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ABSTRACT

Current mammography guidelines reflect evidence that mammography could be harmful on 
average through the overdiagnosis of breast cancers that would not eventually cause symptoms in 
the long term. To inform targeting within these guidelines, I investigate whether some women are 
more likely to experience overdiagnosis than others on the basis of their mammography behavior. 
Using data on mammography behavior within an influential clinical trial, random assignment, 
and a model, I proceed in two steps. First, I find that women who are more likely to receive 
mammograms are healthier and have higher socioeconomic status. Second, building on the first 
finding, I find that the 20-year level of overdiagnosis is at least 3.5 times higher among women 
who are more likely to receive mammograms, such that at least 36% of their cancers are 
overdiagnosed. Current guidelines presuppose that the women most likely to receive 
mammograms are the women most likely to benefit from them. My findings imply that these 
guidelines could have unintended consequences by effectively encouraging mammograms among 
healthier women who are more likely to be overdiagnosed by them.
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1 Introduction

The U.S. Preventive Services Task Force (USPSTF) updated their mammography guidelines in 2009

(U.S. Preventive Services Task Force, 2009) in response to evolving evidence from clinical trials.

Although their previous guidelines recommended regular mammography for women aged 40 and

older (U.S. Preventive Services Task Force, 2002), their updated guidelines left the mammography

decision for women in their 40s to individual women and their doctors. The precise USPSTF

guidelines for women in their 40s, as confirmed in 2016, state: “The decision to start screening

mammography in women prior to age 50 years should be an individual one. Women who place

a higher value on the potential benefit than the potential harms may choose to begin biennial

screening between the ages of 40 and 49 years” (Siu, 2016).

These guidelines raise the following questions, which motivate my analysis: Do current guide-

lines effectively target mammograms to women most likely to benefit from them, and can behavior

within a clinical trial help to inform targeting within guidelines? I aim to answer these questions

using data from a clinical trial. I proceed in two steps. First, I investigate heterogeneous selection:

are women who are more likely to receive mammograms different from other women? Second, I

investigate treatment effect heterogeneity: are women who are more likely to receive mammograms

more likely to experience better or worse health outcomes because of them?

Mammography can lead to better health outcomes through the early detection and treatment of

breast cancer that would eventually grow to be life-threatening, but mammography can also lead to

worse health outcomes through the early detection and treatment of breast cancer that would not

eventually grow to be life-threatening. The article that conveys the 2016 USPSTF guidelines notes,

“The most important harm is the diagnosis and treatment of noninvasive breast cancer that would

otherwise not have become a threat to a woman’s health, or even apparent, during her lifetime (that

is, overdiagnosis and overtreatment)” (Siu, 2016). Overdiagnosis is distinct from a false-positive

diagnosis. The latter refers to “a positive test in an individual who is subsequently recognized not

to have cancer. By contrast, an overdiagnosed patient has a tumor that fulfills the pathological

criteria for cancer”(Welch and Black, 2010). An extensive literature considers the possibility of

overdiagnosis.1

Overdiagnosis can pose significant health risks. It can expose women to unnecessary chemother-

apy, radiotherapy, and surgery, which can all be life-threatening.2 Even absent subsequent medical

care, breast cancer diagnosis itself can be harmful. Providing a perspective in the New England

Journal of Medicine, Welch and Fisher (2017) argue that “the psycholocial effects of overutilization

1Etzioni et al. (2002); Pohl and Welch (2005); Zackrisson et al. (2006); Jørgensen and Gøtzsche (2009); Bleyer
and Welch (2012); Marmot et al. (2012); Baum (2013); Duffy and Parmar (2013); Biller-Andorno and Jüni (2014);
Helvie et al. (2014); Miller et al. (2014); Patz et al. (2014); Welch and Passow (2014); Harding et al. (2015); Baines
et al. (2016); McCaffery et al. (2016); Nelson et al. (2016); Welch et al. (2016); Jørgensen et al. (2017); Lannin and
Wang (2017); Raffle and Gray (2019)

2Evidence shows that chemotherapy for early-stage breast cancers increases the risk of second cancers, such
as chemotherapy-induced acute myeloid leukaemia (Aidan et al., 2013; Martin et al., 2009; Praga et al., 2005).
Radiotherapy for breast cancer has been shown to significantly increase mortality from lung cancer and heart disease
(Early Breast Cancer Trialists’ Collaborative Group, 2005). Surgeries such as mastectomy and lumpectomy also pose
risks.

1



and overdiagnosis are also worrisome: turning people into patients may undermine their sense of

resilience, which is fundamental to health.”

It is possible that overdiagnosis is so harmful that the harms of mammograms outweigh the

benefits on average. The 2016 USPSTF guidelines are based on a meta-analysis (Nelson et al.,

2016) of average impacts from clinical trials.3 Combining results across trials, there is no statis-

tically significant reduction in all-cause mortality across all age groups or within any age group.

Furthermore, some trials show statistically insignificant increases in all-cause mortality within some

age groups, suggesting that the harms can outweigh the benefits on average (Nyström et al., 2002;

Miller et al., 2014).

Instead of focusing on average health impacts, I advance the literature by examining whether

health impacts vary with mammography behavior within a clinical trial. The meta-analysis that

informs the 2016 USPSTF mammography guidelines (Nelson et al., 2016) examines health outcomes

within clinical trials, but it says little about mammography behavior within those trials. Outside

of the clinical trial literature, a large literature examines mammography behavior in response to

policy interventions that yield natural experiments, but it says little about how health impacts vary

with such behavior.4 This literature has been limited because the methods that it employs do not

allow it to recover how health impacts vary with mammography behavior. Furthermore, it rarely

engages with the possibility of overdiagnosis as a health impact, perhaps because individual-level

data on mammography behavior that follow individuals in a randomized or natural experiment for

long enough to identify overdiagnosis are not widely available.

I examine how health impacts vary with mammography behavior in the Canadian National

Breast Screening Study (CNBSS), a trial influential to the USPSTF guidelines. The CNBSS en-

rolled almost 90,000 participants aged 40-59 between 1980 and 1985. All participants were randomly

assigned to an intervention group or a control group. Intervention group participants received access

to annual mammograms and clinical breast examinations during an active study period, consisting

of the enrollment year and 3 to 4 years after enrollment. Control group women in their 40s at

enrollment received an initial clinical breast examination followed by usual care in the commu-

nity, and control group women in their 50s at enrollment received access to annual clinical breast

examinations in the initial year and each year of the active study period. Given the change in

mammography guidelines for women in their 40s, I focus on women in their 40s at enrollment, and

I examine the robustness of my findings on women in their 50s at enrollment.

The CNBSS data allow me to examine mammography behavior and health outcomes for all

participants. To the best of my knowledge, the CNBSS is the only trial considered by the meta-

analysis that informs the USPSTF guidelines (Nelson et al., 2016) that tracked the actual takeup

of mammograms for all participants. These data show that a substantial fraction of women in

3Habbema et al. (1986); Tabar et al. (1995); Nyström et al. (2002); Bjurstam et al. (2003); Miller et al. (2014);
Moss et al. (2015)

4Kelaher and Stellman (2000); Habermann et al. (2007); Kadiyala and Strumpf (2011, 2016); Finkelstein et al.
(2012); Kolstad and Kowalski (2012); Bitler and Carpenter (2016, 2019); Fedewa et al. (2015); Mehta et al. (2015);
Ong and Mandl (2015); Lu and Slusky (2016); Zanella and Banerjee (2016); Cooper et al. (2017); Jacobson and
Kadiyala (2017); Kim and Lee (2017); Buchmueller and Goldzahl (2018); Einav et al. (2019); Myerson et al. (2019)
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the control group received mammograms, and some women in the intervention group did not.

This variation in mammography behavior is crucial for my analysis. Furthermore, I can observe

two important long-term health outcomes—breast cancer incidence and all-cause mortality—for all

participants through linkage to cancer registries that are complete across Canada (Baines et al.,

2016) and the Canadian Mortality Database. The CNBSS is the only trial considered by the meta-

analysis that informs the USPSTF guidelines that allows for examination of health outcomes for

at least 20 years after enrollment for all participants.

The ability to examine long-term health outcomes proves important to my results. In the short

term, breast cancer incidence should be larger in the intervention group than it is in the control

group because mammograms diagnose breast cancer. In the long term, however, breast cancer

incidence should completely “catch up” in the control group if mammography only leads to earlier

diagnosis. In the CNBSS, breast cancer incidence remains higher in the intervention group 25

years after the first participants enrolled (Baines et al., 2016), and the difference is statistically

significant. This persistent difference is particularly striking given that mammography behavior

likely converged between the control and intervention groups after the active study period. Taking

as given that breast cancers that led to death at any follow-up length were diagnosed and are

thus available in the data, the persistently higher rate of breast cancer in the intervention group

indicates overdiagnosis.

Because I am interested in whether there is heterogeneity in overdiagnosis with mammography

behavior, I use a heterogeneous treatment effect model in which the “treatment” is mammography.

I present the model as a generalized Roy (1951) model of the marginal treatment effect (MTE) as

introduced by Björklund and Moffitt (1987), in the tradition of Heckman and Vytlacil (1999, 2001,

2005), Carneiro et al. (2011), Brinch et al. (2017), and Cornelissen et al. (2018). I present the

model using simple figures. I view these figures as a contribution to the literature. They motivate

and depict where the MTE model that I use allows me to identify treatment effect heterogeneity

using a single ancillary assumption beyond the local average treatment effect (LATE) assumptions

of Imbens and Angrist (1994). They also make clear that the terminology of “always takers,” “com-

pliers,” and “never takers” from the LATE literature (Angrist et al., 1996) separates individuals

into three groups on the basis of how likely they are to receive the treatment.

First, I find heterogeneous selection: women more likely to receive mammograms are healthier

in terms of long-term breast cancer incidence and mortality. They also have higher socioeconomic

status and are more likely to practice several other health behaviors seen as beneficial. They are

more likely to be nonsmokers, and they have lower body mass index. Furthermore, findings from

natural experiments corroborate my first finding in other contexts.

Second, I find treatment effect heterogeneity: the level of breast cancer overdiagnosis is at least

3.5 times higher among women more likely to receive mammograms such that at least 36% of

their cancers are overdiagnosed. I also find suggestive evidence that women more likely to receive

mammograms are more likely to be harmed by them in terms of long-term mortality. Though the

treatment effects on 20-year mortality are not statistically different from zero or from each other,

the implied lower bound on the treatment effect among women more likely to receive mammograms
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is large, such that at least 4.9% of deaths among such women would not have occurred otherwise. I

am not aware of any other research that has sought to estimate whether treatment effects on breast

cancer incidence or mortality vary with mammography behavior. Even if it did seek to do so, the

ability of other research to do so would be limited by available follow-up data.

My second finding may be counterintuitive, because we might expect that women will only

receive mammograms if mammograms will improve their health outcomes. However, given the

available evidence, it is difficult for women and their doctors to predict the individual-level impacts

of mammography. Furthermore, women and their doctors might make mammography decisions

based on factors beyond impacts on breast cancer diagnosis and mortality. One such factor, artic-

ulated by the personal health columnist from the New York Times (Brody, 2017), is that “Doing

something is often more appealing than doing nothing. Many who think this way consider only the

beneficial ‘what if’s’ and not the possible downsides of cancer screening tests.” Such logic could also

extend to procedures pursued after a breast cancer diagnosis. Although virtually all women with

breast cancer during the active study period had at least part of a breast removed, I find suggestive

evidence that women more likely to receive mammograms were more likely to have an entire breast

removed, providing a potential mechanism for increased mortality in response to overdiagnosis.

Given my first finding that women more likely to receive mammograms have higher socioeco-

nomic status, Welch and Fisher (2017) provide a rationale for my second finding that women more

likely to receive mammograms are more likely to be overdiagnosed by them. They hypothesize

that women of higher socioeconomic status are exposed to increased “observational intensity” such

that “they are likely to be screened more often and by means of such tests...that can detect smaller

abnormalities, undergo more follow-up testing, and undergo more biopsies, and they may be served

by health systems that have a lower threshold for labeling results as abnormal.” It is well-known

that women of higher socioeconomic status have higher rates of breast cancer (Hakama et al., 1982;

Robert et al., 2004; Reynolds et al., 2005; Brown et al., 2007), even though they are generally

healthier in terms of other health outcomes (Pappas et al., 1993; Cutler and Lleras-Muney, 2010;

National Center for Health Statistics, 2012). My findings provide a potential mechanism for the

empirical relationship between socioeconomic status and breast cancer, whereby increased “obser-

vational intensity” among women of higher socioeconomic status leads to greater overdiagnosis.

Knowledge about individual-level breast cancer risk could provide an alternative rationale for my

second finding that women more likely to receive mammograms are more likely to be overdiagnosed

by them. Women more likely to receive mammograms could possess knowledge that they have

a higher risk of breast cancer, despite my first finding that these women are healthier on several

other dimensions. These women could therefore be more likely to be diagnosed with breast cancer.

As one response to this concern, I take a conservative approach to sample selection in my main

analysis sample. The CNBSS conducted extensive baseline surveys and clinical exams. I use

variables collected through these means to exclude individuals with a family history of breast

cancer as well as other individuals with potential knowledge of increased breast cancer risk. I

also examine characteristics of the breast cancers detected during the active study period. I find

suggestive evidence that the breast cancers detected in women more likely to receive mammograms
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are smaller and less invasive, which is consistent with that idea that women more likely to get

mammograms might not actually be sicker; instead, they might be members of the “worried well.”

The combination of my first and second findings implies that the current mammography guide-

lines conflate the women most likely to receive mammograms with the women most likely to benefit

from them. These guidelines could therefore have unintended consequences by leading to greater

overdiagnosis of breast cancers in healthier women. To mitigate unintended consequences, the

guidelines could be further weakened to no longer recommend mammography for any asymptomatic

women in their 40s. Such a change would not affect the behavior of women who do not receive

mammograms under the current guidelines, but it could curtail overdiagnosis for some women who

receive mammograms under the current guidelines.

In the next section, I replicate published results from the CNBSS. In Section 3, I present the

model. In Section 4, I arrive at my two main findings. I show that my findings are robust to a

wide variety of alternative specifications in Section 5. In Section 6, I discuss the applicability of

results from the CNBSS to the current medical environment. I conclude by discussing implications

for guidelines and future research in Section 7.

2 Replication of CNBSS Results

Viewing the CNBSS as an influential trial, my focus is not to evaluate the CNBSS itself or previous

work on it. Rather, my focus is to extend analysis of the CNBSS to examine how the results vary

with mammography behavior. The latest results published by the CNBSS investigators show a

higher rate of breast cancer in the intervention group in the long term, consistent with overdiagnosis

(Baines et al., 2016), and the difference is statistically significant. The rate of all-cause mortality

is also higher in the intervention group in the long term (Miller et al., 2014), but the difference is

not statistically significant. The rate of breast cancer mortality is slightly lower in the intervention

group in the long term (Miller et al., 2014), but the difference is not statistically significant either.

In terms of statistical significance, the long-term results are consistent with results published at

earlier follow-up lengths (Miller et al., 1992a,b, 1997, 2000, 2002, 2014).

I can exactly replicate the published long-term all-cause and breast cancer mortality results,

and I can closely replicate the breast cancer incidence results.5 The breast cancer incidence results

include invasive breast cancer as well as non-invasive ductal carcinoma in situ (DCIS). DCIS tumors

are considered to be of ultralow risk, but the word “carcinoma” causes alarm, which has prompted

proposals to rename DCIS tumors “indolent lesions of epithelial origin (IDLE)” (Esserman and

Varma, 2019). Since many DCIS tumors can only be diagnosed by mammograms, it is important

that they are included in my analysis of overdiagnosis.

In the results that serve as the foundation for my analysis, to increase the relevance of my

findings to the USPSTF guidelines for women in their 40s, I depart from the latest published

results in four ways. First, I only include women aged 40-49 at enrollment in my main analysis

sample, and I examine robustness among women aged 50-59 at enrollment. Second, because the

5In the Baines et al. (2016) calculation of overdiagnosis 25 years after the first CNBSS participants enrolled, the
difference in breast cancer incidence between the intervention and control groups is 0.41% (=7.43% - 7.02%). In my
replication, the difference is 0.44% (=7.51% - 7.07%). Both differences are statistically significant.
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USPSTF guidelines are intended for asymptomatic women without a genetic predisposition for

breast cancer, and because I aim to exclude women with potential knowledge of increased breast

cancer risk, I exclude women from my main analysis sample if they report any breast cancer in

their family, any previous breast cancer diagnosis, any other breast disease, or any symptoms. I

also exclude women if a nurse found abnormalities or referred them for review. My main analysis

sample includes 19,505 women. I examine robustness in the full sample of 50,430 women aged 40-49

at enrollment and in the subsample of excluded women. Third, when analyzing mortality, I focus

on all-cause mortality, because it is less subjective than breast cancer mortality, and because it

can capture a wider range of collateral harms. Fourth, to make the timing of my findings easier to

interpret, I focus on results at a fixed follow-up length of 20 years after enrollment, as opposed to

a fixed calendar date that reflects various follow-up lengths. I also examine robustness at earlier

follow-up lengths. The mortality results, which are not statistically significant in any sample,

vary in sign across robustness samples. However, the breast cancer results are consistent with

overdiagnosis in all of the samples that I consider.

3 Model

I use an MTE model to allow for selection and treatment effect heterogeneity within the CNBSS.

As the foundation for the model, I make only stylistic changes to the model used by Heckman

and Vytlacil (2005)6 to ensure that the model assumes no more than the LATE assumptions of

Imbens and Angrist (1994), as proven by Vytlacil (2002). I present implications of the model

using simple figures. The figures motivate the identification of selection heterogeneity under the

LATE assumptions and the identification of treatment effect heterogeneity under a single ancillary

assumption beyond the LATE assumptions.

3.1 First Stage: Mammography

In the context of the CNBSS, I use “treatment” to refer to mammography, which I represent with

D. I set D = 1 if a participant receives a mammogram in at least one year during the active study

period after the enrollment year. I set D = 0 otherwise.

Let VT represent potential utility in the treated state, and let VU represent potential utility in

the untreated state. I relate the potential utilities to realized utility V such that:

V = VU + (VT − VU )D. (1)

I specify the net benefit of treatment in terms of the potential utilities as follows:

VT − VU = µD(Z)− νD, (2)

where µD(·) is an unspecified function, Z is an observed binary instrument such that Z = 1

represents random assignment to the intervention group and Z = 0 represents random assignment

to the control group, and νD is an unobserved term with an unspecified distribution. I assume:

6One stylistic change is that I do not condition on an optional covariate vector. The absence of the covariate
vector simplifies the exposition and emphasizes the role of the unobserved net cost of treatment.
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A.1. (Continuity) The cumulative distribution function of νD, which I denote with F (·), is abso-

lutely continuous with respect to the Lebesgue measure.

A.2. (Independence) The random vectors (UD,γT ) and (UD,γU ) are independent of Z, where UD =

F (νD), and γT and γU are unobserved terms introduced in the second stage.

A.3. (Instrument Relevance) µD(Z) is a nondegenerate random variable.

Under A.1, the transformation of νD by F (·) is a normalization that implies that UD = F (νD)

is uniformly distributed between 0 and 1. For completeness, I show the proof in Appendix A. The

term νD enters negatively into the net benefit of treatment in (2), so I interpret it as a net cost of

treatment. I therefore interpret UD as the normalized “unobserved net cost of treatment.”

The current USPSTF guidelines recommend mammography for women in their 40s “who place

a higher value on the potential benefit than the potential harms” (Siu, 2016). In terms of the

model, I interpret the guidelines such that they recommend mammography for women with a net

benefit of treatment VT −VU that is greater than zero. As I show for completeness in Appendix B,

given VT − VU greater than 0 in (2), A.2 implies the following treatment equation:

D = 1{UD ≤ P(D = 1 | Z = z)}. (3)

This equation shows that women receive mammograms if and only if their unobserved net cost of

treatment UD is weakly less than an observed threshold. If A.3 holds, then the observed threshold

is different for the control and intervention groups, resulting in two special cases of the treatment

equation:

D = 1{UD ≤ pC} where pC = P
(
D = 1 | Z = 0), (4)

D = 1{UD ≤ pI} where pI = P
(
D = 1 | Z = 1), (5)

where the treatment probabilities pC and pI can be estimated in the control group (Z = 0) and

the intervention group (Z = 1), respectively.

I illustrate implications of the first stage of the model in Figure 1 using statistics from the

CNBSS. In my main analysis sample, 19% of control group participants and 95% of intervention

group participants receive mammograms, so pC = 0.19 and pI = 0.95. By (4) and (5), pC partitions

the control group into the two ranges depicted in the top line, and pI partitions the intervention

group into the two ranges depicted in the middle line. Together, pC and pI partition the control

and intervention groups into the three ranges depicted in the bottom line. I label the ranges using

terminology from Imbens and Angrist (1994) in which “always takers” receive treatment regard-

less of random assignment, “compliers” receive treatment if and only if they are assigned to the

intervention group, and “never takers” do not receive treatment regardless of random assignment.

The depiction in Figure 1 emphasizes that there is an ordering from always takers to compliers

to never takers, which has been shown previously (Imbens and Rubin, 1997; Vytlacil, 2002). In

the CNBSS, this ordering reflects mammography behavior within the trial. Always takers are the
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Figure 1: Always Takers Are More Likely To Receive Mammograms Than Compliers,
Who Are More Likely to Receive Mammograms Than Never Takers: Ranges of UD

0 pC = 0.19 pI = 0.95 1
Always Takers Compliers Never Takers

Z=1

Z=0

D=1 D=0

D=1 D=0

UD: unobserved net cost of treatment

Note. The treatment is mammography, which is equal to one if a participant receives a mammogram in at least one year during
the active study period after the enrollment year. The main analysis sample includes women aged 40-49 at enrollment and
excludes those who report any breast cancer in their family, any previous breast cancer diagnosis, any other breast disease, or
any symptoms, as well as those for whom a nurse found abnormalities or referred them for review.

most likely to receive mammograms (they receive them with probability 1), followed by compliers

(they receive them with the probability of assignment to intervention), followed by never takers

(they receive them with probability 0).

3.2 Second Stage: Health Outcomes

I relate a health outcome Y , such as breast cancer incidence or all-cause mortality, to mammography

D as follows:

Y = YU + (YT − YU )D. (6)

YT represents the potential treated outcome and YU represents the potential untreated outcome,

which I specify as follows:

YT = gT (UD, γT ) (7)

YU = gU (UD, γU ), (8)

where gT (·) and gU (·) are unspecified functions, UD is the unobserved net cost of treatment from

the first stage, and γT and γU are unobserved terms with unspecified distributions. I assume:

A.4. (Some Treated and Untreated) 0 < P(D = 1) < 1.

A.5. (Finite Average Outcomes) The values of E[YT ] and E[YU ] are finite.

A.4 is verifiable. A.5 ensures that average treated and untreated potential outcomes are defined.

The model, given by the utility equations (1) and (2), the treatment equations (3)–(5), the

potential outcome equations (6)–(8), and assumptions A.3–A.5, assumes no more than the LATE

assumptions. This claim follows because my presentation of the model differs only stylistically from

the presentation of the model by Heckman and Vytlacil (2005), who invoke the proof in Vytlacil

(2002) to claim that the model assumes no more than the LATE assumptions.

I illustrate implications of the second stage of the model using statistics from my main analysis

sample in Figure 2. The horizontal axis depicts implications of the first stage as in Figure 1. The
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Figure 2: Breast Cancer Incidence for Always Takers, Compliers, and Never Takers
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Note. Bootstrapped standard errors in parentheses. The outcome is breast cancer incidence, measured 20 years after enrollment
for all participants, based on initial diagnosis and the exact calendar date of enrollment. The treatment is mammography, which
is equal to one if a participant receives a mammogram in at least one year during the active study period after the enrollment
year. The main analysis sample includes women aged 40-49 at enrollment and excludes those who report any breast cancer
in their family, any previous breast cancer diagnosis, any other breast disease, or any symptoms, as well as those for whom a
nurse found abnormalities or referred them for review.

vertical axis depicts implications of the second stage in which the outcome is breast cancer incidence.

It is possible to identify some individuals as always takers because they receive mammograms

despite assignment to the control group, and it is possible to identify other individuals as never

takers because they do not receive mammograms despite assignment to the intervention group.

It is not possible to identify the remaining individuals as members of any one group. However,

the assumptions of the model make it possible to calculate the average outcomes for always takers,

compliers, and never takers depicted in Figure 2, as I show algebraically and graphically in Appendix

C. These derivations yield the same values as the derivations by Imbens and Rubin (1997), Katz

et al. (2001), Abadie (2002), and Abadie (2003), which rely on the LATE assumptions. The

statistics that they yield are useful because they allow for comparisons across three groups, not

just the two groups generated by intervention and control.

The depiction in Figure 2 makes clear that the LATE represents the average treatment effect on

compliers but that always and never takers make up sizeable fractions of the sample. Always takers

always receive mammograms within the experiment, so it is not possible to derive what their average

breast cancer incidence would be if they had not received mammograms during the experiment
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without ancillary assumptions. Similarly, never takers never receive mammograms within the

experiment, so it is not possible to derive what their average breast cancer incidence would be

if they had received mammograms during the experiment without ancillary assumptions. However,

the average breast cancer incidence rates that can be derived for always and never takers appear

very different from the average breast cancer incidence rates that can be derived for compliers.

By 20 years after enrollment, 5.71% of always takers have been diagnosed with breast cancer,

as compared to 4.24% of treated compliers and 3.66% of untreated compliers. In contrast, 6.67%

never takers have been diagnosed with breast cancer, which is higher than any of the other reported

rates. These differences provide the variation that I use as a starting point to identify selection and

treatment effect heterogeneity.

3.3 Definitions of Selection and Treatment Effect Heterogeneity in the Model

I define selection and treatment effect heterogeneity on Y along the unobserved net cost of treatment

UD using functions from the MTE literature (see Carneiro and Lee, 2009; Brinch et al., 2017):

Selection Heterogeneity along UD: MUO(p) = E [YU | UD = p]

Treatment Effect Heterogeneity along UD: MTE(p) = E [YT − YU | UD = p]

Selection + Treatment Effect Heterogeneity along UD: MTO(p) = E [YT | UD = p]

where p is a realization of the unobserved net cost of treatment UD.

The first function, which I refer to as the “marginal untreated outcome (MUO)” function,

defines what I refer to as “selection heterogeneity” along the unobserved net cost of treatment UD.

Selection heterogeneity generalizes the concept of “selection bias,” as defined by Angrist (1998) and

Heckman et al. (1998) among others, which is equal to the difference in average untreated outcomes

between treated and untreated participants:

Selection Bias: E[YU | D = 1]− E[YU | D = 0].

Unlike selection bias, selection heterogeneity does not depend on the fraction of individuals assigned

to the intervention group, a parameter explicitly chosen as part of the trial design.7 Furthermore,

selection bias is not identified without ancillary assumptions. In contrast, a different special case

of selection heterogeneity is identified without ancillary assumptions. By generating exogenous

variation in the fraction of participants who receive treatment, thereby making untreated compliers

distinguishable from never takers, randomization makes identification possible.

7I express selection bias as the following weighted integral of the MUO function, demonstrating that it is a special
case of selection heterogeneity as defined by the MUO function with weights ω(p, pL, pH) = 1{pL ≤ p < pH}/(pH−pL):∫ 1

0

[ 1

P(D = 1)

{
P(Z = 0) pC ω(p, 0, pc) + P(Z = 1) pI ω(p, 0, pI)

}
− 1

P(D = 0)

{
P(Z = 0) (1− pC)ω(p, pc, 1) + P(Z = 1) (1− pI) ω(p, pI , 1)

}]
MUO(p) dp.

This weighted integral depends on the probability of assignment to the intervention group P(Z = 1), a parameter
explicitly chosen as part of the trial design.
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The second function is the “marginal treatment effect (MTE)” function of Heckman and Vytlacil

(1999, 2001, 2005). It defines treatment effect heterogeneity along the unobserved net cost of

treatment UD. In the CNBSS, the MTE function characterizes how the impact of mammography

on a health outcome changes as women become less likely to receive mammograms.

The third function, which I refer to as the “marginal treated outcome (MTO)” function, char-

acterizes the sum of selection and treatment effect heterogeneity along the unobserved net cost of

treatment UD. It is tempting to assert that there should be no material distinction between treated

and untreated outcomes. However, the treatment effect is defined as the treated outcome minus the

untreated outcome, not the untreated outcome minus the treated outcome. The treatment effect

has magnitude and direction, which is why I represent the LATE with an arrow in Figure 2.

4 Findings

Applying the model to the CNBSS, I identify and estimate how selection and the treatment effect

vary with mammography behavior. First, under the model that assumes no more than the LATE

assumptions, I find selection heterogeneity: women who are more likely to receive mammograms

are healthier in terms of long-term breast cancer incidence and all-cause mortality. Baseline covari-

ates that measure socioeconomic status and health behaviors, as well as results from the literature,

corroborate this finding. The first finding informs an ancillary assumption that I impose to identify

treatment effect heterogeneity. Under the ancillary assumption, I find treatment effect heterogene-

ity: the 20-year level of overdiagnosis is at least 3.5 times higher among women more likely to

receive mammograms, such that at least 36% of their cancers are overdiagnosed.

4.1 Selection Heterogeneity: Women More Likely to Receive Mammograms are

Healthier

I identify selection heterogeneity using a test that I refer to as the “untreated outcome test”

because it compares average untreated outcomes of compliers (pC < UD ≤ pI) and never takers

(pI < UD ≤ 1) using the following test statistic:

E[YU | pC < UD ≤ pI ]− E[YU | pI < UD ≤ 1] =

∫ 1

0
(ω(p, pC , pI)− ω(p, pI , 1)) MUO(p) dp, (9)

where ω(p, pL, pH) = 1{pL ≤ p < pH}/(pH − pL). The test of the null hypothesis that this test

statistic is equal to zero is equivalent or similar to tests proposed by Bertanha and Imbens (2014),

Guo et al. (2014), and Black et al. (2017), which are generalized by Mogstad et al. (2018).8 Unlike

previous literature, I define selection heterogeneity with the MUO function. I demonstrate that

the untreated outcome test identifies a special case of selection heterogeneity by expressing the

untreated outcome test statistic as a weighted integral of the MUO function in (9). Identification

8The test proposed by Bertanha and Imbens (2014) is similar because they develop their test for a regression
discontinuity context, but it is effectively an equivalent test. Bertanha and Imbens (2014) propose this test as one
component of a test for external validity, but they do not propose it as a test of selection heterogeneity. Similarly,
Guo et al. (2014) propose this test as one component of a test for unmeasured confounding, but they do not discuss
it as a test for selection heterogeneity. Black et al. (2017) propose this test as one of two tests for “selection,” which
they do not define.
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stems from randomization, which makes untreated compliers distinguishable from never takers.

Figure 3: Untreated Outcome Test Rejects Selection Homogeneity on Breast Cancer Incidence:
Women More Likely to Receive Mammograms are Healthier
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Note. Bootstrapped standard errors in parentheses. The outcome is breast cancer incidence, measured 20 years after enrollment
for all participants, based on initial diagnosis and the exact calendar date of enrollment. The treatment is mammography, which
is equal to one if a participant receives a mammogram in at least one year during the active study period after the enrollment
year. The main analysis sample includes women aged 40-49 at enrollment and excludes those who report any breast cancer
in their family, any previous breast cancer diagnosis, any other breast disease, or any symptoms, as well as those for whom a
nurse found abnormalities or referred them for review.

Applying the untreated outcome test to my main analysis sample, I find selection heterogeneity

on breast cancer incidence and all-cause mortality. As shown in Figure 3, the untreated outcome

test statistic indicates that the long-term breast cancer incidence rate among untreated compliers

was 3.01 percentage points lower than the breast cancer incidence rate among never takers, which

was 6.67%. The test statistic is statistically different from zero,9 so the untreated outcome test

rejects selection homogeneity on breast cancer incidence. The test also rejects selection homogeneity

on all-cause mortality. As shown in Figure D2, the 20-year all-cause mortality rate was 4.28% for

untreated compliers and 9.90% for never takers. The 5.62 percentage point difference in all-cause

mortality between these two groups is meaningfully large, and it is statistically different from zero.

All-cause mortality and breast cancer incidence are both measures of health, and compliers are

more likely to receive mammograms than never takers. Therefore, the selection heterogeneity that

I find indicates that women more likely to receive mammograms are healthier.

9For inference, I bootstrap the test statistic using 200 replications, and I report the standard deviation as the
standard error.
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4.1.1 Baseline Covariates Corroborate Selection Heterogeneity

The untreated outcome test shows selection heterogeneity based on the comparison of long-term

health outcomes in the absence of mammograms for compliers and never takers. I do not observe

long-term health outcomes in the absence of mammograms for always takers because, by definition,

all always takers received mammograms during the active study period. However, I do observe

baseline covariates for always takers, as well as compliers and never takers. I use these baseline

covariates as proxies for health in the absence of mammograms, allowing me to investigate whether

the selection heterogeneity that I find also applies over the range of the unobserved net cost of

treatment UD from always takers to compliers. I obtain average covariates for always takers,

compliers, and never takers in the same way that I obtain average outcomes but I combine the

averages for treated and untreated compliers, as I discuss at the end of Appendix C.

Table 1: Baseline Covariates Corroborate Selection Heterogeneity:
Women More Likely to Receive Mammograms Have Higher Socioeconomic Status

and Are More Likely to Practice Other Health Behaviors Seen as Beneficial

Means Difference in Means

(1) (2) (3)
Always Never
Takers Compliers Takers (1)-(2) (2)-(3)

Baseline Socioeconomic Status
University, trade or business school 0.50 0.46 0.39 0.04 0.08

(0.01) (0.01) (0.02) (0.01) (0.02)
In work force 0.65 0.64 0.65 0.02 -0.02

(0.01) (0.00) (0.02) (0.01) (0.02)
Age at first birth 24.28 23.98 23.57 0.30 0.41

(0.12) (0.05) (0.21) (0.14) (0.22)
No live birth 0.16 0.15 0.13 0.01 0.01

(0.01) (0.00) (0.01) (0.01) (0.02)
Married 0.80 0.81 0.75 -0.01 0.06

(0.01) (0.00) (0.02) (0.01) (0.02)
Husband in work force and alive 0.81 0.81 0.76 -0.00 0.05

(0.01) (0.00) (0.02) (0.01) (0.02)
Baseline Health Behavior

Non-Smoker 0.78 0.75 0.63 0.03 0.12
(0.01) (0.00) (0.02) (0.01) (0.02)

Body Mass Index 23.87 24.42 24.48 -0.56 -0.06
(0.10) (0.05) (0.21) (0.12) (0.22)

Used oral contraception 0.74 0.71 0.67 0.03 0.04
(0.01) (0.00) (0.02) (0.01) (0.02)

Used estrogen 0.13 0.13 0.15 -0.00 -0.02
(0.01) (0.00) (0.02) (0.01) (0.02)

Any mammograms prior to enrollment 0.23 0.13 0.13 0.10 -0.00
(0.01) (0.00) (0.02) (0.01) (0.02)

Practiced breast self-examination 0.47 0.44 0.38 0.03 0.06
(0.01) (0.00) (0.02) (0.01) (0.02)

Note. Bootstrapped standard errors in parentheses. The treatment is mammography, which is equal to one if a participant
receives a mammogram in at least one year during the active study period after the enrollment year. The main analysis sample
includes women aged 40-49 at enrollment and excludes those who report any breast cancer in their family, any previous breast
cancer diagnosis, any other breast disease, or any symptoms, as well as those for whom a nurse found abnormalities or referred
them for review. Some differences between statistics might not appear internally consistent because of rounding.

As shown in Table 1, baseline measures of socioeconomic status tend to vary monotonically from

always takers to compliers to never takers, with always takers having the highest socioeconomic

status. These patterns are consistent with an extensive literature that shows a negative correlation

between socioeconomic status and health (see Pappas et al. (1993); Cutler and Lleras-Muney (2010);

National Center for Health Statistics (2012)). Measures of baseline health behavior suggest a

potential mechanism: women more likely to receive mammograms are more likely to practice other

health behaviors seen as beneficial. As shown, smoking status, body mass index, and breast self-
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examination vary monotonically from always takers to compliers to never takers, and many of

the differences are statistically significant. Overall, analysis of baseline covariates corroborates the

selection heterogeneity that I find from compliers to never takers. It also supports extension of

the finding such that in the absence of mammograms, always takers would have the best health

outcomes, followed by compliers, followed by never takers.

4.1.2 Findings from Related Literature Corroborate Selection Heterogeneity

Findings from the related literature on natural experiments also corroborate the selection hetero-

geneity that I find. Analyzing mammography takeup before and after age 40 in the United States

in recent years, Einav et al. (2019) cannot observe long-term health outcomes, but they predict

the long-term cancer incidence of women who did not receive mammograms with a clinical model.

Re-cast in terms of the MTE model, their predictions imply that compliers are less likely to have

cancer than never takers. They also present findings that imply that compliers are more likely than

never takers to invest in their health through prior flu shots and pap tests. Analyzing a national

cancer screening program in Korea that generated discontinuities in eligibility, Kim and Lee (2017)

find that among individuals who were not screened through the program, cancer incidence was lower

for compliers than never takers six years afterward. Furthermore, they show that individuals who

were screened were healthier in terms of body mass index, blood glucose, and cholesterol. Other

evidence from Goldman and Smith (2002); Berrigan et al. (2003); Friel et al. (2005); Brookhart

et al. (2007); Cutler and Lleras-Muney (2010); Cutler et al. (2011); Myerson et al. (2018) and Oster

(2018) shows that individuals often simultaneously select into several health behaviors, consistent

with my finding that women more likely to receive mammograms are also more likely to practice

other health behaviors seen as beneficial.

4.2 Treatment Effect Heterogeneity: Women More Likely to Receive Mammograms

Experience Higher Levels of Overdiagnosis

To identify treatment effect heterogeneity, I impose an ancillary assumption that builds on the

selection heterogeneity that I find on breast cancer incidence as well as corroborating evidence

from baseline covariates and related literature. In the CNBSS, the ancillary assumption implies

that average health, measured by breast cancer incidence or all-cause mortality in the absence of

mammograms, varies monotonically from always takers to compliers to never takers. I impose

M.1. (Weak Monotonicity of the MUO Function) For all p1, p2 ∈ [0, 1] such that p1 < p2: E[YU |
UD = p1] ≤ E[YU | UD = p2] or E[YU | UD = p1] ≥ E[YU | UD = p2].

While the model imposes LATE monotonicity in the first stage, as shown by Vytlacil (2002),

M.1 imposes a related weak monotonicity in the second stage. Empirical selection heterogeneity

determines the direction of weak monotonicity. In the CNBSS, M.1 implies that always takers

would be healthier than compliers in the absence of mammograms because compliers are healthier

than never takers in the absence of mammograms.

Brinch et al. (2017) impose M.1 in conjunction with an analogous assumption on the MTO

function. I emphasize that either of the Brinch et al. (2017) assumptions is sufficient to test for
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treatment effect heterogeneity. I only impose M.1 in the CNBSS because I can find empirical

support for it using baseline measures of socioeconomic status and health behavior, which corrob-

orate selection heterogeneity. In contrast, alternative assumptions on the MTO or MTE functions

entail assumptions about treatment effect heterogeneity. I prefer not to identify treatment effect

heterogeneity by making assumptions about treatment effect heterogeneity.

M.1 yields a one-sided bound on the average treatment effect for always takers that is of interest

in its own right. It is well-known that it is possible to estimate bounds on the average treatment

effect of always takers using bounds that arise from the natural range of outcomes (Robins, 1989;

Manski, 1990; Balke and Pearl, 1997) or from ancillary assumptions (Imbens and Rubin, 1997). The

ancillary assumptions made by Olsen (1980), Heckman (1979), and Brinch et al. (2017), discussed

by Kline and Walters (2019), also imply bounds on the average treatment effect for always takers,

but those assumptions are stronger, and it is more difficult to motivate them in the context of the

CNBSS.

Imposing M.1, I test the null hypothesis of treatment effect homogeneity using the following

decision rule, which has an outcome that is equal to 1 if the test rejects treatment effect homogeneity

and 0 otherwise:

1



E[YT | 0 ≤ UD ≤ pC ]− E[YU | pC < UD ≤ pI ] > E[YT − YU | pC < UD ≤ pI ]

if E[YU | pC < UD ≤ pI ]− E[YU | pI < UD ≤ 1] ≤ 0,

E[YT | 0 ≤ UD ≤ pC ]− E[YU | pC < UD ≤ pI ] < E[YT − YU | pC < UD ≤ pI ]

if E[YU | pC < UD ≤ pI ]− E[YU | pI < UD ≤ 1] > 0.


(10)

This decision rule has two cases. The first case is the case in which the untreated outcome test

statistic is negative, as it is in the CNBSS, and the second case is the case in which the untreated

outcome test statistic is positive. As illustrated in Figure 4, under M.1, the average outcome for

untreated compliers E[YU | pC < UD ≤ pI ] is an upper bound on the average untreated outcome

of always takers E[YU | 0 ≤ UD ≤ pC ], which is not observed. The average treatment effect for

always takers is equal to the average treated outcome of always takers minus the average untreated

outcome of always takers. Therefore, the upper bound on the average untreated outcome of always

takers implies a lower bound on the average treatment effect for always takers. The first line of

(10) compares this bound to the average treatment effect for compliers, the LATE. If the lower

bound on the average treatment effect for always takers is strictly greater than the LATE, then

the average treatment effect for always takers cannot be equal to the average treatment effect for

compliers, so the test rejects treatment effect homogeneity. The logic of the second case follows

similarly.

Within the CNBSS, the test rejects treatment effect homogeneity. As depicted in Figure 4, the

lower bound on the always taker average treatment effect is strictly greater than the LATE, so the

treatment effect on always takers is strictly greater than the average treatment effect on compliers.

Therefore, the decision rule in (10) yields a value of one. For inference, I repeat the test in 200
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Figure 4: Test Rejects Treatment Effect Homogeneity on Breast Cancer Incidence at 3% Level:
Overdiagnosis is at Least 3.5 Times Higher Among Women More Likely to Receive Mammograms

At Least 36% (= 206/571) of Their Cancers are Overdiagnosed
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Note. Bootstrapped standard errors in parentheses and p-values in brackets. The outcome is breast cancer incidence, measured
20 years after enrollment for all participants, based on initial diagnosis and the exact calendar date of enrollment. The treatment
is mammography, which is equal to one if a participant receives a mammogram in at least one year during the active study
period after the enrollment year. The main analysis sample includes women aged 40-49 at enrollment and excludes those who
report any breast cancer in their family, any previous breast cancer diagnosis, any other breast disease, or any symptoms, as
well as those for whom a nurse found abnormalities or referred them for review. Some differences between statistics might not
appear internally consistent because of rounding.

bootstrap samples, and the decision rule yields a value of one in 97% of them. Therefore, the test

rejects treatment effect homogeneity at the 3% level.

The magnitude of the treatment effect heterogeneity is meaningful, as are the magnitudes

of the treatment effects themselves. As depicted in Figure 4, the magnitude of the treatment

effect on compliers, the LATE, indicates that by 20 years after enrollment, breast cancer incidence

among compliers who received mammograms during the active study period was 0.58 percentage

points higher than it would have been otherwise. To put this magnitude in context, 20-year

breast cancer incidence was 424 per 10,000 among treated compliers, so the LATE indicates that

14% (=0.58/4.24) of breast cancers, almost 1 in 7 breast cancers, were overdiagnosed. Turning to

always takers, the lower bound on the treatment effect for always takers indicates that breast cancer

incidence among always takers who received mammograms during the active study period was at

least 2.06 percentage points higher than it would have been otherwise. Thus, the treatment effect for

always takers was at least 3.5 (=2.06/0.58) times higher than it was for compliers. Always takers
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are more likely to receive mammograms than compliers. Therefore, I summarize the treatment

effect heterogeneity that I find by saying that the 20-year level of overdiagnosis is at least 3.5 times

higher among women more likely to receive mammograms. Furthermore, among the women more

likely to receive mammograms, the always takers, the 20-year breast cancer incidence rate was

5.71%, so at least 36% (=2.06/5.71) of their breast cancers were overdiagnosed.

The rates of overdiagnosis that I estimate within my main analysis sample, 36% among always

takers and 14% among compliers, fall squarely within the range of overdiagnosis estimates from

literature. Estimates in the literature vary in their data sources, their identification strategies,

the types of breast cancers that they consider, and the denominators that they use to calculate

overdiagnosis rates. Within the CNBSS, Miller et al. (2014) reports an overdiagnosis rate of 22%,

and Baines et al. (2016) report several different overdiagnosis rates that vary from 5% to 48%. In

other contexts, which include clinical trials as well as natural experiments created by population

screening programs, estimates vary widely.10

I do not provide an estimate of overdiagnosis among never takers. In the long term, never

takers could receive mammograms (the term “never taker” gets its meaning within the active

study period), so never takers could be overdiagnosed or underdiagnosed. I could potentially

estimate whether they are overdiagnosed or underdiagosed on average by making making additional

assumptions. However, assumptions analogous to M.1 on the MTO and MTE functions are either

difficult to defend or uninformative, so I refrain from imposing them.11

The average treatment effects on always takers and compliers are arguably more informative

about the impact of a realistic future change in the USPSTF guidelines than the average treatment

effect on never takers. For example, suppose that the USPSTF changes it recommendation in the

future such that it does not recommend mammography for any asymptomatic women in their 40s.

Such a policy change would divide women into always takers, compliers, and never takers. Always

takers would be those who receive mammograms under the current and future policy, compliers

would be those who receive mammograms only under the current policy, and never takers would be

those who do not receive mammograms under the current or future policy. The groups of always

takers, compliers, and never takers generated by the policy change need not correspond to the

groups of always takers, compliers, and never takers generated by the CNBSS. Nonetheless, it seems

10Etzioni et al. (2002); Pohl and Welch (2005); Zackrisson et al. (2006); Jørgensen and Gøtzsche (2009); Bleyer
and Welch (2012); Marmot et al. (2012); Baum (2013); Duffy and Parmar (2013); Biller-Andorno and Jüni (2014);
Helvie et al. (2014); Miller et al. (2014); Patz et al. (2014); Welch and Passow (2014); Harding et al. (2015); Baines
et al. (2016); McCaffery et al. (2016); Nelson et al. (2016); Welch et al. (2016); Jørgensen et al. (2017); Lannin and
Wang (2017); Raffle and Gray (2019)

11Specifically, weak monotonicity of the MTO function would imply that the sum of selection and treatment
effect heterogeneity is monotonic from always takers to never takers to compliers, but such an assumption would be
difficult to defend in the context of the CNBSS. Within the CNBSS, my two main findings show that 1) selection
heterogeneity is increasing and 2) treatment effect heterogeneity is decreasing along the unobserved net cost of
treatment UD. Therefore, it is unclear if their sum should be decreasing or increasing. Baseline covariates only
inform selection heterogeneity; they do not inform the sum of selection and treatment effect heterogeneity. It could
be more palatable to impose weak monotonicity of the MTE function. However, alone, such an assumption would
not identify a treatment effect on never takers. In conjunction with M.1, such an assumption would imply that the
treatment effect is smaller for never takers than it is for compliers, but the smaller treatment effect could be positive
or negative, so it would not separate overdiagnosis from underdiagnosis.
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reasonable that the never takers within the CNBSS, who did not get mammograms even after being

randomized into the intervention group, would also be never takers under a policy change that did

not recommend mammograms. Since such a policy change would not affect mammograms for never

takers, average treatment effects on always takers and compliers are arguably more informative.

4.2.1 Breast Cancer Characteristics Corroborate Treatment Effect Heterogeneity

One concern with my finding of treatment effect heteterogeneity, which shows that women more

likely to receive mammograms are more likely to be overdiagnosed by them, is that M.1 does

not actually hold, such that always takers would actually have higher breast cancer incidence

than compliers in the absence of mammograms. This could be the case, for example, if always

takers receive mammograms because they know that they have a higher risk of breast cancer than

compliers, despite appearing healthier on other dimensions. To address this concern, in addition

to selecting the sample to exclude women who could have knowledge that they have a higher risk

of breast cancer, I compare average characteristics of the breast cancers detected among always

takers and treated compliers during the active study period.

As shown in Table 2, I find suggestive evidence that breast cancers detected among always

takers are smaller and less invasive than breast cancers detected among treated compliers. One

potential explanation for this evidence is selection heterogeneity such that always takers with

breast cancer are healthier than compliers with breast cancer, consistent with my main finding

of selection heterogeneity such that women more likely to receive mammograms are healthier. A

second potential explanation is that mammography has a larger treatment effect on breast cancer

diagnosis for always takers relative to compliers such that given the same or better underlying

health, always takers are more likely to be diagnosed with breast cancer. The second explanation is

consistent with my finding of treatment effect heterogeneity such that women more likely to receive

mammograms are more likely to be overdiagnosed by them.

Table 2: Suggestive Evidence that Women More Likely to Receive Mammograms
Have Breast Cancers That Are Smaller and Less Invasive

and Undergo More Aggressive Procedures

(1) (2)
Always 
Takers

Treated 
Compliers

Tumor Size Among Breast Cancers (in mm) 13 18
(2) (3)

Share of Invasive Breast Cancer Among Breast Cancers (%) 73 75
(9) (7)

Share of Mastectomy Among Breast Cancers with Mastectomy or Lumpectomy (%) 45 23 
(9) (7)

Means Difference in Means

-5
(4)

(1) - (2)

-2
(13)
22 

(13)

Note. Bootstrapped standard errors in parentheses. All outcomes are restricted to those years for which treatment is defined
during the active study period. Lumpectomy is a procedure that involves partial removal of the breast, and mastectomy is
a more aggressive procedure that involves complete removal of the breast. The treatment is mammography, which is equal
to one if a participant receives a mammogram in at least one year during the active study period after the enrollment year.
The main analysis sample includes women aged 40-49 at enrollment and excludes those who report any breast cancer in their
family, any previous breast cancer diagnosis, any other breast disease, or any symptoms, as well as those for whom a nurse
found abnormalities or referred them for review.
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5 Robustness

I examine the robustness of my two main findings by estimating my main specification with al-

ternative outcomes, alternative sample restrictions, alternative definitions of mammography, and

alternative follow-up lengths. To facilitate comparisons with my main specification, I summarize

important statistics from Figure 4 in Table 3. A specification shows my two main findings —

selection and treatment effect heterogeneity such that women more likely to receive mammograms

are healthier and experience a larger treatment effect from mammograms — when the untreated

outcome test statistic in column (1) is negative and the decision rule indicates that the test rejects

treatment effect homogeneity in column (5).

Table 3: Summary of Findings Depicted in Figure 4
and Robustness to Alternative Outcomes, Sample Restrictions, and Definitions of Mammography

(1) (2) (3) (4) (5)

Untreated Always Taker Average Local Average Lower Bound on Test Rejects
Outcome Treatment Effect Treatment Effect Treatment Effect Treatment Effect

N Test Lower Bound LATE Ratio Homogeneity
(2)/(3) 1{(2) > (3)}

Main Specification
Outcome is breast cancer incidence, sample is main analysis sample, treatment is defined as mammogram in at least one active study period after enrollment

Breast cancer incidence 19,505 -301 206 58 3.5 1.00
(119) (65) (34) (12) [0.03]

Alternative Outcomes
All-cause mortality 19,505 -562 22 -13 - 1.00

(147) (59) (38) [0.36]

Breast cancer mortality 19,505 -43 30 -12 - 1.00
(47) (25) (13) [0.23]

Alternative Sample Restrictions
All excluded participants aged 40-49 at enrollment 30,925 -1,237 309 79 3.9 1.00

(147) (48) (43) (35) [0.00]

All participants aged 40-49 at enrollment 50,430 -826 298 69 4.3 1.00
(107) (40) (31) (31) [0.00]

All participants aged 50-59 at enrollment 39,405 -1,555 419 39 10.7 1.00
(140) (49) (34) (89) [0.00]

All participants 89,835 -1,156 332 55 6.0 1.00
(96) (31) (21) (95) [0.00]

Alternative Definitions of Mammography
At least two active study period years after enrollment 19,505 -341 239 54 4.5 1.00

(95) (95) (32) (16) [0.03]

At least three active study period years after enrollment 19,505 -330 167 55 3.0 1.00
(73) (145) (32) (9) [0.19]

All active study period years after enrollment 19,505 -178 158 64 2.5 1.00
(61) (190) (38) (10) [0.31]

Note. Bootstrapped standard errors in parentheses and p-values in brackets, based on 200 bootstrap samples, which yields some
p-values of zero. All outcomes are measured 20 years after enrollment per 10,000 participants for all participants, based on
initial occurrence and the exact calendar date of enrollment. In the main specification, the treatment is mammography, which
is equal to one if a participant receives a mammogram in at least one year during the active study period after the enrollment
year. The main analysis sample includes women aged 40-49 at enrollment and excludes those who report any breast cancer in
their family, any previous breast cancer diagnosis, any other breast disease, or any symptoms, as well as those for whom a nurse
found abnormalities or referred them for review. Values in column (4) are omitted (-) if the ratio of column (2) to column (3)
does not yield a lower bound on the treatment effect ratio, which occurs when the LATE is negative. Some differences between
statistics might not appear internally consistent because of rounding.

5.1 Alternative Outcomes

I have shown that my first finding of selection heterogeneity, which shows that women more likely to

receive mammograms are healthier, holds in terms of breast cancer incidence and all-cause mortality.
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In Table 3, I also examine breast cancer mortality for comparison to the literature, even though it

is subject to more classification error than all-cause mortality. The untreated outcome test statistic

in column (1) shows suggestive evidence that women more likely to receive mammograms are also

healthier in terms of breast cancer mortality.

Turning to my second finding, column (5) shows suggestive evidence of treatment effect hetero-

geneity such that women more likely to receive mammograms experience greater harms from them,

as measured in terms of all-cause and breast cancer mortality. I illustrate the results for all-cause

mortality in Figure D2. The always taker average treatment effect lower bound is greater than

the LATE, but the difference is not statistically significant. The lack of statistical significance is

unsurprising given that the LATE itself is not statistically significant. Consistent with imprecision,

the sign of the LATE on all-cause mortality is negative in my main analysis sample, even though

the latest results published by CNBSS investigators (Miller et al., 2014) would be consistent with

a positive LATE. The finding of treatment effect heterogeneity holds regardless of the sign of the

LATE.

The magnitude of the lower bound on the average treatment effect on mortality for always

takers is notable. It indicates that always takers experience at least an additional 22 deaths per

10,000 participants when they receive mammograms, which suggests that at least 4.9% (= 22/451)

of their deaths would not have occurred otherwise. For comparison, the World Health Organization

estimates the number of road traffic deaths in the entire U.S. population each year at 1.1 per 10,000

people (World Health Organization, 2015). Therefore, the lower bound on the average treatment

effect for always takers, which is measured over a 20-year period, is comparable to the rate of road

traffic deaths over a period of the same length.

Why might women more likely to receive mammograms be more likely to experience harm from

them, as measured in terms of all-cause mortality and breast cancer mortality? As shown in the

first two rows of Table 2, I find suggestive evidence that women more likely to receive mammograms

have breast cancers that are smaller and less invasive. Virtually all women diagnosed with breast

cancer during the active study period underwent lumpectomy or mastectomy. Whereas lumpectomy

involves only partial removal of the breast, mastectomy is a more aggressive procedure that involves

complete removal of the breast. The third row of Table 2 shows that, among women with breast

cancer who underwent either of these procedures during the active study period, 45% of always

takers underwent the more aggressive procedure of mastectomy, compared to only 23% of compliers.

These results suggest that women more likely to receive mammograms may receive more aggressive

treatment for smaller, less invasive breast cancers. These aggressive treatments could lead to

increased collateral harms in the form of all-cause and breast cancer mortality.

5.2 Alternative Sample Restrictions

In the rest of Table 3, I examine the robustness of my findings in terms of breast cancer incidence.

I consider alternative sample restrictions that include all excluded participants aged 40-49 at en-

rollment (those who report any breast cancer in their family, any previous false-positive breast

cancer diagnosis, any other breast disease, or any symptoms and those for whom a nurse found
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abnormalities or referred them for review), all participants aged 40-49 at enrollment, all partici-

pants aged 50-59 at enrollment, and all participants. My first and second findings hold in all of the

reported samples. Furthermore, the lower bound on the ratio of treatment effects for always takers

and compliers is always at least 3.5. Hence, the 20-year level of overdiagnosis is at least 3.5 times

higher among always takers than it is among compliers, regardless of the sample.

5.3 Alternative Definitions of Mammography

In the main specification, I define mammography D such that D = 1 if a participant receives a

mammogram in at least one year during the active study period after the enrollment year, and I

set D = 0 otherwise. Since I start with a broad definition of mammography, I assess robustness

to narrower definitions of mammography in Table 3. The results for selection and treatment effect

heterogeneity yield the same conclusions as those from the main specification, although the test for

treatment effect homogeneity is not statistically significant under the two narrowest definitions. The

two narrowest definitions are arguably too extreme because they require that “treated” participants

must receive mammograms in three or more active study period years after enrollment, so it is

notable that the results yield the same conclusions.

I cannot examine robustness to definitions that include mammography after the active study

period because such information was not collected. However, I know that breast cancer screening

programs began in British Columbia in 1988 and in other Canadian provinces in the 1990s (Baines

et al., 2016). Given the greater availability of mammography through such programs, mammog-

raphy behavior in the control and intervention groups likely converged over time. Given likely

convergence in mammography behavior, results from the CNBSS likely reflect the effect of starting

mammography earlier, as opposed to the effect of ever receiving mammography. My ability to find

heterogeneous selection and treatment effects in the face of likely long-term attenuation speaks to

the robustness of my results.

5.4 Alternative Follow-up Lengths

In the main specification, breast cancer incidence is measured 20 years after enrollment. Table E1

summarizes results for breast cancer incidence at all earlier annual follow-up lengths. The untreated

outcome test statistic is negative at all follow-up lengths, consistent with selection heterogeneity

such that women more likely to receive mammograms are healthier. Furthermore, the test rejects

treatment effect homogeneity at all follow-up lengths, consistent with treatment effect heterogeneity

such that women more likely to receive mammograms experience higher levels of overdiagnosis.

Whether overdiagnosis can be estimated in the short term is controversial due to the concept

of lead time. Lead time refers to “the time from detection of preclinical cancer by screening to

detection of clinical (symptomatic) cancer in the absence of screening” (Baker et al., 2014). Short

follow-up lengths might not allow for enough lead time, such that excess breast cancer detection in

the intervention group could just reflect lead time instead of overdiagnosis. However, once there is

evidence of overdiagnosis in the long term, estimates from the short term can also be interpreted

as estimates of overdiagnosis (Zahl et al., 2013; Baines et al., 2016). As shown in Table E1, the

LATE is positive and statistically significant in the first year, and it is still statistically significant
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at longer follow-up lengths, consistent with overdiagnosis. Consequently, my findings at earlier

follow-up lengths could also reflect overdiagnosis.

6 Discussion

The active study period of the CNBSS took place in the 1980s, so it is important to assess whether

my findings are still applicable in the current environment. It is plausible that my first finding,

which shows that women more likely to receive mammograms are healthier, is still applicable,

especially given recent evidence from natural experiments (Einav et al., 2019; Oster, 2018). It is

also plausible that my second finding, which shows that women more likely to receive mammograms

have a higher level of overdiagnosis, is still applicable. Recent research does not inform current

rates of overdiagnosis since recent trials lack long-term follow-up data. The threat of overdiagnosis,

however, remains present. As mammograms become increasingly accurate, they could identify even

smaller tumors that would never become life-threatening. At the same time, existing breast cancer

treatments have likely become less harmful, so the impact of overdiagnosis on mortality may have

decreased. However, new breast cancer drugs have also been developed. As drugs become more

effective at treating advanced cancers, there is less of a need to screen women before they develop

symptoms, especially given potential overdiagnosis.

In the current environment, many factors encourage mammography, including mandatory health

insurance coverage for mammograms under the Affordable Care Act, public outreach efforts, and

risk aversion on the part of doctors and patients. In 2015, 64% of U.S. women aged 40 and older

received a mammogram within the previous two years (National Health Interview Survey, 2017).

Very few factors discourage mammography or encourage more evidence to be collected on it, which

is potentially a reason to take my findings even more seriously. The active study period of the

CNBSS was not particularly recent, but changes in environment are an inherent limitation of any

long-term analysis. The current USPSTF guidelines consider previous findings from the CNBSS,

which are based on a comparison of average outcomes between the intervention and control groups.

Since I uncover treatment effect heterogeneity in the CNBSS based on mammography behavior,

my findings could also be useful for future guidelines.

7 Implications for Guidelines and Future Research

Clinical guidelines are often based on analysis of health outcomes from clinical trials. The success

of guidelines in improving health outcomes depends on how they affect behavior in practice. I

demonstrate that behavior within a clinical trial can inform how guidelines will affect behavior

and thus health outcomes in practice. To do so, I examine relationships between behavior and

health outcomes within existing clinical trial data. Specifically, I examine relationships between

mammography behavior and health outcomes in the CNBSS, an influential and extensive trial on

mammography.

My first finding shows heterogeneous selection: women more likely to receive mammograms are

healthier and of higher socioeconomic status. My second finding shows treatment effect heterogene-

ity: women more likely to receive mammograms are more likely to be overdiagnosed with breast

cancer by them. This result is statistically significant, consistent with a growing consensus in the
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literature that shows a positive treatment effect on overdiagnosis. I also find that women more

likely to receive mammograms may be more likely to face a higher rate of 20-year all-cause mortal-

ity from them. While this result is not statistically significant, such imprecision is unsurprising, as

there is no consensus in the literature on the simpler matter of the sign of the treatment effect on

all-cause mortality. Within the CNBSS data, I find suggestive evidence of a potential mechanism

for increased all-cause mortality: women more likely to receive mammograms have breast cancers

that are smaller and less invasive, but they pursue more aggressive procedures, which could increase

collateral harm.

Growing concern about overdiagnosis and collateral harm from mammography for women in

their 40s has prompted changes in screening guidelines around the world. The Candian guidelines,

which changed in 2018, do not recommend mammography for any asymptomatic women in their 40s

(Klarenbach et al., 2018). The Swiss Medical Board took steps to limit screening programs in 2014

(Biller-Andorno and Jüni, 2014), and in 2016 the French Minister of health released results of an

independent review that recommended an end to screening or radical reforms (Barratt et al., 2018).

As of 2018, neither the Swiss nor French screening guidelines recommend regular mammography

screening for asymptomatic women in their 40s (Ebell et al., 2018).

Had I found that women more likely to receive mammograms were also more likely to benefit

from them, then my findings would have supported the current USPSTF guidelines for women

in their 40s. Instead, my findings support a further weakening of the guidelines such that they

no longer recommend regular mammography for any asymptomatic women in their 40s. Under

such revised guidelines, women who do not receive mammograms under the current guidelines

would likely be unaffected. However, some women who receive mammograms under the current

guidelines would likely not receive them under revised guidelines. My findings indicate that these

women would benefit from a reduction in overdiagnosis.

Even under weaker guidelines, it is likely that some asymptomatic women in their 40s would

still obtain mammograms, and it is logical for guidelines to leave room for such behavior, as

mammography may still be appropriate for some asymptomatic women in their 40s. Mammography

can offer benefits to women that are not captured by breast cancer diagnosis or all-cause mortality,

such as the peace of mind that comes with a negative breast cancer diagnosis. As articulated by a

clinical nurse,“Being preoccupied with saving one’s life produces a myopia, in which other worries

unrelated to one’s possibly imminent death fall away.” (Brown, 2017). For asymptomatic women

considering whether to receive mammograms even under revised guidelines that do not recommend

them, my findings can help to inform the magnitudes of the impacts on two key health outcomes.

For women in their 40s who see or feel abnormalities in their breasts, it is important to note that

screening guidelines apply only to asymptomatic women, so guideline changes should not affect the

mammography behavior of women with symptoms.

Beyond the context of mammograms, my findings support the need for clinical trials to collect

data on behavior and for those data to be used in the development of guidelines. In many trials,

individual-level data on takeup of treatment are not collected, especially for participants assigned

to the control group. Furthermore, even when they are collected, to the best of my knowledge,
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they are not considered in the development of guidelines. Whenever the USPSTF determines that

“there is at least moderate certainty that the net benefit is small,” it issues a “C recommendation,”

as it did in the case of mammography for women in their 40s, which means that “the USPSTF

recommends selectively offering this service to individual patients based on professional judgment

and patient preferences” (U.S. Preventive Service Task Force, 2017). These C recommendations

presuppose selection and treatment effect heterogeneity such that the individuals most likely to

benefit from a treatment will be the most likely to receive it. However, these guidelines are not

based on evidence of selection and treatment effect heterogeneity. By demonstrating that it is

possible to examine selection and treatment effect heterogeneity within existing clinical trial data,

I enhance the ability of future guidelines to target treatments toward individuals most likely to

benefit from them.

Appendix

Appendix A Proof that UD is Uniformly Distributed between 0 and 1

The uniform distribution of UD between 0 and 1 is not a separate assumption of the model. Instead,

it is due to the “probability integral transformation,” which shows that the cumulative distribution

function of any random variable applied to itself must be distributed uniformly between 0 and 1 (for

example, see Casella and Berger (2002, page 54)). A random variable Y is distributed uniformly

between 0 and 1 if and only if FY (c) = c for 0 ≤ c ≤ 1. Therefore, the proof that follows shows

that UD = F (νD) is distributed uniformly between 0 and 1.

FUD
(u) = P (UD ≤ u)

= P (F (νD) ≤ u)

= P (νD ≤ F−1(u)) (F (·) absolutely continuous by A.1)

= F (F−1(u)) = u.

�

Appendix B Derivation of the Treatment Equation

Treatment D is given by

D = 1{0 ≤ VT − VU}
= 1{0 ≤ µD(Z)− νD}
= 1{νD ≤ µD(Z)}
= 1{F (νD) ≤ F (µD(Z))} (definition of F (·) from A.1)

= 1{UD ≤ F (µD(Z))} (UD = F (νD) by definition)

= 1{UD ≤ P(D = 1 | Z = z)},
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where the last equality follows from

F (µD(Z)) = P(νD ≤ µD(Z))

= P(νD ≤ µD(z) | Z = z) (νD ⊥ Z by A.2)

= P(0 ≤ µD(Z)− νD | Z = z)

= P(0 ≤ VT − VU | Z = z)

= P(D = 1 | Z = z). �

Appendix C Derivations of Average Outcomes and Covariates

These derivations yield the same values as the derivations by Imbens and Rubin (1997), Katz

et al. (2001), Abadie (2002), and Abadie (2003), which rely on the LATE assumptions. I begin

by deriving the average treated outcome of always takers. To do so, I begin with the average

outcome of treated control group participants because those participants must be always takers.

After some manipulation, I invoke the independence assumption A.2 to show that the average

outcome of treated control group participants must be equal to the average treated outcome of all

always takers, regardless of whether they are assigned to the control or intervention group:

E[Y | D = 1, Z = 0] = E[YU +D(YT − YU ) | D = 1, Z = 0] (by (6))

= E[YT | D = 1, Z = 0]

= E[YT | 0 ≤ UD ≤ pC , Z = 0] (by (4), where pC = P (D = 1|Z = 0))

= E[gT (UD, γT ) | 0 ≤ UD ≤ pC , Z = 0] (by (7))

= E[gT (UD, γT ) | 0 ≤ UD ≤ pC ] (Z ⊥ (UD, γT ) by A.2)

= E[YT | 0 ≤ UD ≤ pC ].

In the CNBSS, I obtain an average treated outcome of always takers of 571 breast cancers per

10,000 women, which I plot over the relevant range (0 ≤ UD ≤ pC) in Figure C1, using a dotted

line to indicate that it represents an average treated outcome.

Next, I derive the average treated outcome of compliers. To do so, I begin with the average

outcome of treated intervention group participants because those participants must be always takers

and treated compliers. A similar derivation to the derivation for always takers yields E[Y | D =

1, Z = 1] = E[YT | 0 ≤ UD ≤ pI ]. Therefore, I plot the average outcome of treated intervention

group participants, which is 453 breast cancers per 10,000 women in the CNBSS, over the relevant

range (0 ≤ UD ≤ pI) in Figure C1, using a dotted line to indicate that it represents an average

treated outcome. As the figure makes clear, the fractions of always takers and compliers are known,

so it is possible to back out the average treated outcome of compliers as follows:

E[YT | pC < UD ≤ pI ] =
pI

pI − pC
E[YT | 0 ≤ UD ≤ pI ]− pC

pI − pC
E[YT | 0 ≤ UD ≤ pC ]

=
pI

pI − pC
E[YT | D = 1, Z = 1]− pC

pI − pC
E[YT | D = 1, Z = 0].
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Figure C1: Derivation of Average Breast Cancer Incidence for
Treated and Untreated Compliers (Lighter Shading)
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Note. Bootstrapped standard errors in parentheses. The outcome is breast cancer incidence, measured 20 years after enrollment
for all participants, based on initial diagnosis and the exact calendar date of enrollment. The treatment is mammography, which
is equal to one if a participant receives a mammogram in at least one year during the active study period after the enrollment
year. The main analysis sample includes women aged 40-49 at enrollment and excludes those who report any breast cancer
in their family, any previous breast cancer diagnosis, any other breast disease, or any symptoms, as well as those for whom a
nurse found abnormalities or referred them for review.

In the CNBSS, the average treated outcome of compliers is 424 breast cancers per 10,000 women,

which I plot over the relevant range (pC < UD ≤ pI) in Figure C1, using a dotted line to indicate

that it represents an average treated outcome.

Turning to average untreated outcomes, I begin with the average untreated outcome of inter-

vention group participants because those participants must be never takers. A similar derivation

to the derivation for always takers yields E[Y | D = 0, Z = 1] = E[YU | pI < UD ≤ 1]. In the

CNBSS, I obtain an average untreated outcome of never takers of 667 breast cancers per 10,000

women, which I plot over the relevant range (pI < UD ≤ 1) in Figure C1, using a dashed line to

indicate that it represents an average untreated outcome. Similarly, I derive the average outcome

of untreated control group participants E[Y | D = 0, Z = 0] = E[YU | pC < UD ≤ 1], which is equal

to 385 breast cancers per 10,000 women, and I plot it over the relevant range (pC < UD ≤ 1) in

Figure C1, using a dashed line to indicate that it represents an average untreated outcome. Using

these two values, I calculate the average untreated outcome of compliers as follows:

E[YU | pC < UD ≤ pI ] =
1− pC
pI − pC

E[YU | pC < UD ≤ 1]− 1− pI
pI − pC

E[YU | pI < UD ≤ 1]

=
1− pC
pI − pC

E[YU | D = 0, Z = 0]− 1− pI
pI − pC

E[YU | D = 0, Z = 1]
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In the CNBSS, the average untreated outcome of compliers is 366 breast cancers per 10,000 women,

which I plot over the relevant range (pC < UD ≤ pI) in Figure C1, using a dashed line to indicate

that it represents an average untreated outcome.

To derive the average covariates for always takers, compliers, and never takers, I follow the same

approach with a covariate X in lieu of an outcome Y . However, while average outcomes should

be different for treated and untreated compliers, average covariates should be the same for treated

and untreated compliers. I therefore obtain the average covariate vector for compliers by weighting

the average covariate vectors for the treated and untreated compliers by the probabilities of being

assigned to the intervention and control groups:

E[X | pC < UD ≤ pI ] = P(Z = 1)
[ pI
pI − pC

E[X | D = 1, Z = 1]− pC
pI − pC

E[X | D = 1, Z = 0]
]

+P(Z = 0)
[ 1− pC
pI − pC

E[X | D = 0, Z = 0]− 1− pI
pI − pC

E[X | D = 0, Z = 1]
]
.

Appendix D Alternative Outcome: All-Cause Mortality

Figure D2: Untreated Outcome Test Rejects Selection Homogeneity on All-Cause Mortality:
Women More Likely to Receive Mammograms are Healthier

and Test Rejects Treatment Effect Heterogeneity on All-Cause Mortality at 36% Level:
Women More Likely to Receive Mammograms Experience Greater Harm From Them

At Least 4.9% (= 22/451) of Their Deaths Would Not Have Occurred Otherwise
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Note. Bootstrapped standard errors in parentheses, and p-value in brackets. The outcome is all-cause mortality, measured 20
years after enrollment for all participants, based on the exact calendar date of enrollment. The treatment is mammography,
which is equal to one if a participant receives a mammogram in at least one year during the active study period after the
enrollment year. The main analysis sample includes women aged 40-49 at enrollment and excludes those who report any breast
cancer in their family, any previous breast cancer diagnosis, any other breast disease, or any symptoms, as well as those for
whom a nurse found abnormalities or referred them for review. Some differences between statistics might not appear internally
consistent because of rounding.
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Appendix E Alternative Follow-up Lengths

Table E1: Summary of Findings Depicted in Figure 4
and Robustness to Alternative Follow-up Lengths

(1) (2) (3) (4) (5)

Untreated Always Taker Average Local Average Lower Bound on Test Rejects
Outcome Treatment Effect Treatment Effect Treatment Effect Treatment Effect

Years Since Enrollment N Test Lower Bound LATE Ratio Homogeneity
(2)/(3) 1{(2) > (3)}

Main specification: 20 19,505 -301 206 58 3.5 1.00
(119) (65) (34) (12) [0.03]

19 19,505 -269 196 52 3.8 1.00
(114) (63) (33) (30) [0.03]

18 19,505 -311 210 54 3.9 1.00
(113) (60) (31) (14) [0.01]

17 19,505 -322 214 49 4.4 1.00
(112) (59) (32) (66) [0.01]

16 19,505 -342 232 56 4.1 1.00
(110) (58) (31) (21) [0.00]

15 19,505 -381 211 84 2.5 1.00
(110) (55) (29) (3) [0.02]

14 19,505 -404 201 80 2.5 1.00
(110) (52) (27) (2) [0.03]

13 19,505 -431 223 75 3.0 1.00
(110) (51) (26) (3) [0.02]

12 19,505 -443 191 64 3.0 1.00
(109) (47) (25) (4) [0.03]

11 19,505 -423 195 55 3.5 1.00
(109) (46) (24) (6) [0.01]

10 19,505 -419 200 47 4.2 1.00
(107) (45) (22) (33) [0.00]

9 19,505 -413 192 34 5.6 1.00
(103) (42) (21) (32) [0.00]

8 19,505 -409 175 35 5.1 1.00
(100) (40) (20) (39) [0.00]

7 19,505 -393 177 46 3.9 1.00
(95) (36) (17) (17) [0.00]

6 19,505 -412 185 50 3.7 1.00
(95) (34) (15) (8) [0.00]

5 19,505 -382 180 45 4.0 1.00
(90) (32) (14) (4) [0.00]

4 19,505 -393 152 46 3.3 1.00
(91) (29) (13) (2) [0.00]

3 19,505 -354 104 37 2.8 1.00
(85) (23) (12) (4) [0.01]

2 19,505 -337 63 25 2.5 1.00
(82) (18) (10) (3) [0.04]

1 19,505 -342 35 20 1.8 1.00
(82) (12) (7) (1) [0.10]

Note. Bootstrapped standard errors in parentheses, and p-values in brackets. Statistical significance for all specifications is
based on 200 bootstrap samples, including specifications that have a p-value value of zero. The outcome is breast cancer
incidence per 10,000 participants. In the main specification, breast cancer incidence is measured 20 years after enrollment for
all participants, based on initial diagnosis and the exact calendar date of enrollment. The treatment is mammography, which
is equal to one if a participant receives a mammogram in at least one year during the active study period after the enrollment
year. The main analysis sample includes women aged 40-49 at enrollment and excludes those who report any breast cancer in
their family, any previous breast cancer diagnosis, any other breast disease, or any symptoms, as well as those for whom a nurse
found abnormalities or referred them for review. Some differences between statistics might not appear internally consistent
because of rounding.
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