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1 Introduction

A pressing empirical agenda seeks to estimate the economic costs of climate change. Ig-
norance of these costs has severely hampered economists’ ability to give concrete policy
recommendations (Pindyck, 2013). The challenge is that although variation in climate has
been primarily cross-sectional, cross-sectional regressions cannot clearly identify the effects of
climate.1 Seeking credible identification, an explosively growing empirical literature has re-
cently explored panel variation in weather.2 The hope is that variation in transient weather
identifies—or at worst bounds—the effects of a change in climate, which manifests itself
through weather but differs from a transient weather shock in being repeated period after
period and in affecting expectations of weather far out into the future.

I here undertake the first formal analysis that precisely delineates what and how we can
learn about the climate from the weather. Linking weather to climate requires analyzing a
dynamic model that can capture the distinction between transient and permanent changes
in weather. I study an agent who is exposed to stochastic weather outcomes. These weather
outcomes impose some costs that are unavoidable and some costs that depend on the agent’s
actions (equivalently, investments). The agent wants to choose actions that best match the
weather, but actions also impose costs: maintaining a given level of activity is costly, and
adjusting actions from period to period is costly. When choosing actions, the agent knows
the current weather, has access to specialized forecasts of the weather some arbitrary number
of periods into the future, and relies on knowledge of the climate to generate forecasts at
longer horizons. A change in the climate affects the distribution of realized weather in every
period and also affects the agent’s expectations of future weather.

I show several novel results. First, I show that estimating the effects of weather on actions
understates the long-run effect of climate on actions. Many economists have intuited that
short-run adaptation responses to weather are likely to be smaller than long-run adaptation
responses to climate (e.g., Deschênes and Greenstone, 2007). I show that the critical factor
for this result is adjustment costs, not expectations of future weather. The actions an
agent takes in response to a transient weather shock are constrained by the agent’s desire
to not change actions too much from period to period, but when the same weather shock
is repeated period after period, even a myopic agent eventually achieves a larger change in

1For many years, empirical analyses did rely on cross-sectional variation in climate to identify the economic
consequences of climate change (e.g., Mendelsohn et al., 1994; Schlenker et al., 2005; Nordhaus, 2006).
However, cross-sectional analyses fell out of favor due to concerns about omitted variables bias. See Dell
et al. (2014) for an exposition and Massetti and Mendelsohn (2018) for a review.

2This literature has estimated the effects of climate on gross domestic product (Dell et al., 2012; Burke
et al., 2015), on profits (Deschênes and Greenstone, 2007), and on behavioral variables including productivity
(Heal and Park, 2013; Zhang et al., 2018), health (Deschenes, 2014), crime (Ranson, 2014), and energy use
(Auffhammer and Aroonruengsawat, 2011; Deschênes and Greenstone, 2011), among many others. For recent
reviews, see Dell et al. (2014), Carleton and Hsiang (2016), and Heal and Park (2016). Blanc and Schlenker
(2017) discuss the strengths and weaknesses of relying on panel variation in weather.
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activity through a sequence of incremental adjustments. I also show that combining short-
run adaptation responses to weather realizations with short-run adaptation responses to
weather forecasts can better approximate long-run adaptation to climate.

Second, I show that the effect of climate on steady-state payoffs is equal to the average
treatment effect of weather around a steady state in the current climate. An easily estimated
function of weather is therefore a sufficient statistic for the impact of climate change on
variables such as welfare and profits.3 This is a surprising and powerful result. Changing the
climate is equivalent to changing expected weather in all future periods, yet transient weather
shocks identify the consequences of climate. This result arises for three reasons. First, the
envelope theorem implies that small changes in current actions do not have first-order effects
on maximized value. Second, standard representations of adjustment costs imply that small
changes in past actions also do not have first-order effects on maximized value around a
steady state. Together, these two observations imply that we do not need to consider how
expectations of weather affect actions around a steady state. Finally, the treatment effect
of weather is linear when payoffs are quadratic and is otherwise approximately linear when
the weather has small variance. The average treatment effect of transient weather shocks is
then equivalent to the effect of changing the average weather, which in turn is the definition
of the effect of changing the climate. This result suggests that reduced-form empirical work
should begin estimating the average treatment effect of weather as a function of long-run
average weather.4

Despite the importance of empirically estimating the costs of climate change and the
sharpness of informal debates around the relevance of the recent empirical literature to cli-
mate change, there has been remarkably little formal analysis of the link between weather
and climate. The most prominent defense of using panel variation to estimate the effects of
climate change rests on an appeal to the envelope theorem: if climate differs from weather
only via expectations and if expectations matter only via actions, then the envelope theorem
suggests that expectations do not matter for the effects of climate on payoffs. This argument
dates to Deschênes and Greenstone (2007) and has been most forcefully elaborated in Hsiang
(2016) and Deryugina and Hsiang (2017). However, these envelope theorem arguments apply
static analysis to an inherently dynamic problem. In fact, climate change can affect prede-
termined variables that are not subject to the envelope theorem but are themselves actions
that were chosen in previous periods based on expectations of weather in the current period

3I describe the average treatment effect of weather as a sufficient statistic because multiple combinations
of structural parameters can yield the same welfare consequences. Estimating the average treatment effect
of weather does not recover all deep primitives but does provide a credibly identified estimate of climate
impacts. See Chetty (2009) for a general treatment of sufficient statistics for welfare analysis.

4In contrast, much empirical literature estimates the marginal effect of weather by weather bin (see Car-
leton and Hsiang, 2016), sometimes allowing the marginal effects to differ by climate zone (e.g., Barreca et al.,
2015; Deryugina and Hsiang, 2017; Auffhammer, 2018). The standard practice can identify nonlinearities in
the effects of weather on payoffs. In the appendix, I show that nonlinear weather impacts may not indicate
anything about the consequences of changing the climate.
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and beyond. I here show precisely when researchers can ignore the effects of expectations
and show precisely which panel estimators can recover the effects of climate.5

The next section describes the setting. Section 3 solves the dynamic programming prob-
lem. Sections 4 and 5 analyze the effects of climate on agents’ chosen actions and payoffs,
respectively. The final section discusses implications for empirical work. The appendix ana-
lyzes a more general setting, provides results about forecasts and nonlinearities, and contains
proofs.

2 Setting

An agent is repeatedly exposed to stochastic weather outcomes. The realized weather in
period t is wt. This weather realization imposes two types of costs. A first type of cost arises
independently of any actions the agent might take. These unavoidable costs are 1

2
ψ(wt−w̄)2,

where the parameter w̄ defines the weather outcome that minimizes unavoidable costs and
the parameter ψ ≥ 0 determines the costliness of any other weather outcome. A second
type of cost depends on the agent’s actions At. These avoidable costs are 1

2
γ(At − wt)

2,
where γ ≥ 0. They vanish when the agent’s actions are well-matched to the weather and
potentially become large when the agent’s actions are poorly matched to the weather.

In each period, the agent chooses her action At. This action may be interpreted as a
level of activity (e.g., time spent outdoors, energy used for heating or cooling, irrigation
applied to a field) or as a stock of capital (e.g., outdoor gear, size or efficiency of furnace,
number or efficiency of irrigation lines). The agent’s actions impose two types of costs. First,
maintaining At imposes costs of 1

2
φ(At−Ā)2, where φ ≥ 0. The parameter Ā defines the level

of activity or capital that is cheapest to sustain. It can also be interpreted as the capital stock
that would be chosen if weather imposed only unavoidable costs. Second, the agent faces a
cost of adjusting actions from one period to the next. This cost is 1

2
α(At − At−1)2, where

α ≥ 0. When At represents a capital stock, these adjustment costs are investment costs.
Relating to the literature on climate adaptation (e.g., Fankhauser et al., 1999; Mendelsohn,
2000), low adjustment costs allow adaptation investments to occur after weather is realized
(“reactive” or “ex-post” adaptation), but large adjustment costs require adaptation to occur

5A few other papers are also related. First, in an expositional analysis, I showed how envelope theorem
arguments can fail in a three-period model (Lemoine, 2017). The present work precisely analyzes the con-
sequences of climate change in an infinite-horizon model and constructively shows exactly which types of
empirical estimates can be informative about the climate. Second, Kelly et al. (2005) study the cost of having
to learn about a change in the climate from an altered sequence of weather as opposed to knowing outright
how the climate has changed. I here abstract from learning in order to focus on mechanisms more relevant to
the growing empirical literature. Third, calibrated simulations have shown that dynamic responses are criti-
cal to the effects of climate on timber markets (Sohngen and Mendelsohn, 1998; Guo and Costello, 2013) and
to the cost of increased cyclone risk (Bakkensen and Barrage, 2018). Finally, Shrader (2017) demonstrates
the importance of distinguishing adaptation motivated by expectations of future weather in an application
to fisheries.
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before weather is realized (“anticipatory” or “ex-ante” adaptation). Maintenance costs make
the agent want to choose actions close to Ā, and adjustment costs make the agent want to
keep actions constant over time.

The agent observes time t weather before selecting her time t action. The agent has
access to specialized forecasts of future weather and knows her region’s climate, indexed
by C. Specialized forecasts extend up to N ≥ 0 periods ahead. Each period’s forecast is
an unbiased predictor of later weather. Beyond horizon N , the agent formulates generic
forecasts that rely only on knowledge of the climate, not on information germane to that
particular time period. For instance, the agent may rely on the local news to predict weather
one week out but relies on knowledge of typical weather to predict weather one year out.
Horizon N is therefore the shortest forecast horizon at which the agent receives information
beyond knowledge of the climate.

Formally, let fit be the i-period-ahead forecast available in period t. The time t weather
realization is a random deviation from the one-period-ahead forecast: wt = f1(t−1)+εt, where
εt has mean zero and variance σ2. Because forecasts are unbiased predictors, any changes
in forecasts must be unanticipated: for i ∈ [1, N ], fit = f(i+1)(t−1) + νit, where νit has mean
zero and variance τ 2i . Forecasts at horizons i > N are fit = C.6 The νit and εt are serially
uncorrelated, the covariance between νit and νjt is δij, and the covariance between εt and νit
is ρi.

7 Note that Et[wt+j] = fjt. For notational convenience, collect all specialized forecasts
available at time t in a vector Ft of length N .8

The agent maximizes the present value of payoffs over an infinite horizon. Time t payoffs
are:

π(At, At−1, wt) = −1

2
γ(At − wt)2 −

1

2
α(At − At−1)2 −

1

2
φ(At − Ā)2 − 1

2
ψ(wt − w̄)2.

She chooses time t actions as a function of past actions, current weather, and current fore-
casts. In order to study an interesting problem, assume that γ + φ > 0. The agent solves:

max
{At}∞t=0

∞∑
t=0

βtE0 [π(At, At−1, wt)] ,

6One might be concerned about a sharp discontinuity in information at horizon N . However, I have left
the variances τ2i general. Defining them to decrease in i and to approach zero as i approaches N would allow
for the informativeness of the signal about time t weather to increase smoothly from long horizons to short
horizons.

7Assuming that each shock is serially uncorrelated does not imply that weather and forecasts are serially
uncorrelated. For instance, for t > N , Cov0(wt, wt+1) = ρ1 +

∑N−1
i=1 δi(i+1).

8The system of weather and forecasts can be written as a vector autoregression. Climate here controls
average weather. One might wonder about the dependence of higher moments of the weather distribution
on climate. However, the effects of climate change on the variance of the weather are poorly understood and
potentially heterogeneous (e.g., Huntingford et al., 2013). Further, we need to know not just how climate
change affects the variance of realized weather but how it affects the forecastability of weather at each
horizon: the variance of the weather more than N periods ahead is σ2 +

∑N
i=1 τ

2
i , so we need to apportion

any change in variance between σ2 and each τ2i .
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where β ∈ [0, 1) is the per-period discount factor, A−1 is given, and E0 denotes expectations
at the time 0 information set. The solution satisfies the following Bellman equation:

V (Zt, wt, Ft) = max
At

{
π(At, Zt, wt) + βEt [V (Zt+1, wt+1, Ft+1)]

}
(1)

s.t. Zt+1 =At

wt+1 =f1t + εt+1

fi(t+1) =f(i+1)t + νi(t+1) for i ∈ {1, ..., N}
fN(t+1) =C + νN(t+1) if N > 0.

The state variable Zt summarizes the previous period’s actions.
The setting is sufficiently general to describe many applications of interest. For instance,

much empirical literature has studied the effects of weather on energy use. The agent could
then be choosing indoor temperature in each period, where maintenance costs reflect energy
use and avoidable weather costs reflect thermal comfort. Empirical literature has also studied
the effect of weather on agricultural profits. The decision variable could then be irrigation,
fertilizer inputs, or crop varieties, maintenance costs reflect the cost of purchasing these in
each year, adjustment costs reflect the cost of changing equipment and plans from year to
year, and weather costs reflect the deviation in crop yields from their maximum possible
value.

The primary specialization in the setting is the assumption of quadratic payoffs. Linear-
quadratic models have long been workhorses in economic research because they allow for
explicit analytic solutions to the Bellman equation (1). The appendix generalizes the analysis
to arbitrary functional forms and vector-valued actions by applying perturbation methods
(Judd, 1996).

3 Solution

The following proposition describes the value function that solves equation (1):

Proposition 1. The value function V (Zt, wt, Ft) has the form:

a1Z
2
t +a2w

2
t+

N∑
i=1

ai3f
2
it+b1Ztwt+

N∑
i=1

bi2Ztfit+
N∑
i=1

bi3wtfit+
N−1∑
i=1

N∑
j=i+1

bij4 fitfjt+c1Zt+c2wt+
N∑
i=1

ci3fit+d.

Optimal actions are:

A∗t =
αAt−1 + γwt + βb1f1t + β

∑
i<N b

i
2f(i+1)t + βbN2 C + βc1 + φĀ

γ + α + φ− 2βa1
. (2)

The coefficients are as follows:
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1. a1 ≤ 0, with a1 < 0 if and only if α > 0.

2. a2 ≤ 0, with a2 < 0 if and only if ψ + γ(φ+ α) > 0.

3. ai3 ∈ [βia2, 0], with ai3 < 0 if and only if both a2 < 0 and αβ > 0 and with ai3 > βia2 if
and only if βαγ > 0.

4. Each of the b coefficients is positive, with b1 > 0 if and only if αγ > 0 and bi2, b
i
3, b

ij
4 > 0

if and only if βαγ > 0.

5. c1 ≥ (≤) 0 if C is sufficiently large (small), and c2, c
i
3 ≥ (≤) 0 if, in addition, w̄ ≥

(≤) 0.

6. Each a and b coefficient is independent of C.

7. Each c coefficient weakly increases in C, and each c coefficient strictly increases in C
if and only if βαγ > 0.

Proof. See appendix.

The value function is concave in previous actions (a1 ≤ 0), in weather outcomes (a2 ≤ 0),
and in forecasts (ai3 ≤ 0). If βαγ > 0, then each a and b coefficient is nonzero. Several
coefficients depend on C, reflecting how climate controls the agent’s beliefs about long-run
weather. I henceforth omit the asterisk on A∗t when clear.

4 Effect of Climate on Actions

Now consider how climate change affects the agent’s actions, which is of direct relevance to
much empirical work and produces results that we will use to analyze the effect of climate
on payoffs. Define Ât , E0[At]. From equation (2),

Ât =
αÂt−1 + γC + βb1C + β

∑
i<N b

i
2C + βbN2 C + βc1 + φĀ

γ + α + φ− 2βa1

for t > N . The following proposition describes long-run behavior:

Proposition 2. As t→∞, Ât → γ
γ+φ

C + φ
γ+φ

Ā , Ass.

Proof. See appendix.

Expected actions converge to a steady state, denoted Ass. This steady-state expected action
is a weighted average of the action that minimizes expected weather impacts and the action
that minimizes maintenance costs. Steady-state policy fully offsets the avoidable portion of
expected weather impacts (determined by the climate C) when there are no maintenance
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costs (φ = 0), but steady-state policy becomes unresponsive to the climate as marginal
maintenance costs become large relative to marginal avoidable weather costs (as φ becomes
large relative to γ). Adjustment costs slow the approach to the steady-state expected action,
but they do not affect it.

From Proposition 2, an increase in the climate index affects steady-state expected actions
as

dAss

dC
=

γ

γ + φ
∈ [0, 1].

As γ → 0, there are no avoidable weather impacts, and as φ→∞, maintenance costs are too
large to justify changing actions on the basis of the climate. In either case, dAss/ dC → 0.
Steady-state actions otherwise strictly increase with the climate index. But this increase is
less than one-for-one when φ > 0: adaptation is less than perfect when maintenance costs
deter the agent from fully offsetting the change in climate.

Now consider how we might estimate dAss/ dC from data. Reduced-form empirical
models can estimate the derivatives ∂At/∂wt and ∂At/∂fit by regressing observed At on
weather and forecasts.9 Imagine that empirical researchers were to then approximate the
effect of climate change as

dAss

dC
≈ ∂At
∂wt

+

j∑
i=1

∂At
∂fit

, (3)

for j ∈ {0, ..., N}. For dAss/ dC > 0 (i.e., for γ > 0), the bias from this approximation as a
fraction of the true effect is

Bias(j) =

∂At

∂wt
+
∑j

i=1
∂At

∂fit
dAss

dC

− 1.

Bias(0) is the bias from using only ∂At/∂wt, and Bias(N) is the bias when also using all
available forecasts. The approximation underestimates dAss/ dC if and only if Bias(j) < 0
and correctly estimates dAss/ dC if and only if Bias(j) = 0. The following proposition
establishes several results about this bias:

Proposition 3. Assume γ > 0. Then:

1. Bias(j) ∈ (−1, 0], with Bias(j) < 0 if and only if α > 0.

2. dBias(j)
dj

≥ 0, dBias(j)
dN

= 0.

3. dBias(j)
dj

→ 0 as β → 0.

9Note that the estimation equation should include At−1, because time t − 1 actions can directly affect
time t actions (see equation (2)) and the dependence of time t−1 actions on time t−1 forecasts makes them
correlated with time t weather and forecasts.
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4. Bias(j)→ −α
γ+α+φ−2βa1 as j,N →∞.

5. ∂At/∂wt → 0, ∂At/∂fit → 0, and Bias(j)→ −1 as α→∞.

6. dAss/ dC → 1 and Bias(j)→ 0 as γ →∞.

7. ∂At/∂wt, ∂At/∂fit, dAss/ dC → 0 as either γ → 0 or φ→∞.

Proof. See appendix.

The approximation in (3) never overestimates dAss/ dC (Bias(j) ≤ 0), and it underesti-
mates dAss/ dC whenever there are nonzero adjustment costs (α > 0). The quality of the
approximation improves when we include the effects of forecasts in addition to the effects
of weather shocks ( dBias(j)/ dj ≥ 0), although the bias with any number of forecasts is
independent of the length of the longest forecast horizon ( dBias(j)/ dN = 0).

The approximation in (3) can underestimate dAss/ dC for three reasons. First, the
approximation misses the effect of changing expectations at horizons longer than N (i.e.,
it misses the βbN2 in equation (2)). Second, the approximation misses the change in the
policy rule induced by the anticipated permanence of climate change (i.e., it misses the
effect of C on c1 in equation (2)). Third, the approximation misses the accumulated effect
of changing the weather period after period: even for a given policy rule, the long-run effect
of repeating short-run shocks is greater than the effect of a single short-run shock because
incremental adjustments accumulate over time (i.e., the approximation misses the effects on
At−1 in equation (2)). The first two reasons make the bias sensitive to the discount factor β
and explain why estimating responses to forecasts can be helpful. The third reason is why
nonzero bias can arise even when agents are myopic (i.e., even as β → 0) and even when
estimating responses to forecasts at arbitrarily long horizons (i.e., even as j,N →∞).

The bias vanishes in a few special cases. First, as adjustment costs vanish (α → 0),
actions adjust instantaneously to realized weather, so neither expectations nor the slow
accrual of incremental adjustments matters for steady-state actions. Second, as avoidable
weather impacts become infinitely costly (γ →∞), the agent tries to exactly match At to wt
in every period, regardless of adjustment costs or maintenance costs. Third, when there are
no avoidable weather impacts (γ → 0) or maintenance costs are prohibitive (φ→∞), actions
become completely insensitive to the climate and also to realized weather and forecasts. In
all other cases, the bias is nonzero and becomes large as adjustment costs become large.

Finally, we also see two cases in which Bias(j) < 0 but including the effects of forecasts
does not improve the quality of the approximation in (3): dBias(j)/ dj → 0 as either β → 0
or α→∞.10 The reason is that actions are not sensitive to forecasts in these cases.11 First,

10In addition, dBias(j)/dj = 0 if α = 0 because, from part 1 of Proposition 3, α = 0 implies that
Bias(j) = 0 for all j.

11From Proposition 1, ∂At/∂fit → 0 as β → 0 and, using the solutions for a1 and b1 given in the proof,
also as α→∞.
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forecasts enable the agent to take actions that improve future payoffs, but when agents are
myopic, they act for the present only. Second, as adjustment costs become very large, agents
barely adjust actions on the basis of forecasts. The steady state will change due to the
accumulation of many tiny changes over a very long time horizon, but these effects will not
be detectable from responses to forecasts.

5 Effect of Climate on Value

Now consider the expected effect of climate change on intertemporal value and per-period
payoffs. From Proposition 1, we have:

V (Zt, wt, Ft) =V (Ass, C,C)

+ [Zt − Ass]VZ(Ass, C,C) + [wt − C]Vw(Ass, C,C) +
N∑
i=1

[fit − C]Vfi(A
ss, C,C)

+ [Zt − Ass]2a1 + [wt − C]2a2 +
N∑
i=1

[fit − C]2ai3 + [Zt − Ass][wt − C]b1

+
N∑
i=1

[Zt − Ass][fit − C]bi2 +
N∑
i=1

[wt − C][fit − C]bi3 +
N−1∑
i=1

N∑
j=i+1

[wt − C][fit − C]bij4 ,

where C is an N × 1 vector with all entries equal to C. The envelope theorem and the
fact that ∂π(At, At−1, wt)/∂At−1 = 0 around a steady state imply VZ(Ass, C,C) = 0. The
expectation at time 0 of V (Zt, wt, Ft) at some future time t > N is:

E0[V (Zt, wt, Ft)] =V (Ass, C,C) + E0[(At − Ass)2]a1 + σ2a2 +
N∑
i=1

τ 2i a
i
3 + Cov0[Zt, wt]b1

+
N∑
i=1

Cov0[Zt, fit]b
i
2 +

N∑
i=1

Cov0[wt, fit]b
i
3 +

N−1∑
i=1

N∑
j=i+1

Cov0[wt, fit]b
ij
4 .

(4)

Recalling from Proposition 1 that each a and b coefficient is independent of C, and recognizing
that each covariance is independent of C,12 we have:

dE0[V (Zt, wt, Ft)]

dC
=

dV (Ass, C,C)

dC︸ ︷︷ ︸
change in ss value

+ 2a1E0

[
(Zt − Ass)

(
dZt
dC
− dAss

dC

)]
︸ ︷︷ ︸

change in transition value

.

12Observe from Proposition 1 that At is separable in C, wt, and fit, and observe that the stochastic terms
in wt and fit are independent of C. Therefore each covariance in equation (4) is independent of C.
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We see two components to the expected change in value due to climate change: the change
in steady-state value and the change in value along the transition to the steady state.13

The next proposition signs the change in transition value:

Proposition 4. If αγ > 0, then dE0[V (Zt,wt,Ft)]
dC

< dV (Ass,C,C)
dC

if and only if A0 < Ass.
dE0[V (Zt,wt,Ft)]

dC
→ dV (Ass,C,C)

dC
as α→ 0, as γ → 0, as t→∞, or as A0 → Ass.

Proof. See appendix.

The transition to a warmer climate imposes costs over and above the change in steady-state
value when A0 < Ass but provides benefits over and above the change in steady-state value
when A0 > Ass. When A0 < Ass, the agent is in the process of approaching Ass from below.
We already saw that Ass increases in C. Increasing C moves the steady state further away
from the current state and therefore requires even more adjustment from the agent. However,
when the agent is approaching Ass from above, raising C reduces the total adjustment that
the agent will have to undertake before reaching the steady state.

It is reasonable to believe that agents in warmer climates may be approaching their
steady-state investment level from below (e.g., by installing air conditioning) and that agents
in colder climates may be approaching their steady-state investment level from above (e.g.,
by installing insulation). We should then expect the cost of adjusting to a warmer climate
to be positive in regions with warmer climates and negative in regions with cooler climates.
Further, we should expect transition costs (or savings) to be larger in regions that are not
as far along the process of adapting to their baseline climate, whether because these regions
have lower incomes, were settled only recently, or have outdated capital stock.

Now consider how climate change affects steady-state value. Using Proposition 1, we
have:

dV (Ass, C,C)

dC
=Vw(Ass, C,C) +

N∑
i=1

Vfi(A
ss, C,C)

+
dc1
dC

Ass +
dc2
dC

C +
N∑
i=1

dci3
dC

C +
dd

dC
. (5)

The first line recognizes that a change in climate alters average weather and average fore-
casts. The second line arises because agents anticipate that climate change is permanent:
climate change therefore alters the value function itself, beyond altering realized weather
and forecasts. For instance, a permanent change in climate can make past adaptation in-
vestments more valuable (Proposition 1 showed that dc1/ dC ≥ 0) and can make higher
weather outcomes more valuable (or less painful) because they are closer to average weather
(Proposition 1 showed that dc2/ dC ≥ 0).

13Tol et al. (1998) informally draw a similar distinction.
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The following proposition describes the net effects of climate change on steady-state
value:

Proposition 5.

dV (Ass, C,C)

dC
=

1

1− β
dπ(Ass, Ass, C)

dC
=

1

1− β

[
γφ

γ + φ
(Ā− C) + ψ(w̄ − C)

]
. (6)

Proof. See appendix.

Value increases in the climate index if and only if C is sufficiently small. The change in
steady-state value is equal to the change in steady-state per-period payoffs, valued as a
perpetuity. The first term in brackets reflects the change in the cost of maintaining the
adaptation investments chosen for this climate. When the climate is sufficiently cold, a
warmer climate may justify investments that require less maintenance, but as the climate
becomes sufficiently warm, eventually the chosen investments require more upkeep. This
term vanishes as either maintenance costs vanish (φ → 0) or as the link between actions
and weather is broken (γ → 0). The second term in brackets reflects the changing cost of
unavoidable weather impacts. This term makes a warmer climate valuable when C < w̄ but
makes a warmer climate costly when C > w̄. This term vanishes when weather outcomes
impose no unavoidable costs (ψ → 0).

A rapidly growing empirical literature hopes to estimate the cost of climate change from
time series variation in weather. From Proposition 1, the marginal effect of weather on value
is:

∂V (Zt, wt, Ft)

∂wt
= 2a2wt + b1Zt +

N∑
i=1

bi3fit + c2.

If we average the marginal effect of weather over many observations in a given climate and
assume that expected actions are, on average, close to their steady-state level, then we obtain
the following average treatment effect of weather on value:

ATEV
w (C) , 2a2C + b1A

ss +
N∑
i=1

bi3C + c2.

Proceeding analogously, we have the average treatment effect of weather on payoffs around
a steady state as

ATEπ
w(C) , E0

[
dπ(At, At−1, wt)

dwt

]
= E0

[
∂π(At, At−1, wt)

∂wt

]
,

using that E0[∂π(At, At−1, wt)/∂At] = E0[∂π(At, At−1, wt)/∂At−1] = 0 around a steady state.
The next proposition relates these average treatment effects to the marginal effect of climate:
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Proposition 6.
dπ(Ass, Ass, C)

dC
= ATEV

w (C) = ATEπ
w(C)

Proof. See appendix.

This is a surprising result: once all adjustments are complete, the expected change in per-
period steady-state payoffs due to a change in climate is identical to the average change in
payoffs estimated from weather events around a steady state.14 The appendix shows that the
same result holds for general, non-quadratic payoff functions if (i) ∂π(At, At−1, wt)/∂At−1 = 0
when At = At−1 and (ii) σ2 and τ 2i are not too large. The envelope theorem holds that
the effect of climate on current actions does not matter for the effect of climate on value.
When (i) holds (as it does in the main text), the effects of climate on past actions also
vanish around a steady state, so that adjustment costs and beliefs about future weather
both become irrelevant for value. Finally, when either (ii) holds or payoffs are quadratic,
the average treatment effect of weather is approximately linear and thus equivalent to the
treatment effect of average weather. The result follows from recognizing that average weather
defines the climate.

6 Implications for Empirical Work

A rapidly growing empirical literature seeks to estimate the effects of climate change from
panel variation in weather. I now discuss how the present paper’s results should influence
that research agenda.

First, much empirical research has sought to estimate the consequences of climate change
for decision variables or functions of decision variables, including productivity (Heal and
Park, 2013; Zhang et al., 2018), health (Deschenes, 2014), crime (Ranson, 2014), and energy
use (Auffhammer and Aroonruengsawat, 2011; Deschênes and Greenstone, 2011). Many have
recognized that long-run adjustment to a new climate regime may be more complete than the
adjustment seen in response to short-run weather shocks.15 I have formally demonstrated
that this intuition relies on adjustment costs, not on forward-looking behavior, and I have
shown that empirical work can better approximate the effects of a change in climate by also
estimating how actions respond to forecasts of future weather. Further, the appendix shows
that modeling forecasts is not optional: ignoring forecasts can act like omitted variables
bias when estimating the consequences of weather. Finally, if agents are patient (i.e., if β is

14Further, the appendix shows that the average treatment effect of forecasts can identify the discount
factor β and thus yield dV (Ass, C,C)/dC from Proposition 5.

15Some have argued that short-run adjustments could be greater than long-run adjustments because some
actions may not be sustainable indefinitely (e.g., Blanc and Schlenker, 2017), such as water withdrawals from
a reservoir. Future work could explore such possibilities by imposing constraints on cumulative deviations
in At from some benchmark value.
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close to 1) over timescales of interest, then responses to weather and to forecasts differ only
because of adjustment costs. In this case, estimating the response to forecasts allows for a
nice test: if actions are much less sensitive to forecasts than to weather, then adjustment
costs may be small and responses to weather may approximate responses to climate.

Second, much empirical research has sought to estimate the consequences of climate
change for flow payoffs such as profits (e.g., Deschênes and Greenstone, 2007) and for vari-
ables such as gross output that are potentially related to aggregate payoffs (e.g., Dell et al.,
2012; Burke et al., 2015; Deryugina and Hsiang, 2017). I have shown that the average ef-
fect of weather in a given climate is a sufficient statistic for the consequences of marginally
perturbing the climate. This new result suggests that empirical work should estimate the
average effect of weather as a function of long-run average weather, in contrast to the stan-
dard approach of estimating the marginal effect of weather within different weather bins and
simulating how climate change will alter the frequency of weather in each bin.16 The sug-
gested approach combines panel and cross-sectional variation: panel variation will identify
the average effect of weather within a region’s current climate and thus the consequences of
marginally changing each location’s climate, and cross-sectional variation will identify how
that average effect varies across climates and thus the consequences of nonmarginal changes
in climate.17
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