in value but distant life-years fall in value. Thus, the net 

effect of annuity markets on VSL is in general ambiguous. Put differently, exposure to longevity risk does 

not necessarily lower VSL. In the next section, we will show that this basic insight extends to exposing a 

consumer to a longevity “shock.” We emphasize that in both cases the ambiguity in the relationship between 

mortality shocks and VSL depends critically on the absence of full annuitization. 

Unlike the perfect markets case, the life-cycle consumption profile of the non-annuitized individual depends 

explicitly on the mortality rate. Taking logarithms of the first-order condition for consumption and 

differentiating with respect to time yields: 

                                                      
7 Unless the consumer survives until period 𝑇𝑇, she will die with positive wealth. Although this remaining wealth has 
no value to an individual with no bequest motive, it has value to society. When calculating the social value of life-
extension in the empirical exercises presented in Section IV.C., we account for the effect of increased longevity on 
bequests by including a net savings term, defined to be the expected increase in future earnings net of consumption, 
as in equation (2). This term reflects the external effect of increased longevity on society’s aggregate wealth. 
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 �̇�𝑐
𝑐𝑐

= 𝜎𝜎(𝑟𝑟 − 𝜌𝜌) + 𝜎𝜎𝜂𝜂
�̇�𝑞
𝑞𝑞
− 𝜎𝜎𝜇𝜇(𝑡𝑡)         (8) 

Comparing this result to the standard case, given by equation (4), reveals both similarities and differences. 

As in the standard, fully annuitized model, the non-annuitized consumption profile described by equation 

(8) changes shape when the rate of time preference is above or below the rate of interest and when the 

quality of life changes. Unlike in the standard model, the consumption profile here depends explicitly on 

the mortality rate, 𝜇𝜇(𝑡𝑡). Higher rates of mortality depress the rate of consumption growth over the life-

cycle. This rate of growth is always higher in the fully annuitized case, in which the last term drops out of 

the consumption growth equation (8). Put another way, removing the annuity market “pulls consumption 

earlier” in the life-cycle. 

An appealing feature of the uninsured model is that it generates an inverted U-shape for the profile of 

consumption under the natural assumptions that consumption is constrained by a low income early in life 

and shifted forward by high mortality later in life. One need not impose the ad hoc assumptions on the signs 

of  𝑟𝑟 − 𝜌𝜌 or 𝜂𝜂 that are necessary in the fully annuitized model (e.g., Murphy and Topel 2006). 

The life-cycle profile of the value of a life-year in this uninsured setting is: 

 �̇�𝑣
𝑣𝑣

= �
1
𝜎𝜎

+
𝑐𝑐
𝑣𝑣
�
�̇�𝑐
𝑐𝑐

+ �
𝑞𝑞𝑢𝑢𝑐𝑐
𝑢𝑢

− 𝜂𝜂�
�̇�𝑞
𝑞𝑞

         (9) 

An important implication of (9) is that willingness to pay for longevity depends on the life-cycle mortality 

profile because of its dependence on the rate of change in consumption, �̇�𝑐/𝑐𝑐 . Holding quality of life 

constant, it is evident from equation (6) that increases in the mortality rate—which shift consumption 

forward—will raise 𝑣𝑣, the current value of a life-year. Thus, mortality also shifts forward the value of life. 

All else equal, individuals who face poor survival prospects will pay more for a marginal (near-term) life-

year, but less for a distant life-year, than healthy peers who face good survival prospects. This differs from 

the implications of the conventional model, in which higher mortality reduces the values of life-years but 

has no impact on their relative values.  

At the aggregate level, as societies become richer and live longer, the fraction of wealth spent on health 

will depend not just on the income elasticity of health, but also on the degree of survival uncertainty they 

face. Furthermore, our results imply that public programs that increase annuitization rates, such as Social 

Security, will affect society’s willingness to pay for longevity, thereby creating a feedback loop that could 
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dampen or increase program expenditures.8 In our empirical exercises, we will quantify how the degree of 

annuitization influences the value of statistical life. 

To summarize, we have identified the following two properties of the uninsured model that contrast with 

those of the fully annuitized model: 

• When mortality rises, near-term life-years rise in value, but distant life-years fall in value. 

• The value of statistical life may rise or fall when mortality rises. 

In the next section, we allow mortality to be stochastic so that we can investigate formally the effect of 

disease and other health shocks on the value of life. Before turning to that analysis, we pause to note that 

suffering a health shock is similar to removing access to annuity markets: both expose an individual to 

longevity risk. Not surprisingly, we shall see that health shocks also shift the value of life-years forward, 

with an ambiguous net effect on VSL.  

III. STOCHASTIC MODEL 
The previous analysis illustrates how relaxing the conventional assumption of full annuitization affects the 

relationship between mortality risk and the value of life. The conventional framework is ill-equipped to 

study the influence of mortality risk for another reason as well. Just like our deterministic model above, it 

treats the mortality rate as a nonrandom parameter. Thus, shifts in the mortality rate reflect preordained and 

anticipated changes in mortality. In the real world, however, neither the timing nor the size of shifts in the 

mortality rate is known. As a related matter, the conventional framework does not allow for different health 

states. This omission precludes a meaningful analysis of the value of preventing health deterioration. 

This section extends our analysis to allow for stochastic health shocks. Specifically, we assume that the 

individual’s mortality rate, quality of life, and income now depend on her health state. Let 𝑌𝑌𝑡𝑡  be a 

continuous-time Markov chain with finite state space 𝑌𝑌 = {1,2, … ,𝑛𝑛}. Denote the transition intensities by: 

𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡) = lim
ℎ→0

1
ℎ
ℙ[𝑌𝑌𝑡𝑡+ℎ = 𝑗𝑗|𝑌𝑌𝑡𝑡 = 𝑖𝑖], 𝑗𝑗 ≠ 𝑖𝑖, 

𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡) = −�𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑖𝑖≠𝑖𝑖

 

The mortality rate at time 𝑡𝑡 is defined as: 

                                                      
8 Philipson and Becker (1998) make the important, but distinct, point that the moral hazard effects of public annuity 
programs also increase an individual’s willingness to pay for longevity gains. 
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𝜇𝜇(𝑡𝑡) = �𝜇𝜇𝑖𝑖(𝑡𝑡)𝟏𝟏{𝑌𝑌𝑡𝑡 = 𝑗𝑗}
𝑛𝑛

𝑖𝑖=1

 

where �𝜇𝜇𝑖𝑖(𝑡𝑡)� is exogenous and 𝟏𝟏{𝑌𝑌𝑡𝑡 = 𝑗𝑗} is an indicator variable equal to 1 if the individual is in state 𝑗𝑗 at 

time 𝑡𝑡 and 0 otherwise. For analytical convenience and without meaningful loss of generality, we assume 

that individuals can transition only to higher-numbered states, i.e., 𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡) = 0 ∀𝑗𝑗 < 𝑖𝑖, so that the probability 

that a consumer in state 𝑖𝑖 at time 0 remains in state 𝑖𝑖 at time 𝑡𝑡 is equal to:9  

�̃�𝑆(𝑖𝑖, 𝑡𝑡) = exp �−� �𝜇𝜇𝑖𝑖(𝑠𝑠) +�𝜆𝜆𝑖𝑖𝑖𝑖(𝑠𝑠)
𝑖𝑖>𝑖𝑖

� 𝑑𝑑𝑠𝑠
𝑡𝑡

0
� 

A complete annuities market allows the consumer to insure fully against longevity risk even when mortality 

is stochastic.10 Appendix D provides a full derivation for a setting with complete markets and demonstrates 

that stochastic mortality, by itself, does not alter the theoretical predictions of the conventional 

(deterministic) model as long as one maintains the assumption of full annuitization. Appendix D also 

derives expressions for the value of preventing illness when the consumer is fully annuitized. We defer 

discussion of those results until later in this section.  

Here, we focus on the uninsured case, where the consumer lacks access to annuity markets and cannot 

borrow against future income. The consumer’s maximization problem is: 

 
𝑉𝑉(0,𝑊𝑊0,𝑌𝑌0) = max

𝑐𝑐(𝑡𝑡)
𝔼𝔼 �� 𝑒𝑒−𝜌𝜌𝑡𝑡𝑆𝑆(𝑡𝑡)𝑢𝑢 �𝑐𝑐(𝑡𝑡), 𝑞𝑞𝑌𝑌𝑡𝑡(𝑡𝑡)�𝑑𝑑𝑡𝑡

𝑇𝑇

0
� 𝑌𝑌0,𝑊𝑊0�       (10) 

subject to: 

𝑊𝑊(0) = 𝑊𝑊0, 

𝑊𝑊(𝑡𝑡) ≥ 0,𝑊𝑊(𝑇𝑇) = 0, 
𝜕𝜕𝑊𝑊(𝑡𝑡)
𝜕𝜕𝑡𝑡

= 𝑟𝑟𝑊𝑊(𝑡𝑡) + 𝑚𝑚𝑌𝑌𝑡𝑡(𝑡𝑡) − 𝑐𝑐(𝑡𝑡) 

                                                      
9 That is, an individual can transition from state 𝑖𝑖 to 𝑗𝑗, 𝑖𝑖 < 𝑗𝑗, but not vice versa. This does not meaningfully limit the 
generality of our model, because one can always define a new state 𝑘𝑘 > 𝑗𝑗 with properties identical to state 𝑖𝑖. 

10 Reichling and Smetters (2015) show that when annuity markets are incomplete, stochastic mortality and correlated 
medical costs can explain the puzzling observation that many households do not fully annuitize their wealth. They 
take the positive correlation between health shocks and medical spending as a given. Our study provides a demand-
side reason why these two phenomena are positively correlated. 
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As in the deterministic model presented in Section II.B, we focus on the non-trivial case where the non-

negative wealth constraint does not bind. Define the consumer’s objective function at time 𝑡𝑡 as: 

𝐽𝐽(𝑡𝑡,𝑊𝑊(𝑡𝑡), 𝑖𝑖) = 𝔼𝔼 �� 𝑒𝑒−𝜌𝜌𝜌𝜌 exp �−� 𝜇𝜇(𝑡𝑡 + 𝑠𝑠)𝑑𝑑𝑠𝑠
𝜌𝜌

0
�𝑢𝑢�𝑐𝑐(𝑡𝑡 + 𝑢𝑢), 𝑞𝑞𝑌𝑌𝑡𝑡+𝑢𝑢(𝑡𝑡 + 𝑢𝑢)�𝑑𝑑𝑢𝑢

𝑇𝑇−𝑡𝑡

0
� 𝑌𝑌𝑡𝑡 = 𝑖𝑖,𝑊𝑊(𝑡𝑡)� 

Define the optimal value function as: 

𝑉𝑉(𝑡𝑡,𝑊𝑊(𝑡𝑡), 𝑖𝑖) = max
𝑐𝑐(𝑠𝑠),𝑠𝑠≥𝑡𝑡

{𝐽𝐽(𝑡𝑡,𝑊𝑊(𝑡𝑡), 𝑖𝑖)} 

subject to the wealth dynamics above. Under conventional regularity conditions, if 𝑉𝑉  and its partial 

derivatives are continuous, then 𝑉𝑉  satisfies the following Hamilton-Jacobi-Bellman (HJB) system of 

equations: 

 
�𝜌𝜌 + 𝜇𝜇𝑖𝑖(𝑡𝑡)� 𝑉𝑉(𝑡𝑡,𝑊𝑊(𝑡𝑡), 𝑖𝑖) = max

𝑐𝑐(𝑡𝑡)
�𝑢𝑢�𝑐𝑐(𝑡𝑡), 𝑞𝑞𝑖𝑖(𝑡𝑡)� +

𝜕𝜕𝑉𝑉(𝑡𝑡,𝑊𝑊(𝑡𝑡), 𝑖𝑖)
𝜕𝜕𝑊𝑊(𝑡𝑡)

[𝑟𝑟𝑊𝑊(𝑡𝑡) + 𝑚𝑚𝑖𝑖(𝑡𝑡) − 𝑐𝑐(𝑡𝑡)]

+
𝜕𝜕𝑉𝑉(𝑡𝑡,𝑊𝑊(𝑡𝑡), 𝑖𝑖)

𝜕𝜕𝑡𝑡
+ �𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)[𝑉𝑉(𝑡𝑡,𝑊𝑊(𝑡𝑡), 𝑗𝑗) − 𝑉𝑉(𝑡𝑡,𝑊𝑊(𝑡𝑡), 𝑖𝑖)]

𝑖𝑖>𝑖𝑖

� , 𝑖𝑖 = 1, … ,𝑛𝑛 

   (11) 

where 𝑐𝑐(𝑡𝑡) = 𝑐𝑐(𝑡𝑡,𝑊𝑊(𝑡𝑡), 𝑖𝑖) is the (optimal) rate of consumption. In order to apply our value of life analysis, 

we exploit recent advances in the systems and control literature. Parpas and Webster (2013) show that one 

can reformulate a stochastic finite-horizon optimization problem as a deterministic problem that takes 

𝑉𝑉(𝑡𝑡,𝑊𝑊(𝑡𝑡), 𝑗𝑗), 𝑗𝑗 ≠ 𝑖𝑖, as exogenous. More precisely, we focus on the path of 𝑌𝑌 that begins in state 𝑖𝑖 and 

remains in state 𝑖𝑖 until time 𝑡𝑡. We denote optimal consumption and wealth in that path by 𝑐𝑐𝑖𝑖(𝑡𝑡) and 𝑊𝑊𝑖𝑖(𝑡𝑡), 

respectively.11 A key advantage of this method is that it allows us to apply the standard deterministic 

Pontryagin maximum principle and derive analytic expressions.  

Lemma 1: 

The optimal value function for 𝑌𝑌0 = 𝑖𝑖  and 𝑊𝑊(0) = 𝑊𝑊0 , 𝑉𝑉(0,𝑊𝑊0, 𝑖𝑖) , for the following deterministic 

optimization problem also satisfies the HJB given by (11), for each 𝑖𝑖 ∈ {1, … ,𝑛𝑛}: 

 
𝑉𝑉(0,𝑊𝑊0, 𝑖𝑖) = max

𝑐𝑐𝑖𝑖(𝑡𝑡)
�� 𝑒𝑒−𝜌𝜌𝑡𝑡�̃�𝑆(𝑖𝑖, 𝑡𝑡)�𝑢𝑢(𝑐𝑐𝑖𝑖(𝑡𝑡), 𝑞𝑞𝑖𝑖(𝑡𝑡)) + �𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)𝑉𝑉(𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗)

𝑖𝑖>𝑖𝑖

� 𝑑𝑑𝑡𝑡
𝑇𝑇

0
�    (12) 

                                                      
11 Consumption, 𝑐𝑐(𝑡𝑡), is a stochastic process. We occasionally denote it as 𝑐𝑐(𝑡𝑡,𝑊𝑊(𝑡𝑡),𝑌𝑌𝑡𝑡) to emphasize that it depends 
on the states (𝑡𝑡,𝑊𝑊(𝑡𝑡),𝑌𝑌𝑡𝑡). When we reformulate our stochastic problem as a deterministic problem and focus on a 
single path 𝑌𝑌𝑡𝑡 = 𝑖𝑖, consumption is no longer stochastic because there is no uncertainty in the development of health 
states. We emphasize this point in our notation here by writing consumption as 𝑐𝑐𝑖𝑖(𝑡𝑡), and wealth as 𝑊𝑊𝑖𝑖(𝑡𝑡).  
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subject to: 

𝑊𝑊𝑖𝑖(0) = 𝑊𝑊0, 
𝜕𝜕𝑊𝑊𝑖𝑖(𝑡𝑡)
𝜕𝜕𝑡𝑡

= 𝑟𝑟𝑊𝑊𝑖𝑖(𝑡𝑡) + 𝑚𝑚𝑖𝑖(𝑡𝑡) − 𝑐𝑐𝑖𝑖(𝑡𝑡),  

where 𝑉𝑉(𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗) are taken as exogenous. 

Proof of Lemma 1: see Appendix A  

Because the value function 𝑉𝑉 in (12) satisfies the HJB given by (11), it must also be equal to the consumer’s 

optimal value function (see Proposition 3.2.1, Bertsekas (2005)). The present value Hamiltonian 

corresponding to (12) is: 

𝐻𝐻�𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑐𝑐𝑖𝑖(𝑡𝑡), 𝑝𝑝𝑡𝑡
(𝑖𝑖)� = 𝑒𝑒−𝜌𝜌𝑡𝑡�̃�𝑆(𝑖𝑖, 𝑡𝑡)�𝑢𝑢�𝑐𝑐𝑖𝑖(𝑡𝑡), 𝑞𝑞𝑖𝑖(𝑡𝑡)� + �𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)𝑉𝑉(𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗)

𝑖𝑖>𝑖𝑖

� + 𝑝𝑝𝑡𝑡
(𝑖𝑖)[𝑟𝑟𝑊𝑊𝑖𝑖(𝑡𝑡) − 𝑐𝑐𝑖𝑖(𝑡𝑡) + 𝑚𝑚𝑖𝑖(𝑡𝑡)] 

where 𝑝𝑝𝑡𝑡
(𝑖𝑖) is the costate variable for state 𝑖𝑖. The necessary costate equation is: 

 
�̇�𝑝𝑡𝑡

(𝑖𝑖) = −𝑝𝑝𝑡𝑡
(𝑖𝑖)𝑟𝑟 − 𝑒𝑒−𝜌𝜌𝑡𝑡�̃�𝑆(𝑖𝑖, 𝑡𝑡)�𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)

𝜕𝜕𝑉𝑉(𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗)
𝜕𝜕𝑊𝑊𝑖𝑖(𝑡𝑡)𝑖𝑖>𝑖𝑖

      (13) 

The solution to the costate equation can be obtained using the variation of the constant method: 

𝑝𝑝𝑡𝑡
(𝑖𝑖) = �� 𝑒𝑒(𝑟𝑟−𝜌𝜌)𝑠𝑠�̃�𝑆(𝑖𝑖, 𝑠𝑠)�𝜆𝜆𝑖𝑖𝑖𝑖(𝑠𝑠)

𝜕𝜕𝑉𝑉(𝑠𝑠,𝑊𝑊𝑖𝑖(𝑠𝑠), 𝑗𝑗)
𝜕𝜕𝑊𝑊𝑖𝑖(𝑠𝑠)

𝑖𝑖>𝑖𝑖

𝑑𝑑𝑠𝑠
𝑇𝑇

𝑡𝑡
� 𝑒𝑒−𝑟𝑟𝑡𝑡 + 𝜃𝜃(𝑖𝑖)𝑒𝑒−𝑟𝑟𝑡𝑡 

where 𝜃𝜃(𝑖𝑖) is a constant. The necessary first-order condition for consumption is: 

 𝑝𝑝𝑡𝑡
(𝑖𝑖) = 𝑒𝑒−𝜌𝜌𝑡𝑡�̃�𝑆(𝑖𝑖, 𝑡𝑡)𝑢𝑢𝑐𝑐�𝑐𝑐𝑖𝑖(𝑡𝑡), 𝑞𝑞𝑖𝑖(𝑡𝑡)�   (14) 

where the marginal utility of wealth at time 𝑡𝑡 = 0  is 𝜕𝜕𝜕𝜕(0,𝑊𝑊0,𝑖𝑖)
𝜕𝜕𝑊𝑊0

= 𝑝𝑝0
(𝑖𝑖) = 𝑢𝑢𝑐𝑐�𝑐𝑐𝑖𝑖(0),𝑞𝑞𝑖𝑖(0)� . Since the 

Hamiltonian is concave in 𝑐𝑐 and linear in 𝑊𝑊, the necessary conditions for optimality are also sufficient 

(Seierstad and Sydsaeter 1977). 

To analyze the value of life, we let 𝛿𝛿(𝑡𝑡) be a perturbation on the mortality rate in state 𝑖𝑖 with ∫ 𝛿𝛿(𝑡𝑡)𝑑𝑑𝑡𝑡𝑇𝑇
0 =

1 and consider: 

�̃�𝑆𝜀𝜀(𝑖𝑖, 𝑡𝑡) = exp �−� �𝜇𝜇𝑖𝑖(𝑠𝑠)− 𝜀𝜀𝛿𝛿(𝑠𝑠)� + �𝜆𝜆𝑖𝑖𝑖𝑖(𝑠𝑠)
𝑖𝑖>𝑖𝑖

𝑑𝑑𝑠𝑠
𝑡𝑡

0
� , where 𝜀𝜀 > 0 
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We first derive an expression for the effect of this perturbation on expected lifetime utility. 

Lemma 2: 

The marginal utility of life extension in state 𝑖𝑖 is equal to: 

𝜕𝜕𝑉𝑉
𝜕𝜕𝜀𝜀 �𝜀𝜀=0

= � �𝑒𝑒−𝜌𝜌𝑡𝑡 �� 𝛿𝛿(𝑠𝑠)𝑑𝑑𝑠𝑠
𝑡𝑡

0
� �̃�𝑆(𝑖𝑖, 𝑡𝑡)�𝑢𝑢(𝑐𝑐𝑖𝑖(𝑡𝑡), 𝑞𝑞𝑖𝑖(𝑡𝑡)) + �𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)

𝑖𝑖>𝑖𝑖

𝑉𝑉(𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗)��𝑑𝑑𝑡𝑡
𝑇𝑇

0
 

Proof of Lemma 2: see Appendix A 

In order to facilitate comparison to the deterministic case, it is useful to derive an expression for the 

marginal utility of wealth at time 𝑡𝑡. 

Lemma 3:  

The expected marginal utility of wealth in state 𝑖𝑖 at time 𝑡𝑡 is equal to:  

𝜕𝜕𝑉𝑉(𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑖𝑖)
𝜕𝜕𝑊𝑊𝑖𝑖(𝑡𝑡)

= 𝑢𝑢𝑐𝑐�𝑐𝑐𝑖𝑖(𝑡𝑡), 𝑞𝑞𝑖𝑖(𝑡𝑡)� 

= 𝔼𝔼 �𝑒𝑒(𝑟𝑟−𝜌𝜌)(𝜏𝜏−𝑡𝑡) exp �−� 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑠𝑠
𝜏𝜏

𝑡𝑡
� 𝑢𝑢𝑐𝑐�𝑐𝑐(𝜏𝜏,𝑊𝑊(𝜏𝜏),𝑌𝑌𝜏𝜏), 𝑞𝑞𝑌𝑌𝜏𝜏(𝜏𝜏)�� 𝑌𝑌𝑡𝑡 = 𝑖𝑖,𝑊𝑊(𝑡𝑡) = 𝑊𝑊𝑖𝑖(𝑡𝑡)� ,∀𝜏𝜏 > 𝑡𝑡 

Proof of Lemma 3: see Appendix A 

This is the stochastic analogue of the consumer’s first-order condition from Section II.B, and it shows that 

the consumer sets the expected discounted marginal utility of consumption at time 𝜏𝜏 > 𝑡𝑡 equal to the current 

marginal utility of wealth. Our next result demonstrates that the value of statistical life also takes the same 

basic form as in the deterministic case. 

Proposition 4: 

Set 𝛿𝛿(⋅) in the expression for the marginal utility of life-extension given in Lemma 2 equal to the Dirac 

delta function. Dividing the result by the marginal utility of wealth at time 𝑡𝑡 = 0 shows that VSL in state 𝑖𝑖 

is equal to: 

 
𝑉𝑉𝑆𝑆𝑉𝑉(𝑖𝑖) = 𝔼𝔼 �� 𝑒𝑒−𝜌𝜌𝑡𝑡𝑆𝑆(𝑡𝑡)

𝑢𝑢 �𝑐𝑐(𝑡𝑡), 𝑞𝑞𝑌𝑌𝑡𝑡(𝑡𝑡)�

𝑢𝑢𝑐𝑐 �𝑐𝑐(0), 𝑞𝑞𝑌𝑌0(0)�
𝑑𝑑𝑡𝑡� 𝑌𝑌0 = 𝑖𝑖,𝑊𝑊(0) = 𝑊𝑊0

𝑇𝑇

0
�        (15) 

Applying Lemma 3 and rearranging yields the following, equivalent expression for VSL in state 𝑖𝑖: 
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𝑉𝑉𝑆𝑆𝑉𝑉(𝑖𝑖) = � 𝑒𝑒−𝑟𝑟𝑡𝑡𝑣𝑣(𝑖𝑖, 𝑡𝑡)𝑑𝑑𝑡𝑡
𝑇𝑇

0
 

where the value of a life-year, 𝑣𝑣(𝑖𝑖, 𝑡𝑡), is equal to the expected utility of consumption normalized by the 

expected marginal utility of consumption: 

𝑣𝑣(𝑖𝑖, 𝑡𝑡) =
𝔼𝔼 �𝑆𝑆(𝑡𝑡) 𝑢𝑢 �𝑐𝑐(𝑡𝑡),𝑞𝑞𝑌𝑌𝑡𝑡(𝑡𝑡)��𝑌𝑌0 = 𝑖𝑖,𝑊𝑊(0) = 𝑊𝑊0�

𝔼𝔼 �𝑆𝑆(𝑡𝑡) 𝑢𝑢𝑐𝑐 �𝑐𝑐(𝑡𝑡),𝑞𝑞𝑌𝑌𝑡𝑡(𝑡𝑡)��𝑌𝑌0 = 𝑖𝑖,𝑊𝑊(0) = 𝑊𝑊0�
 

Proof of Proposition 4: see Appendix A 

Analogous to the earlier setting with deterministic mortality, the value of statistical life is proportional to 

the expected (lifetime) utility of consumption, and inversely proportional to the marginal utility of 

consumption. As we shall show below, a negative health shock increases current consumption, causing the 

net effect on VSL to be ambiguous. This parallels the result from Section II.B that removing access to 

annuitization, thereby exposing a consumer to longevity risk, has an ambiguous effect on VSL.  

We can derive an expression for the life-cycle profile of consumption from (14), the first-order condition 

for consumption. Differentiating with respect to 𝑡𝑡, plugging in the result for the costate equation and its 

solution, and rearranging yields: 

 �̇�𝑐𝑖𝑖
𝑐𝑐𝑖𝑖

= 𝜎𝜎(𝑟𝑟 − 𝜌𝜌) + 𝜎𝜎𝜂𝜂
�̇�𝑞
𝑞𝑞
− 𝜎𝜎𝜇𝜇𝑖𝑖(𝑡𝑡) − 𝜎𝜎�𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡) �1−

𝑢𝑢𝑐𝑐 �𝑐𝑐(𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗), 𝑞𝑞𝑖𝑖(𝑡𝑡)�

𝑢𝑢𝑐𝑐�𝑐𝑐(𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑖𝑖), 𝑞𝑞𝑖𝑖(𝑡𝑡)�
�

𝑖𝑖>𝑖𝑖

       (16) 

As in the deterministic case, the rate of change is a declining function of the individual’s current mortality 

rate, 𝜇𝜇𝑖𝑖(𝑡𝑡) : removing the annuity market “pulls consumption earlier” in the life-cycle. Unlike in the 

deterministic case, there is now an additional source of risk, captured by the fourth term in equation (16). 

This term represents the possibility that the consumer might transition to a different health state in the 

future. This transition would shift consumption further if the marginal utility of consumption in those states 

is likely to be low. As we show below, this is likely to be the case if mortality in those states is high. 

Equation (16) describes consumption dynamics conditional on the individual’s health state 𝑖𝑖. It is not 

readily apparent whether stochastic mortality on average, across all states, causes consumption to shift 

forward relative to deterministic mortality. That said, one should expect stochastic mortality to shift 

consumption forward by less than in the deterministic case. Intuitively, this is because a stochastic 

environment allows an individual to react to unanticipated health shocks by adjusting her consumption. Put 

differently, a deterministic model is equivalent to a stochastic model where the consumer is forced to keep 

consumption constant across states. Consumers prefer the ability to adjust consumption, so that they can 
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consume less in healthy states and more in sick states. We have confirmed this intuition in (unreported) 

empirical exercises that assume CRRA utility: on net, stochastic mortality causes consumers to shift 

consumption forward a bit less than deterministic mortality. 

What happens when an individual transitions to a new health state? Because the consumer is not fully 

annuitized, consumption will jump. The sign of the jump can in general be positive or negative, depending 

on the characteristics of the new health state relative to the old state. Because there is no consensus 

regarding the sign of health state dependence, 𝑢𝑢𝑐𝑐𝑐𝑐(⋅), let alone its magnitude, we hold quality of life 

constant for the time being, and return to this issue in our empirical analysis.12 We will also assume that the 

health shock does not decrease income or wealth. Under these two assumptions, the model predicts that 

transitioning to a state where current and future expected mortality are high will shift consumption forward, 

and vice versa. Our next result proves this formally for a two-state case.13 Our empirical exercises explore 

the implications of health shocks that affect both mortality and quality of life, and that are accompanied by 

shocks to wealth – whether due to the burden of medical spending or to decreases in time available for 

work. 

Proposition 5: 

Let there be 𝑛𝑛 = 2 states with identical quality of life profiles, so that 𝑞𝑞1(𝑠𝑠) = 𝑞𝑞2(𝑠𝑠) ∀𝑠𝑠. Assume that the 

transition intensities 𝜆𝜆12(𝑠𝑠) are uniformly bounded (finite), and that 𝜇𝜇1(𝑠𝑠) < 𝜇𝜇2(𝑠𝑠) ∀𝑠𝑠, so that state 1 is 

“healthy” and state 2 is “sick.” Suppose that the consumer transitions from state 1 to state 2 at time 𝑡𝑡, with 

no accompanying decrease in income (i.e., 𝑚𝑚1(𝑠𝑠) ≤ 𝑚𝑚2(𝑠𝑠) ∀𝑠𝑠 ≥ 𝑡𝑡). Then 𝑐𝑐1(𝑡𝑡) ≤ 𝑐𝑐2(𝑡𝑡).  

Proof of Proposition 5: see Appendix A 

It follows immediately from Proposition 5 that the value of near-term life-years will increase, and the value 

of distant life-years will decrease, when transitioning from a healthy state with low mortality to a sick state 

with higher mortality. Whether VSL rises or falls is ambiguous, however. A rise in mortality risk lowers 

lifetime utility, which reduces VSL, but it also reduces the marginal utility of consumption, which increases 

                                                      
12 Viscusi and Evans (1990), Sloan et al. (1998), and Finkelstein, Luttmer, and Notowidigdo (2013) find evidence of 
negative state dependence. Lillard and Weiss (1997) and Edwards (2008) find evidence of positive state dependence. 
Evans and Viscusi (1991) find no evidence of state dependence. Murphy and Topel (2006) assume negative state 
dependence when performing their calibration exercises, while Hall and Jones (2007) assume state independence.  

13 The proof can be extended to allow for a larger number of states, but the conditions required to sign the jump in 
consumption then become a complicated function of the matrix of transition probabilities and state-specific mortality 
rates. The two-state case conveys the basic result without a meaningful loss of generality.  
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VSL. Thus, the net effect depends on the curvature of the utility function relative to the curvature of the 

marginal utility function.  

We formally demonstrate this tradeoff by comparing the VSL of a (persistently) healthy individual to the 

VSL of an individual who just fell ill but is otherwise identical. To fix ideas, we focus on the effects of a 

single health shock and investigate how it affects VSL over the life-cycle. We know from Proposition 5 

that the sick person’s optimal consumption is initially higher (see Figure 2). Under what conditions is the 

sick person’s VSL also higher? To make headway we must introduce the notion of prudence. The elasticity 

of intertemporal substitution, 𝜎𝜎, is a common measure of the utility curvature. Prudence is the analogous 

measure for the curvature of marginal utility (Kimball 1990). Define relative prudence as: 

𝜋𝜋 ≡ −
𝑐𝑐𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐(⋅)
𝑢𝑢𝑐𝑐𝑐𝑐(⋅)

 

Our next result provides sufficient conditions for VSL to rise following an adverse shock to longevity.  

Proposition 6: 

Consider a two-state setting with assumptions set out in Proposition 5. Assume further that utility is 

positive and that preferences satisfy the additional condition:14  

 𝜋𝜋 <
2
𝜎𝜎

       (17) 

Suppose that the consumer transitions from state 1 to state 2 at time 𝑡𝑡, and that 𝜆𝜆12(𝜏𝜏) = 0 ∀𝜏𝜏 > 𝑡𝑡. Then 

𝑉𝑉𝑆𝑆𝑉𝑉(1, 𝑡𝑡) ≤ 𝑉𝑉𝑆𝑆𝑉𝑉(2, 𝑡𝑡).  

Proof of Proposition 6: see Appendix A 

The condition (17) specified in Proposition 6 is satisfied by many common preferences, such as CRRA 

with 𝜎𝜎 < 1 (which we employ in our empirical exercises) and quadratic preferences. Consumers with 

inelastic demand, i.e., preferences with a low value for 𝜎𝜎, find it costly to reallocate consumption over time. 

They therefore have a high willingness to pay for life-extension and are more likely to exhibit a rise in VSL 

following an adverse mortality shock. Likewise, consumers with low levels of prudence, 𝜋𝜋, have nearly-

linear marginal utility that decreases rapidly with consumption. This generates a high willingness to pay 

for life-extension following a shock that increases consumption. 

                                                      
14 The preference conditions specified in Proposition 5 can be weakened. See the proof for details.  
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III.A. The value of statistical illness 
Unlike the deterministic model, the stochastic model permits us to investigate the value of avoiding 

transitions to other health states. This requires only a slight modification to the analysis presented above, 

and will result in a more general concept we term the value of statistical illness. With a slight abuse of 

notation, let state 𝑁𝑁 + 1  correspond to death, so that 𝑉𝑉(𝑡𝑡,𝑊𝑊(𝑡𝑡),𝑁𝑁 + 1) = 0 . Let 𝛿𝛿𝑖𝑖𝑖𝑖(𝑡𝑡), 𝑗𝑗 ≤ 𝑁𝑁 , be a 

perturbation on the transition intensity, 𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡), and let 𝛿𝛿𝑖𝑖,𝑁𝑁+1(𝑡𝑡) be a perturbation on the mortality rate, 

𝜇𝜇𝑖𝑖(𝑡𝑡), 𝑖𝑖 ≤ 𝑁𝑁, where ∑ ∫ 𝛿𝛿𝑖𝑖𝑖𝑖(𝑡𝑡)𝑑𝑑𝑡𝑡𝑇𝑇
0

𝑁𝑁+1
𝑖𝑖=𝑖𝑖+1 = 1, and consider: 

�̃�𝑆𝜀𝜀(𝑖𝑖, 𝑡𝑡) = exp �−� �𝜇𝜇𝑖𝑖(𝑠𝑠) − 𝜀𝜀𝛿𝛿𝑖𝑖,𝑁𝑁+1(𝑠𝑠)� + � �𝜆𝜆𝑖𝑖𝑖𝑖(𝑠𝑠) − 𝜀𝜀𝛿𝛿𝑖𝑖𝑖𝑖(𝑠𝑠)�
𝑁𝑁

𝑖𝑖=𝑖𝑖+1

𝑑𝑑𝑠𝑠
𝑡𝑡

0
� , where 𝜀𝜀 > 0 

Proposition 7: 

The marginal utility of preventing an illness or death is given by: 

𝜕𝜕𝑉𝑉
𝜕𝜕𝜀𝜀�𝜀𝜀=0

= � 𝑒𝑒−𝜌𝜌𝑡𝑡�̃�𝑆(𝑖𝑖, 𝑡𝑡) ��� �𝛿𝛿𝑖𝑖𝑖𝑖(𝑠𝑠)
𝑖𝑖>𝑖𝑖

𝑑𝑑𝑠𝑠
𝑡𝑡

0
��𝑢𝑢(𝑐𝑐𝑖𝑖(𝑡𝑡),𝑞𝑞𝑖𝑖(𝑡𝑡)) + �𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)

𝑖𝑖>𝑖𝑖

𝑉𝑉(𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗)�−�𝛿𝛿𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑖𝑖>𝑖𝑖

𝑉𝑉(𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗)� 𝑑𝑑𝑡𝑡
𝑇𝑇

0
 

Proof of Proposition 7: see Appendix A 

The value of preventing an illness or death is equal to the marginal rate of substitution between the transition 

perturbation and wealth: 

𝜕𝜕𝑉𝑉/𝜕𝜕𝜀𝜀
𝜕𝜕𝑉𝑉/𝜕𝜕𝑊𝑊

�
𝜀𝜀=0

= �
𝑒𝑒−𝜌𝜌𝑡𝑡�̃�𝑆(𝑖𝑖, 𝑡𝑡)

𝑢𝑢𝑐𝑐�𝑐𝑐𝑖𝑖(0),𝑞𝑞𝑖𝑖(0)�
��� �𝛿𝛿𝑖𝑖𝑖𝑖(𝑠𝑠)

𝑖𝑖>𝑖𝑖

𝑑𝑑𝑠𝑠
𝑡𝑡

0
��𝑢𝑢(𝑐𝑐𝑖𝑖(𝑡𝑡),𝑞𝑞𝑖𝑖(𝑡𝑡)) + �𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)

𝑖𝑖>𝑖𝑖

𝑉𝑉(𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗)�−�𝛿𝛿𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑖𝑖>𝑖𝑖

𝑉𝑉(𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗)� 𝑑𝑑𝑡𝑡
𝑇𝑇

0
 

As before, it is helpful to choose the Dirac delta function for 𝛿𝛿(⋅), so that the probability is perturbed at 

𝑡𝑡 = 0  and remains unaffected otherwise. It is also helpful to consider a reduction in the transition 

probability for only one alternative state, 𝑗𝑗, so that 𝛿𝛿𝑖𝑖𝑖𝑖(𝑡𝑡) = 0 ∀𝑘𝑘 ≠ 𝑗𝑗. Applying these two conditions then 

yields what we term the value of statistical illness, 𝑉𝑉𝑆𝑆𝑉𝑉(𝑖𝑖, 𝑗𝑗): 

 
𝑉𝑉𝑆𝑆𝑉𝑉(𝑖𝑖, 𝑗𝑗) =

𝑉𝑉(0,𝑊𝑊(0), 𝑖𝑖) − 𝑉𝑉(0,𝑊𝑊(0), 𝑗𝑗)
𝑢𝑢𝑐𝑐�𝑐𝑐𝑖𝑖(0),𝑞𝑞𝑖𝑖(0)�

 

= 𝑉𝑉𝑆𝑆𝑉𝑉(𝑖𝑖) − 𝑉𝑉𝑆𝑆𝑉𝑉(𝑗𝑗)
𝑢𝑢𝑐𝑐 �𝑐𝑐𝑖𝑖(0), 𝑞𝑞𝑖𝑖(0)�

𝑢𝑢𝑐𝑐�𝑐𝑐𝑖𝑖(0), 𝑞𝑞𝑖𝑖(0)�
 

    (18) 

The interpretation of VSI is analogous to VSL: it is the amount that 1,000 individuals are collectively 

willing to pay in order to eliminate a current disease risk that is expected to befall one of them. Note that if 
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health state 𝑗𝑗 corresponds to death, so that 𝑉𝑉𝑆𝑆𝑉𝑉(𝑗𝑗) = 𝑉𝑉𝑆𝑆𝑉𝑉(𝑁𝑁 + 1) = 0, then 𝑉𝑉𝑆𝑆𝑉𝑉(𝑖𝑖, 𝑗𝑗) = 𝑉𝑉𝑆𝑆𝑉𝑉(𝑖𝑖). Thus, VSI 

is a generalization of VSL.  

It is instructive to compare VSI for the uninsured consumer, given in (18), to VSI for a fully annuitized 

consumer, which we denote as 𝑉𝑉𝑆𝑆𝑉𝑉∗:15  

 𝑉𝑉𝑆𝑆𝑉𝑉∗(𝑖𝑖, 𝑗𝑗) =  𝑉𝑉𝑆𝑆𝑉𝑉∗(𝑖𝑖) − 𝑉𝑉𝑆𝑆𝑉𝑉∗(𝑗𝑗)       (19) 

Equation (19) justifies the common cost-effectiveness practice of equating the values of prevention and 

treatment (Drummond et al. 2015). Under full annuitization, the value of a life-year is equal across health 

states (holding quality of life constant). Thus, equation (19) implies that prevention and treatment are 

equally valuable, as long as they add the same number of expected life-years.16 

In contrast, equation (18) shows that removing access to annuity markets breaks this equivalence between 

treatment and prevention. VSI in this case is not equal to the simple difference in VSL between the healthy 

and sick states, because VSL in the sick state is valued from the perspective of the sick, who are likely to 

have a lower marginal utility of consumption due to their shorter life span. This leads to the natural 

hypothesis that whenever VSL rises following an illness, the value of treatments (VSL per life-year) will 

be higher than equivalent preventive care consumed prior to the illness (VSI per life-year). It is simple to 

prove this for the case where the illness reduces life expectancy by one-half or more (proof available upon 

request), and we conjecture that the hypothesis is true under far more general conditions. In the empirical 

exercises that we present later, we find that the value of treatment is higher in a real-world population. 

This difference in the values of prevention and treatment hinges on the distinction between ex ante and ex 

post valuations. Prevention is necessarily an ex ante concept, but treatments can be valued ex ante or ex 

post. From an ex ante point of view, the difference between equally effective preventive care and treatment 

is trivial—it does not matter much whether an individual avoids a disease by getting vaccinated when 

healthy or by paying an insurance premium to gain access to a drug that instantly cures her when ill. Put 

differently, there is little meaningful difference between prevention and treatment in the long run. 

                                                      
15 When the consumer is fully annuitized, the value of her annuity depends on her health state. In particular, if she 
purchases an annuity in state 𝑖𝑖 and then later transitions to a worse health state 𝑗𝑗, causing her life expectancy to fall, 
then the value of her annuity will also fall. This technicality is not reflected in the notation for equation (19); see 
Appendix D for details and discussion. 

16 Consistent with our model, Rheinberger, Herrera-Araujo, and Hammitt (2016) point out that prevention can be more 
valuable (ex ante) than treatment for a highly lethal, but rare, disease, because a disease-specific mortality reduction 
in this case has a much smaller effect on total life-years gained than a reduction in disease incidence.  
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But as Keynes dryly noted, “in the long run, we are all dead.” In the short run, society includes people who 

suffer from diseases that lack effective treatment and therefore value new medical innovations from an ex 

post perspective. Medical research policy decisions made on behalf of society should account for the value 

that research generates for both healthy and sick individuals. 

To summarize, the stochastic mortality model yields the following implications: 

• All else equal, when an individual transitions to a higher mortality state, near-term life-years rise 

in value, and distant life-years fall in value. 

• The value of statistical life may rise or fall when an individual transitions to a higher mortality 

state; if the individual’s demand is sufficiently inelastic, or insufficiently prudent, then it will rise. 

• Therapies that increase survival by treating sick patients are not generally worth the same as 

preventives that add the same amount of life expectancy for healthy patients; if the individual’s 

demand is sufficiently inelastic, or insufficiently prudent, then treatments are more valuable. 

IV. QUANTITATIVE ANALYSIS 
This section demonstrates how the value of statistical life depends on an individual’s health history, and 

illustrates that, under typical consumer preferences, the willingness to pay for treatment exceeds the 

willingness to pay for prevention. We also measure the social value of gains to health and longevity and 

how that value depends on the level of annuitization.  

Our empirical framework incorporates survival and health status uncertainty into a life-cycle model and is 

related to a number of papers that study the savings behavior of the elderly (Kotlikoff 1988; Palumbo 1999; 

De Nardi, French, and Jones 2010). These prior studies allow health to affect wealth accumulation by 

including two or three different health states in the model. By contrast, we allow mortality and quality of 

life to vary across 20 different health states.  

IV.A. Framework 
We employ the discrete time analogue of our model. There are 𝑛𝑛  health states. Denote the transition 

probabilities between health states by: 

𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡) = ℙ[𝑌𝑌𝑡𝑡+1 = 𝑗𝑗|𝑌𝑌𝑡𝑡 = 𝑖𝑖] 

As in the continuous time model, the mortality rate at time 𝑡𝑡, 𝑑𝑑(𝑡𝑡), depends on the individual’s health state: 

𝑑𝑑(𝑡𝑡) = �𝑑𝑑𝑖𝑖(𝑡𝑡)𝟏𝟏{𝑌𝑌𝑡𝑡 = 𝑗𝑗}
𝑛𝑛

𝑖𝑖=1
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where �𝑑𝑑𝑖𝑖(𝑡𝑡)� are given and 𝟏𝟏{𝑌𝑌𝑡𝑡 = 𝑗𝑗} is an indicator variable equal to 1 if the individual is in state 𝑗𝑗 at 

time 𝑡𝑡 and 0 otherwise. The probability of surviving from time period 𝑡𝑡 to time period 𝑠𝑠 is denoted as 𝑆𝑆𝑡𝑡(𝑠𝑠), 

where: 

𝑆𝑆𝑡𝑡(𝑡𝑡) = 1, 

𝑆𝑆𝑡𝑡(𝑠𝑠) = 𝑆𝑆𝑡𝑡(𝑠𝑠 − 1)�1 − 𝑑𝑑(𝑠𝑠 − 1)�, 𝑠𝑠 > 𝑡𝑡 

The survival probability is stochastic because it depends on the individual’s health history. Let 𝑐𝑐(𝑡𝑡) and 

𝑊𝑊(𝑡𝑡) denote consumption and wealth in period 𝑡𝑡, respectively. The individual’s health state at time , 𝑌𝑌𝑡𝑡, 

determines her quality of life, 𝑞𝑞𝑌𝑌𝑡𝑡(𝑡𝑡). Let 𝜌𝜌 denote the utility discount rate, and 𝑟𝑟 the interest rate. Assume 

that in each period the consumer receives an exogenously determined income, 𝑦𝑦(𝑡𝑡), and that the maximum 

lifespan of a consumer is 𝑇𝑇 (i.e., 𝑑𝑑(𝑇𝑇) = 1). Our baseline model assumes there is no bequest motive, 

although we relax this assumption in a later exercise.  

The consumer’s maximization problem is: 

max
𝑐𝑐(𝑡𝑡)

 𝔼𝔼 ��𝑒𝑒−𝜌𝜌𝑡𝑡𝑆𝑆0(𝑡𝑡)𝑢𝑢 �𝑐𝑐(𝑡𝑡), 𝑞𝑞𝑌𝑌𝑡𝑡(𝑡𝑡)�
𝑇𝑇

𝑡𝑡=0

� 𝑌𝑌0,𝑊𝑊0� 

subject to: 

𝑊𝑊(0) = 𝑊𝑊0, 

𝑊𝑊(𝑡𝑡) ≥ 0, 

𝑊𝑊(𝑡𝑡 + 1) = �𝑊𝑊(𝑡𝑡) + 𝑦𝑦(𝑡𝑡) − 𝑐𝑐(𝑡𝑡)�𝑒𝑒𝑟𝑟 

The individual’s period income is equal to 𝑦𝑦(𝑡𝑡) = (1 − 𝜏𝜏)𝑚𝑚(𝑡𝑡) + 𝑎𝑎(𝑡𝑡), where 𝑎𝑎(𝑡𝑡) is nonwage defined-

benefit income financed by an actuarially fair earnings tax, 𝜏𝜏. We choose the individual’s labor earnings, 

𝑚𝑚(𝑡𝑡), to fit data on average life-cycle earnings as estimated by the Current Population Survey and the 

Health and Retirement Survey (see Appendix B1 for details). Our retirement policy exercises, described in 

detail later, consider different levels of generosity for 𝑎𝑎(𝑡𝑡). 

Unless stated otherwise, we assume that 𝑟𝑟 = 𝜌𝜌 = 0.03 (Siegel 1992; Moore and Viscusi 1990). Finally, we 

assume that utility takes the following CRRA form: 

 
𝑢𝑢(𝑐𝑐, 𝑞𝑞) = 𝑞𝑞

𝑐𝑐1−𝛾𝛾

1 − 𝛾𝛾
−
𝑐𝑐1−𝛾𝛾

1 − 𝛾𝛾
        (20) 
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As discussed in Section III, there is no consensus regarding the sign or magnitude of health state dependence 

(𝑢𝑢𝑐𝑐𝑐𝑐(⋅)). Here, we assume a multiplicative relationship where the marginal utility of consumption is higher 

when quality of life is high, and vice versa.  

We have normalized the utility of death to zero in (20). The consumer receives positive utility if she 

consumes an amount greater than 𝑐𝑐, which represents a subsistence level of consumption. Consuming an 

amount less than 𝑐𝑐 generates utility that is worse than death. Although adding a constant to the utility 

function does not affect the solution to the consumer’s maximization problem, this constant matters for the 

value of life.17 We are unaware of any empirical evidence on the magnitude of 𝑐𝑐, the subsistence level of 

consumption in the United States. We assume it is equal to $5,000, which is in line with the parameterization 

employed in Murphy and Topel (2006). 

The parameter 𝛾𝛾 is the inverse of the elasticity of intertemporal substitution, an important determinant of 

both the value of life and the value of annuitization. We follow Hall and Jones (2007) and set 𝛾𝛾 = 2 in our 

main specification.  

We employ dynamic programming techniques to solve for the optimal consumption path. The value 

function is defined as: 

𝑉𝑉(𝑡𝑡,𝑤𝑤, 𝑖𝑖) = max
𝑐𝑐(𝑡𝑡)

 𝔼𝔼 ��𝑒𝑒−𝜌𝜌(𝑠𝑠−𝑡𝑡)𝑆𝑆𝑡𝑡(𝑠𝑠)𝑢𝑢(𝑐𝑐(𝑠𝑠), 𝑞𝑞𝑖𝑖(𝑠𝑠))
𝑇𝑇

𝑠𝑠=𝑡𝑡

� 𝑌𝑌𝑡𝑡 = 𝑖𝑖,𝑊𝑊(𝑡𝑡) = 𝑤𝑤� 

We then reformulate the optimization problem as a recursive Bellman equation: 

𝑉𝑉(𝑡𝑡,𝑤𝑤, 𝑖𝑖) = max
𝑐𝑐(𝑡𝑡)

� 𝑢𝑢�𝑐𝑐(𝑡𝑡)� +
1 − 𝑑𝑑𝑖𝑖(𝑡𝑡)

𝑒𝑒𝜌𝜌
�𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡)𝑉𝑉(𝑡𝑡 + 1, �𝑤𝑤 + 𝑦𝑦(𝑡𝑡) − 𝑐𝑐(𝑡𝑡)�𝑒𝑒𝑟𝑟, 𝑗𝑗)
𝑁𝑁

𝑖𝑖=1

� 

After solving for the optimal consumption path, we use the analytical formulas derived in the previous 

sections to calculate the value of life. Complete details are provided in Appendix C. 

We are aware that there is significant uncertainty among economists regarding the proper values of many 

of the parameters in our model. The goal of the subsequent analyses is to illustrate the economic significance 

of our insights when our model is applied to real-world data using reasonable parameterizations. In some 

analyses, we investigate the sensitivity of our results to alternative assumptions regarding the elasticity of 

intertemporal substitution, 1/𝛾𝛾, and to the presence of a bequest motive. While the value of 𝛾𝛾 matters 

                                                      
17 Rosen (1988) was the first to point out that the level of utility is an important determinant of the value of life. See 
also additional discussion on this point in Hall and Jones (2007). 
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greatly for the size of VSL, it does not have any qualitative effect on our findings regarding the determinants 

of VSL. 

The remainder of this section reports results from two separate empirical exercises. The first exercise 

illustrates the novel implications of our framework by showing that the value of statistical life can increase 

following a health shock, and that the value of treatment generally exceeds the value of prevention. The 

second exercise illustrates the effect of different annuitization schemes on the social value of improvements 

in longevity. 

IV.B. Stochastic health shocks and the value of life 
Conventional economic theory conceives of VSL as depending primarily on age and income/wealth. Our 

general framework with stochastic mortality and incomplete annuitization implies instead a substantial 

amount of variability in VSL within these categories. For example, individuals who have experienced a 

recent negative mortality shock have systematically higher VSL, although this VSL premium decays over 

time. We use real-world data on mortality and quality of life to estimate the degree to which VSL varies 

within the traditional categories of age and income, and describe the factors explaining the variation. Later 

exercises also incorporate data on medical spending and allow for a bequest motive. We focus here on the 

private value of statistical life18 and abstract from potential externalities, e.g., investments in disease-

prevention that might benefit public health insurance programs or other members of society. We consider 

the social value of health improvements in our second set of exercises. 

The data for this set of exercises are provided by the Future Elderly Model (FEM), a widely published 

microsimulation model that employs comprehensive, nationally representative data from a wide array of 

sources (Michaud et al. 2011; Goldman et al. 2005; Lakdawalla, Goldman, and Shang 2005; Goldman et 

al. 2009; Lakdawalla et al. 2009; Goldman et al. 2013; Michaud et al. 2012; Goldman et al. 2010). The 

model, which has been released into the public-domain, produces estimates of mortality, disease incidence, 

quality of life, and medical spending at the individual level for people over the age of 50 with different 

comorbid conditions.19 The FEM accounts for six different chronic conditions (cancer, diabetes, heart 

disease, hypertension, chronic lung disease, and stroke) and six different impaired activities of daily living 

                                                      
18 That is, our calculations in this section do not account for net savings, which will generally be negative for the 
elderly population we focus on here because expected future consumption is larger than future income (see also 
discussion in footnote 7). All else equal, ignoring net savings decreases the value of treatment relative to prevention: 
prevention is consumed by the healthy, who live longer than the sick and thus have larger expected future 
consumption, i.e., their (negative) net savings are larger in magnitude. Incorporating net savings would therefore only 
strengthen our results. 

19 Additional details about the FEM’s methodology are provided in Appendix B2. A complete technical description is 
available at roybalhealthpolicy.usc.edu/fem/technical-specifications/. 
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(bathing, eating, dressing, walking, getting in or out of bed, and using the toilet). The FEM provides us with 

a widely published and well-validated tool that combines information from multiple nationally 

representative data sources, including the Health and Retirement Study, the Medical Expenditure Panel 

Survey (MEPS), the Panel Study of Income Dynamics, and the National Health Interview Survey. This 

provides a number of advantages for our study. For instance, while the HRS possesses a uniquely rich set 

of covariates on health and wealth, it lacks survey questions that would allow us to calculate quality of life 

using validated survey instruments. To solve this problem, the FEM weaves together validated quality of 

life estimates from the MEPS and maps them to the HRS using variables common to both databases. 

We divide the health space within the FEM into 𝑛𝑛 = 20 states. Each state corresponds to the number (0, 1, 

2, 3 or more) of impaired activities of daily living (ADL) and the number (0, 1, 2, 3, 4 or more) of chronic 

conditions, for a total of 4 × 5 = 20 health states. Health states are ordered first by number of ADL’s and 

then by number of chronic diseases, so that state 1 corresponds to 0 ADL’s and 0 chronic conditions, state 

2 corresponds to 0 ADL’s and 1 chronic condition, and so on. For each health state and age, the FEM 

estimates the probability of dying and the probability of transitioning to each of the other health states in 

the next year. As in the theoretical model, individuals can transition only to higher-numbered states, i.e., 

𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡) = 0 ∀𝑗𝑗 < 𝑖𝑖 . In other words, all ADL’s and chronic conditions are permanent. The FEM also 

estimates quality of life for each health state and age, as measured by the EuroQol five dimensions 

questionnaire (EQ-5D). These five dimensions are based on five survey questions that elicit the extent of a 

respondent’s problems with mobility, self-care, daily activities, pain, and anxiety/depression. These 

questions are then weighted using stated preference data to compute the relative importance of each.20 The 

result is a single quality of life measure, the EQ-5D, typically reported on a scale from zero to one.  

Table 1 presents basic descriptive statistics for the data provided by the FEM model. Initial life expectancy 

at age 50 ranges from 30.4 years for a healthy individual in state 1 to 8.6 years for an ill individual in state 

20. Quality of life, as measured by the EQ-5D index, ranges from 0.54 to 0.88 at age 50. Columns (7) and 

(8) of Table 1 report the probability that an individual exits her health state but remains alive, i.e., acquires 

at least one new ADL or chronic condition within the following year. Health states are relatively persistent, 

with exit rates never exceeding 15 percent. State 20 is an absorbing state with an exit rate of 0 percent. 

The model employed in this section assumes that individuals lack access to annuity markets. (We consider 

partial annuitization scenarios in Section IV.C.) To abstract from wealth effects, we set total wealth equal 

                                                      
20 The five dimensions of the EQ-5D are weighted using estimates from Shaw, Johnson, and Coons (2005). The 
specific process for estimating the quality of life score is explained in the FEM technical documentation, which can 
be found in the supplemental information appendix of Agus et al. (2016). 
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to what it would be under full annuitization. Mechanically, we set wealth equal to $807,604 and provide all 

of it to the individual at baseline (age 50). This value for wealth corresponds to the net present value of 

future earnings at age 50 plus savings at that age, as estimated by the retirement policy model we employ 

in the next section. This permits an analytical solution to the consumer’s problem (see Appendix C2). It 

also avoids numerical precision error and speeds up the calculations, which is especially useful when 

performing the Monte Carlo simulations described below.21  

We now turn to our results. If an individual never suffers a health shock, then her consumption and VSL 

will decline smoothly with age. However, the arrival of a health shock can increase VSL, sometimes 

substantially. Figure 3 displays consumption and VSL for an initially healthy individual who develops one 

ADL (health state 6) at age 60, and then two more ADLs plus two chronic conditions (health state 18) at 

age 70. The first shock reduces her life expectancy by 3.0 years and her quality of life by 0.06. The second 

one reduces her life expectancy by 6.7 years and her quality of life by 0.20. This causes discontinuous 

jumps in consumption at ages 60 and 70 as a result of these two negative health shocks. The first shock has 

a mild effect on the declining trend in VSL, but the second increases her VSL at age 70 by nearly 50 percent, 

from $2.9 million to $4.3 million. This jump is driven by the reduction in life expectancy and would remain 

large even if quality of life were held constant.  

Individual-level shocks generate substantial variability in VSL in the aggregate. Figure 4 reports results 

from a Monte Carlo simulation of 10,000 life-cycle modeling exercises. At age 50, all individuals are 

identical and have a VSL of $5.9 million. As they age, some begin to suffer health shocks that, at least 

initially, increase their VSL. By age 60, the VSL inter-vigintile range spans $4.2 to $5.3 million. This 

dispersion is compressed towards the end of life, when mortality reaches 100 percent. 

Next, we calculate the value of statistical illness (VSI) for different diseases. Column (4) of Table 2 reports 

VSI at age 50 from the perspective of a healthy individual. Each value represents the healthy individual’s 

willingness to pay for a marginal, contemporaneous reduction in the probability of developing an illness 

corresponding to one of the 19 other health states. The values are inversely related to life expectancy in the 

sick state because it is more valuable to prevent the onset of a lethal disease than a mild one. The highest 

VSI is $3.5 million, which corresponds to the value of preventing the onset of a sick state with 3 ADL’s 

and 4 chronic conditions (health state 20). The interpretation is analogous to VSL: it is the amount that 

1,000 healthy individuals would collectively be willing to pay in order to reduce their risk of developing 

                                                      
21 Relaxing these assumptions is possible (and available upon request), but will prohibit the calculation of an exact 
solution. Hubbard, Skinner, and Zeldes (1995) show that failing to include a “welfare floor” in the budget constraint 
causes life-cycle models to overestimate savings for low-income households. Our exercises model middle-income 
individuals, however, for whom this issue is less important. 
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this illness by 1/1000. This value remains below the healthy individual’s VSL, which represents the 

willingness to pay to avoid the extreme “illness” of dying.  

How does the value of prevention compare to the value of treatment? We investigate this question by 

normalizing VSL and VSI by the number of life-years saved. In contrast to the conventional (fully 

annuitized) framework, here the value of a life-year depends on the whether the individual is sick or healthy. 

Intuitively, health gains are worth more after health shocks than before them, because those shocks 

accelerate consumption and increase the value of life. 

Table 2 illustrates this point. For example, column (5) reports that a 50-year-old with one chronic condition 

and no ADL’s (health state 2) has a marginal willingness to pay of $228,000 per life-year for a treatment 

that extends her life. Column (6), by contrast, reveals that a healthy individual is only willing to pay 

$115,000 per life-year saved through preventing the onset of health state 2. In this case, treatment is twice 

as valuable as prevention. Column (6) of Table 1 shows that the value of life-years saved by treating an 

illness always exceeds the corresponding value gained by prevention that illness – by as much as a factor 

of 10, for the sickest state in our model. 

Figure 5 displays these results graphically. It depicts how VSL and VSI vary across our health states, which 

are arrayed along the x-axis from longest to shortest life expectancy. The solid blue bars depict VSL per 

life-year and demonstrate that the value gained through treatment is monotonically higher for states with 

lower remaining life expectancy. The dotted red bars show the value per life-year gained by preventing 

each health state, from the perspective of a perfectly healthy person. For instance, the left-most dotted red 

bar reports the value of each life-year saved when a perfectly healthy consumer reduces the risk of entering 

the health state with 27.7 years of life expectancy. Notice that VSI is relatively stable across health states. 

This makes sense, because VSI is calculated from the fixed perspective of a perfectly healthy person; 

therefore, consumption profiles and the marginal utility of consumption remain stable. The minor variation 

across these health states in VSI per life-year is due primarily to differences in current and expected future 

quality of life. 

These results help explain the low private willingness to invest in prevention (Dranove 1998; Pryor and 

Volpp 2018). Holding health gains fixed, individuals have weak incentives to invest in prevention. This 

wedge in the value of prevention versus treatment thus magnifies any external benefits of prevention that 

further separate the private and social willingness to pay for prevention. 

Note, however, that the gap between the value of treatment and prevention narrows in the years following 

the diagnosis. Figure 6 compares the value of treatment for the consumer who suffered the second health 

shock depicted in Figure 3 to the value of prevention for a consumer who never suffered that second health 
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shock. The value of treatment exceeds the value of prevention, but only for the first 10 years following the 

shock. After that point, the sick patient has spent down much of her wealth, which causes a significant 

reduction in her VSL, although we note that most patients will have died before reaching this point. (Life 

expectancy at age 70 for sick patients in this health state is 8.1 years.) This result implies that first-line 

therapies are more valuable than later-line therapies. 

Next, we incorporate medical spending data from the FEM into our framework. Appendix Figure A1 reports 

average out-of-pocket medical spending for selected health states, by age. These data are comprehensive 

and include all inpatient, outpatient, prescription drug, and long-term care spending that is not paid for by 

insurance. Spending is higher in sicker health states, and—consistent with De Nardi, French, and Jones 

(2010)—increases greatly at older ages, when long-term care expenses arise.  

Incorporating these spending data directly into our model would require numerical optimization methods. 

Instead, we reformulate these data as wealth shocks, which should yield qualitatively similar results while 

still allowing us to calculate an exact solution to the consumer’s problem. This approach has the additional 

benefit of yielding insight into health shocks that reduce labor supply, since these would also ultimately 

reduce wealth. To implement, we modify the law of motion for wealth so that the individual’s effective 

interest rate depends on her health state: 

𝑊𝑊(𝑡𝑡 + 1) = �𝑊𝑊(𝑡𝑡) − 𝑐𝑐(𝑡𝑡)�𝑒𝑒𝑟𝑟(𝑡𝑡,𝑌𝑌𝑡𝑡) 

where 𝑟𝑟(𝑡𝑡,𝑌𝑌𝑡𝑡) = 0.03 + ln[1 − 𝑠𝑠(𝑡𝑡,𝑌𝑌𝑡𝑡)] and 𝑠𝑠(𝑡𝑡,𝑌𝑌𝑡𝑡) is the share of an individual’s wealth spent on medical 

and nursing home care in health state 𝑌𝑌𝑡𝑡 and time 𝑡𝑡.22 Appendix C2 provides additional details. 

Figure 7 illustrates that incorporating medical spending reduces VSL slightly but does not otherwise 

appreciably alter its life-cycle profile, even in the presence of significant health shocks. This remains true 

even if we employ total, rather than out-of-pocket, medical spending. The reason is that the difference in 

medical spending between healthy and sick individuals is small relative to the variation in spending by age 

(see Appendix Figure A1). A sufficiently large idiosyncratic spending shock will have a significant impact, 

however. This is illustrated by the dotted black line in Figure 7, which plots VSL for a hypothetical case 

where the individual’s wealth falls by 30 percent following the health shock at age 70, rather than by the 

much smaller medical spending amount estimated by the FEM. Although VSL still increases at age 70, the 

                                                      
22 Specifically, we calculate 𝑠𝑠(𝑡𝑡,𝑌𝑌𝑡𝑡) by dividing out-of-pocket medical spending in health state 𝑌𝑌𝑡𝑡 at time 𝑡𝑡 by 𝑊𝑊(𝑡𝑡), 
where 𝑊𝑊(𝑡𝑡) was estimated by our model for a healthy individual in a setting with no medical spending. Our results 
are similar if we instead use wealth estimates from the Health and Retirement Study. 
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rise is far smaller than in the other two cases. Thus, while accounting for typical medical spending does not 

appear to alter our basic results, catastrophic expenditures do matter. 

Our last exercise values the longevity gains experienced over the past 15 years. During this period, all-

cause mortality for the US population ages 50 and over has fallen by 18%, with cancer and heart disease 

mortality both falling by 21%.23 Panel A of Table 3 values these health gains from the perspective of a 

current 50-year-old. In a setting with no out-of-pocket medical spending, the private value of the reduction 

in all-cause mortality is worth $95,000 to $302,000, depending on the assumed value of relative risk 

version. The values are reduced slightly if we include out-of-pocket medical spending. Panel B shows that 

these estimates are reduced by 10 to 20 percent if we incorporate a bequest motive into the model.24 At the 

end of the next section, we discuss in more detail the relationship between bequest motives and the value 

of life. 

IV.C. Retirement policy and the value of life 
This section explores the link between retirement policy and the value of life. We build up to these results 

by calculating how the value of statistical life varies over the life-cycle under alternative annuitization 

policies. We then calculate how these alternative policies influence the value of permanent reductions in 

mortality. All our calculations account for the effect of mortality reduction on net savings, regardless of the 

degree of annuitization. This facilitates comparison across different annuitization scenarios and makes it 

appropriate to interpret our estimates as the social value of increased longevity. (See footnote 7.) 

We initiate the model at age 20 and assume nobody survives past age 100. We obtain data on age-specific 

mortality rates from the Human Mortality Database. Because these mortality data are not available by health 

state, in this section we will assume deterministic mortality. (This corresponds to specifying 𝑛𝑛 = 1 health 

states.) In addition, we abstract from the role of quality of life by setting 𝑞𝑞(𝑡𝑡) = 1, because aggregate, 

nationally representative data on quality-of-life trends are not generally available.  

Unlike in the previous section, the individual receives a flow of income instead of a baseline endowment 

of wealth. This feature is important here, because it allows us to model the effects of retirement and 

annuitization. Moreover, it is computationally simple to incorporate into this model, because we have only 

a single health state to contend with. Recall that the individual’s period income is equal to 𝑦𝑦(𝑡𝑡) =

(1 − 𝜏𝜏)𝑚𝑚(𝑡𝑡) + 𝑎𝑎(𝑡𝑡), where 𝑎𝑎(𝑡𝑡) is nonwage defined-benefit income financed by an earnings tax, 𝜏𝜏. We 

                                                      
23 Source: authors’ calculations using mortality data from the National Vital Statistics. 

24 We follow Fischer (1973) and allow the bequest motive takes a CRRA form, which allows us to again calculate an 
exact solution to the consumer’s problem. See Appendix C2 for details. 
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consider three different policy scenarios in the main text. In the first, financial markets are absent, and the 

consumer’s income equals her labor earnings: 𝑦𝑦1(𝑡𝑡) = 𝑚𝑚(𝑡𝑡). Thus, her consumption is limited by current 

period income and savings from prior periods. The second scenario introduces an actuarially fair Social 

Security program that provides an annuity equal to $16,195 beginning at age 65.25 In this second scenario, 

the consumer is partially annuitized, but she still lacks access to financial markets and cannot borrow against 

her future income. The third scenario increases the size of the Social Security pension by 50 percent. Finally, 

in the appendix we also present results for the case where the consumer fully annuitizes at age 20 and enjoys 

a constant annuity stream, 𝑦𝑦 = 𝑎𝑎 , provided by an actuarially fair and complete annuities market. The 

income streams in all scenarios are related according to the following equation: 

�
𝑦𝑦1(𝑡𝑡)𝑆𝑆(𝑡𝑡)
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Our assumed interest rate of 3 percent and our data on mortality and earnings imply a full annuity value of 

𝑦𝑦 = $37,897. 

The life-cycle profiles of consumption for the first two policy scenarios are displayed in Figure 8. 

Consumption is constrained by the consumer’s low income in early life. She saves during middle age when 

income is high, and then consumes her savings during retirement until eventually her consumption equals 

her pension (if available). Consumption for an individual with no annuity is “shifted forward” relative to 

an individual with a Social Security pension. This effect is particularly dramatic in the final 10 years of life, 

when old consumers outlive their wealth. This is not surprising: a primary benefit of an annuity is its ability 

to provide income to consumers in their oldest ages. 

Figure 9 shows that this difference in consumption generates a corresponding difference in the value of a 

life-year. Individuals place a low value on life-years at very young and very old ages, because consumption 

is low. The slight drop at age 65 reflects the effect of retirement on the net savings component of the value 

of life. 

Figure 10 displays the corresponding value of statistical life (VSL) for these two scenarios, as calculated 

by equation (7). At age 40, VSL is equal to $7 million for an individual with no annuity, and $8 million for 

an individual who will be eligible for Social Security at age 65. Both these values are within the ranges 

estimated by empirical studies of VSL for working-age individuals (see O'Brien 2018 for a recent review). 

Figure 10 also shows that VSL is greater at older ages for a person with a Social Security pension than it is 

                                                      
25  This corresponds to the average retirement benefit paid by Social Security to retired workers in 2016 
(www.ssa.gov/policy/docs/quickfacts/stat_snapshot/2016-07.pdf). 
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for a person with no annuity. This suggests that annuity programs are complementary with retiree healthcare 

programs and other investments in life-extension for the elderly population. 

Finally, we calculate the value of historical reductions in mortality for these different annuitization 

scenarios, as well as the prospective value of permanent reductions in future mortality for selected diseases. 

Let 𝛿𝛿  denote a vector of mortality reductions for different ages. As in Murphy and Topel (2006), we 

calculate the total social value of a mortality reduction by aggregating over the age distribution of the 2015 

US population: 

𝑆𝑆𝑆𝑆𝑐𝑐𝑖𝑖𝑎𝑎𝑆𝑆 𝑉𝑉𝑎𝑎𝑆𝑆𝑢𝑢𝑒𝑒 = �𝑉𝑉𝑉𝑉𝑉𝑉(𝑎𝑎, δ)𝑓𝑓(𝑎𝑎)
110

𝑎𝑎=0

 

where 𝑉𝑉𝑉𝑉𝑉𝑉(𝑎𝑎, δ) is defined as in equation (5), and 𝑓𝑓(𝑎𝑎) is the count of people alive in 2015 at age 𝑎𝑎.26 

We report our results in Table 4. Life expectancy at birth increased by over 10 years between 1940 and 

2010. Like Murphy and Topel (2006), we find that the social value of these past longevity gains is 

substantial: the post-1940 gains are worth over $100 trillion today, and the post-1970 gains are worth over 

$50 trillion. Comparing results for different annuitization scenarios informs our understanding of the 

interaction between retirement policies and the value of longevity. For example, consider the introduction 

of Social Security over the last century. Comparing column (1) to column (2) of Table 4 suggests that this 

increased the value of post-1940 longevity gains by $11.5 trillion (10.5 percent) and increased the value of 

post-1970 gains by $6.2 trillion (11.6 percent). One way to interpret these values is to compare them to the 

longevity insurance value of Social Security, which is approximately $17 trillion.27 Thus, the interaction 

between post-1940 longevity gains and Social Security is worth about half as much as the longevity 

insurance value of the entire Social Security program itself. 

Table 4 also reveals that Social Security has raised the value of a 10 percent cancer mortality reduction by 

$427 billion, or 13 percent. Alternatively, it has raised the value of a 10 percent reduction in all-cause 

mortality by $1.38 trillion (12 percent). Column (3) reports that increasing the size of Social Security 

pensions by 50 percent would add $723 billion more to that value. 

                                                      
26 Specifically, 𝑉𝑉𝑉𝑉𝑉𝑉(𝑎𝑎, δ) = ∫ 𝑒𝑒−𝑟𝑟(𝑡𝑡−𝑎𝑎) �∫ 𝛿𝛿(𝑠𝑠)𝑑𝑑𝑠𝑠𝑡𝑡

𝑎𝑎 � 𝑣𝑣(𝑡𝑡)𝑑𝑑𝑡𝑡100
𝑎𝑎 . We assume 𝑉𝑉𝑉𝑉𝑉𝑉(𝑎𝑎, 𝛿𝛿) = 𝑉𝑉𝑉𝑉𝑉𝑉(20, 𝛿𝛿) for 𝑎𝑎 < 20, and 

equal to 𝑉𝑉𝑉𝑉𝑉𝑉(100, 𝛿𝛿) for 𝑎𝑎 > 100. Unlike Murphy and Topel (2006), our social value calculation does not account 
for the value that mortality reductions generate for future (unborn) populations. 

27 This value is calculated using the methodology of Mitchell et al. (1999) and does not account for other potential 
benefits of Social Security such as protection against inflation risk. See Appendix C1 for details. 
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A bequest motive encourages individuals to delay consumption, because money saved for consumption in 

old age also has the added benefit of increasing bequests in the event of death. Its effects on consumption 

and the value of longevity are therefore similar to that of increased annuitization. Since bequests are much 

more common among the wealthiest consumers (Hurd and Smith 2002), they are unlikely to matter much 

for our main estimates, which pertain to the median individual. However, for illustrative purposes we have 

also estimated our main specification under the assumption of a strong bequest motive that significantly 

affects savings behavior even for the median individual. 28  Those results, illustrated in Figure 11, 

demonstrate that a bequest motive lowers the value of statistical life prior to age 65, and increases it at older 

ages. Intuitively, bequest motives increase the value of saving at younger ages. Appendix Table A3 further 

shows that in this case, the effect of Social Security on the value of post-1940 longevity gains is $5.5 trillion 

(5.1 percent), or about half as large as in a setting with no bequest motive. This suggests that the effect of 

retirement policy on the value of life matters most for non-wealthy individuals, whom are less likely to 

have a significant bequest motive. 

To summarize, our model predicts that annuitization raises the value of life for the elderly. This should 

cause them to spend more on healthcare and invest more in healthy behaviors, which in turn should 

ultimately manifest in increased life expectancy. This dovetails with the point, made by Philipson and 

Becker (1998), that the moral hazard effects of retirement programs also increase the willingness to pay for 

longevity. Philipson and Becker (1998) analyze data from Virga (1996) and find that people with more 

generous annuities live longer than those with less generous annuities. They interpret this as the effect of 

endogenous longevity investments, which are encouraged among highly annuitized individuals who do not 

bear the full cost of an increase in their longevity. In our model, by contrast, annuitization increases the 

value of life even when annuities are actuarially fair, because they protect against the risk of outliving one’s 

wealth. Given that these effects reinforce each other, it is not surprising that increases in the generosity of 

public pensions in developed countries have been accompanied by large increases in public spending on 

retiree healthcare. 

V. CONCLUSION 
The economic theory surrounding the value of life has many important applications. Yet, like most theories, 

it suffers from several anomalies that appear at odds with intuition or empirical facts – e.g., the apparent 

preferences of consumers to pay more for life-extension when survival prospects are bleaker. We have 

demonstrated that several of these anomalies can be reconciled without abandoning the standard 

                                                      
28 When accounting for a bequest motive in this exercise, we follow Kopczuk and Lupton (2007) and assume the 
utility from leaving a bequest is linear in wealth. See Appendix C1 for details. 
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framework, simply by relaxing its strong assumptions about full annuitization and deterministic mortality. 

Moreover, relaxing these assumptions generates new predictions with implications for health policy and 

behavior. We show that VSL varies with the arrival of mortality shocks, and that a given gain in longevity 

can be more valuable to a consumer who has less life remaining, and vice-versa. Even holding wealth and 

income fixed, VSL may vary by $1 million or more for a 50-year-old. In addition, we demonstrate an 

interaction between retirement policy and health policy: increases in annuitization significantly increase the 

value of life among the elderly. For instance, the US Social Security program has increased the value of 

mortality reductions, adding nearly $150 billion to the value of a 1 percent mortality decline.  

Our findings have several implications for the valuation of health investments and for policy more 

generally. We show that the value of a life-year varies across types of risk, not just across types of people. 

It can be more valuable to add one month of life for a patient facing a highly fatal disease than for one 

facing a much milder ailment. Thus, health spending should be more targeted towards the severely ill than 

current economic models of cost-effectiveness suggest.  

In addition, public programs that expand the market for annuities might simultaneously boost the demand 

for life-extending technologies. Intuitively, annuities calm consumer fears about outliving their wealth and 

thus enable more aggressive investments in life-extension. Viewed differently, our results also show that 

market failures in annuities affect the value of statistical life, and thus the socially optimal level of health 

care spending. This suggests that researchers and policymakers should pay more attention to the public 

finance interactions between pension and healthcare systems. 

Finally, our framework offers a single unified framework for valuing both treatment and prevention. This 

provides a more practical tool for policymakers and decision makers, since many health investments involve 

preventing the deterioration of health, not a direct and immediate mortality risk. Our result that treatment 

can be more valuable to individuals than equally effective preventive care also provides one explanation 

for why it has proven to be so difficult for policymakers and public health advocates to encourage 

investments in the prevention of disease. Kremer and Snyder (2015) show that heterogeneity in consumer 

values distorts R&D incentives by allowing firms to extract more consumer surplus from treatments than 

with preventives. Our results suggest that differences in private VSL may reinforce this result and further 

disadvantage incentives to develop preventives. 

Our analysis raises a number of important questions for further research. First, how does the theory change 

if we endogenize the demand for health and longevity? Elsewhere, we have studied how incomplete health 

insurance enhances the value of medical technology that improves quality of life, because such technology 

acts as insurance by compressing the difference in utility between the sick and healthy states (Lakdawalla, 
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Malani, and Reif 2017). Less clear is how demands for the quantity and quality of life interact with financial 

market incompleteness of various kinds. Second, what are the most practical strategies for incorporating 

these insights into the literature on cost-effectiveness of alternative medical technologies? This literature 

typically assumes that life-years, or quality-adjusted life-years, possess a constant value. While flawed, this 

approach remains simpler to implement. Future research should focus on practical strategies for aligning 

cost-effectiveness analyses with the generalized theory of the value of life. Finally, what are the 

implications for the empirical literature on VSL? Empirical analysis has typically proceeded under the 

assumption that different kinds of mortality risk are all valued the same way, as long as they imply similar 

changes in the probability of dying (Viscusi and Aldy 2003; Hirth et al. 2000; Mrozek and Taylor 2002). 

Our framework casts doubt on this assumption and suggests the need for a more nuanced empirical 

approach. This missing insight may be one reason for the widely disparate empirical estimates of the value 

of statistical life.  



 37 

VI. REFERENCES  
Agus, David B, Étienne Gaudette, Dana P Goldman, and Andrew Messali. 2016. 'The long-term benefits of 

increased aspirin use by at-risk Americans aged 50 and older', PLOS ONE, 11: e0166103. 
Arthur, W Brian. 1981. 'The Economics of Risks to Life', The American Economic Review: 54-64. 
Banks, James, Richard Blundell, and Sarah Tanner. 1998. 'Is there a retirement-savings puzzle?', American 

Economic Review: 769-88. 
Bertsekas, D.P. 2005. Dynamic Programming and Optimal Control (Athena Scientific). 
Brown, Jeffrey R, Jeffrey R Kling, Sendhil Mullainathan, and Marian V Wrobel. 2008. 'Why Don't People Insure 

Late-Life Consumption? A Framing Explanation of the Under-Annuitization Puzzle', The American 
Economic Review, 98: 304-09. 

Carroll, Christopher D, and Lawrence H Summers. 1991. 'Consumption growth parallels income growth: Some 
new evidence.' in, National Saving and Economic Performance (University of Chicago Press). 

De Nardi, Mariacristina, Eric French, and John B Jones. 2010. 'Why do the elderly save? The role of medical 
expenses', Journal of Political Economy, 118: 39-75. 

Dranitsaris, George, and George Papadopoulos. 2015. 'Health technology assessment of cancer drugs in 
Canada, the United Kingdom and Australia: should the United States take notice?', Applied Health 
Economics and Health Policy, 13: 291-302. 

Dranove, David. 1998. 'Is there underinvestment in R & D about prevention?', Journal of Health Economics, 17: 
117-27. 

Drummond, Michael F, Mark J Sculpher, Karl Claxton, Greg L Stoddart, and George W Torrance. 2015. 
Methods for the Economic Evaluation of Health Care Programmes (Oxford University Press). 

Edwards, Ryan D. 2008. 'Health risk and portfolio choice', Journal of Business & Economic Statistics, 26: 472-85. 
Ehrlich, Isaac. 2000. 'Uncertain lifetime, life protection, and the value of life saving', Journal of Health Economics, 

19: 341-67. 
Ehrlich, Isaac, and Yong Yin. 2005. 'Explaining diversities in age-specific life expectancies and values of life 

saving: a numerical analysis', Journal of Risk and Uncertainty, 31: 129-62. 
Evans, William N, and W Kip Viscusi. 1991. 'Estimation of state-dependent utility functions using survey data', 

The Review of Economics and Statistics: 94-104. 
Fernandez-Villaverde, Jesus, and Dirk Krueger. 2007. 'Consumption over the life cycle: Facts from consumer 

expenditure survey data', The Review of Economics and Statistics, 89: 552-65. 
Finkelstein, Amy, Erzo FP Luttmer, and Matthew J Notowidigdo. 2013. 'What good is wealth without health? 

The effect of health on the marginal utility of consumption', Journal of the European Economic Association, 
11: 221-58. 

Fischer, Stanley. 1973. 'A life cycle model of life insurance purchases', International Economic Review: 132-52. 
Goldman, Dana, Samuel Nussbaum, and Mark Linthicum. 2016. "Rapid biomedical innovation calls for similar 

innovation in pricing and value measurement." In Health Affairs Blog. 
Goldman, Dana P, David Cutler, John W Rowe, Pierre-Carl Michaud, Jeffrey Sullivan, Desi Peneva, and S Jay 

Olshansky. 2013. 'Substantial health and economic returns from delayed aging may warrant a new focus 
for medical research', Health Affairs, 32: 1698-705. 

Goldman, Dana P, Pierre-Carl Michaud, Darius Lakdawalla, Yuhui Zheng, Adam Gailey, and Igor Vaynman. 
2010. 'The fiscal consequences of trends in population health', National Tax Journal, 63: 307-30. 

Goldman, Dana P, Baoping Shang, Jayanta Bhattacharya, Alan M Garber, Michael Hurd, Geoffrey F Joyce, 
Darius N Lakdawalla, Constantijn Panis, and Paul G Shekelle. 2005. 'Consequences of health trends 
and medical innovation for the future elderly', Health Affairs, 24: W5. 

Goldman, Dana P, Yuhui Zheng, Federico Girosi, Pierre-Carl Michaud, S Jay Olshansky, David Cutler, and 
John W Rowe. 2009. 'The benefits of risk factor prevention in Americans aged 51 years and older', 
American Journal of Public Health, 99: 2096. 

Green, Colin, and Karen Gerard. 2009. 'Exploring the social value of health‐care interventions: a stated 
preference discrete choice experiment', Health Economics, 18: 951-76. 

Hall, Robert E, and Charles I Jones. 2007. 'The Value of Life and the Rise in Health Spending', The Quarterly 
Journal of Economics, 122: 39-72. 



 38 

Hirth, Richard A, Michael E Chernew, Edward Miller, A Mark Fendrick, and William G Weissert. 2000. 
'Willingness to pay for a quality-adjusted life year in search of a standard', Medical Decision Making, 20: 
332-42. 

Hubbard, R Glenn, Jonathan Skinner, and Stephen P Zeldes. 1995. 'Precautionary Saving and Social Insurance', 
Journal of Political Economy, 103. 

Hurd, Michael, and James P Smith. 2002. "Expected bequests and their distribution." In.: National Bureau of 
Economic Research. 

Johansson, Per-Olov. 2002. 'On the definition and age-dependency of the value of a statistical life', Journal of 
Risk and Uncertainty, 25: 251-63. 

Kimball, Miles S. 1990. 'Precautionary Saving in the Small and in the Large', Econometrica: Journal of the Econometric 
Society: 53-73. 

Kopczuk, Wojciech, and Joseph P Lupton. 2007. 'To leave or not to leave: The distribution of bequest motives', 
The Review of Economic Studies, 74: 207-35. 

Kotlikoff, Laurence J. 1988. 'Health expenditures and precautionary savings.' in, What Determines Savings? (MIT 
Press). 

Kremer, Michael, and Christopher M Snyder. 2015. 'Preventives versus treatments', The Quarterly Journal of 
Economics, 130: 1167-239. 

Labaree, Leonard Woods (ed.)^(eds.). 1960. The Papers of Benjamin Franklin (Yale University Press: New Haven). 
Lakdawalla, Darius, Anup Malani, and Julian Reif. 2017. 'The Insurance Value of Medical Innovation', Journal 

of Public Economics, 145: 94-102. 
Lakdawalla, Darius N, Dana P Goldman, Pierre-Carl Michaud, Neeraj Sood, Robert Lempert, Ze Cong, Han 

de Vries, and Italo Gutierrez. 2009. 'US pharmaceutical policy in a global marketplace', Health Affairs, 
28: w138-w50. 

Lakdawalla, Darius N, Dana P Goldman, and Baoping Shang. 2005. 'The health and cost consequences of 
obesity among the future elderly', Health Affairs, 24: W5R30. 

Lillard, Lee A, and Yoram Weiss. 1997. 'Uncertain health and survival: Effects on end-of-life consumption', 
Journal of Business & Economic Statistics, 15: 254-68. 

Linley, Warren G, and Dyfrig A Hughes. 2013. 'Societal views on NICE, cancer drugs fund and value‐based 
pricing criteria for prioritising medicines: A cross‐sectional survey of 4118 adults in Great Britain', 
Health Economics, 22: 948-64. 

Michaud, Pierre-Carl, Dana Goldman, Darius Lakdawalla, Adam Gailey, and Yuhui Zheng. 2011. 'Differences 
in health between Americans and Western Europeans: Effects on longevity and public finance', Social 
Science and Medicine, 73: 254-63. 

Michaud, Pierre-Carl, Dana P Goldman, Darius N Lakdawalla, Yuhui Zheng, and Adam H Gailey. 2012. 'The 
value of medical and pharmaceutical interventions for reducing obesity', Journal of Health Economics, 31: 
630-43. 

Mitchell, Olivia S, James M Poterba, Mark J Warshawsky, and Jeffrey R Brown. 1999. 'New evidence on the 
money's worth of individual annuities', American Economic Review, 89: 1299-318. 

Moore, Michael J, and W Kip Viscusi. 1990. 'Models for estimating discount rates for long-term health risks 
using labor market data', Journal of Risk and Uncertainty, 3: 381-401. 

Mrozek, Janusz R, and Laura O Taylor. 2002. 'What determines the value of life? a meta‐analysis', Journal of 
Policy Analysis and Management, 21: 253-70. 

Murphy, Kevin M, and Robert H Topel. 2006. 'The Value of Health and Longevity', Journal of Political Economy, 
114: 871-904. 

Nord, Erik, Jeff Richardson, Andrew Street, Helga Kuhse, and Peter Singer. 1995. 'Maximizing health benefits 
vs egalitarianism: an Australian survey of health issues', Social Science and Medicine, 41: 1429-37. 

O'Brien, James H. 2018. 'Age, Autos, and the Value of a Statistical Life', Journal of Risk and Uncertainty: 1-29. 
Palumbo, Michael G. 1999. 'Uncertain medical expenses and precautionary saving near the end of the life cycle', 

The Review of Economic Studies, 66: 395-421. 
Parpas, Panos, and Mort Webster. 2013. 'A stochastic minimum principle and an adaptive pathwise algorithm 

for stochastic optimal control', Automatica, 49: 1663-71. 



 39 

Philipson, Tomas J, and Gary S Becker. 1998. 'Old-age longevity and mortality-contingent claims', Journal of 
Political Economy, 106: 551-73. 

Pryor, Katherine, and Kevin Volpp. 2018. 'Deployment of Preventive Interventions — Time for a Paradigm 
Shift', New England journal of medicine, 378: 1761-63. 

Reichling, Felix, and Kent Smetters. 2015. 'Optimal Annuitization with Stochastic Mortality and Correlated 
Medical Costs', The American Economic Review, 105: 3273-320. 

Rheinberger, Christoph M, Daniel Herrera-Araujo, and James K Hammitt. 2016. 'The value of disease 
prevention vs treatment', Journal of Health Economics, 50: 247-55. 

Rosen, Sherwin. 1988. 'The value of changes in life expectancy', Journal of Risk and Uncertainty, 1: 285-304. 
Schelling, Thomas C. 1968. 'The life you save may be your own', Problems in Public Expenditure: 127-62. 
Seierstad, Atle, and Knut Sydsaeter. 1977. 'Sufficient conditions in optimal control theory', International Economic 

Review: 367-91. 
Shaw, James W, Jeffrey A Johnson, and Stephen Joel Coons. 2005. 'US valuation of the EQ-5D health states: 

development and testing of the D1 valuation model', Medical Care, 43: 203-20. 
Shepard, Donald S, and Richard J Zeckhauser. 1984. 'Survival versus consumption', Management Science, 30: 423-

39. 
Siegel, Jeremy J. 1992. 'The real rate of interest from 1800–1990: A study of the US and the UK', Journal of 

Monetary Economics, 29: 227-52. 
Sloan, Frank A, W Kip Viscusi, Harrell W Chesson, Christopher J Conover, and Kathryn Whetten-Goldstein. 

1998. 'Alternative approaches to valuing intangible health losses: the evidence for multiple sclerosis', 
Journal of Health Economics, 17: 475-97. 

Virga, M. 1996. 'Earn More, Live Longer-Variation in Mortality by Income Level', Pension Section News: 1-7. 
Viscusi, W Kip, and Joseph E Aldy. 2003. 'The value of a statistical life: a critical review of market estimates 

throughout the world', Journal of Risk and Uncertainty, 27: 5-76. 
Viscusi, W Kip, and William N Evans. 1990. 'Utility functions that depend on health status: estimates and 

economic implications', The American Economic Review: 353-74. 
Weisbrod, Burton A. 1991. 'The health care quadrilemma: an essay on technological change, insurance, quality 

of care, and cost containment', Journal of Economic Literature: 523-52. 
Yaari, Menahem E. 1965. 'Uncertain lifetime, life insurance, and the theory of the consumer', The Review of 

Economic Studies: 137-50. 

  

  



 40 

VII. TABLES AND FIGURES 
 

Table 1. Summary statistics for the data employed in the life-cycle modeling exercise, by health state  

 (1) (2) (3) (4)  (5) (6)  (7) (8) 
   Life expectancy  Quality of life  Exit probability 

Health 
state 

ADL’s Chronic 
conditions 

Age 50 Age 70  Age 50 Age 70  Age 50 Age 70 

1 (healthy) 0 0 30.4 14.0  0.884 0.873  4.2% 12.6% 
2 0 1 27.7 12.4  0.850 0.840  3.6% 10.8% 
3 0 2 24.1 10.4  0.812 0.804  3.6% 10.2% 
4 0 3 20.0 8.4  0.773 0.765  3.9% 10.2% 
5 0 4+ 15.6 6.6  0.730 0.720  3.9% 7.9% 
6 1 0 26.1 12.0  0.830 0.816  6.3% 14.7% 
7 1 1 23.5 10.6  0.795 0.783  5.7% 12.7% 
8 1 2 20.0 8.8  0.754 0.745  6.1% 12.2% 
9 1 3 16.3 7.1  0.716 0.707  6.4% 11.7% 
10 1 4+ 12.7 5.5  0.669 0.662  6.1% 8.6% 
11 2 0 23.8 10.8  0.781 0.765  7.3% 14.3% 
12 2 1 21.0 9.4  0.746 0.731  7.5% 14.3% 
13 2 2 17.6 7.8  0.706 0.693  7.5% 13.8% 
14 2 3 14.5 6.3  0.669 0.655  7.5% 13.1% 
15 2 4+ 11.0 4.8  0.630 0.610  7.3% 10.6% 
16 3+ 0 21.4 8.9  0.700 0.692  3.4% 11.1% 
17 3+ 1 18.5 7.9  0.664 0.660  2.8% 8.5% 
18 3+ 2 15.2 6.4  0.622 0.622  2.3% 7.1% 
19 3+ 3 12.2 5.0  0.584 0.584  1.4% 5.3% 
20 3+ 4+ 8.6 3.8  0.536 0.540  0.0% 0.0% 

Notes: This table reports selected summary statistics for the data employed by the stochastic life-cycle modeling 
exercises presented in Section IV.B. Columns (1) and (2) report the number of impaired activities of daily living 
(ADL) and the number of chronic conditions, which together define a health state. Column (3)-(6) report life 
expectancy (in years) and quality of life for an individual in one of these health states. Quality of life is measured 
using the EQ-5D index, which ranges from 0 (death) to 1 (perfectly healthy). Columns (7) and (8) report the probability 
that an individual transitions to a different health state in the following year. All ADL’s and chronic conditions are 
permanent, so individuals can transition only to higher-numbered health states. These microsimulation data were 
generated by the Future Elderly Model. More information about that model is available in Appendix B2. 
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Table 2. Per capita private value of medical treatment and preventive care at age 50, by health state (thousands 
of dollars) 

(1) (2) (3) (4) (5) (6) (7) 
    Willingness to pay per life-year 
Health 
state 

Life 
expectancy VSL VSI  Treatment Prevention Treatment/Prevention 

1 (healthy) 30.4 $5,878  N/A $193  N/A N/A 
2 27.7 $6,302  $312  $228  $115  1.97 
6 26.1 $6,786  $483  $260  $113  2.29 
3 24.1 $6,930  $774  $288  $123  2.34 
11 23.8 $7,421  $783  $312  $119  2.62 
7 23.5 $7,321  $833  $312  $121  2.58 
16 21.4 $8,021  $1,163  $375  $129  2.91 
12 21.0 $8,089  $1,200  $386  $127  3.04 
4 20.0 $7,780  $1,366  $388  $132  2.95 
8 20.0 $8,151  $1,354  $408  $130  3.15 
17 18.5 $8,782  $1,621  $476  $136  3.50 
13 17.6 $9,057  $1,721  $514  $135  3.81 
9 16.3 $9,248  $1,941  $566  $138  4.10 
5 15.6 $8,966  $2,102  $575  $142  4.04 
18 15.2 $9,949  $2,165  $655  $142  4.59 
14 14.5 $10,308  $2,258  $712  $142  5.02 
10 12.7 $10,771  $2,595  $846  $147  5.75 
19 12.2 $11,468  $2,721  $943  $149  6.32 
15 11.0 $12,081  $2,944  $1,102  $152  7.27 
20 8.6 $13,988  $3,453  $1,621  $159  10.22 

Notes: This table displays values (in thousands of dollars) produced by the stochastic life-cycle modeling exercise 
presented in Section IV.B. Values are sorted by life expectancy at age 50, as reported in column (2). Column (3) 
reports the value of statistical life (VSL) for a 50-year-old in each health state. Column (4) reports the values of 
statistical illness (VSI) from the perspective of a healthy individual in state 1, and can be interpreted as a healthy 
individual’s willingness to pay (WTP) to prevent a marginal increase in the probability of transitioning to the health 
state specified in column (1). Column (5) reports a sick individual’s WTP per life-year for a therapeutic treatment, 
which is equal to the value in column (3) divided by the value in column (2). Column (6) reports the healthy 
individual’s corresponding WTP for preventive care, which is equal to the value in column (4) divided by the 
difference between 30.4 (life expectancy when healthy) and the value in column (2). Column (7) reports the ratio of 
the values reported in columns (5) and (6). The twenty health states listed in column (1) are defined in Table 1. 
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Table 3. Per capita private value of historical 2001-2015 health gains, at age 50 (thousands of dollars) 

Disease 

Increase in life 
expectancy at 
age 50 (years) (1) (2) (3) (4) (5) (6) 

A. No bequest motive        
    All causes 1.43 $95  $159  $302  $87  $142  $263  
    Cancer 0.39 $23  $40  $77  $21  $34  $65  
    Heart disease 1.21 $68  $116  $224  $59  $96  $185  
B. Bequest motive        
    All causes 1.43 $87  $143  $275  $75  $121  $225  
    Cancer 0.39 $22  $36  $70  $18  $29  $55  
    Heart disease 1.21 $66  $106  $204  $52  $78  $150  
Relative risk aversion   1.5 2 2.5 1.5 2 2.5 
OOP medical 
spending  No No No Yes Yes Yes 

Notes: This table reports the value of the reduction in mortality experienced in the United States between 2001 and 
2015, from the perspective of a 50-year-old alive in 2015. The cancer and heart disease calculations do not account 
for competing risks, and thus should be interpreted as holding mortality from all other causes constant. Columns (1)-
(3) report results under the assumption that the individual has no out-of-pocket healthcare or nursing home costs. 
Columns (4)-(6) report results under the assumption that the health shocks are accompanied by an increase in 
healthcare and nursing home costs. The values in Panel A are calculated under the assumption that individuals do not 
have a bequest motive, while those in Panel B assume the bequest motive specification described in Appendix C2. 
The table also shows that these values increase with the size of the coefficient of relative risk aversion, which in our 
utility specification is equal to the inverse of the elasticity of intertemporal substitution.  

 

 

Table 4. Aggregate social value of historical and prospective reductions in mortality (billions of dollars) 

 (1) (2) (3) 
 No annuity Social Security Social Security + 50% 
A. Historical reduction    
    1940-2010 $109,356  $120,855  $126,488  
    1970-2010 $53,492  $59,673  $62,769  
    
B. 10% reduction, all ages    
    All causes $11,550  $12,928  $13,651  
    Cancer $3,348  $3,775  $3,995  
    Diabetes $368  $414  $437  
    Heart disease $2,425  $2,744  $2,916  
    Homicide $105  $102  $99  
    Infectious diseases $166  $188  $201  

Notes: These aggregate values were calculated using the 2015 US population by age. Panel A reports the current value 
of historical reductions in all-cause mortality. Panel B reports the value of a 10 percent prospective reduction in 
mortality. Column (1) presents estimates under the assumption that individuals have no annuities. Column (2) presents 
estimates under the assumption that individuals receive typical Social Security benefits that are financed by an 
earnings tax. Column (3) increases the generosity of Social Security by 50%, financed by an increase in the earnings 
tax. The net present value of individuals’ wealth at age 20 is the same across all three columns.  
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Figure 1. Illustrative example: annual consumption for fully annuitized and non-annuitized consumers 

 
Notes: This figure illustrates the well-known result that it is optimal for a non-annuitized consumer who is exposed to 
longevity risk to shift her consumption forward in time, relative to a fully annuitized consumer. For simplicity, this 
example assumes that the optimal consumption profile of the fully annuitized consumer is flat. 
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Figure 2. Illustrative example: upon falling ill, consumption initially increases 

 
Notes: Both individuals have identical initial wealth at time 𝑡𝑡 = 0. It is optimal for the sick individual (state 2) to 
consume at a higher rate than the healthy individual (state 1) because she has lower life expectancy. Thus, initial 
consumption at time 𝑡𝑡 = 0 in the sick state is higher than in the healthy state, i.e., 𝑐𝑐2(0) > 𝑐𝑐1(0). Proposition 6 
provides conditions under which VSL at time 𝑡𝑡 = 0 in the sick state is also higher. 
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Figure 3. Consumption and the value of statistical life can increase when an individual falls ill 

 

Notes: This figure plots an individual’s consumption (left axis) and value of statistical life (right axis), as calculated 
by a life-cycle modeling exercise where mortality and quality of life are stochastic. The individual is healthy at age 
50, but then falls ill twice, once at age 60 and then again at age 70. At age 60, the illness causes permanent difficulties 
with one routine activity of daily living (ADL). At age 70, she is diagnosed with two chronic conditions and 
subsequently has difficulties with two additional ADL’s. In our data, this corresponds to transitioning from state 1 to 
state 6 at age 60, and then to state 18 at age 70. Summary statistics for these health states are available in Table 1. 
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Figure 4. The value of statistical life depends on an individual’s health history 

 
Notes: This figure reports the mean, 5th percentile, and 95th percentile of the value of statistical life (VSL) from a 
Monte Carlo simulation that is repeated 10,000 times. Each simulation begins at age 50 with a consumer in health 
state 1 (“healthy”). We then randomly generate a health state path {𝑌𝑌51,𝑌𝑌52, … ,𝑌𝑌100}  and solve for optimal 
consumption and VSL using the methods described in Appendix C2. Differences in VSL at older ages are caused by 
differences in the evolution of people’s health states.  
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Figure 5. Treatments for an ill patient are worth more than preventive care for a healthy individual 

 
Notes: The solid blue bars report the value of statistical life (VSL) for an individual in one of 19 different sick states, 
divided by life expectancy in that state. The dotted red bars report the value of statistical illness (VSI) for a healthy 
individual (life expectancy: 30.4 years) divided by the reduction in life expectancy she would experience if she fell 
ill. The data plotted in this figure are also reported in columns (5) and (6) of Table 2. 
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Figure 6. The value of treatment relative to prevention declines with time since illness 

 

Notes: The solid blue bars report the value of statistical life (VSL) divided by life expectancy for the individual who 
suffered the health shock at age 70 depicted in Figure 3. The dotted red bars report the value of statistical illness (VSI) 
for a healthy individual divided by the reduction in life expectancy she would experience if she fell ill with the same 
disease.  
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Figure 7. Correlated spending shocks attenuate the rise in the value of statistical life following a health shock 

 

Notes: The solid red line, which reproduces the value of statistical life (VSL) estimates displayed in Figure 3, assumes 
that health shocks are not accompanied by medical spending shocks. The dashed blue line shows that VSL drops 
slightly following a health shock when we incorporate out-of-pocket medical spending shocks into the life-cycle 
model. The dotted black line additionally incorporates a wealth shock at age 70 that reduces the individual’s wealth 
by 30 percent. Medical spending includes the expected effect of illness on both out-of-pocket healthcare costs and 
nursing home costs.  
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Figure 8. Life-cycle profiles of consumption and income when mortality is deterministic 

 
Notes: This figure plots consumption results from a life-cycle modeling exercise where mortality is deterministic. 
“Consumption (no annuity)” displays consumption for a consumer whose income equals her earnings. “Consumption 
(Social Security)” displays consumption for a consumer receiving typical Social Security benefits that are financed by 
an earnings tax. The net present value at age 20 of all future income is the same across both scenarios. 
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Figure 9. Life-cycle profile of the value of a life-year when mortality is deterministic 

 
Notes: This figure plots the value of a life-year for the two scenarios displayed in Figure 8. The “No annuity” scenario 
assumes the consumer’s income equals her earnings. The “Social Security” scenario assumes the consumer receives 
typical Social Security benefits that are financed by an earnings tax. The net present value at age 20 of all future 
income is identical in both scenarios. 
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Figure 10. Life-cycle profile of the value of statistical life when mortality is deterministic 

 
Notes: This figure plots the value of statistical life for the two scenarios displayed in Figure 8. The “No annuity” 
scenario assumes the consumer’s income equals her labor earnings. The “Social Security” scenario assumes the 
consumer receives typical Social Security benefits that are financed by an earnings tax. The net present value at age 
20 of all future income is identical in both scenarios. 

 



 53 

Figure 11. Similar to annuitization, a bequest motive shifts the value of statistical life towards older ages 

 
Notes: This figure plots the value of statistical life in a setting with deterministic mortality and no annuity markets. 
The “No bequest motive” scenario is identical to the “No annuity” scenario depicted in Figure 10. The bequest motive 
specification is described at the end of Appendix C1. 

 

 

  


	I. Introduction
	II. Deterministic Model
	II.A. The fully annuitized value of life
	II.B. The uninsured value of life

	III. Stochastic Model
	III.A. The value of statistical illness

	IV. Quantitative Analysis
	IV.A. Framework
	IV.B. Stochastic health shocks and the value of life
	IV.C. Retirement policy and the value of life

	V. Conclusion
	VI. References
	VII. Tables and Figures



