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1 Introduction

One intriguing fact about sovereign debt markets is that emerging economies pay high credit

spreads on their sovereign debt, despite generally having much lower debt-output ratios

than developed countries. Reinhart, Rogoff and Savastano (2003) call this phenomenon

“debt intolerance.”

Debt intolerance is at odds with the predictions of the classic Eaton and Gersovitz (1981)

model of sovereign debt.1 A key cost of defaulting in this model is the loss of access to capital

markets. Since real output growth is generally more volatile in emerging markets than in

developed countries, the loss of market access is more costly for emerging markets. So, other

things equal, emerging markets should be less likely to default, pay lower credit spreads on

their sovereign debt, and have higher debt capacity.

The prediction that high output volatility in emerging markets makes their default cost

high and their probability of default low contradicts another finding stressed by Reinhart et

al (2003): emerging markets tend to be serial defaulters.

In this paper, we propose a model of sovereign debt where countries vary in their level

of financial development. By financial development, we mean the extent to which countries

can hedge shocks to their economies in international capital markets.2 We show that low

levels of financial development generate debt intolerance.

We write our sovereign-debt model in continuous time. This approach has several signif-

icant advantages. First, our model can be solved in closed form for both the value function

and the policy rules up to an ordinary differential equation (ODE) for certainty-equivalent

wealth with intuitive boundary conditions. Second, the analytical expressions for optimal

consumption, hedging, and default policies yield valuable insights into the key mechanisms

at work in our model. Third, we obtain a sharp characterization of the properties of our

model as the country approaches its debt capacity: the diffusion volatility of the debt-output

ratio approaches zero and the country’s endogenous risk aversion approaches infinity.

Our approach to characterizing global nonlinear dynamics is similar to the one used in

the dynamic optimal contracting and macro-finance diffusion-based models, e.g., DeMarzo

1See Aguiar and Amador (2014) and Aguiar, Chatterjee, Cole, and Stangebye (2016) for recent surveys
of the sovereign-debt literature.

2Another aspect of financial development might reflect the country’s access to commitment mechanisms
such as posting collateral or depositing money in escrow accounts that can be seized by creditors. We do
not consider these mechanisms because sovereign debt is in practice generally unsecured.
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and Sannikov (2006), He and Krishnamurthy (2013), Brunnermeier and Sannikov (2014),

Williams (2015), and Bolton, Wang, and Yang (2019). As our model features uninsur-

able jump shocks and equilibrium credit risk pricing, we generalize the numerical solution

methodology used in these papers to take jumps into account.

The representative agent has the continuous-time version of the Epstein-Zin-Weil pref-

erences proposed by Duffie and Epstein (1992a). These preferences allow our model to

generate empirically plausible average debt-to-output ratios without resorting to the very

high discount rates used in the literature. Our calibration combines a conventional value of

the discount rate (5.2 percent per year) with a low elasticity of intertemporal substitution

(EIS) and a commonly-used value for relative risk aversion (γ = 2). We interpret the low

EIS as reflecting expenditure commitments that are difficult to change, as in Bocola and

Dovis (2016). Recursive preferences are key to making this calibration work. With standard

expected utility, a low EIS implies a high risk aversion that creates an incentive to avoid the

debt region, generating a low average debt-to-output ratio.

Output follows the jump-diffusion process considered by Barro and Jin (2011) in which

the size distribution of jumps is governed by a power law.3 This process is consistent with the

evidence presented in Aguiar and Gopinath (2007) which suggests that permanent shocks

are the primary source of fluctuations in emerging markets.

Following Aguiar and Gopinath (2006) and Arellano (2008), we assume that upon default

the country suffers a decline in output and loses access to international capital markets. It

then regains access to these markets with constant probability. Outside of the default state,

the country can invest in a risk-free international bond, hedge diffusion and some rare-disaster

shocks, and issue non-contingent debt that can be defaulted upon.

As emphasized by Bulow and Rogoff (1989), autarky might be difficult to sustain because

the rest of the world cannot commit ex-ante to exclude the defaulting borrower from ex-post

risk-sharing arrangements. In our model, the permanent output loss that occurs upon default

is sufficient to sustain the existence of sovereign debt. In this sense, our model is immune to

the Bulow-Rogoff critique.

One virtue of our model is that it does not require the nonlinear default costs commonly

used in the literature to generate plausible debt-output ratios. Our linear specification of

3Rare disasters have proved useful in modeling many other asset pricing phenomena. Examples include
the equity premium (Rietz (1988), Barro (2006), Barro and Jin (2011), and Gabaix (2012)), the predictability
of excess returns (Wachter (2013)), the corporate bond spread (Bhamra and Strebulaev (2011)), and the
returns to the carry trade (Burnside, Eichenbaum and Rebelo (2011) and Farhi and Gabaix (2015)).
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default costs is consistent with the recent evidence by Hébert and Schreger (2016).

Our model includes two frictions that make markets incomplete: limited commitment

and limited spanning.4 To isolate the impact of limited commitment, suppose there is full

spanning so that all shocks can be hedged. The jump insurance contracts in our model are the

same as the state-contingent contracts considered by Bulow and Rogoff (1989) and referred

to by them as “cash-in-advance” contracts. For our full-spanning case, the country’s debt

capacity is reduced to a level such that in equilibrium the country weakly prefers repaying

its outstanding debt over defaulting on it, as in Kehoe and Levine (1993) and Kocherlakota

(1996).5 Since hedging is more cost effective than defaulting in terms of managing the

country’s risk, the country never defaults and the credit spread on sovereign debt is zero.

Therefore, in order to generate default, we need a second form of market incompleteness,

which is limited spanning.

We model limited spanning as the country’s limited access to financial securities that

can be used to hedge rare disasters. This modeling approach is consistent with the evidence

presented by Upper and Valli (2016) using data from the Bank of International Settlements.

These authors summarize their findings as follows: “The economies and financial markets of

emerging market economies (EMEs) tend (with some exceptions) to be more volatile than

those of advanced economies. This is true whether one looks at output growth, exchange

rates, interest rates or capital flows. Given this volatility, one would expect hedging markets

in EMEs to be well developed. But this does not seem to be the case. EMEs make up about

one third of the global economy when measured at market exchange rates and just under one

half when measured at purchasing power parity. Their share in global trade is 36 percent.

Still, derivatives referencing their currencies or interest rates account for only 10 percent of

the global turnover of such contracts, despite notable growth in some cases in recent years.”

Our approach is also consistent with a recent World Bank (2018) report. This report discusses

how emerging markets can hedge some rare events with instruments such as catastrophe

bonds, while there are large, rare events that cannot be hedged. Other manifestations of

limited spanning include a country’s inability to issue debt with long maturities or debt

4Bai and Zhang (2010) combine these two forms of market incompleteness to explain the Feldstein-Horioka
puzzle. They consider a limited-enforcement model in the spirit of Kehoe and Levine (1993, 2001), so in
their model default does not occur in equilibrium.

5Other work that emphasize the importance of limited commitment includes Alvarez and Jermann (2000,
2001), Kehoe and Perri (2002), Albuquerque and Hopenhayn (2004), Cooley, Marimon, and Quadrini (2004),
Krueger and Perri (2006), and Krueger and Uhlig (2019).
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denominated in local currency.

Following Eaton and Gersovitz (1981), we assume that the degree of financial spanning

is exogenous. This exogeneity assumption is consistent with the key finding of the literature

on the original-sin hypothesis: the degree of market incompleteness is more closely related

to the size of the economy than to the soundness of fiscal and monetary policy or other

fundamentals (Hausmann and Panizza (2003) and Bordo, Meissner, and Redish (2004)).

Diffusion shocks do not generate default in our model because these shocks are hedgeable

and our debt is short term. Nuño and Thomas (2015), Tourre (2017), and DeMarzo, He, and

Tourre (2018) generate default in models with diffusion shocks by working with term debt.

For tractability reasons, they assume that debt maturity is exogenous and debt issuance is

locally deterministic. Bornstein (2017) generates default by assuming that output follows a

Poisson process in a continuous-time version of Arellano (2008).

In our model, only uninsurable jump shocks that cause sufficiently large losses generate

default. The reason is two-fold. First, for insurable output shocks, it is more efficient to

hedge than to default. Second, for uninsurable downward jump shocks of moderate sizes, it

is more efficient to preserve the option to default in the future against larger losses than to

default.

One key result is that the more limited is the spanning of assets at a country’s disposal,

the more severe is its debt intolerance. When spanning is limited, it is not optimal to fully

hedge risks that can be hedged. The country uses the available hedging instruments to

increase its debt capacity by ensuring that default is not triggered by shocks that can be

hedged. So, countries with more limited spanning hedge less and endure more volatility

in consumption. These countries are also more likely to default, so lenders charge them a

higher credit spread to cover the expected default losses. Low levels of financial development

reduce debt capacity, increase credit spreads, and limit the ability to smooth consumption.

In other words, low financial development causes debt intolerance.

The importance of financial development in driving underinsurance in emerging markets

is also emphasized by Caballero and Krishnamurthy (2003). Their analysis builds on the

work of Holmstrom and Tirole (1998). Maggiori (2017) develops a continuous-time model

to analyze the equilibrium risk sharing between countries with varying degrees of financial

development. Mendoza, Quadrini, and Rios-Rull (2009) also emphasize the importance

of financial development, which they interpret as a country’s ability to enforce domestic

financial contracts to hedge idiosyncratic risks.
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Our model suggests that Shiller’s (1993) proposed creation of a market for perpetual

claims on countries’ Gross Domestic Produce (GDP) could significantly improve welfare in

emerging markets. By increasing a country’s ability to hedge its risks, GDP-linked bonds

would lower credit spreads, increase debt capacity and reduce consumption volatility.

The paper is organized as follows. Section 2 presents the model and Section 3 discusses the

solution method. Sections 4 and 5 summarize the solution for the first-best and the limited-

commitment case, respectively. Section 6 calibrates our model and explores its quantitative

properties. Section 7 performs sensitivity analysis with respect to key parameters of the

model. Section 8 discusses an expected-utility version of our calibration. Section 9 concludes.

2 Model Setup

We consider a continuous-time model where the country’s infinitely-lived representative agent

receives a perpetual stochastic stream of output. As we show in Section 3, default occurs

in equilibrium. Upon default, the country endures distress costs that take the form of a fall

in output and temporary exclusion from capital markets. We call the regime in which the

country does not have access to financial markets autarky and the regime in which it has

access to financial markets the normal regime. Below, we describe the output processes in

the two regimes and the transition between regimes.

2.1 Output Processes

Output Process in the Normal Regime. We model output in this regime, Yt, as a

jump-diffusion process. Both diffusion and jump shocks are important in generating our

model’s main predictions.

The law of motion for output, Yt, is given by:

dYt
Yt−

= µdt+ σdBt − (1− Z)dJt , Y0 > 0 , (1)

where µ is the drift parameter, σ is the diffusion-volatility parameter, B is a standard Brow-

nian motion process, and J is a pure jump process with a constant arrival rate, λ. Let τJ

denote the jump arrival time. Since Brownian motion is continuous, if a jump does not occur

at t (dJt = 0), we have Yt = Yt−, where Yt− ≡ lims↑t Ys denotes the left limit of output. If

a jump occurs at t (dJt = 1), output falls from Yt− to Yt = ZYt−. We call Z ∈ [0, 1] the
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fraction of output recovered after a jump arrival. We assume that Z follows a well-behaved

cumulative distribution function, G(Z).

Since the expected percentage output loss upon the arrival of a jump is (1− E(Z)), the

expected growth rate of output in levels is given by:

g = µ− λ(1− E(Z)) . (2)

Here, the term λ(1−E(Z)) represents the reduction in the expected growth rate associated

with jumps.

We can write the dynamics for logarithmic output, lnYt, in discrete time as follows:

lnYt+∆ − lnYt =

(
µ− σ2

2

)
∆ + σ

√
∆ εt+∆ − (1− Z)νt+∆ , (3)

where the time-t conditional distribution of εt+∆ is a standard normal and νt+∆ = 1 with

probability λ∆ and zero with probability (1− λ∆). Equation (3) implies that the expected

change of lnY over a time interval ∆ is (µ− σ2/2) ∆−λ(1−E(Z))∆. The term σ2/2 is the

Jensen-inequality correction associated with the diffusion shock.

Output Process under Autarky. Let τD denote the endogenous time of default. Upon

default, the country enters autarky. There are two costs of defaulting. The first cost is the

loss of access to financial markets, so consumption equals output in autarky.

The second cost is an output loss that proxies for the disruptions of economic activity

associated with default. We assume that upon default output drops permanently from

YτD− ≡ lims↑τD Ys, the output in the normal regime just prior to default, to αYτD−, where

(1− α) is the percentage default cost.

We denote the output process in autarky by Ŷt. This process starts at time τD with the

value of ŶτD = αYτD− and follows the same output process as that for the normal regime:

dŶt

Ŷt−
= µdt+ σdBt − (1− Z)dJt . (4)

While in autarky, the country re-gains its access to financial markets with probability

ξ per unit of time. Let τE denote the stochastic exogenous exit time from autarky. The

duration of autarky is τD ≤ t < τE . Upon randomly exiting from autarky at time τE ,

the country starts afresh with no debt and regains access to international markets. Then,

output follows the process given by equation (1) starting with YτE , which is equal to ŶτE−,

the pre-exit output level under autarky: YτE = ŶτE− .
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2.2 Preferences

We assume that the lifetime utility of the representative agent, Vt, has the recursive form

proposed by Kreps and Porteous (1978), Epstein and Zin (1989), and Weil (1990). We use

the continuous-time version of these preferences developed by Duffie and Epstein (1992a):

Vt = Et
[∫ ∞

t

f(Cu, Vu)du

]
, (5)

where f(C, V ) is the normalized aggregator for consumption C and utility V . This aggregator

is given by:

f(C, V ) =
ρ

1− ψ−1

C1−ψ−1 − ((1− γ)V )χ

((1− γ)V )χ−1
. (6)

Here, ρ is the subjective discount rate and

χ =
1− ψ−1

1− γ . (7)

This recursive, non-expected utility formulation allows us to separate the coefficient of

relative risk aversion, γ, from the elasticity of intertemporal substitution (EIS), ψ. This

separation plays an important role in our quantitative analysis. The time-additive separable

CRRA utility is a special case of recursive utility where the coefficient of relative risk aversion,

γ, equals the inverse of the EIS, γ = ψ−1, implying χ = 1. In this case, f(C, V ) = U(C)−ρV ,

which is additively separable in C and V , with U(C) = ρC1−γ/(1− γ).

2.3 Financial Assets and Market Structure

If the country could trade in a complete set of contingent assets, a setting which we refer to

as full spanning, default would not occur in equilibrium. As discussed in the introduction,

our model includes two sources of market incompleteness. The first is limited commitment:

the country cannot commit to repaying its debt. The second is limited spanning: markets

for certain shocks are incomplete. To capture the notion that some shocks are harder to

hedge than others, we assume that large jump shocks might not be insurable.

We denote the country’s financial wealth by Wt. Under normal circumstances, the coun-

try has four investment and financing opportunities: (1) it can save at the risk-free rate, r;

(2) it can insure its diffusion risk through hedging contracts; (3) it can buy insurance against

certain jumps; and (4) it can borrow in the sovereign debt market at an interest rate that

is the sum of r and an endogenous credit spread, πt. Upon default on its sovereign debt,
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the country enters autarky and loses access to all four investment and financing opportuni-

ties. While in autarky, it regains access to these investment opportunities with a constant

probability, ξ.

Diffusion Risk Hedging Contracts. We assume that diffusive shocks are idiosyncratic

and that markets for contracts that hedge these shocks are perfectly competitive. An investor

who holds one unit of the hedging contract at time t receives no upfront payment, since

there is no risk premium for bearing idiosyncratic risk, and receives a gain or loss equal to

σdBt = σ (Bt+dt − Bt) at time t+ dt. We normalize the volatility of this hedging contract so

that it is equal to the output volatility parameter, σ. This hedging contract is analogous to

a futures contract in standard no-arbitrage models, see e.g., Cox, Ingersoll, and Ross (1981).

We denote the country’s holdings of diffusion risk contracts at time t by Θt.

Jump Insurance Contracts and Insurance Premium Payments. We assume that

jump shocks are idiosyncratic and that markets for contracts that hedge these shocks are

perfectly competitive. Bulow and Rogoff (1989) define a “cash-in-advance” contract as a

“conventional insurance contract under which a country makes a payment up front in return

for a state-contingent, nonnegative future payment.” Following Bulow and Rogoff (1989), we

consider an insurance contract initiated at time t that covers the following jump event: the

first stochastic arrival of a downward jump in output with a recovery fraction in the interval

(Z,Z + dZ) at jump time τJ > t for Z ≥ Z∗. Here, Z∗ is a parameter that describes the

level of financial development. The higher is the value of Z∗, the less developed are financial

markets and the fewer are the jump insurance opportunities.

The buyer of a unit of this insurance contract makes continuous insurance premium

payments. Once the jump event occurs at time τJ , the buyer stops making payments and

receives a one-time unit lump-sum payoff. The insurance premium payment is equal to

λdG(Z), the product of the jump intensity, λ, and the probability dG(Z) that the recovery

fraction falls inside the interval (Z,Z+dZ) for Z ≥ Z∗. Conceptually, this insurance contract

is analogous to one-step-ahead Arrow securities in discrete-time models. In practice, this

insurance contract is similar to a credit default swap.6

We denote the country’s holdings of jump-risk insurance contracts at time t contingent

6Pindyck and Wang (2013) discuss a similar insurance contract in a general equilibrium setting with
economic catastrophes.
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on a recovery fraction Z by Xt(Z). The country pays an insurance premium to hedge jump

risk at a rate Xt(Z)λ dG(Z) before the first jump with recovery fraction Z arrives at time

τJ . At this time, the country receives a lump-sum payment Xt(Z) if the recovery fraction is

in the interval (Z,Z + dZ). Since the country can purchase insurance for all possible values

of Z ≥ Z∗, the total jump insurance premium payment per unit of time is given by:

Φt = λ

∫ 1

Z∗
Xt(Z)dG(Z) ≡ λE [Xt(Z) IZ≥Z∗ ] , (8)

where the expectation, E[ · ], is calculated with respect to the cumulative distribution func-

tion, G(Z) and IA is an indicator function that equals one if the event A occurs and zero

otherwise. The indicator function in equation (8) imposes the restriction that jump insurance

is available only for Z ≥ Z∗.

Sovereign Debt, Default, and Credit Spread. As in discrete-time settings, sovereign

debt is borrower-specific, non-contingent, unsecured, and short term.7 Sovereign debt is

continuously repaid and reissued at the interest rate r + πt−, where πt− is the endogenous

credit spread. The borrowing process continues until the country defaults and resumes

once the borrower re-enters the sovereign-debt market. Sovereign debt is held and priced

in competitive markets by well-diversified foreign investors. The maximal amount of debt

that the country can issue is stochastic and endogenously determined in equilibrium by the

creditors’ break-even condition and the borrower’s optimal default decisions.

The country has the option to default at any time on its sovereign debt. As emphasized by

Zame (1993) and Dubey, Geanakoplos and Shubik (2005), the possibility of default provides

a partial hedge against risks that cannot be insured because of limited financial spanning.8

Optimality. The country chooses its consumption, diffusion and jump risk hedging de-

mands, sovereign debt issue, and default timing to maximize the agent’s utility defined by

equations (5)-(6), given the output processes specified in equations (1) and (4), and equilib-

rium pricing of sovereign debt and insurance contracts for diffusion and jump shocks.

7Auclert and Rognlie (2016) show that sovereign debt models with short-term debt have a unique Markov
perfect equilibrium. Sovereign-debt models with long-maturity debt include Hatchondo and Martinez (2009),
Arellano and Ramanarayanan (2012), and Chatterjee and Eyigungor (2012).

8For simplicity, we consider only the possibility of complete default. Our model can be easily generalized
to allow for partial default. See Yue (2010) and Asonuma, Niepelt, and Ranciere (2017) for models with
partial default.
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3 Model Solution

We solve our model using dynamic programming. We denote by V (Wt, Yt) the represen-

tative agent’s value function for the normal regime and by V̂ (Ŷt) the value function for

the autarky regime. The autarky value function depends only on contemporaneous output

because financial wealth is always zero in autarky.

3.1 Normal Regime

Financial wealth, Wt, evolves according to:

dWt = [(r + πt−)Wt− + Yt− − Ct− − Φt−]dt+ σΘt−dBt +Xt−(Z) dJt . (9)

The first term on the right side of equation (9) is interest income/expenses, (r+ πt−)Wt− dt

plus output, Yt− dt, minus consumption, Ct− dt, and minus the jump-insurance premium,

Φt−dt. When Wt− > 0, the country has no debt outstanding and accumulates its financial

wealth at the rate of r as πt− = 0. When Wt− < 0, the country pays interest at a rate

(r + πt−), where πt− is the equilibrium credit spread.

The second term on the right side of equation (9), σΘt−dBt, is the realized gain or loss

from diffusion risk hedging contracts. Since diffusion shocks are idiosyncratic with zero mean,

the country incurs no up-front payment. The third term represents the lump-sum payment,

Xt−(Z), from the jump insurance contract when a jump arrives (dJt = 1) and the realized

Z is hedgeable, i.e., Z ∈ [Z∗, 1].

Diffusion models with term debt often assume that debt issuance is locally deterministic

of order dt, see e.g., Nuño and Thomas (2015), Tourre (2017), and DeMarzo, He, and Tourre

(2018). In contrast, debt issuance in our model is stochastic and depends on the country’s

consumption and hedging strategies.
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Dynamic Programming. The value function V (W,Y ) in the normal regime satisfies the

following Hamilton-Jacobi-Bellman (HJB) equation:9

0 = max
C,Θ , X

f(C, V (W,Y )) + [(r + π)W + Y − C − Φ]VW (W,Y ) (10)

+
Θ2σ2

2
VWW (W,Y ) + µY VY (W,Y ) +

σ2Y 2

2
VY Y (W,Y ) + Θσ2Y VWY (W,Y )

+ λE [(V (W +X,ZY )IZ≥Z∗ + V (W,ZY )IZ≤Z <Z∗ + V (W,ZY )IZ<Z)− V (W,Y )] ,

where the expectation E[ · ] is evaluated with respect to the cumulative distribution function,

G(Z). The HJB equation states that at the optimum, the sum of the country’s normalized

aggregator, f(C, V ), and the expected change in the value function V (W,Y ) (the sum of all

the other terms on the right side of equation (10)) must equal zero.

The second and third terms of equation (10), describe the drift and diffusion volatility

effects of wealth W on V (W,Y ). The fourth and fifth terms reflect the drift and volatility

effects of output Y on V (W,Y ). The sixth term, Θσ2Y VWY (W,Y ), captures the effect of

the country’s intertemporal diffusive shock hedging demand on V (W,Y ).

The last term, which appears in the third line of equation (10), represents the effect of

jumps. Diffusion shocks do not cause default because it is always more efficient to hedge

diffusion shocks using actuarially fair insurance. Only jump shocks can potentially trigger

default. When a jump arrives at time t (dJt = 1), the country decides whether to default on

its debt after observing the realized recovery fraction, Z. The default decision is characterized

by an endogenous, stochastic threshold rule, Z.

If Z ≥ Z∗, the country receives a jump-insurance payment, Xt−(Z), and does not default,

so its value function at t is V (Wt− +Xt−(Z), ZYt−).

If Z < Z, the country defaults, enters autarky, and its output falls to Ŷt = αYt, where

Yt = ZYt−, so the value function at t = τD is V (Wt, ZYt−) = V̂ (Ŷt) = V̂ (αZYt−).

Finally, if Z ∈ [Z ,Z∗), the jump is not insurable and the country does not default, so

its value function at t is V (Wt−, ZYt−).

First-Order Conditions. As in Duffie and Epstein (1992a, 1992b), the first-order condi-

tion (FOC) for C is:

fC(C, V ) = VW (W,Y ) . (11)

9Duffie and Epstein (1992b) generalize the standard HJB equation for the expected-utility case to allow
for non-expected recursive utility such as the Epstein-Weil-Zin utility used here.
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This condition equates the marginal benefit of consumption, fC(C, V ), to the marginal utility

of savings, VW (W,Y ). With expected utility, fC(C, V ) = U ′(C), we recover the standard

FOC for consumption: U ′(C) = VW (W,Y ).

The FOC for the diffusion-risk hedging demand is:

Θ = −Y VWY (W,Y )

VWW (W,Y )
. (12)

Equation (12) is similar to the intertemporal hedging demand in Merton (1969) for expected

utility and in Duffie and Epstein (1992b) for recursive preferences. Since the country is

endowed with a long position in domestic output, its hedging demand should be negative.

The optimal jump risk hedging demand, X(Z;W,Y ), solves the following problem:

max
X

λE [(V (W +X,ZY )−XVW (W,Y )) IZ≥Z∗ ] . (13)

This problem boils down to maximize (V (W +X,ZY )−XVW (W,Y )) by choosingX(Z;W,Y )

for each value of Z that can be insured (Z ≥ Z∗). The FOC for X(Z;W,Y ) is:

VW (W +X(Z;W,Y ), ZY ) = VW (W,Y ) . (14)

The intuition for this condition is that it is optimal to choose X to equate the pre- and

post-jump marginal utility of wealth. Since output falls upon a jump arrival, without jump

insurance, VW (W,Y ) < VW (W,ZY ). The country chooses X(Z;W,Y ) > 0 to equate the

pre- and post-jump marginal utility of wealth.

Value Function. The value function, V (W,Y ), is given by:

V (W,Y ) =
(bP (W,Y ))1−γ

1− γ , (15)

where b is given by

b = ρ

[
r + ψ(ρ− r)

ρ

] 1
1−ψ

. (16)

To ensure that utility is finite, we require the following regularity condition:

ρ > (1− ψ−1) r . (17)

We can interpret P (W,Y ) as the certainty equivalent wealth, which is the time-t total

wealth that makes the agent indifferent between the status quo (with financial wealth W

and output process Y ) and having a wealth level P (W,Y ) and permanently no output:

V (W,Y ) = V (P (W,Y ), 0) . (18)

Next, we turn to the autarky regime.
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3.2 Autarky Regime

In the autarky regime, wealth is zero and the country cannot borrow or lend, so consumption

equals output and wealth is not an argument of the value function. This function, V̂ (Ŷ ),

satisfies the following differential equation:

0 = f(Ŷ , V̂ ) + µŶ V̂ ′(Ŷ ) +
σ2Ŷ 2

2
V̂ ′′(Ŷ ) + λE

[
V̂ (ZŶ )− V̂ (Ŷ )

]
+ ξ

[
V (0, Ŷ )− V̂ (Ŷ )

]
. (19)

The first term on the right side of equation (19) is the net utility flow. The second and

third terms represent the impact of the output drift and diffusion volatility, respectively. The

fourth term describes the possibility of output jumping from Yt to ZYt− while the country is

in autarky. The last term reflects the possibility of exiting from autarky, which occurs at an

exogenous rate, ξ. Upon exiting from autarky at time τE and entering the normal regime,

the country’s value function is V (0, YτE ), where YτE = ŶτE−.

We show that the value function in the autarky regime, V̂ (Ŷ ), is:

V̂ (Ŷ ) =
(b p̂ Ŷ )1−γ

1− γ , (20)

where the coefficient b is given by equation (16) and p̂ is the endogenous (scaled) certainty

equivalent wealth in the autarky regime.

3.3 Connecting the Normal Regime with Autarky

The value functions V (W,Y ) and V̂ (Ŷ ) are connected by recurrent transitions between the

normal and autarky regimes (see the two HJB equations, (10) and (19)).

If the country defaults at time t, output drops to αYt. Therefore, the value of Wt that

makes the country indifferent between repaying its debt and defaulting, which we denote by

Wt, satisfies the following value-matching condition:

V (Wt, Yt) = V̂ (αYt) . (21)

Condition (21) implicitly defines the default boundary Wt:

Wt = W (Yt) . (22)

We refer to −Wt as the country’s debt capacity, since it is the maximum level of debt that

the country can issue without triggering default in equilibrium. Whenever the country’s
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sovereign debt exceeds its endogenous debt capacity, i.e., when Wt < Wt, the country defaults

and enters autarky. Its value function in this region satisfies

V (Wt, Yt) = V̂ (αYt) , when Wt < Wt . (23)

We need one more condition to pin down Wt, as it is a free boundary. We present this

condition after we simplify our model’s solution.

3.4 Simplifying the Model Solution

It is useful to define scaled financial wealth:

wt =
Wt

Yt
, (24)

which is the model’s scaled state variable. Similarly, we define scaled versions of the control

variables: scaled consumption ct = Ct/Yt, scaled diffusion hedging demand θt = Θt/Yt, scaled

jump hedging demand xt = Xt/Yt , scaled jump insurance premium payment φt = Φt/Yt,

and scaled debt capacity wt = Wt/Yt.

The jump insurance premium pricing equation, (8), can be simplified as follows:

φ(wt−) = λE[x(wt−, Z) IZ≥Z∗ ] . (25)

The scaled certainty-equivalent wealth, p(wt), is equal to P (Wt, Yt)/Yt. Euler’s theorem

implies that PW (Wt, Yt) = p′(wt). The value of p′(w) plays a crucial role in our analysis.

As debt is issued before jump arrival, the equilibrium credit spread, πt−, depends only

on the pre-jump information. We can express πt− as a function of pre-jump scaled wealth,

π(wt−), which we characterize below. To calculate π(wt−), it is useful to characterize the

default policy in terms of a threshold rule for the recovery fraction, Z(wt−).

Optimal Default Thresholds: w and Z(wt−). We show that the country defaults when-

ever an output jump causes −wt to exceed −w. That is, the post-jump optimal default

strategy is time invariant and characterized by the cutoff threshold, w.

We can also characterize the optimal default strategy via a threshold value for the recovery

fraction at t, Zt. First, because it is not optimal for the country to default against hedgeable

jump shocks, Z ∈ [Z∗, 1], Zt ≤ Z∗ has to hold. Second, when an unhedgeable jump shock,

Z ∈ [0, Z∗), arrives, the country is indifferent between defaulting or not if and only if
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wt = wt−/Z = w . Solving this equation and setting Z = Zt, we obtain Zt = wt−/w < Z∗.

So, Zt can be written as a function of the pre-jump value of wt−:

Zt = Z(wt−) = min{wt−/w , Z∗} , (26)

for 0 ≤ wt−/w ≤ 1, i.e., the indebted country is in the normal regime.
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Figure 1: The optimal default threshold Z(wt−) and the three mutually exclusive regions: the
“jump insurance and no default” (the top rectangular) region, the “no jump insurance and
no default” (the triangular) region, and the default (the trapezoid) region. The horizontal
axis is wt−/w. The vertical axis is the recovery fraction Z upon the arrival of a jump.

Figure 1 summarizes this result by plotting the default threshold Z(wt−) given by equa-

tion (26) as a function of wt−/w over the internal [0, 1]. This figure shows the three mutually

exclusive regions: (i) the region where the country purchases jump insurance and does not

default (Z ≥ Z∗); (ii) the region where the country purchases no jump insurance and does

not default (Z(wt−) ≤ Z < Z∗); and (iii) the default region where Z < Z(wt−).

Equilibrium Credit Spread. When the country issues debt (Wt− < 0), the competitive-

market zero-profit condition for diversified sovereign debt investors implies that the credit

spread, πt−, satisfies:

−Wt−(1 + rdt) = −Wt−(1 + (r + πt−)dt) [1− λG(Z(wt−))dt] + λG(Z(wt−))dt× 0 . (27)
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The first term on the right side of equation (27), is the expected total payment to investors,

which is the product of the probability of repayment, [1− λG(Z(wt−))dt], and the cum-

interest value of debt repayment, −Wt−(1 + (r+ πt−)dt). The second term on the right side

of equation (27) corresponds to the zero payment that occurs upon default. The left side of

equation (27) is the investors’ expected rate of return, r.

Equation (27) shows that jumps are necessary to generate default in our model. To see

this result, suppose that there are no jumps. Then equation (27) implies that the credit

spread πt must be zero, which means that diffusion shocks have to be hedged so that they

do not trigger default.

Moreover, creditors cannot break even for any defaultable short-term debt in pure diffu-

sion models. The intuition is as follows. For a small time increment dt, diffusions shocks

can cause losses of order
√
dt with strictly positive probability.10 These losses cannot be

compensated with any finite credit spread πt, as this compensation is only of order πtdt,

which is much lower than
√
dt. For this reason, other diffusion-based sovereign-debt models

work with term debt in order to generate default, see e.g., Nuño and Thomas (2015), Tourre

(2017), and DeMarzo, He, and Tourre (2018).

Simplifying equation (27), we obtain the following expression for πt− = π(wt−), where

π(wt−) = λG(Z(wt−)) . (28)

This equation ties the equilibrium credit spread to the country’s default strategy. For a unit

of debt per unit of time, the left side of (28) is the compensation for bearing credit risk and

the right side is the expected loss given default. Both terms are of order dt. Because there

is zero recovery upon default and investors are risk neutral, the credit spread is equal to the

probability of default.11 Finally, we can generalize our model by incorporating a stochastic

discount factor with jump risk premium to price sovereign debt. This generalization produces

higher and more volatile credit spreads.

Dynamics for Scaled Financial Wealth, wt. Using Ito’s Lemma, we obtain the follow-

ing law of motion for wt in the normal regime:

dwt = µw(wt−) dt+ σw(wt−) dBt +
(
wJt − wt−

)
dJt , (29)

10This random component dominates the predictable (drift) component, which is of order dt.
11When scaled wealth is positive, there is no debt outstanding so the probability of default is zero.
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The first term in equation (29) is

µw(wt−) =
(
r + π(wt−)− µ+ σ2

)
wt− − σ2θ(wt−) + 1− φ(wt−)− c(wt−) , (30)

where π(wt−) is the equilibrium credit spread, given in equation (28) and φ(wt−) is the scaled

jump insurance premium payment given by equation (25). The second term in equation (29)

is the volatility function, σw(wt−), given by:

σw(wt−) = (θ(wt−)− wt−)σ . (31)

The third term in equation (29) captures the effect of jumps on w, where the post-jump

scaled financial wealth, wJt , is given by

wJt =
wt− + xt−

Z
IZ≥Z∗ +

wt−
Z
IZ(wt−)≤Z<Z∗ +

wt−
Z
IZ<Z(wt−) . (32)

Scaled Debt Capacity w. In order to maximize the country’s debt capacity, shocks that

can be insured at actuarially fair prices should be hedged and therefore diffusion shocks

should not trigger default. Technically speaking, the country optimally sets the volatility of

w to zero at its endogenous debt capacity:12

σw(w) = 0 . (33)

The intuition for this result is as follows. Suppose that the diffusion volatility σw(wt)

evaluated at debt capacity wt = w is not zero. Then, over a small interval dt, the realized

value of wt+dt can cross the default boundary w with strictly positive probability in response

to a small diffusive shock, triggering default. Such default is clearly inefficient, since diffusive

shocks can be hedged at an actuarially fair price. So, optimality implies σw(w) = 0.

Substituting the zero-volatility condition (33) into equation (31), we obtain θ(w) = w,

which is the diffusion-hedging demand at w. While this hedging strategy eliminates the

volatility of w at w, it does not in general eliminate the idiosyncratic volatility of unscaled

consumption and unscaled certainty-equivalent wealth. In this sense, hedging is incomplete.

We provide intuition for this incomplete-hedging result in Section 5 after describing the

first-best and the limited-commitment solutions.

12Bolton, Wang, and Yang (2019) derive a similar boundary condition in a corporate-finance continuous-
time diffusion model where the entrepreneur has inalienable human capital.
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Finally, to ensure that w weakly moves towards zero and away from w in the absence of

jumps, it is necessary for us to also verify that µw(w) ≥ 0. Substituting equation (33) into

equation (30), we show that µw(w) ≥ 0 is equivalent to the following constraint at w < 0:

c(w) ≤ 1 + µ · (−w)− [(r + π(w)) · (−w) + φ(w)] . (34)

The intuition for this equation is as follows. Consumption has to be bounded by the country’s

interest and jump-insurance premium payments.

Endogenous Relative Risk Aversion γ̃. To better understand our results, it is useful

to introduce the following measure of endogenous relative risk aversion, denoted by γ̃:

γ̃(w) ≡ −VWW

VW
× P (W,Y ) = γp′(w)− p(w)p′′(w)

p′(w)
. (35)

The first part of equation (35) defines γ̃(w). The second part follows from the homogeneity

property.

The economic interpretation of γ̃ is as follows. Because limited commitment results in

endogenous market incompleteness, the country’s endogenous risk aversion is given by the

curvature of the value function V (W,Y ) rather than by the risk aversion parameter, γ. We

use the value function to characterize the coefficient of endogenous absolute risk aversion:

−VWW (W,Y )/VW (W,Y ).

We can build a measure of relative risk aversion by multiplying −VWW (W,Y )/VW (W,Y ),

with “total wealth.” There is no well-defined market measure of the total wealth under

incomplete markets. However, the certainty equivalent wealth P (W,Y ) is a natural measure,

so we use it in our definition of γ̃ in equation (35).

Limited commitment and/or limited spanning causes the marginal certainty equivalent

wealth of financial wealth to exceed one, i.e., PW (W,Y ) = p′(w) ≥ 1. Also, in our model,

p′′(w) < 0, which implies that γ̃(w) > γ (see equation (35)). That is, limited commitment

causes the representative agent to be endogenously more risk averse. In contrast, in the

first-best solution that we describe below, the country fully hedges against diffusion and

jump shocks and γ̃(w) = γ.

4 First-Best Solution: Full Commitment and Spanning

Before discussing our results under limited commitment and limited spanning, we summarize

the first-best (FB) Arrow-Debreu solution that obtains when there is full commitment and
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full spanning. Full commitment means that the country has to honor all its contractual

agreements, so the country never defaults. Full spanning means that Z∗ = 0, which represent

the highest level of financial development. We use the superscript FB to denote the variables

that pertain to the FB solution.

As in Friedman (1957) and Hall (1978), we define non-financial wealth, Ht, for the case

where Z∗ = 0, as the present value of output, discounted at the constant risk-free rate, r:

Ht = Et
(∫ ∞

t

e−r(u−t)Yudu

)
. (36)

Because Y is a geometric jump-diffusion process, we have Ht = hYt, where h is scaled

non-financial wealth given by

h =
1

r − g , (37)

and g is given by equation (2). To ensure that non-financial wealth is finite, we require that

r > g . This convergence condition is standard in asset pricing and valuation models.

Let P FB
t ≡ P FB(Wt, Yt) denote the country’s certainty-equivalent wealth, defined in

equation (15), for the FB case. We show below that P FB
t is equal to:

P FB
t ≡ P FB(Wt, Yt) = Wt + hYt . (38)

In other words, in the FB case, certainty-equivalent wealth coincides with total wealth,

defined as the sum of financial wealth Wt and non-financial wealth Ht.

Next, we summarize the properties of the FB solution.

Proposition 1 Scaled total wealth, pFB(w) = P FB(W,Y )/Y = (W +H)/Y , is

pFB(w) = w + h , (39)

where h is given by equation (37) and wt ≥ wFB. The scaled endogenous debt capacity is

−wFB = h. The optimal consumption-output ratio, ct = cFB(w), is given by:

cFB(w) = mpFB(w) = m(w + h) , (40)

where m is the marginal propensity to consume (MPC) in the FB:

m = r + ψ (ρ− r) . (41)

The optimal scaled hedging demand for diffusive shocks, θFB(w), is constant:

θFB(w) = −h . (42)
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The optimal scaled hedging demand for jump risk, xFB(w,Z), is given by:

xFB(w,Z) = (1− Z)h . (43)

The implied scaled jump insurance premium is constant: φFB(w) = λ(1 − E(Z))h. There

is no default, meaning Z(w) = Z∗ = 0. The endogenous relative risk aversion defined in

equation (35), γ̃(w), is equal to γ.

Complete Hedging of Total Wealth and Consumption. Equation (42) shows that

the country fully hedges its diffusive risk by taking a short position of h units in the diffusion

hedging contract so that the net exposure of its total wealth, P FB
t , to diffusive shocks is zero.

Similarly, equation (43) shows that the country fully hedges the jump risk by buying (1−Z)h

units of the jump insurance contract for each possible value of Z, so that the net exposure

of P FB
t to jump shocks is zero. As a result, total wealth, P FB

t , and consumption, CFB
t ,

are fully insulated from both idiosyncratic diffusion and jump shocks. Both variables grow

deterministically at rate ψ (r − ρ):

P FB
t = eψ(r−ρ)tP FB

0 (44)

CFB
t = eψ(r−ρ)tCFB

0 (45)

where CFB
0 = mP FB

0 and P FB
0 = W0 + hY0 . For the case where ρ = r, Pt = P0 and

Ct = C0 = r(W0 + hY0) for all t.

By complete hedging, we mean that the country’s unscaled total wealth and consumption

are fully insulated from all idiosyncratic shocks. This property holds in the FB solution. We

next show that with limited commitment and/or limited spanning, complete hedging is no

longer optimal. Instead, it is optimal for the country to expose its certainty-equivalent wealth

and its unscaled consumption to idiosyncratic risk.

5 Limited-Commitment Solution

In this section, we discuss the solution of our model when there is limited commitment. The

following proposition summarizes the main properties of the solution.
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Proposition 2 The scaled certainty equivalent wealth p(w) when w > w in the normal

regime and p̂ in the autarky regime satisfy the following two interconnected ODEs:

0 =

(
m(p′(w))1−ψ − ψρ

ψ − 1
+ µ− γσ2

2

)
p(w) + [ (r + π(w)− µ)w + 1− φ(w) ] p′(w)

+
γ2σ2p(w)p′(w)

2 γ̃(w)
+

λ

1− γE
[(

Zp(wJ )

p(w)

)1−γ

− 1

]
p(w) , (46)

0 =
ρ
[
(b p̂ )−(1−ψ−1) − 1

]
1− ψ−1

+ µ+
λ(E(Z1−γ)− 1)

1− γ − γσ2

2
+

ξ

1− γ

[(
p(0)

p̂

)1−γ

− 1

]
, (47)

where wJ is given by equation (32). When w < w, the country defaults and hence

p(w) = α p̂ . (48)

In addition, we have the following boundary conditions:

p(w) = α p̂ , (49)

p′′(w) = −∞ , (50)

lim
w→∞

p(w) = w + h , (51)

where h is given by equation (37).

The equilibrium credit spread is π(wt−) = λG(Z(wt−). The scaled jump insurance pre-

mium, φ(wt−), is given by equation (25). The country defaults when τD = inf{t : wt < w}.
In the no-default region where w ≥ w, the following policy rules apply. The optimal

consumption-output ratio, c(w), is:

c(w) = mp(w)(p′(w))−ψ , (52)

where m is given by equation (41). The scaled diffusion risk hedging demand, θ(w), is:

θ(w) = w − γp(w)p′(w)

γ(p′(w))2 − p(w)p′′(w)
= w − γp(w)

γ̃(w)
, (53)

where γ̃(w) is the endogenous relative risk aversion given by equation (35). For Z∗ ≤ Z ≤ 1,

the optimal scaled hedging demand for jump risk, x(w,Z), solves:

p′(w) =

(
Zp((w + x(w,Z))/Z)

p(w)

)−γ
p′((w + x(w,Z))/Z) . (54)
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Equation (49) follows from the value-matching condition, (21). Equation (50) follows

from the zero volatility condition, (33) for w at w, and p(w) > 0. Equations (49) and (50)

jointly characterize the left boundary, w. Equation (51) states that, as w →∞, the effect of

limited commitment disappears and p(w) converges to pFB(w) = w + h.

Equation (52) shows that consumption is a nonlinear function of w, depending on both

the certainty equivalent wealth, p(w), and its derivative, p′(w). Later we show that p′(w) ≥ 1

and p′(w) decreases with w. These properties imply that c(w) is lower than the product of

certainty-equivalent wealth p(w) and the MPC under FB, m, i.e., c(w) < mp(w), and c(w)

increases with w.

Equation (53) determines the hedging demand with respect to diffusive shocks. As dis-

cussed above, the country hedges to avoid default triggered by diffusive shocks and preserve

the option to default in response to rare disasters. Without hedging diffusive shocks, a coun-

try that has exhausted its debt capacity (Wt = Wt) would default in response to even very

small shocks.

Substituting equation (53) into equation (31), we obtain:

σw(w) = (θ(w)− w)σ = −σγp(w)

γ̃(w)
< 0 . (55)

In absolute value, the volatility for w is proportional to the ratio between p(w) and en-

dogenous risk aversion, γ̃(w). Evaluating equation (55) at w and using σw(w) = 0 and

p(w) = α p̂ > 0, we conclude that endogenous relative risk aversion, γ̃(w), approaches infin-

ity, as w → w.

Equation (54) determines the country’s scaled hedging demand with respect to jump

shocks, x(w,Z). As discussed above, for insurable jump shocks (Z ≥ Z∗) the country hedges

its jump risk exposures to equate its pre- and post-jump marginal utility of wealth. The

homogeneity property allows us to express this condition in terms of the certainty equivalent

wealth, p(w), and the marginal certainty equivalent value of financial wealth, p′(w).

Next, we turn to the special case where there is full spanning and hence all jump risks

can be hedged (Z∗ = 0).

Full Spanning and Limited Commitment. As in Kehoe and Levine (1993), when all

shocks are insurable at actuarially fair terms, the country never defaults in equilibrium. The

country is better off honoring its debt and preserving its debt capacity. Doing so allows

the country to borrow at the risk-free rate r. The country’s temptation to default is an
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off-equilibrium threat that determines the country’s debt capacity. This maximal amount of

sustainable debt makes the country indifferent between defaulting or not.

For this full-spanning and limited-commitment case, equations (49) and (50) are the

continuous-time equivalent of the limited-enforcement conditions in Kehoe and Levine (1993),

Kocherlakota (1996), and Alvarez and Jermann (2000).

It is worth emphasizing that even though there is full spanning, optimal hedging is

incomplete in the sense that the country hedges less than in the FB, i.e., |θ(w)| < |θFB(w)| =
h. This inequality follows from Equation (53), γ̃(w) > γ, and p(w) < pFB(w) = w + h. To

explore the intuition for this result, we sketch a proof by contradiction.

Suppose that the country completely hedges its idiosyncratic risk. Then, consumption is

given by CFB
t = eψ(r−ρ)tCFB

0 and certainty equivalent wealth is equal to P FB
t = eψ(r−ρ)tP FB

0

(see equation (44)). However, the country finds it optimal to default as long as its certainty-

equivalent wealth under autarky, which is equal to αp̂ Yt (see equation (48)), exceeds P FB
t .

Because output follows a jump-diffusion process, p̂ Yt > P FB
t occurs with strictly positive

probability, triggering default. Since default is inefficient, this complete-hedging strategy is

not optimal.

6 Calibration and Quantitative Results

To explore the quantitative properties of our model, we calibrate it with the eleven parameter

values summarized in Table 1. We divide these parameters into two groups. The seven

parameters in the first group are set to values that are standard in the literature. The four

parameters in the second group are calibrated to match key features of data for Argentina.

6.1 Baseline Calibration

We first describe the parameters drawn from the literature.

Parameters from the Literature. Following Aguiar and Gopinath (2006), we set the

coefficient of relative risk aversion (γ) to 2, the annual risk-free rate (r) to 4 percent, and

the rate at which the country exits autarky (ξ) to 0.25 per annum. This choice of ξ implies

that that the country stays on average in autarky for four years, which is consistent with

the estimates in Aguiar and Gopinath (2006).
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Following Barro (2009), we set the annual subjective discount rate (ρ) to 5.2 percent.

Since ρ > r, the country wants to borrow to front-load consumption, holding everything else

constant. This ability to front-load consumption is lost when the country defaults and enters

autarky.

Table 1: Parameter Values

Parameters Symbol Value
risk aversion γ 2
elasticity of intertemporal substitution ψ 0.047
subjective discount rate ρ 5.2%
risk-free rate r 4%
financial development parameter Z∗ 0.9
output drift (in the absence of jumps) µ 2.7%
output diffusion volatility σ 4.5%
jump arrival rate λ 0.073
power law parameter β 6.3
default distress cost α 97.5%
autarky exit rate ξ 0.25

Targeted observables
average output growth rate g 1.7%
output growth volatility 6.66%
average debt-output ratio 15.4%
unconditional default probability 3%

All parameter values, whenever applicable, are continuously compounded and annualized.

As in the rare-disasters literature, we assume that the cumulative distribution function

of the recovery fraction, G(Z), is governed by a power law:

G(Z) = Zβ . (56)

Following Barro and Jin (2011), we refer to jump shocks that create realized output losses

greater than 10 percent (Z < 1 − 0.1 = 0.9) as disasters. In our baseline calibration, we

assume that disaster shocks cannot be hedged so we set the level of financial development,

Z∗, equal to 0.9.

We choose β = 6.3 and the annual jump arrival rate, λ = 0.073, so that the annual

disaster probability is λG(0.9) = 0.073×G(0.9) = 3.8 percent, which is the value estimated

24



by Barro and Jin (2011). Since large disasters are rare, Barro and Jin (2011) obtain these

estimates by pooling long time series for different countries.

Calibrated Parameters from Argentinean Data. We choose the parameters that con-

trol the drift in the absence of jumps (µ), the diffusion volatility (σ), the default distress

cost (1−α), and the elasticity of intertemporal substitution (ψ), to target the following four

moments estimated using Argentinean data: an average growth rate of output of 1.7 percent

per annum, a standard deviation of the growth rate of output of 6.7 percent, an average

debt-to-GDP ratio of 15.4 percent, and an unconditional default probability of 3 percent.

Our empirical estimates of the average and standard deviation of the annual growth rate of

real GDP for Argentina are obtained using Barro and Ursua’s (2008) data for the period

1876-2009.

Our model consolidates the expenditure and borrowing decisions of the private sector

and the government. For this reason, we calibrate it to match the ratio of net debt to GDP.

In Argentina, as in most countries, a significant fraction of government debt is owned by the

domestic private sector. We compute our target for the debt-to-output ratio by calculating

the difference between Argentina’s debt liabilities and debt assets using the data compiled

by Lane and Milesi-Ferretti (2007) for the period from 1970 to 2011. The average net debt-

to-GDP ratio during this period is 15.4 percent.13 Since defaults are rare, it is helpful to

use as much data as possible to estimate the probability of default. Argentina defaulted six

times in roughly 200 years, so we target an annual default probability of 3 percent.14

We obtain the following parameter values: the EIS ψ = 0.047, µ = 2.7 percent per

annum, σ = 4.5 percent per annum, and α = 0.975. The calibrated value of α implies that

the direct costs of defaulting on sovereign debt are equal to 2.5 percent of output. This cost

of default is conservative relative to the estimates reported by Hébert and Schreger (2017)

for Argentina.

In this calibration, the value of the EIS (ψ = 0.047) is low so the representative agent

has a strong preference for smooth consumption paths.15 We can interpret the low value of

13Table 4 shows that the model can be easily calibrated to generate higher average debt-output ratios by
increasing (1− α), the distress cost associated with default.

14Argentina defaulted in 1830, 1890, 1915, 1930, 1982, and 2001. See Sturzenegger and Zettlemeyer (2006)
for a discussion.

15There is currently no consensus on what are empirically plausible values for the EIS (see Attanasio and
Weber (2010) for a discussion). Our choice is consistent with Hall (1988) who argues that the elasticity of
intertemporal substitution is close to zero. It is also consistent with the recent estimates by Best, Cloyne,
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the EIS as resulting from rigidities in spending patterns and expenditure commitments that

are difficult to change.

6.2 Debt Intolerance

Table 2 shows the impact of different levels of financial development (Z∗ = 0, 0.5, 0.9, 1) on

debt intolerance. We set all other parameters to the values used in our benchmark calibration

and summarized in Table 1. To better understand the intuition, we proceed in three steps.

Table 2: Partial Spanning and Debt Intolerance

Z∗ Average debt-output ratio Default probability Debt capacity |w|

1 (No jump hedging) 14.7% 4.0% 20.5%
0.9 15.4% 3.1% 20.7%
0.5 20.7% 0.1% 24%
0 (Full Spanning) 18.9% 0 25%

All parameter values other than Z∗ are summarized in Table 1.

First, recall that in the FB case the country fully uses its debt capacity, which is the

present discounted value of output, h = 1/(r−g), and never defaults. For our calibration, the

country borrows 4,348 percent of current output, an implication that is clearly unrealistic.

Second, we isolate the impact of limited commitment by comparing the full-spanning

limited-commitment case (Z∗ = 0) to the FB case. When Z∗ = 0, the country never

defaults in equilibrium because with full spanning it is cheaper to manage risk by hedging

than by defaulting on sovereign debt. However, debt capacity is much lower under limited

commitment, |w| = 25 percent, versus |w| = 4, 348 percent in the FB case. As a result, the

country’s average debt-to-output ratio is only 19 percent under limited commitment despite

full spanning rather than 4,348 percent in the FB case.

Third, we study the impact of financial development. Eliminating entirely the ability to

use insurance contracts to hedge jump risk (Z∗ = 1) results in a large rise in the probability

of default relative to the benchmark case (from 3.1 to 4 percent), even though the declines in

Ilzetzki, and Kleven (2017) which are based on mortgage data.
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debt capacity and the average debt-output ratio are small. The large rise in the probability

of default occurs because when Z∗ = 1, the only way to manage large jump risk is to default

on sovereign debt.

Improving financial development by decreasing Z∗ from 0.9 to 0.5 has a dramatic impact

on the debt capacity, average debt-output ratio, and default probability: debt capacity rises

from 20.7 to 24 percent of output, the average debt-output ratio increases from 15.4 to 20.7

percent, and the probability of default drops to close to zero, from 3.1 to 0.1 percent.

Further improving financial development by decreasing Z∗ from 0.5 to zero has a small

impact on the debt capacity, average debt-output ratio, and default probability. The reason

for this small impact is that the additional risks that can be hedged, Z ∈ (0, 0.5), are very

rare, their probability, λG(0.5), is only about 0.09 percent.

Finally, note the subtle non-monotonicity of the average debt-output ratio. This variable

falls from 20.7 percent to 18.9 percent as Z∗ falls from 0.5 to zero. The intuition for this

result is that once financial development is sufficiently high, the country resorts less to using

debt to smooth consumption as it has other risk management instruments at its disposal.

In sum, Table 2 shows that low financial development causes debt intolerance. This table

also shows that improving financial development from a low level has a large positive impact

on the country’s ability to borrow and the credit spread of its sovereign debt.

6.3 Economic Mechanisms and Quantitative Implications

In this subsection, we use our calibration to explore the properties of our model. These

properties are illustrated in Figures 2, 3, and 4 for different levels of financial development.

Certainty equivalent wealth, marginal value of wealth, consumption, and the

MPC. Panels A and B of Figure 2 display the scaled certainty-equivalent wealth, p(w),

and the marginal certainty-equivalent value of wealth, PW (W,Y ) = p′(w), respectively. The

function p(w) is increasing and concave, which implies that p′(w) is decreasing in w and p′(w)

is greater than one.16 Panels C and D display the consumption-output ratio, c(w), and the

MPC out of wealth, c′(w), respectively. The function c(w) is increasing and concave, which

implies that c′(w) is decreasing in w. As w goes to infinity, p(w) approaches pFB(w) = w+h,

16Wang, Wang, and Yang (2016) derive similar properties in a self-insurance model where labor-income
shocks are uninsurable and the agent can only save via a risk-free asset.
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Figure 2: Scaled certainty equivalent wealth p(w), marginal certainty equivalent value of
wealth p′(w), consumption-output ratio c(w), and c′(w) for two levels of financial develop-
ment: Z∗ = 0.5 and Z∗ = 0.9. Debt capacity is equal to −w = 20.7 percent and −w = 24.0
percent for Z∗ = 0.9 and 0.5, respectively.

p′(w) approaches one, c(w) approaches cFB(w) = m(w+ h), and c′(w) approaches the MPC

obtained in the FB, m = 0.041.

Next, we discuss the impact of financial development under limited commitment. We

compare our baseline case where Z∗ = 0.9 (our proxy for the status quo in emerging markets)

with an economy where Z∗ = 0.5, which corresponds to a high level of financial development

since the country can hedge jumps that generate output losses smaller than 50 percent.

The higher is financial development (lower Z∗), the higher is p(w) because more risks are

hedged and the representative agent faces less uncertainty. As a result, the marginal value

of wealth, p′(w), is lower. Consumption is higher because both a higher p(w) and a lower

p′(w) cause c(w) to be higher (see equation (52)).

To compare the two economies, consider w = −15 percent, which is the average debt-to-

28



A. jump risk hedging demand: x(− . 5,Z)

Z

 

 

C. jump risk hedging demand: x(w, .9)

w

B. jump insurance premium: φ(w)

w

D. equilibrium credit spread: π(w)

w

Z∗ = 0.9
Z∗ = 0.5

0
0

0
0

0

0
0

0

0

-0.05

-0.05

-0.05 -0.1

-0.1

-0.1 -0.15

-0.15

-0.15 -0.2

-0.2

-0.2 -0.25

-0.25

-0.25

0.01

0.02

0.02

0.03

0.04

0.04

0.05

0.08

0.1

0.15

0.2

0.9 0.92 0.94 0.96 0.98

1

1

1

Figure 3: Scaled jump-hedging demand x(w,Z) at w = −0.15, jump-insurance premium
payment φ(w), scaled jump-hedging demand x(w,Z) at Z = 0.9, and the equilibrium credit
spread π(w) for two levels of financial development: Z∗ = 0.5 and Z∗ = 0.9. Debt capacity
is equal to −w = 20.7 percent and −w = 24.0 percent for Z∗ = 0.9 and 0.5, respectively.

output ratio in the baseline calibration. The marginal value of wealth, p′(−0.15), is equal

to 5.31 in the economy with Z∗ = 0.9, which is 18 percent higher than in the economy with

Z∗ = 0.5. Both values are much higher than one, the value of p′(w) in the FB case. The

MPC out of wealth, c′(−0.15), is equal to 0.47 in the economy with Z∗ = 0.9, which is 52

percent higher than in the economy with Z∗ = 0.5. Both values are much higher than m,

which is equal to 0.041, the value of the MPC in the FB case.

Jump-risk hedging demand, jump-insurance premium payment, and credit spreads.

Panel A of Figure 3 plots x(w,Z) as a function of Z for w = −15 percent, the average debt-

output ratio targeted in our calibration. This panel shows that for a given Z∗ and w, the

hedging demand x(w,Z) is decreasing in the recovery fraction Z, which means that the
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country insures more against bigger losses in order to smooth consumption.

Panel B plots the scaled jump-insurance premium payment, φ(w), which integrates the

hedging demand x(w,Z), displayed in Panel A, over the admissible range of Z ≥ Z∗ for

each value of w. This panel shows that the scaled jump-insurance premium payment, φ(w),

increases with w, which means that a less indebted country hedges more.

Panel C plots the demand for jump insurance, x(w,Z), against a 10 percent permanent

loss in output (Z = 0.9). This panel shows that x(w,Z) increases with w, which means that

a less indebted country hedges more. That is, hedging and financial wealth are complements.

Panels A, B, and C together show that as the country’s financial development improves

(i.e., as Z∗ decreases), its risk-sharing opportunities expand, causing its hedging demand

x(w,Z) and insurance premium payment φ(w) to increase in absolute value. This increase

leads to a rise in debt capacity, −w.

Panel D plots the equilibrium credit spread, π(w), which declines with both the level

of financial development and financial wealth w. The credit spread, π(wt−), is constant

and equal to λG(Z∗) in the region where wt− ≤ Z∗w, because the default threshold of Z,

Z(wt−) = min{wt−/w, Z∗} = Z∗. That is, in this flat region, all unhedgeable jump shocks

trigger default, i.e., the value of preserving the option to default in the future is zero.

When financial development is high, the country uses jump insurance contracts to hedge

most jump shocks and only uses costly default to manage rare disasters. As a result, the

likelihood of default and the credit spread are low. For the case where Z∗ = 0.5, the

equilibrium credit spread is very close to zero for all values of w. In contrast, when financial

development is low, the option to default is used to manage most jump shocks and hence

default is likely, resulting in a high credit spread. When Z∗ = 0.9, the equilibrium credit

spread is high for debt levels above 15 percent of output.

Diffusion risk hedging demand, drift, volatility, and the distribution of w. Panel

A of Figure 4 shows that the scaled diffusion hedging demand, θ(w), is negative, and that its

absolute value increases with w. That is, a less indebted country hedges more diffusive risk.

As with the case of jump risk, hedging and financial wealth are complements. Even though

the country incurs no upfront cost to hedge diffusion shocks, it is not optimal to fully hedge

the diffusion risk of w.

Panel B plots the volatility function, σw(w). Because a less indebted country has a

higher p(w) and a lower endogenous relative risk aversion, γ̃(w), the absolute value of σw(w)
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Figure 4: Scaled diffusion-hedging demand θ(w), volatility σw(w), drift µw(w), and the
density function for the stationary distribution of w in the normal regime, `(w), for two
levels of financial development: Z∗ = 0.5 and Z∗ = 0.9. Debt capacity is equal to −w = 20.7
percent and −w = 24.0 percent for Z∗ = 0.9 and 0.5, respectively.

increases with w, as one can see from equation (55). In the limit as w → w, the absolute

value of σw reaches the minimal value, σw(w) = 0. The intuition for this property, which is

visible in Panel B, is that it is inefficient for the country to use default to manage continuous

diffusive shocks. Since diffusion shocks do not trigger default, σw(w) = 0.

Panel C shows the drift function for w, µw(w), which is negative for most values of

w. This result follows from the observations that: (a) the country’s consumption is often

larger than output (see Figure 2); and (b) interest and jump insurance premium payments

drain the country’s financial wealth. All these forces move the country further into debt

in expectation. However, as the country’s debt approaches its capacity, −w, the country

voluntarily adjusts its consumption, insurance demand, and debt level so that µw(w) ≥ 0.

The property µw(w) ≥ 0 together with σw(w) = 0 discussed above are necessary to ensure
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that the country does not default in response to continuous diffusion shocks.

Panel D displays the probability density function for the stationary distribution of w,

`(w), in the normal regime. This panel is consistent with the empirical observation that

countries with lower levels of financial development on average have lower debt-to-output

ratios. In other words, these countries are debt intolerant.

7 Sensitivity Analysis

We now discuss how a country’s average debt-output ratio, average default probability, and

debt capacity vary with some key parameters. We change one parameter at a time and fix

all other parameters at the values reported in Table 1.

Table 3: The effect of the EIS, ψ

ψ debt-output ratio default probability debt capacity |w|

0 15.3% 3.3% 19.8%
0.047 15.4% 3.1% 20.7%
0.25 17.9% 1.1% 34.2%
0.5 5.5% 0.7% 42.2%

All parameter values other than ψ are summarized in Table 1.

The effect of the EIS, ψ. Table 3 shows the impact of varying the EIS. Debt capacity

increases monotonically with ψ. For example, raising the EIS from 0.047 to 0.5 more than

doubles the country’s debt capacity, from 20.7 percent to 42.2 percent. Capital markets are

more willing to lend to countries with higher intertemporal substitution, since it is less costly

(in terms of utility) for these countries to cut consumption in response to adverse shocks to

service their debt.

The average debt-output ratio is non-monotonic in ψ. When ψ is low when the country is

close debt capacity it is costly to move away. So for low values of ψ the average debt-output

ratio inherits the positive relation between debt capacity and ψ. For sufficiently high values

of ψ, as ψ rises the average debt-output ratio falls even though debt capacity is expanding.
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In this case the country has strong incentives to save away from the debt region where credit

spreads are relatively high. This behavior results in a low average debt-output ratio.

The effect of the distress cost, 1−α. Table 4 illustrates the impact of distress costs and

shows that these costs play a key role in allowing the model to generate empirically plausible

average debt-output ratios. Increasing the distress cost, (1 − α), from 2.5 percent to 5

percent more than doubles debt capacity from 20.7 percent to 49 percent, significantly raises

the debt-output ratio from 15.4 percent to 36.9 percent, and decreases the annual default

probability from 3.1 percent to 3.0 percent. When default is more costly, debt capacity is

higher. At the same time, the country defaults less often despite borrowing more on average.

Table 4: The effect of distress cost, (1− α)

(1− α) debt-output ratio default probability debt capacity |w|

5% 36.9% 3.0% 49%
2.5% 15.4% 3.1% 20.7%
1% 5.5% 3.2% 7.2%
0% 0.1% 3.6% 0.2%

All parameter values other than α are summarized in Table 1.

When the distress cost is zero, the only cost of default is that under autarky the country

loses its ability to smooth and front-load consumption. In our calibration, this utility cost

is small, so that debt capacity is essentially zero (see the last row of Table 4.) This result

shows that the key reason why sovereign debt can be sustained in our model is the permanent

output loss that occurs upon default.

The effect of the probability of exiting autarky, ξ. Table 5 shows the impact of

varying ξ. Increasing ξ reduces the expected duration of the autarky regime, 1/ξ, lowering

the cost of defaulting. Since default is less costly, the country defaults more often. In

equilibrium, debt capacity falls and the country borrows less.

Decreasing the average duration of the autarky regime from four years (ξ = 0.25) to one

year lowers the debt-output ratio from 15.4 percent to 13.2 percent, increases the annual
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Table 5: The effect of the probability of exiting autarky, ξ

ξ debt-output ratio default probability debt capacity |w|

0 15.8% 3.1% 21.0%
0.25 15.4% 3.1% 20.7%
0.5 14.7% 3.1% 18.2%
1 13.2% 3.2% 16.0%
5 12.9% 3.2% 14.6%

All parameter values other than ξ are summarized in Table 1.

default probability from 3.1 percent to 3.2 percent, and reduces debt capacity from 20.7

percent to 16 percent. Further reducing the average duration of the autarky regime from

one year (ξ = 1) to 0.2 year (ξ = 5) has a limited quantitative effect: the debt-output

ratio decreases from 13.2 percent to 12.9 percent and the default probability is effectively

unchanged. When autarky is permanent (ξ = 0), as in Eaton and Gersovitz (1981), debt

capacity is 21 percent and the average debt-output ratio is 15.8 percent.

As we see from Table 5 , the quantitative properties of our model are robust to assuming

that access to international capital markets is retained upon default. In this sense, our model

is immune to the Bulow-Rogoff critique.

The effect of risk aversion, γ. Table 6 shows that the effect of risk aversion. Increasing

γ raises the cost of default since it is more costly to bear consumption volatility in the

autarky regime. With default more costly, the country defaults less often and debt capacity

is higher. Increasing γ from one to three increases debt capacity from 19.6 percent to 23

percent and lowers the annual default probability from 3.3 percent to 2.5 percent. The effect

of γ on the average debt-output ratio is quite small.

8 An Expected-utility Calibration

In this section, we restrict recursive utility to the expected-utility case generally used in the

sovereign-debt literature. We explain why the calibrations traditionally used in this literature

rely on a very high discount rate. Then, we show that our key result–low levels of financial
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Table 6: The effect of risk aversion, γ

γ debt-output ratio default probability debt capacity |w|

1 15.6% 3.3% 19.6%
2 15.4% 3.1% 20.7%
3 15.4% 2.5% 23%

All parameter values other than γ are summarized in Table 1.

development cause debt intolerance–continues to hold for expected-utility preferences.

Recall that our calibration uses a low value of the EIS. Why hasn’t this type of calibration

been used in the literature? One likely reason is that the literature typically works with an

expected-utility specification, where a low EIS implies a high level of risk aversion (γ = ψ−1).

A high γ generates a large debt capacity because the utility cost of defaulting and bearing

the consumption volatility associated with autarky is high. This high default cost induces

the country to avoid borrowing, so the average debt-output ratio is low or even negative.

In an expected-utility setting, we need a moderate value of risk aversion to generate a

realistic average debt-output ratio. We next consider an expected-utility-based calibration

with ψ = 1/γ = 0.5. If we use the annual discount rate proposed by Barro and Jin (2011)

and used in our calibration (ρ = 0.052), the model does not generate a plausible debt-output

ratio for a wide range of distress costs.

To understand the intuition for this result, consider two scenarios. In the first scenario,

distress costs, (1 − α), are high, so debt capacity is also high. But a country in debt has

a strong incentive to save to avoid the possibility of incurring high default costs. As a

consequence, the default likelihood, credit spread, and average debt-to-output ratio are low.

In the second scenario, distress costs are low, so the country is willing to borrow and the

likelihood of default is high. As a consequence, credit spreads are high and debt capacity is

low, resulting in a counterfactually low average debt-to-output ratio.

One approach widely used in the literature is to assume high distress costs so that debt

capacity is high and also assume a very high discount rate. This configuration can generate

plausible debt-output ratios because high discount rates create incentives to borrow, even
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when default costs are high (see Aguiar and Gopinath (2006) and Arellano (2006)).17 Gen-

erating the average debt-output ratio targeted in our calibration (15.4 percent) requires a

value of ρ equal to 21 percent.

We next show that low financial development also generates debt intolerance in an

expected-utility setting. Table 7 uses our expected-utility calibration (γ = 2 and ρ = 21%) to

compare economies with different levels of financial development. The same debt-intolerance

phenomenon that emerges in our baseline recursive-utility calibration (γ = 2, ψ = 0.047,

and ρ = 5.2%) is also present in this expected-utility setting.

In our expected-utility calibration, the probability of default is high and debt capacity is

low when financial development is low: 5.7 per annum and 18.8 percent, respectively, for the

case where Z∗ = 1 versus 0.1 per annum and 24.8 percent, respectively, for the case where

Z∗ = 0.5. Countries with low financial development (e.g., Z∗ = 1) use default on sovereign

debt to manage their rare-disaster risks.

Table 7: Partial Spanning and Debt Intolerance with Expected Utility

Z∗ Debt-output ratio Default probability Debt capacity |w|

1 (No jump hedging) 13.7% 5.7% 18.8%
0.9 14.5% 3.0% 19.0%
0.5 21.0% 0.1% 24.8%

In this table, γ = ψ−1 = 2 and ρ = 0.21. Other parameter values excluding Z∗ are summa-
rized in Table 1.

9 Conclusion

We present a tractable model of sovereign debt that features a jump-diffusion process for

output used in the rare-disasters literature, recursive preferences that separate the role of

intertemporal substitution and risk aversion, and partial insurance against jump risk. We

show that low levels of financial development generate debt intolerance, i.e., low debt levels

that are associated with high credit spreads.

17Alvarez and Jermann (2001) also find that a low risk aversion and a high discount rate are necessary to
match key asset-pricing moments in a general equilibrium asset-pricing model with limited commitment.
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In order to focus on the impact of financial development on sovereign debt, we abstracted

from three forces that could influence demand and supply of sovereign debt. The first is the

risk premium demanded by foreign investors to compensate their exposures to the system-

atic components of sovereign default risk (see, e.g. Pan and Singleton (2008), Longstaff,

Pan, Pedersen, and Singleton (2011), Borri and Verdelhan (2015), and Hébert and Schreger

(2017).) The second is the moral hazard problem that is associated with insurance. The

third is the impact of sudden stops (Calvo (1998) and Mendoza (2010)) and debt roll-over

risk. We plan to address these issues in future research.
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A Appendix: Technical Details

A.1 Derivation of Proposition 2

We show that the value function in the normal regime, V (W,Y ), is given by equation (15)

and the value function in the autarky regime, V̂ (Ŷ ), is given by equation (20).

Substituting equation (15) and the first and second derivatives of V (W,Y ) into the HJB

equation (10) and using the homogeneity property of the value function, we obtain:

0 = max
c, θ, x

(
c(w)
bp(w)

)1−ψ
− 1

1− ψ−1
ρp(w) + [ (r + π(w)− µ)w + 1− c(w)− φ(w) ] p′(w) (A.1)

+
(θ(w)σ)2

2

(
p′′(w)− γ(p′(w))2

p(w)

)
+
σ2

2

(
w2p′′(w)− γ(p(w)− wp′(w))2

p(w)

)
+ θ(w)σ2

(
−wp′′(w)− γp′(w)(p(w)− wp′(w))

p(w)

)
+

λ

1− γE
[(

Zp(wJ )

p(w)

)1−γ

− 1

]
p(w) ,

where wJ is given by equation (32) and φ(w) = λE[x(w,Z) IZ≥Z∗ ].
We can simplify the first-order conditions for consumption (equation (11)) and diffusion-

risk hedging demand (equation (12)) to obtain equations (52) and (53).

Simplifying the FOC for the jump risk hedging demand, given by equation (14), we obtain

the following condition for the optimal scaled hedging demand for jump risk, x(w,Z):

p′(w) =

(
Zp((w + x(w,Z))/Z)

p(w)

)−γ
p′((w + x(w,Z))/Z) . (A.2)

Substituting equations (52) and (53) into equation (A.1), we obtain ODE (46) for p(w). Sim-

ilarly, substituting the value functions (15) and (20) into the HJB equation (19), we obtain

equation (47) for p̂. The value-matching condition that equates the cost of repaying debt

and defaulting, given by equation (21), implies the boundary condition (49). Substituting

equation (53) into (33), we obtain the boundary condition (50).

Next, we provides some technical details for the FB case. The conjectured certainty

equivalent wealth is given by p(w) = w+h. Substituting this value into equations (52), (53),

and (A.2), respectively, we obtain the following optimal consumption, diffusion-risk hedging

demand and jump risk hedging demand rules:

cFB(w) = m(w + h ) , (A.3)

θFB(w) = −h , (A.4)

xFB(w,Z) = (1− Z)h . (A.5)
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Substituting p(w) = w + h and equation (A.5) into the ODE (46), and using the fact

that Z∗ = 0 in the FB case, we obtain:

0 =

(
m− ψρ
ψ − 1

+ µ

)
(w + h) + [(r − µ)w + 1] + λ(E(Z)− 1)h (A.6)

=

(
m− ψρ
ψ − 1

+ r

)
w +

(
m− ψρ
ψ − 1

+ µ− λ(1− E(Z))

)
h+ 1 . (A.7)

As equation (A.7) must hold for all p(w) = w+h, we must have m−ψρ
ψ−1

+ r = 0 which implies

that m = r+ψ(ρ− r) as stated in equation (41). Using the fact that m = ρψb1−ψ, we obtain

formula (16) for the coefficient b. Finally, substituting m = r+ψ(ρ− r) into equation (A.7),

we obtain the value of h:

h =
1

r − [µ− λ(1− E(Z))]
=

1

r − g . (A.8)

A.2 Solution Algorithm

We solve the ODE in Proposition 2 using the following algorithm.

1. Start with a sufficiently large region (w,w) by setting w = −h and a sufficiently large

w, e.g., w = 104. We use the superscript (i) to denote the i-th iteration value for p(w),

x(w,Z), wJ , and p̂, i.e., p(i)(w), x(i)(w,Z), wJ (i), and p̂ (i).

2. Assign an initial value for the scaled certainty equivalent wealth p(w), which we denote

by p(1)(w). For example, we start with the following initial linear function for p(w):

p(1)(w) = αh, p(1)(w) = w + h, and p(1)(w) = p(1)(w) + w−w
w−w (p(1)(w) − p(1)(w)) for

w < w < w.

3. For a given p(i)(w) where i = 1, 2, · · · , compute x(i)(w,Z), wJ (i) and p̂ (i) by using

equation (54), equation (32), and equation (47), respectively.

4. Substitute the policy rules, x(i)(w,Z), wJ (i), and p̂(i) obtained in step 3 into ODE

(46). Use the Matlab function ode45 (or other finite-difference method) to solve for

p(i+1)(w) given by ODE (46).

5. Repeat step 3 and step 4 until |p(i+1)(w)− p(i)(w)| is sufficiently low, e.g., |p(i+1)(w)−
p(i)(w)| < 10−10.
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6. Compute p′′(w) until p′′(w) becomes sufficiently low (e.g., p′′(w) < −1010), i.e. until

the program converges. Otherwise, go back to step 1 and increase w with a new guess

and iterate until the program converges.
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