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ABSTRACT

I unite the economics and medical literatures by examining behavior within a clinical trial to 
inform treatment guidelines. I use data from the Canadian National Breast Screening Study, an 
influential clinical trial on mammography. During the active study period of the trial, a 
substantial fraction of women in the control group received mammograms, and some women in 
the intervention group did not. Using this mammography behavior, random assignment within the 
trial, and a standard model from the economics literature, I divide participants into three groups 
that differ in how likely they are to receive mammograms. Making comparisons across these 
groups, I find two important relationships. First, I find heterogeneous selection into 
mammography: women more likely to receive mammograms are healthier. I find this relationship 
using a marginal treatment effect model that assumes no more than the local average treatment 
effect assumptions. Second, I find treatment effect heterogeneity along the margin of selection 
into mammography: women more likely to receive mammograms are more likely to experience 
harm from them. I find this relationship using an ancillary assumption that builds on the first 
empirical relationship. I find additional empirical support for the ancillary assumption using 
baseline covariates. My findings contribute to the literature concerned about harms from 
mammography by demonstrating variation across the margin of selection into mammography. 
This variation is problematic for current mammography guidelines for women in their 40s 
because it implies that they unintentionally encourage mammography for healthier women who 
are more likely to experience harm from them.
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1 Introduction

The U.S. Preventive Service Task Force (USPSTF) revived the debate on mammography

when they updated their mammography guidelines in 2009 (U.S. Preventive Services Task

Force, 2009). Although their previous guidelines recommended regular mammography for

women aged 40 and older (U.S. Preventive Services Task Force, 2002), their updated guide-

lines left the mammography decision for women in their 40s to individual women and their

doctors. The precise USPSTF guidelines for women in their 40s, as confirmed in 2016, state:

“The decision to start screening mammography in women prior to age 50 years should be an

individual one. Women who place a higher value on the potential benefit than the potential

harms may choose to begin biennial screening between the ages of 40 and 49 years” (Siu,

2016).

These guidelines raise two important empirical questions. The first concerns heteroge-

neous selection into mammography: are women who are more likely to receive mammograms

under these guidelines different? The second concerns heterogeneous treatment effects from

mammography: are women who are more likely to receive mammograms under these guide-

lines more likely to experience benefits or harms from them?

To answer these questions, I unite the medical literature with the economics literature

by examining behavior within a clinical trial. The medical literature on mammography, in-

cluding the meta-analysis that informs the 2016 USPSTF mammography guidelines (Nelson

et al., 2016), focuses on evidence from clinical trials (Moss et al., 2015; Miller et al., 2014;

Bjurstam et al., 2003; Nyström et al., 2002; Tabar et al., 1995; Habbema et al., 1986). This

evidence is based on the comparison of health outcomes between randomly assigned inter-

vention and control groups. However, it rarely incorporates analysis of mammogram takeup,

which reflects behavior as well as random assignment. In contrast, the economics literature

on mammography focuses on impacts of policy interventions on mammography behavior

(see Bitler and Carpenter (2016); Buchmueller and Goldzahl (2018); Myerson et al. (2018);

Kim and Lee (2017); Zanella and Banerjee (2016); Kadiyala and Strumpf (2016). Uniting

the medical literature with the economics literature, I focus on relationships between mam-

mography behavior and health outcomes within a clinical trial. These relationships inform

heterogeneous selection into mammography and accompanying heterogeneous treatment ef-

fects on health outcomes, which in turn inform the impact of mammography guidelines.

To conduct my analysis, I use individual-level data from the Canadian National Breast

Screening Study (CNBSS), an influential clinical trial cited by the USPSTF in its mammog-

raphy guidelines. The CNBSS enrolled almost 90,000 participants aged 40-59 between 1980

and 1985. All participants were randomly assigned to one of two groups: an intervention

group and a control group. Intervention group participants received access to annual mam-
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mograms during an active study period, consisting of the enrollment year and 3 to 4 years

after enrollment. Control group women in their 40s at enrollment received usual care in the

community, and control group women in their 50s at enrollment received access to annual

clinical breast examinations in each year of the active study period. Given the change in

mammography guidelines for women in their 40s, I focus on women in their 40s at enrollment,

and I examine the robustness of my findings on women in their 50s at enrollment.

The CNBSS data allow me to examine mammography behavior and mortality for all

participants. To the best of my knowledge, the CNBSS is the only trial considered by

the meta-analsyis that informs the USPSTF guidelines that tracked the actual takeup of

mammograms for all participants. These data show that a substantial fraction of women

in the control group received mammograms, and some women in the intervention group

did not. This variation in mammography behavior is crucial for my analysis. Furthermore,

the CNBSS data allow me to observe mortality for all participants because they are linked

to the Canadian Mortality Database. Among the trials on mammography considered by

the meta-analsyis that informs the USPSTF guidelines, the CNBSS is the only trial with

data that allows for examination of mortality for at least 20 years after enrollment for all

participants (Nelson et al., 2016). The ability to examine mortality over a long time horizon

proves important to my results.

To examine relationships between mammography and mortality, I begin with a standard

treatment effect model in which the “treatment” is mammography. I present the model as

a generalized Roy (1951) model of the marginal treatment effect (MTE) as introduced by

Björklund and Moffitt (1987), in the tradition of Heckman and Vytlacil (1999, 2001, 2005),

Carneiro et al. (2011), and Brinch et al. (2017). The specific MTE model that I use can also

be characterized as a model that assumes no more than the local average treatment effect

(LATE) assumptions of independence and monotonicity proposed by Angrist and Imbens

(1994), given the proof by Vytlacil (2002).

Given the equivalence of the model to the LATE assumptions, I emphasize the link

between the MTE model and the Angrist et al. (1996) terminology used in the LATE litera-

ture. In this terminology, “always takers” receive treatment regardless of random assignment,

“compliers” receive treatment if and only if they are assigned to the intervention group, and

“never takers” do not receive the treatment regardless of random assignment. The model ex-

cludes “defiers,” who receive treatment if and only if they are assigned to the control group.

It is possible to identify some individuals as always takers because they receive treatment

despite assignment to the control group, and it is possible to identify other individuals as

never takers because they do not receive treatment despite assignment to the intervention

group. It is not possible to identify the remaining individuals as members of any one group.
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However, the assumptions of the model, which rely on the randomization and the exclusion

of defiers, make it possible to calculate aggregate statistics on always takers, compliers, and

never takers. These statistics are useful because they allow for comparisons across three

groups, not just the two groups generated by the intervention and control.

In my presentation of the model, I emphasize that it implies an ordering from always

takers to compliers to never takers. This ordering was originally shown by Vytlacil (2002). I

make the ordering clear using a simple figure that illustrates implications of the first stage of

the model. Given the equivalence of the model to the LATE assumptions, I emphasize that

this ordering is also true under the LATE assumptions. Within the experiment, always takers

are most likely to receive treatment (they receive treatment with probability 1), followed by

compliers (they receive treatment with probability equal to the probability of assignment to

the intervention group), followed by never takers (they receive treatment with probability

0). The second stage of the model allows for differences in mortality across always takers,

compliers, and never takers. I use the ordering across these groups to identify selection

heterogeneity. I also use the ordering to motivate the ancillary assumption that I impose to

identify treatment effect heterogeneity.

I define selection and treatment effect heterogeneity using functions from the MTE liter-

ature. The definition of selection heterogeneity generalizes the definition of “selection bias”

used by Angrist (1998) and Heckman et al. (1998) among others. Under that definition,

there is selection bias if the average untreated outcome of the treated participants is not

equal to the average untreated outcome of the untreated participants. I show that within

a trial, selection bias depends on the probability of assignment to the intervention group, a

parameter explicitly chosen as part of the trial design, but selection heterogeneity does not.

More importantly, selection bias is not identified under the model alone because it is not

possible to calculate the average untreated outcome of all treated participants. However,

an alternative special case of selection heterogeneity is identified because the trial generates

exogenous variation in which participants receive treatment, making it possible to calculate

the average untreated outcome of some treated participants.

I identify a special case of selection heterogeneity in the CNBSS without any ancillary

assumptions. I do so using a test that I refer to as the “untreated outcome test” because

it compares the average untreated outcomes of compliers and never takers. The untreated

outcome test is equivalent or similar to tests proposed in the econometric literature by

Bertanha and Imbens (2014), Guo et al. (2014), and Black et al. (2015) and generalized

by Mogstad et al. (2018).1 Unlike previous literature, I show that the untreated outcome

1The test proposed by Bertanha and Imbens (2014) is similar because they develop their test for a
regression discontinuity context, but it is effectively an equivalent test. Bertanha and Imbens (2014) propose
this test as one component of a test for external validity, but they do not propose it as a test of selection
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test identifies a special case of selection heterogeneity. I find selection heterogeneity in the

CNBSS: women more likely to receive mammograms are healthier.

I identify a special case of treatment effect heterogeneity in the CNBSS using an ancillary

assumption that builds upon empirical selection heterogeneity. It requires weak monotonicity

of marginal untreated outcomes along the margin of selection into treatment, where empiri-

cal selection heterogeneity determines the direction of the weak monotonicity. Brinch et al.

(2017) impose this assumption in conjunction with a corresponding assumption on treated

outcomes to test for treatment effect homogeneity. I demonstrate that only one assumption

is necessary to test for treatment effect heterogeneity.2 Furthermore, I demonstrate that this

assumption yields a one-sided bound on the average treatment effect for always takers that

is of interest in its own right. The ancillary assumption that I impose is weaker than related

assumptions made by Olsen (1980), Heckman (1979), and Brinch et al. (2017), discussed by

Kline and Walters (2018). In the context of the CNBSS, given empirical selection hetero-

geneity, the ancillary assumption implies that women more likely to receive mammograms

have weakly better health, measured by long-term mortality in the absence of mammograms.

Measures of socioeconomic status and health behavior collected at baseline provide support

for the ancillary assumption. Under the ancillary assumption, I find treatment effect het-

erogeneity: women more likely to receive mammograms are more likely to be harmed by

them.

The possibility that harms of mammograms can outweigh benefits is surprising, but

an extensive literature considers the possibility (Lannin and Wang, 2017; Baines et al.,

2016; Nelson et al., 2016; Miller et al., 2014; Bleyer and Welch, 2012; Baum, 2013). The

article that conveys the 2016 USPSTF guidelines notes, “The most important harm is the

diagnosis and treatment of noninvasive breast cancer that would otherwise not have become

a threat to a woman’s health, or even apparent, during her lifetime (that is, overdiagnosis

and overtreatment)” (Siu, 2016). To illustrate how this mechanism could lead the harms

of mammograms to outweigh the benefits, suppose that two women receive mammograms.

Both are diagnosed with breast cancer, and both indeed have breast cancer. Unbeknownst to

the women and their doctors, one woman would die within 20 years in the absence of breast

heterogeneity. Similarly, Guo et al. (2014) propose this test as one component of a test for unmeasured
confounding, but they do not discuss it as a test for selection heterogeneity. Black et al. (2015) propose this
test as one of two tests for selection bias.

2This paper includes material from NBER Working Paper 22363, “Doing More When You’re Running
LATE: Applying Marginal Treatment Effect Methods to Examine Treatment Effect Heterogeneity in Exper-
iments” (Kowalski, 2016). I include content related to weak monotonicity assumptions in this paper, and I
include content related to linearity assumptions, as well as content related to the Oregon Health Insurance
Experiment, in Kowalski (2018a). In Kowalski (2018b), I discuss external validity for a nontechnical audi-
ence, and I do not break new ground. I co-developed the Stata commands mtemore to accompany (Kowalski,
2016) and mtebinary to accompany Kowalski (2018a).
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cancer treatment, but the other woman would not because her tumor would grow more

slowly. Unable to separate the two, both women receive breast cancer treatment, which has

its own mortality risks. Both women die within 20 years. The first woman would have died

in the absence of breast cancer treatment, so she is neither harmed nor helped. However,

the second women would have survived in the absence of breast cancer treatment, so she is

harmed. In this example, the harms of mammograms outweigh the benefits.

My finding that the harms of mammograms outweigh the benefits for the women most

likely to receive them is problematic for the current USPSTF mammography guidelines for

women in their 40s, which leave the mammography decision to individual women and their

doctors. Beyond the mammography context, my analysis demonstrates the importance of

examining relationships between behavior and health outcomes in a world that encourages

personalized health care. Fortunately, some relationships can be identified in existing clinical

trial data.

In the next section, I begin by replicating previous results from the CNBSS. In Section 3,

I model selection and treatment effect heterogeneity within the CNBSS. In Section 4, I

identify selection and treatment effect heterogeneity to arrive at my two main findings, and

I present evidence in support of the ancillary assumption required for my second finding. I

show that my results are robust to a wide variety of alternative specifications in Section 5.

I conclude by discussing implications for mammography guidelines and future research in

Section 6.

2 Replication of CNBSS Results

A great deal has been written on the CNBSS in the medical literature. Viewing the CNBSS

as an influential trial, my focus is not to evaluate the CNBSS itself or previous work on it.

Rather, my focus is to extend analysis of the CNBSS to examine selection and treatment

effect heterogeneity. Using CNBSS data, I am able to produce an exact replication of the

latest result published by CNBSS investigators in Miller et al. (2014). This result shows

that access to mammography does not have a statistically significant impact on breast cancer

mortality, which is consistent with results published by CNBSS investigators at earlier follow-

up lengths (Miller et al., 1992a,b, 1997, 2000, 2002, 2014). This result is also consistent with

other clinical trial results considered by the USPSTF (Nelson et al., 2016).

In the replication that serves as the foundation for my subsequent analysis, to increase

the relevance of my findings to the USPSTF guidelines for women in their 40s, I depart

from the exact replication of Miller et al. (2014) in four ways. First, because the USPSTF

guidelines changed specifically for women in their 40s, I only include women aged 40-49 at

enrollment in my main analysis sample, and I examine the robustness of my results among

women aged 50-59 at enrollment. Second, because the USPSTF guidelines are intended for
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asymptomatic women without a genetic predisposition for breast cancer, I exclude women

from my main analysis sample if they have any nonzero values of the following breast-related

covariates at baseline: breast cancer in family; any other breast disease; patient reported

symptoms; referred for review by nurse; abnormality found by nurse; ever told has breast

cancer. My main analysis sample includes 19,505 women. I examine robustness in the

full sample of 50,430 women aged 40-49 at enrollment and in the subsample of excluded

women. Third, I focus on all-cause mortality, which I refer to as “mortality” for simplicity,

because mortality is ultimately the most important outcome for guidelines to consider, but

I examine robustness to breast cancer mortality. Fourth, to make the timing of my findings

easier to interpret, I focus on results at a fixed follow-up length of 20 years after enrollment,

as opposed to a fixed cutoff date that reflects various follow-up lengths. I also robustness

at earlier follow-up lengths to understand whether more limited follow-up data would still

yield the same implications for mammography guidelines.

3 Model

I use an MTE model to allow for selection and treatment effect heterogeneity within the

CNBSS. I make only stylistic changes to the model used by Heckman and Vytlacil (2005)3

to ensure that the model assumes no more than the LATE assumptions of Angrist and Imbens

(1994), as proven by Vytlacil (2002). I emphasize that the model implies an ordering from

always takers to compliers to never takers. I present implications of this ordering using

simple figures.

3.1 First Stage: Mammography

In the context of the CNBSS, I use “treatment” to refer to mammography, which I represent

with D. I define mammography such that D = 1 if a participant receives a mammogram in

at least one year during the active study period after the enrollment year, and I set D = 0

otherwise. If data is missing in any year, I construct D such that the participant did not

receive a mammogram in that year.

Let VT represent potential utility in the treated state, and let VU represent potential

utility in the untreated state. I relate the potential utilities to realized utility V such that:

V = VU + (VT − VU)D. (1)

3One stylistic change that I make is that I do not condition on an optional covariate vector. Because
randomization in the CNBSS was not stratified, randomization was not conditional on a covariate vector.
The absence conditioning on a covariate vector simplifies the exposition and emphasizes the role of the
unobserved net cost of treatment.
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I specify the net benefit of treatment in terms of the potential utilities as follows:

VT − VU = µD(Z)− νD, (2)

where µD(·) is an unspecified function, Z is an observed binary instrument such that Z = 1

represents random assignment to the intervention group and Z = 0 represents random as-

signment to the control group, and νD is an unobserved term with an unspecified distribution.

I assume:

A.1. (Instrument Relevance) µD(Z) is a nondegenerate random variable,

A.2. (Continuity) The cumulative distribution function of νD, which I denote with F (·), is

absolutely continuous with respect to the Lebesgue measure.

A.3. (Independence) The random vectors (UD,γT ) and (UD,γU) are independent of Z, where

UD = F (νD), and γT and γU are unobserved terms introduced in the second stage.

A.1 is verifiable. Under A.2, the transformation of νD by F (·) is a normalization that implies

that UD = F (νD) is uniformly distributed between 0 and 1. For completeness, I show the

proof in Appendix A. The term νD enters negatively into the net benefit of treatment in

(2), so I interpret it as a net cost of treatment. I therefore interpret UD as the normalized

“unobserved net cost of treatment.”

The current USPSTF guideline recommends mammography for women in their 40s “who

place a higher value on the potential benefit than the potential harms” (Siu, 2016). In terms

of the model, the guideline recommends mammography for women with a value of (2) that is

greater than zero. These women are precisely the women who receive mammograms within

the CNBSS. As I show for completeness in Appendix B, given (2) greater than 0, A.3 implies

the following treatment equation:

D = 1{UD ≤ P(D = 1 | Z = z)}. (3)

This equation shows that women receive mammograms if and only if their unobserved net cost

of treatment UD is weakly less than an observed threshold. If A.1 holds, then the observed

threshold is different for the control and intervention groups, resulting in two special cases

of the treatment equation:

D = 1{UD ≤ pC} where pC = P
(
D = 1 | Z = 0), (4)

D = 1{UD ≤ pI} where pI = P
(
D = 1 | Z = 1), (5)
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where the treatment probabilities pC and pI can be estimated in the control group (Z = 0)

and the intervention group (Z = 1), respectively.

I present the implications of the first stage of the model graphically in Figure 1 using

values from my main analysis sample from the CNBSS. The net unobserved cost of treatment

UD ranges from 0 to 1. Using (4) and (5), I partition the unobserved net cost of treatment

UD into three distinct ranges. The top line depicts the ranges for control group participants.

In my main analysis sample from the CNBSS, 19% of control group participants receive

mammograms, so pC = 0.19. By (4), control group participants that receive mammograms

have 0 ≤ UD ≤ 0.19. In the Angrist et al. (1996) terminology from the LATE literature, these

participants must be “always takers,” participants who receive the treatment regardless of

random assignment. The middle line of Figure 1 depicts ranges of UD for intervention group

participants. In my main analysis sample, 95% of intervention group participants receive

mammograms, so pI = 0.95. By (5), intervention group participants that do not receive

mammograms have 0.95 < UD ≤ 1. These participants must be “never takers,” participants

who do not receive the treatment regardless of random assignment (Angrist et al., 1996).

I depict UD for participants in the control and intervention groups on the same axis in

the bottom line of Figure 1. Participants in the middle range (0.19 < UD ≤ 0.95) receive

mammograms if and only if they are in the intervention group. They must be “compliers,”

participants who receive the treatment if and only if they are assigned to the intervention

group (Angrist et al., 1996). The depiction in the bottom line of Figure 1 emphasizes the

ordering from always takers to compliers to never takers. In the CNBSS, this ordering reflects

behavior within the trial: always takers are the most likely to receive mammograms, followed

by compliers, followed by never takers.

Figure 1: Ranges of UD for Always Takers, Compliers, and Never Takers

0 pC = 0.19 pI = 0.95 1
Always Takers Compliers Never Takers

Z=1

Z=0

D=1 D=0

D=1 D=0

UD: unobserved net cost of treatment

Note. The treatment is mammography, which is equal to one if a participant receives a mammogram in at least one year during
the active study period after the enrollment year. Missing mammogram data in any year is set to no mammogram in that year.
The sample includes women aged 40-49 at enrollment, excluding women with any nonzero values of the following breast-related
covariates at baseline: breast cancer in family; any other breast disease; patient reported symptoms; referred for review by
nurse; abnormality found by nurse; ever told has breast cancer.
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3.2 Second Stage: Mortality

I relate mortality Y to mammography D as follows:

Y = YU + (YT − YU)D. (6)

YT represents potential treated mortality and YU represents potential untreated mortality,

which I specify as follows:

YT = gT (UD, γT ) (7)

YU = gU(UD, γU), (8)

where gT (·) and gU(·) are unspecified functions, UD is the unobserved net cost of treatment

from the first stage, and γT and γU are unobserved terms with unspecified distributions. I

assume:

A.4. (Treated and Untreated) 0 < P(D = 1) < 1.

A.5. (Finite Average Outcomes) The values of E[YT ] and E[YU ] are finite.

A.4 is verifiable. A.5 ensures that average treated and untreated potential outcomes are

defined.

The model, given by the utility equations (1) and (2), the treatment equations (3)–(5),

the potential outcome equations (6)–(8), and assumptions A.1–A.5, assumes no more than

the LATE assumptions. This claim follows because my algebraic presentation of the model

differs only stylistically from the model presented in Heckman and Vytlacil (2005). Heckman

and Vytlacil (2005) invokes the proof in Vytlacil (2002) to claim that the model assumes no

more than the LATE assumptions.

I illustrate implications of the model using statistics from my main analysis sample from

the CNBSS in Figure 2. The horizontal axis depicts implications of the first stage as in

Figure 1. The vertical axis depicts implications of the second stage in terms of average mor-

tality with and without mammograms. Always takers always receive mammograms within

the experiment, so it is not possible to derive their average mortality without mammograms

without ancillary assumptions. Similarly, never takers never receive mammograms within

the experiment, so it is not possible to derive their average mortality with mammograms

without ancillary assumptions. However, it is possible to derive the other average mortal-

ity statistics that I report in Figure 2 using the model, as I show in Appendix C. These

derivations yield the same values that I would obtain using the derivations by Imbens and

Rubin (1997), Katz et al. (2001), Abadie (2002), and Abadie (2003), which rely on the LATE

assumptions.
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Figure 2: Average Mortality for Always Takers, Compliers, and Never Takers
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Note. Bootstrapped standard errors in parentheses. All-cause deaths are measured 20 years after enrollment for all participants,
based on the exact calendar date of enrollment. The treatment is mammography, which is equal to one if a participant receives
a mammogram in at least one year during the active study period after the enrollment year. Missing mammogram data in any
year is set to no mammogram in that year. The sample includes women aged 40-49 at enrollment, excluding women with any
nonzero values of the following breast-related covariates at baseline: breast cancer in family; any other breast disease; patient
reported symptoms; referred for review by nurse; abnormality found by nurse; ever told has breast cancer.

The depiction in Figure 2 makes clear that the LATE represents the average treatment

effect on compliers. However, always and never takers make up sizeable fractions of the

sample. Furthermore, their average mortality rates appear very different from the average

mortality rates of compliers. By 20 years after enrollment, the cumulative mortality rate is

4.51% for always takers, but it is only 4.28% for untreated compliers and 4.15% for treated

compliers. In stark contrast, the cumulative mortality rate for never takers is 9.90%, more

than double any of the other reported rates, necessitating a break in the axis to avoid being

“off the chart.” These differences in mortality rates provide a starting point for identification

of selection and treatment effect heterogeneity.
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3.3 Definitions of Selection and Treatment Effect Heterogeneity in the Model

I define selection and treatment effect heterogeneity using the following functions from the

MTE literature (see Carneiro and Lee, 2009; Brinch et al., 2017):

Selection Heterogeneity: MUO(p) = E [YU | UD = p]

Selection and Treatment Effect Heterogeneity: MTO(p) = E [YT | UD = p]

Treatment Effect Heterogeneity: MTE(p) = E [YT − YU | UD = p]

where p is a realization of the unobserved net cost of treatment UD.

The first function, which I refer to as the “marginal untreated outcome (MUO)” function,

defines selection heterogeneity along the entire margin of UD. Although this function has

been used in the literature, to the best of my knowledge, it has not been used as the defini-

tion of selection heterogeneity. The MUO function provides a natural definition of selection

heterogeneity because it captures how untreated outcomes change as the unobserved net cost

of treatment changes. In Appendix D, I show that “selection bias,” as defined by Angrist

(1998) and Heckman et al. (1998) among others, which is equal to the difference in average

untreated outcomes between treated and untreated participants, is a special case of selection

heterogeneity defined by the MUO function. Furthermore, I show that selection bias depends

on the fraction of individuals assigned to the intervention group, a parameter explicitly cho-

sen as part of the trial design. I also provide intuition for why selection bias is not identified

without ancillary assumptions by showing that it depends on the average untreated outcome

of always takers, which cannot be calculated within a trial without ancillary assumptions. I

show in Section 4 that a different special case of selection heterogeneity is identified without

ancillary assumptions because it compares the average untreated outcomes of compliers and

never takers, which can be calculated within a trial without ancillary assumptions.

The second function, which I refer to as the “marginal treated outcome (MTO)” function,

characterizes the sum of selection and treatment effect heterogeneity along the entire margin

of UD. Differences in untreated outcomes can only reflect selection heterogeneity, but differ-

ences in treated outcomes can reflect selection heterogeneity, treatment effect heterogeneity,

or both. It is tempting to think that there should be no material distinction between treated

outcomes and untreated outcomes in the definitions of selection and treatment effect hetero-

geneity. However, the treatment effect is defined as the treated outcome minus the untreated

outcome, not the untreated outcome minus the treated outcome. Therefore, the treatment

effect has magnitude and direction, which is why I represent the LATE with an arrow in

Figure 2. Renaming the untreated outcome as the treated outcome and vice versa would

change the direction of the treatment effect, illustrating why there is a material distinction
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between treated and untreated outcomes in the definitions.

The third function is the “marginal treatment effect (MTE)” function of Heckman and

Vytlacil (1999, 2001, 2005). It defines treatment effect heterogeneity along the entire margin

of UD. In the CNBSS, the MTE function characterizes how the impact of mammography on

mortality changes along the margin of selection into mammography.

4 Findings

Applying the model to the CNBSS, I identify and estimate two main relationships between

mammography behavior and mortality. First, under the model that assumes no more than

the LATE assumptions, I find selection heterogeneity: women who are more likely to receive

mammograms are healthier. Second, under an ancillary assumption, I find treatment effect

heterogeneity along the margin of mammography: women more likely to receive mammo-

grams are more likely to be harmed by them. I find support for the ancillary assumption

using covariates collected at baseline.

4.1 Selection Heterogeneity: Women More Likely to Receive Mammograms are

Healthier

I identify selection heterogeneity using a test that I refer to as the “untreated outcome test”

because it compares average untreated outcomes of compliers (pC < UD ≤ pI) and never

takers (pI < UD ≤ 1) with the following test statistic:

E[YU | pC < UD ≤ pI ]− E[YU | pI < UD ≤ 1] =

∫ 1

0

(ω(p, pC , pI)− ω(p, pI , 1)) MUO(p) dp,

(9)

where ω(p, pL, pH) = 1{pL ≤ p < pH}/(pH − pL). A negative test statistic indicates negative

selection heterogeneity, and a positive test statistic indicates positive selection heterogeneity.

The test of the null hypothesis that this test statistic is equal to zero is equivalent to or

similar to tests proposed by Bertanha and Imbens (2014), Guo et al. (2014), and Black et al.

(2015), which are generalized by Mogstad et al. (2018). Unlike previous literature, I define

selection heterogeneity with the MUO function. I demonstrate that the untreated outcome

test identifies a special case of selection heterogeneity by expressing the untreated outcome

test statistic as a weighted integral of the MUO function in (9).

Applying the untreated outcome test to my main analysis sample from the CNBSS, I find

that by 20 years after enrollment, never takers had died at a rate that was 5.62 percentage

points higher than the untreated complier mortality rate of 4.28 percent. This difference is

statistically different from zero, so I reject selection homogeneity. Mortality is a measure of

health, and compliers are more likely to receive mammograms than never takers. Therefore,
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Figure 3: Untreated Outcome Test Rejects Selection Homogeneity:
Women More Likely to Receive Mammograms are Healthier
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Note. Bootstrapped standard errors in parentheses. All-cause deaths are measured 20 years after enrollment for all participants,
based on the exact calendar date of enrollment. The treatment is mammography, which is equal to one if a participant receives
a mammogram in at least one year during the active study period after the enrollment year. Missing mammogram data in any
year is set to no mammogram in that year. The sample includes women aged 40-49 at enrollment, excluding women with any
nonzero values of the following breast-related covariates at baseline: breast cancer in family; any other breast disease; patient
reported symptoms; referred for review by nurse; abnormality found by nurse; ever told has breast cancer.

my finding indicates selection heterogeneity: women more likely to receive mammograms are

healthier.

4.2 Treatment Effect Heterogeneity: Women More Likely to Receive Mammo-

grams are More Likely to be Harmed by Them

To identify treatment effect homogeneity, I impose the following ancillary assumption:

M.1. (Weak Monotonicity of the MUO Function) For all p1, p2 ∈ [0, 1] such that p1 < p2:

E[YU | UD = p1] ≤ E[YU | UD = p2] or [YU | UD = p1] ≥ E[YU | UD = p2].

While the model imposes LATE monotonicity in the first stage, as shown by Vytlacil (2002),
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this assumption imposes a corresponding weak monotonicity in the second stage. Brinch

et al. (2017) impose this assumption in conjunction with an analogous weak monotonicity

assumption on the MTO function to test for treatment effect homogeneity. I emphasize that

either of the Brinch et al. (2017) assumptions is sufficient. In Appendix E, I present the

weak monotonicity assumption on the MTO function and an alternative weak montonicity

assumption on the MTE function, and I discuss why I do not impose them in the CNBSS. I

impose weak monotonicity on the MUO function via M.1 in the CNBSS because I can find

empirical support for it using covariates.

In the CNBSS, the ancillary assumption M.1 implies that average health, measured by

mortality in the absence of mammograms, varies monotonically from always takers to com-

pliers to never takers. It is not possible to observe the average health of always takers in

the absence of mammograms. However, the untreated outcome test shows that the average

complier is healthier than the average never taker. Therefore, M.1 implies that the average

always taker is weakly healthier than the average complier.

Imposing M.1, I test the null hypothesis of treatment effect homogeneity using the fol-

lowing decision rule, which has an outcome that is equal to 1 if the test rejects treatment

effect homogeneity and 0 otherwise:

1



E[YT | 0 ≤ UD ≤ pC ]− E[YU | pC < UD ≤ pI ] > E[YT − YU | pC < UD ≤ pI ]

if E[YU | pC < UD ≤ pI ]− E[YU | pI < UD ≤ 1] ≤ 0,

E[YT | 0 ≤ UD ≤ pC ]− E[YU | pC < UD ≤ pI ] < E[YT − YU | pC < UD ≤ pI ]

if E[YU | pC < UD ≤ pI ]− E[YU | pI < UD ≤ 1] > 0.


(10)

As shown, this decision rule has two cases. The first case is the case in which the

untreated outcome test statistic is negative, as it is in the CNBSS, and the second case is

the case in which the untreated outcome test statistic is positive. In the first case, under

M.1, average mortality for untreated compliers is an upper bound on the average untreated

mortality of always takers, which is not observed. The average treatment effect for always

takers is equal to the average treated mortality of always takers minus the average untreated

mortality of always takers. Therefore, as illustrated in Figure 4, the upper bound on the

average untreated mortality of always takers implies a lower bound on the average treatment

effect for always takers. The first line of (10) compares this bound to the LATE, the average

treatment effect for compliers. If the lower bound on the average treatment effect for always

takers is strictly greater than the LATE, then average treatment effect for always takers

cannot be equal to the average treatment effect for compliers, so the test rejects treatment

effect homogeneity. The logic of the second case follows similarly.
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Figure 4: Under Ancillary Assumption, Test Rejects Treatment Effect Homogeneity:
Women More Likely to Receive Mammograms are More Likely to be Harmed by Them
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Note. Bootstrapped standard errors in parentheses. All-cause deaths are measured 20 years after enrollment for all participants,
based on the exact calendar date of enrollment. The treatment is mammography, which is equal to one if a participant receives
a mammogram in at least one year during the active study period after the enrollment year. Missing mammogram data in any
year is set to no mammogram in that year. The sample includes women aged 40-49 at enrollment, excluding women with any
nonzero values of the following breast-related covariates at baseline: breast cancer in family; any other breast disease; patient
reported symptoms; referred for review by nurse; abnormality found by nurse; ever told has breast cancer. Some differences
between statistics might not appear internally consistent because of rounding.

Applying the test to the CNBSS, I reject treatment effect homogeneity. As depicted in

Figure 4, I derive a lower bound on the average treatment effect of always takers that indicates

that always takers experience at least an additional 22 deaths per 10,000 participants when

they receive mammograms. The lower bound on the always taker average treatment effect

is strictly greater than the LATE, so always takers face a strictly greater average treatment

effect than compliers. Therefore, the decision rule in (10) yields a value of one. The standard

error indicates that it is statistically different from zero. Therefore, my finding indicates

treatment effect heterogeneity: women more likely to receive mammograms are more likely

to be harmed by them.
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4.2.1 Support for the Ancillary Assumption Using Baseline Covariates

The ancillary assumption that allows me to find treatment effect heterogeneity in the CNBSS

extends my finding of selection heterogeneity, which shows that women more likely to receive

mammograms are healthier. My finding of selection heterogeneity is based on the comparison

of long-term mortality in the absence of mammograms for compliers and never takers. I do

not observe long-term mortality in the absence of mammograms for always takers because, by

definition, all always takers received mammograms during the active study period. However,

I do observe baseline covariates for always takers, as well as compliers and never takers. I use

these baseline covariates as proxies for health in the absence of mammograms, allowing me

to investigate support for my ancillary assumption by comparing average baseline covariates

across always takers, compliers, and never takers. I obtain average covariates for each group

in the same way that I obtain average outcomes for each group, but I combine the averages

for treated and untreated compliers, as I discuss at the end of Appendix C.

Table 1: Baseline Summary Statistics for Always Takers, Compliers, and Never Takers

Means Difference in Means

(1) (2) (3)
Always Never
Takers Compliers Takers (1)-(2) (2)-(3)

Baseline Socioeconomic Status
University, trade or business school 0.50 0.46 0.39 0.04 0.08

(0.01) (0.01) (0.02) (0.01) (0.02)
In work force 0.65 0.64 0.65 0.02 -0.02

(0.01) (0.00) (0.02) (0.01) (0.02)
Age at first birth 24.28 23.98 23.57 0.30 0.41

(0.12) (0.05) (0.21) (0.14) (0.22)
No live birth 0.16 0.15 0.13 0.01 0.01

(0.01) (0.00) (0.01) (0.01) (0.02)
Married 0.80 0.81 0.75 -0.01 0.06

(0.01) (0.00) (0.02) (0.01) (0.02)
Husband in work force if alive 0.81 0.81 0.76 -0.00 0.05

(0.01) (0.00) (0.02) (0.01) (0.02)
Baseline Health Behavior

Non-Smoker 0.78 0.75 0.63 0.03 0.12
(0.01) (0.00) (0.02) (0.01) (0.02)

Body Mass Index 23.87 24.42 24.48 -0.56 -0.06
(0.10) (0.05) (0.21) (0.12) (0.22)

Used oral contraception 0.74 0.71 0.67 0.03 0.04
(0.01) (0.00) (0.02) (0.01) (0.02)

Used estrogen 0.13 0.13 0.15 -0.00 -0.02
(0.01) (0.00) (0.02) (0.01) (0.02)

Mammograms prior to enrollment 0.23 0.13 0.13 0.10 -0.00
(0.01) (0.00) (0.02) (0.01) (0.02)

Practiced breast self-examination 0.47 0.44 0.38 0.03 0.06
(0.01) (0.00) (0.02) (0.01) (0.02)

Note. Bootstrapped standard errors in parentheses. Missing values correspond to redacted numbers in accordance with Data
Use Agreement. The treatment is mammography, which is equal to one if a participant receives a mammogram in at least one
year during the active study period after the enrollment year. Missing mammogram data in any year is set to no mammogram
in that year. The sample includes women aged 40-49 at enrollment, excluding women with any nonzero values of the following
breast-related covariates at baseline: breast cancer in family; any other breast disease; patient reported symptoms; referred for
review by nurse; abnormality found by nurse; ever told has breast cancer. Baseline breast-related covariates are not reported
here because they are all zero based on the sample restriction. Some differences between statistics might not appear internally
consistent because of rounding.
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As shown in Table 1, baseline measures of socioeconomic status tend to vary mono-

tonically from always takers to compliers to never takers, with always takers having the

highest socioeconomic status. Since literature has shown a negative correlation between so-

cioeconomic status and health (see Pappas et al. (1993); Cutler and Lleras-Muney (2010);

National Center for Health Statistics (2012)), this finding supports my ancillary assumption

that women more likely to receive mammograms are healthier. Other covariates that mea-

sure health behavior suggest a potential mechanism, demonstrating that women more likely

to receive mammograms exhibit better health behaviors. As shown, smoking status, body

mass index, and breast self-examination vary monotonically from always takers to compliers

to never takers, with always takers exhibiting the best health behaviors.

5 Robustness

I examine the robustness of my two main findings by estimating my main specification

with alternative sample restrictions, alternative definitions of mammography, and alternative

outcomes. To facilitate comparisons with my main specification, I summarize important

statistics from Figures 3 and 4 in tables, starting with Table 2. A specification shows my

two main findings — selection and treatment effect heterogeneity such that women more

likely to receive mammograms are healthier and more likely to be harmed by them — when

the untreated outcome test statistic in column (1) is negative, and the decision rule indicates

that the test rejects treatment effect homogeneity in column (4).

Table 2: Alternative Sample Restrictions and Alternative Outcome

(1) (2) (3) (4)

Untreated Always Taker Average Local Average Test Rejects
Outcome Treatment Effect Treatment Effect Treatment Effect

N Test Lower Bound LATE Homogeneity

Main Specification
Main specification 19,505 -562 22 -13 1.00

(147) (59) (38) (0.48)

Alternative Sample Restrictions
All excluded participants aged 40-49 at enrollment 30,925 -759 60 27 1.00

(135) (39) (40) (0.47)

All participants aged 40-49 at enrollment 50,430 -672 53 9 1.00
(103) (31) (27) (0.34)

All participants aged 50-59 at enrollment 39,405 -1,216 -83 15 0.00
(154) (51) (46) (0.26)

Alternative Outcome
Breast cancer mortality 19,505 -43 30 -12 1.00

(47) (25) (13) (0.43)

Note. Bootstrapped standard errors in parentheses. The treatment is mammography, which is equal to one if a participant
receives a mammogram in at least one year during the active study period after the enrollment year. Missing mammogram
data in any year is set to no mammogram in that year. The sample for the main specification includes women aged 40-49 at
enrollment, excluding women with any nonzero values of the following breast-related covariates at baseline: breast cancer in
family; any other breast disease; patient reported symptoms; referred for review by nurse; abnormality found by nurse; ever
told has breast cancer. Some differences between statistics might not appear internally consistent because of rounding.

18



5.1 Alternative Sample Restrictions

5.1.1 Participants Aged 40-49 at Enrollment

In Table 2, I summarize results from specifications that include all excluded participants

aged 40-49 at enrollment and all participants aged 40-49 at enrollment. (The excluded

participants are those with any nonzero values of the following breast-related covariates

at baseline: breast cancer in family; any other breast disease; patient reported symptoms;

referred for review by nurse; abnormality found by nurse; ever told has breast cancer.) In

both samples, the untreated outcome test statistic is negative in column (1) and the test

rejects treatment effect homogeneity in column (4). Therefore, the main results are robust.

5.1.2 Participants Aged 50-59 at Enrollment

I focus on women aged 40-49 at enrollment because the change in the 2009 USPSTF recom-

mendations affected them, but I examine the robustness of my results among women aged

50-59 at enrollment. As shown in Table 2, selection heterogeneity goes in the same direc-

tion regardless of age group at enrollment: women more likely to receive mammograms are

significantly healthier. The lower bound on the average treatment effect for always takers,

reported in column (2), does not rule out the LATE, reported in column (3), so I cannot

reject treatment effect homogeneity for women aged 50-59 at enrollment. However, the lower

bound still allows for treatment effect heterogeneity such that women more likely to receive

mammograms are more likely to be harmed by them. To rule out such treatment effect

heterogeneity, the specification would have to show that women more likely to receive mam-

mograms are less likely to be harmed by them, which would require a positive untreated

outcome test statistic in column (1) and a rejection of treatment effect heterogeneity in

column (4).

5.2 Alternative Definitions of Mammography

In the CNBSS, I define mammography D such that D = 1 if a participant receives a mam-

mogram in at least one year during the active study period after the enrollment year, and

I set D = 0 otherwise. If mammogram data is missing for a given participant in a given

year, I construct D such that the participant did not receive a mammogram in that year. In

Table 3, I consider narrower and broader definitions of mammography. Under the narrowest

definition, participants must receive a mammogram in all active study period years after

enrollment to be considered “treated.” Under the broadest definition, participants must re-

ceive a mammogram or be missing mammogram data in any active study period year after

enrollment to be considered “treated.” The narrowest and broadest definitions are arguably

too extreme, so it is notable that all reported specifications yield negative untreated outcome

test statistics, demonstrating selection heterogeneity consistent with the main specification:
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women more likely to receive mammograms are healthier. Because the untreated outcome

test statistic is negative, the two specifications in which the test does not reject treatment

effect homogeneity still allow for the possibility that there could be treatment effect hetero-

geneity such that women more likely to receive mammograms are more likely to be harmed

by them.

Table 3: Alternative Definitions of Mammography

(1) (2) (3) (4)

Untreated Always Taker Average Local Average Test Rejects
Outcome Treatment Effect Treatment Effect Treatment Effect

N Test Lower Bound LATE Homogeneity

Main Specification
Mammogram in at least one year after enrollment during the active study period, missing in year = no mammogram in year

Main specification 19,505 -562 22 -13 1.00
(147) (59) (38) (0.48)

Narrower Definitions of Mammography
Mammogram in more than one year after enrollment during the active study period, missing in year = no mammogram in year

At least two active study period years 19,505 -465 -27 -12 0.00
(106) (77) (35) (0.49)

At least three active study period years 19,505 -420 56 -12 1.00
(94) (145) (36) (0.48)

All active study period years 19,505 -225 -135 -15 0.00
(75) (138) (42) (0.37)

Broader Definition of Mammography
Mammogram in at least one year after enrollment during the active study period

Missing in year = mammogram in year 19,505 -776 103 -24 1.00
(835) (43) (69) (0.43)

Note. Bootstrapped standard errors in parentheses. All-cause deaths are measured 20 years after enrollment for all participants,
based on the exact calendar date of enrollment. The treatment is mammography. In the main specification, mammography is
equal to one if a participant receives a mammogram in at least one year during the active study period after the enrollment
year. Missing mammogram data in any year is set to no mammogram in that year. The sample includes women aged 40-49
at enrollment, excluding women with any nonzero values of the following breast-related covariates at baseline: breast cancer
in family; any other breast disease; patient reported symptoms; referred for review by nurse; abnormality found by nurse; ever
told has breast cancer. Some differences between statistics might not appear internally consistent because of rounding.

5.3 Alternative Outcomes

5.3.1 Breast Cancer Mortality

For comparison with the literature, I examine breast cancer mortality as an alternative

outcome in lieu of all-cause mortality. Breast cancer mortality could overstate collateral

harms from mammography if women who receive mammograms are endogenously more likely

to have their cause of death reported as breast cancer. Alternatively, breast cancer mortality

could understate collateral harms from mammography if collateral harms from mammograms

manifest themselves through causes of death that are not reported as breast cancer. As

reported in Table 2, the results in terms of breast cancer mortality corroborate the main

results.
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5.3.2 Mortality at All Earlier Follow-up Lengths

Table 4: Alternative Outcomes: Mortality at All Earlier Follow-Up Lengths

(1) (2) (3) (4)

Untreated Always Taker Average Local Average Test Rejects
Outcome Treatment Effect Treatment Effect Treatment Effect

Years Since Enrollment N Test Lower Bound LATE Homogeneity

Main specification: 20 19,505 -562 22 -13 1.00
(147) (59) (38) (0.48)

19 19,505 -485 50 -13 1.00
(142) (58) (37) (0.40)

18 19,505 -492 54 -8 1.00
(139) (56) (35) (0.41)

17 19,505 -456 18 -8 1.00
(135) (50) (33) (0.48)

16 19,505 -471 15 -16 1.00
(134) (46) (31) (0.47)

15 19,505 -480 -11 -15 1.00
(131) (42) (31) (0.50)

14 19,505 -396 -38 -21 0.00
(121) (38) (30) (0.45)

13 19,505 -365 -30 -24 0.00
(115) (36) (28) (0.49)

12 19,505 -334 -23 -27 1.00
(106) (32) (27) (0.50)

11 19,505 -351 -30 -10 0.00
(105) (28) (25) (0.42)

10 19,505 -306 -41 -15 0.00
(97) (25) (23) (0.37)

9 19,505 -314 -35 -12 0.00
(97) (21) (20) (0.36)

8 19,505 -340 -14 -2 0.00
(97) (21) (18) (0.44)

7 19,505 -351 -15 -6 0.00
(97) (18) (17) (0.46)

6 19,505 -317 -24 -5 0.00
(93) (16) (15) (0.33)

5 19,505 -269 -12 -5 0.00
(86) (15) (13) (0.45)

4 19,505 -218 -3 -9 1.00
(77) (14) (11) (0.49)

3 19,505 -209 -3 -6 1.00
(76) (11) (9) (0.50)

2 19,505 -194 -3 -3 1.00
(67) (9) (9) (0.50)

1 19,505 -55 -5 -5 0.00
(40) (5) (5) (0.00)

Note. Bootstrapped standard errors in parentheses. The treatment is mammography, which is equal to one if a participant
receives a mammogram in at least one year during the active study period after the enrollment year. Missing mammogram
data in any year is set to no mammogram in that year. The sample includes women aged 40-49 at enrollment, excluding
women with any nonzero values of the following breast-related covariates at baseline: breast cancer in family; any other breast
disease; patient reported symptoms; referred for review by nurse; abnormality found by nurse; ever told has breast cancer.
Some differences between statistics might not appear internally consistent because of rounding.

21



I investigate the robustness of the main specification, which measures mortality 20 years

after enrollment, using specifications that measure mortality at all earlier annual follow-up

lengths in Table 4. At all earlier follow-up lengths, the untreated outcome test statistic is

negative, consistent with the selection heterogeneity that I find in the main specification:

women more likely to receive mammograms are healthier. Furthermore, the test rejects

treatment effect homogeneity at some early follow-up lengths and at all follow-up lengths

starting 15 years after enrollment, consistent with the treatment effect heterogeneity that I

find in the main specification: women more likely to receive mammograms are more likely

to be harmed by them. This time pattern suggests that collateral harms from mammograms

emerge over time, which makes access to long-term outcomes in the CNBSS particularly

valuable.

6 Implications for Guidelines and Future Research

Clinical guidelines are often based on analysis of health outcomes from clinical trials. The

success of guidelines in improving health outcomes depends on how they affect behavior in

practice. I demonstrate that behavior within a clinical trial can inform how guidelines will

affect in behavior in practice, ultimately leading to effects on health outcomes. To do so, I

unite the economics and medical literatures to examine relationships between behavior and

health outcomes within existing clinical trial data.

Specifically, I examine relationships between mammography behavior and mortality in

the CNBSS, an influential and extensive trial on mammography. To the best of my knowl-

edge, the CNBSS trial is the only trial cited by the analysis that informs the USPSTF

mammography guidelines that collected data on mammography behavior for all partici-

pants. Furthermore, to the best of my knowledge, the CNBSS is the only trial that has

tracked mortality for all participants for at least 20 years after enrollment. The long follow-

up period proves valuable in capturing collateral harms that manifest themselves over long

time horizons.

Within the CNBSS, I identify two key relationships between mammography behavior and

mortality. First, under an MTE model that assumes no more than the LATE assumptions,

I find that women more likely to receive mammograms are healthier. This relationship

reflects heterogeneous selection into mammography. Second, under an ancillary assumption

that builds on the first relationship, I find that women more likely to receive mammograms

are more likely to experience harm from them. This relationship reflects treatment effect

heterogeneity from mammography. Putting both relationships together, women more likely

to receive mammograms are healthier and are more likely to experience harm from them.

My first finding, that women more likely to receive mammograms are healthier, is not

particularly surprising. The CNBSS allows me to examine a broad measure of health: mor-
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tality 20 years after enrollment for women who did not receive mammograms during the

active study period. Because I cannot observe this measure for women who received mam-

mograms during the active study period, I impose an ancillary assumption that extends my

first finding to them. I find support for the ancillary assumption using using other measures

of health that were collected for all trial participants before the trial began. These covariates

show that women more likely to receive mammograms during the trial had higher socioeco-

nomic status. Socioeconomic status is often positively correlated with health behavior and

health itself. Indeed, within the data collected before the trial began, women more likely

to receive mammograms were more likely to be nonsmokers, and they had lower body mass

index.

My second finding, that women more likely to receive mammograms are more likely to be

harmed by them, is more surprising. However, a growing literature expresses concern about

collateral harms from mammograms. Furthermore, there are plausible mechanisms through

which women more likely to receive mammograms could be more likely to be harmed by

them. For example, it is plausible that women more likely to receive mammograms detect

less severe breast cancers but pursue similar aggressive treatments. It is also plausible that

women more likely to receive mammograms detect breast cancers of the same severity but

pursue more aggressive treatments.

Given my findings, the current USPSTF mammography guidelines for women in their

40s could have unintended consequences. The current guidelines leave the mammography

decision for women in their 40s to individual women and the doctors. In doing so, my

findings imply that they unintentionally encourage more mammograms for healthier women

who are more likely to be harmed by them.

The active study period of the CNBSS took place in the 1980s, so it is unclear if my

findings apply in the current environment. However, changes in environment are an inherent

limitation of any long-term analysis. The current USPSTF guidelines are based on long-term

health outcomes from the CNBSS and other trials. Given that findings based on health out-

comes from the CNBSS are already taken into account in the determination of the current

USPSTF guidelines, it is arguably worth considering my findings based on behavior. My

first finding, which shows that women more likely to receive mammograms are healthier, still

seems applicable in the current environment. My second finding, which shows that women

more likely to receive mammograms are more likely to be harmed by them, could be attenu-

ated or exacerbated in the current environment. Treatments for breast cancer are becoming

less aggressive, which could attenuate my second finding in the current environment. On the

other hand, mammograms are becoming more detailed, potentially leading to the diagnosis

and treatment of more breast cancers that would never grow to be life-threatening, which

23



could exacerbate my second finding in the current environment.

My findings support the need for more clinical trials on mammograms. Mammograms are

now so ubiquitous that it could be difficult to conduct such trials. Indeed, mammography

was already so widespread in the U.S. in the 1980s that most of the trials considered by the

USPSTF in its recommendations were conducted outside of the U.S. Even in the Canadian

National Breast Screening Study, a substantial fraction of women in the control group re-

ceived mammograms. In the present environment, many factors encourage mammography,

including mandatory health insurance coverage for mammograms under the Affordable Care

Act, public outreach efforts, and risk aversion on the part of doctors and patients. Very few

factors discourage mammography or encourage more evidence to be collected on it, which is

potentially a reason to take my findings even more seriously.

Beyond the context of mammograms, my findings support the need for clinical trials to

collect data on behavior and for that data to be used in the development of guidelines. In

many trials, individual-level data on takeup of treatment are not collected, especially for

participants assigned to the control group. Furthermore, even when they are collected, to

the best of my knowledge, they are not taken into account in the development of guide-

lines. Whenever the USPSTF determines that “there is at least moderate certainty that the

net benefit is small,” the USPSTF issues a “C recommendation,” as it did in the case of

mammography for women in their 40s, which means that “the USPSTF recommends selec-

tively offering this service to individual patients based on professional judgment and patient

preferences” U.S. Preventive Service Task Force (2017). Such a guideline presupposes that

there is selection and treatment effect heterogeneity such that the individuals most likely

to benefit from a treatment will be the most likely to receive it. However, such a guideline

is not based on evidence of selection and treatment effect heterogeneity. By demonstrating

that it is possible to examine selection and treatment effect heterogeneity within existing

clinical trial data, I advance the ability of future guidelines to progress toward personalized

health care.

Appendix

Appendix A Proof that UD is uniformly distributed between 0 and 1

The uniform distribution of UD between 0 and 1 is not a separate assumption of the model.

Instead, it is due to the “probability integral transformation,” which shows that the cu-

mulative distribution function of any random variable applied to itself must be distributed

uniformly between 0 and 1 (for example, see Casella and Berger (2002, page 54)). A random

variable Y is distributed uniformly between 0 and 1 if and only if FY (c) = c for 0 ≤ c ≤ 1.

Therefore, the proof that follows shows that UD = F (−νD) is distributed uniformly between
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0 and 1.

FUD
(u) = P (UD ≤ u)

= P (F (νD) ≤ u)

= P (νD ≤ F−1(u)) (F (·) absolutely continuous by A.2)

= F (F−1(u)) = u.

�

Appendix B Derivation of the treatment equation

Treatment D is given by

D = 1{0 ≤ VT − VU}
= 1{0 ≤ µD(Z)− νD}
= 1{νD ≤ µD(Z)}
= 1{F (νD) ≤ F (µD(Z))} (definition of F (·) from A.2)

= 1{UD ≤ F (µD(Z))} (UD = F (νD) by definition)

= 1{UD ≤ P(D = 1 | Z = z)},

where the last equality follows from

F (µD(Z)) = P(νD ≤ µD(Z))

= P(νD ≤ µD(z) | Z = z) (UD ⊥ Z by A.3)

= P(0 ≤ µD(Z)− νD | Z = z)

= P(0 ≤ VT − VU | Z = z)

= P(D = 1 | Z = z). �

Appendix C Derivation of average outcomes and covariates

I begin by deriving the average treated outcome of always takers. To do so, I begin with the

average outcome of treated control group participants because those participants must be

always takers. After some manipulation, I invoke the independence assumption A.3 to show

that the average outcome of treated control group participants must be equal to the average

treated outcome of all always takers, regardless of whether they are assigned to the control
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or intervention group:

E[Y | D = 1, Z = 0] = E[YU +D(YT − YU) | D = 1, Z = 0] (by (6))

= E[YT | D = 1, Z = 0]

= E[YT | 0 ≤ UD ≤ pC , Z = 0] (by (4), where pC = P (D = 1|Z = 0))

= E[gT (UD, γT ) | 0 ≤ UD ≤ pC , Z = 0] (by (7))

= E[gT (UD, γT ) | 0 ≤ UD ≤ pC ] (Z ⊥ (UD, γT ) by A.3)

= E[YT | 0 ≤ UD ≤ pC ].

In the CNBSS, I obtain an average treated outcome of always takers of 451 deaths per 10,000

women, which I plot over the relevant range (0 ≤ UD ≤ pI) in Figure C1, using a dotted line

to indicate that it represents an average treated outcome.

Next, I derive the average treated outcome of compliers. To do so, I begin with the

average outcome of treated intervention group participants because those participants must

be always takers and treated compliers. Following a similar derivation to the derivation for

always takers yields E[Y | D = 1, Z = 1] = E[YT | 0 ≤ UD ≤ pI ]. Therefore, I plot the

average outcome of treated intervention group participants, which is 422 deaths per 10,000

women in the CNBSS, over the relevant range (0 ≤ UD ≤ pI) in Figure C1, using a dotted

line to indicate that it represents an average treated outcome. As the figure makes clear, the

fractions of always takers and compliers are known, so it is possible to back out the average

treated outcome of compliers as follows:

E[YT | pC < UD ≤ pI ] =
pI

pI − pC
E[YT | 0 ≤ UD ≤ pI ]−

pC
pI − pC

E[YT | 0 ≤ UD ≤ pC ]

=
pI

pI − pC
E[YT | D = 1, Z = 1]− pC

pI − pC
E[YT | D = 1, Z = 0].

In the CNBSS, the average treated outcome of compliers is 415 deaths per 10,000 women,

which I plot over the relevant range (pC < UD ≤ pI) in Figure C1, using a dotted line to

indicate that it represents an average treated outcome.

Turning to average untreated outcomes, I begin with the average untreated outcome of

intervention group participants because those participants must be never takers. Following

a similar derivation to the derivation for always takers yields E[Y | D = 0, Z = 1] = E[YU |
pI < UD ≤ 1]. In the CNBSS, I obtain an average untreated outcome of never takers of 990

deaths per 10,000 women, which I plot over the relevant range (pI < UD ≤ 1) in Figure C1,

using a dashed line to indicate that it represents an average untreated outcome. Similarly,

I derive the average outcome of untreated control group participants E[Y | D = 0, Z = 0] =

E[YU | pC < UD ≤ 1], which is equal to 463 deaths per 10,000 women, and I plot it over the
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Figure C1: Derivation of Average Mortality for Always Takers, Compliers, and Never Takers
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relevant range (pC < UD ≤ 1) in Figure C1, using a dashed line to indicate that it represents

an average untreated outcome. Using these two values, I calculate the average untreated

outcome of compliers as follows:

E[YU | pC < UD ≤ pI ] =
1− pC
pI − pC

E[YU | pC < UD ≤ 1]− 1− pI
pI − pC

E[YU | pI < UD ≤ 1]

=
1− pC
pI − pC

E[YU | D = 0, Z = 0]− 1− pI
pI − pC

E[YU | D = 0, Z = 1]

In the CNBSS, the average untreated outcome of compliers is 428 deaths per 10,000 women,

which I plot over the relevant range (pC < UD ≤ pI) in Figure C1, using a dashed line to

indicate that it represents an average untreated outcome.
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To derive the average covariates for always takers, compliers, and never takers, I follow the

same approach with a covariate X in lieu of an outcome Y . However, while average outcomes

should be different for treated and untreated compliers, average covariates should be the

same for treated and untreated compliers. I therefore obtain the average covariate vector

for compliers weighting the average covariate vectors for treated and untreated compliers by

the probabilities of being assigned to the intervention and control groups, respectively:

E[X | pC < UD ≤ pI ] = P(Z = 1)E[X | pC < UD ≤ pI ] + P(Z = 0)E[X | pC < UD ≤ pI ].

Appendix D Selection bias

The definition of “selection bias” used by Angrist (1998) and Heckman et al. (1998), among

others, is as follows:

E[YU | D = 1]− E[YU | D = 0]

I can express selection bias as the following weighted integral of the MUO function, demon-

strating that it is a special case of selection heterogeneity as defined by the MUO function

with weights ω(p, pL, pH) = 1{pL ≤ p < pH}/(pH − pL):∫ 1

0

[ 1

P(D = 1)

{
P(Z = 0) pC ω(p, 0, pc) + P(Z = 1) pI ω(p, 0, pI)

}
− 1

P(D = 0)

{
P(Z = 0) (1− pC)ω(p, pc, 1) + P(Z = 1) (1− pI) ω(p, pI , 1)

}]
MUO(p) dp.

This weighted integral depends on the probability of assignment to the intervention group

P(Z = 1), which is a feature of the trial design.

I can also express selection bias as a weighted average of the untreated outcomes of always

takers (0 ≤ UD ≤ pC), compliers (pC < UD ≤ pI), and never takers (pI < UD ≤ 1):[
P(Z = 0) +

pC
pI

P(Z = 1)
]
E[YU | 0 ≤ UD ≤ pC ]

−
[pI − pC

1− pC
P(Z = 0)− pI − pC

pI
P(Z = 1)

]
E[YU | pC < UD ≤ pI ]

−
[ 1− pI

1− pC
P(Z = 0) + P(Z = 1)

]
E[YU | pI < UD ≤ 1].

While all other terms are identified without ancillary assumptions, the average untreated

outcome of always takers E[YU | 0 ≤ UD ≤ pC ] is not, so selection bias is not identified

without ancillary assumptions.
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Appendix E Alternative ancillary weak monotonicity assumptions

Following Brinch et al. (2017), I impose the following ancillary assumption on the MUO

function:

M.1. (Weak Monotonicity of the MUO function) For all p1, p2 ∈ [0, 1] such that p1 < p2:

E[YU | UD = p1] ≤ E[YU | UD = p2] or [YU | UD = p1] ≥ E[YU | UD = p2].

Brinch et al. (2017) also impose the following analogous assumption on the MTO function:

M.2. (Weak Monotonicity of the MTO function) For all p1, p2 ∈ [0, 1] such that p1 < p2:

E[YT | UD = p1] ≤ E[YT | UD = p2] or [YT | UD = p1] ≥ E[YT | UD = p2].

I also consider imposing the following analogous assumption on the MTE function, which is

similar to the Manski (1997) assumption of monotone treatment response:

M.3. (Weak Monotonicity of the MTE function) For all p1, p2 ∈ [0, 1] such that p1 < p2:

E[YT − YU | UD = p1] ≤ E[YT − YU | UD = p2] or [YT − YU | UD = p1] ≥ E[YT − YU |
UD = p2].

I emphasize that just as M.1 implies an upper or lower bound on the average treatment effect

for always takers, M.2 implies an upper or lower bound on the average treatment effect for

never takers. Because either assumption yields a bound on the average treatment effect for

a group of participants other than compliers, which can be compared to the LATE, either

assumption facilitates a test of treatment effect homogeneity.

However, I do not impose M.2 in the CNBSS because it is harder to defend than M.1.

As I discuss in Section 4.2.1, I can proxy for untreated outcomes using baseline covariates,

and doing so provides support for M.1 in the CNBSS. Because variation in treated outcomes

can reflect selection and treatment effect heterogeneity, I cannot think of a proxy for them,

which makes M.2 harder to defend.

I also do not impose M.3 in the CNBSS because it it is harder to defend than M.1. I

could imagine using measures of breast cancer treatment intensity as proxies for treatment

effects, where greater treatment intensity should lead to greater treatment effects. However,

such measures are not available in the CNBSS data because women diagnosed with breast

cancer in CNBSS study centers received breast cancer treatment elsewhere.
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