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1. Introduction

The standard economic remedy to externality problems has been well known since the

1920s and has been a regular fixture in the policy makers toolkit since at least the 1980s.

The idea is simple, yet elegant. Impose a tax equal to marginal external damages in order to

internalize externalities and generate private decision making that is socially optimal (Pigou,

1920). But in an increasingly cashless society where the financial consequences of ones daily

choices may only be experienced monthly or even quarterly, is it realistic to expect consumers

to optimally perform this calculation? Indeed, an emerging literature that examines the

impacts of price salience on purely private decisions suggests that this is unlikely to be the

case across a range of contexts (DellaVigna, 2009; Finkelstein, 2009; Sexton, 2015; Grubb

and Osborne, 2015; Karlan, et. al., 2016).

This so-called inattention problem raises the specter of additional policy interventions

that increase salience in order to fix the internality from privately suboptimal decision mak-

ing (Chetty et al., 2009; Chetty, 2009; Allcott et al., 2014; Allcott and Taubinsky, 2015;

Farhi and Gabaix, 2018).1 The implications for a simple static setting are straightforward

– impose a super tax that forces consumers to face the full internal (i.e. salient-equivalent)

and external costs. This logic becomes more complex in a dynamic setting with a more

realistic representation of price salience as intermittent. The optimal (time-varying) tax will

now depend on both the persistence of consumption across periods and the degree to which

consumers are forward-looking in their behavior. Consumption persistence can arise for a

host of reasons, including habits, status quo bias, or complementarity with durable goods

(e.g. Becker and Murphy, 1988; Benhabib and Bisin, 2005; Flavin and Nakagawa, 2008;

Landry, 2018). Moreover, recent research has shown that consumption persistence is an im-

portant consideration in the welfare effects of a corrective policy (Costa and Gerard, 2018).

Our work extends their key insights by showing that these welfare effects are compounded

by time-varying inattention and demonstrating the importance of both persistence and inat-

tention for the design of optimal and second-best policy. Importantly for policy design, this

persistence provides a vehicle through which forward-looking agents can commit to future

paths of consumption.

In this paper, we develop a model of consumer behavior when prices are intermittently

salient, demand persists across periods, and consumption creates external damages. We

1This internality is conceptually similar to the one that arises in the time-inconsistency models of taxation.
See Gruber and Koszegi (2004) and O‘Donoghue and Rabin (1999, 2006) for example.
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then derive optimal dynamic tax rules for three distinct types of consumers: a fully naive

agent who is myopic about her consumption persistence and not sophisticated about future

inattention; a partially naive agent who dynamically optimizes her consumption persistence

under perceived prices but is not sophisticated about future price inattention; and a sophisti-

cated agent who dynamically optimizes her consumption persistence under perceived prices,

with sophistication about future inattention to prices. Our work builds on the static models

of corrective policy with externalities and internalities developed by Allcott, et al. (2014)

and Allcott and Taubinsky (2015) by evaluating a fully dynamic setting with time-varying

inattention and consumption persistence.2

We find that the optimal time-varying tax depends upon the price-elasticity of demand

and the size of external damages, as well as a number of parameters that govern the dynamic

nature of the problem including the attention decay function, price salience, consumption

persistence, and time preference parameters. In general, sophisticated types face lower taxes

than either of the naive types, with the size of these differences quite sensitive to the habit

persistence and salience parameters. Greater intertemporal consumption linkages resulting

from habit persistence lead to higher taxes for the fully naive agent during all periods; lower

taxes for the sophisticated one during the salient period only; and have no effect on taxes

for the partially naive individual. The effects of salience are slightly different. Greater levels

of inattention lead to higher taxes for all agents during non-salient periods. During salient

periods, greater levels of future inattention have no effect on the optimal tax for fully or

partially naive agents but lead to lower taxes for sophisticated ones.

When regulators are constrained to a time-invariant tax, the optimal constant tax is

second-best. We find that the second-best constant tax rate is an exact weighted-average of

the optimal dynamic tax in each period, in which the weights now depend on the parameters

for price-elasticity of demand, the attention decay function, price salience, consumption

persistence, and time preference. This second-best tax balances under-consumption during

the salient period with over-consumption during the non-salient period. Second-best taxes

are lowest for sophisticated agents and highest for fully naive agents.

Because time-invariant taxes are suboptimal, the welfare effects of suboptimal consump-

tion in each period spill over into each other time period through realized or anticipated

2Allcott, et al. (2014) and Allcott and Taubinsky (2015) model adoption of a durable good whose
utilization may generate externalities. Although durable goods have dynamic implications in the sense that
the impacts of decisions will be felt across time, adoption and utilization are one-shot decisions in these
models. In contrast, we model a recurrent purchase over an infinite time horizon with periodically salient
price signals.
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consumption persistence. We derive formulas for these welfare effects that incorporate dy-

namic spillovers and can be calculated for any time-invariant tax rate. We then evaluate

these welfare formulas under three candidate tax rates: our second-best constant tax, a

“static” tax that is the optimal tax from a static model of price salience and therefore ig-

nores dynamic inefficiency, and the standard Pigouvian tax equal to the marginal externality.

The welfare losses from time-invariant taxes are largest for fully naive agents.

Our theoretical work is following by a numerical calibration for U.S. residential electricity

consumption. The optimal tax for the fully naive agent is several times larger than that for

the sophisticated one. The optimal tax for the partially naive agents lies between them. In all

cases, the optimal tax rises as attention decays, arriving at a level between three and twelve

times larger than the simple Pigouvian tax that neglects inattention. The second-best tax

regime, which leads to lower-than-optimal tax rates during non-salient periods and higher-

than-optimal tax rates during salient periods, exacerbates the differences across agent types.

The excess burden from the second-best tax ranges from about 19 dollars per household

for partially naive agents to about 115 dollars per household for fully naive agents. With

approximately 126 million households in the U.S., this amounts to between 2.4 billion and

14.5 billion dollars in deadweight loss from the electricity sector, even if the second-best

optimal tax is implemented. These welfare losses rise sharply if the tax is reduced from the

second-best level, if inattention is more severe, or if demand is more elastic. For example,

the welfare loss associated with having no tax at all ranges from 181 dollars per household

for sophisticated agents to 4,560 dollars per household for fully naive agents.

The key insights from our model are not limited to electricity markets and should be

relevant for any price-based policy designed to address market failures, where price/cost

inattention and linked intertemporal decision making are commonplace. For example, gaso-

line consumption 1) emits several types of pollutants; 2) depends on vehicle type and driving

habits that persist across many periods; and 3) does not present drivers with explicit, salient

prices when making trip-level decisions. Similarly, unhealthy food choices 1) impose health

costs on society; 2) are sometimes habit-forming, such that enjoyment in the current period

depends on consumption in prior periods; and 3) are generally made at higher frequency

than the purchases that make their costs salient. The increasing prevalence of auto-billing

and subscription services for a range of purchases will only increase its applicability.

In the next section, we set up the model, derive optimal and second-best taxes, and derive

formulas for the welfare loss from time-invariant taxes. The subsequent section presents the

results from the numerical simulation. The final section discusses and concludes.
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2. Model

We first describe the economic environment and characterize the private solution for three

types of agents:

• a fully naive agent who is myopic about her habit persistence and not sophisticated

about future inattention;

• a partially naive agent who dynamically optimizes her habit persistence under per-

ceived prices but is not sophisticated about future price inattention;

• a sophisticated agent who dynamically optimizes her habit persistence under perceived

prices, with sophistication about future inattention to prices.

2.1. Model Setup

Utility in each period depends on consumption of a clean numeraire good yt, a dirty

good xt, and past consumption of the dirty good, αxt−1. The parameter α governs the

persistence of consumption decisions across time. Consumption of the dirty good produces

social damages proportional to current consumption that last only for the current period:

Dt = φxt. (1)

Here, φ is the marginal external cost of damages associated with consumption of x.

For simplicity we model period utility as quasilinear:

Ut = ut(xt − αxt−1) + yt (2)

where subscripts on Ut and ut are used only to index the time period (the functional forms

are assumed to be the same in all periods). Consumption of x in adjacent time periods

are “adjacent complements” in the sense that as xt−1 increases, the marginal utility of xt

rises in period t and consumption of xt increases ceteris paribus. This type of intertem-

poral dependence can arise if a good is habit-forming (Becker and Murphy, 1988), when

consumption is based on defaults or status quo bias (Samuelson and Zeckhauser, 1988) or

when consumption depends on some durable good stock (Flavin and Nakagawa, 2008). For

simplicity, we will refer to the dirty good as habit forming, where the α parameter governs

consumption persistence through the effect of past consumption on the utility of current

consumption. This provides the agent a commitment mechanism by which to mitigate po-

tential future overconsumption by reducing present consumption in order to change habits,
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if the agent is sophisticated about future inattention3. We ignore saving and borrowing so

that the household faces a budget constraint in each period:

m = pxt + yt, (3)

where m denotes per period household wealth and p is the price of the dirty good. This

simplification allows us to focus on the dynamic relationship from hysteresis rather than the

intertemporal transfer of financial resources4.

The price of the dirty good is intermittently salient. To fix ideas, consider a monthly bill.

Agents receive a salient price signal in period 1, which we can think of as receiving a bill

on the first day of the billing cycle. The price may remain salient for a number of periods

i = 1, ..., I with I < T . Let us call this the “salient window”. The price is definitively not

salient from period I + 1 until the end of the cycle in period T - the “insalient window”. In

period T +1 the agents receive another salient price signal (a new bill) and the cycle repeats.

Agents live for an infinite number of cycles indexed by M .

It is our contention that agents are more attentive to prices the more recently the price

signal was received. We model this feature of attention decay by assuming that the proba-

bility of perceiving the true price is equal to 1 in period 1 and declines to zero by period I

as follows:

µi = 1− i− 1

I − 1

With probability µi, the agent remembers the price signal in period i and optimizes with

respect to the true price. With probability (1−µi), the agent is not thinking about the price

signal in period i - the price is not salient to the agent - and the agent makes optimization

errors.

If the price of x is not salient, agents are less responsive to prices than when they are

fully salient, and therefore overconsume the dirty good.5 We represent this by having agents

3This model has a similar structure to a model of status quo bias with an endogneous status quo, in
which past choices affect the current default decision. Introducing borrowing and savings, a single permanent
income constraint, or durable goods stock accumulation, would provide a similar dynamic mechanism. We
focus on habits because they are an empirical feature of the polluting goods we are interested in, and because
intermittent price salience has important implications for habit formation.

4This simplification also allows us to avoid theoretical cases where a sophisticated household could be so
concerned about future overconsumption that it would “raid” its savings in the present and leave nothing
to be wasted by suboptimal decisions in the future.

5Although it is possible that agents underconsume when prices are not salient, empirical evidence suggests
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undervalue the true price by a salience factor θ ∈ (0, 1) and optimize as if their period budget

constraint was:

m = θpxt + yt (4)

During the salient window, the agent correctly perceives the budget constraint in equation

(3) with probability µi, and with probability (1−µi) incorrectly acts as if equation (4) is the

budget constraint. During the insalient window the perceived budget constraint is equation

(4). This cycle repeats for periods T + 1 to 2T , and so on.

2.2. Private optimization

In the first time period, when the perceived price corresponds to the true price, the agent

optimizes the following equation:

max
{xtM ,ytM}

∑∞
M=1

∑T
t=1 β

T (M−1)+t−1 [UtM(xtM , ytM , xt−1,M)− λtM(pxtM + ytM −m)]

s.t. x0 given
(5)

where β is the discount factor and M indexes a cycle of length T periods, i.e., a billing cycle.

In contrast, once I periods have passed, the price is definitively not salient and the agent’s

maximization problem can be expressed as:

max
{xt,yt,xsM ,ysM}

∑T
t=I+1 β

t−I−1 [Ut(xt, yt, xt−1)− λt(θpxt + yt −m)]

+
∑∞

M=2

∑T
s=1 β

T (M−1)+s−1 [UsM(xsM , ysM , xs−1,M)− λsM(θpxsM + ysM −m)]

s.t. x0, ..., xI given

(6)

From the point of view of period I + 1, the agent perceives the price to be θp and applies

this price to their optimal consumption plan through the end of the current billing cycle and

all future cycles M = 2, ...,∞.

During periods 1 < i ≤ I (the salient window), with probability µi the agent perceives

the true price and solves a problem of the type in equation (5); with probability (1−µi) the

agent is inattentive to the price and solves a problem of the type in equation (6).

When setting optimal taxes, the regulator does not know whether the agent is in an

attentive or inattentive state in period i. The regulator is therefore interested in the solution

to the expected objective function

overconsumption is generally prevalent.
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max
{xt,yt,xsM ,ysM}

µi

{∑T
t=i β

t−i [Ut(xt, yt, xt−1)− λt(pxt + yt −m)]

+
∑∞

M=2

∑T
s=1 β

T (M−1)+s−1 [UsM(xsM , ysM , xs−1,M)− λsM(pxsM + ysM −m)]
}

+(1− µi)
{∑T

t=i β
t−i [Ut(xt, yt, xt−1)− λt(θpxt + yt −m)]

+
∑∞

M=2

∑T
s=1 β

T (M−1)+s−1 [UsM(xsM , ysM , xs−1,M)− λsM(θpxsM + ysM −m)]
}

s.t. x0, ..., xi−1 given

(7)

As time passes following the initial salient price signal, the agent becomes increasingly

likely to optimize relative to the perceived price θp rather than the true price p. The regulator

incorporates this transition into the optimal tax sequence as we will show.

2.2.1. Fully Naive and Partially Naive Agents

The fully naive agent takes xt−1 as given in each time period and is not forward-looking

about the persistent impacts of today’s consumption on tomorrow’s utility. Instead, the agent

passively adapts to historical consumption and optimizes under current perceived prices.6

The consumption plan chosen during the insalient window (I+1 ≤ t ≤ T ) by the fully naive

household is defined by the first order conditions:

u′t = θp, t = I + 1, ..., T

u′sM = θp, s = 1, ..., T ; M = 2, ...,∞
(8)

We model partially naive agents as Becker-Murphy rational habit formers who are naive

about future inattention. We assume they are forward-looking about consumption persis-

tence. This feature is consistent with empirical evidence of consumption persistence, in-

cluding estimates of habit persistence and cases in which consumption persistence occurs

through investment in a complementary durable good. In this case agents consider how

today’s decisions affect their future demands, even if they fail to recognize how their price

inattention will change in the future. The first order conditions for the consumption plan

made by the partially naive agent during the insalient window are

6An alternative example to habit persistence is status quo bias. If status quo behavior is a function of
decision history, then decisions will be persistent but will not respond to expected future changes in the
status quo.
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u′t − αβu′t+1 = θp, t = I + 1, ..., T

u′sM − αβu′s+1,M = θp, s = 1, ..., T ; M = 2, ...,∞

During the salient window, t = i ≤ I, the probability of perceiving the true price is µi.

The regulator’s objective is to set an optimal period i tax that incorporates perceived prices.

Neither of the naive agent types foresees insalient prices (θ < 1) in future periods, and the

fully naive agent also does not foresee the effect of today’s consumption on future demand.

From the point of view of the regulator, we can represent the period i objective function for

either of these agent types as

max
{xt,yt,xsM ,ysM}

µi

{∑T
t=i β

t−i [ut(xt − αxt−1) + yt − λt(pxt + yt −m)]

+
∑∞

M=2

∑T
s=1 β

T (M−1)+s−1 [usM(xsM − αxs−1,M) + yt − λsM(pxsM + ysM −m)]
}

+(1− µi)
{∑T

t=i β
t−i [ut(xt − αxt−1) + yt − λt(θpxt + yt −m)]

+
∑∞

M=2

∑T
s=1 β

T (M−1)+s−1 [usM(xsM − αxs−1,M) + yt − λsM(θpxsM + ysM −m)]
}

s.t. x0, ..., xi−1 given

(9)

The fully naive agent is myopic about consumption persistence and takes xt−1 as given in

each period when optimizing (9). Partially naive agents, on the other hand, dynamically

optimize (9) over xt−1 = xt−1.

In the fully naive case, during the salient window the regulator faces an agent whose

consumption plan solves

u′t = p, t = i, ..., T

u′sM = p, s = 1, ..., T ; M = 2, ...,∞
(10)

with probability µi, and with probability (1− µi) the agent’s consumption plan solves

u′t = θp, t = i, ..., T

u′sM = θp, s = 1, ..., T ; M = 2, ...,∞.
(11)

In effect, the first order condition that is relevant for the regulator’s tax-setting problem is

u′t = p · (µi + (1− µi)θ) , t = i, ..., T

u′sM = p · (µi + (1− µi)θ) , s = 1, ..., T ; M = 2, ...,∞
(12)

9



Note that if either µi = 1 or θ = 1, the marginal utility is equal to the price as in the

standard model.

For partially naive agents during periods during the salient window, the first order con-

dition relevant for the regulator’s tax-setting problem is

u′t − αβu′t+1 = p · (µi + (1− µi)θ), t = i, ..., T

u′sM − αβu′s+1,M = p · (µi + (1− µi)θ), s = 1, ..., T ; M = 2, ...,∞
(13)

where, in comparison to the fully naive agent, the partially naive agent considers the effect

of consumption persistence on future utility.

2.2.2. Sophisticated Agents

From the standpoint of a period in the insalient window, the sophisticated agent’s solution

to (6) is forward-looking about habit formation but is subject to optimization errors from

inattention (θ):

u′t − αβu′t+1 = θp, t = I + 1, ..., T

u′sM − αβu′s+1,M = θp, s = 1, ..., T ; M = 2, ...,∞
(14)

These first order conditions are identical to those of the partially naive agent during the

insalient window; the agent behaves in a sophisticated way only during periods in which

they are attentive to the true price.

By recursive substitution of (14), we obtain

u′tM = (αβ)τ−1 + θp
∑τ

s=0(αβ)s

=⇒ u′tM ≈ θp
∑∞

s=0(αβ)s = θpR
(15)

where R =
∑∞

s=0(αβ)s = 1
1−αβ .

Let the consumption plan defined by (15) be

x̂tM = x̂tM(xt−1,M , p; θ), ŷtM = ŷtM(xt−1,M , p; θ), (16)

where this is the consumption plan made in period I + 1 of the current cycle that the agent

expects to carry out from I + 1 through all future periods and all future cycles. Note that

x̂tM is larger than the privately optimal demand with fully salient prices (and ŷtM is smaller)

because x is overconsumed out of the budget when the price is not salient.

Consider the agent’s decision during the salient window, when agents may or may not
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perceive the true price. We model sophistication about inattention as follows. If the agent

does not perceive the true price in some period t ≤ I during the salient window, the agent

will behave according to (15). If the agent perceives the true price in the current period, then

the agent expects to pay that price for consumption in the current and all future periods, but

expects to make future consumption decisions according to (16). In addition, she considers

how the current consumption decision will shift those future demand functions. These future

demands enter the agent’s effective period i objective function as follows:

max
{xi,yi}

µi

{
Ui(xi, yi;xi−1)− λi(pxi + yi −m)

+
T∑

t=i+1

βt−i−1 [Ut(x̂t(xi), ŷt(xi), x̂t−1(xi))− λt(px̂t(xi) + ŷt(xi)−m)]

+
∞∑

M=2

T∑
s=1

βT (M−1)+s−1 [UsM(x̂sM(xi), ŷsM(xi), x̂s−1,M(xi))− λsM(px̂sM(xi) + ŷsM(xi)−m)]

}

+ (1− µi)

{
Ui(xi, yi;xi−1)− λi(θpxi + yi −m)

+
T∑

t=i+1

βt−i−1 [Ut(x̂t(xi), ŷt(xi), x̂t−1(xi))− λt(θpx̂t(xi) + ŷt(xi)−m)]

+
∞∑

M=2

T∑
s=1

βT (M−1)+s−1 [UsM(x̂sM(xi), ŷsM(xi), x̂s−1,M(xi))− λsM(θpx̂sM(xi) + ŷsM(xi)−m)]

}
s.t. x0, ..., xi−1 given (17)

The first order condition for xi is

[
u′i − αβu′i+1

]
+ µi

(
T∑

t=i+1

βt−i−1∂x̂t
∂xi

[
u′t − αβu′t+1 − p

]
+

∞∑
M=2

T∑
s=1

βT (M−1)+s−1∂x̂sM
∂xi

[
u′sM − αβu′s+1,M − p

])
= p · (µi + (1− µi)θ) (18)

The first term in brackets is the marginal utility across time taking consumption persis-

tence into account. This would be equal to the price during period 1 (when prices are fully
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salient) if the agent did not demand commitment to avoid future inattention, captured by

the effects of xi on future x̂. Each term in brackets inside the large parentheses is negative.

These terms measure the extent of the deviation from a private optimum in future periods

due to salience effects. Because the agent is overconsuming in the future, the marginal util-

ities across time fall below the price. The sophisticated agent anticipates these deviations.

Denote the period i demand that solves equation (18) as x̂i(xi−1, p; θ). This is lower than the

privately optimal demand would be in the absence of salience effects, as the sophisticated

agent tries to use persistence as a commitment device for a lower consumption path.

By substituting the conditions in (14) into (18) and simplifying, we obtain

u′i − αβu′i+1 = pµi(1− θ)

(∑T
t=i+1 β

t−i−1 ∂x̂t
∂xi

+
∑∞

M=2

∑T
s=1 β

T (M−1)+s−1 ∂x̂sM
∂xi

)
+ p · (µi + (1− µi)θ)

= p (µi(1 + δ) + (1− µi)θ)
(19)

where δ = (1− θ)
(∑T

t=i+1 β
t−i−1 ∂x̂t

∂xi
+
∑∞

M=2

∑T
s=1 β

T (M−1)+s−1 ∂x̂sM
∂xi

)
is the discounted im-

pact of today’s consumption decision on all future demand functions. With quasilinear

utility, terms ∂x̂t
∂xi

are constant demand shifters, so δ is a constant. If there are no future

salience effects to avoid (θ = 1), or if there are no habits (or no commitment mechanism

by which to avoid salience effects, i.e., α = 0) then δ = 0. If in addition µi = 1, then the

problem collapses to a standard period 1 private optimum for habit formation with the price

on the right hand side.

2.2.3. Summary of privately optimal consumption paths

In the absence of internalities from inattention and naivety about persistence, equating

the left hand side of (19) to the price in all time periods will yield the true privately optimal

consumption path. By contrast, sophisticated agents underconsume relative to the private

optimum when µi is close to one and overconsume as µi approaches zero, so that consumption

rises in expectation throughout the salient window. Comparing the sophisticated agent

conditions in (19) to those for the partially naive agent in (13), notice that they differ by

the presence of (1 + δ). Although consumption also rises throughout the salient window for

partially naive agents, these agents consume at the true private optimum in the first period

and then overconsume in all other periods. Lastly, comparing the sophisticated agent’s

conditions for periods during the insalient window in (15) to those for the fully naive agent

in (8), we can see that they differ by the presence of R for the sophisticated agents. The

marginal utility of consumption is therefore larger for sophisticated agents than fully naive
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agents during the insalient window, which indicates that overconsumption in the later part

of the billing cycle is more severe for fully naive agents. Similarly during the salient window

the marginal utility of consumption differs in each period by a factor of R; for the fully

naive agent the marginal utility is equated to p · (µi + (1− µi)θ) in expectation whereas the

sophisticated agent sets marginal utility equal to p ·(µi+(1−µi)θ) ·R in expectation. Again,

the fully naive agent always consumes more than the sophisticated agent. Further, the true

private optimum sets marginal utility in a given period equal to p+ αβu′t+1. Therefore, the

fully naive agent also always overconsumes relative to the true private optimum.

2.3. Optimal Dynamic Corrective Taxes

Consumption will deviate from the socially optimal path because of the internalities

outlined at the end of the previous subsection, and because of externalities (φ) generated

by consumption of the dirty good. A system of optimal corrective taxes must address both

sources of inefficiency. In this subsection we set up the social planner’s problem and solve

for the dynamic corrective taxes that induce each agent type to consume along the socially

optimal path.

Assuming a rate of time preference equal to the interest rate, the social planner chooses

a path {xt, yt}∞t=1 to maximize the intertemporal social welfare function

W =
∞∑
t=1

βt−1 [Ut(xt, yt, xt−1)− φxt − λt(pxt + yt −m)] (20)

subject to x0 given. Note that the social planner optimizes over all time periods regardless

of the billing cycle. For the rest of this subsection we drop the M subscript and use the t

and i subscripts to denote the position within a given cycle. The optimal path is defined by

the first order conditions:

u′t − αβu′t+1 = p+ φ, t = 1...∞ (21)

One implication of (21) is that absent inattention or naivety about persistence, a tax τ at

the standard Pigouvian rate of τ = φ would induce households to consume at the social

optimum. By recursive substitution of (21), we obtain

u′t = (αβ)τ−1 u′τ + (p+ φ)
∑τ

s=0 (αβ)s

≈ (p+ φ)
∑∞

s=0 (αβ)s = (p+ φ)R.
(22)

The socially optimal per-period marginal utility is increased (and per-period consumption is
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restrained) by consideration of both the external costs φ and the recursive impact of today’s

consumption on future consumption through habit persistence, or the effect of α through R.

Let j ∈ {F, P, S} denote fully naive, partially naive, and sophisticated agent types,

respectively. Each agent type j could be induced to consume along the optimal path by a

dynamic tax that transforms their private first order conditions in each period into the social

planner’s first order conditions from (22).

During the insalient window of the billing cycle, this would be an extra large tax τtj(θ)

which is different for agent type j. For fully naive agents F the optimal tax must solve

u′t = θ(p+ τtF (θ)) = (p+ φ)R, t = I + 1, ..., T, (23)

whereas for partially naive and sophisticated agents the optimal tax must solve

u′tM = θ(p+ τtj(θ))R = (p+ φ)R, j ∈ {P, S}, t = I + 1, ..., T. (24)

The optimal taxes during the salient window of the billing cycle can be found in a similar

manner. For fully naive agents, the optimal tax must solve

u′i = (p+ τiF (θ)) · (µi + (1− µi)θ) = (p+ φ)R, i = 1, ..., I, (25)

for partially naive agents, the optimal tax solves

u′i = (p+ τiP (θ)) · (µi + (1− µi)θ)R = (p+ φ)R, i = 1, ..., I, (26)

and for sophisticated agents the optimal tax solves

u′i = (p+ τiS(θ)) · (µi(1 + δ) + (1− µi)θ)R = (p+ φ)R, i = 1, ..., I, (27)

The set of taxes that solves all of these conditions is exactly that which transforms each

agent’s first order conditions from equations (8), (9), and (15) in periods t = I + 1, ..., T ,

and from equations (12), (13), and (19) in periods i = 1, ..., I, into the social planner’s first

order conditions in (22). The solution is stated in the following proposition.

Proposition 1. The optimal corrective taxes are time-varying and their magnitudes depend
on the forward-looking behavior of the households, i.e., whether households are fully naive
(F ), partially naive (P ), or sophisticated (S), as well as how recently a salient price signal
was received. In order to conserve notation and display a single set of formulas for all
agent types, let Rj = R = 1

1−αβ for fully naive agents and Rj = 1 for sophisticated and
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partially naive agents. Further, let δj = 0 for fully and partially naive agents and δj = δ for
sophisticated agents. Then for t = I + 1, ..., T,

τtj(θ) = p
Rj − θ
θ

+ φ
Rj

θ
> φ, (28)

and for i = 1, ..., I,

τij(θ) = p
Rj − (µi(1 + δj) + (1− µi)θ)

µi(1 + δj) + (1− µi)θ
+ φ

Rj

µi(1 + δj) + (1− µi)θ
<> φ. (29)

Several comments about the optimal dynamic corrective taxes are in order. First, the

optimal tax in each period can generally be considered a weighted combination of exterality

correction and price salience internality correction, with weights depending on how forward-

looking the agent is through (R and δ). This can be seen most clearly during the first period

(or if otherwise either µi = 1 or θ = 1) when the taxes are

τ1F (θ) = p(R− 1) + φR > φ

τ1P (θ) = φ

τ1S(θ) = p −δ1
1+δ1

+ φ 1
1+δ1

< φ.

Even when prices are salient in the first period, the fully naive tax is larger than marginal

external damage because of the internality of passive habit persistence; the partially naive

agent does not experience this internality, so their tax is equal to marginal external damage

when prices are salient; and the sophisticated agents try to avoid future internalities from

inattention by reducing consumption when prices are salient, so τ1S(θ) (and τiS(θ) for period

i soon enough after period 1) is less than the marginal social damage and can even be a

subsidy.

Second, the importance of the inattention parameter θ varies across time and agent type.

For fully and partially naive agents, the taxes in the initial fully salient period do not depend

on θ; at t = 1 naive agents do not plan to be inattentive. Therefore, they do not demand

commitment, and the optimal tax cannot influence their demand for such commitment. A

consequence of this for fully naive agents is that if there is no habit persistence and R = 1,

then the first period tax is equal to the marginal externality, τ1F (θ) = φ. If there are habits

then R > 1 and the first period tax additionally corrects the internality of failing to rationally

plan for habits (p(R − 1)) as well as the additional externalities caused by the internality

(φR).

A smaller θ implies a larger tax for all agent types during later periods in which agents are

not fully attentive to the true price. This occurs because the perceived price becomes farther
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from the true price. During earlier periods when the true price is more likely to be salient,

however, the relationship between θ and the optimal tax depends on how forward-looking

the agent is. A smaller θ requires an unambiguously larger tax for fully and partially naive

agents during these earlier periods, but for sophisticated agents a smaller θ also increases δ,

which captures the anticipated effect of today’s consumption on all future demand functions.

Sophisticated agents anticipate greater overconsumption the smaller is θ, further reducing

consumption in earlier periods, which requires a smaller tax during the earlier periods when

perfect price attention is more likely.

Third, the optimal tax for all agent types increases over the salient window and the

relative ranking across agent types is preserved throughout the billing cycle. The optimal

tax increases because the probability of perceiving the true price declines, with the largest

tax occuring in the insalient window. The relative ranking is preserved at every time step

because the overconsumption from internalities is always the greatest for fully naive agents,

and always at least as great for partially naive than sophisticated agents; partially naive

agents only overconsume during inattentive periods, but never anticipate this overconsump-

tion. Further, the internalities exacerbate the externality because they lead to excessive

consumption of a dirty good. The optimal corrective tax on the sophisticated agent is there-

fore never larger than the tax for the partially naive agent, and the tax for the fully naive

agent is strictly greater in each period than the tax for the other two agents:

τtF (θ) > τtP (θ) = τtS(θ) > φ, t = I + 1, ..., T,

τiF (θ) > τiP (θ) > τiS(θ), i = 2, ..., I,

τ1F (θ) > τ1P = φ > τ1S(θ)

(30)

Fourth, the relationship between habit persistence (α) and the optimal tax differs across

agent types and across time within the billing cycle. For the fully naive agent, if there is

no habit persistence then α = 0 and R = 1, so that the fully naive agent’s tax τtF (θ) does

not need to address the internality from being passive about consumption persistence. If

instead α > 0 (and R > 1), the optimal tax for the fully naive agent τtF (θ) must correct

both inattention to prices and myopia about consumption persistence in order to induce the

optimal path.

For the partially naive agents, habit persistence is not passive so the tax only needs to

correct the inattention internality and the pollution externality. We can see this because R -
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the cumulative impact of persistence - is not present in the partially naive tax in any period;

the partially naive agent has already optimized over habit persistence and no tax correction

is required. The regulator can therefore put the partially naive agent on the optimal path

when the salient price signal is received (t = 1) by just correcting the externality, then keep

her on the optimal path by adjusting the tax for inattention in later periods.

Sophisticated agents anticipate the cumulative effect of inattention on habit persistence

through the δ parameter. A larger α implies a larger δ, which causes the sophisticated agent

to reduce consumption during attentive periods i = 1, ..., I, and causes the optimal tax in

those periods to decline.

We summarize the relationships of the behavioral parameters (the persistence parameter

α and the inattention parameter θ) and the optimal taxes across different time periods and

agent types in the following proposition:

Proposition 2. For the fully naive household:

• the stronger is habit persistence, the larger the tax in all periods:

∂τtF
∂α

> 0, t = 1, ..., T.

• the greater the inattention (the smaller is θ), the larger the tax in all periods in which
inattention is possible. The tax during the initial period when prices are perfectly salient
is unaffected by future insalience:

∂τ1F

∂θ
= 0,

∂τtF
∂θ

< 0 for t = 2, ..., T.

For the partially naive household:

• the tax in all periods is independent of the strength of habit persistence:

∂τtP
∂α

= 0, t = 1, ..., T.

• the greater the inattention (the smaller is θ), the larger the tax during periods in which
inattention is possible, but the tax during the perfectly salient period (period 1) is un-
affected:

∂τ1P

∂θ
= 0,

∂τtP
∂θ

< 0 for t = 2, ..., T.

For the sophisticated household:
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• the stronger is habit persistence (as α affects δ), the smaller the tax during periods in
which attention to true prices is possible (i.e., t = 1, ..., I), while the tax in all future
periods is unaffected:

∂τiS
∂α

< 0 for i = 1, ..., I,
∂τtS
∂α

= 0 for t = I + 1, ..., T.

• the greater the inattention (the smaller is θ), the larger the tax in t > I, and the
smaller the tax during the perfectly salient period (t = 1). The effect on the tax during
intermediate periods is ambiguous:

∂τ1S

∂θ
> 0,

∂τiS
∂θ

>< 0 for i = 2, ..., I,
∂τtS
∂θ

< 0 for t = I + 1, ..., T.

2.3.1. Graphical Example

An example of taxes for the sophisticated agent are displayed in Figure 1. The lines

labeled Ux are the privately optimal demand functions if no salience effects exist. Because

prices are insalient in period t > I, the demand curve rotates up to x(p, τ, θ) - more is

consumed at every price, and demand is less responsive to prices. In anticipation of this the

sophisticated agent consumes less in period 1. This is captured by the downward rotation to

demand curve x1(p, τ, θ, x0) in period 1. This reduction in consumption also reduces the habit

stock inherited in period t, which shifts the period t demand curve inward to xt(p, τ, θ, x1).

These final demands in red are used by the agent in choosing the consumption bundle. The

optimal taxes defined in Proposition 1 lead the agent to consume where there true marginal

benefits given by Ux intersect the social marginal cost (MC + EMC).
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Figure 1: Optimal Dynamic Taxes for Sophisticated Agent

Period 1

x

$

Ux

x1(p, τ, θ, x0)

MC

MC + EMC

MC + τ1S(θ)

x?? = x̂(p, τ1S(θ), θ, x0)

Period t > I

x

$

Ux

x(p, τ, θ)

xt(p, τ, θ, x1)

MC

MC + EMC

MC + τtS(θ)

x?? = x̂(p, τtS(θ), θ, x1)

2.4. Time-invariant Tax Alternatives

For a variety of pragmatic reasons, including administrative costs and political opposition,

it may not be feasible to implement a time-varying tax. In this section, we explore some time-

invariant tax strategies and examine the implications of those strategies for social welfare

for a variety of agent types.

The most obvious candidate for a time-invariant tax is the standard Pigouvian rate of

marginal external damage, φ. If regulators recognize that price salience is a problem, they

may also apply the received wisdom from static models of tax salience (e.g., Chetty et al.,

2009; Chetty, 2009). Such a tax would fail to optimally account for time-varying salience and

the intertemporal nature of internalities. In this subsection we derive the optimal tax for the

static model (which is suboptimal in a dynamic setting), and then we derive a second-best

tax in the dynamic model that maximizes social welfare subject to the constraint that the

tax is time-invariant. This second-best constant tax is a weighted average of the optimal

dynamic tax in each period with weights that depend on the behavioral parameters and the

internalities associated with each agent type. Subsequently, in the following subsection, we

show how to quantify the welfare losses for any constant tax relative to the dynamic tax

optimum.
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2.4.1. The (Sub)optimal Static Tax

If the regulator ignores the dynamic nature of the agent’s utility function, they will want

to implement a consumption path that equates the marginal utility in each time period to

the sum of the price and marginal external cost:

u′t = p+ φ

The regulator will further expect agents to equate their marginal utility in each period to

the perceived price:

u′t = θp

The static tax chosen by a regulator would therefore equate

p+ φ = θ(p+ τstat)

The tax that solves this equation is

τstat = p
1− θ
θ

+
φ

θ
. (31)

This is equal to the optimal tax imposed on partially naive and sophisticated agents during

the insalient window. Intuitively, partially naive and sophisticated agents privately optimize

over their consumption persistence, so a static tax can be optimal for them during periods in

which their inattention is stable. The inefficiency of the static tax arises if there are dynamic

internalities (e.g., with fully naive agents) or if inattention is changing over time.

2.4.2. The Second-best Constant Tax

Let Ŵ (x̂j, ŷj) = Ŵj(x0, p; θ) be the social welfare function from (20) evaluated at the

privately optimal consumption paths for j ∈ {F, P, S}. Suppose a small tax τ is added to

a previously untaxed environment so that we evaluate Ŵj(x0, p + τ ; θ). The second-best

optimal constant tax solves ∂Ŵ
∂τ

= 0 for each type of agent. As we show below, in each case

the second-best tax is an exact-weighted average of the optimal dynamic taxes where the

weights depend on the household type and within-period demand curve slope. The slopes of

the demand curves will be constant functions of θ, α, the price p, the habit stock at time t,

and utility parameters, so for convenience define

∂x̂tj
∂τ

= atj, j ∈ {F, P, S}.
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Also for notational convenience we will denote the optimal dynamic tax τtj as τI+1,j for

any period t = I + 1, ..., T because the optimal dynamic tax is constant during the insalient

window after the I ′th period in each cycle, when inattention is stable.

Proposition 3. To conserve notation, let δj = 0 for fully and partially naive agents and
δj = δ for sophisticated agents. The second-best constant tax rate for j ∈ {F, P, S}, is given
by the weighted average

τ ?j = w1jτ1j(θ) +
I∑
i=2

wijτij(θ) + wI+1,jτI+1,j(θ), (32)

with weights

w1j =
a1j(1 + δj)

a1j(1 + δj) +
∑I

i=2 β
i−1aij(µi(1 + δj) + (1− µi)θ) + θ

∑T
t=I+1 β

t−1atj
,

wij =
βi−1aij(µi(1 + δj) + (1− µi)θ)

a1j(1 + δj) +
∑I

i=2 β
i−1aij(µi(1 + δj) + (1− µi)θ) + θ

∑T
t=I+1 β

t−1atj
, i = 2, ..., I,

wI+1,j =
θ
∑T

t=I+1 β
t−1atj

a1j(1 + δj) +
∑I

i=2 β
i−1aij(µi(1 + δj) + (1− µi)θ) + θ

∑T
t=I+1 β

t−1atj

and τ1j(θ), τij(θ), and τI+1,j(θ) are defined in Proposition 1.7

Proof. By plugging the privately chosen consumption path for each agent8 into the social

welfare function and differentiating with respect to τ , we obtain

∂Ŵj

∂τ
= 0 =

∞∑
M=1

βT (M−1)

[
I∑
i=1

βi−1aijM
[
u′iM − αβu′i+1,M − p− φ

]
+

T∑
t=I+1

βt−1atjM
[
u′tM − αβu′t+1,M − p− φ

] ]

In the long run, behavior is repeated within each cycle so that we can drop the M subscript,

7This tax can also be more compactly expressed as

τ?j =
∑T

i=1 β
i−1aij(µi(1+δj)+(1−µi)θ)·τij(θ)∑T

i=1 β
i−1aij(µi(1+δj)+(1−µi)θ)

,

µ1 = 1; µi ∈ [0, 1] for i = 2, ..., I; µi = 0 for i > I.
(33)

8The privately chosen consumption path is implicit in (8) and (12) if j = F , implicit in (9) if j = P , and
given in (16) and the solution to (18) if j = S.
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and the expression becomes

∂Ŵj

∂τ
= 0 =

1

1− βT

[
I∑
i=1

βi−1aij
[
u′i − αβu′i+1 − p− φ

]
+

T∑
t=I+1

βt−1atj
[
u′t − αβu′t+1 − p− φ

] ]

which is equivalent to

∂Ŵj

∂τ
= 0 =

I∑
i=1

βi−1aij
[
u′i − αβu′i+1 − p− φ

]
+

T∑
t=I+1

βt−1atj
[
u′t − αβu′t+1 − p− φ

]
If j = F , the first order conditions in (8) and (12) (modified to include the introduction of

a small tax) can be used to simplify this to

0 =
I∑
i=1

βi−1aiF [(p+ τ)(1− αβ)(µi + (1− µi)θ)− p− φ]+
T∑

t=I+1

βt−1atF [(p+ τ)(1− αβ)θ − p− φ]

Solving for τ and plugging in the formulas for τ1F (θ), τiF (θ), and τI+1,F (θ) gives the result.

Similarly if j = P , the first order conditions in (9) (again modified to include the intro-

duction of a small tax) can be used to simplify ∂ŴP

∂τ
to

0 =
I∑
i=1

βi−1aiP [(p+ τ)(µi + (1− µi)θ)− p− φ] +
T∑

t=I+1

βt−1atP [(p+ τ)θ − p− φ]

Solving for τ and plugging in the formulas for τ1P (θ), τiP (θ), and τI+1,P (θ) gives the result.

Lastly, if j = S, the first order conditions in (14) and (19) (again modified to include the

introduction of a small tax) can be used to simplify ∂ŴS

∂τ
to

0 =
I∑
i=1

βi−1aiS [(p+ τ)(µi(1 + δ) + (1− µi)θ)− p− φ] +
T∑

t=I+1

βt−1atS [θ(p+ τ)− p− φ]

Solving for τ and plugging in the formulas for τ1S(θ), τiS(θ), and τI+1,S(θ) gives the result.

The weights in τ ?j are the discounted demand curve slopes, adjusted by the salience

applied to each period’s decision. The second-best tax therefore differs between agent types
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for two reasons. First, the weights differ between agent types; the demand curves have

different slopes because the partially naive agent plans for habits while the fully naive agent

does not, and the sophisticated agent plans for both habits and inattention. These different

dynamic behaviors create different price-responsiveness within given period. Second, the

optimal dynamic taxes that are being weighted also differ by agent type.

The size of the second best constant tax for sophisticated agents is more influenced by

the behavioral parameters of the habit process than the second best taxes for the naive agent

types because of the sophisticated agent’s demand for commitment. If consumption is more

persistent (if α is large), then sophisticated agents have a more effective commitment device.

This makes future demand more responsive to current consumption (i.e., the ∂x̂t
∂xi

are large,

making δ large), and the agent makes larger corrections in early periods on her own. In this

case, the constant tax must be weighted more towards correcting under-consumption in early

periods. With a large δ, τ1S and τiS become more heavily weighted and also become smaller,

so the constant tax τ ?S also becomes smaller. This does not necessarily mean that stronger

habit persistence is better for welfare. Intuitively, with stronger habit persistence there is

more adjustment in consumption across price salient and insalient time periods. Part of the

consumption- and pollution-reducing functions of the second-best constant tax are weakened

in order to prevent the sophisticated agent from consuming too little when prices are salient.

A large δ will also occur if the discount factor is close to one (so that the agent adjusts

its habits out of concern for the future and needs less of a tax incentive). Likewise if δ is

small the emphasis in the constant tax can be shifted back towards reducing pollution and

overconsumption in later periods, and the tax is larger.

2.5. Efficiency Cost

We now turn to deriving the welfare loss of a time-invarient tax. The formulas we derive

are valid for calculating the efficiency cost of any time-invariant tax, however we will focus

primarily on the second-best constant tax τ ?j . Although τ ?j is chosen in each case to minimize

the deadweight loss from over- and under-consumption by definition, the remaining losses

have policy relevance. The size of the deadweight loss (and of τ ?j ) depends on behavioral

parameters α and θ, as well as the level of sophistication of the agent. To the extent

that alternative policy tools (such as information technology investments or goal-setting

programs) can affect these parameters, they can influence the size of the deadweight loss.

For example, smart electricity grid technologies that provide real-time price information to

households require large fixed costs, but the new information that households receive may

alter their inattention and habit formation behavior. Therefore an estimable expression for
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this loss and how it depends on these parameters is important for these investment decisions.

We will use the concept of equivalent variation to derive an expression for the excess

burden on consumers when the regulator imposes a tax that cannot correct all internalities

and externalities. The loss will be calculated as the net present value of the wealth society

would be willing to forgoe in order to avoid the imperfect tax instrument (relative to the

optimum), net of any changes in tax revenue between the two policies. Because the refer-

ence (optimal) tax level varies, we will represent society’s expenditure function and indirect

welfare function as depending on a tax-inclusive price vector (even though the tax-inclusive

price will be constant for a the second-best constant tax). Temporarily suppressing the F ,

P , and S subscripts, the general expression for the excess burden of deviating from the

I + 1-vector of optimal taxes τ(θ) to τ ? is

EB(τ ?) =
m

1− β
− e

(
p+ τ1(θ), ..., p+ τI+1(θ), Ŵ (p+ τ ?, ..., p+ τ ?,m, x0; θ)

)
−
(
R(τ ?(1), ..., τ

?
(I+1),m)−R(τ1(θ), ..., τI+1(θ),m)

)
(34)

Although τ ? is a constant, in order to compare its application in different time periods

with τ(θ) = (τ1(θ), ..., τI+1(θ)), we denote τ ? =
(
τ ?(1), ..., τ

?
(I+1)

)
to be the vector containing

τ ? applied in the analogous time periods, with τ ?(I+1) applied in t = I+1, ..., T . Note that we

could use the same procedure to calculate the excess burden of any I+1-vector of sub-optimal

taxes, include the other time-invariant tax options discussed in the previous subsection. The

function e (·) is society’s expenditure function. It is the amount of wealth at the optimal tax

vector that would achieve the level of welfare obtained under the second-best constant tax.

The difference between e (·) and the net present value of income is the amount of wealth

society would be willing to forgoe to retain the optimal tax structure. The last term in

parentheses measures any gain or loss in tax revenue from moving from the optimal dynamic

taxes to the alternative set of taxes. For example,

R(τ1(θ), ..., τI+1(θ),m) =
∞∑

M=1

βT (M−1)

T∑
t=1

βt−1τt(θ)x̂tM(τ1(θ), ..., τI+1(θ),m, x0; θ).

Following Auerbach (1985), we derive a more convenient expression for EB(τ ?) using a

second-order Taylor expansion. We calculate the expansion around the optimal dynamic tax
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vector τ(θ).

EB(τ ?) ≈ ∂EB

∂τ ′
(τ(θ)) · (τ ? − τ(θ)) +

1

2
(τ ? − τ(θ))′ · ∂

2EB

∂τ∂τ ′
(τ(θ)) · (τ ? − τ(θ)) (35)

Again, we can use this expression to calculate the efficiency cost of any suboptimal tax

vector by substituting that tax vector in for τ ?. The envelope theorem guarantees that the

first-order terms in the Taylor expansion will be zero when evaluated at the optimal tax

vector. The second order terms require taking derivatives of marginal utilities in each period

with respect to tax changes in the same and all other periods, evaluated at the demands

associated with the optimal dynamic tax vector.

Let Pt(xt−1, xt, xt+1) = u′t(xt − αxt−1) − αβu′t+1(xt+1 − αxt) represent the agent’s true

intertemporal preferences for xt, i.e., the welfare-relevant inverse demand at time t. This

is the inverse demand curve at time t along the optimal path if the agent was a perfectly

attentive and sophisticated agent. The decision-relevant demands will deviate from this

welfare-relevant demand because of inattention and, in the case of the fully naive agent, the

failure to optimize over habits.

For an optimizing agent, past and anticipated future quantities demanded shift current

demand. Partially naive and sophisticated agents adjust current demand in response to

anticipated future tax changes because they expect the persistence of current consumption

to affect their future tax burden. During the salient window of each cycle, the sophisticated

agent also anticipates being inattentive to the future tax-inclusive price; in order to avoid

paying additional future taxes due to inattention, the agent further reduces consumption

today. A future tax increase therefore results in an inward rotation in the early period

demand curves for sophisticated agents. That inward rotation causes reduced consumption

to persist through lower habit in future periods, causing future period demand curves to shift

inward. Fully naive agents, on the other hand, do not anticipate future habits, so future

tax changes do not affect current period demand. Current period tax increases do influence

current period demand, however, which has a spillover effect on future consumption through

passive habit persistence. For fully naive agents, therefore, all past tax changes - but no

future tax changes - affect demand in a given period.

Consider the effect of a tax change applied in period i ≤ I on demand in some arbitrary

period t, and suppose the tax change is applied in the i′th period of each cycle. This effect

will include a direct effect if i = t, as well as indirect effects that persist from changes in

demand in the i′th period of previous cycles, and indirect effects from anticipated demand
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changes in the i′th period of future cycles if agents are partially naive or sophisticated:

dxjt,M
dτj,(i)

=



M−1∑
m=1

∂xjt,M
∂xji,m

∂xji,m
∂τj,(i)︸ ︷︷ ︸

Indirect effects persisting from earlier
periods i in previous cycles

+
∂xjt,M
∂τj,(i)︸ ︷︷ ︸

Direct effect

+
∞∑

n=M+1

∂xjt,M
∂xji,n

∂xji,n
∂τj,(i)︸ ︷︷ ︸

Indirect effects anticipated from
changes in later cycles

for t = i,

M∑
m=1

∂xjt,M
∂xji,m

∂xji,m
∂τj,(i)︸ ︷︷ ︸

Indirect effects persisting from earlier
periods i in current and previous cycles

+
∞∑

n=M+1

∂xjt,M
∂xji,n

∂xji,n
∂τj,(i)︸ ︷︷ ︸

Indirect effects anticipated from
changes in later cycles

for t > i,

M−1∑
m=1

∂xjt,M
∂xji,m

∂xji,m
∂τj,(i)︸ ︷︷ ︸

Indirect effects persisting from earlier
periods i in previous cycles

+
∞∑

n=M

∂xjt,M
∂xji,n

∂xji,n
∂τj,(i)︸ ︷︷ ︸

Indirect effects anticipated from later
periods i in current and future cycles

for t < i,

(36)

where all of the indirect effects anticipated from future changes are zero for fully naive agents.

The I + 1’th element of the tax vector is applied in each period during the insalient

window, so the direct effect on demand in each of those periods has an indirect effect on

each other period in the current and all other cycles. If the period t of interest is within the

insalient window in a particular cycle, the total effect of a change in the I + 1’th element of

the tax vector is

dxjt,M
dτj,(I+1)

=
M−1∑
m=1

(
∂xjt,M
∂xj,I+1,m

∂xj,I+1,m

∂τj,(I+1)

+ ...+
∂xjt,M
∂xjT,m

∂xjT,m
∂τj,(I+1)

)
︸ ︷︷ ︸

Indirect effects from insalient
window in previous cycles

+
t−1∑

t′=I+1

∂xjt,M
∂xjt′,M

∂xjt′,M
∂τj,(I+1)︸ ︷︷ ︸

Indirect effects from past
insalient periods in current cycle

+
∂xjt
∂τj,(t)︸ ︷︷ ︸

Direct effect

+
T∑

t′′=t+1

∂xjt,M
∂xjt′′,M

∂xjt′′,M
∂τj,(I+1)︸ ︷︷ ︸

Indirect effects from later
insalient periods in current cycle

+
∞∑

n=M+1

(
∂xjt,M
∂xj,I+1,n

∂xj,I+1,n

∂τj,(I+1)

+ ...+
∂xjt,M
∂xjT,n

∂xjT,n
∂τj,(I+1)

)
︸ ︷︷ ︸

Indirect effects from insalient
window in future cycles

, for t > I, (37)

If the period t of interest is before the insalient window in a particular cycle, the total

26



effect is similar except that there is no direct effect, and all indirect effects from the current

cycle occur in the future. In this case the total effect of a change in the I + 1’th element of

the tax vector is

dxjt,M
dτj,(I+1)

=
M−1∑
m=1

(
∂xjt,M
∂xj,I+1,m

∂xj,I+1,m

∂τj,(I+1)

+ ...+
∂xjt,M
∂xjT,m

∂xjT,m
∂τj,(I+1)

)
︸ ︷︷ ︸

Indirect effects from insalient
window in previous cycles

+
∞∑

n=M

(
∂xjt,M
∂xj,I+1,n

∂xj,I+1,n

∂τj,(I+1)

+ ...+
∂xjt,M
∂xjT,n

∂xjT,n
∂τj,(I+1)

)
︸ ︷︷ ︸

Indirect effects from insalient window
later in current and future cycles

, for t ≤ I. (38)

where in both cases all the indirect effects from future periods and cycles are zero for fully

naive agents.

Lastly, let

∆τjr = τ ?j,(r) − τjr(θ)

be the deviation between the second-best constant tax applied in period r and the optimal

period r tax.

Proposition 4. The excess burden for agent type j under the second-best tax vector τ ?

instead of the optimal tax vector τ(θ) is given by

EBj = −1

2

∞∑
M=1

T∑
t=1

βT (M−1)+t−1

I+1∑
s=1

I+1∑
r=1

∆τjs∆τjr

(
∂PtM

∂xj,t−1,M

dxj,t−1,M

dτjs

+
∂PtM
∂xjtM

dxjtM
dτjs

+
∂PtM

∂xj,t+1,M

dxj,t+1,M

dτsj

)
dxjtM
dτjr

. (39)

Proof.

Write the derivative of excess burden with respect to the r’th element of the tax vector

as
∂EBj
∂τr

= P1(x0, x1, x2)
dxj1
dτr

+ βP2(x1, x2, x3)
dxj2
dτr

+ . . .

=
∑∞

M=1

∑T
t=1 β

T (M−1)+t−1PtM(xj,t−1,M , xjtM , xj,t+1,M)
dxjtM
dτr

.

Taking second- and cross-partials of this expression gives

∂2EBj

∂τs∂τr
=

∞∑
M=1

T∑
t=1

βT (M−1)+t−1

(
∂PtM

∂xj,t−1,M

dxj,t−1,M

dτjs
+
∂PtM
∂xjtM

dxjtM
dτjs

+
∂PtM

∂xj,t+1,M

dxj,t+1,M

dτjs

)
dxjtM
dτjr

.
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Because the first order terms in the Taylor approximation to excess burden are zero at

the optimal tax, we can rewrite (35) as

EB(τ ?) ≈ −1

2
(τ ? − τ(θ))′


∂2EB
∂τ?21

. . . ∂2EB
∂τ?1 ∂τ

?
I+1

...
. . .

...
∂2EB

∂τ?1 ∂τ
?
I+1

. . . ∂2EB
∂τ?2I+1

 (τ ? − τ(θ)) (40)

Expanding equation (40) and plugging in the second- and cross-partial derivatives pro-

duces equation (39).

The second order terms that govern the Taylor series approximation to EB(τ ?) are simply

the net present value of a sequence of deadweight loss triangles. The base and height of the

deadweight loss triangle in each period needs to adjust for the (potential) rotations and shifts

that occur because of the response to tax changes in different periods. If there were no habits

or inattention then no such shifts or rotations would occur; in this case the deadweight loss

(dropping the cycle subscript M for convenience) in each period would be given by the

−1

2
∆τ 2

jt

∂Pt
∂xjt

(
∂xjt
∂τjt

)2

terms in equation (39). Furthermore, during the insalient window, these deadweight loss

triangles would be −1
2
θ∆τjt

∂xjt
∂τjt

∆τjt because the ratio of the welfare-relevant demand slope

to the decision-relevant demand slope, ∂Pt
∂xjt

∂xjt
∂τjt

, is the expected salience parameter in period

t. For sophisticated households during the salient window the deadweight loss triangles

would be −1
2

(µt(1 + δ) + (1− µt)θ) ∆τjt
∂xjt
∂τjt

∆τjt. The remainder of the terms in equation

(39) capture the additional shifts and rotations from the indirect effects of taxes applied in

other periods that further distort the size of the deadweight loss triangles in each period.

The deadweight loss for sophisticated agents is illustrated in Figure 2 (for the first period

and a later period during the insalient window).
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Figure 2: Excess Burden of the Second-best Constant Tax for Sophisticated Agents
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As drawn, the deadweight loss in period 1 is larger than in period t > I, but the period

t > I losses are experienced during each period in the insalient window in a given cycle. The

total excess burden in (40) is increasing in the habit parameter α, holding taxes constant.

When the taxes during the insalient window are lowered from their optimal dynamic values

to meet the second-best constant rate, overconsumption in the insalient window becomes a

problem and the sophisticated agent makes larger adjustments during the salient window,

rotating the period 1 demand curve further downward. Agents with larger α will make

larger period 1 adjustments. The more the demand curve rotates downward, the greater the

underconsumption problem in period 1, and the greater the period 1 deadweight loss, which

increases total losses.

Equation (39) is useful for quantifying the social losses more generally if some tax vector

τ̃ is implemented that differs from τ j(θ). For example, we can evaluate the excess burden

from any of the time-invariant taxes discussed in subsection 2.4. If the regulator uses the

conventional wisdom of taxing at marginal external damage φ(s) in each period s then the

excess burden is simply
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EBj,φ = −1

2

∞∑
M=1

T∑
t=1

βT (M−1)+t−1

I+1∑
s=1

I+1∑
r=1

(φ(s) − τjs(θ))(φ(r) − τjr(θ))

·
(

∂PtM
∂xj,t−1,M

dxj,t−1,M

dτs
+
∂PtM
∂xjtM

dxjtM
dτs

+
∂PtM

∂xj,t+1,M

dxj,t+1,M

dτs

)
dxjtM
dτr

. (41)

The losses from implementing alternative taxes can be calculated in a similar manner.

For example, if the regulator uses the tax that would be optimal in a static model of salience

we could substitute τstat,(s) in for φ(s) in equation (41).9

3. Numerical Simulation

One useful feature of our proposed corrective tax structure is that all the parameters in

the expressions are estimable or recoverable from recent studies in the literature. For the

residential electricity consumption example, there is a large literature on demand elasticity,

as well as recent estimates of habit persistence and price salience. Marginal social damages

of various pollutants from the electricity sector are available from, among others, Graff Zivin,

Kotchen, and Mansur (2012). In this section we perform a numerical simulation in order to

demonstrate the magnitude of the optimal dynamic and second best corrective taxes, and

the excess burden of failing to implement optimal dynamic taxes.

In order to calculate numerical values for the taxes and the excess burden we need to

derive specific functional forms for the derivatives of the demand functions for each agent,

and for the slope of the welfare-relevant demand. The complete expressions for these total

and partial derivatives, and for the excess burden, are derived in the appendix. Here we

briefly outline the characteristics of the demand curves that are used in these expressions

9This also applies if the regulator is incorrect about agent type. Suppose households are type j but the
regulator believes they are type j′ and implements τ?j′ . We can calculate the excess burden by plugging in
the demand curve slopes for type j households applied to differences between the type j′ second best taxes
(τ?j′) and the type j optimal taxes (τ j(θ)) as in:

EBj,j′ = −1

2

∞∑
M=1

T∑
t=1

βT (M−1)+t−1
I+1∑
s=1

I+1∑
r=1

(τ?j′(s) − τjs(θ))(τ
?
j′(r) − τjr(θ))

·
(

∂PtM
∂xj,t−1,M

dxj,t−1,M
dτs

+
∂PtM
∂xjtM

dxjtM
dτs

+
∂PtM

∂xj,t+1,M

dxj,t+1,M

dτs

)
dxjtM
dτr

. (42)
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before discussing the calibration and results. We consider a version of the model in which

utility is quadratic. Let utility in period s be given by

Us = u(xs − αxs−1) + ys

= a(xs − αxs−1)− 1

2
b(xs − αxs−1)2 + ys.

Beginning from some arbitrary period t, we derive the welfare-relevant inverse demands,

Pt(xt−1, xt, xt+1), by solving for the privately optimal plan that maximizes

∞∑
s=t

βs−tUs

subject to the budget constraint

A =
∞∑
s=t

βs−t(pxs + ys) (43)

with xt−1 given and prices fully salient across time. The first order conditions give

P (xt−1, xt, xt+1) = a− b(xt − αxt−1)− βα(a− b(xt+1 − αxt))
= a(1− βα)− b(1 + βα2)xt + bαxt−1 + bβαxt+1,

We also need to derive expressions for
dxjt
dτs

for each agent type j and period s. These

total derivatives require expressions for

• ∂x̂jt
∂τ

, the slope of the type j demand curve in each period t, and

• ∂x̂jt
∂xjr

, the shift in the type j demand curve in period t because of a change in consumption

in period r that persists from the past or is anticipated in the future.

In the appendix, we derive these expressions using the demand curves for each agent type.

The fully naive agent is not forward-looking about consumption persistence and ignores the

intertemporal effect on habits. Rearranging the first order condition for the fully naive agent

gives the following linear representation of demand in period t:

xt =
a

b
− µt + (1− µt)θ

b
p+ αxt−1. (44)

Equation (44) gives the familiar result that consumption is less responsive to prices when

they are not fully salient. If prices are constant, then insalient prices, i.e. periods when θ is
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less than one, imply an upward shift in the intercept of the consumption function during the

insalient window, which was the finding in Gilbert and Graff Zivin (2014)10. Ignoring the

salience factor, this specification is equivalent to the case in Becker, Grossman, and Murphy

(1994) in which habit formation is not forward-looking. If there is no consumption persistence

(α = 0) then current consumption also does not depend directly on past consumption.

Rearranging the first order condition for the problem for partially naive and sophisticated

agents, who are forward-looking about consumption persistence, provides the following linear

demand:

xtj =
a(1− βα)

b(1 + βα2)
− (µt(1 + δj) + (1− µt)θ)

b(1 + βα2)
p+

α

1 + βα2
xt−1 + β

α

1 + βα2
xt+1, (45)

where δj = 0 for partially naive agents and δj = δ for sophisticated agents.

In a model without consumption persistence or inattention, the response to a price change

in the current period is −1/b. This is dampened by 1/(1 + βα2) as agents anticipate the

persistence of today’s consumption change into the future. In the case of partially naive

agents, the response to current prices is also dampened by the expected salience µt+(1−µt)θ.
In the case of sophisticated agents, the response to current prices is augmented by 1 + δ as

the household tries to commit to reduced consumption.

3.1. Numerical Calibration

We first provide parameters for a central case of the model for U.S. electricity consump-

tion, and then perform sensitivity analysis for key parameters. The parameters for the

central case are given in Table 1.

The habit parameter can be calculated from empirical studies on habit formation in

energy consumption. Filippini et al. (2016) estimate a coefficient on lagged electricity

consumption of 0.422. Using the derivations above, we solve 0.422 = α
1+βα2 for α, using the

root that falls between zero and one11. The daily discount factor β was chosen to produce

an annual discount factor of 0.9.

10We assume a constant price in order to isolate the effect of price salience rather than price uncertainty.
This is also consistent with our empirical context because electricity prices are usually fixed, regulated rates.

11Using Scott’s (2012) coefficient of 0.787 on lagged gasoline consumption and solving for the real part of
the complex roots produces α = 0.64, while using Heien & Durham’s (1991) coefficient of 0.418 on lagged
electricity produces α = 0.54. Macroeconomic studies using aggregate data (e.g., Fuhrer (2000)) typically
estimate the habit parameter closer to 0.8.
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The salience parameter is calculated using Sexton’s (2015) estimate that households that

pay their electricity bill using automatic withdrawal consume 4% more energy than houses

that receive a bill and take an action to make a payment. We take the automatic withdrawal

households as inattentive to price, and the active payment households as attentive to price.

Using a demand elasticity of -0.1, the implied relative slope of the inattentive and attentive

demand curves is 0.71. The astute reader will note that this estimate is larger than those

found in the tax salience literature (e.g., Chetty et al. (2009) and Taubinsky & Rees-Jones

(2017)), but those studies assume that only the tax portion of the tax-inclusive price is

insalient. We will evaluate sensitivity of our results to this parameter below.

The marginal damage parameter is calculated by combining an estimate of the national

average marginal CO2/kwh emissions with an estimate of the marginal social cost of CO2.

Graff Zivin et al. (2014) estimate a national average marginal emissions rate of 1.21 lbs

of CO2/kwh. Inflated to 2017 dollars, the U.S. EPA’s most recent central estimate of the

social cost of carbon is $49.66 per ton of CO2 which we converted to pounds to arrive at an

estimate of $0.03/kwh, or about one fourth of the 2017 national average electricity price of

$0.129/kwh (EIA, 2017).12

We use the price elasticity of electricity demand, along with the national average daily

household consumption and electricity price, in order to calculate an average linear demand

slope. We assume that electricity prices are not salient for the majority of each billing

month (Gilbert & Graff Zivin (2014)), and so we take our calculated slopes to represent

the slope during insalient periods, despite the fact that they “average in” brief periods of

salience following payment of a bill. Estimates of the elasticity of electricity demand vary in

the literature. We do not wish to provide a full review of the electricity demand elasticity

literature here, but as a few recent examples, Alberini & Filippini (2011) estimate short

run elasticities between -0.8 and -0.15, Filippini et al. (2016) between -0.12 and -0.27, and

Deryugina et al. (2017) of about -0.16. We take the low end of this range and use -0.1

because we have very short run (daily) behavior in mind for our model.

Lastly, we assume a cycle length of T = 30 to reflect monthly billing, and a salient

window of I = 10 which is roughly consistent with the findings in Gilbert and Graff Zivin

(2014). The magnitudes of our results are stable over variation in the length of the salient

window within a cycle.

12EPA (2013) reported the social cost of carbon as $42 in the year 2020 (valued in 2007 dollars) at a 3%
social discount rate. We converted this to 2017 dollars using the CPI.
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Table 1: Calibration Parameters

Parameter Value

Discount factor β 0.9997

Habit α 0.55

Salience θ 0.71

Marginal damage φ $0.03/kwh

Electricity price p $0.129/kwh

Average consumption x 29.5 kwh/day

Demand elasticity ε = dxt
dp

p
x

-0.1

Cycle length T 30

Salient window I 10

3.2. Results

The time path of optimal dynamic taxes (τj(θ)) for each agent type is shown in Figure

3, with second-best constant taxes (τ ?j ) marked on the vertical axis. The taxes are shown

in dollars per unit of electricity, or kilowatthour. For reference, the U.S. average electricity

price is $0.129 per kilowatthour. As stated in Proposition 1, the taxes are rising throughout

the salient window as the probability of full price attention declines. At any time period, the

tax is significantly larger for the fully naive agent than either of the other agent types or the

marginal externality of $0.03 per kilowatthour. The tax for the partially naive agent begins

at the marginal externality in the first, fully salient period, and is always at least as large

as the tax for the sophisticated agent. The tax for the sophisticated agent begins below the

marginal externality and rises to exceed it by the end of the salient window.
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Figure 3: Optimal dynamic and second-best taxes
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Notes: The dotted line is the optimal dynamic tax for the Fully Naive agent, the solid black line is the optimal dynamic tax for
the Partially Naive agent, and the dashed line is the optimal dynamic tax for the Sophisticated agent. Bold hash marks on the
vertical axis denote second-best constant taxes in each case, as well as the marginal social damage, φ = 0.03. Tax units are in
dollars; for example, φ is three cents per kilowatthour of electricity which is about one fourth of the national average electricity
price of 12.9 cents per kilowatthour.

The main results for excess burden are shown in Table 2, including the numerical values

of the taxes shown in Figure 3. The excess burden of a time invariant tax is reported for

the second-best constant tax, the static salience tax ignoring dynamic inefficiencies (τstat =

0.095), and the standard Pigouvian rate of φ = 0.03. Excess burden is reported in present

value dollars. The excess burden of the second-best constant tax is largest for the fully naive

agent at $114.5 per household and smallest for the partially naive household at $18.93 per
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household. With approximately 122 million households in the U.S., this puts the welfare

loss associated with moving from the optimal dynamic tax to the optimal, but second-best,

constant tax at between $2.4 billion and $14.4 billion for the residential electricity sector.

If agents are sophisticated, this figure is $49.91 per household or $6.3 billion for the U.S.

residential electricity sector.

Notice, however, that the excess burden increases significantly as the time-invariant tax

moves away from it’s second-best optimal level. When taxing at the static optimal rate of

$0.095, which ignores dynamic inefficiencies, the excess burden is $2,364, $30.28 or $90.61

per household if agents are fully naive, partially naive, or sophisticated, respectively. Whe

taxing at the Pigouvian rate of $0.03, which ignores internalities, the excess burden is $3,790,

$84.84, or $83.90 per household if agents are fully naive, partially naive, or sophisticated,

respectively. Table 2 also reports excess burden figures for implementing no taxes at all,

which are not surprisingly larger than any of the tax scenarios discussed.
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Table 2: Excess burden and tax results for the base case

Taxes Fully Naive Partially Naive Sophisticated

Excess burden of time-invariant taxes in present value $

EB(τ ?j ) 114.5 18.93 49.91
EB(τstat) 2,364 30.28 90.61
EB(φ) 3,790 84.84 83.90

Excess burden when there is no tax

EB(0) 4,561 198.4 181.4

Second-best constant taxes in $ per kwh

τ ?j 0.331 0.078 0.065

Optimal dynamic taxes in $ per kwh

τ1(θ) 0.224 0.030 0.002
τ2(θ) 0.235 0.035 0.008
τ3(θ) 0.248 0.041 0.015
τ4(θ) 0.262 0.047 0.023
τ5(θ) 0.276 0.054 0.032
τ6(θ) 0.292 0.061 0.041
τ7(θ) 0.309 0.068 0.052
τ8(θ) 0.327 0.077 0.065
τ9(θ) 0.347 0.086 0.079
τ10(θ) 0.369 0.095 0.095
τI+1(θ) 0.369 0.095 0.095

Notes: This table reports the optimal dynamic taxes, second-best constant
taxes, and excess burden of several time-invariant taxes using parameters
from Table 1. The taxes are reported in dollars per unit of electricity (kilo-
watthour) while the excess burden values are reported in present value dollars.
The marginal externality is φ = $0.03 per unit of electricity (kilowatthour)
and the optimal tax for a static model is τstat = $0.095 per kilowatthour.
For comparison, the U.S. average residential electricity price is $0.129 per
kilowatthour.
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Figure 4 illustrates the findings of Proposition 2, on the sensitivity of optimal dynamic

taxes to persistence (α) and salience (θ). For the fully naive agent, stronger habit persistence

requires a larger tax in all periods because the household fails to take consumption persistence

into account. The partially naive agent, on the other hand, privately optimizes its habit stock

in each period, so the tax only needs to correct for the salience internality and the externality;

as a result the habit parameter has no effect on the size of the tax. The sophisticated

agent also privately optimizes its habit stock, except that during attentive periods the agent

is imperfectly committing to a new consumption path through habit persistence and the

regulator must optimally address that commitment demand. If commitment (i.e., habit) is

stronger, the regulator can reduce the tax during potentially attentive periods.

For all three agent types, the tax can be lower during inattentive periods if inattention is

less severe (i.e., if θ is closer to one). During attentive periods the relationship between θ and

the optimal tax differs across agent types. The fully naive and partially naive agents do not

anticipate inattention in the future, so θ only affects the tax during periods in which there

is a chance the agent will be inattentive. The sophisticated agent underconsumes in early

periods because of (imperfect) commitment to reduce future overconsumption. Because of

early underconsumption, the tax starts below marginal damage in the first, perfectly salient

period and rises to exceed marginal damage as the probability of being inattentive rises. The

tax in early periods can therefore be larger (closer to marginal damage) if future inattention

is less severe, as this alleviates underconsumption during the early periods.
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Figure 5 illustrates the sensitivity of excess burden to changes in the habit persistence

and salience parameters. Darker shading corresponds to larger excess burden. The scale

of the subfigures differs for each agent type because the excess burden increases so rapidly

as the salience parameter declines, but at different rates for each agent type; it is difficult

to represent sensitivity to θ on the same scale. For fully naive agents, the excess burden

of the second-best tax increases rapidly both as salience declines and persistence increases.

This occurs because myopia about habit persistence creates a large internality for the fully

naive agent and as the persistence parameter increases, this internality grows. For partially

naive and sophisticated agents, the major source of variation in excess burden is the salience

parameter, because this is the main source of the internality. However, there is a slight

decline in excess burden for the partially naive agent as persistence increases. In Figures 6

and 7 of Appendix B, we report similar results for the excess burden of the static salience

tax and the Pigouvian tax.

Lastly, Table 3 reports the sensitivity of excess burden to the elasticity of demand.

Specifically, the table shows that the excess burden for each of the time-invariant taxes

and each of the agent types grows linearly as demand becomes more elastic. The welfare

losses for a good that has unit elastic demand are ten times larger than the welfare losses

in our residential electricity example assuming a demand elasticity of -0.1. Considering the

variety of types of goods to which our model applies (e.g., gasoline, unhealthy food, etc.),

the economy-wide losses from imperfect taxation and time-varying salience are likely to be

non-trivial.
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4. Conclusion

Economies across the globe are becoming increasingly cashless and many payments sys-

tems have become automated, driving a temporal wedge between consumption and payment

and generally making the costs of consumption intermittently salient. Since this inconsistent

price salience alters demand elasticities, it is a particular concern for goods that generate

externalities and the price-based policies deployed to address them. This paper develops a

simple model of consumer behavior when prices of a good that creates some social harm

are intermittently salient. Dynamics are driven by the persistence of consumption decisions

across time, an empirical feature of intertemporal consumption for which there is a large vol-

ume of evidence across contexts such as habit formation, durable goods adoption, and status

quo bias, to name a few. In this setting the forward-looking capacity of the agents shapes

the nature of dynamic externalities and internalities, and is therefore crucial for optimal

taxation and welfare analysis.

We derive an optimal dynamic tax schedule for three types of agents: a fully naive agent

who does not anticipate future inattention or plan for consumption persistence; a partially

naive agent who also does not anticipate future inattention but is forward looking about

persistence; and a sophisticated agent who anticipates future inattention and plans for con-

sumption persistence. In the fully naive case, optimal taxes are highly sensitive to the degree

of salience and persistence, with lower salience and higher persistence requiring considerably

larger taxes to generate the optimal consumption path. In the partially naive case, the de-

gree of persistence is irrelevant to the optimal tax schedule because there is no internality

from persistence and also no demand for commitment. Lower salience still results in larger

optimal taxes, however. In the sophisticated case, the agent demands commitment to avoid

future suboptimal decisions when prices are salient, and consumption persistence provides a

vehicle to at least partially achieve that commitment. Greater persistence therefore lowers

the taxes required to put the agent on the optimal consumption path, while lower salience

results in greater variation in the tax schedule: lower taxes when agents are paying attention

to prices, and higher optimal taxes when they are not.

Since time-varying taxes can be bureaucratically expensive and politically difficult to

implement, we also explore the consumption and welfare implications under a variety of time-

invariant tax strategies. In particular, we derive a second-best constant tax that maximizes

welfare among time-invariant taxes. We also consider the welfare consequences of ignoring

internalities and taxing at the Pigouvian rate of marginal external cost, as well as the welfare

consequences of ignoring dynamics and imposing a tax that would be optimal in a static
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model with inattention and externalities.

The key insights from our model are then placed into context through a simulation

exercise based on data from the U.S. residential electricity market. This market is attractive

for a number of reasons, not least of which because there is well-documented persistence in

consumption over time within households, price inattention, intermittent billing, and socially

costly environmental externalities. Our base case results suggest that optimal taxes are

significantly larger than those corresponding to the simple Pigouvian case. The magnitude

of this difference is driven by the size of the internalities associated with inattention and

persistence and vary by agent type. The optimal tax is roughly ten times larger than the

Pigouvian one for fully naive agents, but only twice as large for sophisticated agents. We also

find that the welfare losses from time-invariant taxes are more than an order of magnitude

larger if agents are fully naive than if agents are partially naive or sophisticated. Even the

optimal time-invariant tax generates welfare losses that range from 2.4 to 14.5 billion dollars

when aggregated across the US electricity market.

The sensitivity of these results to alternative parameter assumptions is also explored.

Since the excess burden from second-best tax strategies scales with the elasticity of demand,

the welfare losses in this context will very much depend on the nature of demand for the

good in question. Goods with a unit elasticity of demand, for example, would incur welfare

losses ten times that of our electricity example. The degree of price salience also plays a

significant role in determining the welfare losses from second best time-invariant tax policies.

A modest thirty percent change in the salience parameter generates an excess burden that

is five to ten times larger than in our base case, underscoring the magnitude of heterogenous

impacts across different consumption contexts.

Our study has several limitations. Our model of inattention is intentionally stylized. We

do not allow price inattention to be determined by past decisions, the magnitude of relative

prices, or other environmental cues that may determine attention in a particular context.

While our conceptualization of consumption persistence is general, it abstracts from impor-

tant aspects of persistence that could arise due to complementary durable good purchases.

Efforts to endogenize inattention and further formalize the persistence relationship consti-

tute the next logical steps in advancing the insights from our model. On the empirical side,

our simulation is hampered by the lack of data and empirical tests that could be used to

distinguish between fully naive, partially naive, and sophisticated agents. Understanding

which agent types are most prevalent in a particular setting, or better yet how to target each

of them through careful mechanism design, is critical for the design of good policy and an
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area ripe for future research.

Appendix A

In this appendix we derive an explicit expression for excess burden in the case of quadratic

utility. In order to apply a specific functional form, it will be convenient to rewrite the

expression for excess burden from Proposition 4 as

EBj = −1

2

∞∑
M=1

T∑
t=1

βT (M−1)+t−1

I+1∑
s=1

I+1∑
r=1

∆τjs∆τjr

· u′′tM
(
dxjtM
dτjs

− αdxj,t−1,M

dτjs

)(
dxjtM
dτjr

− αdxj,t−1,M

dτjr

)
. (46)

To see that this is equivalent to the expression in Proposition 4, rewrite the derivative of the

excess burden with respect to the r’th element of the tax vector as

∂EBj
∂τr

= P1(x0, x1, x2)
dxj1
dτr

+ βP2(x1, x2, x3)
dxj2
dτr

+ . . .

= (u′1 − βαu′2)
dxj1
dτr

+ β(u′2 − βαu′3)
dxj2
dτr

+ . . .

= u′1

(
dxj1
dτr
− α · 0

)
+ βu′2

(
dxj2
dτr
− αdxj1

dτr

)
+ . . .

=
∑∞

M=1

∑T
t=1 β

T (M−1)+t−1u′tM

(
dxjtM
dτjr
− αdxj,t−1,M

dτjr

)
.

Taking second- and cross-partials of this expression gives

∂2EBj

∂τs∂τr
=

∞∑
M=1

T∑
t=1

βT (M−1)+t−1u′′tM

(
dxjtM
dτjs

− αdxj,t−1,M

dτjs

)(
dxjtM
dτjr

− αdxj,t−1,M

dτjr

)
.

In the quadratic case, conveniently u′′t = −b. We now need to derive expressions for(
dxjt
dτs
− αdxj,t−1

dτs

)
for each j and s. As mentioned in the text, these expressions will utilize

• ∂x̂jt
∂τ

, the slope of the type j demand curve in each period t, and

• ∂x̂jt
∂xjr

, the shift in the type j demand curve in period t because of a change in consumption

in period r that persists from the past or is anticipated in the future.

4.1. Fully Naive Agents

As discussed in the text, fully naive agents with quadratic utility have the following linear

demand curve:
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xt =
a

b
− µt + (1− µt)θ

b
p+ αxt−1. (47)

The period t + 1 demand depends on how much was consumed in period t through the

habit process such that x̂t+1 = x̂t+1(xt, p; θ), with x̂t+1 increasing in xt. As before, ∂x̂t+1

∂xt
> 0

is a constant. In this case,

∂x̂t+1

∂xt
= α,

∂x̂t+2

∂xt
= α2, ... etc.

Recall that the I + 1′th element of the dynamic tax vector is imposed in every period

during the insalient window, and that for fully naive agents the effect of a future tax increase

on current demand is zero. From equation (44), we obtain for tax changes during the salient

window

dxtM
dτr

=

{
−µr+(1−µr)θ

b

∑M
m=1 α

T (M−m)+t−r if r ≤ I, r ≤ t,

−µr+(1−µr)θ
b

∑M−1
m=1 α

T (M−m)+t−r if r ≤ I, r > t.
(48)

The slope of the demand curve in period r when the tax is levied governs the period r change

in xr, which persists forward to period t according to αt−r, αT+t−r, and so forth. Tax changes

that occur later than period t do not affect period t demand.

For the tax imposed during the insalient window from I + 1 to T , we have

dxt
dτ(I+1)

=

 −
θ
b

(∑M−1
m=1

∑T−I
t′=1 α

T (M−m)+t−(I+t′) +
∑t−I

t′=1 α
t−(I+t′)

)
if I < t,

− θ
b

(∑M−1
m=1

∑T−I
t′=1 α

T (M−m)+t−(I+t′)
)

if I ≥ t.
(49)

This tax directly affects demand in period I + 1, I + 2, etc., during the current and previous

cycles and these effects accumulate up to period t > I (or accumulate from previous cycles

only if t ≤ I).

From these expressions it is simple to show that for r ≤ I,

dxt
dτr
− αdxt−1

dτr
=

{
−µr+(1−µr)θ

b
if r = t,

0 if r 6= t.
(50)

and
dxt

dτ(I+1)

− α dxt−1

dτ(I+1)

=

{
− θ
b

if I < t,

0 if I ≥ t.
(51)

This analysis demonstrates that
(
dxjt
dτs
− αdxj,t−1

dτs

)
= 0 unless s = t for s ≤ I, or s = I + 1
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for t > I. This also implies that

∂2EBF

∂τs∂τr
= 0 unless s = r.

For example,

∂2EBF
∂τ2r

= βr−1

1−βT (−b)
(
−µr+(1−µr)θ

b

)2

if r ≤ I,

∂2EBF
∂τ2

(I+1)

=
∑∞

M=1

∑T
t=I+1 β

T (M−1)+t−1(−b)(− θ
b
)2 =

∑T
t=I+1 β

t−1

1−βT (−b)(− θ
b
)2.

(52)

We can now write the excess burden for fully naive agents as

EBF (τ?) ≈ −1

2
(∆τF )

′ ·

− 1
b

1
1−βT 0 . . . 0

0 − 1
b

β
1−βT (µ2 + (1− µ2)θ)

2 ...
...

. . .

− 1
b
βI−1

1−βT (µI + (1− µI)θ)2 0

0 . . . 0 − 1
b

∑T
t=I+1 β

t−1

1−βT (θ)2


· (∆τF )

(53)

4.2. Partially Naive and Sophisticated Agents

As discussed in the text, partially naive and sophisticated agents have the following linear

demand:

xtj =
a(1− βα)

b(1 + βα2)
− (µt(1 + δj) + (1− µt)θ)

b(1 + βα2)
p+

α

1 + βα2
xt−1 + β

α

1 + βα2
xt+1, (54)

where δj = 0 for partially naive agents and δj = δ for sophisticated agents.

For notational convenience, define the response to past consumption as

γ =
α

1 + βα2

and the absolute value of the slope of current period demand as

d′jt =| ∂xjt
∂τ
|= (µt(1 + δj) + (1− µt)θ)

b(1 + βα2)
. (55)

48



Unlike the fully naive case, current consumption is increasing in expected future consump-

tion as well as past consumption. If the agent is attentive to prices in period t - but not

sophisticated about inattention and salience - then they take into account how period t con-

sumption affects period t+1 decisions, but not that period t+1 decisions will be suboptimal.

In the sophisticated case the household also considers expected impacts on future demand

through δ. Recall that

δ = (1− θ)
∞∑

t=r+1

βt−r−1 ∂x̂t
∂xr

As before, ∂x̃t+1

∂xt
> 0 is a constant, but in this case,

∂x̃t+1

∂xt
= γ,

∂x̃t+2

∂xt
= γ2, ... etc.,

whereas
∂x̃t
∂xt+1

= βγ,
∂x̃t
∂xt+2

= β2γ2, ... etc..

We can therefore rewrite

δ = (1− θ)
∞∑

t=r+1

βt−r−1γt−r =
(1− θ)γ
1− βγ

From equation (45) we obtain

dxjt
dτr

=

 −d
′
jr

(
γt−r

∑M
m=1 γ

T (m−1) + (βγ)r−t
∑∞

m=M+1(βγ)T (m−M)
)

if r ≤ I, r ≤ t,

−d′jr
(
γt−r

∑M−1
m=1 γ

T ·m + (βγ)r−t
∑∞

m=M(βγ)T (m−M)
)

if r ≤ I, r ≥ t.

(56)

which can be simplified to

dxjt
dτr

=

 −d
′
jr

(
γt−r(1−γT ·M )

1−γT + (βγ)r−t+T

1−(βγ)T

)
if r ≤ I, r ≤ t,

−d′jr
(
γt−r+T (1−γT (M−1))

1−γT + (βγ)r−t

1−(βγ)T

)
if r ≤ I, r ≥ t.

(57)
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Also from equation (45) we can obtain

dxt
dτ(I+1)

=



− θ

b(1 + βα2)

(γt(1− γT (M−1))

1− γT
1− γT−I

1− γ
+

(βγ)T+I+1−t

1− (βγ)T
1− (βγ)T−I

1− βγ

+
γ(1− γt−I−1)

1− γ
+

1− (βγ)T−t+1

1− βγ

)
if I < t,

− θ

b(1 + βα2)

(γt(1− γT (M−1))

1− γT
1− γT−I

1− γ
+

(βγ)I+1−t

1− (βγ)T
1− (βγ)T−I

1− βγ

)
if I ≥ t.

(58)

From these expressions algebra shows that for r ≤ I,

dxjt
dτr
− αdxj,t−1

dτr
=


−d′jr

(
γ1−r+T (1−γT (M−1))

1−γT + (βγ)r−1

1−(βγ)T

)
if r ≥ 1, t = 1,

−d′jr
(

(γ − α)γ
t−1−r+T (1−γT ·M )

1−γT + (1− αβγ) (βγ)r−t

1−(βγ)T

)
if r ≥ t > 1,

−d′jr
(

(γ − α)γ
t−1−r(1−γT ·M )

1−γT + (1− αβγ) (βγ)r−t+T

1−(βγ)T

)
if r < t, r ≥ 1.

(59)

and also that

dxt
dτ(I+1)

−α dxt−1

dτ(I+1)

=


− θ
b(1+βα2)

(
(1− α)

(
1

1−βγ + γ
1−γ

)
+ α−γ

1−γ γ
t−I−1

+(γ − α)γ
t−1(1−γT (M−1))

1−γT
1−γT−I

1−γ + 1−αβγ
1−βγ

(βγ)T+1−t((βγ)I−1)
1−(βγ)T

)
if I + 1 < t,

− θ
b(1+βα2)

(
(γ − α)γ

t−1(1−γT (M−1))
1−γT

1−γT−I
1−γ + 1−αβγ

1−βγ
(βγ)I+1−t(1−(βγ)T−I)

1−(βγ)T

)
if I + 1 ≥ t.

(60)

We can now express the excess burden for partially naive and sophisticated households.

The expression can be written

EBj(τ
?) ≈ −1

2

(
∆τ j

)′ ·


...

. . .
∂2EBj
∂τs∂τr

. . .
...

 · (∆τ j) (61)
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where

∂2EBj

∂τ 2
r

= −b
(
−d′jr

)2
∞∑

M=1

βT (M−1)

[(γ1−r+T (1− γT (M−1))

1− γT
+

(βγ)r−1

1− (βγ)T

)2

+
r∑
t=2

βt−1

(
(γ − α)

γt−1−r+T (1− γT ·M)

1− γT
+ (1− αβγ)

(βγ)r−t

1− (βγ)T

)2

+
T∑

t=r+1

βt−1

(
(γ − α)

γt−1−r(1− γT ·M)

1− γT
+ (1− αβγ)

(βγ)r−t+T

1− (βγ)T

)2
]

if r ≤ I, (62)

∂2EBP

∂τ 2
(I+1)

= −b
(
− θ

b(1 + βα2)

)2

×
∞∑

M=1

βT (M−1)

I+1∑
t=1

βt−1

(
(γ − α)

γt−1(1− γT (M−1))

1− γT
1− γT−I

1− γ
+

1− αβγ
1− βγ

(βγ)I+1−t(1− (βγ)T−I)

1− (βγ)T

)2

+
T∑

t=I+2

βt−1

(
(1− α)

( 1

1− βγ
+

γ

1− γ

)
+
α− γ
1− γ

γt−I−1 + (γ − α)
γt−1(1− γT (M−1))

1− γT
1− γT−I

1− γ

+
1− αβγ
1− βγ

(βγ)T+1−t((βγ)I − 1)

1− (βγ)T

)2
 , (63)

51



for r < s < I + 1,

∂2EBj

∂τr∂τs
= −b(−d′js)(−d′jr)×{

∞∑
M=1

βT (M−1)

[(
γ1−r+T (1− γT (M−1))

1− γT
+

(βγ)r−1

1− (βγ)T

)(
γ1−s+T (1− γT (M−1))

1− γT
+

(βγ)s−1

1− (βγ)T

)

+
r∑
t=2

βt−1

(
(γ − α)

γt−1−r+T (1− γT ·M)

1− γT
+ (1− αβγ)

(βγ)r−t

1− (βγ)T

)
×(

(γ − α)
γt−1−s+T (1− γT ·M)

1− γT
+ (1− αβγ)

(βγ)s−t

1− (βγ)T

)

+
s∑

t=r+1

βt−1

(
(γ − α)

γt−1−r(1− γT ·M)

1− γT
+ (1− αβγ)

(βγ)r−t+T

1− (βγ)T

)
×(

(γ − α)
γt−1−s+T (1− γT ·M)

1− γT
+ (1− αβγ)

(βγ)s−t

1− (βγ)T

)

+
T∑

t=s+1

βt−1

(
(γ − α)

γt−1−r(1− γT ·M)

1− γT
+ (1− αβγ)

(βγ)r−t+T

1− (βγ)T

)
×(

(γ − α)
γt−1−s(1− γT ·M)

1− γT
+ (1− αβγ)

(βγ)s−t+T

1− (βγ)T

)]}
, (64)
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and finally

∂2EBj

∂τr∂τ(I+1)

= −b(−d′jr)
(
− θ

b(1 + βα2)

)
×{

∞∑
M=1

βT (M−1)

[(
γ1−r+T (1− γT (M−1))

1− γT
+

(βγ)r−1

1− (βγ)T

)
×(

(γ − α)
(1− γT (M−1))

1− γT
1− γT−I

1− γ
+

1− αβγ
1− βγ

(βγ)I(1− (βγ)T−I)

1− (βγ)T

)

+
r∑
t=2

βt−1

(
(γ − α)

γt−1−r+T (1− γT ·M)

1− γT
+ (1− αβγ)

(βγ)r−t

1− (βγ)T

)
×(

(γ − α)
γt−1(1− γT (M−1))

1− γT
1− γT−I

1− γ
+

1− αβγ
1− βγ

(βγ)I+1−t(1− (βγ)T−I)

1− (βγ)T

)

+
I+1∑
t=r+1

βt−1

(
(γ − α)

γt−1−r(1− γT ·M)

1− γT
+ (1− αβγ)

(βγ)r−t+T

1− (βγ)T

)
×(

(γ − α)
γt−1(1− γT (M−1))

1− γT
1− γT−I

1− γ
+

1− αβγ
1− βγ

(βγ)I+1−t(1− (βγ)T−I)

1− (βγ)T

)

+
T∑

t=I+2

βt−1

(
(γ − α)

γt−1−r(1− γT ·M)

1− γT
+ (1− αβγ)

(βγ)r−t+T

1− (βγ)T

)
×(

(1− α)
( 1

1− βγ
+

γ

1− γ

)
+
α− γ
1− γ

γt−I−1 + (γ − α)
γt−1(1− γT (M−1))

1− γT
1− γT−I

1− γ

+
1− αβγ
1− βγ

(βγ)T+1−t((βγ)I − 1)

1− (βγ)T

)]}
. (65)

We now have all the expressions we need to parameterize and calculate the optimal taxes,

second-best taxes, and excess burden for each household type.
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