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1 Introduction

A pressing empirical agenda seeks to estimate the economic costs of climate change. Ig-
norance of these costs has severely hampered economists’ ability to give concrete policy
recommendations (Pindyck, 2013). The challenge is that although variation in climate has
been primarily cross-sectional, cross-sectional regressions cannot clearly identify the effects of
climate.! Seeking credible identification, an explosively growing empirical literature has re-
cently explored panel variation in weather.? The hope is that variation in transient weather
identifies—or at worst bounds—the effects of a change in climate, which manifests itself
through weather but differs from a transient weather shock in being repeated period after
period and in affecting expectations of weather far out into the future.

I here undertake the first formal analysis that precisely delineates what and how we can
learn about the climate from the weather. Linking weather to climate requires analyzing a
dynamic model that can capture the distinction between transient and permanent changes
in weather. I study an agent (equivalently, firm) who is exposed to stochastic weather
outcomes. The agent chooses actions (equivalently, investments) that suit the weather, but
adjusting actions from period to period is costly. When choosing actions, the agent knows the
current weather, has access to specialized forecasts of the weather some arbitrary number of
periods into the future, and relies on knowledge of the climate to generate forecasts at longer
horizons. A change in the climate shifts the distribution of potential weather outcomes and
alters the agent’s expectations about future weather.

I show several novel results. First, I show that estimating the effects of weather on actions
understates the long-run effect of climate on actions. Much empirical research has sought to
estimate the consequences of climate change for decision variables or functions of decision
variables, including productivity (Heal and Park, 2013; Zhang et al., 2018), health (Desch-
enes, 2014), crime (Ranson, 2014), and energy use (Auffhammer and Aroonruengsawat, 2011;
Deschénes and Greenstone, 2011). Many economists have intuited that short-run adaptation
responses to weather are likely to be smaller than long-run adaptation responses to climate
(e.g., Deschénes and Greenstone, 2007). I show that the critical ingredient for this result is
adjustment costs, not expectations of future weather. The actions an agent takes in response
to a transient weather shock are constrained by the agent’s desire to not change actions too
much from period to period, but when the same weather shock is repeated period after pe-
riod, even a myopic agent eventually achieves a larger change in activity through a sequence
of incremental adjustments. I demonstrate that combining short-run adaptation responses
to weather realizations with short-run adaptation responses to weather forecasts can better

!For many years, empirical analyses did rely on cross-sectional variation in climate to identify the economic
consequences of climate change (e.g., Mendelsohn et al., 1994; Schlenker et al., 2005; Nordhaus, 2006).
However, cross-sectional analyses fell out of favor due to concerns about omitted variables bias. See Dell
et al. (2014) and Auffhammer (2018b) for expositions and Massetti and Mendelsohn (2018) for a review.

2For recent reviews, see Dell et al. (2014), Carleton and Hsiang (2016), and Heal and Park (2016). Blanc
and Schlenker (2017) discuss the strengths and weaknesses of relying on panel variation in weather.
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approximate long-run adaptation to climate. Further, I show that agents respond to fore-
casts only because they face adjustment costs. Estimating responses to forecasts therefore
allows for a nice test: if actions are much less sensitive to forecasts than to weather and
agents are patient over the forecasts’ timescales, then adjustment costs may be small and
responses to weather may approximate responses to climate.

Second, I show that the marginal effect of climate on steady-state expected payoffs is
equal to the average treatment effect of weather in the current climate. Much empirical
research has sought to estimate the consequences of climate change for flow payoffs such
as profits (e.g., Deschénes and Greenstone, 2007) and for variables such as gross output or
income that are potentially related to aggregate payoffs (e.g., Dell et al., 2012; Burke et al.,
2015; Deryugina and Hsiang, 2017). I show that an easily estimated function of weather
is a sufficient statistic for the impact of limited climate change on such variables.® This is
a surprising and powerful result. Changing the climate is equivalent to changing expected
weather in all future periods, yet transient weather shocks identify the marginal consequences
of climate. The analysis implies that empirical work should bin locations by climate (e.g.,
by long-run average temperature) and estimate a single coefficient on weather (e.g., realized
temperature) within each bin. The estimated coefficients describe the effect of marginally
changing a location’s climate on steady-state payoffs, and summing coefficients across bins
describes the effect of nonmarginal climate change on steady-state payoffs. Time series
variation therefore identifies the consequences of marginal changes in climate and cross-
sectional variation identifies the consequences of nonmarginal changes in climate.* Care
should be taken, however, in extrapolating to very large changes in climate. Estimating
the consequences of such large changes will require pushing the available cross-sectional
variation beyond the limits of credible identification and may simply be beyond the reach of
reduced-form methods.

Figure 1 depicts the intuition underlying the average treatment effect result. Consider
estimating the effect of temperature on agricultural profits, as in Deschénes and Greenstone
(2007). Each solid curve in the left panel plots profits as a function of current inputs (such
as labor and irrigation), conditional on growing season temperature being either typical or
hot. Agents maximize profits by choosing inputs at the points labeled a and b. The dotted

31 describe the average treatment effect of weather as a sufficient statistic because multiple combinations
of structural parameters can yield the same welfare consequences. Estimating the average treatment effect
of weather does not recover all deep primitives but does provide a credibly identified estimate of marginal
climate impacts (compare Chetty, 2009).

4The combination of panel and cross-sectional variation is similar in spirit to, for example, Auffhammer
(2018a), except that the suggested approach estimates a coefficient on weather that can vary with the climate
rather than estimating a coefficient on weather that varies with both the weather and the climate. (Deryugina
and Hsiang (2017) estimate nonmarginal impacts in a different fashion, by allowing the effect of a weather
realization to be nonlinear in its frequency.) The use of cross-sectional variation raises the usual concerns
about identification. Results in the appendix suggest a sanity test: moving between climates should not
have a stronger effect than do extreme weather events within the current climate.
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line connecting points a and b then gives the effect on time t profits of time ¢ temperature.
Because profits are flat in inputs around point a, small changes in temperature do not
have first-order effects on profits through input choices. This is the content of the envelope
theorem, as applied by Deschénes and Greenstone (2007) and subsequent literature. If
climate differs from weather only through beliefs that affect input choices, then the effects
of climate are identified by the effects of transient weather shocks (Hsiang, 2016; Deryugina
and Hsiang, 2017).

However, envelope theorem arguments miss the dynamics that distinguish climate from
weather. Now imagine that changing inputs imposes adjustment costs, so that time ¢ profits
also depend on time ¢ — 1 inputs. A change in climate means that previous years were hot
and subsequent years are also expected to be hot. If last year was hot, then last year’s
input choices reflect that outcome and it becomes less costly to choose high inputs this
year. The dashed curve in the left panel of Figure 1 plots profits in a current hot year
conditional on having already adjusted last year’s input choices in response to last year’s
being hot. The inputs that maximize this year’s profits increase to point ¢ because they are
less constrained by last year’s choices. Now consider the implications of agents expecting
the subsequent year ¢t + 1 to once again be hot. Applying more inputs at time ¢ carries the
dynamic benefit of reducing time t+1 adjustment costs. As a result, the dynamically optimal
input choice is point d, where the marginal effect on this year’s profit is negative but the
marginal effect on expected intertemporal profits is zero (equation (2) below). The dotted
line connecting points a and d then gives the change in profit corresponding to permanently
increasing temperature. In line with intuition in Deschénes and Greenstone (2007), long-run
adjustments potentially make the effects of a permanent change in weather less severe than
the effects of a transient change in weather.

But how can we estimate the dotted line connecting points a and d? The right panel of
Figure 1 again plots profits as a function of current inputs, but it holds current weather fixed
between curves and instead varies only the previous year’s input choices. The curve labeled
“ss” depicts profits when the typical temperature has occurred many years in a row, so that
previous inputs reached a steady state. The other two curves depict this year’s profits under
the typical temperature outcome but with higher (“H”) and lower (“L”) choices of inputs in
the previous year. The adjustment costs imposed by these past choices constrain this year’s
choice of inputs and thereby reduce profits.

The dotted curve gives the effect on myopically optimized profits of changing last year’s
input choices. This curve has a peak at the myopically optimal labor input implied by curve
“ss”. Around this point (labeled 1), a permanent change in weather does not have first-order
effects through past input choices. So the left panel’s point ¢ converges to point b. Now
imagine that the agent expects the typical temperature to also occur next year. Because
this year’s input choices do not have first-order effects on next year’s profits around point 1,
the myopically optimal input choice is also dynamically optimal. So the left panel’s point d
converges to point ¢. Combining these results, line a-b converges to line a-d around point
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Time t Profit
Time t Profit

Time tInputs Time t Inputs

Figure 1: Left: Profits against inputs, conditional on temperature. Line a-b gives the effect
on profits of increasing temperature from “typical” to “hot” in the absence of long-run
adaptation. Line a-d accounts for adaptation to previous hot years and for expecting next
year to again be hot. Right: Profits against inputs, conditional on past input choices. The
curve labeled “ss” sets previous inputs to the steady state that would result if the current
temperature were maintained forever.

1, so that the treatment effect of a transient weather shock indeed recovers the effect of
permanently changing the weather. However, an econometrician may not know which obser-
vations in a data set are near a steady state. I show that averaging over potential previous
input decisions and potential temperatures can center the estimated marginal effect of tem-
perature around the steady-state inputs corresponding to a location’s average temperature.
Estimating the average treatment effect of temperature then recovers the effect of a marginal
change in that location’s climate.

Despite the importance of empirically estimating the costs of climate change and the
sharpness of informal debates around the relevance of the recent empirical literature to cli-
mate change, there has been remarkably little formal analysis of the link between weather
and climate. Previous formal analysis has consisted in appeals to the envelope theorem in
static environments (Deschénes and Greenstone, 2007; Hsiang, 2016; Deryugina and Hsiang,
2017), but as described above, a static environment misses the distinction between transient
and permanent weather shocks.> Envelope theorem intuition has led the literature (i) to of-

5A few other papers are also related. First, in an initial expositional analysis, I showed how envelope
theorem arguments can fail in a three-period model (Lemoine, 2017). The present work precisely analyzes the
consequences of climate change in an infinite-horizon model and constructively shows which types of empirical
estimates can be informative about the climate. Second, Kelly et al. (2005) study the cost of having to learn
about a change in the climate from an altered sequence of weather as opposed to knowing outright how the
climate has changed. I here abstract from learning in order to focus on mechanisms more relevant to the
growing empirical literature. Third, calibrated simulations have shown that dynamic responses are critical
to the effects of climate on timber markets (Sohngen and Mendelsohn, 1998; Guo and Costello, 2013) and
to the cost of increased cyclone risk (Bakkensen and Barrage, 2018). Finally, a few empirical papers have
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ten ignore how the effects of transient weather shocks depend on a location’s climate and (ii)
to often treat the marginal effects of common and uncommon weather events as equally in-
formative about climate change. Because of (i), most empirical literature pools the marginal
effects of weather across units that reside in different climate zones, which conflates units for
which a weather shock is rare with units for which a weather shock is common.® Because
of (ii), some empirical literature (e.g., Deryugina and Hsiang, 2017) estimates how payoffs
respond to additional days with each type of weather and then combines these estimates
with scientific models’ projections of how climate change will alter the frequency of each
type of weather.” In the appendix, I show that this estimator overstates the cost of marginal
climate change by capturing the nonlinear consequences of transient weather shocks, which
I also show have little bearing on the effects of climate change.

The next section describes the setting. Section 3 solves the dynamic programming prob-
lem. Sections 4 and 5 analyze the effects of climate on agents’ chosen actions and payoffs,
respectively. The final section discusses limitations of the present analysis. The appendix
contains additional results, generalizes the analysis, and provides proofs.

2 Setting

An agent is repeatedly exposed to stochastic weather outcomes. The realized weather in
period t is w;. This weather realization imposes two types of costs. A first type of cost arises
independently of any actions the agent might take. These unavoidable costs are %@/J(wt —w)?,
where the parameter w defines the weather outcome that minimizes unavoidable costs and
the parameter ¢ > 0 determines the costliness of any other weather outcome. A second
type of cost depends on the agent’s actions A;. These avoidable costs are %v(At — wy)?,
where v > 0. They vanish when the agent’s actions are well-matched to the weather and
potentially become large when the agent’s actions are poorly matched to the weather.

In each period, the agent chooses her action A;. This action may be interpreted as a
level of activity (e.g., time spent outdoors, energy used for heating or cooling, irrigation
applied to a field) or as a stock of capital (e.g., outdoor gear, size or efficiency of furnace,
number or efficiency of irrigation lines). The agent’s actions impose two types of costs. First,
maintaining A; imposes costs of %ng(At — A)?%, where ¢ > 0. When A, represents a capital
stock, these maintenance costs reflect depreciation. The parameter A defines the level of

demonstrated that actions respond to forecasts of future weather (e.g., Neidell, 2009; Rosenzweig and Udry,
2013, 2014; Wood et al., 2014; Shrader, 2017).

6Some empirical literature has begun estimating how the effects of weather shocks vary with a location’s
climate, as summarized in Auffhammer (2018b). The appendix discusses which estimates in Deschénes and
Greenstone (2007) come closest to the theoretically recommended approach.

"This two-step strategy has also become the dominant approach to estimating the effects of climate on
actions (see Carleton and Hsiang, 2016). In the appendix, I show that these estimates do indirectly use some
of the information available from responses to forecasts.
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activity or capital that is cheapest to sustain. Second, the agent faces a cost of adjusting
actions from one period to the next. This cost is %a(At — Ay 1)?, where @ > 0. When
A, represents a capital stock, these adjustment costs are investment costs. Relating to the
literature on climate adaptation (e.g., Fankhauser et al., 1999; Mendelsohn, 2000), small
adjustment costs allow adaptation investments to occur after weather is realized (“reactive”
or “ex-post” adaptation), but large adjustment costs require adaptation to occur before
weather is realized (“anticipatory” or “ex-ante” adaptation). Maintenance costs make the
agent want to choose actions close to A, and adjustment costs make the agent want to keep
actions constant over time.®

The agent observes time t weather before selecting her time ¢ action. The agent has
access to specialized forecasts of future weather and knows her region’s climate, indexed by
C and which I will often interpret as temperature. Specialized forecasts extend up to N >0
periods ahead. Each period’s forecast is an unbiased predictor of later weather. Beyond
horizon N, the agent formulates generic forecasts that rely only on knowledge of the climate,
not on information germane to that particular time period. For instance, the agent may rely
on the local news to predict weather one week out and on forecasts of El Nino conditions to
predict weather six months out but relies on knowledge of typical weather to predict weather
one year out. Horizon N is therefore the shortest forecast horizon at which the agent receives
information beyond knowledge of the climate.

Formally, let f;; be the i-period-ahead forecast available in period t. The time ¢ weather
realization is a random deviation from the one-period-ahead forecast: w; = f1—1)+¢;, where
¢; has mean zero and variance 0. Because forecasts are unbiased predictors, any changes in
forecasts must be unanticipated: for ¢ € {1,..., N}, fir = fu41)@—1) + Vit, where v; has mean
zero and variance 77. Forecasts at horizons i > N are f;; = C.2 The v; and ¢ are serially
uncorrelated, the covariance between v, and v, is 9,5, and the covariance between €, and vy
is p;.1% Note that £, [wy+j] = fj. For notational convenience, collect all specialized forecasts
available at time t in a vector F} of length N.!!

8The general analysis in the appendix does not require allocating either costs or weather impacts in this
fashion and allows, among much else, A to vary with wy and A,_; to affect time ¢ payoffs directly.

90ne might be concerned about a sharp discontinuity in information at horizon N. However, I have left
the variances 77 general. Defining them to decrease in i and to approach zero as i approaches N would allow
for the informativeness of the signal about time ¢ weather to increase smoothly from long horizons to short
horizons.

10 Assuming that each shock is serially uncorrelated does not imply that weather and forecasts are serially
uncorrelated. For instance, for ¢t > N, Covg(w, wit1) = p1 + Zi\;l Oi(it1)-

1 Climate here controls average weather. One might wonder about the dependence of higher moments of
the weather distribution on climate. In fact, the effects of climate change on the variance of the weather are
poorly understood and spatially heterogeneous (e.g., Huntingford et al., 2013; Lemoine and Kapnick, 2016).
Further, we need to know not just how climate change affects the variance of realized weather but how it
affects the forecastability of weather at each horizon: the variance of the weather more than N periods ahead
is 02 + Zil 72, so we need to apportion any change in variance between o2 and each 2. The appendix
analyzes the consequences of a change in variance and connects these consequences to empirical strategies.
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The agent maximizes the present value of payoffs over an infinite horizon. Time t payoffs
are:
1 2 1 2 1 e 1 —\2
(A, Ap1,wy) = _57(141& —wy)” — éa(At — Ay )" — §¢(At — A — §¢(wt — w)*.
She chooses time t actions as a function of past actions, current weather, and current fore-
casts. In order to study an interesting problem, assume that v 4+ ¢ > 0. The agent solves:

o0

max ZBtEo [m(Ay, Ap1, wy)]

{At }?io =0

where € [0,1) is the per-period discount factor, A_; is given, and FEj denotes expectations
at the time 0 information set. The solution satisfies the following Bellman equation:

V (o, ) = { (A0 21,100 + BBV (Zess s Fo)] 0

st. Zi =4A
W1 =f1r + €1
fites1y =fit1y + vigery  forie {1,..,N}
Ines) =C + Ungr it N > 0.

The state variable Z; captures the previous period’s actions. Optimal actions satisfy the
first-order condition:

om(Ayg, Zy, wy) OV (Zyi1, Wi, Fiir) (2)
0A, 02111 .

When the right-hand side is nonzero, the myopically optimal point ¢ differs from the dynam-
ically optimal point d in Figure 1.

The setting is sufficiently general to describe many applications of interest. For instance,
much empirical literature has studied the effects of weather on energy use. The agent could
then be choosing indoor temperature in each period, where maintenance costs reflect energy
use and avoidable weather costs reflect thermal comfort. Empirical literature has also studied
the effect of weather on agricultural profits. The decision variable could then be irrigation,
labor, fertilizer, or crop varieties, maintenance costs reflect the cost of purchasing these in
each year, adjustment costs reflect the cost of changing equipment and plans from year to
year, and weather costs reflect the deviation in crop yields from their maximum possible
value.

The primary specialization in the setting is the assumption of quadratic payoffs. Linear-
quadratic models have long been workhorses in economic research because they allow for
explicit analytic solutions to the Bellman equation (1). In the appendix, I instead use
perturbation methods (Judd, 1996) to generalize the analysis to an arbitrary functional
form for m( A, A;—1,w;), to vector-valued actions, and to multi-dimensional weather indices.

= _5Et
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3

Solution

The following proposition describes the value function that solves equation (1):

Proposition 1. The value function V(Z;, wy, Fy) has the form:

N-1

N N N N N
a12152+a2wt2+z aéfi2t+blztwt+z béthit+Z béwtfit‘i‘z Z bijfitfjt+clzt+02wt+z ck furtd.
i=1 i=1 i=1 =1

i=1 j=i+1

Optimal actions are:

QA1+ ywe + Bbifre + B by fiary + BOYC + Ber + ¢A

A =
! v+ a+¢—28a;

The coefficients are as follows:

1.

2.

ay; <0, with ay < 0 if and only if a > 0.
as <0, with ay < 0 if and only if ¥ + (¢ + ) > 0.

al € [Blag, 0], with ai < 0 if and only if both ay < 0 and a8 > 0 and with a > ['ay if
and only if Bary > 0.

. Each of the b coefficients is positive, with by > 0 if and only if ay > 0 and b, b, bij >0

if and only if Pary > 0.

c1 > (<) 0if C is sufficiently large (small), and cy, s > (<) 0 if, in addition, © >

(<) 0.
FEach a and b coefficient is independent of C.

Each ¢ coefficient weakly increases in C', and each c coefficient strictly increases in C'
if and only iof Bay > 0.

Proof. See appendix. O

The value function is concave in previous actions (a; < 0), in weather outcomes (ay < 0),
and in forecasts (a} < 0). If Bay > 0, then each a and b coefficient is nonzero. Several
coefficients depend on ', reflecting how climate controls the agent’s beliefs about long-run
weather. I henceforth omit the asterisk on A; when clear.
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4 Effect of Climate on Actions

Now consider how climate change affects the agent’s actions, which is of direct relevance to
much empirical work and produces results that we will use to analyze the effect of climate
on payoffs. Define A; = Fy[A;]. From equation (3),

Aﬁ:m&4+70+BMC+BZKN%C+6@C+6q+¢A
Y+a+¢—2Bm
for t > N. The following proposition describes long-run behavior:

s A o 2 AL pss
Proposition 2. Ast — oo, At—>7+¢0+7+¢A—A )

Proof. See appendix. O

Expected actions converge to a steady state, denoted A*°. This steady-state expected action
is a weighted average of the action that minimizes expected weather impacts and the action
that minimizes maintenance costs. Steady-state policy fully offsets the avoidable portion of
expected weather impacts (determined by the climate C') when there are no maintenance
costs (¢ = 0), but steady-state policy becomes unresponsive to the climate as marginal
maintenance costs become large relative to marginal avoidable weather costs (as ¢ becomes
large relative to ). Adjustment costs slow the approach to the steady-state expected action,
but they do not affect its level.

From Proposition 2, an increase in the climate index affects steady-state expected actions

as
dASS B ,.Y

dC v+ ¢
As v — 0, there are no avoidable weather impacts, and as ¢ — oo, maintenance costs are too
large to justify changing actions on the basis of the climate. In either case, dA*/dC — 0.
Steady-state actions otherwise strictly increase with the climate index. But this increase is
less than one-for-one when ¢ > 0: adaptation is less than perfect when maintenance costs
deter the agent from fully offsetting the change in climate.

Now consider how we might estimate dA*/dC from data. Reduced-form empirical
models can estimate the derivatives 0A;/0w; and 0A,/Jf; by regressing observed A; on
weather and forecasts.!? Imagine that empirical researchers were to then approximate the
effect of climate change as

€ [0, 1].

dA 94, <~0A
Nty (4)
=1

dC " dwy fu’

I2Note that the estimation equation should include either A;_; or time ¢t — 1 forecasts: time ¢t — 1 actions
can directly affect time ¢ actions (see equation (3)), and the dependence of time ¢ — 1 actions on time t — 1
forecasts makes them correlated with time ¢ weather and forecasts. The appendix derives a related omitted
variables bias from ignoring time t forecasts.
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for j € {0,...,N}. For dA**/dC > 0 (i.e., for v > 0), the bias from this approximation as a
fraction of the true effect is

040 | N 04
Bi o Owy + Z’i:l Ofit 1
Zas(]) - dAss - 4
dC

Bias(0) is the bias from using only 0A;/0w;, and Bias(NN) is the bias when also using all
available forecasts. The approximation underestimates dA**/dC' if and only if Bias(j) <0
and correctly estimates dA®**/dC if and only if Bias(j) = 0. The following proposition
establishes several results about this bias:

Proposition 3. Assume v > 0. Then:
1. Bias(j) € (—1,0], with Bias(j) < 0 if and only if « > 0.

dBias(j) dBias(j) __

3£%@%OMB%O

Bias(j) — as j, N — oc.

—Q
Y+ote—28a1

DA /Ow, — 0, A /D fiy — 0, and Bias(j) — —1 as a — 0.

dA*/dC — 1 and Bias(j) — 0 as v — oo.

NS v

0A; /0wy, 0A; /D fy, dA% [ AC — 0 as either v — 0 or ¢ — oc.
Proof. See appendix. n

The approximation in (4) never overestimates dA**/dC (Bias(j) < 0, result 1), and it un-
derestimates dA**/ dC whenever there are nonzero adjustment costs (o« > 0). The quality of
the approximation improves when we include the effects of forecasts in addition to the effects
of weather shocks (dBias(j)/dj > 0, result 2), because a weather shock that also affects
forecasts is less transient. However, nonzero bias remains even when estimating responses
to forecasts at arbitrarily long horizons (i.e., even as j, N — oo, result 4): the response
to current weather and to information about future weather cannot capture how incremen-
tal adjustments accumulate over time. The accumulation of incremental adjustments also
generates nonzero bias even when agents are myopic.

The bias vanishes in a few special cases. First, as adjustment costs vanish (o — 0, result
1), actions adjust instantaneously to realized weather, so neither expectations nor the slow
accrual of incremental adjustments matters for steady-state actions. Second, as avoidable
weather impacts become infinitely costly (7 — oo, result 6), the agent tries to exactly match
Ay to wy in every period, regardless of adjustment costs or maintenance costs. Third, when
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there are no avoidable weather impacts (7 — 0, result 7) or maintenance costs are prohibitive
(¢ — oo, result 7), actions become completely insensitive to the climate and also to realized
weather and forecasts. In all other cases, the bias is nonzero and becomes large as adjustment
costs become large.

Finally, we also see two cases in which Bias(j) < 0 but including the effects of forecasts
does not improve the quality of the approximation in (4): dBias(j)/dj — 0 as either 5 — 0
(result 3) or o — oo (result 5).'3 The reason is that actions are not sensitive to forecasts in
these cases.!® First, forecasts enable the agent to take actions that improve future payoffs,
but when agents are myopic, they act for the present only. Second, as adjustment costs
become very large, agents barely adjust actions on the basis of forecasts. The steady state
will change due to the accumulation of tiny changes over a long time horizon, but these
effects will not be detectable from responses to forecasts.

5 Effect of Climate on Value

Now consider the expected effect of climate change on intertemporal value and per-period
payoffs. From Proposition 1, we have:

V(Zt7 W, F;f) :V<ASS’ C: C)

N
+[Zy — A¥|VZ(A*,C, C) + [wy — CIViy(A™,C,C) + ) [fu — CIV(A*,C,C)

=1

N
+ [Z, — A*)2ay + [w, — C)ay + Z[fz‘t — C)adl + [Z; — A%*|[w; — Oby

N
+ Z[ ASS] fzt bl + Z fzt bl + Z Z fzt ]bija
=1 =1 j=i+1

where C' is an N x 1 vector with all entries equal to C'. The envelope theorem and the
fact that Om(As, As—1,w;)/0A—1 = 0 around a steady state imply Vz(A**,C,C) = 0. The

13Tn addition, dBias(j)/dj = 0 if a = 0 because, from result 1 in Proposition 3, o = 0 implies that
Bias(j) = 0 for all j.

“From Proposition 1, dA4;/0f; — 0 as 8 — 0 and, using the solutions for a; and b; given in the proof,
also as a — oo.
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expectation at time 0 of V(Z;, wy, F;) at some future time ¢ > N is:

N
Eo[V(Zy,wy, Fy)] =V (A%, C, C) + Ey|(A; — A%)?|ay + o?ag + ZTE&% + Covg|Zs, wi)by

=1

N N N-1 N
+ Z CovolZs, fir]by + Z Covolwy, fir]bh + Z Z Covolwy, fu]bY.
i=1 i=1 i=1 j=it1

(5)
Recalling from Proposition 1 that each a and b coefficient is independent of C'; and recognizing
that each covariance is independent of C,*> we have:

dEO[V(Zt, Wy, Ft)] . dV(ASS, O, C)
dc a dC

dz, dA*
+2(L1E0 |i<Zt - ASS) (d—cf - ac >:| .

[ /
-~

change in transition value

(.

change in ss value

We see two components to the expected change in value due to climate change: the change
in steady-state value and the change in value along the transition to the steady state.!
The next proposition signs the change in transition value:

AVZun ]l o WIAZCEO) if and only if Ag < A*.

asa—0,asy—0, ast — oo, or as Ay — A*°.

Proposition 4. If ay > 0, then
B[V (Zewe.Fy)] _, dV(A*.C.0)
ac ac

Proof. See appendix. O

The transition to a warmer climate imposes costs over and above the change in steady-state
value when Ay < A*° but provides benefits over and above the change in steady-state value
when Ay > A**. When Ay < A*®, the agent is in the process of approaching A** from below.
We already saw that A% increases in C'. Increasing C' moves the steady state further away
from the current state and therefore requires even more adjustment from the agent. However,
when the agent is approaching A*® from above, raising C' reduces the total adjustment that
the agent will have to undertake before reaching the steady state.

It is reasonable to believe that agents in warmer climates may be approaching their
steady-state investment level from below (e.g., by installing air conditioning) and that agents
in colder climates may be approaching their steady-state investment level from above (e.g.,
by installing insulation). We should then expect the cost of adjusting to a warmer climate
to be positive in regions with warmer climates and negative in regions with cooler climates.
Further, we should expect transition costs (or savings) to be larger in regions that are not

15Observe from Proposition 1 that A; is separable in C, w;, and f;;, and observe that the stochastic terms
in wy and f;; are independent of C'. Therefore each covariance in equation (5) is independent of C'.
160l et al. (1998) informally draw a similar distinction.
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as far along the process of adapting to their baseline climate, whether because these regions
have lower incomes, were settled only recently, or have outdated capital stock.

Now consider how climate change affects steady-state value. Using Proposition 1, we
have:

dV(ASS, CJ C) _ SS a SS
e =V, (A ,C,C)+;vfi(z4 ,C,C)
dep . d02 dc}
+ oA T 50t Z C+—. (6)

The first line recognizes that a change in climate alters average weather and average fore-
casts. The second line arises because agents anticipate that climate change is permanent:
climate change therefore alters the value function itself, beyond altering realized weather
and forecasts. For instance, a permanent change in climate can make past adaptation in-
vestments more valuable (Proposition 1 showed that de;/dC > 0) and can make higher
weather outcomes more valuable (or less painful) because they are closer to average weather
(Proposition 1 showed that dee/dC > 0).

The following proposition describes the net effects of climate change on steady-state
value:

Proposition 5.

dvV(A®,C,C) 1 dm(A*,A*,C) 1 Yo
dC _1_5 dC T 1-3 7+¢( C)+(w—C)| . (7)

Proof. See appendix. O

Value increases in the climate index if and only if C' is sufficiently small. The change in
steady-state value is equal to the change in steady-state per-period payoffs, valued as a
perpetuity. The first term in brackets reflects the change in the cost of maintaining the
adaptation investments chosen for this climate. When the climate is sufficiently cold, a
warmer climate may justify investments that require less maintenance, but as the climate
becomes sufficiently warm, eventually the chosen investments require more upkeep. This
term vanishes as either maintenance costs vanish (¢ — 0) or as the link between actions
and weather is broken (7 — 0). The second term in brackets reflects the changing cost of
unavoidable weather impacts. This term makes a warmer climate valuable when C' < w but
makes a warmer climate costly when C' > w. This term vanishes when weather outcomes
impose no unavoidable costs (¢ — 0).

A rapidly growing empirical literature hopes to estimate the cost of climate change from
time series variation in weather. From Proposition 1, the marginal effect of weather on value
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1s:
8V(Ztawt7Ft)

N
o, = 2a0w; + 01 Z; + Z b fi + co.

i=1
If we average the marginal effect of weather over many observations in a given climate and
assume that actions are, on average, close to the steady-state level A** (as when a location
is well-adapted to its current climate), then we obtain the following average treatment effect
of weather on value:'”

N
= 2a,C + by A% + Z b.C + ¢,

i=1

ATEY(C) £ E, {—av(z“ 0 Ft)]

8wt

for t > N. Proceeding analogously, we have the average treatment effect of weather on
payoffs around a steady state as

ATEZ;(C’) A E, |:d7T(At7At—1awt):| — B, |:87T<AtaAt—17wt):| ’

dwt 8wt

using that Eo[0m (A, Ai—1,wy)/0A] = EolOm(As, Ar—1,w) /OA;—1] = 0 around A%*. The next
proposition relates these average treatment effects to the marginal effect of climate:

Proposition 6.
dr(A%, A% C)
dC

Proof. See appendix. m

= ATEY (C) = ATE™(C)

This is a surprising result: once all adjustments are complete, the expected change in per-
period steady-state payoffs due to a change in climate is identical to the average change in
payoffs estimated from weather events around a steady state.'® The appendix shows that the
same result holds for general, non-quadratic payoff functions as long as (i) On (A, Ay—1, wy)/0A_1 =
0 at A; = A;; and (ii) 02 and each 77 are not too large. When (i) holds (as it does in the
main text and in the right panel of Figure 1), the effects of climate on past actions becomes
irrelevant for steady-state payoffs and the dynamically optimal action converges to the my-
opically optimal action, in which case the envelope theorem concludes that the effect of
climate on current actions also becomes irrelevant for steady-state payoffs. And when either
(ii) holds or payoffs are quadratic, the average treatment effect of weather is approximately
linear and thus equivalent to the treatment effect of average weather. The result follows
from recognizing that average weather defines the climate.

I7Relating to the Rubin causal model, the potential outcomes are the realizations of OV /0w, if A;_1, wy,
and F} took on different values.

8Further, the appendix shows that the average treatment effect of forecasts can identify the discount
factor 8 and thus yield dV(A*®*¢,C,C)/dC from Proposition 5.
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6 Limitations

I have demonstrated how to estimate the effects of climate change from time series variation
in weather. The setting is fairly general, and the appendix generalizes it further. Nonetheless,
the results are subject to three main caveats.

First, the present setting omits constraints that could make the short-run effects of
weather shocks less severe than the long-run effects of permanently changing the climate.
In particular, some have argued that short-run adjustments could be greater than long-run
adjustments because some actions may not be sustainable indefinitely (e.g., Fisher et al.,
2012; Blanc and Schlenker, 2017; Auffhammer, 2018b), such as water withdrawals from a
reservoir. Future work could explore such possibilities by imposing constraints on cumulative
deviations in actions from some benchmark value.

Second, the present setting successfully captures the distinction between transient and
permanent changes in weather, but global climate change also differs from most weather
shocks in its spatial structure. A change in global climate affects weather in every location
and thus will have general equilibrium consequences. The present setting has followed most
empirical work in abstracting from such effects, but some recent empirical work has begun
exploring the implications of changing the weather in many locations simultaneously (e.g.,
Costinot et al., 2016; Dingel et al., 2018; Gouel and Laborde, 2018).

Finally, the present analysis has held the payoff function constant over time. However,
climate change should induce innovations that alter how weather affects payoffs. Some
historical studies have begun exploring the interaction between climate and agricultural
innovation (e.g., Olmstead and Rhode, 2011; Roberts and Schlenker, 2011). Future work
should consider approaches to bounding the scope for innovation.
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