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1 Introduction

Ignorance of the economic costs of climate change prevents economists from giving
firm policy guidance. A pressing research agenda seeks to estimate these costs. Rec-
ognizing that different locations have different climates, many economists have hoped
to estimate the effects of climate change from the correlation between climate and
outcomes of interest over space (e.g., Mendelsohn et al., 1994; Schlenker et al., 2005;
Nordhaus, 2006). However, locations differ in many ways, making it difficult to isolate
the effects of being in one climate or another.1

Intriguingly, though, the same location does experience different weather at differ-
ent times. Stimulated by Deschênes and Greenstone (2007) and Dell et al. (2012), a
rapidly growing empirical literature estimates the consequences of a location happen-
ing to experience cooler-than-average or hotter-than-average weather.2 Researchers
project the consequences of climate change by combining credibly estimated effects of
weather from panel regressions with scientists’ predictions about how climate change
will alter the distribution of weather. But in the absence of a formal model, it has
been unclear what assumptions are required in order to justify the extrapolation of
weather impacts to climate change impacts.3

This paper formally relates the effects of climate change to the effects of weather
shocks. I focus on the dynamic structures of weather shocks and climate change:
weather shocks are transient, whereas climate change permanently alters the distri-
bution of weather. I show that estimating long-run effects of climate change requires
estimating the direct effects of altered average weather and the average effects of
adapting to altered weather, which encompasses both ex-post adaptation (through
which agents react to altered weather realizations) and ex-ante adaptation (through
which agents anticipate the altered distribution of future weather).

Within this model, I formally derive the effects of climate change that empirical
researchers aim to estimate and express panel regressions’ coefficients in terms of
model primitives. I show that conventional methods require strict assumptions if
their calculations are to be relevant for evaluating climate change. In particular,
these methods require that economic decisions are independent over time, as when
there are no capital or resource stocks. Relaxing this assumption, I show that the best
possible weather regressions differ from the ones that empirical researchers typically
run by including lags of weather and including forecasts of weather. However, I also

1See Dell et al. (2014) and Auffhammer (2018) for expositions and Massetti and Mendelsohn
(2018) for a review.

2For reviews, see Dell et al. (2014), Carleton and Hsiang (2016), Heal and Park (2016), and Carter
et al. (2018). Blanc and Schlenker (2017) and Kolstad and Moore (2020) discuss the strengths and
weaknesses of relying on panel variation in weather.

3For instance, Dell et al. (2014, 771–772) emphasize that “short-run changes over annual or other
relatively brief periods are not necessarily analogous to the long-run changes in average weather
patterns that may occur with climate change.” And Mendelsohn (2019, 272) observes, “An important
failing of current weather panel studies is that they lack a clear theoretical model.”
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show that even the best possible weather regressions suffer from three biases when
used to project climate change impacts.

All three biases derive from the adaptation channel. These biases reflect the possi-
bilities that (i) agents may not pay the fixed costs of modifying long-lived infrastruc-
ture in response to a transient weather shock but would pay those costs in response
to a permanent change in climate; (ii) a shock to short-run forecasts is not completely
equivalent to altering expectations of weather in every period; and, of most interest,
(iii) reactions to short-run weather shocks are not identical to reactions to living with
altered weather period after period. Actions are intertemporal complements (substi-
tutes) if undertaking more actions in one period increases (decreases) optimal actions
in later periods through a stock variable. For example, actions are intertemporal com-
plements when they represent capital investment in the presence of adjustment costs
and are intertemporal substitutes when they deplete a scarce resource stock. Channel
(iii) depends on which case holds. In the former case, estimates derived from short-
run weather variation can understate long-run adaptation to climate change because
agents have more flexibility in the long run, but in the latter case, estimates derived
from short-run weather variation overstate long-run adaptation to climate change
because agents have a hard time maintaining adaptation responses.4

What, then, is an empirical researcher to do? I develop a new indirect least squares
estimator of climate impacts (Tinbergen, 1930, 1995) that substantially relaxes the
assumptions under which panel variation can identify effects of climate change. I show
that the estimator can partially identify the long-run effects of climate change from
short-run weather shocks, even without observing the actions agents and firms could
choose, without observing the capital or resource stocks that they interact with, and
without parameterizing payoffs or transition equations for stock variables. I derive
this estimator in four steps. First, I express climate change impacts in terms of my
setting’s theoretical primitives. Second, I express reduced-form weather coefficients in
terms of the same theoretical primitives. This system is just-identified in that there
are as many aggregates of unknown theoretical primitives as there are equations,
and it so happens that these same aggregates of theoretical primitives appear in the
climate change expression from the first step. So, third, I solve for these aggregates
of theoretical primitives in terms of the estimable reduced-form coefficients. Finally,
I use this solution to calculate climate impacts from the analytical expression derived
in the first step and the estimable reduced-form weather coefficients.

The identification is purely reduced-form, as the only point of contact with data is
a fixed effects regression that relies on conventional panel variation in weather. The-

4Both types of stories exist in the literature (see Auffhammer, 2018). For instance, in studies of
the agricultural impacts of climate change, Deschênes and Greenstone (2007) conjecture that long-
run adjustments to changes in climate should be greater than short-run adjustments to weather
shocks because there may be costs to adjusting crops, whereas Fisher et al. (2012) and Blanc and
Schlenker (2017) conjecture that constraints on storage and groundwater pumping, respectively,
could make short-run adjustments exceed long-run adjustments.
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ory determines both the specification of the regression and the calculations that use
its estimates.5 Intuitively, variation in contemporary weather identifies a combination
of direct weather effects and ex-post adaptation. Past weather identifies ex-post adap-
tation because it affects current payoffs only through the effects of ex-post adaptation
on capital or resource stocks. I identify the direct effects of weather by combining the
coefficient on contemporary weather with the estimate of ex-post adaptation. Fore-
casts identify ex-ante adaptation because they affect current payoffs only when agents
take actions based on forecasts.6 And comparing the effects of weather over shorter
and longer lags identifies whether estimates derived from short-run weather variation
tend to over- or underestimate the effects of longer-run adaptation.

I demonstrate the new method using a panel analysis of the effect of temperature
changes on changes in U.S. counties’ output per capita from 2002–2019 and on changes
in U.S. counties’ income per capita from 1970–2019.7 Wald tests reject the hypothesis
that the effects of lagged extreme heat are jointly zero in the data. As a result,
conventional calculations would not be informative about climate change impacts in
this application.

Applying my new indirect least squares estimator, I estimate that extreme heat
significantly reduces income per capita in the Midwest, Northeast, and West and sig-
nificantly increases income per capita in the South. Combining all weather variables,
my central estimates suggest that end-of-century climate change will reduce output
(income) per capita by 4% (2%) in the Midwest and 0.5% (2%) in the Northeast.
Projected effects on output per capita are small and of ambiguous sign in the South
and West (possibly reflecting the short panel), but central estimates for income per
capita project benefits of 0.3% in the South and losses of 0.6% in the West.

In most regions, the theoretically-grounded indirect least squares estimator pre-
dicts effects on income per capita that are significantly different from what conven-
tional methods would predict. I find that the conventional approach underestimates
losses from extreme heat in most regions because it relies on an estimated coefficient
that entangles direct costs of temperature shocks with short-run benefits from ex-
post adaptation. For optimizing agents, those short-run benefits come at the expense
of long-run costs that are identified by the coefficient on lagged weather. My the-

5Critically, this calculation does not require the specification of structural parameters. This
approach is in the spirit of Marschak’s Maxim. Heckman (2010, 359) writes, “Marschak’s Maxim
suggests that economists should solve well-posed economic problems with minimal assumptions. All
that is required to conduct many policy analyses or to answer many well-posed economic questions
are policy invariant combinations of the structural parameters that are often much easier to identify
than the individual parameters themselves and that do not require knowledge of individual structural
parameters.” It is also related to sufficient statistics approaches (see Chetty, 2009) and to price
theory (see Weyl, 2019).

6Shrader (2020) also uses variation in forecasts to identify ex-ante adaptation, in an analysis not
focused on climate change.

7Colacito et al. (2019) estimate negative effects of summer temperature on output growth in
U.S. states. Barker (2022) critique their methods and interpretation. In a working paper, Deryugina
and Hsiang (2017) estimate effects on county income per capita over 1969–2011.
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oretical analysis shows how to combine the estimated effects of contemporary and
lagged weather to isolate both the direct effects of temperature changes and the long-
run costs of ex-post adaptation. The isolated direct effects drive my estimated total
effects.

A ratio of lagged effects of weather determines whether estimated costs of ex-post
adaptation are upper or lower bounds on steady-state costs (i.e., whether actions are
intertemporal substitutes or complements). Estimates of this ratio can be imprecise
when the longer lags have ambiguous sign, which is a particular problem in the short
panel available for output per capita. In the longer panel available for income per
capita, estimates in the longer panel for income per capita are consistent with actions
being intertemporal complements in the Northeast and South, as under an adjustment
cost model. In a supplemental industry-level analysis, I report evidence consistent
with actions being intertemporal complements in the two industries (agriculture and
retail) that show evidence of temperature impacts. In such cases, steady-state ex-
post adaptation is greater than estimated here, so that estimated losses are lower
bounds on steady-state effects. From the smaller end of the 95% confidence interval,
the ILS estimator projects losses of at least 1.8% in the Midwest, at least 1% in
the Northeast, and at least 0.23% in the West. These lower bounds suggest worse
damages than even the 95% confidence intervals produced by conventional methods.
Using the new estimator matters both for interpretability in terms of climate change
and for the numbers produced.

Despite the importance of empirically estimating the costs of climate change and
the sharpness of informal debates around the relevance of the burgeoning weather
regression literature to climate change, there has been remarkably little prior formal
analysis of the economic distinction between weather shocks and climate change.8

The exceptions are Hsiang (2016) and Deryugina and Hsiang (2017). They argue
that the simplest weather regression exactly identifies the effect of climate on payoffs.
Their setting assumes that choices made in one period are completely independent
of choices made in any other period and that outcomes and actions depend only on
the distribution of weather (i.e., only on the climate), not on the weather realized
from this distribution. Their formal setting is a special case of the present setting
(see footnote 20 in Section 3). I show that their optimistic result does not survive
generalizing payoffs to depend on a stock variable, such as capital or natural resources.
Whereas the envelope theorem implies that changes in actions have no effects on
payoffs in a static environment like that of Hsiang (2016) and Deryugina and Hsiang
(2017), the envelope theorem in a dynamic environment applies to the intertemporal
value function, not to the flow payoffs that empirical researchers typically observe.

Motivated by concerns that responses to weather shocks may not reflect responses

8Mérel and Gammans (2021) explore the conditions under which actions chosen under the full
distribution of weather identify actions chosen for average weather, assuming that the envelope
theorem prevents actions from having first-order consequences for the cost of climate change. Carter
et al. (2018) discuss several econometric issues in the estimation of panel models of weather.
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to climate change, recent literature takes a variety of approaches to avoid relying
exclusively on short-run variation in weather. First, recent reduced-form work esti-
mates how the marginal effect of weather varies cross-sectionally with a location’s
climate (e.g., Auffhammer, 2022; Carleton et al., 2022). This approach forsakes the
clean identification of panel variation. I here explore the limit of what researchers
can learn from purely panel variation in weather so that identification is never in
question. Second, some reduced-form work uses “long difference” estimators that
aggregate weather over larger timesteps (e.g., Dell et al., 2012; Burke and Emerick,
2016). Appendix A shows that long difference estimators inherit the biases suffered
by standard weather regressions (see footnote 31). Third, recent work aggregates
lags of weather in an attempt to obtain time series variation in a location’s climate
(e.g., Bento et al., 2023; Leduc and Wilson, 2023; Mohaddes et al., 2023). I here
show how variation in shorter lags of weather, which is more likely to be exogenous
and observable, is critical to theoretically-grounded extrapolation from weather to
climate. Finally, recent work accounts for adaptation by specifying and calibrating
macroeconomic models (e.g., Fried, 2022; Bakkensen and Barrage, 2024). I impose
less structure on the economic environment and explore the limits of reduced-form
estimators that retain the quasi-experimental variation of panel models.

The challenge of attempting to estimate long-run effects from short-run variation
is a common one in empirical economics. For instance, labor economists desire the
long-run consequences of changing the minimum wage, but inflation converts observed
minimum wage increases into short-run shocks (Sorkin, 2015).9 And macroeconomists
formerly hoped to learn about long-run output-inflation tradeoffs by estimating dis-
tributed lag models, but Lucas (1972) argued that, when agents have rational ex-
pectations, the response to a transient inflation shock is not informative about the
long-run effects of permanently changing inflation policy. Here we desire the long-run
effect of changing the “policy rule” used by nature to generate weather.

The next section describes the setting. Section 3 analyzes a special case without
dynamic linkages, as in prior literature. Section 4 analyzes the full model and delin-
eates what we can learn from reduced-form regressions. Section 5 derives the indirect
least squares estimator. Section 6 applies the new estimator to U.S. counties’ output
and income per capita. The final section outlines potential extensions. The appendix
contains supplemental results and proofs.

9Three other papers are related to both Sorkin (2015) and the present paper’s project. First, I
here formalize analogues to arguments in Hamermesh (1995) about why the pre- and post-periods
around a minimum wage increase are not true pre- and post-periods. Second, in a model of dynamic
stock accumulation, Hennessy and Strebulaev (2020) show that estimated responses to transient
shocks can differ substantially from the theory-implied causal effects that empirical researchers seek
to test. The present paper is similar in deriving sufficient conditions for estimated effects to match
theory-implied effects. Third, Keane and Wolpin (2002) describe tradeoffs between cross-sectional
and panel variation when estimating the effects of welfare benefits. These tradeoffs are similar to
those that motivate the present paper.
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2 Setting

In each period t, agents receive payoffs π(wt, At, St;K), with π quadratic in each of
the four arguments.10 After observing weather wt, agents choose actions At as a form
of adaptation, where πAA < 0 (subscripts indicate partial derivatives). Agents can
also affect a stock variable St, where πS = 0 in Section 3 and πSS < 0 everywhere
else. The stock evolves as St+1 = g St + h(At), with h monotonic.11 The parameter
g ∈ [0, 1) controls the persistence of actions. If g = 0, the time t + 1 stock depends
only on time t actions, as with acreage planted versus fallowed. If g > 0, the time
t+ 1 stock depends on all past actions, as with a capital stock that depends on past
investments and overdrafts from a groundwater reservoir that recharges towards its
steady state.

The stock can affect an agent’s payoffs from pursuing different actions. When
h′ πAS < 0, actions are intertemporal substitutes , so that choosing a higher action
in one period reduces the marginal benefit of actions in the subsequent period. I
describe this case as a resource scarcity story. For instance, pumping groundwater
today raises the cost of pumping groundwater tomorrow. When h′ πAS > 0, actions
are intertemporal complements , so that choosing a higher action in one period
increases the marginal benefit of actions in the subsequent period. I describe this
case as an adjustment cost story because it favors approaching a high action via
a sequence of smaller steps. For instance, small changes to capital stocks may be
easier to implement than large changes. The magnitude of h′ πAS affects how agents
prepare in advance of a weather event that they know will change their preferred
actions. When |h′ πAS| is large, agents prefer to begin adapting actions before a
weather event arrives, but when |h′ πAS| is small, agents may wait to undertake most
adaptation only once a weather event has arrived.

Agents understand the climate C, which controls the distribution of weather. At
all times before t − 2, an agent’s only information about time t weather consists in
knowledge of the climate. However, at time t− 2 specialized information about time
t weather becomes available in the form of a random variable ϵ2,t−2. The agent uses
this information to form a forecast f2,t−2 of time t weather: f2,t−2 = C + ζϵ2,t−2.

12

The parameter ζ ≥ 0 is a perturbation parameter that will be useful for analysis
(see Judd, 1996). At time t − 1, the agent receives additional news about time t
weather in the form of a random variable ϵ1,t−1. The agent refines her forecast of time

10I refer to “agents” and “actions”, but one can also think of firms choosing quantities, with
weather affecting profits through prices and/or the production function.

11I abstract from externalities in use of the stock and from the possibility that the stock is directly
vulnerable to weather shocks. Future work could consider common pool resources and weather-
exposed stocks.

12Implicitly, fk,t = C for k > 2. Results generalize straightforwardly when extending the analysis
to allow for specialized forecasts of weather more than two periods away. Because doing so generates
little new insight but imposes additional notation, I restrict attention to the case with specialized
forecasts beginning only two periods ahead of a weather event.
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t weather to f1,t−1 = f2,t−2+ζϵ1,t−1. Finally, the agent may be surprised by a random
component ϵ0,t of time t weather, where wt = f1,t−1 + ζϵ0,t. Let the {ϵ0,t, ϵ1,t, ϵ2,t} be
jointly normal with covariance matrix Σ. Reflecting rationality of beliefs, the ϵi,t are
mean-zero and uncorrelated with the ϵi,t−1. Even though the news represented by ϵi,t
is serially uncorrelated, the weather realizations wt are serially correlated if Σ is not
diagonal.

Each agent chooses actions to maximize the expected present value of payoffs over
an infinite horizon:

max
{At(St,wt,f1,t,f2,t)}∞t=0

∞∑
t=0

βtE0 [π(wt, At, St;K)] ,

where β ∈ (0, 1) is the per-period discount factor, E0 denotes expectations at the
time 0 information set, and S0, w0, f1,0, and f2,0 are given. The solution satisfies the
following Bellman equation:

V (St, wt, f1,t, f2,t; ζ,K) =max
At

{
π(wt, At, St;K) + βEt [V (St+1, wt+1, f1,t+1, f2,t+1; ζ,K)]

}
,

(1)

where V is the intertemporal value function. With quadratic payoffs, an agent’s
optimal policy rule will be independent of the covariance matrix Σ, but Σ will affect
the agent’s optimal policy choices by affecting realizations of weather.13

Agents also choose long-lived infrastructure K. This infrastructure represents
capital-intensive adaptation that takes years to construct, such as irrigation canals or
sea walls (see Aldy and Zeckhauser, 2020). Agents cannot adapt this infrastructure to
short-run weather outcomes or forecasts.14 Infrastructure is chosen before specialized
forecasts are available, as its time to build exceeds the horizon of forecasts. Formally,
the agent chooses K in a pre-period to solve the following problem:

max
K

{
∞∑
t=0

βtE[π(wt, A
∗
t , St;K)]

}
,

where expectations account for knowledge of the climate but not for specialized fore-
casts. Together, the decision variables At and K bracket the many types of actions

13Consistent with much previous literature, climate here controls average weather. One might
wonder about the dependence of higher moments of the weather distribution on climate. In fact,
the effects of climate change on the variance of the weather are poorly understood and likely to be
spatially heterogeneous (e.g., Huntingford et al., 2013; Lemoine and Kapnick, 2016). Further, for
economic analysis, we need to know not just how climate change affects the variance of realized
weather but how it affects the forecastability of weather: the variance of the weather more than two
periods ahead is ζ2trace(Σ), so we need to apportion any change in variance between the diagonal
elements of Σ (i.e., between each of the ϵi,t). I leave such an extension to future work.

14Such infrastructure is the only kind of action analyzed in previous work that formally relates
climate change to weather variation (Hsiang, 2016; Deryugina and Hsiang, 2017).
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actual agents may take: actions At encompass those implemented immediately and,
via h(·), those implemented with a one-period lag based on information about both
near-term weather and long-term climate, whereas actions K have a long time to
build that makes them insensitive to information about near-term weather.

The setting is meant to be fairly general. The stock can represent non-physical
stocks such as household wealth, and actions can represent allocation problems within
an economy that is constrained-efficient, as when it solves the problem of a social
planner who cannot address externalities (see Section 6). To fix ideas, consider a few
examples pertinent to previous empirical research.

In an agricultural application, weather could affect yields or crop prices, actions
could be irrigation or planting decisions, the stock could be water supplies or ma-
chinery, and long-lived infrastructure could be irrigation canals or available crop va-
rietals.15 In a flooding application, weather could affect rental value, actions could be
investments in the property, the stock could be the quality of the property, and long-
lived infrastructure could be sea walls. In a migration application, weather could affect
wages, actions could be the choice of future location, and the “stock” (i.e., the inher-
ited state) could be one’s current location.16 In a health application, weather could
affect mortality, individuals could organize their outdoor activities around weather
forecasts in order to maximize utility net of mortality risks, and they could find their
flexibility restricted as more days go by and the stock of postponed activities accu-
mulates (as in Graff Zivin and Neidell, 2009). In an innovation application, weather
could affect the value of patents, the action could be investing in research, and the
stock could be existing patents on adaptation technologies. In a labor or energy ap-
plication, weather could affect labor productivity or residential comfort, the action
could be using air conditioning, and the stock could be air conditioning equipment.
And in a macro application, weather could affect profits via prices, actions could be
factor use, and the stock could be capital.

I assume the following technical conditions in settings with πS ̸= 0. The first
ensures that the payoff function is strictly concave in St and St+1, which in turn
ensures that there is a uniquely optimal action (Appendix F.3):

[πAS]
2 <πSS

[
πAA − h′′(At)

h′(At)
πA

]
. (2)

Inequality (2) and πSS < 0 imply

πAA − h′′(At)

h′(At)
πA <0, (3)

15Recent literature reports that actions such as irrigation choices and crop substitution (Cui,
2020), acreage planted (Aragón et al., 2021), and pesticide use and weeding effort (Jagnani et al.,
2021) respond to weather.

16The choice of future location fits the formal framework if it depends on the current location’s
present and forecasted weather and on the alternate location’s average weather.
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which is satisfied when h′′ is small. The next two conditions ensure that a steady
state exists in a deterministic system with ζ = 0 (Appendix F.4):

lim
At→−∞

[
(1− βg)πA

(
C,At,

h(At)

1− g
;K

)
+ βh′(At)πS

(
C,At,

h(At)

1− g
;K

)]
>0, (4)

lim
At→∞

[
(1− βg)πA

(
C,At,

h(At)

1− g
;K

)
+ βh′(At)πS

(
C,At,

h(At)

1− g
;K

)]
<0. (5)

If h(·) is linear and πAS is zero, these two conditions reduce to limAt→−∞ πA > 0 and
limAt→∞ πA < 0. The final condition ensures that the expression for expected optimal
actions converges (Lemma 2 in Appendix F.6):

h′(At)πAS ∈
(
−

[1 + 2g(1 + β) + 3βg2]
[
−πAA + h′′(At)

h′(At)
πA

]
− β[h′(At)]

2πSS

1 + β + 2βg
,

[1− 2g(1 + β) + 3βg2]
[
−πAA + h′′(At)

h′(At)
πA

]
− β[h′(At)]

2πSS

1 + β − 2βg

)
. (6)

The interval includes zero. This condition therefore permits both intertemporal com-
plementarity and intertemporal substitutability but limits the degree of either. In
sum, all four technical conditions tend to hold when h′′ and πAS are not too large.

I am interested in empirical researchers’ ability to estimate the consequences of
altering C from observable responses to panel variation in wt and, where available, to
panel variation in f1,t and f2,t. I assume that empirical researchers observe payoffs,
weather, and, possibly, forecasts for J agents (equivalently, firms) in each of T periods.
Index these agents by j. To highlight the issue at hand, they are in the same climate
C with the same payoff function π but their own stocks. I do not explicitly model
the unobservable characteristics that motivate fixed effects specifications because I do
not here study whether regression coefficients consistently estimate weather impacts.
Instead, I study whether climate change impacts are in principle recoverable from
consistently estimated weather impacts.

Working within a formal framework forces us to define the treatment effect of
interest. I study the average effects (over time, and thus over weather shocks) of
moving agents from one climate to another once agents have had time to adapt
to the new climate. This adaptation is based both on experiencing weather drawn
from the new distribution of weather and on understanding the distribution of future
weather. This climate change treatment is consistent with the dominant exercise
in the empirical literature to date, which calculates the effect of replacing a recent
distribution of weather with a distribution projected to hold around 100 years later.
Following this literature, I will not study how the transition from one climate to
another interacts with agents’ decisions,17 or how expectations of a future change

17Kelly et al. (2005) frame the cost of learning as an adjustment cost. Quiggin and Horowitz (1999,
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in climate affect agents today.18 These are both important questions but are beyond
the scope of the present analysis—and thus far largely beyond the empirical literature
that this analysis seeks to inform.

3 Estimating Climate Impacts When There Are

No Dynamic Linkages

Begin by considering a setting in which payoffs are independent of the stock St: πS =
0. Each period’s decision problem simplifies to a static problem, with optimal actions
A∗

t (wt;K) satisfying the first-order condition πA(wt, A
∗
t , ·;K) = 0 and independent

of all other periods’ actions.19 The first-order condition for the infrastructure choice
problem is πK(C,A

∗
t (C;K), ·;K) = 0.

Define Ā ≜ A∗
t (C;K) and π̄ ≜ π(C, Ā, ·;K). Appendix F.1 shows that

dE0[πt]

dC
= π̄w + π̄A

dĀ

dC︸ ︷︷ ︸
=0

+ π̄K
dK

dC︸ ︷︷ ︸
=0

= π̄w ∀t > 2. (7)

When agents optimize, the effects of climate on short-run and long-run actions vanish
and we need to recover only the direct effect of weather. This envelope theorem
intuition is familiar from previous literature (Hsiang, 2016; Deryugina and Hsiang,
2017).20,21

Consider the following regression

∆πjt =αj + θ∆wjt + ηjt, (8)

where ∆πjt ≜ πjt−πj(t−1) (and analogously for other variables), αj is a fixed effect for
unit j, and ηjt is an error term. Use a hat to denote each estimator. Here and below,

2003) discuss broader costs of adjusting to a change in climate. These papers’ adjustment costs are
conceptually distinct from the adjustment costs studied here. The present use of “adjustment costs”
follows much other economics literature in referring to the cost of changing decisions from their
previous levels. I study how these adjustment costs hinder estimation of the consequences of climate
change from weather impacts, not how they affect the cost of transitioning from one climate to
another.

18Severen et al. (2018) show that land markets capitalize expectations of future climate change
and correct cross-sectional analyses in the tradition of Mendelsohn et al. (1994) for this effect. I
here study responses to widely available, shorter-run forecasts in a longitudinal context and show
how to use them to improve panel analyses in the tradition of Deschênes and Greenstone (2007).

19Using terminology defined below, ex-ante adaptation is here impossible and ex-post adaptation
is here independent of all prior ex-post adaptation.

20To recover the setting of Hsiang (2016) and Deryugina and Hsiang (2017), we would have to
eliminate the choice of At and make π depend on C directly rather than on wt. In that case, the
only available action (the choice of K) is made independently of weather realizations and there is
no scope for either ex-post or ex-ante adaptation.

21Guo and Costello (2013) show that this envelope theorem intuition breaks down when choice
variables are discrete, which could be especially relevant to long-lived infrastructure.
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I write regressions in terms of differences for consistency with empirical applications
concerned with spurious trends, such as Newell et al. (2021) and Section 6 below.22

I study the probability limits of this and other estimators as we increase the number
of units in the sample. By standard results,

plim θ̂ =
Cov[∆πjt − µπ

j ,∆wjt − µw
j ]

V ar[∆wjt − µw
j ]

, (9)

where µx
j indicates the mean of variable ∆x across time periods within unit j. The

following proposition relates this estimator to theoretical primitives.

Proposition 1 (Conventional Estimator). If π is independent of St, then plim θ̂ =
π̄w.

Proof. See Appendix F.2. Sketch: Expands π to second-order around the determin-
istic steady state and analyzes (9).

Therefore, from equation (7),

dE0[πt]

dC
= plim θ̂ ∀t > 2.

When payoffs are independent of the stock, the simplest weather regression recov-
ers the average marginal effect of weather and thus recovers the long-run effects of
climate.23

This is an optimistic result, but this environment with πS = 0 is rather specialized.
First, we have assumed that history does not matter. Yet capital stocks and storage
may adjust only slowly over time and resource constraints may compound over time,
as several authors have informally noted (e.g., Deschênes and Greenstone, 2007; Fisher
et al., 2012). Capital stocks and resource constraints are intuitively important in
many applications, whether agricultural, industrial, or household. Second, we have
assumed away any ability to proactively protect oneself against future weather (i.e.,
to undertake ex-ante adaptation). Yet evidence suggests that farmers adjust planting
decisions based on beliefs about the coming season’s weather (Rosenzweig and Udry,
2013), fishers adjust plans based on multi-month forecasts of El Niño events (Shrader,
2020), markets price in multi-day hurricane forecasts (Kruttli et al., 2019) and multi-
month seasonal climate forecasts (Lemoine and Kapnick, 2024), and people use daily
weather forecasts to reduce mortality risk (Shrader et al., 2023). We next turn to the
full setting to see how far the optimism engendered by the present specialization has
to run.

22With one small caveat (see footnote 27 below), the theoretical analysis is unaffected by estimating
equations in levels rather than in differences.

23Much literature regresses outcomes other than payoffs on weather. In the restricted setting of
Section 3, the coefficient on weather in a regression with actions as the dependent variable also
recovers the long-run effect of climate on actions.
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4 Estimating Climate Impacts in the Presence of

Dynamics

In a general environment with πS ̸= 0, agents’ actions depend on realized past weather
and on expectations of future weather. Appendix F.4 establishes that the determin-
istic special case (with ζ = 0 and thus wt = fi,t = C) has a unique steady state
and is saddle-path stable. Label steady-state actions Ā, the steady-state stock S̄,
and steady-state payoffs π̄, so that π̄ ≜ π(C, Ā, S̄;K). I write Ā(K,C), so that
dĀ/ dC = ∂Ā/∂C + [∂Ā/∂K][ dK/ dC]. I assume henceforth that the stock begins
at its deterministic steady state value (i.e., that S0 = S̄).

I first define the true effect of climate. I then analyze how past and future weather
affect agents’ choices. I finally consider an empirical researcher’s ability to estimate
the true effect of climate from variation in payoffs induced by past and future weather.

4.1 The True Effect of Climate on Payoffs

Following the empirical literature, we are interested in the long-run effects of altered
climate on average payoffs. Appendix F.7 shows that

lim
t→∞

dE0[πt]

dC
=π̄w + π̄A

dĀ

dC
+ π̄S

dS̄

dC
+

=0︷ ︸︸ ︷
π̄K

dK

dC

= π̄w︸︷︷︸
direct effects

+

[
π̄A + π̄S

h′(Ā)

1− g

]
dĀ(K,C)

dC︸ ︷︷ ︸
adaptation effects

. (10)

The direct effects of alterations to long-lived infrastructure K again vanish because
agents optimize this infrastructure around long-run payoffs. However, adaptation
choices At can now can have first-order consequences for average payoffs, both directly
and through their effects on the stock. Their effects on the stock become increasingly
important as the stock becomes more persistent (i.e., as g approaches 1).

Why do adaptation responses now have first-order effects on payoffs? In Section 3,
changing these actions had no effect because the first-order condition ensured that
πA = 0. However, in a dynamic environment, agents set VA = 0, not πA = 0 (see
equation (1)). Optimal actions satisfy the Euler equation, derived in Appendix F.5:

−πA(wt, At, St;K) =βh′(At)Et

[
πS(wt+1, At+1, St+1;K) + g

−πA(wt+1, At+1, St+1;K)

h′(At+1)

]
.

(11)

Agents equate the marginal effect of actions on contemporary payoffs (the left-hand
side) to the marginal effect of actions on expected future payoffs (the right-hand side),
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which includes the effect πS of altering the stock and the effect of adjusting subse-
quent actions to return to the original stock trajectory. An agent may, for instance,
choose an action whose marginal effect on immediate payoffs is negative if that ac-
tion increases expected future payoffs. We recover the static efficiency condition that
πA = 0 only as agents become myopic (β → 0) or as the stock becomes independent
of actions (h′ → 0).24

Around the deterministic steady state, equation (11) implies (see (A-6)):

h′(Ā)π̄S =− 1− βg

β
π̄A.

Substitute into (10) to obtain:

lim
t→∞

dE0[πt]

dC
=π̄w − 1

1− g

1− β

β
π̄A

dĀ(K,C)

dC
. (12)

If the steady-state adaptation response to climate change increases per-period payoffs

for a given stock (i.e., if π̄A
dĀ(K,C)

dC
> 0), then it reduces steady-state payoffs. For

instance, if the stock has no persistence (g = 0), the effect on the stock in (10) becomes
h′(Ā)π̄S, which from the Euler equation (11) is equal to −π̄A/β. This term is larger
than the effect π̄A on contemporary payoffs in (10): a dynamically optimizing agent
trades off short-run increases in per-period payoffs against long-run costs imposed
through the stock, and discounting means those costs must be larger in current value
terms. As agents become perfectly patient (β → 1), the long-run costs are exactly
offset by the short-run benefits, but as agents become myopic (β → 0), those short-
run benefits are obtained by imposing especially large costs on the future through a
depleted stock. When we add the short-run benefits and long-run costs together in a
steady-state calculation, the long-run costs dominate.

An empirical researcher will therefore need to estimate how climate affects actions
around the deterministic steady state Ā if they are to recover the effect of climate on
average payoffs. Appendix F.8 shows that

dĀ(K,C)

dC
∝

ex-post adaptation︷︸︸︷
π̄wA +

ex-ante adaptation︷ ︸︸ ︷
β
[
h′(Ā)π̄wS − g π̄wA

]
︸ ︷︷ ︸

∝ ∂Ā(K,C)/∂C

+

interactions with long-lived infrastructure︷ ︸︸ ︷[
(1− βg)π̄AK + βh′(Ā)π̄SK

]
︸ ︷︷ ︸

∝ ∂Ā(K,C)/∂K

dK

dC
.

(13)

There are three terms. The first captures what the literature has called reactive
or ex-post adaptation to realized changes in weather (Fankhauser et al., 1999;

24But the presence of the stock makes optimized actions differ from the static setting of Section 3
even as β → 0 or h′ → 0. We recover the same optimized actions as in the static setting only if, in
addition, πAS = 0, so that πA is independent of the stock.
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Mendelsohn, 2000). Here the reaction is to observed changes in weather induced by
climate change. It depends on how weather shifts the marginal benefit of short-run
actions, controlled by πwA. For instance, farmers may water crops during a heat wave
and firms may adjust production in response to price signals generated by weather
events.

The second term captures what the literature has called anticipatory or ex-ante
adaptation (Fankhauser et al., 1999; Mendelsohn, 2000). Here the anticipation
reflects understanding of how climate change shifts all future weather. It depends
on how weather shifts the marginal benefit of the stock, controlled by πwS. For
instance, farmers may conserve groundwater today in order to reduce the costs of
irrigating in coming hot weather. Ex-ante adaptation also reflects agents anticipating
that future actions will alter the stock in still-later periods. They therefore begin
investing now to reduce distortions in the later stock. For instance, farmers may cut
back on groundwater use today to make sure there is still enough groundwater left
after the hot weather passes. Unsurprisingly, myopic agents (β = 0) do not undertake
ex-ante adaptation.

The remaining terms depend on how long-lived infrastructure K responds to the
change in climate. Changes in this infrastructure do not directly affect steady-state
payoffs when optimized (i.e., π̄K = 0), but they do indirectly affect steady-state
payoffs when the marginal benefit of either short-run actions (π̄AK) or the stock (π̄SK)
depends on the choice of long-lived infrastructure. For instance, building irrigation
canals might change the marginal cost of watering crops during a heat wave or the
marginal benefit of having more groundwater.

4.2 How Weather Affects Decisions

An empirical researcher therefore needs to recover effects of climate on actions. I
next build intuition for how weather determines actions in this environment before
assessing whether the effects of climate change can be recovered from the effects of
weather.

Figure 1 illustrates the determinants of time t actions. Formally, time t optimal
actions are (Appendix F.5)

At =Ā+

effects of present weather︷ ︸︸ ︷
π̄wA

h′(Ā) χ̄
(wt − C) +

effects of past weather︷ ︸︸ ︷
Z̄(St − S̄) +

effects of future weather︷ ︸︸ ︷
βΓ

h′(Ā) χ̄

[
(f1,t − C) +

βΨ

h′(Ā)χ̄
(f2,t − C)

]
,

(14)

where h′(Ā) χ̄ > 0 and limg→0 Z̄ ∝ π̄AS. The χ̄ and Z̄ are functions of derivatives of π̄.
They result from a backward recursion that captures forward-looking optimization. I
discuss Ψ below.

Present weather affects present actions through an ex-post adaptation channel.
This channel is controlled by π̄wA, with actions aiming to mitigate the immediate harm
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Figure 1: The determinants of present actions.

or amplify the immediate benefits of weather outcomes. This term is proportional to
the ex-post adaptation channel in equation (13).

Past weather and forecasts affect present actions by altering the past actions that
determine the present stock. The history of weather thereby restrains present actions.
For g small, Z̄ is proportional to π̄AS. When π̄AS > 0, past actions that increased the
stock justify more present action, but when π̄AS < 0, past actions that increased the
stock favor less present action.25

Future weather affects present actions through forecasts of that weather. The
coefficients on forecasts in (14) are each proportional to βΓ, where

Γ ≜

ex-ante adaptation from (13)︷ ︸︸ ︷[
h′(Ā)π̄wS − gπ̄wA

]
+

preparatory actions︷ ︸︸ ︷
Ψ

π̄wA

h′(Ā) χ̄
(15)

and

Ψ ≜h′(Ā)π̄AS + g

>0 by (3)︷ ︸︸ ︷(
−π̄AA +

h′′(Ā)

h′(Ā)
π̄A

)
(16)

∝ dAt

dAt+1

∣∣∣∣
wt,f1,t,f2,t=C

.

Unsurprisingly, the coefficients on forecasts in (14) go to zero as agents become my-
opic. For forward-looking agents, three terms in equation (15) control how actions
depend on forecasts of future weather. First, when π̄wS ̸= 0, agents choose today’s
actions in order to directly mitigate the consequences (or enhance the benefits) of
expected future weather. This is the most direct form of ex-ante adaptation. Sec-
ond, expecting higher weather outcomes in the future changes how agents trade-off
time t and t + 1 actions when trying to reach the desired time t + 2 stock. If, for
instance, a higher forecast makes future actions more valuable (π̄wA > 0), then agents

25Appendix F.5 shows that Z̄ → 0 as either h′(Ā) goes to zero or as π̄AS and g jointly go to zero.
As h′(Ā) → 0, past actions do not affect the stock around the steady state. As π̄AS → 0, changes
in the stock do not directly affect the marginal benefit of current actions, and as g → 0, the time t
stock does not affect the desired time t+ 1 stock or the time t actions taken to reach it.

15 of 39



Lemoine Estimating Climate from Weather May 6, 2024

cut back on current actions. This effect vanishes as g → 0 because the time t + 2
stock then depends only on time t + 1 actions. This is an indirect form of ex-ante
adaptation. These first two terms are proportional to the ex-ante adaptation channel
in equation (13).

Third, agents anticipate how today’s choices impose historical restraints on future
choices and so undertake preparatory actions that can enable beneficial future actions.
π̄wA/[h

′(Ā)χ̄] captures how a higher forecast shifts desired future actions. The term
labeled Ψ captures how today’s actions change with expectations of future actions.
Equation (16) shows that Ψ depends on two terms. The first term within Ψ reflects
intertemporal substitutability or complementarity among actions. When actions are
intertemporal complements (h′(Ā) π̄AS > 0), a forecast that increases desired future
actions leads agents to choose high actions today as a means of reducing future
adjustment costs, but when actions are intertemporal substitutes (h′(Ā) π̄AS < 0), a
forecast that increases desired future actions leads agents to choose low actions today
as a means of conserving resources for the future. The second term within Ψ reflects
how changes in desired future actions affect the tradeoff between time t and t + 1
investments in reaching the desired time t + 2 stock. This effect vanishes as g → 0.
The preparatory action term in equation (15) was absent from the effects of climate
change derived in equation (13), a distinction that will be important for subsequent
analysis.

4.3 Recovering the Effect of Climate from Weather Regres-
sions

Now consider the possibility of estimating long-run climate impacts from variation
in weather. By affecting people’s lived experience of weather, a change in climate
affects actions reactively chosen to deal with present weather. It also affects the
past weather experienced by agents once they have been living in the counterfactual
climate. This channel will make it important to estimate the effects of past weather.
Finally, a change in climate affects agents’ expectations of future weather, manifested
as systematically higher forecasts. This channel will make it important to estimate
the effects of forecasts.

I here assume that the empirical researcher can observe payoffs (e.g., profits) and
weather variables.26 I do not assume that the empirical researcher observes all of the
actions that agents take or the level of the stock. Consider the following distributed
lag regression with fixed effects:

∆πjt =αj +
I∑

i=0

Λi∆wj(t−i) +
I∑

i=0

λi∆fj1,(t−i) +
I∑

i=0

γi∆fj2,(t−i) + ηjt, (17)

26The analysis straightforwardly extends to the case where the empirical researcher instead ob-
serves actions, not payoffs, and seeks the effect of climate on actions.
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where units are again labeled j, where αj is a fixed effect for agent j, where I ≥ 0
controls the number of lags, and where ηjt is an error term. As before, a hat denotes
estimated coefficients.

The proposition describes the effect of summing the estimated coefficients on an
arbitrarily large number of lags:27

Proposition 2 (Summing Many Lags).

lim
I→∞

plim
I−3∑
i=0

[
Λ̂i + λ̂i

]
=π̄w + ω

[
π̄A + π̄S

h′(Ā)

1− g

](
∂Ā(K,C)

∂C
+ Ω

)
, (18)

where

Ω ∝ βΨ
π̄wA

h′(Ā) χ̄

and Ψ is defined in equation (16). If βΨ > 0, then ω < 1. If βΨ = 0, then ω = 1. If
βΨ < 0, then ω > 1.

Proof. See Appendix F.9. Sketch: Expands πt around the deterministic steady state,
calculates each coefficient as the covariance of the associated variable with πt divided
by the variance of that variable, defines Ω and ω to reconcile the summed lags with
the effect of climate change, and then analyzes these terms.

The good news is that the right-hand side of (18) comes somewhat close to the true
effect of climate derived in equation (10). In particular, it successfully captures the
direct effect of weather and also captures effects proportional to ex-post and ex-ante
adaptation.

However, three wedges make the true effect in equation (10) differ from the esti-
mated effect in (18). First, the change in steady state actions in (18) holds K fixed,
but equation (13) showed that dĀ/ dC depends on changes inK when either π̄AK ̸= 0
or π̄SK ̸= 0. The problem is that long-lived infrastructure does not vary with weather
shocks, so fluctuations in payoffs do not identify the consequences of adapting K to
an altered climate. Even though these long-run adaptations do not have first-order
consequences for payoffs when chosen optimally (i.e., π̄K = 0), equation (13) shows
that these long-run adaptations can affect short-run actions that do have first-order
consequences for payoffs. This wedge vanishes if long-lived infrastructure is in fact
fixed over the timescale of climate change (i.e., if dK/ dC = 0 in equation (13))
or if it does not directly interact with other decisions (i.e., if π̄AK = π̄SK = 0 in
equation (13)).

27The requirement that we estimate at least I lags even though we use only I − 3 lags in the
calculation avoids ancillary complications from omitted variables bias at the longest lags used in
the calculation. If regression (17) were in levels, we would obtain the same result with one less lag
required on the right-hand side.
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The remaining two wedges arise from the durability of shorter-run decisions. Ω
is a bias in estimated ex-ante adaptation. It is proportional to the preparatory ac-
tions defined in equation (15). Ex-ante adaptation is identified from transient shocks
to forecasts. Preparatory actions reflect that an idiosyncratically high forecast im-
plies idiosyncratically high future weather, for which current actions are not the most
suited. An increase in the climate index C also increases forecasts but does so sys-
tematically rather than idiosyncratically: because increasing C also increases current
and past weather, preparations for a change in weather are not relevant to the long-
run effects of climate. Forecasts are critical to identifying ex-ante adaptation, but
agents do not respond to higher-than-average forecasts in exactly the same way as
they respond to forecasts that reflect higher average weather.28

The final wedge is ω. This term reflects the difference between the historical re-
straints on current actions imposed by transient weather shocks and those imposed
by a change in climate that affects all past weather realizations and all past forecasts.
By the proposition and (16), we have ω < 1 when actions are intertemporal comple-
ments. In this case, historical restraints prevent an agent from adjusting too much
to any particular transient weather shock, but when that shock has been repeated
many times in the past (as eventually happens following a change in climate), the
many small adjustments eventually add up to a much greater adjustment. Responses
to transient shocks therefore overstate historical restraints, which is why ω < 1. Con-
sistent with conjectures in Deschênes and Greenstone (2007), observable short-run
adaptation is less than long-run adaptation.

In contrast, we can have ω > 1 when actions are intertemporal substitutes. In
this case, an agent can experience more severe historical restraints following a change
in climate than following a transient weather shock. For instance, if actions depend
on scarce resources, agents may respond strongly to a transient weather shock but
be unable to maintain this response for a long period of time. Their response to a
change in climate may thus be relatively muted. Responses to transient shocks can
understate historical restraints, which is why ω > 1. Consistent with conjectures in
Fisher et al. (2012) and Blanc and Schlenker (2017), observable short-run adaptation
is greater than long-run adaptation.29

Proposition 2 described the results of estimating a model with infinite lags and
summing the coefficients. The following corollary describes feasible regressions, with

28One could eliminate Ω by not using the forecast coefficients λ̂i, instead relying on
limI→∞

∑I−2
i=0 Λ̂i. However, this calculation would introduce a new bias, as it would miss all ex-ante

adaptation terms in equation (13). One might also consider including additional forecast horizons
in the summation. Summing the first and second horizons multiplies the ex-ante adaptation com-
ponent and Ω by 1 + βΨ/[h′(Ā)χ̄], introducing a new bias. If we had infinite forecast horizons,
summing them would multiply the ex-ante adaptation component and Ω by 1/{1 − βΨ/[h′(Ā)χ̄]},
again introducing a new bias. Neither formulation clearly improves on (18).

29If g > 0, we can have ω < 1 even when actions are intertemporal substitutes (via the second
term in (16)). The reason is that an agent living in an altered climate may choose actions to loosen
historical restraints over time.
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fewer lags:30

Corollary 3 (Summing Finite Lags). Let I ′ ≥ 1 and I ≥ I ′ + 3. Then:

plim
I′∑
i=0

[
Λ̂i + λ̂i

]
=π̄w + ωI′

[
π̄A + π̄S

h′(Ā)

1− g

](
∂Ā(K,C)

∂C
+ Ω

)
,

where Ω is as in Proposition 2. If Ψ = 0, then ωI′ = ω = 1. If Ψ > 0, then ωI′ ∈ (0, ω)
with ω < 1 and ωI′ increasing in I ′. If Ψ < 0, then ωI′ > ω > 1 for I ′ odd.

Proof. See Appendix F.10.

The number of summed lags affects only ω. When ω < 1, responses to weather shocks
underestimate responses to long-run changes in climate. Corollary 3 shows that this
underestimation is more severe when based on a shorter history of weather shocks.
Matters are more complicated when ω > 1. In this case, the bias ωI′ fluctuates as we
increase I ′, clearly introducing more bias than ω when I ′ is odd.31

The net bias introduced by the wedges Ω and ω cannot be signed in general.
However, both wedges do vanish in some intuitive special cases, leaving only the
wedge induced by K being fixed. The first special case is when agents are myopic:

Corollary 4 (Myopic Agents).

lim
β→0

lim
I→∞

plim
I−2∑
i=0

Λ̂i =π̄w +

[
π̄A + π̄S

h′(Ā)

1− g

]
∂Ā(K,C)

∂C
.

Proof. See Appendix F.11.

First, in a special case with myopic agents who do not undertake ex-ante adaptation
(β = 0), the wedge introduced by preparatory actions vanishes because myopic agents
are not concerned about future actions. The sign of the bias then depends only on
the wedge ω induced by historical restraints, as even myopic agents respond to their
own past decisions (see also Keane and Wolpin, 2002). And this wedge vanishes as we
sum an infinite number of lags: myopic agents respond to a long sequence of transient
weather shocks in exactly the same way as they respond to living in a world with an

30The requirement that we estimate at least I lags even if we use only I ′ lags avoids complications
from omitted variables bias at the longest lags used in the calculation. See footnote 27.

31Appendix A analyzes “long difference” estimators, which average over δ timesteps and estimate a
conventional weather regression on the transformed data (e.g., Dell et al., 2012; Burke and Emerick,
2016). Long difference estimators are motivated by the possibility that climate change has manifested
itself over long timesteps, but Appendix A shows that long difference estimators are identified by
sequences of transient weather shocks even when the climate has been constant. At best, these
estimators conflate the two sources of variation, and at worst they are identified off nothing but the
transient weather shocks. In the latter case, Appendix A shows that long difference estimators are
inferior to simply estimating regression (17) with I ≥ δ + 3 lags.
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altered climate.32 Therefore we recover the effect of climate by estimating a regression
with arbitrarily many lags if agents are myopic and long-lived infrastructure either is
fixed or does not interact with shorter-run adaptation decisions.33

The next special case makes actions independent of each other over time:

Corollary 5 (Independent Actions). Let I ′ ≥ 1 and I ≥ I ′+3. If πAS(·, At, St;K) =
0, then:

lim
g→0

plim
I′∑
i=0

[
Λ̂i + λ̂i

]
=π̄w +

[
π̄A + π̄S

h′(Ā)

1− g

]
∂Ā(K,C)

∂C
.

Proof. See Appendix F.12.

Each period’s decisions are independent of other periods’ decisions in a special case
without interactions between different periods’ actions (π̄AS, g = 0). In equation (14),
we lose the effects of past weather (see footnote 25). Estimating effects of realized
weather suffices to recover the direct effects of climate as well as the effects of ex-post
adaptation, and estimating effects of forecasts suffices to recover the effects of ex-ante
adaptation. In fact, in this special case we do not even need to estimate all of the lags.
When actions are chosen independently over time, the coefficients on lags longer than
the first are all zero. These can be dropped from the regression without causing bias.
But it is still important to include the first lag of both weather and forecasts. This lag
picks up effects of time t− 1 weather and forecasts on time t payoffs, via the effects
of time t− 1 actions on the time t stock. In equation (10), the contemporary effects

identify π̄w + π̄A
∂Ā(K,C)

∂C
and the lagged effects identify h′(Ā)π̄S

∂Ā(K,C)
∂C

. Therefore we
recover the effect of climate by estimating a regression with at least one lag of weather
and forecasts if π̄AS, g = 0 and long-lived infrastructure either is fixed or does not
interact with shorter-run adaptation decisions.

5 An Indirect Least Squares Estimator of Climate

Impacts

We have thus far seen that we can exactly recover the effects of climate change from
simple weather regressions only under restrictive assumptions: if agents are not af-
fected by resource or capital stocks, if agents are myopic and long-lived infrastructure

32The bias introduced by ωI′ in Corollary 3 does not vanish as β → 0: even myopic agents respond
to the weather they lived through and experience the historical restraints imposed by their responses.
Only by estimating infinite lags of weather can we replicate the long-run effect of living in an altered
climate.

33When agents are myopic, we do not need to estimate responses to forecasts (and should obtain

plim λ̂i = 0 and plim γ̂i = 0 if we do). On the other hand, when agents are not myopic but forecasts
do not exist, we lose the bias induced by preparatory actions but we also fail to estimate the ex-ante
adaptation terms from (13), as even agents who lack short-run forecasts may respond proactively to
their knowledge of climate change.
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either is fixed or does not interact with shorter-run adaptation decisions, or if agents
make decisions independently over time and long-lived infrastructure either is fixed
or does not interact with shorter-run adaptation decisions. But although we have
described the biases that arise when these conditions do not hold, we have not been
able to sign any parts of those biases.

I now show how an indirect least squares estimator can disentangle direct ef-
fects from each type of adaptation and bound climate impacts, modulo only effects
of altered long-lived infrastructure. I derive this new estimator by solving for the
probability limit of each estimated coefficient in terms of model primitives and then
rearranging those equations to solve for the combinations of model primitives needed
to calculate climate change impacts. Importantly, this new approach maintains pre-
cisely the same credible identification as the reduced-form specifications in Section 4.

I derive the estimator first in the presence of forecasts and subsequently in the
absence of forecasts.

5.1 In the Presence of Forecasts

Begin by considering the case we have analyzed so far, in which agents see specialized
forecasts of coming weather and the empirical researcher has data on those forecasts.
For example, in Shrader (2020), the empirical researcher observes forecasts of the El
Niño seasonal climate index. The following proposition presents the indirect least
squares estimator for climate impacts:

Proposition 6 (Indirect Least Squares, With Forecasts). Consider estimating re-
gression (17), with plim λ̂0, λ̂1, Λ̂1 ̸= 0. Then, for I > 3,

plim

( direct effects︷ ︸︸ ︷
Λ̂0 − Λ̂1

λ̂0

λ̂1

ex-post adaptation︷ ︸︸ ︷
− 1− β

β
Λ̂1

λ̂0

λ̂1

ex-ante adaptation︷ ︸︸ ︷
estimated︷ ︸︸ ︷

− 1− β

β
λ̂0

prep. action adjustment︷ ︸︸ ︷
+

1− β

β

γ̂0

λ̂0

Λ̂1
λ̂0

λ̂1

)
=π̄w + ω̃

[
π̄A + π̄S

h′(Ā)

1− g

]
∂Ā(K,C)

∂C
, (19)

plim
λ̂0

λ̂1

< 0,

and

Ψ ∝ plim
Λ̂2

Λ̂1

.

If Ψ > 0, then ω̃ < 1. If Ψ = 0, then ω̃ = 1. If Ψ < 0, then ω̃ > 1.
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Proof. See Appendix F.13. Sketch: Follows proof of Proposition 2 to derive the
probability limits of estimated coefficients and then solves the system for the desired
terms.

The indirect least squares estimator provides an estimate of the effect of climate
change and also provides estimates of the channels that determine that effect.34 Com-
paring the right-hand side of (19) to (10), we see the usual bias due to K being fixed
and an additional bias when ω̃ ̸= 1 that is signed from estimated coefficients.

Consider how the new estimator identifies direct effects separately from ex-post
adaptation. The estimated coefficient Λ̂0 on contemporary weather identifies the
sum of direct weather effects and the immediate payoffs from ex-post adaptation to
that weather. However, as discussed around (12), the steady-state effects of ex-post
adaptation to climate change must account for its dynamic consequences, not just its
immediate payoffs. If, for instance, ex-post adaptation provides short-run benefits at
the expense of long-run costs, the coefficient Λ̂1 on lagged weather identifies those
long-run costs. Past forecasts affect current payoffs only through the same types of
dynamic tradeoffs that determine Λ̂1, so the ratio λ̂0/λ̂1 uses variation in forecast tim-
ing to identify the ratio of short-run to long-run effects that also determines optimal
ex-post adaptation. Multiplying Λ̂1 by λ̂0/λ̂1 converts, for instance, dynamic costs of
optimally chosen actions to immediate benefits. Subtracting (λ̂0/λ̂1)Λ̂1 from Λ̂0 then
eliminates the immediate payoffs of ex-post adaptation from Λ̂0, leaving only the di-
rect effects of weather. And by converting the dynamic effects of long-run adaptation
into a steady-state effect (via (1 − β)/β), we isolate the long-run effect of ex-post
adaptation to climate change.

Now consider how the new estimator adjusts the ex-ante adaptation channel to re-
move the effects of preparatory actions. The estimated coefficient λ̂0 on contemporary
forecasts identifies a term related to ex-ante adaptation. But that term also includes
preparatory actions irrelevant to changes in climate (see discussions of Ψ in (15) and
Ω in (18)). Fortunately, longer-horizon forecasts identify preparatory actions, as there
is no other channel through which longer-horizon forecasts can affect current payoffs
in this environment. Formally, the coefficient γ̂0 on longer-horizon forecasts contains
Ψ from equation (14), Ψ is the term that drives preparatory actions in (15), and the
adjustment to γ̂0 accounts for effects such as π̄wA in (15).35 The indirect least squares
estimator adjusts the ex-ante adaptation channel to remove the preparatory action
bias.

Finally, the ratio of coefficients on lagged weather identifies how actions are linked
over time. As mentioned above, past weather matters for current weather via ex-post

34The indirect least squares estimator defined in Proposition 6 is a consistent estimator of the indi-
cated combinations of theoretical primitives, but because it is a nonlinear function of the estimated
ordinary least squares coefficients, it is not unbiased. A similar comment will apply to subsequent
results.

35That adjustment is reminiscent of the ex-post adaptation term because π̄wA defines ex-post
adaptation (see (13)).
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adaptation, which in turn matters for current payoffs via actions’ dynamic conse-
quences. The sign of Ψ controls the bias from ω̃, as it did for ω in (18), and we can
infer the sign of Ψ from Λ̂2/Λ̂1.

36 We thus learn from the ratio of lagged weather
coefficients whether ω̃ dampens or inflates the adaptation channels.

There are two cases. First, if the ratio of coefficients on lagged weather is positive,
then Ψ > 0 and ω̃ < 1. Adaptation to climate is greater than implied by responses to
weather, as when adjustment costs constrain short-run responses more than long-run
responses (i.e., actions are intertemporal complements).37 In that case, the top line
of (19) gives a lower (upper) bound on the true effect of climate if the adaptation
terms are positive (negative). Because adaptation could be arbitrarily large, we have
only a one-sided bound. If, instead, the ratio of coefficients on lagged weather is
negative, then Ψ < 0 and ω̃ > 1. Adaptation to climate is less than implied by
responses to weather, as when resource constraints bind in the long run but not in
the short run (i.e., actions are intertemporal substitutes). In that case, the top line
of (19) and the estimated direct effects bound the effect of climate from either side.

Either way, we have bounded the effect of climate as long as long-lived infrastruc-
ture either is fixed or does not interact with shorter-run adaptation decisions. And
remarkably, we have done so while maintaining reduced-form identification, without
needing to observe either the stock or actions, and without needing to estimate the
payoff function or the stock accumulation equations. In contrast, the simpler ordinary
least squares calculations in Sections 3 and 4.3 do not generally bound the effects of
climate and can exactly recover the effects of climate only when the decision-making
environment is sufficiently simple: Proposition 1 required πS = 0, and Corollaries 4
and 5 required either that agents are myopic (β = 0) or that actions are independent
over time (g, π̄AS = 0), in addition to long-lived infrastructure either being fixed or
not interacting with shorter-run adaptation decisions. Of course, the present section’s
calculations also exactly recover the effects of climate when these special conditions
are met. The indirect least squares approach therefore directly weakens the pre-
requisites to recover climate from weather, without sacrificing anything in terms of
identification.

5.2 In the Absence of Forecasts

What if agents do not have specialized forecasts of future weather, so they predict
future weather solely from their climate zone? For instance, farmers may lack quality
forecasts of temperature and rainfall months or more ahead. In this case, effects of
future weather drop out of (14). However, the lack of forecasts does not absolve
empirical researchers from needing to estimate the ex-ante adaptation to climate

36Deschênes and Greenstone (2012) noted the importance of estimating lags when thinking about
actions such as storage.

37Although note, from (16), that if g > 0, then intertemporal substitutes can be consistent with
positive Ψ.
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change described in (13): whether or not agents have specialized forecasts of future
weather, they can recognize when the climate has changed and can understand what
a changed climate means for average weather.

Consider the following regression, which is similar to (17) but omits the nonexis-
tent forecasts:

∆πjt =αj +
I∑

i=0

ϕi∆wj(t−i) + ηjt. (20)

The following proposition presents the indirect least squares estimator for climate
impacts in this setting without forecasts:

Proposition 7 (Indirect Least Squares, Without Forecasts). Consider estimating
regression (20), assuming that plim ϕ̂1 ̸= 0. For I > 3,

plim

( direct effects︷ ︸︸ ︷
ϕ̂0 +

ϕ̂1

1
β
− ϕ̂2

ϕ̂1

ex-post adaptation︷ ︸︸ ︷
+

1− β

β

ϕ̂1

1
β
− ϕ̂2

ϕ̂1

)
=π̄w + ω̃

[
π̄A + π̄S

h′(Ā)

1− g

]
lim
β→0

∂Ā(K,C)

∂C
,

∣∣∣∣∣plim ϕ̂2

ϕ̂1

∣∣∣∣∣ < 1,

and

Ψ ∝ plim
ϕ̂2

ϕ̂1

.

If Ψ > 0, then ω̃ < 1. If Ψ = 0, then ω̃ = 1. If Ψ < 0, then ω̃ > 1.

Proof. See Appendix F.14. Sketch: Follows proof of Proposition 2 to derive estimated
coefficients and then solves the system for the desired terms.

The intuition for identification is much as given following Proposition 6. The intuition
for the adjustment to obtain direct effects is also as described following Proposition 6.
In the absence of observable forecasts, the adjustment for the dynamic consequences
of ex-post adaptation depends on how the ratio of lagged weather impacts compares
to the discount factor β. The biases introduced by the possibility of endogenous K
and by ω̃ ̸= 1 are also as in Proposition 6. However, we now have a new bias due
to the inability to estimate ex-ante adaptation, which means that we recover effects
on actions only as agents become myopic (hence the limβ→0 on the right-hand side).
Nothing in the data can identify ex-ante adaptation without variation in agents’
expectations of weather.
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6 Application: Impacts of Climate Change on the

U.S. Economy

I demonstrate the new indirect least squares approach by analyzing how temperature
affects output and income in U.S counties. A competitive economy acts to maxi-
mize the present discounted value of the representative agent’s utility payoffs over
time. The theoretical analysis has agents treat climate change as exogenous, which
is consistent with a constrained-efficient economy that achieves an efficient allocation
around a given climate trajectory and treats the effect of that allocation on climate
change as an unpriced externality. For the application, I assume the representative
agent has a logarithmic utility function over either output per capita or income per
capita.

6.1 Data and Methods

I obtain county-level output and income per capita for the continental U.S. states
from the Bureau of Economic Analysis. Output data cover 2001–2019, and income
per capita data cover 1969–2019. I derive output per capita by using population data
available from the NIH Surveillance, Epidemiology, and End Results (SEER) Pro-
gram. Weather data follow Schlenker and Roberts (2006, 2009).38 I aggregate weather
on a 4km-by-4km grid to county-average weather. Appendix B reports descriptive
statistics. I calibrate β to a 15% annual discount rate in the base specification.

Quality forecasts are unlikely to be available to economic agents at the timescale
of these data. The analysis of Section 5.2 is therefore the most relevant to this
application. Adapting regression (20), I estimate:

∆πjt =
4∑

k=1

4∑
i=0

ϕirk∆wj(t−i)k + ξs1t+ ξs2t
2 + αj + νrt + ηjt, (21)

where πjt is either log output per capita or log income per capita (i.e., the represen-
tative agent’s flow utility) in county j and year t and where county j is in Census
region r. Following prior work (e.g., Newell et al., 2021), I difference variables to
minimize the effects of trends. Weather variable k counts the number of days in year
t on which county j’s daily average temperature falls in bin k. Following Leduc and
Wilson (2023), the first bin counts days below 20◦F, the second bin counts days in
20–50◦F, the third bin counts days in 70–80◦F, and the fourth bin counts days above

38I first estimate the relationship between a stable set of weather station observations from the
NOAA Global Historical Climatology Network and 4km-by-4km weather interpolations from the
Parameter-Elevation Regressions on Independent Slopes Model (PRISM). I then use the estimated
relationship to aggregate weather station observations to a 4km-by-4km grid. This method creates a
record of daily data that accounts for the physical characteristics used by PRISM while also limiting
the scope for nonclassical measurement error induced by endogenous entry of weather stations over
time.
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80◦F. The omitted bin is days in 50–70◦F. Following the focus of much prior litera-
ture, I focus on the estimate for the hottest bin in the main text. Appendix E reports
results for other bins.

I allow the effects of weather to vary by Census region r in order to mitigate
concerns about heterogeneous treatment effects in linear fixed effects estimators (see
Carter et al., 2018). I implement this heterogeneity by estimating separate regressions
by Census region. The quadratic time trends vary by state, indexed by s. The
αj are county fixed effects, and the νrt are region-year fixed effects. In the base
specification, regressions are weighted by each county’s log population in 2002, which
downweights outlier counties that contain very few people (in particular, some oil-rich
rural counties).

Regression (21) includes four lags of weather, following Proposition 7. In order
to compare to conventional approaches, I also adapt regression (8) so as to obtain
estimates without lags of weather:

∆πjt =
4∑

k=1

θrk∆wjtk + ξs1t+ ξs2t
2 + αj + νrt + ηjt. (22)

I use the estimates from this regression to project climate impacts in the fashion that
has been standard in the literature and that follows Proposition 1. Weighting and
other specification choices follow regression (21).

6.2 Results

Table 1 reports the estimated coefficients on days above 80◦F for regressions (21)
and (22). Standard errors, in parentheses, are clustered by county, which accounts for
unobserved correlation within a county over time.39 In regression (22), more days of
extreme heat significantly reduce both output per capita and income per capita in the
Midwest and South and have insignificant effects in the West. Including lags makes
contemporary extreme heat appear more harmful in the Midwest and Northeast, less
harmful in the South, and potentially beneficial in the West.

In Section 3, I showed that conventional calculations of climate impacts from re-
gression (22) require πS = 0 in order to be informative about climate change impacts.
However, the results of regression (21) contradict πS = 0. First, lagged temperatures
appear to affect both output per capita and income per capita, as several lagged
weather variables have coefficients that are significant at the 1% level. Past weather
presumably matters by affecting stock variables that subsequently affect payoffs. Sec-
ond, the bottom panel of Table 1 shows that a Wald test rejects the hypothesis that

39This level of clustering is consistent with the bootstrapped confidence intervals discussed below.
Two-way clustering is not straightforward to bootstrap. There are too few states in a Census region
to cluster by state. Appendix D reports results with state-year clustering and without clustering.
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Table 1: Estimating effects of days above 80 degF on county output per capita.

Output p.c. Income p.c.

Regression (21) Regression (22) Regression (21) Regression (22)

Midwest
Contemporary -0.0013∗∗∗ -0.00080∗∗∗ -0.0011∗∗∗ -0.00085∗∗∗

(0.00018) (0.00014) (0.000075) (0.000071)
Lag 1 -0.00069∗∗∗ -0.00033∗∗∗

(0.00021) (0.000073)
Lag 2 0.00010 0.00015∗∗

(0.00023) (0.000071)

Northeast
Contemporary -0.00059∗∗ -0.00027∗ -0.00025∗∗∗ -0.000088

(0.00024) (0.00014) (0.000077) (0.000054)
Lag 1 -0.00038 -0.00029∗∗∗

(0.00029) (0.00010)
Lag 2 -0.00022 -0.00032∗∗

(0.00036) (0.00013)

South
Contemporary -0.0000021 -0.00015∗∗ -0.0000088 -0.00012∗∗∗

(0.000079) (0.000061) (0.000034) (0.000029)
Lag 1 0.00036∗∗∗ 0.00019∗∗∗

(0.000096) (0.000032)
Lag 2 -0.000051 0.000077∗∗

(0.00011) (0.000032)

West
Contemporary 0.00052∗∗ 0.00017 0.000068 -0.000032

(0.00024) (0.00019) (0.00011) (0.000095)
Lag 1 0.00034 0.00014

(0.00028) (0.00011)
Lag 2 -0.00018 0.00018∗

(0.00024) (0.000092)

Wald test of the null that the first two lags are jointly zero
p-value, Midwest 0.000023 1.1e-12
p-value, Northeast 0.32 0.017
p-value, South 0.00000061 7.6e-10
p-value, West 0.16 0.15

Standard errors in parentheses
Standard errors clustered by county.
Regressions weighted by each county’s log population in 2002.
Years: 2002–2019 for output and 1970–2019 for income.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 2: Indirect least squares estimates for the effects of days above 80 degF, from
Proposition 7 and regression (21).

Direct Effects Ex-Post Adaptation Total Effects ϕ̂2r4/ϕ̂1r4

Output p.c.

Midwest -0.0019 -0.000080 -0.0019 -0.15
(-0.0028,-0.0012) (-0.00020,-0.000017) (-0.0030,-0.0012) (-1.47,0.40)

Northeast -0.0013 -0.00010 -0.0014 0.58
(-0.029,0.0017) (-0.0048,0.00025) (-0.033,0.0018) (-9.09,3.40)

South 0.00028 0.000042 0.00032 -0.14
(-0.000042,0.00074) (0.000013,0.000100) (-0.000032,0.00083) (-1.18,0.40)

West 0.00072 0.000030 0.00075 -0.54
(-0.000081,0.0018) (-0.000048,0.00015) (-0.000100,0.0019) (-55.2,2.16)

Income p.c.

Midwest -0.0013 -0.000031 -0.0014 -0.46
(-0.0016,-0.0011) (-0.000060,-0.000013) (-0.0017,-0.0011) (-1.23,0.029)

Northeast -0.0077 -0.0011 -0.0089 1.11
(-1.35,-0.0043) (-0.20,-0.00060) (-1.55,-0.0049) (0.54,2.32)

South 0.00025 0.000039 0.00029 0.39
(0.000068,0.00050) (0.000020,0.000068) (0.000091,0.00057) (0.073,0.66)

West -0.0017 -0.00026 -0.0020 1.23
(-0.21,-0.00068) (-0.031,-0.00012) (-0.24,-0.00078) (-2.17,29.8)

95% confidence intervals (in parentheses) bootstrapped from 1000 samples with resampling
at the county level.
Regressions weighted by each county’s log population in 2002.
Years: 2002–2019 for output and 1970–2019 for income.
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the first two lags are jointly zero in the Midwest and the South for either depen-
dent variable and in the Northeast for income per capita, and it nearly rejects at
conventional significance thresholds in the West.

The decision-making environment appears to be dynamic, so conventional calcu-
lations do not have a clear interpretation in terms of climate change. But the indirect
least squares (ILS) estimator is valid in the presence of dynamics. Table 2 uses the
estimated ϕ̂ from regression (21) in the formulas derived in Proposition 7. The 95%
confidence intervals (in parentheses) are bootstrapped, with resampling at the county
level. The ILS estimator’s use of estimated coefficients in denominators makes the
confidence intervals asymmetric.

The first column of Table 2 shows that the estimated direct effects of extreme
heat are more deleterious in the Midwest and Northeast than what one might have
expected from the coefficients on contemporary weather reported in Table 1: an
extra day with an average temperature above 80◦F in average temperature has the
direct effect of reducing output (income) per capita by 0.19% (0.13%) in the Midwest
and by 0.13% (0.77%) in the Northeast, whereas the coefficients on contemporary
temperature from regression (21) implied reductions of only 0.13% (0.11%) and 0.06%
(0.03%), respectively (and the coefficients from regression (22) implied even smaller
effects). As described following Proposition 6, the reason for the gap is that the
reduced-form coefficients in Table 1 entwine direct effects of temperature with ex-
post adaptation that responds to temperature. In both of these regions, coefficients
on contemporary and lagged extreme heat (ϕ̂0r4 and ϕ̂1r4) are negative. The negative
coefficient on lagged extreme heat means that ex-post adaptation imposes dynamic
costs, which an optimizing agent must have traded off against short-run benefits.
Subtracting these short-run benefits from the coefficient on contemporary extreme
heat isolates the direct effects of weather.

Estimating dynamic costs of ex-post adaptation also implies that ex-post adapta-
tion further reduces both output and income per capita by around 0.01% per day of
extreme heat in steady state (second column of Table 2). Combining the steady-state
costs of direct effects and ex-post adaptation (third column), an extra day of extreme
heat reduces output (income) per capita in the Midwest by 0.19% (0.14%), with the
95% confidence interval extending from a reduction of 0.28% (0.17%) to a reduction
of 0.12% (0.11%). Either point estimate is around twice as large as the point esti-
mate of a 0.08% (0.09%) reduction from regression (22). Moreover, neither confidence
interval for total effects overlaps with the corresponding confidence interval from re-
gression (22). The ILS estimator makes an extra day of extreme heat due to climate
change appear significantly more harmful (in both practical and statistical senses) in
the Midwest than suggested by the short-run effect of an extra day of extreme heat.

The ILS estimates for the Northeast are much less precise. The central estimate for
output (income) per capita indicates a reduction of 0.14% (0.89%) per day of extreme
heat, but the 95% confidence interval extends from a reduction of 3.3% (155%) to
an increase of 0.18% (reduction of 0.49%). The imprecision in the Northeast reflects
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that the estimated effects of lagged weather are similar across the first and second
lags in the Northeast (see Table 1), which makes the denominators in Proposition 7
small.

The central estimates in the South are for a benefit of extreme heat, but these
estimates are small in magnitude (0.03% for both output per capita and income per
capita). Whereas the estimated effects on output and income per capita cohere in
most regions, they differ in the West. There, extreme heat is estimated to have a
beneficial (albeit insignificant) effect on output per capita but a significantly harmful
effect on income per capita, of comparable magnitude to impacts in the Midwest and
Northeast.

The final column shows that estimates for ϕ̂2r4/ϕ̂1r4, whose sign determines the
direction of bias when projecting ex-post adaptation (see Proposition 7). For output
per capita, the short panel makes it hard to tell whether the second lag of extreme
heat has a different sign from the first lag. But for income per capita, the estimated
ratio is significantly positive in both the Northeast and South (and, in accord with the
theory, the confidence intervals include values strictly less than 1). The positive sign
suggests that adaptation will be greater in the long-run than in the short-run, as when
actions are intertemporal complements (see equation (16)). In this case, steady-state
ex-post adaptation will be greater than projected here, which would make climate
change more beneficial in the South and more harmful in the other three regions.

Appendix C analyzes effects on output by industry rather than by region. It
shows that the ILS and OLS estimators predict similar, small effects of extreme heat
in most industries. There are two exceptions: the ILS estimator predicts steady-state
losses in agriculture and retail that are much larger than—and significantly different
from—those predicted by the OLS estimator. Estimating significant effects of extreme
heat on agriculture accords with estimating significant effects of extreme heat in the
Midwest. In each of these industries, the ratio ϕ̂2r4/ϕ̂1r4 is significantly positive. This
sign again suggests that ex-post adaptation will be greater in the long-run than in
the short-run and thus greater than predicted by the ILS estimator.

Appendix D reports robustness checks that vary handling of time trends, weight-
ing, the number of lags included, clustering, and the discount rate. The main take-
aways are fairly robust: extreme heat is harmful in the Midwest and (for income per
capita) the West, ILS estimates in the Northeast are imprecise, estimated effects in
the South are small, and the OLS estimator underestimates the steady-state harm
from regular extreme heat. Including more lags makes estimated effects in the Mid-
west even larger. Estimated effects in the Northeast are sensitive to including time
trends, to the sample of years, and to the choice of discount rate. Estimated effects
on income per capita in the West are sensitive to the weighting scheme. Clustering
by state-year instead of county makes estimated effects on output per capita in the
Midwest and income per capita in the South no longer significant but does not affect
the significance of harm to income per capita in the Midwest, Northeast, and West.
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6.3 Climate Change Impacts

I project the effects of end-of-century climate change on U.S. output in Table 3.
I use 30 models in the Coupled Model Intercomparison Project Phase 6 (CMIP6),
downscaled by Thrasher et al. (2022). Following recommendations in Hausfather and
Peters (2020), I use RCP 4.5 as a scenario with weak additional mitigation. I obtain
the predicted change in days within each weather bin for each county for 2081–2100
relative to 1995–2014. I obtain projected changes in each Census region by weighting
counties’ changes by their log population in 2019. As reported in the notes to Table 3,
the projected changes in annual days above 80◦F range from an increase of roughly
2 days per year in the Northeast and West to an increase of 12 days per year in the
Midwest and 21 days per year in the South.

Table 3 multiplies these projected changes in weather by the ILS and OLS esti-
mates for the total effects of each weather variable in each region. The first column
under each estimator shows projections for extreme heat. The point estimates suggest
losses from additional extreme heat in the Midwest and Northeast, whether in terms
of output per capita or in terms of income per capita. The ILS estimator projects
losses that are significantly larger than projected by the OLS estimator, in both prac-
tical and statistical terms. In particular, the ILS estimator projects losses to income
per capita from extreme heat of around 1.7% in the Midwest and Northeast whereas
the OLS estimator projects losses to income per capita of around 1% in the Midwest
and around 0.02% in the Northeast. The 95% confidence intervals for the ILS and
OLS estimators do not overlap in these regions, illustrating the importance of using
the ILS estimator. The projected effects on the South and West are smaller, with the
ILS estimator projecting benefits from additional extreme heat in the South.

The second column under each estimator combines effects across all four weather
bins. Total projected losses from climate change are typically larger than projected
losses from additional extreme heat alone but in general comprise mostly losses from
extreme heat.40 The Midwest remains the region with the largest estimated losses. In
particular, the ILS estimator projects reductions in output per capita in the Midwest
of around 4%, but the effect is imprecisely estimated due to the imprecisely estimated
effects of cold and cool weather on output per capita in that region. The ILS estimator
projects statistically and economically significant reductions in income per capita in
every region but the South. Those losses are around 2% in both the Midwest and
Northeast and are around 0.6% in the West, with benefits in the South that are smaller
than suggested by extreme heat alone and not statistically distinguishable from zero.

40Appendix E reports effects of climate change by temperature bin. Of note, additional cold days
are beneficial, although the benefits are small relative to the costs of additional hot days. It is possible
that the estimated benefits of cold days reflect correlation with reduced leisure or with omitted
precipitation variables (e.g., the coldest days may have less snow). Because precipitation is difficult
to project reliably in models of climate change, I here estimate effects of temperature inclusive of
correlated changes in precipitation and project future climate impacts as if that correlation will be
preserved in the future.
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Table 3: Projected end-of-century percentage change in output and income per capita
due to climate change.

ILS OLS

Days Above 80 degF All Days Days Above 80 degF All Days

Output p.c. (%)

Midwest -2.33 -4.28 -0.96 -1.25
(-3.59,-1.47) (-12.0,1.98) (-1.28,-0.63) (-1.65,-0.88)

Northeast -0.26 -0.48 -0.051 -0.092
(-6.20,0.34) (-6.50,1.66) (-0.11,-0.00077) (-0.17,-0.012)

South 0.68 0.32 -0.32 -0.56
(-0.067,1.74) (-0.98,1.96) (-0.59,-0.080) (-0.81,-0.31)

West 0.19 -0.024 0.044 0.031
(-0.025,0.48) (-0.60,0.45) (-0.043,0.15) (-0.10,0.18)

Income p.c. (%)

Midwest -1.65 -2.18 -1.03 -1.59
(-1.99,-1.37) (-2.69,-1.81) (-1.19,-0.85) (-1.82,-1.40)

Northeast -1.67 -1.93 -0.017 -0.052
(-293.0,-0.92) (-293.1,-1.04) (-0.038,0.0046) (-0.080,-0.023)

South 0.60 0.33 -0.24 -0.44
(0.19,1.20) (-0.088,0.84) (-0.36,-0.13) (-0.57,-0.31)

West -0.50 -0.55 -0.0082 -0.071
(-60.5,-0.20) (-60.5,-0.23) (-0.054,0.044) (-0.12,-0.011)

95% confidence intervals (in parentheses) bootstrapped from 1000 samples with resam-
pling at the county level.
Projected temperature changes average 30 CMIP6 models, for RCP 4.5 in 2081–2100
relative to 1995–2014.
Changes in annual days above 80deg F: 12.1 in Midwest, 1.9 in Northeast, 21.0 in
South, 2.6 in West.
ILS columns multiply projected temperature changes by indirect least squares estimates
for total effects, from Proposition 7 and regression (21).

OLS columns multiply projected temperature changes by θ̂rk from regression (22).
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The ILS projections are again typically more severe than—and significantly different
from—the OLS projections.

Theory showed that these projected consequences of climate change are partially
identified, before considering the possibility of ex-ante adaptation and fixed-cost adap-
tation. The positive estimates for ϕ̂2r4/ϕ̂1r4 in Table 2 and the industry-level analysis
in Appendix C both suggest that, for the critical extreme heat variable, ex-post adap-
tation will be greater in the long run than the short run. Because ex-post adaptation
estimates reported in Table 2 and Appendix E tend to have the same sign as the esti-
mated total effects, the estimated effects of climate change are smaller than the true
steady-state effects.41 From the smaller end of the ILS estimator’s 95% confidence
interval, we can conclude that, barring ex-ante adaptation, reductions in income per
capita are likely to be at least 1.8% in the Midwest, at least 1% in the Northeast, and
at least 0.23% in the West. In each case, the lower bound projects larger losses than
the OLS estimator would have, as the lower bound is either clearly more negative
than or just on the edge of the OLS estimator’s 95% confidence interval.

7 Discussion

I have explored the limits of our ability to estimate the long-run effects of climate
change purely from short-run, panel variation in weather that is clearly exogenous,
without postulating variation in climate either cross-sectionally or over time and
without postulating that we can observe agents’ adaptation choices. I have formally
shown that we can bound long-run effects by using a new indirect least squares es-
timator. In an application to U.S. counties’ output and income, I have empirically
shown that the new estimator can generate significantly different conclusions from
conventional estimators that are not grounded in theory. Future work should apply
these new methods to other settings, including ones in which observable forecasts
enable estimates of ex-ante adaptation.

I have highlighted the dynamic differences between transient weather shocks and
permanent shifts in climate. Weather shocks and climate change also differ in their
spatial structure and thus in their general equilibrium implications. Future work
should explore how to credibly conduct inference about climate change from weather
in these other dimensions (see Desmet and Rossi-Hansberg, 2024). In addition, I
have followed prior empirical literature in estimating the effects of changing one sta-
tionary climate to another. Future work should consider the process of changing the
climate. Finally, by imposing stronger assumptions on the decision-making environ-
ment and calibrating parameters to target the long-run costs implied by the methods
presented here, future work could simulate counterfactual climate trajectories and

41And because ex-post adaptation and direct effects work in the same direction in this application,
we know that the steady-state effects of climate change are at least as large as the estimated direct
effects, even without knowing which way estimated ex-post adaptation is biased.
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thereby estimate the costs of transitioning from one climate to another.
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