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1 Introduction

A pressing research agenda seeks to estimate the economic costs of climate change.
Ignorance of these costs has severely hampered economists’ ability to evaluate pol-
icy. Recognizing that different locations have different climates, many economists
have hoped to estimate the effects of climate change from the spatial correlation
between climate and outcomes of interest (e.g., Mendelsohn et al., 1994; Schlenker
et al., 2005; Nordhaus, 2006). However, any two locations differ along many dimen-
sions, leading to concerns about omitted variables bias.1 Intriguingly, though, the
same location does experience different weather at different times. Stimulated by
Deschênes and Greenstone (2007), an explosively growing empirical literature esti-
mates the consequences of a location happening to experience cooler-than-average or
hotter-than-average weather.2 These researchers project the consequences of climate
change by combining their credibly estimated effects of weather with scientists’ pre-
dictions about how climate change will alter the distribution of weather. Whether
the estimated weather treatment is in fact a good proxy for the unobserved climate
treatment has been the subject of much debate but little analysis.3

I here undertake the first formal analysis that precisely delineates what and how
we can learn about climate impacts from weather impacts. A change in climate
differs from a weather shock in being repeated period after period and in affecting
expectations of weather far out into the future. Linking weather to climate therefore
requires analyzing a dynamic model that captures the distinction between transient
and permanent changes in weather. I study an agent (equivalently, firm) who is
exposed to stochastic weather outcomes. The agent chooses actions (equivalently,
investments) that suit the weather. Actions can be responses to realized weather
(“ex-post adaptation”) or can be proactive investments against future weather (“ex-
ante adaptation”). The actions chosen in different periods may be complements or
substitutes: when actions are intertemporal complements, choosing a high action in
the previous period reduces the cost of choosing a high action today, but when actions
are intertemporal substitutes, choosing a high action in the previous period increases
the cost of choosing a high action today. The first case is consistent with adjustment

1See Dell et al. (2014) and Auffhammer (2018b) for expositions and Massetti and Mendelsohn
(2018) for a review.

2For recent reviews, see Dell et al. (2014), Carleton and Hsiang (2016), and Heal and Park (2016).
Blanc and Schlenker (2017) and Kolstad and Moore (2020) discuss the strengths and weaknesses
of relying on panel variation in weather. Few doubt that weather shocks are as-good-as-randomly
assigned. For instance, Dell et al. (2014, 741) write that “the primary advantage of the new literature
is identification”, and Blanc and Schlenker (2017, 262) describe “weather anomalies” as “ideal right-
hand side variables” because “they are random and exogenous”.

3For instance, Dell et al. (2014, 771–772) emphasize that “short-run changes over annual or other
relatively brief periods are not necessarily analogous to the long-run changes in average weather
patterns that may occur with climate change.” And Mendelsohn (2019, 272) observes, “An important
failing of current weather panel studies is that they lack a clear theoretical model.”
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costs, and the second case is consistent with actions that require scarce resources.4

When choosing actions, the agent knows the current weather, has access to forecasts
of future weather, and relies on knowledge of the climate to generate forecasts of
weather at longer horizons. A change in the climate alters the distribution of weather
that the agent experiences over time and alters the agent’s expectation of future
weather outcomes. I study how an agent’s average outcomes change once the agent
has had time to adapt to living in a new climate.

I derive the effects of climate change in terms of model primitives and express
reduced-form fixed effects estimators in terms of these same model primitives.5 I
show that reduced-form estimates of weather impacts can exactly recover the theory-
implied effects of climate change on payoffs in a few special cases. Two are of partic-
ular interest. First, if actions are neither intertemporal substitutes nor intertemporal
complements (so that current decisions are not directly affected by previous deci-
sions), then empirical researchers can recover the effects of climate on actions by
combining the estimated effects on actions of current weather, lagged weather, and
forecasts of weather. And because empirical researchers can recover the effects of
climate on actions, they can also recover the effect of climate on payoffs. Second,
researchers do not need to recover effects on actions if agents’ payoff functions satisfy
a particular condition. Empirical researchers can then recover the effects of climate
from especially simple regressions that are consistent with standard practice to date.

However, many applications will not satisfy the special cases. I therefore also
extend conventional regression frameworks to recover structural estimates of climate
impacts through indirect least squares. Because I formally derive the reduced-form
regression coefficients in terms of model primitives, I can recover combinations of
model primitives from these coefficients and then calculate the theory-implied effects
of climate change.6 The identification is exactly the same as in much of the recent

4Both types of stories exist in the literature. For instance, in studies of the agricultural impacts of
climate change, Deschênes and Greenstone (2007) conjecture that long-run adjustments to changes
in climate should be greater than short-run adjustments to weather shocks because there may be
costs to adjusting crops, whereas Fisher et al. (2012) and Blanc and Schlenker (2017) conjecture that
constraints on storage and groundwater pumping, respectively, could make short-run adjustments
exceed long-run adjustments.

5Some recent work has tried to reduce the tension inherent in inferring climatic consequences
from weather shocks by interacting weather variables with climate variables (see Auffhammer, 2018b;
Kolstad and Moore, 2020). These recent techniques combine panel variation with potentially prob-
lematic cross-sectional variation. I here investigate what we can learn using only the relatively clean
panel variation.

6This approach is in the spirit of Marschak’s Maxim. Heckman (2010, 359) writes, “Marschak’s
Maxim suggests that economists should solve well-posed economic problems with minimal assump-
tions. All that is required to conduct many policy analyses or to answer many well-posed economic
questions are policy invariant combinations of the structural parameters that are often much easier
to identify than the individual parameters themselves and that do not require knowledge of individ-
ual structural parameters.” It is also related to sufficient statistics approaches (see Chetty, 2009)
and to price theory (see Weyl, 2019). Throughout, I use “reduced-form” and “structural” in the
way now common in empirical work.
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reduced-form empirical literature (relying on within-unit variation in weather), but
the regression specification differs from standard practice in order to provide exactly
identified structural parameters and the use of the estimated coefficients also differs
from standard practice in being translated through indirect least squares. These
structural calculations maintain the generality of the theoretical model, avoiding the
need to specify functional forms. Intuitively, the differential response to first and
second lags of weather identifies whether actions are intertemporal complements or
substitutes, responses to the lead of weather identify ex-ante adaptation, residual
responses to lagged weather identify ex-post adaptation, and residual responses to
current weather identify direct (no-adaptation) effects of weather.

I apply this new method to an updated version of the seminal analysis of cli-
mate and agriculture (Deschênes and Greenstone, 2007). Consistent with past work,
changes in extreme growing degree days drive the effects of climate change. Reduced-
form calculations give conflicting point estimates: either a 42% or 82% reduction in
agricultural profits, depending on which special case is assumed. However, the model
primitives recovered by indirect least squares reject both of these special cases. The
structural estimates imply that adaptation offsets some of the costs of extreme heat
in the short run but, because adaptation imposes its own costs, adds to the costs
of extreme heat in the long run. Most adaptation is ex post, but there is evidence
of ex-ante adaptation to extreme heat in more recent years. The median estimates
suggest that the current century’s warming (in the RCP 4.5 scenario of stabilized
emissions) would reduce agricultural profits by 56% in the absence of adaptation and
by 69% if agents adapt as they do to annual weather shocks.

But will agents display more or less adaptation to climate than to weather? The
estimated regression coefficients imply that actions taken in response to extreme grow-
ing degree days are intertemporal substitutes, as in resource scarcity stories. This
finding is consistent with recent empirical results in agricultural economics (Hendricks
et al., 2014; Kim and Moschini, 2018) and with implications of crop rotation dynam-
ics (Eckstein, 1984) but is contrary to widespread intuition based on Le Châtelier’s
principle. According to the theoretical analysis, agents will undertake more adapta-
tion to short-run weather shocks than to long-run climate change when actions are
intertemporal substitutes. I can therefore bound the effects of climate change by the
no-adaptation and short-run-adaptation point estimates. Combining a conventional
reduced-form estimator with widespread Le Châtelier intuition would suggest loses of
0–42% from warming over the century, but the theory-based calculations here instead
suggest losses of 56–69% ($23–28 billion annually, in year 2017 dollars) under the
median estimates.7

There has been remarkably little formal analysis of the economic link between

7The experiment of considering a change to a different stationary climate follows the reduced-
form empirical literature. However, these new structural estimates also bound impacts on agents
who have not had time to adapt to the new climate because they recover impacts with full short-run
adaptation.
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weather and climate, despite the importance of empirically estimating the costs of
climate change and the sharpness of informal debates around the relevance of the
recent empirical literature to climate change. The primary exception is an argument
given in Hsiang (2016) and repeated in Deryugina and Hsiang (2017). The argument
stipulates that a change in climate differs from a change in weather only by affecting
beliefs about future weather. This difference in beliefs can matter for payoffs only if
it affects an agent’s chosen actions. However, the envelope theorem tells us that an
optimizing agent’s actions cannot have first-order consequences for payoffs. Therefore
the effects of weather on payoffs exactly—and generically—identify the effects of
climate on payoffs.

The formalism in Hsiang (2016) and Deryugina and Hsiang (2017) allows outcomes
and actions to depend only on the climate, not on weather realizations. This is
not how we normally think about weather and climate. Further, the analysis does
not explore the dynamics that are central to the distinction between weather and
climate and that drive the debate about the relevance of the growing reduced-form
literature. By formalizing the distinction between climate and weather in a dynamic
environment, the present analysis highlights two reasons why we cannot appeal to the
envelope theorem to identify the consequences of climate change with those of weather
shocks. First, it is true that a change in climate alters beliefs about future weather,
but it is also true that a change in climate alters the weather that an agent lives
through prior to any future time and thus alters the actions chosen prior to any future
time. Past actions are predetermined variables from the perspective of an optimizing
agent and thus do not drop out through the envelope theorem. Even myopic agents
can respond differently to weather and climate when current optimal choices depend
on such past choices. Second, in a dynamic model, the envelope theorem applies to
the intertemporal value function, not to the per-period payoff function investigated
by much empirical work. Optimized current actions should not have first-order effects
on intertemporal value, but optimized current actions can have first-order effects on
current payoffs when those are offset by first-order effects on expected future payoffs.

A few other lines of research are related. First, calibrated numerical simulations
have shown that dynamic responses are critical to the effects of climate on timber
markets (Sohngen and Mendelsohn, 1998; Guo and Costello, 2013) and to the cost of
increased cyclone risk (Bakkensen and Barrage, 2018). I develop a general analytic
setting that precisely disentangles several types of dynamic responses and relates
them to widely used fixed effects estimators. Second, empirical work has shown that
agents use forecasts of future weather, even at seasonal scales. In particular, Shrader
(2017) and Taraz (2017) use variation in seasonal forecasts and in past years’ weather
outcomes, respectively, to identify ex-ante adaptation to weather events. I formally
demonstrate that estimating responses to forecasts and lagged weather is critical to
recovering the consequences of climate change. Finally, Kelly et al. (2005) and Kala
(2017) study learning about the climate from observed weather. I here abstract from
learning in order to focus on mechanisms central to the recent empirical literature.
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The challenge of attempting to estimate long-run effects from short-run variation
is a common one in empirical economics. To get around this challenge, environmen-
tal economists have found policy-induced variation in long-run pollution exposure
that is plausibly exogenous to health outcomes (e.g., Chen et al., 2013; Anderson,
2015; Barreca et al., 2017; Bishop et al., 2018). Unfortunately, this type of variation
may not be available to researchers interested in the consequences of changing the
climate. Labor economists desire the long-run consequences of changing the mini-
mum wage, but inflation converts observed minimum wage increases into short-run
shocks (Sorkin, 2015).8 And macroeconomists formerly hoped to learn about long-run
output-inflation tradeoffs by estimating distributed lag models, but Lucas (1972) ar-
gued that, when agents have rational expectations, the lagged response to a transient
inflation shock is not informative about the long-run effects of permanently changing
inflation policy. Here we desire the long-run effect of changing the policy rule used
by nature to generate weather.

The next section describes the setting. Section 3 derives the theory-implied effect
of climate. Section 4 establishes conditions under which the effect of climate can be
recovered from reduced-form estimates of weather impacts. Section 5 develops the new
method of structurally estimating climate impacts and applies it to U.S. agriculture.
The final section describes potential extensions. The appendix contains empirical
details and proofs, and the supplementary material contains additional theoretical
results and empirical robustness checks.

2 Setting

An agent is repeatedly exposed to stochastic weather outcomes and takes actions
based on realized weather and information about future weather. The realized weather
in period t is wt and the agent’s chosen action is At. This action may be interpreted
as a level of activity (e.g., time spent outdoors, energy used for heating or cooling, ir-
rigation applied to a field) or as a stock of capital (e.g., outdoor gear, size or efficiency
of furnace, number or efficiency of irrigation lines). The agent’s time t payoffs are
given by the twice-differentiable function π(At, At−1, wt, wt−1) : R×R×R×R→ R.9

Letting subscripts indicate partial derivatives, I assume π11 < 0 and π22 ≤ 0, implying

8Three other papers are related to both Sorkin (2015) and the present paper’s project. First, I
here formalize analogues to arguments in Hamermesh (1995) about why the pre- and post-periods
around a minimum wage increase are not true pre- and post-periods. Second, in a model of dynamic
stock accumulation, Hennessy and Strebulaev (2020) show that estimated responses to transient
shocks can differ substantially from the theory-implied causal effects that empirical researchers seek
to test. The present paper is similar in deriving sufficient conditions for estimated effects to match
theory-implied effects. Third, Keane and Wolpin (2002) describe tradeoffs between cross-sectional
and time series variation when estimating the effects of welfare benefits. These tradeoffs are similar
to those that motivate the present paper.

9I generalize to vector-valued actions and multidimensional weather in Supplementary Material
Section D. Doing so yields little new insight at the expense of exposition.
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declining marginal benefits of current and past actions.
I interpret actions as adaptations that become more valuable with high weather

outcomes (π13, π23 ≥ 0). Following terminology from the literature on climate adap-
tation (e.g., Fankhauser et al., 1999; Mendelsohn, 2000), a case with π13 > 0 reflects
adaptation that can occur after weather is realized (“reactive” or “ex-post” adapta-
tion) and a case with π23 > 0 reflects adaptation that can occur before weather is
realized (“anticipatory” or “ex-ante” adaptation).10 I allow adaptation to play both
roles at once. The possibility that π4 6= 0 reflects potential delayed impacts from
the previous period’s weather, with π14 and π24 capturing the potential for ex-post
adaptation to alter these delayed impacts. Consistent with the normalizations above,
I assume π14, π24 ≥ 0. Finally, observe that the actions could reflect a firm’s pro-
duction responses to price signals rather than responses to weather per se. In this
interpretation, the normalizations imply that “high” weather outcomes increase the
price of a firm’s output or reduce the cost of its input.

I allow π12 to be positive or negative, with its magnitude constrained as described
in Section 3. When π12 < 0, actions are “intertemporal substitutes”, so that choosing
a higher level of past actions increases the cost of choosing higher actions today. I
describe this case as a resource scarcity story.11 For instance, pumping groundwater
today raises the cost of pumping groundwater tomorrow (see Blanc and Schlenker,
2017) or rescheduling activities around today’s weather makes it hard to reschedule
activities around tomorrow’s weather (see Graff Zivin and Neidell, 2009). When
π12 > 0, actions are “intertemporal complements”, so that choosing a higher level of
past actions increases the benefit from choosing higher actions today. I describe this
case as an adjustment cost story.12 For instance, small changes to cropping practices
or activity schedules may be easier to implement than large changes. The magnitude
of π12 affects the agent’s preferred timing of adaptation. As |π12| becomes large, the
agent prefers to begin adapting before the weather event arrives, but when |π12| is
small, the agent may wait to undertake most adaptation only once the weather event
has arrived.13

The agent observes time t weather before selecting her time t action. The agent
also understands the climate C, which controls the distribution of weather. We

10When interpreting actions as the choice of capital stock, the payoff function is consistent with
standard models of depreciation. If we restrict the payoff function to allow only ex-ante adaptation,
then the setting corresponds to a time-to-build model with a one-period lag. Section 6 discusses the
implications of capital stocks that take longer to build.

11Relating to the literature on resource extraction, the case with π12 < 0 can be seen as reflecting
stock-dependent extraction costs (Heal, 1976).

12The benchmark quadratic adjustment cost model has π12 = k for some k > 0 (see Hamermesh
and Pfann, 1996).

13The magnitude of π12 is related to the distinction between ex-post and ex-ante adaptation
insofar as it affects the agent’s preferred timing of adaptation actions. However, π12 incentivizes
early adaptation only to reduce the costs of later adaptation, not because early adaptation provides
protection from weather events. I reserve the terms ex-ante and ex-post adaptation to refer to the
effects of actions on the marginal benefit of weather, captured by π13, π23, π14, and π24.
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can interpret weather as realized temperature and climate as a location’s long-run
average temperature. At all times before t − 1, the agent’s only information about
time t weather consists in knowledge of the climate. However, at time t− 1 the agent
receives a forecast ft−1 of time t weather: ft−1 = C + ζνt−1, where the innovation
νt−1 is a mean-zero, serially uncorrelated random variable with variance τ 2 > 0. The
forecast is an unbiased—albeit imperfect—predictor of time t weather: wt = ft−1+ζεt,
where εt is a mean-zero, serially uncorrelated random variable with variance σ2 > 0.14

The parameter ζ ≥ 0 is a perturbation parameter that will be useful for analysis (see
Judd, 1996). The covariance between εt and νt is ρ. The covariance between wt and
wt−1 is then ζ2ρ. The agent incorporates knowledge of such serial correlation in her
forecasts.

The agent maximizes the present value of payoffs over an infinite horizon:

max
{At}∞t=0

∞∑
t=0

βtE0 [π(At, At−1, wt, wt−1)] ,

where β ∈ [0, 1) is the per-period discount factor, A−1 is given, and E0 denotes ex-
pectations at the time 0 information set. The solution satisfies the following Bellman
equation:

V (At−1, wt, ft, wt−1; ζ) = max
At

{
π(At, At−1, wt, wt−1) + βEt [V (At, wt+1, ft+1, wt; ζ)]

}
s.t. wt+1 =ft + ζεt+1

ft+1 =C + ζνt+1.

Weather experienced prior to time t−1 affects actions chosen in those earlier periods.
Those actions in turn affect actions in times t − 1 and t, which in turn affect time t
payoffs.

The setting is sufficiently general to describe many applications of interest. For
instance, much empirical literature has studied the effects of weather on energy use.
The agent could then be choosing indoor temperature in each period, where payoffs
depend on current actions through energy use and depend on weather through thermal
comfort. Habituation to outdoor temperatures is captured by π14. Much empirical
work has also studied the effect of weather on labor productivity. The decision variable
could be effort, the dependence of payoffs on weather could reflect current thermal

14Consistent with much previous literature, climate here controls average weather. One might
wonder about the dependence of higher moments of the weather distribution on climate. In fact,
the effects of climate change on the variance of the weather are poorly understood and likely to be
spatially heterogeneous (e.g., Huntingford et al., 2013; Lemoine and Kapnick, 2016). Further, for
economic analysis, we need to know not just how climate change affects the variance of realized
weather but how it affects the forecastability of weather: the variance of the weather more than one
period ahead is ζ2(σ2 + τ2), so we need to apportion any change in variance between σ2 and τ2. I
leave such an extension to future work.
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stress as well as the effects of the previous day’s weather via sleep and physiological
functioning, the resource scarcity is one of tasks needing to be done, and forecasts
allow the agent to plan tasks and vacation time around weather outcomes. Finally,
many researchers have studied the effects of weather on agricultural outcomes. In
that case, payoffs are profits, actions include planting decisions, and weather affects
yields.

I will often impose one of the following two assumptions:

Assumption 1. ζ2 is small.

Assumption 2. π is quadratic.

Either assumption will limit the consequences of stochasticity for optimal policy,
whether by limiting the variance of weather outcomes (Assumption 1) or by making
the policy function independent of that variance (Assumption 2).15

I will be interested in empirical researchers’ ability to estimate the consequences
of altering C from observable responses to time series variation in wt and ft. It is
important to be clear about the climate experiment. I study the average effects (over
time, and thus over weather shocks) of moving an agent from one climate to another
and giving the agent time to adapt to the new climate, based on experiencing weather
drawn from the new distribution and on understanding the new distribution of future
weather. This climate change treatment is consistent with the exercise common in
the empirical literature, which calculates the effect of replacing today’s distribution
of weather with a distribution projected to hold by the end of the century. Following
most empirical literature, I will not study how the transition from one climate to
another interacts with agents’ decisions16 or study how expectations of a future change
in climate affect agents today.17 These are both important questions but are beyond
the scope of the present analysis—and thus far largely beyond the empirical literature
that this analysis seeks to inform.

15Note that when applying Assumption 2, the chosen policy is affected by the variance of weather
(through the realized weather) even though the policy rule is independent of that variance.

16Kelly et al. (2005) frame the cost of learning as an adjustment cost. Quiggin and Horowitz (1999,
2003) discuss broader costs of adjusting to a change in climate. These papers’ adjustment costs are
conceptually distinct from the adjustment costs studied here. The present use of “adjustment costs”
follows much other economics literature in referring to the cost of changing decisions from their
previous levels. I study how these adjustment costs hinder estimation of the consequences of climate
change from weather impacts, not how they affect the cost of transitioning from one climate to
another.

17Severen et al. (2018) show that land markets capitalize expectations of future climate change
and correct cross-sectional analyses in the tradition of Mendelsohn et al. (1994) for this effect. I here
study responses to widely available, shorter-run forecasts in a time series context and show how to
use them to improve panel analyses in the tradition of Deschênes and Greenstone (2007).
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3 Theory-Implied Effect of Climate Change

I now derive the exact effect of climate change on long-run payoffs and actions within
this model. I will subsequently explore how to estimate these effects from observable
variation in weather.

The analysis approximates the solution to the full, stochastic model around the
steady state of the deterministic mode (Judd, 1996). The deterministic model fixes
ζ = 0, in which case wt = ft = C at all times t. The first-order condition for the
deterministic model is:

0 = π1(At, At−1, C, C) + βV1(At, C, C, C; 0).

The envelope theorem yields:18

V1(At−1, C, C, C; 0) = π2(At, At−1, C, C).

Advancing this forward by one timestep and substituting into the first-order condition,
we have the Euler equation:

0 = π1(At, At−1, C, C) + βπ2(At+1, At, C, C). (1)

A steady state Ā of the deterministic system is implicitly defined by

0 = π1(Ā, Ā, C, C) + βπ2(Ā, Ā, C, C). (2)

Define π̄ , π(Ā, Ā, C, C). The following lemma describes the uniqueness and stability
of the steady state.19

Lemma 1. For π̄12 6= 0 and ζ = 0, Ā is locally saddle-path stable if and only if
(1 + β)|π̄12| < −π̄11 − βπ̄22, in which case Ā is unique. For π̄12 = 0 and ζ = 0, the
agent chooses At = Ā at all times t.

Proof. See Appendix B.2.

I henceforth assume that (1 +β)|π̄12| < −π̄11−βπ̄22, so that the deterministic steady
state is unique and saddle-path stable.

Now consider optimal actions in the stochastic system. Stochastic shocks make
weather and forecast variables differ from the climate index. The first-order condition
is:

0 = π1(At, At−1, wt, wt−1) + βEt[V1(At, wt+1, ft+1, wt; ζ)].

18Some may be confused by the use of the envelope theorem, given the introduction’s discussion.
The present use of the envelope theorem is standard, applying to the intertemporal value function
as one step in the derivation of the Euler equation. The criticism was of appeals to the envelope
theorem to justify equating responses to climate and weather, not of the envelope theorem itself.

19The steady state exists if supĀ[π1(Ā, Ā, C,C) + βπ2(Ā, Ā, C,C)] > 0 and infĀ[π1(Ā, Ā, C,C) +
βπ2(Ā, Ā, C,C)] < 0. These conditions will hold in most applications.
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The envelope theorem yields:

V1(At−1, wt, ft, wt−1; ζ) = π2(At, At−1, wt, wt−1).

Advancing this forward by one timestep and substituting into the first-order condition,
we have the stochastic Euler equation:

0 = π1(At, At−1, wt, wt−1) + βEt[π2(At+1, At, wt+1, wt)]. (3)

The following lemma describes the evolution of E0[At].

Lemma 2. Let either Assumption 1 or 2 hold, and let E0[(A1− Ā)2] be small. Then
limt→∞E0[At] = Ā.

Proof. See Appendix B.3.

This lemma says that average actions converge to the steady state if current actions
are not too far from the deterministic steady state and either the variance of weather
is not too great or payoffs are quadratic.

We first seek the average effect of climate on long-run actions. When the conditions
of Lemma 2 hold, applying the implicit function theorem to equation (2) yields:

lim
t→∞

dE0[At]

dC
=

dĀ

dC
=

ex-post︷ ︸︸ ︷
π̄13 + π̄14 + βπ̄24 +

ex-ante︷︸︸︷
βπ̄23

−π̄11 − (1 + β)π̄12 − βπ̄22

≥ 0. (4)

This is the average long-run effect of climate change on actions. Expected future
actions increase in the climate index because I normalize high actions to be more
beneficial when the weather index is high. Equation (4) captures how climate change
alters weather in all periods: the past, the present, and the future. We see the various
forms of ex-post adaptation captured by π̄13, π̄14, and βπ̄24. We also see the possibility
of ex-ante adaptation, controlled by π̄23 and arising because the agent understands
that the altered climate affects weather in subsequent periods. Finally, observe that
π̄12 enters through the denominator in (4). When actions are intertemporal substi-
tutes (π̄12 < 0), this term reduces the magnitude of the response to climate change,
as when resource scarcity makes long-run responses smaller than short-run responses.
However, when actions are intertemporal complements (π̄12 > 0), this term increases
the magnitude of the response to climate change, as when adjustment costs allow
long-run responses to exceed short-run responses.

We now seek the average effect of climate on long-run payoffs. Approximating the
payoff function around the steady state, wt = wt−1 = C, and ζ = 0 and using either
Assumption 1 or Assumption 2, we have:

E0[π(At, At−1, wt, wt−1)] =π̄ + π̄1(E0[At]− Ā) + π̄2(E0[At−1]− Ā)

+
1

2
π̄11E0[(At − Ā)2] +

1

2
π̄22E0[(At−1 − Ā)2] +

1

2
(π̄33 + π̄44)ζ2(σ2 + τ 2)

+ π̄12E0[(At − Ā)(At−1 − Ā)] + π̄13Cov0[At, wt] + π̄23Cov0[At−1, wt]

+ π̄14Cov0[At, wt−1] + π̄24Cov0[At−1, wt−1] + π̄34ζ
2ρ, (5)
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for t > 1. Differentiating equation (5) with respect to C and applying either Assump-
tion 1 or Assumption 2 again, we find:

lim
t→∞

dE0[π(At, At−1, wt, wt−1)]

dC
=π̄3 + π̄4 + [π̄1 + π̄2]

dĀ

dC
, (6)

where dĀ/ dC is from equation (4). Equation (6) defines the true effect of climate. It
is the benchmark that we will subsequently seek to recover from time series variation
in weather. The marginal effect of climate on long-run average payoffs is composed
of the direct effect of a larger weather index, in both the present (π̄3) and the past
(π̄4), and the effects of changing long-run actions, including both present actions (π̄1)
and past actions (π̄2). Equation (2) implies π̄1 = −βπ̄2. Therefore,

lim
t→∞

dE0[π(At, At−1, wt, wt−1)]

dC
=π̄3 + π̄4 + (1− β)π̄2

dĀ

dC
. (7)

Whether economic responses increase or decrease payoffs depends on the sign of π̄2.
A case with π̄2 > 0 is a case in which higher actions impose costs today but provide
benefits tomorrow, as when undertaking adaptation investments that take time to
build. A case with π̄2 < 0 is a case in which higher actions provide benefits today but
impose costs tomorrow, as when borrowing money, selling from storage, or irrigating
with groundwater. Undertaking more actions because of climate change increases
payoffs if and only if actions are of the former type.

4 Estimating the Effect of Climate Change from

Reduced-Form Weather Regressions

I have derived the theory-implied long-run effect of climate change, but researchers
do not know all of the structural parameters required to calculate this effect. Instead,
empirical researchers have sought to estimate the effect of climate from reduced-form
regressions that use time series variation in realized weather. I now consider whether
and how such reduced-form regressions can recover the effect of climate.20

4.1 Estimating Effects on Actions

We have seen that the effects of climate on payoffs nest its effects on actions. Further,
much empirical research has sought to estimate the consequences of climate change
for decision variables or functions of decision variables, including productivity (Heal
and Park, 2013; Zhang et al., 2018), time allocation (Graff Zivin and Neidell, 2014),

20I here consider only the internal validity of estimated effects. Equations (4) and (6) imply that
the effect of climate change will vary with the current climate unless weather enters π only linearly.
Empirical researchers should therefore take care when extrapolating estimated effects across locations
and when pooling data across locations.
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Figure 1: The determinants of present actions, from equation (8).

and energy use (Auffhammer and Aroonruengsawat, 2011; Deschênes and Greenstone,
2011; Auffhammer, 2018a). I therefore begin by considering the potential to estimate
the effect of climate on actions from time series variation in weather.

First consider the determinants of time t actions. The proof of Lemma 2 shows
that if either Assumption 1 or 2 holds and (At−1 − Ā)2 is small, then

At =Ā+

effects of past weather︷ ︸︸ ︷
π̄14

χ2

(wt−1 − C) +
π̄12

χ2

(At−1 − Ā) +

effects of current weather︷ ︸︸ ︷
π̄13 + βπ̄24 + βπ̄14

π̄12
χ1

χ2

(wt − C)

+
βπ̄23 + β

(
π̄13 + βπ̄24 + βπ̄14

π̄12
χ0

)
π̄12
χ1

χ2

(ft − C)︸ ︷︷ ︸
effects of future weather

, (8)

where each χi > |π̄12|. We see time t actions determined by past, present, and future
weather. Figure 1 illustrates the main relationships identified by this expression.

Actions depend on present weather in three ways. First, actions respond to current
weather as a means of mitigating its immediate harm or amplifying its immediate
benefits. This channel is controlled by π̄13. Second, actions respond to current weather
when current actions can mitigate the harm or amplify the benefits incurred by current
weather in future periods. This channel is controlled by π̄24 and arises only for
forward-looking agents. As an example of the distinction between the two channels,
an agent may avoid going outside on a cold day both to minimize discomfort from
the current temperature and to avoid getting sick in the near future. Both of these
channels are forms of ex-post adaptation. Third, when π̄14 6= 0, current weather will
affect an agent’s chosen action in the next period (not pictured in Figure 1), leading
a forward-looking agent to adjust her current action in preparation for that choice.
This channel vanishes when π̄12 = 0 because today’s actions then do not directly
interact with subsequent actions.

Actions depend on forecasts of future weather in two ways. First, when there is
the possibility of ex-ante adaptation (π̄23 > 0), agents choose today’s actions in order
to directly mitigate the consequences (or enhance the benefits) of expected future
weather. Second, expected future weather affects expected future actions, leading
agents to take preparatory actions today. When π̄12 > 0, a high forecast leads agents

12 of 37



Lemoine Estimating Climate from Weather May 2020

to choose high actions today as a means of reducing future adjustment costs, but
when π̄12 < 0, a high forecast leads agents to choose low actions today as a means of
conserving resources for the future.

And actions depend on past weather in two ways. First, past weather affects the
marginal payoffs from current actions directly when π̄14 6= 0. This is a form of ex-
post adaptation. Second, past weather affects past actions, which impose historical
restraints on current actions when π̄12 6= 0. When actions are intertemporal comple-
ments (π̄12 > 0), high past actions justify higher present actions as a way to reduce
adjustment costs, but when actions are intertemporal substitutes (π̄12 < 0), high past
actions justify lower present actions by depleting the resources needed to maintain a
high action. Through these historical restraints, time t actions depend not just on
time t− 1 weather but also on all earlier periods’ weather realizations.

Empirical researchers hope to recover (4) from time series variation in weather.
Let there be J agents (equivalently, firms) observed in each of T periods. Index these
agents by j. In order to focus on the issue at hand, imagine that they are in the
same climate C with the same payoff function π and the same stochastic process
driving forecasts and weather, though each agent draws its own sequence of weather
and forecasts. Consider the following fixed effects regression:

Ajt =αj + Γ1wjt + Γ2wj(t−1) + Γ3fjt + Γ4Aj(t−1) + ηjt, (9)

where αj is a fixed effect for unit j and ηjt is an error term that is uncorrelated with
the covariates.21 I use a hat to denote the probability limit of each estimator. The
following proposition relates the estimated coefficients to the effect of climate change.

Proposition 1. Let either Assumption 1 or 2 hold, and let (Aj(t−1) − Ā)2 be small

for all observations. Then Γ̂4 ∝ π̄12 and

Γ̂1 + Γ̂2 + Γ̂3 = ω

(
dĀ

dC
+ βπ̄12Ω

)
, (10)

where π̄12 > 0 implies ω ∈ (0, 1), π̄12 < 0 implies ω > 1, π̄12 = 0 implies ω = 1, and
Ω ∝ π̄13 + π̄14 + βπ̄24 ≥ 0.

Proof. See Appendix B.4.

If we consider moving an agent to a counterfactual climate and observing outcomes
in some later time t, then we will observe an agent who experienced altered weather
in the periods leading up to period t, who experiences altered weather in period

21I do not explicitly model the unobservable characteristics that motivate the fixed effects spec-
ification. I am here not interested in identification but in what we learn from a well-identified
weather regression. See Dell et al. (2014) and Auffhammer (2018b), among others, for expositions of
identification in the climate-economy literature. I assume that the only possible sources of omitted
variables bias are the failure to control for variables such as forecasts and lagged actions that are
defined within the theoretical model.
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t, and who expects altered weather in the periods after t. The three coefficients
capture these three temporal relationships altered by climate change: Γ̂1 recovers
consequences of altering current weather, Γ̂2 recovers consequences of altering past
weather, and Γ̂3 recovers consequences of altering expectations of future weather.22

However, we cannot in general recover the response to a permanent change in climate
from the estimated response to transient weather shocks. The reason for this failure
is the possibility that π̄12 6= 0, which occurs if and only if Γ̂4 6= 0.

Relationships of intertemporal substitutability or complementarity drive two types
of wedges between the estimator on the left-hand side of (10) and the effect of climate
change in (4). The second term in parentheses on the right-hand side of (10) reflects
preparatory actions that are undertaken in response to forecasts but are not rele-
vant to the long-run effects of climate. The fixed effects estimator is identified from
shocks to forecasts and weather. As described above, a high forecast increases present
actions both through the possibility of ex-ante adaptation and through preparatory
actions. The former are important components of the effect of climate but the latter
are not: an increase in the climate index C does increase forecasts, but because it
also increases current and past weather, preparatory actions are not relevant to its
long-run effects. When π̄12 > 0, preparatory actions make the fixed effects estimator
overstate responses to climate as observed agents are motivated by expectations of
temporary adjustment costs, but when π̄12 < 0, preparatory actions make the fixed
effects estimator understate responses to climate as observed agents temporarily con-
serve resources.

The second wedge in (10) arises from ω. This term reflects the difference between
the historical restraints on current actions imposed by transient weather shocks and
those imposed by a change in climate that affects all past weather realizations. When
π̄12 > 0, historical restraints prevent an agent from adjusting too much to a tran-
sient weather shock, but when that shock has been repeated many times in the past
(as eventually happens following a change in climate), the many small adjustments
eventually add up to much greater adjustment. The ω < 1 captures how responses to
transient shocks overstate historical restraints in this case. Consistent with conjec-
tures in Deschênes and Greenstone (2007), observable short-run responses are smaller
than long-run responses. In contrast, when π̄12 < 0, an agent experiences more severe
historical restraints following a change in climate than following a transient weather
shock. When actions depend on scarce resources, actions can be more extreme when
they are maintained for only a short period of time. The ω > 1 captures how re-
sponses to transient shocks understate historical restraints in this case. Consistent
with conjectures in Fisher et al. (2012) and Blanc and Schlenker (2017), short-run
responses are larger than long-run responses.

The wedges introduced by Ω and ω conflict, making it impossible to sign the bias
in general. However, we can make progress in two special cases. First, when π̄12 = 0,
both wedges vanish. In this case, the fixed effects estimator exactly recovers the

22The proof provides explicit expressions for the Γ̂.
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effect of climate. Second, when β = 0, the wedge introduced by preparatory actions
vanishes because myopic agents are not concerned about future actions. The sign
of the bias then depends only on the wedge ω induced by historical restraints, as
even myopic agents respond to their own past decisions (see also Keane and Wolpin,
2002).23

Now consider the following distributed lag regression, which matches most litera-
ture in not controlling for lagged actions but generalizes the literature to control for
forecasts:24

Ajt =αj +
I+1∑
i=0

Γwt−i
wj(t−i) +

I+1∑
i=0

Γft−i
fj(t−i) + ηjt, (11)

where I ≥ 0. The following proposition relates the estimated coefficients to the effect
of climate change.

Proposition 2. Let either Assumption 1 or 2 hold, and let (Aj(t−1) − Ā)2 be small
for all observations. Then

lim
I→∞

I∑
i=0

[
Γ̂wt−i

+ Γ̂ft−i

]
= ω̃

(
dĀ

dC
+ βπ̄12Ω

)
,

where βπ̄12 > 0 implies ω̃ ∈ (ω, 1), βπ̄12 < 0 implies ω̃ ∈ (1, ω), and βπ̄12 = 0 implies
ω̃ = 1, with ω and Ω from Proposition 1. If π̄12 = 0, then Γ̂wt−i

= 0 for i > 1 and

Γ̂ft−i
= 0 for i > 0. If β = 0, then Γ̂ft−i

= 0 for all i ≥ 0.

Proof. See Appendix B.5.

The estimator on the left-hand side is subject to the same bias from preparatory
actions as the estimator on the left-hand side of (10), but by using a long history
of transient shocks, this new estimator reduces the bias introduced by historical re-
straints. If the latter bias is the dominant one, then this estimator may reduce the
overall bias in estimated effects on actions. Further, this estimator recovers the effects
of climate in a new case: when agents are myopic. Myopic agents are never subject
to the bias induced by preparatory actions, and we now lose the bias induced by
historical restraints because myopic agents respond to a long sequence of transient
weather shocks in exactly the same way as they respond to living in a world with an
altered climate.

23The wedge introduced by preparatory actions also vanishes if there is no ex-post adaptation, but
this is an artifact of modeling forecasts as existing only one period ahead. In this environment, there
are no time t shocks that affect expectations of time t + 2 weather. If there were longer-horizon
forecasts, then time t shocks could affect those expectations and thereby induce preparation for
ex-ante adaptation anticipated to be undertaken at time t+ 1.

24Supplementary Material Section A.1 derives results for regressions that do not control for fore-
casts, and Supplementary Material Section A.2 analyzes the effect of aggregating over multiple
timesteps. The omission of lagged effects is driven in part by concern for Nickell (1981) omitted
variables bias. Also see footnote 5.
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4.2 Estimating Effects on Payoffs

Now consider the possibility of recovering the effects of climate on payoffs from obser-
vations of payoffs and weather. For instance, empirical research studies how variation
in weather affects agricultural profits (e.g., Deschênes and Greenstone, 2007) or af-
fects macroeconomic variables such as gross output or income that are potentially
related to payoffs (e.g., Dell et al., 2012; Burke et al., 2015; Deryugina and Hsiang,
2017; Colacito et al., 2019).

The class of payoff functions defined by the following assumption will yield espe-
cially interesting results:

Assumption 3. π2(At, At−1, wt, wt−1) = Kπ1(At, At−1, wt, wt−1) if At−1 = At, for
K 6= −β.

Consider a few members of this class. First, adjustment cost models yield K = 0:
if π = g(At, (At − At−1)z, wt, wt−1) for z > 1, then π2 = z(At − At−1)z−1g2(At, (At −
At−1)z, wt, wt−1) and thus is equal to 0 when At = At−1. Second, a model in
which the returns to resource extraction decline in previous extraction can yield
K = −1: if π = g(At/At−1, wt, wt−1), then π1 = g1(At/At−1, wt, wt−1)/At−1 and
π2 = −Atg1(At/At−1, wt, wt−1)/A2

t−1. Third, a model in which ex-post adaptation
and ex-ante adaptation form a constant elasticity of substitution (CES) aggregate
with distribution parameter κ yields K = (1 − κ)/κ: π = g(h(At, At−1), wt, wt−1)
where h(At, At−1) = (κAσt + (1−κ)Aσt−1)1/σ for σ < 1, 6= 0 and h(At, At−1) = AκtA

1−κ
t−1

for σ = 0. Finally, a model without dynamic linkages has π2(·, ·, ·, ·) = 0 and thus
K = 0.

Empirical researchers hope to recover (6) from time series variation in weather.
They will not generally observe the full set of actions available to agents or firms. As
a result, empirical researchers may estimate the following regression:25

πjt =αj +
I+1∑
i=0

θwt−i
wj(t−i) +

I+1∑
i=0

θft−i
fj(t−i) + ηjt, (12)

where I again label units as j, αj is a fixed effect for agent j, and ηjt is an error term
(see footnote 21). We are interested in the vector of coefficients θ. As before, I use a
hat to denote the probability limit of each coefficient.

Proposition 3. Let Assumption 1 hold, or let Assumption 2 hold with the ε and ν
normally distributed. Also let (Aj(t−1)−Ā)2 and (Ajt−Ā)2 be small for all observations
and let each agent’s average actions be Ā.

1. If π̄12 = 0 and I > 1, then lims→∞ dE0[πs]/ dC = θ̂wt + θ̂wt−1 + θ̂wt−2 + θ̂ft + θ̂ft−1

and all other coefficients are equal to 0.

25Supplementary Material Section A.1 analyzes regressions closer to previous empirical literature,
which omits forecasts. It also analyzes the estimator of Deryugina and Hsiang (2017).

16 of 37



Lemoine Estimating Climate from Weather May 2020

2. If β = 0, then lims→∞ dE0[πs]/ dC = limI→∞

[∑I
i=0 θ̂wt−i

+
∑I

i=0 θ̂ft−i

]
.

3. lims→∞ dE0[πs]/ dC = limβ→1 limI→∞

[∑I
i=0 θ̂wt−i

+
∑I

i=0 θ̂ft−i

]
.

4. If Assumption 3 holds and I ≥ 0, then lims→∞ dE0[πs]/ dC = θ̂wt + θ̂wt−1 and
all other coefficients are equal to zero.

Proof. See Appendix B.6.

The proposition describes four cases in which we can recover the effect of climate from
time series variation in weather (and Supplementary Material Section A.3 describes
cases in which we can unambiguously bound the effect). The first two cases follow
directly from the analysis in Section 4.1. There we saw that we can recover the effect
of climate on actions if either β = 0 or π̄12 = 0. If β = 0, we recover effects on actions
only as the estimated lags become very long, in which case we also recover effects on
payoffs. If π̄12 = 0, we can recover the effect on current actions from the coefficient
on weather, its lag, and forecasts, and the first result in Proposition 3 follows from
recognizing that we need to recover effects on both current and lagged actions and
that the coefficients on weather and its lag also capture the direct effects of weather
in equation (6). Intuitively, neither historical restraints nor preparation for future
actions matters when π12 = 0, so we need only recover the direct effects of current
and past weather, the effect of current weather on current actions, and any ex-ante
adaptation.

The other two cases are ones in which we do not need to recover the effect of
climate on actions. The proof shows that the bias from estimating the effect of
climate on payoffs from the sum of infinite lags is proportional to βπ̄12(π̄1 + π̄2). The
bias vanishes as β → 1 because agents’ responses equalize the marginal value of past
and current actions, without discounting the former. Alternately, Assumption 3 and
equation (2) imply that π̄2 = π̄1 = 0: an optimizing agent with this type of payoff
function sets the marginal benefit of actions to zero around a steady state. In this case,
the consequences of marginal climate change are independent of changes in actions
and the estimated coefficients do not include any effects of weather or forecasts on
actions. Summing θ̂wt and θ̂wt−1 now captures only the direct effects of weather and
fully captures the effects of climate on payoffs. We can test whether Assumption 3
holds by examining the magnitude of the coefficient on forecasts: because forecasts
matter for current payoffs only through their effects on actions, they cannot affect
these payoffs if Assumption 3 indeed holds and agents are near a steady state.26

26Much literature has studied dependent variables such as crop yields (e.g., Schlenker and Roberts,
2009), mortality (e.g., Deschênes and Moretti, 2009; Deschênes and Greenstone, 2011), and health
(e.g., Deschenes, 2014) that are functions of actions but are not payoff functions. If we consider
recovering the effects of climate on such dependent variables from a fixed effects regression on
weather, then the final two parts of Proposition 3 no longer apply because the Euler equation (1)
holds only for payoffs, not for other functions of actions.
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Envelope theorem intuition proposed in previous literature does not apply in a
dynamic model,27 yet we find that Assumption 3 can justify the regressions suggested
by envelope theorem intuition. Why are adaptive actions effectively irrelevant in
cases that satisfy Assumption 3? In general, we need to account for how climate
change affects time t payoffs by changing the weather experienced—and thus the ac-
tions chosen—in earlier periods: no envelope theorem applies to π2 since past actions
are predetermined. However, when agents’ payoff functions satisfy Assumption 3,
changing past actions cannot improve payoffs around a steady state (i.e., π̄2 = 0). In
general we also need to account for how changes in intertemporally optimizing agents’
current actions affect payoffs: the envelope theorem for forward-looking agents uses
∂V/∂At = 0, not π1 = 0. However, Assumption 3 and equation (2) imply that chang-
ing current actions cannot improve payoffs around a steady state (i.e., π̄1 = 0), even
if agents are forward-looking. Intuitively, if today’s actions do not have first-order
effects on tomorrow’s payoffs (because π̄2 = 0), then an optimizing agent chooses
today’s actions to maximize current payoffs (so that π̄1 = 0), exactly as a myopic
agent would. Therefore when Assumption 3 holds and agents are near a steady state,
the right-hand side of equation (6) reduces to π̄3 + π̄4, so that climate affects payoffs
only through the direct effects of altered average weather. In this special case, the
treatment effect of a transient weather shock indeed recovers the effect of permanently
changing average weather.28

Proposition 3 assumed that each agent is near its steady state, with average actions
equal to Ā.29 The following corollary establishes how relaxing this assumption changes
the results.

Corollary 4. Let the conditions given in Proposition 3 hold, except let each agent’s
average actions be different from Ā. In addition, let at least one of π̄13, π̄23, π̄14, or
π̄24 be strictly positive. Then, in each part of Proposition 3, lims→∞ dE0[πs]/ dC is
strictly less (greater) than the indicated combination of coefficients if and only if Ā is
strictly less (greater) than each agent’s average actions.

Proof. See Appendix B.7.

The corollary establishes that the special cases that formerly sufficed to identify
climate impacts from weather impacts now merely bound the effect of climate on
payoffs. In particular, we obtain an upper bound if agents are approaching their
steady-state actions from above and a lower bound otherwise. Intuitively, if climate
shifts the steady-state action farther from the agent’s current action, then weather

27In particular, the argument from Hsiang (2016) and Deryugina and Hsiang (2017) would imply
that dĀ/dC generically vanishes in equation (6).

28As described earlier, one of the special cases of Assumption 3 is a model with no dynamic linkages
(π2(·, ·, ·, ·) = 0), in which case the agent solves a series of independent, static decision problems.
Appeals to the envelope theorem therefore can end up with the correct result in the types of static
settings discussed by Hsiang (2016) and Deryugina and Hsiang (2017).

29Sorkin (2015) imposes an analogous restriction when relating short-run and long-run variation.
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shocks incorporate transition costs that vanish from the effect of climate on long-run
payoffs.

We have seen that reduced-form regressions can recover the effects of climate on
payoffs, but only in special environments and only if correctly specified. The pre-
dominant empirical specification looks like regression (12), except omitting forecasts
and lags of weather. These specifications succeed in recovering the effect of climate
if (i) there are no delayed effects of weather (π̄4 = 0) and either (ii) payoffs belong
to the special class of functions defined by Assumption 3 or (iiia) actions are cho-
sen independently over time (π̄12 = 0) with (iiib) no scope for ex-ante adaptation
(π̄23 = 0).30 Adding lags of weather would relax restriction (i) and adding forecasts
would relax restriction (iiib), but requiring one of restrictions (ii) and (iiia) is un-
avoidable. Problematically, these restrictions are not ones that will clearly be met
in many environments. Further, the reduced-form coefficients entangle enough struc-
tural effects that the bias from failing to meet either (ii) or (iiia) cannot be signed in
general. I next show that we can use theoretically motivated indirect least squares
estimators to avoid restrictions (ii) and (iiia).

5 Structurally Estimating Climate Impacts in U.S. Agri-

culture

I now explore the potential for an indirect least squares estimator to recover climate
impacts. The necessary assumptions are now driven by the desire to point identify
combinations of structural parameters rather than by the need to reconcile reduced-
form estimators to the effect of interest. Not only are the required assumptions
weaker, but I use the estimated structural parameters to disentangle weather effects
from adaptation and to bound the effect of longer-run adaptation. Importantly, this
new approach maintains precisely the same credible identification from the reduced-
form specifications. As we will see, these specifications suffice because we do not
need to recover—or even specify—every underlying structural parameter in order to
undertake the calculations suggested by theory.

I demonstrate this new approach by extending the seminal analysis of agricultural
impacts from Deschênes and Greenstone (2007). In order to be consistent with com-
mon regression specifications, generalize the foregoing analysis to allow for K types
of weather variables, which can be correlated with each other. Let there be M ac-
tions chosen in each period, so that time t payoffs are now π(At,At−1,wt,wt−1) :
RM ×RM ×RK ×RK → R, with bold script indicating vectors. Superscripts will in-
dicate elements of these vectors. The following assumption is useful for the structural
calculations:

30See Supplementary Material Section A.1.
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Assumption 4. Either (i) there exist g : RM → R, h : RM → R, and π0 : R × R ×
RK → R such that π(At,At−1,wt,wt−1) = π0(g(At), h(At−1),wt), or (ii) there exist
πk : R× R× R→ R for k ∈ {1, ..., K} and πK+1 : RM × RM → R such that M ≥ K
and

π(At,At−1,wt,wt−1) =
K∑
k=1

πk(Akt , A
k
t−1, w

k
t ) + πK+1(A∼kt ,A∼kt−1),

where A∼kt indicates the (M −K)-dimensional vector of actions AK+1
t through AMt .

This assumption does two things. First, it rules out delayed effects of weather. Some
assumption about delayed effects is necessary for point identification of structural
parameters. Ignoring delayed effects is consistent with past literature and is plausible
in the below application to annual agricultural data. Second, it requires either that
the vector of actions be reducible to a composite action (trivially true for M = 1,
as in foregoing analysis) or that payoffs be separable in the dimensions of weather.
This requirement ensures that the terms controlling whether actions are intertemporal
substitutes or complements are scalar.

Consider the following regression:

πct =αc + ψrt +
K∑
k=1

[
Φk
wt−2

wkc(t−2) + Φk
wt−1

wkc(t−1) + Φk
wt
wkct + Φk

wt+1
wkc(t+1)

]
+ δct,

(13)

where c indicates counties, t indicates years, πct is agricultural profits, the αc are
county fixed effects, the ψrt are region-year fixed effects,31 and superscript k indexes
weather variables of interest. The following lemma expresses the coefficients in terms
of model primitives:32

Lemma 3. Let Assumption 4 and the conditions of Proposition 3 hold, and let εt be

31In the preferred specification, the regions are USDA Farm Resource Regions (see also Deschênes
and Greenstone, 2012). Appendix A provides further details and reports the variance explained
by the weather variables (see Fisher et al., 2012). Supplementary Material Section B.1 assesses
sensitivity to instead defining regions as individual states (as in Deschênes and Greenstone, 2007)
or as the whole country (as in Fisher et al., 2012).

32The lemma requires that weather be serially uncorrelated. This assumption seems an acceptable
starting point: over all U.S. counties from 1972 to 2019, the correlation between locally demeaned
growing season degree days and its lag is 0.13, the correlation between locally demeaned extreme
growing season degree days and its lag is 0.075, and the correlation between locally demeaned
growing season precipitation and its lag is -0.014.
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uncorrelated with νt. Then:
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)2(
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)
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(τ k)2 + (σk)2
Γ̂k3.

If case (i) of Assumption 4 holds, then we replace the k superscripts on the right-hand
side with 0.

Proof. See Appendix B.8.

The Γ̂ were defined in regression (11), analyzed in Proposition 1, and expressed in
terms of model primitives in the proof of Proposition 1. They here gain a superscript k
to indicate the corresponding dimension of weather. Solving the system of equations,
we find:

π̄k12

χk2
=

Φ̂k
wt−2

Φ̂k
wt−1

, (14)

π̄k2 Γ̂k3
(τ k)2

(τ k)2 + (σk)2
= −

Φ̂k
wt+1

β
, (15)

π̄2Γ̂k1 =
Φ̂k
wt−1
−
(

1− β π̄
k
12

χk
2

)
π̄k
12

χk
2
π̄k2

(τk)2

(τk)2+(σk)2
Γ̂k3

1− β π̄
k
12

χk
2

, (16)

π̄k3 = Φ̂k
wt

+ βπ̄k2 Γ̂k1 −
(

1− β π̄
k
12

χk2

)
π̄k2

(τ k)2

(τ k)2 + (σk)2
Γ̂k3. (17)

π̄k12/χ
k
2 is identified from the first and second lags of weather (equation (14)). The

proof of Lemma 2 shows that χk2 > |π̄k12| for a saddle-path stable steady-state, so the

sign of π̄k12/χ
k
2 matches the sign of π̄k12. The lead of weather identifies π̄k2 Γ̂k3

(τk)2

(τk)2+(σk)2

(equation (15)), which the proof of Proposition 1 connects to ex-ante adaptation.33

Given these two terms, the residual effects of lagged weather identify π̄k2 Γ̂k1 (equa-
tion (16)), which the proof of Proposition 1 connects to ex-post adaptation. Finally,
the residual effects of contemporary weather identify the direct effects π̄k3 (equa-
tion (17)). Intuitively, when lagged weather affects current payoffs only through

33I calibrate β to the annual discount rate of 34% obtained in Duquette et al. (2012). Supplemen-
tary Material Section B.1 shows that results are not sensitive to lower discount rates.
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actions, we can identify ex-post adaptation from lagged weather and can identify in-
tertemporal links between actions by comparing lags of weather. And once we have
identified the scope of adaptation, we can recover the direct effects of weather from
the response of payoffs to contemporary weather.

Equation (7) shows that calculating climate impacts requires π̄k3 and (1−β)π̄k2 [ dĀk/ dCk],
using case (ii) of Assumption 4 for exposition. The above steps recover π̄k3 directly,
which also gives the no-adaptation effect of climate change. From equation (10),

dĀk

dCk
=

1

ωk

[
Γ̂k1 + Γ̂k3

]
− βπ̄k12Ωk,

with ωk > 1 if and only if π̄k12 < 0. Using this expression in equation (7) and letting
π̄k12 → 0 gives us a short-run-adaptation estimate of climate consequences:

lim
t→∞

dE0[π(At,At−1,wt,wt−1)]

dCk

∣∣∣∣
π̄k
12=0

=π̄k3 + (1− β)π̄k2 Γ̂k1 + (1− β)π̄k2 Γ̂k3. (18)

Equations (15) through (17) provide all the terms for the right-hand side of (18). Even
though I recover only combinations of structural parameters through indirect least
squares (recall that each Γ̂k is a function of structural parameters), these combinations
of structural parameters suffice to recover climate impacts. I calculate the effects
of ex-post adaptation using (1 − β)π̄k2 Γ̂k1 and the effects of ex-ante adaptation using
(1−β)π̄k2 Γ̂k3,34 and I use the estimated π̄k12 to bound long-run costs from equation (18).

For comparison, I also undertake two reduced-form calculations of the effects of
climate change. A first calculation estimates (13) without any leads or lags on the
right-hand side and multiplies each weather variable’s coefficient by the projected
change in that weather variable. This calculation matches the calculations undertaken
in previous literature. From Proposition 3 and Supplementary Material Section A.1,
it recovers the theory-implied effects of climate if Assumptions 3 and 4 hold. A
second calculation estimates (13) without the second lag on the right-hand side and
multiplies the sum of each weather index’s three coefficients by the projected change
in that weather variable. From Proposition 3, this calculation recovers the theory-
implied effects of climate if π̄12 = 0 and Assumption 4 holds (and see footnote 34).
This last calculation requires the same assumptions as the structural calculations
in (18), but only the structural calculations test the assumption that π̄k12 = 0 and
provide bounds when π̄k12 6= 0.

Appendix A describes the data and details sample construction. The construction
of the data follows an updated version of the methodology in Deschênes and Green-
stone (2007) and Fisher et al. (2012). I have observations of county-level agricultural

34These calculations set (τk)2/((τk)2 + (σk)2) equal to 1. This fraction reflects the fraction of the
variation in weather that is already realized one period ahead (i.e., that is reflected in forecasts).
Estimated ex-ante adaptation is biased towards zero if the fraction is in fact less than 1. Replacing
the lead of realized weather in regression (13) with forecasts would eliminate this bias.
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profits and acreage every 5 years from 1987 through 2017 from the U.S. Census of Agri-
culture. I follow previous literature in studying a measure of growing season degree
days (i.e., accumulated heat within a temperature range favorable to plant growth),
a measure of extreme growing season degree days (i.e., accumulated extreme heat,
generally harmful to plant growth), and growing season precipitation. The preferred
specification includes USDA Farm Resource Region-by-year fixed effects (as in De-
schênes and Greenstone, 2012), weights counties by average acreage (as in Deschênes
and Greenstone, 2007), clusters standard errors by state (as in Fisher et al., 2012),
and restricts the sample to counties east of the 100th meridian, which are less likely
to be irrigated (Schlenker et al., 2005; Fisher et al., 2012). Supplementary Material
Section B contains a variety of robustness checks.

The top panel of Table 1 reports the reduced-form coefficients from regression (13).
Profits increase in same-year growing degree days between 10◦C and 29◦C (“GDD”),
but profits decrease in same-year growing degree days above 29◦C (“Extreme GDD”).
The central estimate suggests that same-year precipitation reduces profits, but this
effect could easily go the other way. The signs of the central estimates alternate from
the first to the second lag for both extreme growing degree days and precipitation.
The lead of weather does not have a statistically significant effect on profits.

The lower panel of Table 1 reports the medians and, in parentheses, lower and
upper quartiles for the theory-implied structural parameters.35 These parameters
use the reduced-form coefficients from regression (13) in equations (14) through (17).
The signs of the direct terms π̄k3 and the ex-post adaptation terms π̄k2 Γ̂k1 are consistent
with the signs of same-year and previous-year impacts on profits. The nonzero ex-
post adaptation term for extreme growing degree days and precipitation suggests
that Assumption 3 does not hold in this application, which motivates a structural
approach to recovering climate impacts. The ex-ante adaptation terms are noisily
estimated and not clearly different from zero, as were the coefficients on the leads of
weather.

The final row of Table 1 reports the π̄k12/χ
k
2. We have a case of intertemporal

substitutes (complements) if this term is negative (positive). The estimates for con-
ventional growing degree days and precipitation have ambiguous sign, but even the
75th percentile estimate is negative for extreme growing degree days. Reassuringly,
these estimates are all consistent with |π̄k12| < χk2, which the proof of Lemma 2 shows
follows from saddle-path stability. The negative π̄k12 is identified by the difference in
sign between the estimated reduced-form coefficients on the first and second lags of
extreme growing degree days. Within the economic model, these opposite effects im-
ply that adaptive actions taken two years ago increase current payoffs by constraining
the actions taken last year. Finding π̄k12 < 0 is contrary to Le Châtelier’s principle
but consistent with recent empirical work in agricultural economics (Hendricks et al.,
2014; Kim and Moschini, 2018). Following Eckstein (1984), these researchers attribute

35The lower panel does not report means and standard errors because the distributions can be
highly skewed due to π̄k12/χ

k
2 being the ratio of two reduced-form coefficients (see (14)).
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Table 1: Top panel: Estimated coefficients and standard errors from regression (13).
Bottom panel: Theory-implied structural parameters from combining regression (13)
with equations (14) through (17), reported as the median and lower/upper quartiles
of the distribution implied by the reduced-form estimates.

GDD Extreme GDD Precip

Reduced-Form Coefficients
Current 14 -84 -2.6

(8.6) (49) (3.3)
Lag 1 -6.7 -52 -6.9

(7.1) (26) (3.2)
Lag 2 -11 22 0.72

(11) (27) (3.3)
Lead -2.7 7.7 1.6

(4.5) (21) (1.9)

Theory-Implied Parameters
π̄k3 8.4 -106 -5.6

(-3.6,17) (-129,-82) (-7.9,-3.3)

π̄k2 Γ̂k1 -13 -49 -7.7
(-29,7.0) (-66,-33) (-10,-5.3)

π̄k2 Γ̂k3
(τk)2

(τk)2+(σk)2
3.6 -10 -2.1

(-0.46,7.7) (-29,8.6) (-3.9,-0.40)
π̄k12/χ

k
2 0.78 -0.43 -0.10

(-0.30,2.3) (-0.71,-0.12) (-0.45,0.23)

All specifications include county and Farm Region-year fixed
effects. The reduced-form estimates’ standard errors and the
theory-implied results derive from covariance matrices that
are robust to clustering at the state level. The sample includes
only counties east of the 100th meridian. Observations are
weighted by (the square root of) a county’s average farmland
acreage. There are 16254 county-year observations and 37
state observations. Profits in thous. year 2002 dollars, GDD
in ◦C-days, and precip in mm.
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their results to soil nitrogen and pest dynamics inducing farmers to rotate their crops
over time.36

Table 2 explores the robustness of the estimated π̄k12/χ
k
2.37 The first row repeats

the results from the preferred specification. The second row does not weight observa-
tions by farm acreage, the third and fourth rows explore alternate region-year fixed
effects, the fifth row uses only years since 1997 in order to avoid an issue with older
data (described in Appendix A), and the sixth row changes the sample to counties
west of the 100th meridian. In all of these case, even the 75th percentile for extreme
growing degree days is negative. Moreover, the median estimates for conventional
growing degrees and precipitation are also negative in nearly all of these robustness
checks. The seventh row estimates a geometric lag structure in regression (13), using
three lags and a one-step GMM estimator. The geometric term is equal to π̄k12/χ

k
2.

The estimate for extreme growing degree days is largely unchanged from the preferred
specification.

The final two rows of Table 2 change the dependent variable from profits to yields.
The theoretical analysis is for a maximand such as profits, but some argue that agents
roughly act to maximize yields for given crop acreage. An advantage of using yields
is the far greater number of observations available, as data are published annually
instead of quinquennially. Corn yields’ analogue of π̄k12/χ

k
2 is negative for both growing

degree day variables, even at the 75th percentile. Soybean yields are the one case
where we see a positive estimate for the 75th percentile on extreme growing degree
days, but even there the 25th percentile is negative. On the whole, the evidence
strongly supports π̄k12/χ

k
2 < 0 for extreme growing degree days.

Table 3 reports the projected effects of climate change. It uses the RCP 4.5 tra-
jectory of stabilized emissions from 21 downscaled CMIP5 models. In this scenario,
global mean surface temperature increases by around 2 degrees Celsius over the cen-
tury, which translates into more growing degree days of both types (see Appendix A).
The top panel reports the two reduced-form calculations. The projected increase in
conventional growing degree days is estimated to increase agricultural profits, but
the projected increase in extreme growing degree days is projected to reduce profits
to a greater degree. Total projected costs are sensitive to which assumption is used:
climate change reduces profits by 42% under Assumption 3 and by 82% under the
assumption that π̄k12 = 0. However, both numbers are meaningless if Assumption 3
does not hold and π̄k12 6= 0, and we have indeed already seen that Assumption 3 does
not appear to hold and that π̄k12 < 0 for the most important of the weather variables.

The lower panel reports the new, theory-based estimates of climate impacts. It
decomposes the effects of climate change into direct effects (driven by π̄k3), ex-post
adaptation (driven by π̄k13 via π̄k2 Γ̂k1), and ex-ante adaptation (driven by π̄k23 via π̄k2 Γ̂k3).

36Miao et al. (2016) and Huang and Moore (2019) show that U.S. farmers adjust crop acreage in
response to precipitation.

37The table does not vary the discount factor because doing so does not affect the estimated
π̄k12/χ

k
2 .
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Table 2: Robustness of π̄k12/χ
k
2. Except where indicated, all specifications are as in

the notes on Table 1.

GDD Extreme GDD Precip

Base 0.78 -0.43 -0.10
(-0.30,2.3) (-0.71,-0.12) (-0.45,0.23)

No Weighting -1.7 -0.68 -0.13
(-5.5,3.6) (-1.0,-0.43) (-0.35,0.11)

Year f.e. -2.2 -0.67 -0.13
(-5.1,2.5) (-0.80,-0.56) (-0.39,0.14)

State-Year f.e. -0.062 -1.6 0.56
(-1.0,0.82) (-3.4,-0.19) (-0.32,1.8)

1997–2017 Only 0.80 -1.3 -0.30
(-2.0,3.0) (-2.4,-0.50) (-2.0,1.5)

Western U.S. -0.77 -1.7 0.85
(-1.1,-0.34) (-2.9,-0.70) (0.42,1.5)

Three Lagsa 1.08 -0.34 -0.99
(0.43,1.7) (-0.56,-0.13) (-1.2,-0.81)

Corn Yieldsb -0.40 -1.4 1.8
(-0.79,-0.033) (-2.7,-0.27) (1.4,2.5)

Soybean Yieldsb 0.26 1.0 -0.51
(0.14,0.38) (-0.0091,2.4) (-0.81,-0.27)

a Interquartile range calculated from standard error.
b Using annual data from 1987–2017.
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The median combined direct effect projects losses of 56% from climate change, which
is in between the two reduced-form estimates. Effects on extreme growing degree
days again drive the total effect of climate change.

Ex-post adaptation increases the costs from extreme growing degree days. From
equation (6), adaptive changes in actions affect steady-state payoffs as π̄k1 + π̄k2 , and
from equation (2), π̄k1 + π̄k2 is opposite in sign to π̄k1 . As described following equa-
tion (7), actions that provide short-run benefits in exchange for long-run costs have
negative effects on steady-state payoffs when agents are not perfectly patient. Ex-post
adaptation to increases in extreme growing degree days therefore provides short-run
benefits, but agents reap these benefits only while paying the larger costs of past
adaptation, which dominate in the long run. Ex-ante adaptation is not clearly im-
portant.38 Accounting for adaptation, projected changes in conventional growing
degree days increase profits by 11% in the median estimate and projected changes
in extreme growing degree days reduce profits by 82% in the median estimate. The
median total effect of climate change is a 69% reduction in profits if agents adapt as
they do to short-run weather shocks (see equation (18)).

This last calculation approximates dĀk/ dCk by setting π̄k12 = 0, which implies
that ωk = 1 and that Ωk is irrelevant in equation (10). In contrast to reduced-
form approaches, this structural calculation has a clear interpretation even if that
assumption is violated. We know from Proposition 1 that the bias from π̄k12 6= 0
reflects preparatory actions (through Ωk) and historical restraints (through ωk). In
the present context, it is reasonable to assume that the wedge induced by preparatory
actions is small relative to the wedge induced by historical restraints, an intuition
reinforced by the small effects estimated for ex-ante adaptation. Therefore π̄k12 >
0 would imply that the present calculations underestimate adaptation to climate
(because ωk < 1) and π̄k12 < 0 would imply that the present calculations overestimate
adaptation to climate (because ωk > 1).

We saw in Table 1 that π̄k12 < 0 for the extreme growing degree days that drive
climate impacts. This result implies that we observe more adaptation to short-run
weather shocks than would occur in response to long-run changes in climate. The
implied resource scarcity story is intuitively consistent with finding that adaptation
provides short-run benefits but imposes long-run costs. Because π̄k12 < 0, we can
bound the effects of climate by the estimated total effects that include projected
adaptation and by the estimated direct effects that exclude adaptation. If I were
following the conventional approach in the weather-climate literature, I would under-
take calculations like those relying on Assumption 3 and apply intuition based on
Le Châtelier’s principle to conclude that climate change reduces profits by 0–42% in

38Recall, however, that the estimated effects of ex-ante adaptation are biased towards zero (see
footnote 34). Supplementary Material Section B.2 reports that ex-ante adaptation to extreme grow-
ing degree days becomes clearer if we omit the earlier years from the sample, which is consistent with
the reduced skill and availability of seasonal forecasts prior to the mid-1990s. Takle et al. (2013)
and Klemm and McPherson (2017) describe the various seasonal forecasts of interest to agriculture.

27 of 37



Lemoine Estimating Climate from Weather May 2020

Table 3: The percentage change in eastern U.S. agricultural profits due to predicted
end-of-century changes in growing degree days, extreme growing degree days, and
precipitation. The reduced-form estimates report central estimates and standard
errors. The theory-implied estimates report the median and lower/upper quartiles.

GDD Extreme GDD Precip Combined

Reduced-Form
Using Assumption 3 37 -79 -0.54 -42

(21) (33) (0.33) (22)
Using π̄k12 = 0 6.8 -88 -0.86 -82

(29) (33) (0.37) (27)

Theory-Implied
Direct Effects 20 -72 -0.58 -56

(-8.6,42) (-88,-56) (-0.82,-0.35) (-77,-36)
Ex-Post Adaptation -7.7 -8.5 -0.20 -15

(-18,4.3) (-11,-5.7) (-0.27,-0.14) (-28,-1.9)
Ex-Ante Adaptation 2.2 -1.8 -0.056 0.40

(-0.28,4.8) (-5.1,1.5) (-0.10,-0.011) (-3.0,3.8)
Total 11 -82 -0.84 -69

(-29,52) (-101,-64) (-1.1,-0.58) (-106,-36)

All specifications include county and Farm Region-year fixed effects. The reduced-
form estimates’ standard errors and the theory-implied results derive from covari-
ance matrices that are robust to clustering at the state level. The sample includes
only counties east of the 100th meridian. Observations are weighted by (the square
root of) a county’s average farmland acreage. Climate projections use the RCP 4.5
scenario averaged across 21 CMIP5 models. There are 16254 county-year observa-
tions and 37 state observations.

the median estimates. Instead, the structural calculations and the estimated π̄k12 < 0
imply that climate change reduces agricultural profits by 56–69% ($23–28 billion an-
nually at the year 2017 price level) in the median estimates.

6 Potential Extensions

I have demonstrated how to estimate the effects of climate change from time series
variation in weather. I conclude by discussing the primary restrictions in the present
setting and describing other aspects of climate change that should be the subject of
future analysis.

The theoretical model is fairly general. The notable restrictions are that past
weather and actions can directly affect payoffs with only a one-period lag (although
they do indirectly affect payoffs arbitrarily far into the future) and that agents have
access to specialized forecasts only one period in advance of a realized weather out-
come. Allowing longer lags of weather to directly affect payoffs is probably important
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to some applications but would not appreciably change the theoretical results. In par-
ticular, distributed lag models will recover the effects of climate in exactly the same
cases as analyzed here. Allowing for longer-horizon forecasts also does not change the
theoretical results unless actions can have direct effects over those horizons.

In contrast, allowing actions to have longer-run direct effects on payoffs can have
interesting consequences. Such an extension is attractive if we interpret actions as
the choice of capital stock and we want to study capital that can be built only with
a lag of more than one period. If longer-run forecasts are available, then the present
results extend in a natural way, implying that it is important to control for these
longer-run forecasts. But if weather forecasts do not exist over the whole horizon
over which today’s actions will directly affect payoffs, then empirical researchers may
be unable to estimate the full effect of climate: changing the climate can lead agents
to undertake actions that pay off only in the distant future, but observable variation
in forecasts will not identify this adaptation margin. In the empirical application
of Section 5, the existence of such actions would permit long-run adaptation to be
greater than short-run adaptation even though I estimate π̄12 < 0 from the actions
that vary in the data.

The present setting successfully captures the distinction between transient and
permanent changes in weather. Future work should consider other aspects of climate
change. First, global climate change differs from weather shocks not only in its
temporal structure but also in its spatial structure. A change in global climate affects
weather in every location and thus will have general equilibrium consequences. In
the empirical application, general equilibrium channels change the prices of land and
crops. The present setting has followed most empirical work in abstracting from
such effects, but some recent empirical work has begun exploring the implications of
changing the weather in many locations simultaneously (e.g., Costinot et al., 2016;
Gouel and Laborde, 2018; Dingel et al., 2019). Future work should extend the present
setting to account for general equilibrium effects.

Second, the present analysis has held the payoff function fixed over time. However,
climate change should induce innovations that alter how weather affects payoffs, and
many such innovations will arise even in the absence of climate change. Some types
of innovation can be interpreted as actions within the present framework, but the
potential for future innovation may be inherently unobservable. Historical studies
have begun exploring the interaction between climate and agricultural innovation
(e.g., Olmstead and Rhode, 2008, 2011; Roberts and Schlenker, 2011; Bleakley and
Hong, 2017). Future work should consider approaches to bounding the scope for
future innovation.

Third, the present analysis has considered only marginal changes in climate, but
climate change over the next century is likely to be nonmarginal.39 The present anal-

39Estimating the consequences of nonmarginal climate change is critical to the damage functions
required by climate-economy integrated assessment models (see Nordhaus, 2013). However, there is
an argument that the consequences of marginal climate change might be especially policy relevant: if
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ysis implies that the marginal effect of climate will not generally be constant. Some
recent work (Mérel and Gammans, 2019) explores the types of variation captured by
quadratic regression terms. Future work should explore whether nonlinear specifica-
tions might inform estimates of the impacts from nonmarginal climate change in a
dynamic setting such as the present one.

Fourth, the present analysis assumes that actions can be adjusted continuously.
In the presence of fixed costs, an agent may choose to change an action only when
the agent expects a change in weather to endure, and in the presence of constraints
imposed by policy, actions may not respond smoothly to weather shocks, changing the
interpretation of reduced-form coefficients. Future work should explore the conditions
under which aggregating over many agents’ fixed-cost decisions makes actions appear
continuous. Future work should also explore whether responses to weather events of
varying durations can identify how fixed-cost actions respond to a change in climate
and whether responses to weather events of varying magnitudes can identify the role
of policy constraints.

Finally, the present analysis has focused on identifying the long-run consequences
of climate change, abstracting from the transition costs induced by climate change.
In this regard, the present analysis matches the calculations undertaken by nearly all
empirical work but omits a potentially critical aspect of climate change (see Quiggin
and Horowitz, 1999, 2003; Kelly et al., 2005). I have focused on maintaining both cred-
ible reduced-form identification and generality in the theoretical setting, but future
work should consider whether imposing stronger assumptions on the decision-making
environment can allow for credible simulation of counterfactual climate trajectories
and thereby estimate transition costs.

References

Anderson, Michael L. (2015) “As the wind blows: The effects of long-term exposure
to air pollution on mortality,” Working Paper 21578, National Bureau of Economic
Research.

Auffhammer, Maximilian (2018a) “Climate adaptive response estimation: Short and
long run impacts of climate change on residential electricity and natural gas con-
sumption using big data,” Working Paper 24397, National Bureau of Economic
Research.

(2018b) “Quantifying economic damages from climate change,” Journal of
Economic Perspectives, Vol. 32, No. 4, pp. 33–52.

we accept climate scientists’ views that the potentially nonquantifiable risks imposed by nonmarginal
climate change are likely to exceed the cost of avoiding them, then the effects of marginal climate
change become critical to policy choices.

30 of 37



Lemoine Estimating Climate from Weather May 2020

Auffhammer, Maximilian and Anin Aroonruengsawat (2011) “Simulating the impacts
of climate change, prices and population on California’s residential electricity con-
sumption,” Climatic Change, Vol. 109, No. 1, pp. 191–210.

Bakkensen, Laura and Lint Barrage (2018) “Climate shocks, cyclones, and economic
growth: Bridging the micro-macro gap,” Working Paper 24893, National Bureau
of Economic Research.

Barreca, Alan I., Matthew Neidell, and Nicholas J. Sanders (2017) “Long-run pol-
lution exposure and adult mortality: Evidence from the Acid Rain Program,”
Working Paper 23524, National Bureau of Economic Research.

Bishop, Kelly C., Jonathan D. Ketcham, and Nicolai V. Kuminoff (2018) “Hazed and
confused: The effect of air pollution on dementia,” Working Paper 24970, National
Bureau of Economic Research.

Blanc, Elodie and Wolfram Schlenker (2017) “The use of panel models in assessments
of climate impacts on agriculture,” Review of Environmental Economics and Policy,
Vol. 11, No. 2, pp. 258–279.

Bleakley, Hoyt and Sok Chul Hong (2017) “Adapting to the weather: Lessons from
U.S. history,” The Journal of Economic History, Vol. 77, No. 3, pp. 756–795.

Burke, Marshall, Solomon M. Hsiang, and Edward Miguel (2015) “Global non-linear
effect of temperature on economic production,” Nature, Vol. 527, pp. 235–239.

Carleton, Tamma A. and Solomon M. Hsiang (2016) “Social and economic impacts
of climate,” Science, Vol. 353, No. 6304, p. aad9837.

Chen, Yuyu, Avraham Ebenstein, Michael Greenstone, and Hongbin Li (2013) “Evi-
dence on the impact of sustained exposure to air pollution on life expectancy from
China’s Huai River policy,” Proceedings of the National Academy of Sciences, Vol.
110, No. 32, pp. 12936–12941.

Chetty, Raj (2009) “Sufficient statistics for welfare analysis: A bridge between struc-
tural and reduced-form methods,” Annual Review of Economics, Vol. 1, No. 1, pp.
451–488.

Colacito, Riccardo, Bridget Hoffmann, and Toan Phan (2019) “Temperature and
growth: A panel analysis of the United States,” Journal of Money, Credit and
Banking, Vol. 51, No. 2-3, pp. 313–368.

Costinot, Arnaud, Dave Donaldson, and Cory Smith (2016) “Evolving comparative
advantage and the impact of climate change in agricultural markets: Evidence from
1.7 million fields around the world,” Journal of Political Economy, Vol. 124, No. 1,
pp. 205–248.

31 of 37



Lemoine Estimating Climate from Weather May 2020

Dell, Melissa, Benjamin F. Jones, and Benjamin A. Olken (2012) “Temperature
shocks and economic growth: Evidence from the last half century,” American Eco-
nomic Journal: Macroeconomics, Vol. 4, No. 3, pp. 66–95.

(2014) “What do we learn from the weather? The new climate-economy
literature,” Journal of Economic Literature, Vol. 52, No. 3, pp. 740–798.

Deryugina, Tatyana and Solomon Hsiang (2017) “The marginal product of climate,”
Working Paper 24072, National Bureau of Economic Research.

Deschenes, Olivier (2014) “Temperature, human health, and adaptation: A review of
the empirical literature,” Energy Economics, Vol. 46, pp. 606–619.
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