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1 Introduction

A pressing research agenda seeks to estimate the economic costs of climate change.
Ignorance of these costs has hampered policy. Recognizing that different locations
have different climates, many economists have hoped to estimate the effects of climate
change from the correlation between climate and outcomes of interest over space (e.g.,
Mendelsohn et al., 1994; Schlenker et al., 2005; Nordhaus, 2006). However, locations
differ in many ways, leading to concerns about omitted variables bias.!

Intriguingly, though, the same location does experience different weather at dif-
ferent times. Stimulated by Deschénes and Greenstone (2007), a rapidly growing
empirical literature estimates the consequences of a location happening to experience
cooler-than-average or hotter-than-average weather.? Researchers project the conse-
quences of climate change by combining credibly estimated effects of weather with
scientists’ predictions about how climate change will alter the distribution of weather.
But it has been unclear whether extrapolating estimated effects of weather is truly
informative about climate change impacts.?

This paper formally relates the effects of climate change to the effects of weather
shocks. I focus on the different dynamic structure of weather shocks and climate
change: weather shocks are transient by construction, whereas climate change perma-
nently alters the distribution of weather. I show that estimating the effects of climate
change requires estimating the direct effects of altered average weather and the aver-
age effects of adapting to altered weather, which encompasses both ex-post adaptation
(through which agents react to altered weather realizations) and ex-ante adaptation
(through which agents anticipate the altered distribution of future weather).

The best possible weather regressions suffer from three biases when used to project
climate change impacts. All three biases derive from the adaptation channel. First,
some types of long-lived infrastructure will respond to climate change but are fixed
in the data. This infrastructure causes bias only if its adjustments affect the shorter-
run adaptation decisions that do vary in the data. A second bias arises from using
transient shocks to weather forecasts to estimate ex-ante adaptation. I show that re-
actions to weather forecasts identify a combination of the ex-ante adaptation relevant
to climate change and preparation for transient changes in ex-post adaptation. The
latter is not relevant to the effects of systematically altering average forecasts across
periods, as with climate change that affects agents’ expectations in every period.

1See Dell et al. (2014) and Auffhammer (2018b) for expositions and Massetti and Mendelsohn
(2018) for a review.

2For recent reviews, see Dell et al. (2014), Carleton and Hsiang (2016), and Heal and Park (2016).
Blanc and Schlenker (2017) and Kolstad and Moore (2020) discuss the strengths and weaknesses of
relying on panel variation in weather.

3For instance, Dell et al. (2014, 771-772) emphasize that “short-run changes over annual or other
relatively brief periods are not necessarily analogous to the long-run changes in average weather
patterns that may occur with climate change.” And Mendelsohn (2019, 272) observes, “An important
failing of current weather panel studies is that they lack a clear theoretical model.”
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The third bias reflects the difference between experiencing a transient weather
shock and living with altered weather period after period, as after a change in climate.
Actions are intertemporal complements (substitutes) if actions in one period increase
(decrease) optimal actions in later periods through a stock variable. For example,
actions are intertemporal complements when they represent capital investment in the
presence of adjustment costs and are intertemporal substitutes when they deplete a
scarce resource stock. In the former case, estimates derived from short-run weather
variation understate long-run adaptation to climate change because agents have more
flexibility in the long run, but in the latter case, estimates derived from short-run
weather variation overstate long-run adaptation to climate change because agents
have a hard time maintaining adaptation responses.*

What, then, is an empirical researcher to do?® I develop a new indirect least
squares estimator of climate impacts (Tinbergen, 1930, 1995). I show that we can in
fact partially identify the long-run effects of climate change in a fairly general set-
ting, even without observing all the actions agents and firms could choose, without
observing all the capital and resource stocks that they interact with, and without as-
suming functional forms. I first express climate change impacts in terms of theoretical
primitives. I then derive what reduced-form weather coefficients estimate within this
general model. Finally, I invert the system of reduced-form coefficients to recover
combinations of theoretical primitives that I insert into the expression for climate
impacts. The identification is purely reduced-form, as the only estimation is a fixed
effects regression that relies on panel variation in weather, but both the specification
of the regression and the calculations with its estimates derive from theory.®

4Both types of stories exist in the literature (see Auffhammer, 2018b). For instance, in studies of
the agricultural impacts of climate change, Deschénes and Greenstone (2007) conjecture that long-
run adjustments to changes in climate should be greater than short-run adjustments to weather
shocks because there may be costs to adjusting crops, whereas Fisher et al. (2012) and Blanc and
Schlenker (2017) conjecture that constraints on storage and groundwater pumping, respectively,
could make short-run adjustments exceed long-run adjustments.

®Recent literature has sought to work around concerns about the relevance of short-run variation
in weather by estimating how the effect of weather varies cross-sectionally with a location’s climate
(e.g., Auffhammer, 2018a; Carleton et al., 2020) or by using “long difference” estimators (e.g., Dell
et al., 2012; Burke and Emerick, 2016). The former approach forsakes the clean identification of
panel variation; I instead explore the limit of what researchers can learn from purely panel variation
in weather. Appendix A analyzes long difference estimators, showing that they inherit the biases
suffered by standard weather regressions. Finally, other work uses quasi-random spatial variation in
water supplies to estimate long-run adaptation (e.g., Hornbeck and Keskin, 2014; Blakeslee et al.,
2020; Hagerty, 2020), but similar variation will not be available for many environmental variables
affected by climate change.

6Critically, this calculation does not require the specification of structural parameters or even
of functional forms. This approach is in the spirit of Marschak’s Maxim. Heckman (2010, 359)
writes, “Marschak’s Maxim suggests that economists should solve well-posed economic problems
with minimal assumptions. All that is required to conduct many policy analyses or to answer many
well-posed economic questions are policy invariant combinations of the structural parameters that
are often much easier to identify than the individual parameters themselves and that do not require
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I show that this indirect least squares estimator eliminates the bias induced by
preparation for transient changes in ex-post adaptation. It also signs the wedge
between short-run and long-run adaptation induced by the transience of weather
shocks. Because this estimator decomposes climate impacts into direct effects of
weather and adaptation channels, I use that sign to bound the effects of climate
change. The remaining bias is the possibility that some long-lived infrastructure
could adjust on timescales not observed in the data and thereby alter the adaptation
responses that are recovered from the data. Such bias would matter only if it were in
a direction that would violate the estimated bound.

I demonstrate this new method with an updated version of a seminal analysis of
climate and agriculture (Deschénes and Greenstone, 2007). Conventional reduced-
form calculations suggest that 2°C of global warming would reduce profits from the
average acre in the eastern U.S. by around 42%, driven by changes in extreme heat.
However, the model primitives recovered by indirect least squares reject the assump-
tions that I show are necessary for the 42% calculation to be valid.

My new indirect least squares estimates imply that 2°C of global warming would
largely eliminate profits from the average acre of farmland in the eastern U.S. The
critical difference is the effect of common heat (“growing degree days”). The con-
ventional reduced-form regression suggests that agricultural profits benefit from ad-
ditional growing degree days, but I show that this estimate entwines direct effects
of heat with the short-run effects of ex-post adaptation. Using the effects of lagged
weather to disentangle these, I find that ex-post adaptation provides short-run bene-
fits. For dynamically optimizing agents, these nonzero marginal benefits in the short
run reflect tradeoffs with long-run costs, as when adapting through increased use
of a scarce natural resource.” Ex-post adaptation therefore reduces the near-term
costs of climate change but increases the long-run costs of climate change. Moreover,
once we clean the coefficient on contemporary weather of the short-run benefits of
ex-post adaptation, the direct effects of additional growing degree days are harmful.
Whereas the reduced-form analysis suggested that additional growing degree days
mitigate the costs of climate change, we see that these in fact increase the long-
run costs of climate change both through direct effects and through adaptation that
imposes dynamic tradeoffs.

If the combination of ex-post and ex-ante adaptation increases the long-run costs
of climate change, then I can recover a lower bound on the cost of climate change
from the estimated direct effects of climate change. The indirect least squares es-
timator shows that actions are intertemporal substitutes, which is again consistent

knowledge of individual structural parameters.” It is also related to sufficient statistics approaches
(see Chetty, 2009) and to price theory (see Weyl, 2019).

"For example, Blakeslee et al. (2020) show that Indian households adapt to water scarcity by
accumulating debt and removing children from school, both of which impose long-run costs. And
Aragén et al. (2021) show that Peruvian farmers increase area planted in response to high temper-
atures, which they speculate could reduce future land productivity.
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with adaptation depending on scarce resources. In that case, short-run adaptation
is greater than long-run adaptation and I can recover an upper bound on the costs
of climate change by summing the estimated costs of adaptation and the estimated
direct effects. However, identifying ex-ante adaptation is especially challenging in this
application because I do not observe forecasts of weather several months to a year
ahead. I instead proxy for forecasts with the lead of weather and calibrate the bias
induced by this proxy. The resulting estimates are too imprecise to yield a useful
upper bound on costs, but I do show that total adaptation does increase costs under
plausible calibrations. Because the estimated direct effects of climate change then do
provide a lower bound on the costs of climate change, I conclude that 2°C of global
warming would largely eliminate profits from the average acre of farmland.

There has been remarkably little prior formal analysis of the economic link between
weather and climate, despite the importance of empirically estimating the costs of
climate change and the sharpness of informal debates around the relevance of the
burgeoning empirical literature to climate change. The primary exceptions are Hsiang
(2016) and Deryugina and Hsiang (2017). They argue that the simplest weather
regression exactly identifies the effect of climate on payoffs. In their setting, outcomes
and actions depend only on the distribution of weather (i.e., only on the climate),
not on the weather realized from this distribution. In Section 3, this formulation
will emerge as a special case of the present setting. I show that the simplest weather
regressions do then recover the effect of climate, and I show that this optimistic result
survives allowing actions to respond to realized weather. However, I also show that it
does not survive allowing actions to be dynamically linked. If either current actions
can protect against future weather or payoffs depend on a capital or resource stock
inherited from earlier periods, then the short-run effects of transient weather shocks
are no longer identical to the long-run effects of climate.®

The challenge of attempting to estimate long-run effects from short-run variation
is a common one in empirical economics. The present analysis and methods could
inform approaches in other fields. For instance, labor economists desire the long-run
consequences of changing the minimum wage, but inflation converts observed min-
imum wage increases into short-run shocks (Sorkin, 2015).° And macroeconomists

8Shrader (2020) shows that forecasts are valuable for disentangling ex-ante adaptation from ex-
post adaptation and the direct effects of weather. I show an analogous result when seeking to infer
effects of climate change. I also show that estimating the effects of lagged weather allows ex-post
adaptation to be disentangled from direct effects, that using multiple forecast horizons can eliminate
one source of bias when extrapolating to climate change, and that leads of weather can imperfectly
proxy for unobserved forecasts.

9Three other papers are related to both Sorkin (2015) and the present paper’s project. First, I
here formalize analogues to arguments in Hamermesh (1995) about why the pre- and post-periods
around a minimum wage increase are not true pre- and post-periods. Second, in a model of dynamic
stock accumulation, Hennessy and Strebulaev (2020) show that estimated responses to transient
shocks can differ substantially from the theory-implied causal effects that empirical researchers seek
to test. The present paper is similar in deriving sufficient conditions for estimated effects to match
theory-implied effects. Third, Keane and Wolpin (2002) describe tradeoffs between cross-sectional
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formerly hoped to learn about long-run output-inflation tradeoffs by estimating dis-
tributed lag models, but Lucas (1972) argued that, when agents have rational ex-
pectations, the response to a transient inflation shock is not informative about the
long-run effects of permanently changing inflation policy. Here we desire the long-run
effect of changing the policy rule used by nature to generate weather.

The next section describes the setting. Section 3 analyzes a special case without
dynamic linkages. Section 4 analyzes the full model and delineates what we can learn
from reduced-form regressions. Section 5 derives the indirect least squares estimator.
Section 6 develops the new method of estimating climate impacts and applies it to
U.S. agriculture. The final section describes potential extensions. The appendix
contains empirical details, additional analysis, proofs, and robustness checks.

2 Setting

In each period ¢, agents receive payoffs m(wy, Ay, Si; K), with © bounded.!® After
observing weather w;, agents choose actions A; as a form of adaptation, where m44 < 0
(subscripts indicate partial derivatives). Agents can also affect a stock variable S,
where mgs < 0 (except in Section 3, where mg = 0). The stock evolves as Sy =
gS; + h(A;), with A monotonic.!! The parameter g € [0,1) controls the persistence
of actions. If g = 0, the time ¢ + 1 stock depends only on time ¢ actions, as with
acreage planted. If g > 0, the time t + 1 stock depends on all past actions, as with
investments in a capital stock that depreciates at rate 1 — g.

The stock can affect an agent’s payoffs from pursuing different actions. When
h mas < 0, actions are intertemporal substitutes, so that choosing a higher action
in one period reduces the marginal benefit of actions in the subsequent period. I
describe this case as a resource scarcity story. For instance, pumping groundwater
today raises the cost of pumping groundwater tomorrow.'> When k' 745 > 0, actions
are tntertemporal complements, so that choosing a higher action in one period
increases the marginal benefit of actions in the subsequent period. I describe this
case as an adjustment cost story because it favors approaching a high action via a
sequence of smaller steps. For instance, small changes to cropping practices may be
easier to implement than large changes. The magnitude of h’' 745 affects how agents
prepare in advance of a weather event that they know will change their preferred

and panel variation when estimating the effects of welfare benefits. These tradeoffs are similar to
those that motivate the present paper.

10T refer to “agents” and “actions”, but one can instead think of firms choosing quantities, with
weather affecting either prices or the production function. The assumption of boundedness is a
technical condition that ensures optimal policy is single-valued (used in Appendix E.3).

HT abstract from externalities in use of the stock and from the possibility that the stock is directly
vulnerable to weather shocks. Future work could consider common pool resources and weather-
exposed stocks.

12Exogenous groundwater recharge is consistent with a constant in h(A;).
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actions. As |h' mag| becomes large, agents prefer to begin adapting actions before a
weather event arrives, but when |h' 74| is small, agents may wait to undertake most
adaptation only once a weather event has arrived.

Agents understand the climate C', which controls the distribution of weather.
We can interpret weather as realized temperature and climate as a location’s long-
run average temperature. At all times before ¢t — 2, an agent’s only information
about time ¢ weather consists in knowledge of the climate. However, at time t — 2
specialized information about time ¢ weather becomes available in the form of a
random variable €3 5. The agent uses this information to form a forecast f5; o
of time ¢ weather: fo; o = C' 4 (ezy—2."* The parameter ¢ > 0 is a perturbation
parameter that will be useful for analysis (see Judd, 1996). At time ¢ — 1, the agent
receives additional news about time ¢ weather in the form of a random variable €; ;.
The agent refines her forecast of time ¢ weather to fi,-1 = foi—2 + (e14-1. Finally,
the agent may be surprised by a random component €j; of time ¢ weather, where
wy = fi4-1 + Ceor. Reflecting rationality of beliefs, the random variables are mean-
zero and serially uncorrelated. Ordering the ¢, by ¢, they have covariance matrix X
at any time ¢. Even though the news represented by ¢, is serially uncorrelated, the
weather realizations w; are serially correlated if ¥ is not diagonal.'*

Each agent chooses actions to maximize the expected present value of payoffs over
an infinite horizon:

t
max En I (w 7A ,S 7 K :
{Ac(Se,we, fr,e,f2,4) 320 ; FE [ ( by S5 1 )]

where 8 € (0,1) is the per-period discount factor, Fy denotes expectations at the
time 0 information set, and Sy, wo, f10, and foo are given. The solution satisfies the
following Bellman equation:

V (S, wy, Jies fo: G K) :Hﬁx {W(wta Ay, St K) + BE; [V(St—l-lu Wert, [1e41, fo,0415 G, K)] }

Agents also choose long-lived infrastructure K. This represents capital-intensive
adaptation that takes years to construct, such as irrigation canals or sea walls (see

BImplicitly, fr: = C for k > 2. Results generalize straightforwardly when extending the analysis
to allow for specialized forecasts of weather more than two periods away. Because doing so generates
little new insight but imposes additional notation, I restrict attention to the case with specialized
forecasts beginning only two periods ahead of a weather event.

4 Consistent with much previous literature, climate here controls average weather. One might
wonder about the dependence of higher moments of the weather distribution on climate. In fact,
the effects of climate change on the variance of the weather are poorly understood and likely to be
spatially heterogeneous (e.g., Huntingford et al., 2013; Lemoine and Kapnick, 2016). Further, for
economic analysis, we need to know not just how climate change affects the variance of realized
weather but how it affects the forecastability of weather: the variance of the weather more than two
periods ahead is (*trace(X), so we need to apportion any change in variance between the diagonal
elements of ¥ (i.e., between each of the ¢; ). I leave such an extension to future work.
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Aldy and Zeckhauser, 2020). This infrastructure is fixed over the period of analysis;
agents cannot adapt it to short-run weather outcomes or forecasts. This is the only
kind of action analyzed in previous work that formally relates climate change to
weather variation (Hsiang, 2016; Deryugina and Hsiang, 2017). The agent chooses K
to maximize long-run payoffs under expected outcomes:'®

max { tlggo T(Eolwe], Eo[A¢], Eo[Si]; K) }.

Together, the decision variables A; and K bracket the many types of actions actual
agents may take, which fall on a spectrum between the immediate consequences of
changing A; and the purely long-run consequences of changing K.

The setting is meant to be fairly general. To fix ideas, consider a few examples
pertinent to previous literature. In an agricultural application, actions could be
planting decisions, the stock could be water supplies or machinery, and long-lived
infrastructure could be irrigation canals or available crop varietals.!® In a flooding
application, the actions could be investments in the property, the stock could be
the quality of the property, and long-lived infrastructure could be sea walls. In a
migration application, the “stock” (i.e., the inherited state) could be one’s current
location and the actions could be the choice of future location. That choice fits
the formal framework if it depends on the current location’s present and expected
weather and on the alternate location’s average weather. In a health application,
individuals may organize their outdoor activities around weather forecasts in order
to maximize utility net of health and mortality risks but find this ability restricted as
more days go by and the stock of postponed activities accumulates (as in Graff Zivin
and Neidell, 2009). In an innovation application, the stock could be existing patents
on adaptation technologies, weather could affect the demand for these patents, and
the action could be investing in research. And in a labor or energy application,
weather could affect labor productivity or residential comfort, the stock could be air
conditioning equipment, and the action could be investing in air conditioning.

I assume the following conditions in settings with mg # 0. The first ensures that
the payoff function is strictly concave in S; and S, 1, which in turn ensures that there
is a uniquely optimal action (Appendix E.3):

(1)

[/ (Ay)mas)? <[P (Ay))*7ss |:7TAA _ Ay ] .

w(A) "
Observe that inequality (1) and g < 0 imply
h”(At)

- — . 2
TAA (A ma <0 (2)

15This form of the infrastructure decision problem does not sacrifice the qualitative insight of
maximizing expected payoffs but does simplify exposition.

16Recent literature reports that actions such as irrigation choices and crop substitution (Cui,
2020), acreage planted (Aragén et al., 2021), and pesticide use and weeding effort (Jagnani et al.,
2021) respond to weather.
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The next two conditions ensure that a steady state exists in a deterministic system
with ¢ = 0 (Appendix E.4):

Jm (1= Fg)ma(C, Ag, 5 K) — BR (A)ms(C, Ay, - K) <0, (3)
Jim —(1 - Bg)ma(C, A K) — BN (A)ms(C, Ay, - K) >0, (4)

The final condition ensures that the expression for expected optimal actions converges
(Lemma 2 in Appendix E.6):

(14 29(1 + B8) + 38¢%] [—WAA + %WA] — BN (Ar)]*mss
1+8+28g ’
[1—2g(1+ B) + 3847 [_WAA + %m] — B[ (A)*7ss
1+ —28g )
The interval includes zero. This condition therefore permits both intertemporal com-
plementarity and intertemporal substitutability but limits the degree of either.
The analysis approximates the solution to the full, stochastic model around the
steady state of the deterministic model, which has ¢ = 0 (Judd, 1996). In order to

ensure an adequate approximation, I will often impose at least one of the following
assumptions:

h'(Ap)mas € <—

(5)

Assumption 1. ¢? is small.
Assumption 2. 7 is quadratic.
Assumption 3. The €;; are jointly normally distributed.

Either of the first two assumptions will limit the consequences of stochasticity for
optimal policy, whether by limiting the variance of weather outcomes (Assumption 1)
or by making the policy function independent of that variance (Assumption 2).1” And
using either the first or the third assumption will eliminate covariances of certain
higher-order terms.

I am interested in empirical researchers’ ability to estimate the consequences of
altering C' from observable responses to panel variation in wy, f1,, and fo,. I assume
that empirical researchers observe J agents (equivalently, firms) in each of T periods.
Index these agents by j. To highlight the issue at hand, they are in the same climate
C with the same payoff function 7 but their own stocks S.*®

"When applying Assumption 2, the chosen policy is indeed affected by the variance of weather
(through realized weather) even though the policy rule is independent of that variance.

18Omitted variables bias affects the analysis below when regressions do not control for variables
(such as forecasts and actions) that are defined within the theoretical model. I do not explicitly
model the further unobservable characteristics that motivate fixed effects specifications, as I am here
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Finally, it is important to be clear about the treatment effect of interest. I will
study the average effects (over time, and thus over weather shocks) of moving agents
from one climate to another once agents have had time to adapt to the new climate.
This adaptation is based both on experiencing weather drawn from the new distribu-
tion of weather and on understanding the distribution of future weather. The climate
change treatment is consistent with the dominant exercise in the empirical litera-
ture to date, which typically calculates the effect of replacing today’s distribution of
weather with a distribution projected to hold by the end of the century. Following
this literature, I will not study how the transition from one climate to another inter-
acts with agents’ decisions'® or study how expectations of a future change in climate
affect agents today.?? These are both important questions but are beyond the scope
of the present analysis—and thus far largely beyond the empirical literature that this
analysis seeks to inform.

3 Estimating Climate Impacts When There Are
No Dynamic Linkages

Begin by considering a setting in which payoffs are independent of the stock S;: mg =
0. Each period’s decision problem simplifies to a static problem, with optimal actions
Af(wy; K) satisfying the first-order condition 74 (wy, Af, Sy; K) = 0 and independent
of all other periods’ actions.?!

Define A £ A*(C;K) and 7 £ 7w(C, A, S;; K). Appendix E.1 shows that, under

not interested in whether regression coefficients are identified in the applied microeconomics sense
of consistently estimating weather impacts but in whether climate change impacts are identified by
weather in the econometric sense of recoverable from data. The applied microeconomics notion of
identification motivated the literature’s shift from cross-sectional to panel variation (see Dell et al.,
2014; Auffhammer, 2018b). This paper explores only panel variation.

9K elly et al. (2005) frame the cost of learning as an adjustment cost. Quiggin and Horowitz (1999,
2003) discuss broader costs of adjusting to a change in climate. These papers’ adjustment costs are
conceptually distinct from the adjustment costs studied here. The present use of “adjustment costs”
follows much other economics literature in referring to the cost of changing decisions from their
previous levels. I study how these adjustment costs hinder estimation of the consequences of climate
change from weather impacts, not how they affect the cost of transitioning from one climate to
another.

20Geveren et al. (2018) show that land markets capitalize expectations of future climate change
and correct cross-sectional analyses in the tradition of Mendelsohn et al. (1994) for this effect. I
here study responses to widely available, shorter-run forecasts in a longitudinal context and show
how to use them to improve panel analyses in the tradition of Deschénes and Greenstone (2007).

21Using terminology defined below, there is no ex-ante adaptation and ex-post adaptation is not
affected by previous decisions. I recover the setting of Hsiang (2016) and Deryugina and Hsiang
(2017) if T further eliminate the choice of A; (and also make 7 depend on C' directly rather than
on w;). In that case, the only available action (the choice of K) is made independently of weather
realizations and there is no scope for either ex-post or ex-ante adaptation.
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either Assumption 1 or 2,

—dEO[ﬂ-t] =7, + 7 d_A_|_— %—— (6)
ac e T Ao TR e T T
=0 =0

for t > 2. When agents optimize, the effects of climate on short-run and long-run
actions vanish and we need to recover only the direct effect of weather. This envelope
theorem intuition is familiar from previous literature (Hsiang, 2016; Deryugina and
Hsiang, 2017).%2

Consider the following regression

T = + ijt + Njts (7>

where «; is a fixed effect for unit j and n;; is an error term. Use a hat to denote the
probability limit of each estimator. By standard results,

Cov[mj, wjy — C)|

b= Varjwj — C]

We now have:

Proposition 1. Let Assumption 1 hold, or let Assumptions 2 and 3 hold. If ms = 0,

then 0 = T,.
Proof. See Appendix E.2. m
Therefore, from equation (6),
dEO[’ﬂ't] :é
dC

for t > 2. The simplest weather regression recovers the average marginal effect of
weather and thus recovers the long-run effects of climate, as claimed by Hsiang (2016)
and Deryugina and Hsiang (2017).23

This is an optimistic result, but this environment with mg = 0 is rather specialized.
First, we have assumed that history does not matter. Yet capital stocks and storage
may adjust only slowly over time and resource constraints may compound over time,
as several authors have informally noted (e.g., Deschénes and Greenstone, 2007; Fisher
et al., 2012). Capital stocks and resource constraints are potentially important in
many applications, whether agricultural, industrial, or household. Second, we have
assumed away any ability to proactively protect oneself against future weather (i.e.,

22Guo and Costello (2013) show that this envelope theorem intuition breaks down when choice
variables are discrete, which could be especially relevant to long-lived infrastructure.

23Much literature regresses outcomes other than payoffs on weather. It is easy to show that the
coeflicient on weather in a regression with actions as the dependent variable recovers the long-run
effect of climate on actions.
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to undertake ex-ante adaptation). Yet evidence suggests that farmers adjust planting
decisions based on beliefs about the coming season’s weather (Rosenzweig and Udry,
2013), fishers adjust plans based on multi-month forecasts of El Nino events (Shrader,
2020), markets price in hurricane forecasts (Kruttli et al., 2019), people respond to
environmental warnings (Neidell, 2009), and people value weather forecasts (Lazo
et al., 2009). We next turn to the full setting to see how far the optimism engendered
by the present specialization has to run.

4 How Dynamics Complicate Reduced-Form Ap-
proaches to Estimating Climate Impacts

With g # 0, agents must account for future consequences when choosing their
actions. Appendix E.4 establishes that the deterministic special case (with ( = 0
and thus w, = f;; = C) has a unique steady state and is saddle-path stable. Label
steady-state actions A, the steady-state stock S, and steady-state payoffs 7. And
assume henceforth that agents are not too far from the steady state at time 0 (i.e.,
that (Sp — S)? is not too large).

I first define the true effect of climate. I then describe how past and future weather
affect agents’ choices. I finally consider an empirical researcher’s ability to estimate
the true effect of climate from variation in payoffs induced by weather shocks.

4.1 The True Effect of Climate on Payoffs

Following the empirical literature, we are interested in the long-run effects of altered
climate on average payoffs. Appendix E.7 shows that, if either Assumption 1 or 2
holds,

=0

_ _ ,—J\\
p QB[] dA 4§ 7 dE
e dC e T T 90 TR Qe
W(A)] dA
=Ty + [ﬁAJrﬁsl(_ﬂ 1 (8)

The direct effects of alterations to long-lived infrastructure K again vanish because
agents optimize this infrastructure around long-run payoffs. However, adaptation
choices A; can now can have first-order consequences for average payofts, both directly
and through their effects on the stock.

Why do adaptation responses suddenly have first-order effects on payoffs? In Sec-
tion 3, changing these actions had no effect because the first-order condition ensured
that m4 = 0. However, in a dynamic environment, agents set V4 = 0, not m4 = 0.
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Optimal actions satisfy the Euler equation, derived in Appendix E.5:

—WA(th, Avi1, Siga; K)
W(A41)

—WA(wt, At7 St; K) :5h/<14t) E, Ws(wt+1> At+17 St+1§ K) +g
(9)

Agents equate the marginal effect of actions on contemporary payoffs (the left-hand
side) to the marginal effect of actions on expected future payoffs (the right-hand
side), which include the direct effect mg of altering the stock and the effect of adjust-
ing subsequent actions to return to the original stock trajectory. An agent may, for
instance, choose an action whose marginal effect on immediate payoffs is negative if
that action increases expected future payoffs. We recover the static efficiency condi-
tion that m4 = 0 only as agents become myopic (as 8 — 0) or as the stock becomes
independent of actions (as h’ — 0).

We will therefore need to estimate how climate affects actions around the deter-
ministic steady state A if we are to recover the effect of climate on average payoffs.
Appendix E.8 shows that

ex-post adaptation ex-ante adaptation interactions with long-lived infrastructure
dA f "~ g ) dK
= Tea B [N(A)Tus — gTwal + [(1 = Bg)Tak + BN (A)Tsk] — .
dC dC
(10)

There are three terms. The first captures what the literature has called reactive
or ex-post adaptation to realized changes in weather (Fankhauser et al., 1999;
Mendelsohn, 2000). It depends on how weather shifts the marginal benefit of short-
run actions, controlled by m,4. For instance, farmers may water crops during a heat
wave. Ex-post adaptation can also reflect a firm’s production responses to price
signals generated by weather events.

The second term captures what the literature has called anticipatory or ex-ante
adaptation (Fankhauser et al., 1999; Mendelsohn, 2000). It depends on how weather
shifts the marginal benefit of the stock, controlled by m,s. For instance, farmers may
conserve groundwater today in order to reduce the costs of irrigating in coming hot
weather. Ex-ante adaptation also reflects agents anticipating that future actions will
alter the stock in still-later periods. They therefore begin investing now to reduce
distortions in the later stock. For instance, farmers may cut back on groundwater
use today to make sure there is still enough groundwater left after the hot weather
passes. Unsurprisingly, myopic agents (8 = 0) do not undertake ex-ante adaptation.

The remaining terms depend on how long-lived infrastructure K responds to the
change in climate. Changes in this infrastructure do not directly affect payoffs when
optimized (mx = 0), but they do indirectly affect payoffs when the marginal benefit of
either short-run actions or the stock depends on the choice of long-lived infrastructure.
For instance, building irrigation canals might change the marginal cost of watering
crops during a heat wave or the marginal benefit of having more groundwater.
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Figure 1: The determinants of present actions.

4.2 How Weather Affects Decisions

I next build intuition for how weather determines actions in this environment. Fig-
ure 1 illustrates the determinants of time t actions. Formally, time ¢ optimal actions
are (Appendix E.5)

effects of current weather effects of past weather effects of future weather
-~ % ~ /_M Ve F % ﬂ\:[l ~
— 7r’l,UA — —
A=A+ ——— - C Z(S;— S — - CO)+ ——— -0,
t + h/(A)X(wt ) + ( t ) +h/(A)X (fl,t )+ h,(A)X(fQ,t )

(11)

where h'(A) x > 0. The y and Z are functions of derivatives of 7. They derive from
a backward recursion that captures forward-looking optimization.

Present weather affects present actions through an ex-post adaptation channel.
This channel is controlled by 7,4, with actions aiming to mitigate the immediate harm
or amplify the immediate benefits of weather outcomes. This term is proportional to
the ex-post adaptation channel in equation (10).

Past weather and forecasts affect present actions by altering the past actions that
determine the present stock. The history of weather thereby restrains present actions.
For g small, Z is proportional to T45. When 745 > 0, past actions that increased the
stock justify higher present actions, but when 749 < 0, past actions that increased
the stock favor less present action.?*

Future weather affects present actions through forecasts of that weather. The
coefficients on forecasts in (11) are each proportional to

ex-ante adaptation from (10)  preparatory actions
7\ 7\

~ ™~ e Y

A 1 A\~ = TwA
I'= ﬁ [h (A)ﬂ—wS g’/TwA} + 6\Ijh/<;1)>_< ;

(12)

24Appendix E.5 shows that Z — 0 as either h/(A) goes to zero or as 45 and g jointly go to zero.
As W'(A) — 0, past actions do not affect the stock around the steady state. As T4 — 0, changes
in the stock do not directly affect the marginal benefit of current actions, and as g — 0, the time ¢

stock does not affect the desired time ¢ + 1 stock or the time ¢ actions taken to reach it.
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where
o - h//(;l) -
A
\IJ:h/(A)ﬂ'AS—I—g <_7TAA+W7TA> (13)
~ dA,;
dAt'H wt:fl,t:fZ,t:C.

As should be expected, the coefficients on forecasts go to zero as agents become
myopic. For forward-looking agents, three terms in equation (12) control how actions
depend on forecasts of future weather. First, when 7,5 # 0, agents choose today’s
actions in order to directly mitigate the consequences (or enhance the benefits) of
expected future weather. This is the most direct form of ex-ante adaptation. Second,
expecting higher weather outcomes in the future changes how agents trade-off time ¢
and t + 1 actions when trying to reach the desired time ¢ + 2 stock. If, for instance,
a higher forecast makes future actions more valuable (7,4 > 0), then agents cut
back on current actions. This effect vanishes as ¢ — 0 because the time ¢ + 2
stock then depends only on time ¢ + 1 actions. This is an indirect form of ex-ante
adaptation. These first two terms are proportional to the ex-ante adaptation channel
in equation (10).

Third, agents anticipate how today’s choices impose historical restraints on future
choices and undertake preparatory actions that can enable beneficial future actions.
Twa/[W (A)xX] captures how a higher forecast shifts desired future actions. The term
labeled ¥ captures how today’s actions change with expectations of future actions.
Equation (13) shows that ¥ depends on two terms. The first term within U reflects
intertemporal substitutability or complementarity among actions. When actions are
intertemporal complements (h'(A) 4s > 0), a forecast that increases desired future
actions leads agents to choose high actions today as a means of reducing future
adjustment costs, but when actions are intertemporal substitutes (h/(A) 745 < 0), a
forecast that increases desired future actions leads agents to choose low actions today
as a means of conserving resources for the future. The second term within W reflects
how changes in desired future actions affect the tradeoff between time ¢ and ¢ + 1
investments in reaching the desired time ¢ + 2 stock. This effect vanishes as g — 0.
The preparatory action term in equation (12) was absent from equation (10), a point
that will be important for subsequent analysis.

4.3 Recovering the Effect of Climate from Weather Regres-
sions

Now consider the possibility of estimating long-run climate impacts from variation in
weather. By affecting people’s lived experience of weather, a change in climate affects
actions reactively chosen to deal with present weather. It also affects the past weather
experienced by agents once they have been living in the counterfactual climate. This
channel will make it important to estimate the effects of past weather. Finally, a
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change in climate also affects agents’ expectations of future weather, manifested as
systematically higher forecasts. This channel will make it important to estimate the
effects of forecasts.

[ assume that the empirical researcher can observe payoffs (e.g., profits) and
weather variables.?” Importantly, I do not assume that the empirical researcher ob-
serves all of the actions that agents take or the level of the stock.?® Consider the
following distributed lag regression with fixed effects:

I I I
Tie=a;+ > Nwj—iy + Y Nifing—n + D Yifina— + it (14)
i—0 i=0 i=0

where I again label units as j, where o is a fixed effect for agent j, where I > 0
controls the number of lags, and where 7;, is an error term. As before, I use a hat to
denote the probability limit of each coefficient.

The proposition describes the effect of summing the estimated coefficients on an
arbitrarily large number of lags:*

Proposition 2. Let Assumption 1 hold, or let Assumptions 2 and 3 hold. Then:

I-2 _ _
o WA [ dA
lim > A + A = +w {WA+7TS ( )] e o) )
I=00 i=0 1 - g dc K fized
where -
Q x fU——24
A

and V¥ is defined in equation (13). If SV > 0, then w < 1. If pV =0, then w = 1. If
Y <0, then w > 1.

Proof. See Appendix E.O. m

The good news is that we come somewhat close to the true effect of climate derived
in equation (8). In particular, we successfully capture the direct effect of weather and
we capture effects proportional to ex-post and ex-ante adaptation.

However, we also see three wedges between the true effect in equation (8) and the
estimated effect in (15). First, the change in steady state actions in equation (15)
holds K fixed, but equation (10) showed that dA/dC generally depends on changes
in K. The problem is that long-lived infrastructure does not vary with weather
shocks, so fluctuations in payoffs do not identify the consequences of adapting K to

25The analysis straightforwardly extends to the case where the empirical researcher instead ob-
serves actions, not payoffs, and seeks the effect of climate on actions.

26In Section 5.1, I will analyze a case in which the empirical researcher does not observe forecasts.

2"The requirement that we estimate at least I lags even though we use only I — 2 lags avoids
ancillary complications from omitted variables bias at the longest lags.
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an altered climate. Even though these long-run adaptations do not have first-order
consequences for payoffs when chosen optimally (i.e., 7x = 0), equation (10) shows
that these long-run adaptations can affect short-run actions that do have first-order
consequences for payoffs. This wedge vanishes if long-lived infrastructure is in fact
fixed over the timescale of climate change (if dK/dC = 0 in equation (10)) or if it
does not directly interact with other decisions (if Tax = Tsx = 0 in equation (10)).

The remaining two wedges arise from the durability of shorter-run decisions. 2
is a bias in estimated ex-ante adaptation. It is proportional to the preparatory ac-
tions defined in equation (12). Ex-ante adaptation is identified from transient shocks
to forecasts. Preparatory actions reflect that an idiosyncratically high forecast im-
plies idiosyncratically high future weather, for which current actions are not the most
suited. An increase in the climate index C' also increases forecasts but does so sys-
tematically rather than idiosyncratically: because increasing C' also increases current
and past weather, preparations for a change in weather are not relevant to the long-
run effects of climate. Forecasts are critical to identifying ex-ante adaptation, but
agents do not respond to higher-than-average forecasts in quite the same way as they
respond to forecasts that reflect higher average weather.?®

The final wedge is w. This term reflects the difference between the historical
restraints on current actions imposed by transient weather shocks and those imposed
by a change in climate that affects all past weather realizations and all past forecasts.
When actions are intertemporal complements, historical restraints prevent an agent
from adjusting too much to any particular transient weather shock, but when that
shock has been repeated many times in the past (as eventually happens following a
change in climate), the many small adjustments eventually add up to much greater
adjustment. We have w < 1 because responses to transient shocks overstate historical
restraints in this case. Consistent with conjectures in Deschénes and Greenstone
(2007), observable short-run adaptation is less than long-run adaptation.

In contrast, when actions are intertemporal substitutes, an agent can experience
more severe historical restraints following a change in climate than following a tran-
sient weather shock. For instance, if actions depend on scarce resources, agents may
respond strongly to a transient weather shock but be unable to maintain this response
for a long period of time. Their response to a change in climate may thus be relatively
muted. We have w > 1 because responses to transient shocks can understate histor-
ical restraints in this case. Consistent with conjectures in Fisher et al. (2012) and
Blanc and Schlenker (2017), observable short-run adaptation is greater than long-run

280mne could eliminate €2 by not using the forecast coefficients \;, instead relying on
limy_oo 25;02 [A\Z However, this calculation would introduce a new bias, as it would miss all ex-ante
adaptation terms in equation (10). One might also consider including additional forecast horizons
in the summation. Summing the first and second horizons multiplies the ex-ante adaptation com-
ponent and Q by 1+ SVU/[W/(A)x], introducing a new bias. If we had infinite forecast horizons,

summing them would multiply the ex-ante adaptation component and by 1/{1 — SU/[h'(A)x]},
again introducing a new bias. Neither formulation clearly improves on (15).

16 of 36



Lemoine Estimating Climate from Weather May 2021

adaptation.?’

Proposition 2 described the results of estimating a model with infinite lags and
summing the coefficients. The following corollary describes regressions with fewer
lags:3°

Corollary 3. Let I' > 1 and I > I' +2. Also let Assumption 1 hold, or let Assump-
tions 2 and 3 hold. Then:

+Q,

K fized

h’([l)} dA

7
;[[\Hrj\z] =Ty + wr [WA+7T51_9 ac

where Q is as in Proposition 2. If U =0, thenwp =w = 1. If U > 0, then wp € (0,w)
with w < 1 and wyp increasing in I'. If W <0, then wpy > w > 1 for I’ odd.

Proof. See Appendix E.10. m

The number of summed lags only affects w. When w < 1, responses to weather
shocks underestimate responses to long-run changes in climate. Corollary 3 shows
that this underestimation is more severe when based on a shorter history of weather
shocks. Matters are more complicated when w > 1, so that responses to weather
shocks overestimate responses to long-run changes in climate. In this case, the bias
wr fluctuates around w as we increase I’, clearly introducing more bias than w when
I' is odd.®!

The net bias introduced by the wedges {2 and w cannot be signed in general.
However, both wedges do vanish in some intuitive special cases, leaving only the
wedge potentially induced by K being fixed:

Corollary 4. Let Assumption 1 hold, or let Assumptions 2 and 3 hold. Let I' > 1
and I > I' +2. Then:

-2 I i 1
- A h(A)] dA
lim lim » A; = lim ) [Ai +>\i] S o .
B—0 I—00 4= 9,Tas—0 4= l—g] dC K fized
=0 e
Proof. See Appendix E.11. O

29Tf g > 0, we can have w < 1 even when actions are intertemporal substitutes. The reason is that
an agent living in an altered climate would intentionally loosen historical restraints over time.

39The requirement that we estimate at least I lags even if we use only I’ lags avoids complications
from omitted variables bias at the longest lags.

31 Appendix A analyzes “long difference” estimators, which average over A timesteps and estimate
a conventional weather regression on the transformed data (e.g., Dell et al., 2012; Burke and Emerick,
2016). While long difference estimators are motivated by the possibility that climate change has
manifested itself over long timesteps, Appendix A shows that long difference estimators are identified
by sequences of transient weather shocks even when the climate hs been constant. At best, these
estimators conflate the two sources of variation, and at worst they are identified off nothing but the
transient weather shocks. In the latter case, Appendix A shows that long difference estimators are
inferior to simply estimating regression (14) with I > A + 2 lags.
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First, in a special case with myopic agents who do not undertake ex-ante adaptation
(8 = 0), the wedge introduced by preparatory actions vanishes because myopic agents
are not concerned about future actions. The sign of the bias then depends only on
the wedge w induced by historical restraints, as even myopic agents respond to their
own past decisions (see also Keane and Wolpin, 2002). This wedge also vanishes as we
sum an infinite number of lags: myopic agents respond to a long sequence of transient
weather shocks in exactly the same way as they respond to living in a world with an
altered climate.?? Therefore we recover the effect of climate when we estimate infinite
lags as long as agents are myopic and long-lived infrastructure either is fixed or does
not interact with shorter-run adaptation decisions.??

Second, each period’s decisions are independent of other periods’ decisions in
a special case without interactions between different periods’ actions (Tas,9 = 0).
In equation (11), we lose the effects of past weather (see footnote 24). Estimating
effects of realized weather suffices to recover the direct effects of climate as well as
the effects of ex-post adaptation, and estimating effects of forecasts suffices to recover
the effects of ex-ante adaptation. In fact, in this special case we do not even need
to estimate all of the lags. When actions are chosen independently over time, the
coefficients on lags longer than the first are all zero. These can be dropped from
the regression without causing bias. But it is still important to include the first lag
of both weather and forecasts. This lag picks up effects of time ¢ — 1 weather and
forecasts on time t payoffs, via the effects of time t — 1 actions on the time ¢ stock.

In equation (8), the contemporary effects identify 7, + 74 % . and the lagged
K fixed
effects identify n'(A)7s 94 . Therefore we recover the effect of climate when

K fixed
we estimate at least one lag of weather and forecasts as long as 75,9 = 0 and long-

lived infrastructure either is fixed or does not interact with shorter-run adaptation
decisions.

5 Estimating Climate Impacts Through Indirect
Least Squares

We have thus far seen that we can recover the effects of climate change from simple
weather regressions only under restrictive assumptions: if agents are not affected by
resource or capital stocks, if agents are myopic and long-lived infrastructure either
is fixed or does not interact with shorter-run adaptation decisions, or if agents make

32The bias introduced by w;s in Corollary 3 does not vanish as 8 — 0: even myopic agents respond
to the weather they lived through and experience the historical restraints imposed by their responses.
Only by estimating infinite lags of weather can we replicate the long-run effect of living in an altered
climate.

33When agents are myopic, we do not need to estimate responses to forecasts (and should obtain

A; =0 and 4; = 0 if we do).
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decisions independently over time and long-lived infrastructure either is fixed or does
not interact with shorter-run adaptation decisions. But while we have described the
biases that arise when these conditions do not hold, we have not been able to sign
that bias.

I now show how an indirect least squares estimator can bound climate impacts
and disentangle direct effects from each type of adaptation. Importantly, this new
approach maintains precisely the same credible identification from the reduced-form
specifications. As we will see, these specifications suffice because we do not need to
recover—or even specify—every underlying structural parameter in order to undertake
the calculations implied by theory.

I first preview the plan of attack. Fixing K, substituting for dA/dC, and substi-
tuting for g from the Euler equation (9), equation (8) becomes:

direct effects ex-post adaptation ex-ante adaptation
/\ AN - lj\i - - -~
hm% - =z _1—57? TwA _1—5ﬁ BN (A)Tws — g Twal
im0 dC | v 3 "D g A D !

(16)

with D > 0 itself a function of cross-partials.>* We aim to recover each individual piece
of this expression from the estimated coefficients of regression (14). In particular, we
will separately recover the direct effects, the ex-post adaptation term, and the ex-ante
adaptation term, eliminating 2 and signing the effect of the analogue of w. We will
bound the total effect of climate change by using these pieces and that sign.

The following proposition expresses several combinations of theoretical primitives
as functions of the estimated coefficients from regression (14).

Proposition 5. Let Assumption 1 hold, or let Assumptions 2 and 3 hold. For I > 2,

we have:
_ r Q _ TwA " 5\0 _ A A 5\0 A2
=) — = A=, w=No— A1 —, U o —.
My T M@y Ny T * A
Proof. See Appendix E.12. O]

The estimated coefficient \o on contemporary forecasts identifies terms related to ex-
ante adaptation, and the estimated coefficient A; on lagged weather identifies terms
related to ex-post adaptation (with an adjustment identified by the ratio of forecast
coefficients). The estimated coefficient Ao on contemporary weather identifies the
sum of direct weather effects and the immediate payoffs from ex-post adaptation to
that weather. Subtracting off the ex-post adaptation term identified by the lag of

34Gee equations (A-23) and (A-24) in Appendix E.8. Note that D absorbs the 1 — g in the
denominator left after substituting the Euler equation.
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weather isolates the direct effects. Finally, the ratio of coefficients on lagged weather
identifies the preparatory action term ¥ and thus how actions are linked over time.
We use these results to calculate the overall effect of climate:

~

A N 5\0 1—ﬂ Y ? _ 1_B7 { TwA I }
Ao — A 22— — 2 A2 4 A | =7 — 7 S
S VN S Ve g M\ WAy T A Y
L D 1-8_ (7wa | BIN(A)Tws — g Twal
T W@y B “(D - D
. WA [ dA
:w —_— _— Q .
ot @)% [”Aﬂsl—J (dcmxed+ )

(17)

We calculate the left-hand side of the first line using the estimated coefficients and
a calibrated value for 5. The right-hand side of the first line uses Proposition 5 to
express this calculation in terms of model primitives. The second line substitutes
for T'. Substituting dA/dC and also 7s from the Euler equation (9), the third line
indicates how close we get to the true effect of climate from (8). As in Proposition 2,
we see three sources of bias: the inability to identify effects of K, the €2 introduced
by preparatory actions, and the D/[/(A)x] that captures historical restraints and is
the analogue of w. The data will still not allow us to address the first, but we will
eliminate the second and sign the third.

Consider the bias €. The following corollary shows that we can use the coefficient
Ao on longer-horizon forecasts to estimate €:

Corollary 6. Let the conditions of Proposition 5 hold. Then:

D _ Q ’AYOAS\O Yo
T .

Proof. See Appendix E.13. n

Longer-horizon forecasts matter only by inducing preparatory actions: their effects
are modulated by ¥ in equation (11). We can therefore use their ratio with shorter-
horizon forecasts to identify the bias from preparatory actions, adjusting for the
ex-post adaptation term /A\l 5\0 / 5\1 (see Proposition 5) that motivates the preparation
in . Using Proposition 5 and labeling pieces as in (16), we can then calculate:

ex-ante adaptation
7\

direct effects ex-post adaptation - estimated Q adjustment
% 1-B. A 1-B 1-8:4
AO—AlA—O ——5A1A—O ——ﬁ/\o + BAlﬁ
)\1 6 )\1 B 6 )\1
D h’([l)] dA
=Ty + —— | T4 + Ty — ) (18)
W (A)X [ 1—g] dC|k firea
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We have successfully eliminated the bias from €2.

Now consider the multiplicative bias introduced by D/[h/(A)x], which is the ana-
logue to w from Proposition 2. This remaining bias affects the estimates of ex-post
and ex-ante adaptation. The next corollary shows that we can sign it:

Corollary 7. Let the conditions of Proposition 5 hold, so that W o /A\g/f\l. If v >0,
then D/[W(A)x] < 1. If U =0, then D/[W(A)x] = 1. If ¥ <0, then D/[W/(A)x] > 1.

Proof. See Appendix E.14 m

The sign of ¥ controls the bias from D/[h/(A)Y], as it also did for w. Proposition 5
showed that we can estimate the sign of ¥ from Az / A1.35 We thus know whether
D/[I(A)x] dampens or inflates the adaptation channels. If D/[h'(A)x] < 1, then
adaptation to climate is greater than implied by responses to weather, as when ad-
justment costs constrain short-run responses more than long-run responses. In that
case, the top line of (18) gives a lower (upper) bound on the true effect of climate if
the adaptation terms are positive (negative). Because adaptation could be arbitrarily
large, we have only a one-sided bound. If D/[h'(A)x] > 1, then adaptation to climate
is less than implied by responses to weather, as when resource constraints bind in
the long run but not in the short run. In that case, the top line of (18) and the
estimated direct effects bound the effect of climate from either side. Either way, we
have bounded the effect of climate if either K is fixed or K does not interact with A,
or S;. And remarkably, we have done so without needing to observe either the stock
or actions and without needing to assume particular functional forms for payoffs or
stock accumulation.

The purely reduced-form approaches in Section 4.3 do not generally bound the
effects of climate and can exactly recover the effects of climate only when the decision-
making environment is rather simple: Corollary 4 required either (i) agents to be
myopic (5 = 0) or (ii) actions to be independent over time (g, 745 = 0). Of course,
the present section’s calculations also exactly recover the effects of climate if these
conditions are met (or if 7g = 0 as in Section 3), so the indirect least squares approach
directly weakens the assumptions required by conventional reduced-form approaches
without sacrificing anything in terms of identification.3

35This result formalizes a conjecture from Deschénes and Greenstone (2012) about how storage
decisions should affect a distributed lag model: storage decisions are intertemporal substitutes,
which can manifest as alternating signs in the estimated lags. (Although note, from (13), that if
g > 0, then intertemporal substitutes can be consistent with positive ¥ and thus with a constant
sign across lags’ coefficients.)

36Both calculations require that infrastructure either is fixed or does not interact with shorter-run
adaptation decisions. Relaxing that constraint will require either data with variation in infrastruc-
ture or assumptions about how infrastructure interacts with other adaptation choices.
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5.1 When Forecasts Are Not Observable

Forecasts will be readily observable in many applications with daily data, but they will
be observable only in some applications with monthly or annual data (e.g., Shrader,
2020).3" Therefore consider the following, generically feasible regression, which uses
leads of weather as proxies for forecasts:

2
Tt =0 + Z @iwj(t_i) + Njt- (19)

i=—2

The right-hand side contains only the fixed effect, the contemporary effect of weather,
two lags of weather, and two leads of weather. Reprising the same steps we just
followed, Appendix D shows that if the conditions of Proposition 5 hold and X is
diagonal ®® then

direct effects
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ex-post adaptation
7\

o
|

1

1-81 & L Dy, 1. By

— p - P 1 —=—=-b_,—
B2 _1 o T
| & B
ex-ante adaptation (estimated)
7 _ % Y

R I oy 1) 1
B I6; b1 (E}Tl B E) (b_Q] Yoo /trace(X)

ex-ante adaptation (€2 adjustment)
"

1-— ﬁ (i)_g qA)l 2 @2 1. qA)Q Egg/tT(lC€(E)
+ - - e I e e
g P, 22 % o, B d, | Lsz/trace(X)
D W(A)] dA
=Tw = m 0 - . 20
" +h'(A)5( _WA—HTSl_g] AC i fixea (20)

The intuition for identification is largely the same as described following Proposition 5
and Corollary 7. The adjustments are here more complicated because forecasts now
act as omitted variables that affect weather variables’ coefficients (see Appendix D).
Whereas before the ratio of forecasts was critical to eliminating 2 from the ex-ante
adaptation channel, the ratio of leads now plays that role. Comparing to the true

370Of course, this problem is not unique to the indirect least squares approach, as the regressions

in Section 4.3 also used forecasts.
383 diagonal implies that weather shocks are serially uncorrelated within a location. We will see

that this is a good approximation in the empirical application.
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effect of climate in (8), we are again left with biases from D/[W/(A)y] and long-
lived infrastructure, exactly as in (18). The bias from D/[h'(A)y] again inflates or
deflates the estimates of ex-post and ex-ante adaptation. Analogously to prior results,
Appendix D shows that o, / d; is proportional to W. From Corollary 7, we use this
sign to learn about the direction of bias from D/[h’'(A)x]: the bias dampens the
adaptation channels if <i>2 / (i>1 > 0 and inflates them otherwise.

The most substantive difference between (20) and (18) is that our estimate of
ex-ante adaptation from the coefficient ®_; on the lead of weather tends to be too
small in magnitude: d_; reflects the total variation in weather, but only a fraction
Yoo /trace(X) of that variation was forecasted one period ahead of time. The bias from
proxying forecasts with the lead of weather vanishes as the fraction goes to 1 because
forecasts are then perfect. In contrast, if time ¢+ 1 weather is largely unknown at time
t, then we may estimate very little ex-ante adaptation even though an agent would
undertake substantial ex-ante adaptation to climate change. Analogous bias arises in
our correction for €2, which depends on the first and second leads of weather. The
primary cost of proxying forecasts by the leads of weather is having to calibrate X
to outside data so that we can mechanically undo these biases. Importantly, needing
Y} to be diagonal and calibrated to outside data is a far weaker assumption than
required for any of the reduced-form approaches in Section 4.3 to successfully recover
the effects of climate—and we do not even need assumptions about ¥ in environments
with observable forecasts.

6 Estimating Climate Impacts in U.S. Agriculture

I now demonstrate the applicability of the new approach by re-analyzing a semi-
nal application in the weather-climate literature, the impacts of climate change on
U.S. agricultural profits (Deschénes and Greenstone, 2007).

The construction of the data follows an updated version of the methodology in
Deschénes and Greenstone (2007) and Fisher et al. (2012). I have observations of
county-level agricultural profits and acreage every 5 years from 1987 through 2017
from the U.S. Census of Agriculture. I follow previous literature in studying a measure
of growing season degree days (i.e., accumulated heat within a temperature range
favorable to plant growth), a measure of extreme growing season degree days (i.e.,
accumulated extreme heat, generally harmful to plant growth), and growing season
precipitation. The preferred specification includes USDA Farm Resource Region-
by-year fixed effects (as in Deschénes and Greenstone, 2012),%° weights counties by
average acreage (as in Deschénes and Greenstone, 2007), clusters standard errors by
state (as in Fisher et al., 2012), and restricts the sample to counties east of the 100th

39 Appendix B provides further details and reports the variance explained by the weather variables
(see Fisher et al., 2012). Appendix F.1 assesses sensitivity to instead defining regions as individual
states (as in Deschénes and Greenstone, 2007) or as the whole country (as in Fisher et al., 2012).
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meridian, which are less likely to be irrigated (Schlenker et al., 2005; Fisher et al.,
2012). Appendix B further details the data, and Appendix F contains a variety of
robustness checks.

I compare two different calculations of climate impacts. The reduced-form ap-
proach requires strong assumptions on the decision-making environment, whereas the
theory-based approach bounds the effect of climate under far weaker conditions. First,
following the spirit of previous literature and regression (7), I estimate

K
Tet =0 + wrt + Z kaft + Tt (21)
k=1

where ¢ indicates counties, ¢ indicates years, 7w, is agricultural profits, the a. are
county fixed effects, the 1,; are region-year fixed effects, and superscript k& indexes
weather variables of interest. The reduced-form approach’s calculation of climate
change’s consequences multiplies each 6% by the projected change in w* over the
course of the century. Proposition 1 showed that this approach recovers the effect of
climate if there are no dynamic linkages (i.e., if mg¢ = 0). This approach therefore
requires the absence of ex-ante adaptation and the independence of ex-post adaptation
from any past decisions.

The theory-based approach implements the indirect least squares estimator of
Section 5. This approach is valid even if mg # 0. Following regression (19), I estimate

K 2
et =0 + 1/J7"t + Z Z q)fwf(tfz) + Net- (22)

k=1 i=—2

I use the resulting coefficients to calculate each term in (20) for each weather variable
k. T then multiply the terms from (20) by the projected change in w* over the course
of the century. I also calculate <i>§ / i)’f in order to sign ¥ (using Proposition A-2 in
Appendix D and Corollary 7) and thereby bound the effects of climate.

The theory-based calculations require a value for the discount factor 8: 1 use an
annual discount rate of 12%.%° Further, because forecasts are unobserved in this ap-
plication, I must follow Section 5.1 in assuming that weather is serially uncorrelated.*!
The assumption of serially uncorrelated weather seems an acceptable starting point:
over all U.S. counties from 1972 to 2019, the correlation between locally demeaned
growing season degree days and its lag is 0.13, the correlation between locally de-
meaned extreme growing season degree days and its lag is 0.075, and the correlation
between locally demeaned growing season precipitation and its lag is -0.014.

I calibrate ¥ to the ability of global climate models to forecast average sum-
mer temperatures at the end of the previous summer. Becker et al. (2020) report

40 Appendix F.1 shows that results are not sensitive to the discount rate.

41These assumptions were unnecessary in the reduced-form approach because, following Section 3,
it simply assumes away ex-ante adaptation and any other dynamic linkages by requiring 7g = 0.
With that assumption, agents have no use for forecasts and discounting is irrelevant.
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anomaly correlation coefficients that correspond to [(Zgo + Xs3) /trace(X)]V/2.42 Emily
Becker kindly reanalyzed their data to weight locations by the farmland acreage vari-
able used here. Depending on the precise target months and lead time chosen, the
anomaly correlation coefficient over 1991-2020 is between 0.25 and 0.45 in a six-model
ensemble. Using 0.35 and assuming that 5/6 of the reported correlation reflects in-
formation available only one year in advance, we have g, /trace(3) = 0.0851 and
Yig3/trace(X) = 0.0034. 1 assess robustness to a range of plausible values in Ap-
pendix C.

6.1 Effects of Marginally Increased Average Weather

The top panel of Table 1 reports the reduced-form coefficients from regressions (21)
and (22). Profits increase in same-year growing degree days (“GDD”), but both
same-year and previous-year extreme growing degree days reduce profits (“Extreme
GDD”). The central estimate suggests that same-year precipitation reduces profits,
but this effect could easily go the other way. The signs of the central estimates
alternate from the first to the second lag for both extreme growing degree days and
precipitation. Most leads of weather do not have statistically significant effects on
profits.

The lower panel of Table 1 reports the medians and, in parentheses, lower and
upper quartiles for the combinations of model primitives from equation (20).%* The
signs of the direct effects and the ex-post adaptation effects are nearly all consistent
with the signs of same-year and previous-year impacts on profits. The exception is
that the sign of the direct effects of non-extreme growing degree days opposes the
sign of same-year impacts on profits—I discuss this in more detail in Section 6.3.
The ex-ante adaptation effects are noisily estimated and often not clearly different
from zero, as were the coefficients on the leads of weather. Finally, the interquartile
range for ex-post adaptation is negative for all three weather variables. This result
suggests that mg # 0 and thus that the reduced-form approach’s calculations will not
successfully recover climate impacts.

6.2 Long-Run vs Short-Run Adaptation

The final row of Table 1 reports the ®%/®*, whose sign matches the sign of ¥. In-
equality (5), which guarantees convergence of expected actions, implies |®f5/®F| < 1.4
Reassuringly, the estimates in Table 1 are consistent with the magnitude of ®%/®%

2The correlation is Cov|wy, f14-1]/(Varfw:] Var[fi,—1])"/?, where Covlwy, fii—1] =
Var[fii—1] = Loz + X33 and Var[we] = trace(X).

431 obtain these statistics by sampling from distributions defined by the means and covariance
matrix from regression (22). The lower panel does not report means and standard errors because
the distributions can be skewed due to division by coefficients.

4“4Lemma 2 in Appendix E.6 shows that (5) implies |Zh/(A) + g| < 1, and the proof of Proposi-
tion A-2 in Appendix E.16 shows that Zh/(A) + g = &y/®;.
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Table 1: Top: Estimated coefficients and standard errors from regressions (21)
and (22). Bottom panel: Model primitives estimated by combining regression (22)
with equation (20), reported as the median and lower /upper quartiles.

GDD Extreme GDD Precip

Reduced-Form Coefficients

0 15 -120 5.2
(8.6) (49) (3.2)
Dy 11 -91 -3.2
(8.7) (50) (3.2)
o, -8.2 -48 -6.8
(6.9) (25) (3.1)
D, -8.4 17 0.78
(10) (26) (3.1)
d 2.2 24 3.2
(4.5) (23) (2.1)
o, -12 -34 -1.1
(5.7) (22) (2.1)
Theory-Implied Effects From (20)
Direct Effects -4.7 -140 -6.9
(-19,6.2) (-180,-110) (-10,-4.0)
Ex-Post Adaptation -1.9 -3.5 -0.83
(-4.8,0.22)  (-5.4,1.5) (-1.1,-0.59)
Ex-Ante Adaptation (Estimated) 0.23 3.2 -0.24
(-1.1,1.0) (0.45,6.4)  (-0.51,0.0092)
Ex-Ante Adaptation (€ Adjustment) -1.7 -3.3 -0.20
(-15,7.5) (-6.8,-0.54) (-0.66,0.12)
By/ Dy 0.67 -0.36 -0.11

(-0.18,1.8)  (-0.67,-0.0073)  (-0.44,0.21)

All specifications include county and Farm Region-year fixed effects. The reduced-
form estimates’ standard errors and the theory-implied results derive from covari-
ance matrices that are robust to clustering at the state level. The sample includes
only counties east of the 100th meridian. Observations are weighted by (the square
root of) a county’s average farmland acreage. There are 16254 county-year ob-
servations and 37 state observations. Profits in thous. year 2002 dollars, GDD in
°C-days, and precip in mm.
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being less than 1. We have a case of intertemporal substitutes (complements) if this
ratio is negative (positive). The estimates for non-extreme growing degree days and
precipitation have ambiguous sign, but even the 75th percentile estimate is nega-
tive for the extreme growing degree days thought to drive climate impacts. Finding
<i>’2“ / <i>’f < 0 is contrary to Le Chatelier’s principle but consistent with recent empirical
work in agricultural economics (Hendricks et al., 2014; Kim and Moschini, 2018). Fol-
lowing Eckstein (1984), these researchers attribute their results to soil nitrogen and
pest dynamics inducing farmers to rotate their crops over time. Within the present
paper’s model, finding ®% > 0 with ® < 0 implies that adaptive actions taken two
years ago increase current payoffs by constraining the actions taken last year.

Table 2 explores the robustness of the estimated <i>’g / (i)’f.45 The first row repeats
the results from the preferred specification. The second row does not weight observa-
tions by farm acreage, the third and fourth rows explore alternate region-year fixed
effects, the fifth row uses only years since 1997 in order to avoid an issue with older
data (described in Appendix B), and the sixth row changes the sample to counties
west of the 100th meridian. In most of these case, even the 75th percentile for extreme
growing degree days is negative. The exceptions are cases with especially noisy esti-
mates, whether because of limited identifying variation in the presence of state-year
fixed effects or because of a restricted sample; however, the median estimates are still
negative in even these cases. The seventh row estimates a geometric lag structure,
using three lags and a one-step GMM estimator. The geometric term is equal to
CT>’§ / Cﬁ’f The estimate for extreme growing degree days is largely unchanged from the
preferred specification. On the whole, the evidence supports ®%/®% < 0 for extreme
growing degree days.

The final two rows of Table 2 change the dependent variable from profits to yields.
The theoretical analysis is for a maximand such as profits, but some argue that agents
roughly act to maximize yields for given crop acreage. An advantage of using yields
is the far greater number of observations available, as data are published annually
instead of quinquennially. Corn yields” analogue of <i>’§ / <i>’f is negative. Soybean yields
are the one case where we see a positive median estimate for extreme growing degree
days. Because soybeans replenish soil nitrogen whereas corn depletes it, finding a pos-
itive estimate for soybean yields and a negative estimate for corn yields is consistent
with soil nitrogen dynamics driving crop rotation.

6.3 Effects of Climate Change

I have thus far considered the marginal effects of non-extreme growing degree days,
extreme growing degree days, and precipitation. I now multiply these effects by the
projected changes due to climate change over the century in order to obtain a first-
order approximation to the effects of climate change on the average acre of farmland.
I project the effects of climate change using the RCP 4.5 trajectory of stabilized

45The table does not vary the discount factor because doing so does not affect <i>’2€ / <i>’f .
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Table 2: Robustness of <i>’2“ / di)’f . Except where indicated, all specifications are as in

the notes on Table 1.

GDD Extreme GDD Precip
Base 0.67 -0.36 -0.11
(-0.18,1.8) (-0.67,-0.0073) (-0.44,0.21)
No Weighting 1.3 -0.87 -0.40
(0.4,2.9) (-1.8,-0.28) (-0.7,-0.14)
Year f.e. 0.77 -0.56 -0.25
(-3.0,3.2) (-0.73,-0.41) (-0.47,-0.055)
State-Year f.e. -0.29 -0.0023 0.17
(-0.89,0.32) (-2.1,2.4) (-1.1,1.4)
1997-2017 Only 0.18 -0.66 -0.59
(-0.17,0.54) (-1.7,0.34) (-1.6,0.34)
Western U.S. -0.43 -2.6 2.0
(-0.64,-0.036) (-5.1,-0.76) (1.2,3.6)
Three Lags® 0.65 -0.32 -1.2
(0.21,1.1) (-0.55,-0.095) (-1.4,-0.94)
Corn Yields? -0.49 -14 1.7
(-0.98,-0.056) (-2.8,0.028) (1.3,2.3)
Soybean Yields? 0.29 1.1 -0.61
(0.16,0.43) (0.12,2.5) (-0.97,-0.35)

¢ Interquartile range calculated from standard error.
b Using annual data from 1987-2017.
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Table 3: The percentage change in eastern U.S. agricultural profits due to predicted
end-of-century changes in growing degree days, extreme growing degree days, and
precipitation. The reduced-form estimates report central estimate and standard error.
The theory-implied estimates report median and lower/upper quartiles.

GDD Extreme GDD Precip Combined
Reduced-Form
37 -79 -0.54 -42
(21) (33) (0.33) (22)
Theory-Implied
Direct Effects -12 -98 -0.71 -113
(-46,15) (-123,-72) (-1.0,-0.41)  (-145,-82)
Ex-Post Adaptation -4.6 -2.4 -0.086 -7.2
(-12,-0.54) (-3.7,-1.0) (-0.11,-0.061)  (-15,-1.5)
Ex-Ante Adaptation -90 -40 -0.91 -138
(-899,470) (-95,23) (-1.8,-0.29)  (-1067,602)
Combined Adaptation -92 -42 -0.99 -142
(-905,466) (-98,22) (-1.9,-0.36)  (-1076,595)

All specifications include county and Farm Region-year fixed effects. The reduced-
form estimates’ standard errors and the theory-implied results derive from covari-
ance matrices that are robust to clustering at the state level. The sample includes
only counties east of the 100th meridian. Observations are weighted by (the square
root of) a county’s average farmland acreage. Climate projections use the RCP
4.5 scenario averaged across 21 CMIP5 models. There are 16254 county-year
observations and 37 state observations.

emissions from 21 downscaled CMIP5 models. In this scenario, global mean surface
temperature increases by around 2 degrees Celsius over the century, which increases
growing degree days of both types (see Appendix B).

The top panel of Table 3 reports the conventional reduced-form calculation, which
Proposition 1 showed was valid if m7¢ = 0. The projected increase in non-extreme
growing degree days is estimated to increase agricultural profits, but the projected
increase in extreme growing degree days reduces profits to a greater degree. Climate
change reduces profits from the average acre of farmland by 42% in the central es-
timate, and widespread Le Chatelier intuition would suggest that this is an upper
bound on the cost of climate change because adaptation will be greater in the long
run. However, Table 1 showed that the coefficient on lagged extreme growing degree
days appears to be nonzero, which suggests 75 # 0 and a need for the theory-based
calculations.

The lower panel reports the new, theory-based estimates of climate impacts. The
median direct effect projects losses of around 100% from climate change, which is
over twice the estimate from the reduced-form approach. Effects on extreme growing
degree days again drive the total effect of climate change. The primary source of the
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difference with respect to the reduced-form approach is that additional non-extreme
growing degrees here have harmful direct effects. As discussed around Proposition 2,
the coefficient on contemporary weather in the reduced-form regression entwines the
direct effect of weather with the immediate payoffs from ex-post adaptation to con-
temporary weather. The indirect least squares estimator cleans the coefficient Ao of
the immediate payoffs from ex-post adaptation. The remainder indicates that the
direct effects are harmful.

Table 3 also shows that ex-post adaptation increases costs from climate change.
How can adaptation reduce payoffs? In (8), an increase in A increases payoffs from
climate change if and only if 74 + 75 h'(A)/(1 — g) > 0. The first term captures the
immediate payoffs from adaptation and the second term captures the dynamic effects.
The Euler equation (9) implies

(A 1—
A+ Tg ( >:— BﬁA.
l—yg l—yg

The effects of adaptation on long-run payoffs from climate change therefore run
counter to the effects on immediate payoffs defined by 74. Consider an example
with 74 > 0 and A/(A) > 0. A dynamically optimizing agent would forgo immediate
gains from further increasing A; if simultaneously increasing the stock variable im-
poses costs in later periods. Moreover, because she is impatient, those later periods’
non-discounted costs must exceed the immediate benefits that she forsakes around an
optimum. When we examine the effects of climate change on steady state payoffs, we
account for changes in both A and S without regard to this timing. The future costs
of the larger stock dominate the calculation. In sum, detecting long-run costs from
adaptation indicates that agents undertook actions that provided short-run benefits
but left them a less desirable stock for the long run.

Now consider whether agents adapt to climate as they do to short-run weather
shocks. The bias from D/[h/(A)y] # 1 in (20) reflects historical restraints (as with
w in Section 4.3). If ® /®* > 0, the present calculations underestimate adaptation
to climate (because ¥ > 0 and D/[I/(A)x] < 1), but if ®5/®% < 0, the present
calculations overestimate adaptation to climate (because ¥ < 0 and D/[W/(A)x] > 1).
We saw in Table 1 that @’5 / (iﬂf < 0 for the extreme growing degree days that drive
climate impacts. This result implies that we observe more adaptation to short-run
weather shocks than would occur in response to long-run changes in climate. The
implied resource scarcity story is intuitively consistent with finding that adaptation
provides short-run benefits but imposes long-run costs.’® Because @'5 / <i>’f < 0, we
can bound the effects of climate by the estimated total effects that include projected
adaptation and by the estimated direct effects that exclude adaptation.

16 Aragén et al. (2021) show that Peruvian farmers increase acres planted in response to hot
weather shocks. They speculate that these decisions will reduce future land productivity through
the types of soil dynamics described in Section 6.2 as implying ®5/®% < 0.
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However, ex-ante adaptation is here imprecisely estimated. The row for ex-ante
adaptation in Table 3 includes the adjustments for ¥o/trace(¥X) and s3/trace(X).
The median estimates suggest that ex-ante adaptation is costly, but the estimates are
noisy (especially for non-extreme growing degree days). Appendix C shows that the
combination of ex-post and ex-ante adaptation appears to be costly as long as Y33
is much smaller than X959, which is a reasonable calibration. In this case, the direct
effects of climate change are a lower bound on the total costs of climate change. This
lower bound implies the complete or near-complete elimination of profits from the
average acre of farmland. Further, this lower bound is only affected by the potential
for changes in long-lived infrastructure to interact with shorter-run adaptation deci-
sions if these interactions not only oppose the estimated effect of adaptation but do so
strongly enough to flip the sign of climate’s effect on adaptation actions in (10).47 As
there is no reason to believe such an extreme outcome is likely, the estimated direct
effects partially identify the effects of climate from panel variation in weather.

7 Discussion

I have explored the limits of our ability to estimate the long-run effects of climate
change purely from short-run, panel variation in weather that is clearly exogenous,
without postulating variation in climate either cross-sectionally or over time and
without postulating that we can observe agents’ decisions. I have shown that we can
bound long-run effects by using a new indirect least squares estimator, and I have
shown that the new estimator can generate very different conclusions than conven-
tional estimators that are not grounded in theory. Future work should apply these
new methods to other settings, including ones in which observable forecasts enable a
tight two-sided bound.

Instead of writing down a model of everything, I have highlighted the dynamic
differences between transient weather shocks and permanent shifts in climate. Of
course, weather shocks and climate change differ in other ways, including in their
spatial structure and thus in their general equilibrium implications. Future work
should explore how to credibly conduct inference about climate change from weather
in these other dimensions. In addition, I have followed the empirical literature in
estimating the effects of changing one stationary climate to another. Future work
should consider the process of changing the climate. By imposing stronger assump-
tions on the decision-making environment and constraining its parameters to replicate
the long-run costs implied by the methods presented here, future work could simulate
counterfactual climate trajectories and estimate the costs of transitioning from one
climate to another.

47And even then the most likely case is that direct effects provide a fairly tight upper bound on
costs.
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