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ABSTRACT

Mammography guidelines have weakened in response to evidence that mammograms diagnose 
breast cancers that would never eventually cause symptoms, a phenomenon called 
"overdiagnosis." Given concerns about overdiagnosis, instead of recommending mammograms, 
US guidelines encourage women aged 40-49 to get them as they see fit. To assess whether these 
guidelines target women effectively, I propose an approach that examines mammography 
behavior within an influential clinical trial that followed participants long enough to find 
overdiagnosis. I find that women who are more likely to receive mammograms are healthier and 
have higher socioeconomic status. More importantly, I find that the 20-year level of 
overdiagnosis is at least 3.5 times higher among women who are most likely to receive 
mammograms. At least 36% of their cancers are overdiagnosed. These findings imply that US 
guidelines encourage mammograms among healthier women who are more likely to be 
overdiagnosed by them. Guidelines in other countries do not.
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1 Introduction

The U.S. Preventive Services Task Force (USPSTF) weakened their mammography guidelines in

2009 (U.S. Preventive Services Task Force, 2009) in response to evolving evidence from clinical trials.

Although their previous guidelines recommended regular mammography for asymptomatic women

aged 40 and older (U.S. Preventive Services Task Force, 2002), their updated guidelines left the

mammography decision for women in their 40s to individual women and their doctors. The precise

USPSTF guidelines, as confirmed in 2016, state: “The decision to start screening mammography

in women prior to age 50 years should be an individual one. Women who place a higher value on

the potential benefit than the potential harms may choose to begin biennial screening between the

ages of 40 and 49 years” (Siu, 2016). The USPSTF recommends regular mammography for women

aged 50 to 74 and does not provide guidelines for women older than 74 given insufficient evidence.

These guidelines raise a question that motivates my analysis: do the current USPSTF guidelines

for women in their 40s induce mammograms among the women most likely to benefit from them?

To address this question, I propose an approach to inform targeting within clinical guidelines that

examines behavior within a clinical trial. I apply this approach to data from a clinical trial that

has been important to the evolution of mammography guidelines. I proceed in two steps. First, I

investigate selection heterogeneity: are women who are more likely to receive mammograms different

from other women? Second and more importantly, I investigate treatment effect heterogeneity: are

women who are more likely to receive mammograms more likely to experience better or worse

health outcomes because of them?

Mammography can lead to better health outcomes through the early detection and treatment

of breast cancer that would eventually cause symptoms, but it can also lead to worse health out-

comes through the early detection and treatment of breast cancer that would not eventually cause

symptoms. The article that conveys the 2016 USPSTF guidelines notes, “The most important

harm is the diagnosis and treatment of noninvasive breast cancer that would otherwise not have

become a threat to a woman’s health, or even apparent, during her lifetime (that is, overdiagnosis

and overtreatment)” (Siu, 2016). Overdiagnosis is distinct from false-positive diagnosis. The lat-

ter refers to “a positive test in an individual who is subsequently recognized not to have cancer.

By contrast, an overdiagnosed patient has a tumor that fulfills the pathological criteria for can-

cer”(Welch and Black, 2010). The magnitude of overdiagnosis could be meaningfully large. Bleyer

and Welch (2012) find that as mammography has increased dramatically over time, diagnosis of

early-stage breast cancer has more than doubled while diagnosis of late-stage breast cancer has

fallen only slightly, leading them to conclude that 31% of breast cancers detected in the US in 2008

were overdiagnoses.

Overdiagnosis can pose significant health risks, which makes it an important outcome to study.

It can expose women to unnecessary chemotherapy, radiotherapy, and surgery, which can all be life-

threatening. Even absent subsequent medical care, breast cancer diagnosis itself can be harmful.

Providing a perspective in the New England Journal of Medicine, Welch and Fisher (2017) argue

that the “psychological effects of overutilization and overdiagnosis are also worrisome: turning
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people into patients may undermine their sense of resilience, which is fundamental to health.”

The main concern that has spurred changes in guidelines is that overdiagnosis can be so harmful

that the harms of mammograms can outweigh the benefits. To inform the 2016 USPSTF guidelines,

the task force conducted a meta-analysis (Nelson et al., 2016) of clinical trials conducted worldwide

(Habbema et al., 1986; Tabar et al., 1995; Nyström et al., 2002; Bjurstam et al., 2003; Miller et al.,

2014; Moss et al., 2015). Combining the latest results across trials, the meta-analysis does not find

a statistically significant reduction in all-cause mortality across all age groups or within any age

group. Furthermore, some trials show imprecise increases in all-cause mortality within some age

groups, suggesting that the harms can outweigh the benefits (Nyström et al., 2002; Miller et al.,

2014). In addition, no trials show statistically significant reductions in breast cancer mortality

for women in their 40s. Some trials do show statistically significant reductions in breast cancer

mortality for women in older age groups, but breast cancer mortality need not capture all harms

of mammography, especially because overdiagnosis may lead to deaths not clearly caused by breast

cancer. Given limited evidence showing benefits, there is a stronger rationale to engage with

evidence showing harms through overdiagnosis.

Growing concern about overdiagnosis has prompted the weakening of mammography recom-

mendations around the world to the point that the current US recommendations are stronger than

those in many other countries. Mammography guidelines made by different authorities rely on the

same trials considered by the USPSTF but place more weight on some than others. Within the US,

guidelines from the American College of Physicians and American Academy of Family Physicians

are similar to those from the USPSTF for women in their 40s, as are guidelines from the American

Cancer Society for women aged 40-44 (CDC, 2020). All of these guidelines leave mammography

decisions up to individual women and their doctors under the implicit assumption that doing so

effectively recommends mammograms to women most likely to benefit from them. Outside the US,

European Breast Guidelines do not recommend mammography for any asymptomatic women aged

40-44 (Schünemann et al., 2019) and are therefore weaker. Guidelines in most large individual Eu-

ropean countries, including the United Kingdom, Switzerland, France, and Spain, are even weaker

in the sense that they do not recommend mammography for any asymptomatic women through

age 49 (Ebell et al., 2018).1 Canadian guidelines are even weaker in that they recommend against

mammography for asymptomatic women through age 49 (Klarenbach et al., 2018).

One explanation for why the Canadian guidelines are the weakest is that the Canadian National

Breast Screening Study (CNBSS), a large trial that has been influential to the USPSTF guidelines,

provides some of the most compelling evidence on overdiagnosis. The basis of this evidence is that if

mammograms only lead to early detection of breast cancer that would eventually cause symptoms,

incidence in the control arm should completely “catch up” to incidence in the intervention arm

over time as breast cancers that cause symptoms are diagnosed. However, 25 years after the first

participants enrolled, breast cancer incidence remained meaningfully higher in the intervention arm

than it was in the control arm (Baines et al., 2016), and the difference is statistically significant.

1Guidelines in Sweden are a notable exception, as they recommend mammography for women in the same age
range (Ebell et al., 2018).
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This difference is particularly striking because mammography in the control and intervention arms

likely converged after the active study period of the trial as mammography became widely available

(Baines et al., 2016). Therefore, results from the CNBSS likely reflect the impact of starting

mammography sooner, rather than starting mammography ever. These results are particularly

relevant for the USPSTF guidelines because the previous weakening affected whether women should

begin mammography in their 40s as opposed to their 50s.

I use data shared with me by the investigators of the CNBSS to examine whether overdiagnosis

varies with mammography behavior to inform the current USPSTF guidelines. Crucially for the

approach that I propose, the CNBSS data contain information on mammography behavior: whether

women in the study actually received mammograms, conditional on their random assignment during

the active study period. To the best of my knowledge, the CNBSS is the only trial considered by

the meta-analysis that informs the USPSTF guidelines (Nelson et al., 2016) that tracked takeup

of mammograms for all participants, including those in the control arm. These data show that

during the active study period after the initial enrollment year, a substantial fraction of women in

the control arm received mammograms, and some women in the intervention arm did not.

To allow overdiagnosis to vary with mammography behavior, I specify a heterogeneous treat-

ment effect model in which the “treatment” is mammography. I begin with a model that relies

only on the well-known local average treatment effect (LATE) assumptions of Imbens and Angrist

(1994). Vytlacil (2002) shows that the LATE assumptions are equivalent to the Heckman and Vyt-

lacil (2005) generalized Roy (1951) model of the marginal treatment effect (MTE) (Björklund and

Moffitt, 1987). I therefore draw on the MTE literature (Heckman and Vytlacil, 1999, 2001, 2005;

Carneiro et al., 2011; Brinch et al., 2017; Cornelissen et al., 2018; Mogstad et al., 2018; Kowalski,

2020b) to define heterogeneous selection and to make an ancillary assumption to identify heteroge-

neous treatment effects. I identify heterogeneous selection under the LATE assumptions alone by

comparing outcomes and covariates across three groups formed by the interaction of mammogra-

phy behavior and random assignment. Drawing on terminology from Angrist et al. (1996), “never

takers” are the least likely to receive mammograms because they do not receive them regardless of

random assignment, “compliers” are more likely to receive mammograms because they receive them

if and only if assigned to the intervention arm, and “always takers” are the most likely to receive

mammograms because they receive them regardless of random assignment. Comparisons across

these three groups yield richer insights than the comparison across the two trial arms because they

reflect mammography behavior. I use them to identify selection heterogeneity, to provide empiri-

cal motivation for the ancillary assumption, and to identify treatment effect heterogeneity under

the ancillary assumption. I identify treatment effect heterogeneity by obtaining a lower bound on

the average treatment effect for always takers that I compare to the average treatment effect for

compliers, also known as the LATE.

First, I find heterogeneous selection: women more likely to receive mammograms are healthier

in terms of long-term breast cancer incidence and mortality. They also have higher socioeconomic

status and are more likely to practice several other health behaviors seen as beneficial. They are

more likely to be nonsmokers, and they have lower body mass index.
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Second and more importantly, I find treatment effect heterogeneity that aligns with the selection

heterogeneity I find: women more likely to receive mammograms are more likely to be overdiagnosed

by them. Furthermore, the magnitude of heterogeneity in overdiagnosis is meaningful. Among

women most likely to receive mammograms, the always takers, at least 206 out of 10,000 are

overdiagnosed. This level of overdiagnosis is at least 3.5 times higher than the level of overdiagnosis

among compliers, 58 out of 10,000, as estimated by the LATE. Measured as a share of breast cancers

in the intervention arm, the overdiagnosis rate is at least 36% among always takers and 14% among

compliers. I also find suggestive evidence that women more likely to receive mammograms are more

likely to be harmed by them in terms of long-term mortality. The treatment effects on mortality

20 years after enrollment are not statistically different from zero or from each other, which is

unsurprising given that none of the trials included in the meta-analysis that informs the USPSTF

guidelines (Nelson et al., 2016) show statistically significant effects on all-cause mortality. However,

the implied lower bound on the average treatment effect for always takers is economically significant

in the sense that at least 4.9% of their deaths would not have occurred otherwise.

There are several plausible explanations for my findings. My first finding is intuitive if we

expect that women who are healthier and of higher socioeconomic status will be more likely to

practice health behaviors seen as beneficial, including mammography. This finding is consistent

with empirical evidence on socioeconomic status and health behaviors (Goldman and Smith, 2002;

Cutler and Lleras-Muney, 2010; Oster, 2020). My second finding is perhaps counterintuitive if we

expect that women who are more likely to benefit from mammograms in terms of long-term health

outcomes will be more likely to receive them. However, given my first finding that women more

likely to receive mammograms have higher socioeconomic status, Welch and Fisher (2017) provide a

rationale for my second finding. Analyzing breast cancer incidence and mortality in US counties over

time, they find greater rates of overdiagnosis in counties with higher socioeconomic status. They

explain that “wealthier people are exposed to increased observational intensity: they are likely to

be screened more often and by means of such tests...that can detect smaller abnormalities, undergo

more follow-up testing, undergo more biopsies, and they may be served by health systems that

have a lower threshold for labeling results as abnormal.” The differential overdiagnosis that I find

is consistent with their finding and explanation. Furthermore, it is plausible that women more likely

to receive mammograms also pursue more aggressive treatment (Myerson et al., 2018), providing

a potential mechanism for differential harm. Consistent with this mechanism, I find suggestive

evidence that among women diagnosed with breast cancer during the active study period who had

at least part of a breast removed, women more likely to receive mammograms were more likely to

have an entire breast removed.

An alternative and potentially problematic explanation for my findings is that although women

more likely to receive mammograms are healthier on other dimensions, they are more likely to

receive mammograms because they have higher underlying breast cancer risk. As one response

to this concern, I take a conservative approach to sample selection in my main analysis sample.

The CNBSS conducted extensive baseline surveys and clinical exams. I use variables collected

through these means to exclude women with a family history of breast cancer and women with
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potential knowledge of increased breast cancer risk. As another response, I examine characteristics

of the breast cancers detected during the active study period. I find suggestive evidence that breast

cancers detected in women more likely to receive mammograms are smaller and less invasive, which

could indicate that women more likely to receive mammograms are healthier in terms of their tumor

characteristics, corroborating the selection heterogeneity that I find, or that women more likely to

receive mammograms are more likely to be diagnosed with breast cancer given the same tumor

characteristics, corroborating the treatment effect heterogeneity that I find.

My findings imply that the current USPSTF guidelines for women in their 40s conflate the

women most likely to receive mammograms with the women most likely to benefit from them.

I arrive at this implication by relating always takers within the CNBSS to women who receive

mammograms under the current guidelines. Under the same analogy, compliers would receive

mammograms under the previous stronger guidelines but not under the current guidelines, and

never takers would not receive mammograms under either set of guidelines. The magnitude of

the overdiagnosis rate found by Bleyer and Welch (2012) under the previous stronger guidelines

supports the analogy. Under it, the 31% overdiagnosis rate that they find represents an average

among always takers and compliers. In the CNBSS, I find overdiagnosis rates of at least 36%

for always takers and 14% for compliers, which could average to the rate from the US findings

despite differences in empirical settings. The overdiagnosis that I find among compliers implies

that the previous weakening of the USPSTF guidelines had merit, which is to be expected because

the weakening was partially based on results from the CNBSS, which reflect overdiagnosis for

compliers. However, the overdiagnosis that I find among always takers is a new result. It implies

that there could be merit in a further weakening of the USPSTF guidelines such that they do not

recommend or recommend against mammography for all asymptomatic women in their 40s, in line

with recommendations from other countries. The magnitudes of overdiagnosis I find imply that a

further weakening of the USPSTF guidelines could be even more effective at reducing overdiagnosis

than the previous weakening.

My findings advance the literature on mammography and overdiagnosis. Whereas the meta-

analysis that informs the USPSTF mammography guidelines (Nelson et al., 2016) examines average

health impacts within clinical trials, I examine how the effects of mammography vary with mam-

mography behavior, which is important because guidelines can only have an impact through be-

havior. Outside of the clinical trial literature, a large literature examines mammography behavior

in response to policy interventions that yield natural experiments, but it provides no evidence on

how selection into mammography or treatment effects of mammography vary with such behavior

(Kelaher and Stellman, 2000; Habermann et al., 2007; Kadiyala and Strumpf, 2011, 2016; Finkel-

stein et al., 2012; Kolstad and Kowalski, 2012; Bitler and Carpenter, 2016, 2019; Fedewa et al.,

2015; Mehta et al., 2015; Ong and Mandl, 2015; Lu and Slusky, 2016; Zanella and Banerjee, 2016;

Cooper et al., 2017; Jacobson and Kadiyala, 2017; Buchmueller and Goldzahl, 2018; Myerson et al.,

2019). This literature has been limited because the methods that it employs do not allow it to

recover selection or treatment effect heterogeneity. Furthermore, it rarely engages with the possi-

bility of overdiagnosis as a health impact, perhaps because individual-level data on mammography
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behavior that follow individuals in a randomized or natural experiment for long enough to identify

overdiagnosis are not widely available.

Two papers corroborate the selection heterogeneity that I find within natural experiments, but

consistent with the literature, they do not examine treatment effect heterogeneity, and they do not

consider overdiagnosis. Kim and Lee (2017) analyze a national cancer screening program in Korea

that generated discontinuities in eligibility and find selection heterogeneity such that individuals

more likely to receive mammograms are healthier in terms of cancer incidence six years afterward,

body mass index, blood glucose, and cholesterol. In a paper released since I released the first

working paper version of this paper (Kowalski, 2018), Einav et al. (2019) corroborate the selection

heterogeneity from Kim and Lee (2017) by analyzing mammography takeup before and after age

40 in the United States from 2000 through 2014. They cannot observe cancer incidence for women

who did not receive mammograms, so they predict it using a clinical model calibrated with data

from women who did receive mammograms. I demonstrate that this calibration could potentially

contaminate the selection heterogeneity that they find with treatment effect heterogeneity.

I advance the methodological literature on clinical trials by proposing an approach that relates

treatment effect heterogeneity to behavior within a trial to improve targeting within guidelines.

In the process, although doing so is not my focus, I also contribute to the literature on treatment

effect heterogeneity. The brunt of my contributions to that literature appear in my work on the

Oregon Health Insurance Experiment (Kowalski, 2020b), which I introduced in an earlier working

paper (Kowalski, 2016) and apply here. However, I have divided that working paper such that

some content only appears here. Specifically, in this paper, I identify treatment effect heterogeneity

using an ancillary assumption that is weaker than the linearity assumption that I impose elsewhere.

Brinch et al. (2017) propose this weaker assumption in conjunction with a related assumption to test

treatment effect homogeneity, but I demonstrate here that I can test treatment effect homogeneity

with only one assumption. I also demonstrate how to motivate the assumption theoretically and

empirically, and I show that it implies a bound on the average treatment effect for always takers that

is central to my findings. I also perform inference without a power-limiting Bonferroni correction.

In my only other directly related work (Kowalski, 2020a), I do not break new ground, but I use

stylized examples to illustrate recent advances to the literature on treatment effect heterogeneity.

I also provide a Stata command (Kowalski et al., 2018) that can be used to apply these advances

to examine selection and treatment effect heterogeneity in other clinical trials.

In the next section, I provide more information on the CNBSS data and published results.

In Section 3, I present the model. In Section 4, I present my two main findings. I show that

my findings are robust to a wide variety of alternative specifications in Section 5. I conclude by

discussing implications for guidelines and future research in Section 6.

2 CNBSS Background and Replication of Results

Viewing the CNBSS as an influential trial, my focus is not to evaluate the CNBSS itself or previous

work on it. Rather, my focus is to extend analysis of the CNBSS to examine how the results vary

with mammography behavior. I begin by providing background and replicating published results.
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The CNBSS enrolled almost 90,000 women aged 40-59 between 1980 and 1985. All women were

randomly assigned to an intervention arm or a control arm.2 To evaluate the randomization, Miller

et al. (2002) report balance tests among women in their 40s at enrollment, and they do not find

many meaningful differences between the intervention and control arms. I conduct similar balance

tests with the variables available to me, and I find results consistent with theirs. The independent

Cochrane review considers the CNBSS as one of only three mammography trials with adequate

randomization (Gøtzsche and Jørgensen, 2013).

Intervention arm women received access to annual mammograms and clinical breast examina-

tions during the active study period, which consisted of the enrollment year and 3 to 4 years after

enrollment. The data show that some women in the intervention arm did not receive mammograms

after the enrollment year during the active study period. Some did not return to study centers and

others returned but refused mammography (Miller et al., 1992a). Control arm women in their 40s

at enrollment received an initial clinical breast examination followed by usual care in the commu-

nity, and control arm women in their 50s at enrollment received access to annual clinical breast

examinations in the initial year and each year of the active study period. The data show that a

substantial fraction of control arm women received mammograms during the active study period,

which is not surprising given that a CNBSS investigator noted in the early 1980s that “many be-

lieve that if they demand a mammogram, their doctor will accede to their request” (Baines, 1984).

Although the CNBSS collected data on mammography for all participants during the active study

period, it did not continue doing so afterward.

However, the CNBSS data include two important long-term health outcomes—breast cancer

incidence and all-cause mortality—through linkage to cancer registries that are complete across

Canada (Baines et al., 2016) and the Canadian Mortality Database. The CNBSS is the only trial

considered by the meta-analysis that informs the USPSTF guidelines (Nelson et al., 2016) that

allows for examination of breast cancer incidence and all-cause mortality at least 20 years after

enrollment for all participants. The Cochrane review deems the CNBSS as at low risk of attrition

bias (Gøtzsche and Jørgensen, 2013). The breast cancer incidence data include invasive breast

cancer as well as non-invasive ductal carcinoma in situ (DCIS). DCIS tumors are considered to be

of ultralow risk, but the word “carcinoma” causes alarm, which has prompted proposals to rename

DCIS tumors “indolent lesions of epithelial origin (IDLE)” (Esserman and Varma, 2019). Since

many DCIS tumors can only be diagnosed by mammograms, it is important that they are included

in analyses of overdiagnosis.

I can closely or exactly replicate the latest results published by the CNBSS investigators. Im-

portantly, I can closely replicate the Baines et al. (2016) result on breast cancer incidence that

shows overdiagnosis, and it is statistically significant.3 I can also exactly replicate the latest re-

2Randomization was conducted at the individual level and stratified by 5-year age at enrollment and study
center (Miller et al., 1992a). The randomization process did not intentionally vary the probability of assignment to
intervention across strata, so strata controls are not required.

3In the Baines et al. (2016) calculation of overdiagnosis 25 years after the first CNBSS participants enrolled, the
difference in breast cancer incidence between the intervention and control arms is 0.41% (=7.43% - 7.02%). In my
replication, the difference is 0.44% (=7.51% - 7.07%). Both differences are statistically significant.
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sults on all-cause and breast cancer mortality. These results show higher all-cause mortality in the

intervention arm than the control arm (Miller et al., 2014), but the difference is not statistically

significant. Breast cancer mortality is slightly lower in the intervention arm (Miller et al., 2014),

but this difference is not statistically significant either. In terms of statistical significance, the

long-term results are consistent with results published at earlier follow-up lengths (Miller et al.,

1992a,b, 1997, 2000, 2002, 2014).

In the replication results that serve as the foundation for my analysis, I depart from the latest

published results in four ways to increase the relevance of my findings to the USPSTF guidelines

for women in their 40s. First, I only include women aged 40-49 at enrollment in my main analysis

sample, and I examine robustness among women aged 50-59 at enrollment. Second, because the

USPSTF guidelines are intended for asymptomatic women without a genetic predisposition for

breast cancer, and because I aim to exclude women with potential knowledge of increased breast

cancer risk, I exclude women if they report any breast cancer in their family, any previous breast

cancer diagnosis, any other breast disease, or any symptoms. I also exclude women if a nurse

found abnormalities or referred them for review. My main analysis sample includes 19,505 women.

I examine robustness in the full sample of 50,430 women aged 40-49 at enrollment and in the

subsample of excluded women. Third, to make the timing of my findings easier to interpret, I

report results at a fixed follow-up length of 20 years after enrollment, as opposed to a fixed calendar

date that reflects various follow-up lengths. I also examine robustness at earlier follow-up lengths.

Fourth, when analyzing mortality, I only examine all-cause mortality because it is less subjective

than breast cancer mortality and because it can capture a wider range of collateral harms.

3 Model

As the foundation for the model, I rely on the LATE independence and monotonicity assumptions

of Imbens and Angrist (1994). I present implications of these assumptions using simple figures.

The figures motivate the identification of selection heterogeneity under the LATE assumptions and

the identification of treatment effect heterogeneity under a single ancillary assumption beyond the

LATE assumptions.

3.1 First Stage: Mammography

In the model, the treatment is mammography, which I represent with the binary variable D. In the

main specification, I set D = 1 if a participant receives a mammogram in at least one year during

the active study period after the enrollment year, and I set D = 0 otherwise. The instrument Z

is a binary variable such that Z = 1 represents random assignment to the intervention arm and

Z = 0 represents random assignment to the control arm.

I illustrate implications of the first stage of the model in Figure 1. In my main analysis sample,

19% of control women and 95% of intervention women receive mammograms, so the probability

of treatment in control pC is 0.19 and the probability of treatment in intervention pI is 0.95. The

top line depicts the fraction treated in control, and the middle line depicts the fraction treated

in intervention. By the LATE independence assumption, which requires that assignment to in-

tervention or control is random, the bottom line depicts the fraction treated in intervention and
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control on the same line. This line characterizes the fraction treated p if the entire sample were

assigned to intervention or control. The observed probabilities of treatment in intervention and

control partition the line into three ranges. I label the ranges using terminology from Imbens and

Angrist (1994) in which “always takers” receive treatment regardless of random assignment, “com-

pliers” receive treatment if and only if assigned to the intervention arm, and “never takers” do not

receive treatment regardless of random assignment. The LATE monotonicity assumption precludes

“defiers” who receive treatment if and only if assigned to the control arm because it requires that

assignment to the intervention arm weakly increases mammography for every participant in the

trial.

Figure 1: Ranges of the Fraction Treated p for Always Takers, Compliers, and Never Takers:
Always Takers are More Likely to Receive Mammograms Than Compliers,

Who are More Likely to Receive Mammograms Than Never Takers

0 pC = 0.19 pI = 0.95 1
Always Takers Compliers Never Takers

Z=1

Z=0

D=1 D=0

D=1 D=0

Fraction treated p

Note. The treatment D is mammography, which is equal to one if a participant receives a mammogram in at least one year during
the active study period after the enrollment year. The instrument Z is equal to one if a participant is assigned to intervention.
pC is the fraction treated in control P (D = 1 | Z = 0) and pI is the fraction treated in intervention P (D = 1 | Z = 1). The
main analysis sample includes women aged 40-49 at enrollment and excludes those who report any breast cancer in their family,
any previous breast cancer diagnosis, any other breast disease, or any symptoms, as well as those for whom a nurse found
abnormalities or referred them for review.

The main implication of the first stage of the model that I emphasize with Figure 1 is that

there is an ordering from always takers to compliers to never takers, which has been shown by

Imbens and Rubin (1997) and Vytlacil (2002). In the CNBSS, I interpret this ordering in terms of

mammography behavior within the trial. Always takers are the most likely to receive mammograms

(they receive them with probability 1), followed by compliers (they receive them with the probability

of assignment to intervention), followed by never takers (they receive them with probability 0). This

interpretation is useful for the analogy of always takers to the women who receive mammograms

under the current USPSTF guidelines, compliers to the women who would receive mammograms

under the previous but not the current USPSTF guidelines, and never takers to the women who

would not receive mammograms under either guidelines.

3.2 Second Stage: Health Outcomes

I relate a health outcome Y , breast cancer incidence or all-cause mortality, to mammography D as

follows:

Y = YU + (YT − YU )D,

10



where YT represents the potential outcome when treated (D = 1), and YU represents the potential

outcome when untreated (D = 0). The LATE independence assumption implies that both potential

outcomes are independent of assignment to intervention.

Figure 2: Derivation of Average Breast Cancer Incidence for Always Takers, Compliers, and Never Takers:
Averages for Treated and Untreated Compliers Depicted with Lighter Shading
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Note. The outcome Y is breast cancer incidence, measured 20 years after enrollment for all participants, based on initial
diagnosis and the exact calendar date of enrollment. The treatment D is mammography, which is equal to one if a participant
receives a mammogram in at least one year during the active study period after the enrollment year. The instrument Z is
equal to one if a participant is assigned to intervention. pC is the fraction treated in control P (D = 1 | Z = 0) and pI is the
fraction treated in intervention P (D = 1 | Z = 1). The main analysis sample includes women aged 40-49 at enrollment and
excludes those who report any breast cancer in their family, any previous breast cancer diagnosis, any other breast disease, or
any symptoms, as well as those for whom a nurse found abnormalities or referred them for review.

The main implication of the second stage of the model that I emphasize with Figure 2 is that it

is possible to derive average treated outcomes of always takers and compliers and average untreated

outcomes of compliers and never takers (Imbens and Rubin, 1997; Katz et al., 2001; Abadie, 2002,

2003). I provide a graphical depiction of derivation in the CNBSS in Figure 2. Consider treated

women in control. These women must be always takers, so their average outcome yields an estimate

of the average treated outcome of always takers.4 I plot this value, 571 breast cancers per 10,000

women, over the support of the fraction treated p for always takers using a dotted line to indicate

that it represents a treated outcome. Next consider untreated women in intervention. These women

must be never takers, so their average outcome yields an estimate of the average untreated outcome

4E[YT | always takers] = E[Y | D = 1, Z = 0].
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of never takers.5 I plot this value, 667 breast cancers per 10,000 women, using a dashed line to

indicate that it represents an untreated outcome. Estimation of the average treated and untreated

outcomes of compliers requires a little more work. To estimate the average treated outcome of

compliers, consider treated women in intervention. The average outcome of these women, 453

breast cancers per 10,000 women, represents a weighted average treated outcome of always takers

and compliers, so I plot it over the full support for always takers and compliers. Because we know

the fraction of this support attributable to always takers, and we have estimated their average

outcome, we can back out an estimate of the average treated outcome of compliers.6 I plot this

value, 424 breast cancers per 10,000 women, over the support for compliers. The derivation of the

average untreated outcome of compliers, 366 breast cancers per 10,000, is similar.7

Figure 3: Average Breast Cancer Incidence for Always Takers, Compliers, and Never Takers
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Note. Bootstrapped standard errors are under point estimates in parentheses. The outcome Y is breast cancer incidence,
measured 20 years after enrollment for all participants, based on initial diagnosis and the exact calendar date of enrollment.
The treatment D is mammography, which is equal to one if a participant receives a mammogram in at least one year during
the active study period after the enrollment year. The instrument Z is equal to one if a participant is assigned to intervention.
pC is the fraction treated in control P (D = 1 | Z = 0) and pI is the fraction treated in intervention P (D = 1 | Z = 1). The
main analysis sample includes women aged 40-49 at enrollment and excludes those who report any breast cancer in their family,
any previous breast cancer diagnosis, any other breast disease, or any symptoms, as well as those for whom a nurse found
abnormalities or referred them for review.

In Figure 3, I remove content from Figure 2 to depict comparisons across always takers, treated

and untreated compliers, and never takers more cleanly. As I show with an arrow, the LATE, the

5E[YU | never takers] = E[Y | D = 0, Z = 1].
6E[YT | compliers] = pI

pI−pC
E[Y | D = 1, Z = 1]− pC

pI−pC
E[Y | D = 1, Z = 0].

7E[YU | compliers] = 1−pC
pI−pC

E[Y | D = 0, Z = 0]− 1−pI
pI−pC

E[Y | D = 0, Z = 1].
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average treatment effect for compliers, is equal to the difference between the average treated and

untreated outcomes of compliers (Imbens and Rubin, 1997). This treatment effect on breast cancer

incidence 20 years after enrollment indicates that the level of overdiagnosis among compliers is

58 cancers per 10,000 women and that the rate of overdiaganosis among treated compliers is 14%

(=58/424). I emphasize with the figure that the LATE says nothing about the average treatment

effect for always or never takers, which represent sizeable and distinct fractions of women. The

average treatment effect for any group is equal to the average treated outcome minus the average

untreated outcome. Always takers are treated by definition, so it is not possible to estimate

their average untreated outcome or their average treatment effect without ancillary assumptions.

Similarly, never takers are untreated by definition, so it is not possible to estimate their average

treated outcome or their average treatment effect without ancillary assumptions. However, the

average outcomes that can be derived for always and never takers appear very different from the

average outcomes of compliers. By 20 years after enrollment, 5.71% of always takers and 6.67%

never takers have been diagnosed with breast cancer, as compared to 4.24% of treated compliers

and 3.66% of untreated compliers. These comparisons provide the variation that I use as a starting

point to identify how selection and the treatment effect vary with mammography behavior.

3.3 Definitions of Selection and Treatment Effect Heterogeneity in the Model

Following Kowalski (2020b), I define selection and treatment effect heterogeneity on Y along the

fraction treated p using functions from the MTE literature (see Carneiro and Lee, 2009; Brinch

et al., 2017):

Selection Heterogeneity along Fraction Treated p: MUO(p) = E [YU | p]

Treatment Effect Heterogeneity along Fraction Treated p: MTE(p) = E [YT − YU | p]

Selection + Treatment Effect Heterogeneity along Fraction Treated p: MTO(p) = E [YT | p] .

The first function, which I refer to as the “marginal untreated outcome (MUO)” function, defines

what I refer to as “selection heterogeneity” along the fraction treated p. Selection heterogeneity

generalizes the concept of “selection bias,” as defined by Angrist (1998) and Heckman et al. (1998)

among others, which is equal to the difference in average untreated outcomes between treated and

untreated participants:

Selection Bias: E[YU | D = 1]− E[YU | D = 0].

Selection bias depends on the fraction of the sample assigned to intervention, a parameter chosen as

part of the trial design, because assignment to intervention determines treatment D for compliers.

Furthermore, selection bias is not identified without ancillary assumptions. In contrast, a different

special case of selection heterogeneity does not depend on the fraction of the sample assigned to

intervention, and it is identified without ancillary assumptions. Randomization makes identification

possible by generating exogenous variation in the fraction treated p, thereby making the average

untreated outcome of compliers distinguishable from the average untreated outcome of never takers.
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The second function is the “marginal treatment effect (MTE)” function of Heckman and Vytlacil

(1999, 2001, 2005). It defines treatment effect heterogeneity along the fraction treated p. In the

CNBSS, the MTE function characterizes how the impact of mammography on a health outcome

changes as women become less likely to receive mammograms.

The third function, which I refer to as the “marginal treated outcome (MTO)” function, char-

acterizes the sum of selection and treatment effect heterogeneity along the fraction treated p. It

is tempting to assert that there should be no material distinction between treated and untreated

outcomes. However, the treatment effect is defined as the treated outcome minus the untreated

outcome, not the untreated outcome minus the treated outcome. The treatment effect has magni-

tude and direction, which is why I represent the LATE with an arrow in Figure 3. Renaming the

untreated outcome as the treated outcome and vice versa would change the direction of the treat-

ment effect, illustrating why there is a material distinction between treated and untreated outcomes

in the definitions of selection and treatment effect heterogeneity. Under the reversed definition of

the treatment, there would still be a material distinction: heterogeneity in treated outcomes would

capture selection heterogeneity, and heterogeneity in untreated outcomes would capture the sum

of selection and treatment effect heterogeneity.

4 Findings

Applying the model to the CNBSS, I identify and estimate how selection and treatment effect

vary with mammography behavior. First, under the model that assumes no more than the LATE

assumptions, I find selection heterogeneity: women who are more likely to receive mammograms are

healthier in terms of long-term breast cancer incidence and all-cause mortality. Baseline covariates

that measure socioeconomic status and health behaviors, as well as results from the literature,

corroborate this finding. This finding informs an ancillary assumption that I impose to identify

treatment effect heterogeneity. Second and more importantly, under the ancillary assumption, I

find treatment effect heterogeneity: the 20-year level of overdiagnosis is at least 3.5 times higher

among women most likely to receive mammograms, such that at least 36% of their cancers are

overdiagnosed. I also find suggestive evidence that corroborates this finding: cancers detected

among the women more likely to receive mammograms are smaller and less invasive.

4.1 Selection Heterogeneity: Women More Likely to Receive Mammograms are

Healthier

I identify selection heterogeneity by testing the null hypothesis that the following test statistic is

equal to zero:

E[YU | compliers]− E[YU | never takers]. (1)

I refer to this test as the “untreated outcome test” because it compares the average untreated

outcomes of compliers and never takers. This test is equivalent or similar to tests proposed by

Bertanha and Imbens (2014), Guo et al. (2014), and Black et al. (2017), generalized by Mogstad
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et al. (2018).8 Unlike previous literature, I demonstrate in Kowalski (2020b) that the untreated

outcome test identifies a special case of selection heterogeneity by expressing the untreated out-

come test statistic in (1) as a weighted integral of the MUO function.9 Identification stems from

randomization, which generates compliers and never takers.

Figure 4: Untreated Outcome Test Rejects Selection Homogeneity on Breast Cancer Incidence at
0.3% Level: Women More Likely to Receive Mammograms are Healthier
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Note. Bootstrapped standard errors are under point estimates in parentheses, and two-tailed bootstrapped p-values are under
test statistics in brackets. The outcome Y is breast cancer incidence, measured 20 years after enrollment for all participants,
based on initial diagnosis and the exact calendar date of enrollment. The treatment D is mammography, which is equal to
one if a participant receives a mammogram in at least one year during the active study period after the enrollment year. The
instrument Z is equal to one if a participant is assigned to intervention. pC is the fraction treated in control P (D = 1 | Z = 0)
and pI is the fraction treated in intervention P (D = 1 | Z = 1). The main analysis sample includes women aged 40-49 at
enrollment and excludes those who report any breast cancer in their family, any previous breast cancer diagnosis, any other
breast disease, or any symptoms, as well as those for whom a nurse found abnormalities or referred them for review.

Applying the untreated outcome test in the CNBSS, I find selection heterogeneity on breast

cancer incidence and all-cause mortality. As shown in Figure 4, the test statistic indicates that

average breast cancer incidence among untreated compliers was 3.01 percentage points lower, almost

8The test proposed by Bertanha and Imbens (2014) is similar because they develop their test for a regression
discontinuity context, but it is effectively an equivalent test. Bertanha and Imbens (2014) propose this test as one
component of a test for external validity, but they do not propose it as a test of selection heterogeneity. Similarly,
Guo et al. (2014) propose this test as one component of a test for unmeasured confounding, but they do not discuss
it as a test for selection heterogeneity. Black et al. (2017) propose this test as one of two tests for “selection,” which
they do not define.

9I express the untreated outcome test statistic as
∫ 1

0
(ω(p, pC , pI)− ω(p, pI , 1)) MUO(p) dp, where ω(p, pL, pH) =

1{pL ≤ p < pH}/(pH − pL). The first term represents the average untreated outcome of compliers, and the second
term represents the average untreated outcome of never takers.
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50% lower, than it was among never takers. The test statistic is statistically different from zero, and

the untreated outcome test rejects selection homogeneity on breast cancer incidence at the 0.3%

level.10 The test also rejects selection homogeneity on all-cause mortality. The 20-year all-cause

mortality rate is 4.28% for untreated compliers and 9.90% for never takers. The 5.62 percentage

point difference in all-cause mortality between these two groups is meaningfully large, and it is

statistically different from zero at the 0.1% level. All-cause mortality and breast cancer incidence

are both measures of health, and compliers are more likely to receive mammograms than never

takers. Therefore, the selection heterogeneity that I find indicates that women more likely to

receive mammograms are healthier.

Recast in terms of the untreated outcome test, evidence from Kim and Lee (2017) and Einav

et al. (2019) also indicates selection heterogeneity such that women more likely to receive mammo-

grams are healthier. Kim and Lee (2017) compare average cancer incidence of compliers and never

takers, finding that compliers are less likely to have cancer. They restrict analysis to untreated

compliers in some specifications, but they also consider an average of treated and untreated com-

pliers in others, which could taint the selection heterogeneity that they find in those specifications

with an implicit treatment effect for treated compliers. Einav et al. (2019) do not explicitly discuss

compliers and never takers, but their comparison of “responders” to “women who never screen”

effectively compares an average of treated and untreated compliers to never takers. However, they

obtain cancer incidence for never takers through a clinical model calibrated with data from treated

women, which could taint the selection heterogeneity that they find with implicit heterogeneous

treatment effects for compliers and never takers.

4.1.1 Baseline Covariates Corroborate Selection Heterogeneity

The untreated outcome test shows selection heterogeneity based on the comparison of average un-

treated health outcomes of compliers and never takers. I do not observe untreated health outcomes

of always takers by definition. However, I do observe baseline covariates for always takers, as well

as compliers and never takers. I use these baseline covariates as proxies for untreated health out-

comes, allowing me to investigate whether the selection heterogeneity that I find also applies over

the range of the fraction treated p from always takers to compliers.

To derive average baseline covariates for always takers, compliers, and never takers, I begin

with the same approach that I demonstrate in Figure 2 with a covariate X in lieu of an outcome

Y . That approach yields a different average outcome for treated and untreated compliers, but

average baseline covariates should be the same for treated and untreated compliers by the LATE

independence assumption. I therefore obtain an average baseline covariate for all compliers by

weighting the average baseline covariates for treated and untreated compliers by the probabilities

of treated and untreated compliers in the sample, which are equal to the probabilities of assignment

to intervention and control.11

10For inference, I conduct a nonparametric bootstrap with 1,000 replications and report a two-tailed p-value
constructed from the largest confidence interval that excludes zero.

11E[X | compliers] = P(Z = 1)
[

pI
pI−pC

E[X | D = 1, Z = 1]− pC
pI−pC

E[X | D = 1, Z = 0]
]
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As shown in Table 1, baseline measures of socioeconomic status tend to vary monotonically from

always takers to compliers to never takers, with always takers having the highest socioeconomic

status. These patterns are consistent with an extensive literature that shows a positive correlation

between socioeconomic status and health (see National Center for Health Statistics (2012) for a

review). Measures of baseline health behavior suggest a potential mechanism: women more likely

to receive mammograms are more likely to practice other health behaviors seen as beneficial. As

shown, smoking status, body mass index, and breast self-examination vary monotonically from

always takers to compliers to never takers, and many of the differences are statistically significant.

Overall, analysis of baseline covariates corroborates the selection heterogeneity that I find from

compliers to never takers. It also supports extension of the finding of selection heterogeneity such

that in the absence of mammograms, always takers would have the best health outcomes, followed

by compliers, followed by never takers.

Table 1: Baseline Covariates Corroborate Selection Heterogeneity:
Women More Likely to Receive Mammograms Have Higher Socioeconomic Status

and Are More Likely to Practice Other Health Behaviors Seen as Beneficial

Means Difference in Means

(1) (2) (3)
Always Never
Takers Compliers Takers (1)-(2) (2)-(3)

Baseline Socioeconomic Status
University, trade or business school 0.50 0.46 0.39 0.04 0.08

(0.01) (0.00) (0.02) (0.01) (0.02)
In work force 0.65 0.64 0.65 0.02 -0.02

(0.01) (0.00) (0.02) (0.01) (0.02)
Age at first birth 24.28 23.98 23.57 0.30 0.41

(0.11) (0.05) (0.20) (0.14) (0.21)
No live birth 0.16 0.15 0.13 0.01 0.01

(0.01) (0.00) (0.02) (0.01) (0.02)
Married 0.80 0.81 0.75 -0.01 0.06

(0.01) (0.00) (0.02) (0.01) (0.02)
Husband in work force and alive 0.81 0.81 0.76 -0.00 0.05

(0.01) (0.00) (0.02) (0.01) (0.02)
Baseline Health Behavior

Non-Smoker 0.78 0.75 0.63 0.03 0.12
(0.01) (0.00) (0.02) (0.01) (0.02)

Body Mass Index 23.87 24.42 24.48 -0.56 -0.06
(0.10) (0.04) (0.22) (0.12) (0.23)

Used oral contraception 0.74 0.71 0.67 0.03 0.04
(0.01) (0.00) (0.02) (0.01) (0.02)

Used estrogen 0.13 0.13 0.15 -0.00 -0.02
(0.01) (0.00) (0.02) (0.01) (0.02)

Any mammograms prior to enrollment 0.23 0.13 0.13 0.10 -0.00
(0.01) (0.00) (0.01) (0.01) (0.02)

Practiced breast self-examination 0.47 0.44 0.38 0.03 0.06
(0.01) (0.00) (0.02) (0.01) (0.02)

Note. Bootstrapped standard errors are under point estimates in parentheses. Each line of the table reports statistics on a
different baseline covariate X. The treatment D is mammography, which is equal to one if a participant receives a mammogram
in at least one year during the active study period after the enrollment year. The instrument Z is equal to one if a participant
is assigned to intervention. pC is the fraction treated in control P (D = 1 | Z = 0) and pI is the fraction treated in intervention
P (D = 1 | Z = 1). The main analysis sample includes women aged 40-49 at enrollment and excludes those who report any
breast cancer in their family, any previous breast cancer diagnosis, any other breast disease, or any symptoms, as well as
those for whom a nurse found abnormalities or referred them for review. Some differences between statistics might not appear
internally consistent because of rounding.

+ P(Z = 0)
[

1−pC
pI−pC

E[X | D = 0, Z = 0]− 1−pI
pI−pC

E[X | D = 0, Z = 1]
]
.
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4.2 Treatment Effect Heterogeneity: Women More Likely to Receive Mammograms

Experience Higher Levels of Overdiagnosis

The evidence that baseline health outcomes decrease from always takers to compliers to never

takers provides justification for an ancillary assumption that I use to identify treatment effect

heterogeneity on a health outcome Y . The assumption requires weak monotonicity of untreated

outcomes from always takers to compliers to never takers:

M.1. (Weak Monotonicity of the MUO Function) For all p1, p2 ∈ [0, 1] such that p1 < p2:

E[YU | p1] ≤ E[YU | p2] or E[YU | p1] ≥ E[YU | p2],

where the empirical direction of selection heterogeneity determines the direction of the weak mono-

tonicity. While the model imposes the LATE monotonicity assumption in the first stage, M.1

imposes a related weak monotonicity in the second stage.

Brinch et al. (2017) impose M.1 in conjunction with an analogous weak monotonicity assumption

on the MTO function. I advance the literature here by recognizing that either of the Brinch et al.

(2017) assumptions is sufficient to test for treatment effect heterogeneity. I only impose M.1 because

the selection heterogeneity that I find in terms of untreated outcomes and covariates provides

empirical support for it. In contrast, alternative assumptions on the MTO or MTE functions

entail assumptions about treatment effect heterogeneity. I prefer not to identify treatment effect

heterogeneity with assumptions about treatment effect heterogeneity.

In Figure 5, I demonstrate that M.1 yields an upper bound on the average untreated outcome

of always takers in the CNBSS, which implies a lower bound on the average treatment effect for

always takers. It is well-known that it is possible to estimate bounds on the average treatment

effect for always takers using bounds that arise from the natural range of outcomes (Robins, 1989;

Manski, 1990; Balke and Pearl, 1997) or from ancillary assumptions (Imbens and Rubin, 1997). The

ancillary assumptions made by Olsen (1980), Heckman (1979), and Brinch et al. (2017), discussed

by Kline and Walters (2019), also imply bounds on the average treatment effect for always takers,

but those assumptions are stronger than M.1 and more difficult to motivate in the CNBSS.

As shown in Figure 5, the lower bound on the average treatment effect for always takers is larger

than the LATE, the average treatment effect for compliers, which provides evidence of treatment

effect heterogeneity. I conduct a formal test of the null hypothesis of treatment effect homogeneity

which rejects the null hypothesis if the following test statistic is negative:(
E[YU | compliers]− E[YU | never takers]

)
∗
(
(E[YT | always takers]− E[YU | compliers)− (E[YT | compliers]− E[YU | compliers)

)
.

(2)

The term in the first line of (2) is the untreated outcome test statistic, which determines whether the

bound on the average treatment effect for always takers is an upper bound or a lower bound. The

term in the second line is the difference between the bound on the always taker average treatment

effect and the LATE. For internal consistency with inference that I perform on other quantities,

I perform inference using a nonparametric bootstrap with 1,000 replications. That is, I report a
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Figure 5: Test Rejects Treatment Effect Homogeneity on Breast Cancer Incidence at 2.3% Level:
Overdiagnosis is at Least 3.5 Times Higher Among Women Most Likely to Receive Mammograms,

At Least 36% (= 206/571) of Their Cancers are Overdiagnosed
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(59)

test rejects treatment effect homogeneity:
-301*(206 - 58) = -44,311 < 0

{0.023}

untreated outcome test rejects selection homogeneity:
366 - 667 = -301 6= 0

[0.003]
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Note. Bootstrapped standard errors are under point estimates in parentheses, two-tailed bootstrapped p-values are under test
statistics in brackets, and one-tailed bootstrapped p-values are under test statistics in curly braces. The outcome Y is breast
cancer incidence, measured 20 years after enrollment for all participants, based on initial diagnosis and the exact calendar
date of enrollment. The treatment D is mammography, which is equal to one if a participant receives a mammogram in at
least one year during the active study period after the enrollment year. The instrument Z is equal to one if a participant is
assigned to intervention. pC is the fraction treated in control P (D = 1 | Z = 0) and pI is the fraction treated in intervention
P (D = 1 | Z = 1). The main analysis sample includes women aged 40-49 at enrollment and excludes those who report any
breast cancer in their family, any previous breast cancer diagnosis, any other breast disease, or any symptoms, as well as
those for whom a nurse found abnormalities or referred them for review. Some differences between statistics might not appear
internally consistent because of rounding.

one-tailed p-value equal to the fraction of bootstrap replications in which the test statistic in (2)

is positive. Because this inference approach relies on a single test statistic, it is more powerful

than the approach proposed by Brinch et al. (2017). That approach effectively conducts separate

tests on the signs of the first and second terms of (2) and then tests whether both signs are equal

using a Bonferroni correction to account for multiple hypothesis testing, which is power-reducing.

Accordingly, the test rejects the null hypothesis of treatment effect homogeneity at the 4.3% level

under the Brinch et al. (2017) approach and at the 2.3% level under my proposed approach.

The statistical significance of the treatment effect heterogeneity is important, but its magni-

tude is also meaningful, as are the magnitudes of the treatment effects themselves. As depicted in

Figure 5, the average treatment effect for compliers, the LATE, indicates that by 20 years after

enrollment, breast cancer incidence among compliers who received mammograms during the active

study period was 0.58 percentage points higher than it would have been otherwise. To put this
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magnitude in context, 20-year breast cancer incidence was 424 per 10,000 among treated compliers,

so the LATE indicates that 14% (=0.58/4.24) of breast cancers, almost 1 in 7, were overdiagnosed.

Turning to always takers, the lower bound on the average treatment effect indicates that breast

cancer incidence among always takers who received mammograms during the active study period

was at least 2.06 percentage points higher than it would have been otherwise. Thus, the average

treatment effect for always takers was at least 3.5 (=2.06/0.58) times higher than it was for com-

pliers. Therefore, the 20-year level of overdiagnosis is at least 3.5 times higher among the women

most likely to receive mammograms, the always takers, than it is among compliers. Furthermore,

given that the 20-year breast cancer incidence rate among always takers is 5.71%, at least 36%

(=2.06/5.71) of their breast cancers are overdiagnosed.

The rates of overdiagnosis that I estimate within my main analysis sample, at least 36% among

always takers and 14% among compliers, fall squarely within the range of overdiagnosis estimates

from literature. Estimates vary in their data sources, their identification strategies, the types of

breast cancers that they consider, and the denominators that they use to calculate overdiagnosis

rates. In a review that includes estimates from clinical trials as well as natural experiments created

by population screening programs, estimates have been reported as high as 52% (Gøtzsche and

Jørgensen, 2013). Within the CNBSS, Miller et al. (2014) reports an overdiagnosis rate of 22%,

and Baines et al. (2016) report several different overdiagnosis rates that vary from 5% to 48%.

Baines et al. (2016) obtain the overdiagnosis rate of 5% by comparing incidence in intervention and

control. This approach provides an average measure of overdiagnosis among all women under the

implicit assumption that overdiagnosis is zero among always and never takers.

I do not provide an estimate of overdiagnosis among never takers. During the active study

period, never takers do not receive mammograms, so they cannot be overdiagnosed, but they

can be underdiagnosed. After the active study period, never takers can receive mammograms

(the term “never taker” gets its meaning within the active study period), so never takers can be

overdiagnosed or underdiagnosed in the long term. I could potentially determine whether never

takers are overdiagnosed or underdiagnosed in the long term by making additional assumptions.

However, assumptions analogous to M.1 on the MTO and MTE functions are either difficult to

defend or uninformative in the CNBSS, so I refrain from imposing them.12 Furthermore, in the

analogy to the USPSTF mammography guidelines, never takers do not receive mammograms under

the current or previous guidelines, so the treatment effect for them is less policy-relevant than the

treatment effects for always takers and compliers.

12Specifically, weak monotonicity of the MTO function would be difficult to defend in the CNBSS. Such an
assumption would imply that the sum of selection and treatment effect heterogeneity is weakly monotonic from
always takers to never takers to compliers. However, my two main findings show that 1) selection heterogeneity
is increasing in the fraction treated p and 2) treatment effect heterogeneity is decreasing in the fraction treated p.
Therefore, it is unclear if their sum should be decreasing or increasing in the fraction treated p. Baseline covariates
only inform selection heterogeneity; they do not inform the sum of selection and treatment effect heterogeneity. It
could be more palatable to impose weak monotonicity of the MTE function. However, alone, such an assumption
would not identify an average treatment effect for never takers. In conjunction with M.1, such an assumption would
imply that the average treatment effect for never takers is smaller than the LATE, but the implied average treatment
effect for never takers could be positive or negative, so it is uninformative in the CNBSS in the sense that it could
be consistent with overdiagnosis or underdiagnosis.
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4.2.1 Breast Cancer Characteristics Corroborate Treatment Effect Heterogeneity

One potential concern with my finding of treatment effect heterogeneity, which shows that women

more likely to receive mammograms are more likely to be overdiagnosed by them, is that M.1

does not actually hold, such that always takers would actually have higher breast cancer incidence

than compliers in the absence of mammograms. This could be the case if always takers receive

mammograms because they know that they have a higher risk of breast cancer than compliers,

despite appearing healthier on other dimensions. To address this concern, in addition to selecting

the sample to exclude women with a family history of breast cancer and women with potential

knowledge of increased breast cancer risk, I compare average characteristics of the breast cancers

detected among always takers and treated compliers during the active study period.

As shown in Table 2, I find suggestive evidence that breast cancers detected among always

takers are smaller and less invasive than breast cancers detected among treated compliers. One

potential explanation for this evidence is selection heterogeneity such that always takers with

breast cancer are healthier than compliers with breast cancer, which corroborates my finding of

selection heterogeneity such that women more likely to receive mammograms are healthier. A

second potential explanation is that mammography has a larger average treatment effect on breast

cancer diagnosis for always takers relative to compliers such that given the same or better underlying

health, always takers are more likely to be diagnosed with breast cancer. The second explanation

corroborates my finding of treatment effect heterogeneity such that women more likely to receive

mammograms are more likely to be overdiagnosed by them.

Table 2: Suggestive Evidence that Women More Likely to Receive Mammograms
Have Breast Cancers That Are Smaller and Less Invasive

and Undergo More Aggressive Procedures

(1) (2)

Always 

Takers

Treated 

Compliers

13 18

(2) (3)

73 75

(9) (7)

45 23 

(9) (7)

Share of Mastectomy Among Breast Cancers 

with Mastectomy or Lumpectomy (%)

Note. Bootstrapped standard errors in parentheses. All outcomes are restricted to those years

for which treatment is defined during the active study period. The treatment is

mammography, which is equal to one if a participant receives a mammogram in at least one

year during the active study period after the enrollment year. Missing mammogram data in

any year is set to no mammogram in that year. The sample includes women aged 40-49 at

enrollment, excluding women with any nonzero values of the following breast-related

covariates at baseline: breast cancer in family; any other breast disease; patient reported

symptoms; referred for review by nurse; abnormality found by nurse; ever told has breast 

Means Difference in Means

-5

(4)

(1) - (2)

-2

(13)

22 

(14)

Tumor Size Among Breast Cancers (in mm)

Share of Invasive Breast Cancer Among 

Breast Cancers (%)

Note. Bootstrapped standard errors are under point estimates in parentheses. Lumpectomy is a procedure that involves partial
removal of a breast, and mastectomy is a more aggressive procedure that involves complete removal of a breast. The treatment
D is mammography, which is equal to one if a participant receives a mammogram in at least one year during the active study
period after the enrollment year. Each outcome Y is restricted to the years for which treatment is defined during the active
study period. The instrument Z is equal to one if a participant is assigned to intervention. pC is the fraction treated in control
P (D = 1 | Z = 0) and pI is the fraction treated in intervention P (D = 1 | Z = 1). The main analysis sample includes women
aged 40-49 at enrollment and excludes those who report any breast cancer in their family, any previous breast cancer diagnosis,
any other breast disease, or any symptoms, as well as those for whom a nurse found abnormalities or referred them for review.
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5 Robustness

I examine the robustness of my two main findings by estimating my main specification with an

alternative outcome, alternative sample restrictions, alternative definitions of mammography, and

alternative follow-up lengths. To facilitate comparisons with my main specification, I summarize

important statistics from the main specification depicted in Figure 5 in Table 3. A specification

shows selection heterogeneity if the untreated outcome test rejects in column (1), and a negative sign

on the untreated outcome test statistic indicates that women more likely to receive mammograms

are healthier. Similarly, a specification shows treatment effect heterogeneity if the test rejects in

column (4), and a negative sign on the test statistic indicates that women more likely to receive

mammograms experience a larger average treatment effect from them.

Table 3: Summary of Findings Depicted in Figure 5
and Robustness to Alternative Outcomes, Sample Restrictions, and Definitions of Mammography

(1) (2) (3) (4)

Untreated Test Rejects
Outcome Test Always Taker Average Local Average Treatment Effect

Rejects Selection Treatment Effect Treatment Effect Homogeneity
N Homogeneity Lower Bound LATE (1)*((2)-(3))<0

Main Specification
Outcome is breast cancer incidence, sample is main analysis sample, treatment is defined as mammogram in at least one active study period after enrollment

Breast cancer incidence 19,505 -301 206 58 -44,311
[0.003] (59) (38) {0.023}

Alternative Outcomes
All-cause mortality 19,505 -562 22 -13 -19,923

[0.000] (55) (39) {0.290}

Alternative Sample Restrictions
All excluded participants aged 40-49 at enrollment 30,925 -1,237 309 79 -284,634

[0.000] (45) (44) {0.000}
All participants aged 40-49 at enrollment 50,430 -826 298 69 -189,397

[0.000] (36) (30) {0.000}
All participants aged 50-59 at enrollment 39,405 -1,555 419 39 -591,037

[0.000] (53) (34) {0.000}
All participants 89,835 -1,156 332 55 -319,660

[0.000] (30) (22) {0.000}

Alternative Definitions of Mammography
At least two active study period years after enrollment 19,505 -341 239 54 -63,347

[0.000] (90) (35) {0.019}
At least three active study period years after enrollment 19,505 -330 167 55 -36,927

[0.000] (142) (36) {0.206}
All active study period years after enrollment 19,505 -178 158 64 -16,656

[0.005] (181) (42) {0.312}
Note. Bootstrapped standard errors are under point estimates in parentheses, two-tailed bootstrapped p-values are under test
statistics in brackets, and one-tailed bootstrapped p-values are under test statistics in curly braces. Some p-values are zero if
the test rejects the null hypothesis in all 1,000 bootstrap replications. Each outcome Y is measured 20 years after enrollment
per 10,000 participants for all participants, based on initial occurrence and the exact calendar date of enrollment. In the main
specification, the treatment D is mammography, which is equal to one if a participant receives a mammogram in at least one
year during the active study period after the enrollment year. The instrument Z is equal to one if a participant is assigned to
intervention. The main analysis sample includes women aged 40-49 at enrollment and excludes those who report any breast
cancer in their family, any previous breast cancer diagnosis, any other breast disease, or any symptoms, as well as those for
whom a nurse found abnormalities or referred them for review. Some differences between statistics might not appear internally
consistent because of rounding.

5.1 Alternative Outcome

In the main specification, the outcome is breast cancer incidence. In Figure 6 and Table 3, I also

examine all-cause mortality. As I previously discussed, I find selection heterogeneity in terms of

all-cause mortality that is consistent with the selection heterogeneity that I find in terms of breast
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cancer incidence: women more likely to receive mammograms are healthier on both dimensions.

The results that I present here also provide suggestive evidence of treatment effect heterogeneity on

all-cause mortality that is consistent with the treatment effect heterogeneity that I find in terms of

breast cancer incidence: women more likely to receive mammograms are more likely to be harmed

by them on both dimensions.

Figure 6: Test Rejects Treatment Effect Heterogeneity on All-Cause Mortality at 29% Level:
Women More Likely to Receive Mammograms Experience Greater Harm From Them,

At Least 4.9% (= 22/451) of Their Deaths Would Not Have Occurred Otherwise

451

415

428

990

LATE = -13
(39)

upper bound

always taker
average

treatment effect
lower bound

= 22
(55)

test rejects treatment effect homogeneity:
-562*(22 - (-13)) = -19,923 < 0

{0.290}

untreated outcome test rejects selection homogeneity:
428 - 990 = -562 6= 0

[0.000]

UD : unobserved net cost of treatment
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Note. Bootstrapped standard errors are under point estimates in parentheses, two-tailed bootstrapped p-values are under test
statistics in brackets, and one-tailed bootstrapped p-values are under test statistics in curly braces. Some p-values are zero
if the test rejects the null hypothesis in all 1,000 bootstrap replications. The outcome Y is all-cause mortality, measured 20
years after enrollment for all participants, based on the exact calendar date of enrollment. The treatment D is mammography,
which is equal to one if a participant receives a mammogram in at least one year during the active study period after the
enrollment year. The instrument Z is equal to one if a participant is assigned to intervention. pC is the fraction treated in
control P (D = 1 | Z = 0) and pI is the fraction treated in intervention P (D = 1 | Z = 1). The main analysis sample includes
women aged 40-49 at enrollment and excludes those who report any breast cancer in their family, any previous breast cancer
diagnosis, any other breast disease, or any symptoms, as well as those for whom a nurse found abnormalities or referred them
for review. Some differences between statistics might not appear internally consistent because of rounding.

The magnitude of the lower bound on the average treatment effect on mortality for always

takers is notable. It indicates that always takers experience at least an additional 22 deaths per

10,000 participants when they receive mammograms, which suggests that at least 4.9% (= 22/451)

of their deaths would not have occurred otherwise. For comparison, the World Health Organization

estimates the number of road traffic deaths in the entire U.S. population each year at 1.1 per 10,000

people (World Health Organization, 2015). Therefore, the lower bound on the average treatment

effect for always takers, which is measured over a 20-year period, is comparable to the rate of road
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traffic deaths over a period of the same length.

Why might women more likely to receive mammograms be more likely to experience harm from

them, as measured in terms of all-cause mortality? As shown in the first two rows of Table 2, I

find suggestive evidence that women more likely to receive mammograms have breast cancers that

are smaller and less invasive. Virtually all women diagnosed with breast cancer during the active

study period underwent lumpectomy or mastectomy. Whereas lumpectomy involves only partial

removal of the breast, mastectomy is a more aggressive procedure that involves complete removal of

the breast. The third row of Table 2 shows that, among women with breast cancer who underwent

either of these procedures during the active study period, 45% of always takers underwent the more

aggressive procedure of mastectomy, compared to only 23% of compliers. These results suggest that

women more likely to receive mammograms may receive more aggressive treatment for smaller, less

invasive breast cancers. These aggressive treatments could lead to increased collateral harms in the

form of all-cause mortality.

5.2 Alternative Sample Restrictions

In the main specification, I consider a sample of women aged 40-49 who do not report any breast

cancer in their family, previous breast cancer diagnosis, any other breast disease, or any symptoms.

I also exclude women if a nurse found abnormalities or referred them for review. In Table 3, I

examine the robustness of my findings to alternative sample restrictions. I consider alternative

sample restrictions that include all excluded participants aged 40-49 at enrollment, all participants

aged 40-49 at enrollment, all participants aged 50-59 at enrollment, and all participants. My

findings of selection and treatment effect heterogeneity hold in all of the reported samples.

5.3 Alternative Definitions of Mammography

In the main specification, I define mammography D such that D = 1 if a participant receives a

mammogram in at least one year during the active study period after the enrollment year, and

I set D = 0 otherwise. I assess robustness to narrower definitions of mammography that require

mammograms in more years of the active study period in Table 3. Given the available data, I

cannot examine robustness to definitions that include mammography after the active study period.

I find selection heterogeneity under all definitions of mammography, and I find treatment effect

heterogeneity under the first alternative definition of mammography. The test for treatment effect

homogeneity is not statistically significant under the two narrowest definitions of mammography,

but it indicates treatment effect heterogeneity in the same direction. The two narrowest definitions

are arguably too extreme because they require that “treated” participants must receive mammo-

grams in three or more active study period years after enrollment, so it is notable that the results

yield the same qualitative conclusions.

5.4 Alternative Follow-up Lengths

In the main specification, breast cancer incidence is measured 20 years after enrollment. Table 4

summarizes results for breast cancer incidence at all earlier annual follow-up lengths. The untreated

outcome test statistic is negative at all follow-up lengths, consistent with selection heterogeneity
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Table 4: Summary of Findings Depicted in Figure 5
and Robustness to Alternative Follow-up Lengths

(1) (2) (3) (4)

Untreated Test Rejects
Outcome Test Always Taker Average Local Average Treatment Effect

Rejects Selection Treatment Effect Treatment Effect Homogeneity
Years Since Enrollment N Homogeneity Lower Bound LATE (1)*((2)-(3))<0

Main specification: 20 19,505 -301 206 58 -44,311
[0.003] (59) (38) {0.023}

19 19,505 -269 196 52 -38,565
[0.013] (58) (37) {0.023}

18 19,505 -311 210 54 -48,503
[0.000] (56) (35) {0.010}

17 19,505 -322 214 49 -52,975
[0.000] (55) (34) {0.005}

16 19,505 -342 232 56 -60,245
[0.000] (54) (32) {0.003}

15 19,505 -381 211 84 -48,650
[0.000] (50) (31) {0.015}

14 19,505 -404 201 80 -49,046
[0.000] (49) (29) {0.020}

13 19,505 -431 223 75 -63,808
[0.000] (48) (28) {0.007}

12 19,505 -443 191 64 -56,156
[0.000] (44) (27) {0.010}

11 19,505 -423 195 55 -59,084
[0.000] (43) (25) {0.004}

10 19,505 -419 200 47 -64,017
[0.000] (42) (23) {0.000}

9 19,505 -413 192 34 -64,955
[0.000] (40) (22) {0.000}

8 19,505 -409 175 35 -57,386
[0.000] (37) (21) {0.000}

7 19,505 -393 177 46 -51,740
[0.000] (35) (18) {0.000}

6 19,505 -412 185 50 -55,761
[0.000] (33) (17) {0.000}

5 19,505 -382 180 45 -51,581
[0.000] (32) (15) {0.000}

4 19,505 -393 152 46 -41,568
[0.000] (29) (13) {0.003}

3 19,505 -354 104 37 -23,679
[0.000] (23) (11) {0.012}

2 19,505 -337 63 25 -12,632
[0.000] (18) (9) {0.030}

1 19,505 -342 35 20 -5,194
[0.000] (11) (6) {0.097}

Note. Bootstrapped standard errors are under point estimates in parentheses, two-tailed bootstrapped p-values are under test
statistics in brackets, and one-tailed bootstrapped p-values are under test statistics in curly braces. Some p-values are zero if
the test rejects the null hypothesis in all 1,000 bootstrap replications. The outcome Y is breast cancer incidence, measured at
various years since enrollment for all participants, based on initial diagnosis and the exact calendar date of enrollment. The
treatment D is mammography, which is equal to one if a participant receives a mammogram in at least one year during the
active study period after the enrollment year. The instrument Z is equal to one if a participant is assigned to intervention.
The main analysis sample includes women aged 40-49 at enrollment and excludes those who report any breast cancer in their
family, any previous breast cancer diagnosis, any other breast disease, or any symptoms, as well as those for whom a nurse
found abnormalities or referred them for review. Some differences between statistics might not appear internally consistent
because of rounding.
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such that women more likely to receive mammograms are healthier. Furthermore, the test rejects

treatment effect homogeneity at the 3% level or less at all follow-up lengths after the first year,

consistent with treatment effect heterogeneity such that women more likely to receive mammograms

experience higher levels of overdiagnosis.

Whether overdiagnosis can be estimated in the short term is controversial due to the concept

of lead time, “the time from detection of preclinical cancer by screening to detection of clinical

(symptomatic) cancer in the absence of screening” (Baker et al., 2014). Short follow-up lengths

might not allow for enough lead time, such that excess breast cancer detection in the intervention

arm could just reflect lead time instead of overdiagnosis. However, once there is evidence of over-

diagnosis in the long term, estimates from the short term can also be interpreted as estimates of

overdiagnosis (Zahl et al., 2013; Baines et al., 2016). As shown in Table 4, the LATE is positive

and statistically significant in the first year, and it is still statistically significant at longer follow-up

lengths, consistent with overdiagnosis. Consequently, my findings at earlier follow-up lengths could

also reflect overdiagnosis.

6 Implications for Guidelines and Future Research

The CNBSS began decades ago, but my finding that women more likely to receive mammograms

are more likely to be overdiagnosed by them is particularly relevant now. In the United States,

the percentage of women aged 40 and older who received a mammogram within the last two years

increased from 29% in 1987 to 64% in 2015 (National Health Interview Survey, 2017). Many factors

encourage mammography, including public outreach efforts, risk aversion on the part of patients and

doctors, and profit incentives. Given these factors, health insurance coverage for mammograms is

mandatory under the Affordable Care Act, even though coverage for other preventive services is tied

to current USPSTF recommendations.13 Very few factors discourage mammography or encourage

more evidence to be collected on it, which is potentially a reason to take my findings from the

CNBSS even more seriously. Furthermore, as mammograms become increasingly accurate, they

can potentially identify even smaller tumors that would never become life-threatening, leading to

higher levels of overdiagnosis. At the same time, existing breast cancer therapies have become less

harmful, so the impact of overdiagnosis on mortality may have decreased. However, new targeted

breast cancer therapies have also been developed. As therapies become more effective at treating

advanced cancers, there will be less of a need to screen women before they develop symptoms.

Beyond informing mammography guidelines, my findings demonstrate an approach through

which behavior within clinical trials can inform other clinical guidelines. Whenever the USPSTF

determines that “there is at least moderate certainty that the net benefit is small,” it issues a

“C recommendation,” as it did for mammography for women in their 40s, which means that “the

USPSTF recommends selectively offering this service to individual patients based on professional

judgment and patient preferences” (U.S. Preventive Service Task Force, 2017). These C recom-

mendations presuppose selection and treatment effect heterogeneity such that the individuals most

13Section 2713 of the Affordable Care Act (2010) states that “recommendations of the United States Preventive
Services Task Force regarding breast cancer screening, mammography, and prevention issued in or around November
2009 are not considered to be current.”
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likely to benefit from a treatment will be the most likely to receive it. However, they are not based

on evidence of selection and treatment effect heterogeneity. By demonstrating that it is possible

to examine selection and treatment effect heterogeneity using the same clinical trial data currently

used to develop guidelines, I enhance the ability of future guidelines to target treatments toward

individuals most likely to benefit from them and away from individuals most likely to be harmed

by them.
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