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1 Introduction

A large and growing number of empirical studies use shift-share instruments: weighted averages of a

common set of shocks, with weights reflecting heterogeneous shock exposure. In many settings, such

as those of Bartik (1991), Blanchard and Katz (1992) and Autor et al. (2013), a regional instrument

is constructed from shocks to industries with local industry employment shares measuring the shock

exposure. In other settings, researchers may combine shocks across countries, socio-demographic

groups, or foreign markets to instrument for treatments at the regional, individual, or firm level.1

The claim for instrument validity in shift-share instrumental variable (SSIV) regressions must

rely on some assumptions about the shocks, exposure shares, or both. This paper develops a novel

framework for understanding such regressions as leveraging exogenous variation in the shocks, allowing

the variation in exposure shares to be endogenous. Our approach is motivated by an equivalence result:

the orthogonality between a shift-share instrument and an unobserved residual can be represented as

the orthogonality between the underlying shocks and a shock-level unobservable. Given a first stage, it

follows that the instrument identifies a parameter of interest if and only if the shocks are uncorrelated

with this unobservable, which captures the average unobserved determinants of the original outcome

among observations most exposed to a given shock. SSIV regression coefficients can similarly be

obtained from an equivalent IV regression estimated at the level of shocks. In this regression the

outcome and treatment variables are first averaged, using exposure shares as weights, to obtain shock-

level aggregates. The shocks then directly instrument for the aggregated treatment. Importantly,

these equivalence results only rely on the structure of the shift-share instrument and thus apply to

outcomes and treatments that are not typically computed at the level of shocks.

We use these equivalence results to derive two conditions sufficient for SSIV consistency. First,

we assume shocks are as-good-as-randomly assigned as if arising from a natural experiment. This

is enough for the shift-share instrument to be valid: i.e. for the shocks to be uncorrelated with the

relevant unobservables in expectation. Second, we assume that a shock-level law of large numbers

applies—that the instrument incorporates many sufficiently independent shocks, each with sufficiently

small average exposure. Instrument relevance further holds when individual units are mostly exposed

to only a small number of shocks, provided those shocks affect treatment. Our two quasi-experimental

conditions are similar to ones imposed in other settings where the underlying shocks are directly used

as instruments, bringing SSIV to familiar econometric territory.2

1Observations in shift-share designs may, for example, represent regions impacted by immigration shocks from
different countries (Card 2001; Peri et al. 2016), firms differentially exposed to foreign market shocks (Hummels et
al. 2014; Berman et al. 2015), product groups purchased by different types of consumers (Jaravel 2019), groups of
individuals facing different national income trends (Boustan et al. 2013), or countries differentially exposed to the U.S.
food aid supply shocks (Nunn and Qian 2014). We present a taxonomy of existing shift-share designs, and how they
relate to our framework, in Section 6.1.

2For example, Acemoglu et al. (2016) study the impact of import competition from China on U.S. industry employ-
ment using industry (i.e. shock-level) regressions with shocks constructed similarly to those underlying the regional
shift-share instrument used in Autor et al. (2013). Our framework shows that both studies can rely on similar econo-
metric assumptions, though the economic interpretations of the estimates differ.

1



We extend our quasi-experimental approach to settings where shocks are as-good-as-randomly

assigned only conditionally on shock-level observables, to SSIVs with exposure shares that do not add

up to a constant for each observation, and to panel data. For conditional random assignment, we show

that quasi-experimental shock variation can be isolated with regression controls that have a shift-share

structure. Namely, it is enough to control for an exposure-weighted sum of the relevant shock-level

confounders. Relatedly, in SSIVs with “incomplete shares,” where the sum of exposure shares varies

across observations, it is important to control for the sum of exposure shares as the exposure-weighted

sum of a constant. In panel data, we show that the SSIV estimator can be consistent both with

many shocks per period and with many periods. We also show that unit fixed effects only isolate

variation in shocks over time when exposure shares are time-invariant. In other extensions we show

how SSIV with multiple endogenous variables can be viewed quasi-experimentally and how multiple

sets of quasi-random shocks can be combined with new overidentified shock-level IV procedures.

Our framework also bears practical tools for SSIV inference and testing.Adão et al. (2019) show

that conventional standard errors in SSIV regressions may be invalid because observations which simi-

lar exposure shares are likely to have correlated residuals. They are also the first to propose a solution

to this inference problem in a framework based on ours, with identifying variation in shocks. We

present a convenient alternative based on our equivalence result: estimating SSIV coefficients at the

level of identifying variation (shocks) can yield asymptotically valid standard errors. The validity of

this solution requires an additional assumption on the structure of the included controls (producing

standard errors that are typically conservative otherwise). However, it offers several practical fea-

tures: it can be implemented with standard statistical software, extended to various forms of shock

dependence (e.g. autocorrelation), and computed in some settings where the estimator of Adão et

al. (2019) fails (e.g. when there are more shocks than observations). Appropriate measures of first-

stage relevance and valid falsification tests of shock exogeneity can also be obtained with conventional

shock-level procedures. Monte-Carlo simulations confirm the accuracy of our asymptotic approxima-

tions in moderately-sized samples of shocks, and that the finite-sample properties of SSIV are similar

to those of conventional shock-level IV regressions which use the same shocks as instruments.

We illustrate the practical insights from our framework in the setting of Autor et al. (2013),

finding supporting evidence for the interpretation of their SSIV as leveraging quasi-random variation

in industry-specific Chinese import shocks. This application uses a new Stata package, ssaggregate,

which we have developed to help practitioners implement the appropriate shock-level analyses.3

Our quasi-experimental approach is not the only framework for SSIV identification and consistency.

In related work, Goldsmith-Pinkham et al. (2020) formalize a different approach based on the exo-

geneity of the exposure shares, imposing no explicit assumption of shock exogeneity. This framework
3This Stata package creates the shock-level aggregates used in the equivalent regression. Users can install this

package with the command ssc install ssaggregate. See the associated help file and this paper’s replication archive at
https://github.com/borusyak/shift-share for more details.
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is motivated by a different equivalence result: the SSIV coefficient also coincides with a generalized

method of moments estimator, with exposure shares as multiple excluded instruments. Though ex-

posure exogeneity is a sufficient condition for identification (and, as such, implies our shock-level

orthogonality condition), we focus on plausible conditions under which it is not necessary.

Identification via exogenous shocks is attractive in many SSIV settings. Consider the Autor et al.

(2013; hereafter ADH) shift-share instrument, which combines industry-specific changes in Chinese

import competition (the shocks) with local exposure given by the lagged industrial composition of

U.S. regions (the exposure shares). In such a setting, exogeneity of industry employment shares is

difficult to justify a priori since unobserved industry shocks (e.g., automation or innovation trends)

are likely to affect regional outcomes through the same mixture of exposure shares. Our approach,

in contrast, allows researchers to specify a set of shocks that are plausibly uncorrelated with such

unobserved factors. Consistent with this general principle, ADH attempt to purge their industry

shocks from U.S.-specific confounders by measuring Chinese import growth outside of the United

States. Similarly, Hummels et al. (2014) combine country-by-product changes in transportation costs

to Denmark (as shocks) with lagged firm-specific composition of intermediate inputs and their sources

(as shares). They argue these shocks are “idiosyncratic,” which our approach formalizes as “indepen-

dent from relevant country-by-product unobservables.” Other recent examples of where our approach

may naturally apply are found, for example, in finance (Xu 2019), the immigration literature (Peri

et al. 2016), and studies of innovation (Stuen et al. 2012).

In other shift-share designs, a researcher can think of quasi-experimental shocks but they are

not observed directly, and the construction of the instrument requires an initial step where these

shocks are estimated in-sample, potentially introducing biases. In the canonical estimation of regional

labor supply elasticities by Bartik (1991), for example, the shocks are measured as national industry

growth rates. Such growth captures national industry labor demand shocks, which one may be willing

to assume are as-good-as-randomly assigned across industries; however, industry growth rates also

depend on unobserved regional labor supply shocks. We show that our framework can still apply to

such settings by casting the industry employment growth rates as noisy estimates of latent quasi-

experimental demand shocks and establishing conditions to ensure the supply-driven estimation error

is asymptotically ignorable. These conditions are weaker if the latent shocks are estimated as leave-one-

out averages. Although leave-one-out shift-share IV estimates do not have a convenient shock-level

representation, we provide evidence that in the Bartik (1991) setting this leave-out adjustment is

unimportant.

Formally, our approach to SSIV relates to the analysis of IV estimators with many invalid instru-

ments by Kolesar et al. (2015). Consistency in that setting follows when violations of individual instru-

ment exclusion restrictions are uncorrelated with their first-stage effects. For quasi-experimental SSIV,

the exposure shares can be thought of as a set of invalid instruments (per the Goldsmith-Pinkham et
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al. (2020) interpretation), and our orthogonality condition requires their exclusion restriction violations

to be uncorrelated with the shocks. Despite this formal similarity, we argue that shift-share identi-

fication is better understood through the quasi-random assignment of a single instrument (shocks),

rather than through a large set of invalid instruments (exposure shares) that nevertheless produce a

consistent estimate. This view is reinforced by our equivalence results, yields a natural shock-level

identification condition, and suggests new validations and extensions of SSIV.

Our analysis also relates to other recent methodological studies of shift-share designs, including

those of Jaeger et al. (2018) and Broxterman and Larson (2018). The former highlights biases of SSIV

due to endogenous local labor market dynamics, and we show how their solution can be implemented

in our setting. The latter studies the empirical performance of different shift-share instrument con-

structions. As discussed above we also draw on the inferential framework of Adão et al. (2019), who

derive valid standard errors in shift-share designs with a large number of idiosyncratic shocks. More

broadly, our paper adds to a growing literature studying the causal interpretation of common re-

search designs, including work by Borusyak and Jaravel (2017) and Goodman-Bacon (2018) for event

study designs; Hudson et al. (2017) and Chaisemartin and D’Haultfoeuille (2019) for instrumented

difference-in-difference designs; and Hull (2018) for mover designs.

The remainder of this paper is organized as follows. Section 2 introduces the environment, derives

our equivalence results, and motivates our approach to SSIV identification and consistency. Section

3 establishes the baseline quasi-experimental assumptions and Section 4 derives various extensions.

Section 5 discusses shock-level procedures for valid SSIV inference and testing. Section 6 summarizes

the types of empirical settings where our framework may be applied and illustrates its practical

implications in the ADH setting. Section 7 concludes.

2 Setting and Motivation

We begin by presenting the SSIV setting and motivating our approach to identification and consistency

with two equivalence results. We first show that population orthogonality of the shift-share instrument

can be recast at the shock level, motivating identification by exogenous shocks when exposure shares

are endogenous. We then derive a similar shock-level equivalence result for the SSIV estimator,

motivating its consistency with many as-good-as-randomly assigned shocks.

2.1 The Shift-Share IV Setting

We observe an outcome y`, treatment x`, control vector w` (which includes a constant) and shift-share

instrument z` for a set of observations ` = 1, . . . , L. We also observe a set of regression weights e` > 0
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with
∑
` e` = 1 (e` = 1

L covers the unweighted case). The instrument can be written as

z` =
∑
n

s`ngn, (1)

for a set of observed shocks gn, n = 1, . . . , N , and a set of observed shares s`n ≥ 0 defining the

exposure of each observation ` to each shock n.4 Initially we assume the sum of these exposure

weights is constant across observations, i.e. that
∑
n s`n = 1; we relax this assumption in Section

4.2. Although our focus is on shift-share IV, we note that the setup nests shift-share reduced-form

regressions, of y` on z` and w`, when x` = z`.

We seek to estimate the causal effect or structural parameter β in a linear model of

y` = βx` + w′`γ + ε`, (2)

where the residual ε` is defined to be orthogonal with the control vector w`.5 For example, we might

be interested in estimating the inverse labor supply elasticity β from observations of log wage growth

y` and log employment growth x` across local labor markets `.6 The residual ε` in equation (2) would

then contain all local labor supply shocks, such as those arising from demographic, human capital, or

migration changes, that are not systematically related to the observed controls in w`. To estimate this

β we may use an instrument capturing local labor demand variation. For illustration, we consider a

z` based on new government subsidies gn to the output of different industries n and with s`n denoting

location `’s lagged shares of industry employment. In estimating β we may weight observations by

the overall lagged regional employment, e`. We return to this labor supply example at several points

to ground the following theoretic discussion.

It is worth highlighting that in studying this setting we do not impose a typical assumption

of independent and identically-distributed (iid) data {e`, z`, w`, x`, ε`}, as might arise from random

sampling of potential observations. Relaxing the usual iid assumption is required for us to treat the gn

as random variables, which generate dependencies of the instrument (1) across observations exposed

to the same random shocks. The non-iid setting further allows for unobserved common shocks, which

may generate dependencies in the residual ε`.

Given this non-iid setting, we consider IV identification of β by the full-data moment condition

E

[∑
`

e`z`ε`

]
= 0. (3)

4In practice shift-share instruments are sometimes presented differently, as footnote 38 below illustrates in the Autor
et al. (2013) setting. We recommend that researchers follow the representation in (1) to apply our theoretical results.

5Formally, given a linear causal or structural model of y` = βx` + ε` we define γ = E
[∑

` e`w`w
′
`

]−1 E
[∑

` e`w`ε`
]

and ε` = ε` − w′`γ as the residual from this population projection, satisfying E
[∑

` e`w`ε`
]

= 0. Defining a unique γ
requires an implicit maintained assumption that E

[∑
` e`w`w

′
`

]
is of full rank, which holds when there is no perfect

collinearity in the control vector.
6We consider models with heterogeneous treatment effects in Appendix A.1; see footnote 15 for a summary.
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This condition captures the orthogonality of the shift-share instrument with the second-stage residual,

in expectation over realizations of {e`, z`, ε`} for all ` = 1, . . . , L. When such orthogonality holds the β

parameter is identified: i.e., uniquely recoverable from observable moments, provided the instrument

has a first stage.7 The full-data orthogonality condition generalizes the conventional condition of

E [z`ε`] = 0, which might be considered in an iid setting with fixed e`.

The moment condition (3) yields a natural estimator of β: the coefficient on x` in an IV regression

of y` which instruments by z`, controls for w`, and weights by e`. By the Frisch-Waugh-Lovell theorem,

this SSIV estimator can be represented as a bivariate IV regression of outcome and treatment residuals,

or as the ratio of e`-weighted sample covariances between the instrument and the residualized outcome

and treatment:

β̂ =

∑
` e`z`y

⊥
`∑

` e`z`x
⊥
`

, (4)

where v⊥` denotes the residual from an e`-weighted sample projection of a variable v` on the control

vector w`. Note that by the properties of residualization, it is enough to residualize y` and x` without

also residualizing the shift-share instrument z`.

In our non-iid setting, we study consistency and other asymptotic properties of β̂ by considering

a sequence of data-generating processes, indexed by L, for the complete data {e`, s`n, gn, w`, x`, ε`},

for ` = 1, . . . , L, n = 1 . . . , N , and N = N(L). Consistency, for example, is defined as β̂ p→ β as

L → ∞ along this sequence. We do not employ conventional sampling-based asymptotic sequences

(and corresponding laws of large numbers) as these are generally inappropriate in a non-iid setting

where both z` and ε` may exhibit non-standard mutual dependencies. It is worth emphasizing that

any assumptions on the data-generating sequence are useful only to approximate the finite-sample

distribution of the SSIV estimator, not to define an actual process for realizations of the data. For

example, we will consider below a sequence in which the number of shocks N grows with L, recognizing

that in reality shift-share instruments are constructed from a fixed set of shocks (e.g. subsidies across

all industries) along with a fixed number of observations (e.g. all local labor markets). The assumption

of growing N should here be interpreted as a way to capture the presence of a large number of shocks

in a given set of observations, such that the asymptotic sequence provides a good approximation to

the observed data.8

2.2 A Shock-Level Orthogonality Condition

We first build intuition for our approach to satisfying the IV moment condition by showing that

the structure of the shift-share instrument allows equation (3) to be rewritten as condition on the
7Formally, when equation (3) holds the moment condition m(b, c) ≡ E

[∑
` e`(z`, w

′
`)
′(y` − bx` − w′`c)

]
= 0 has a

unique solution of (β, γ), provided E
[∑

` e`(z`, w
′
`)
′(x`, w

′
`)
]
is of full-rank.

8This is similar to how Bekker (1994) uses a non-standard asymptotic sequence to analyze IV estimators with many
instruments: “The sequence is designed to make the asymptotic distribution fit the finite sample distribution better. It
is completely irrelevant whether or not further sampling will lead to samples conforming to this sequence” (p. 658).
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orthogonality of shocks gn. Namely, by exchanging the order of summation across ` and n, we obtain

E

[∑
`

e`z`ε`

]
= E

[∑
`

e`
∑
n

s`ngnε`

]
= E

[∑
n

sngnε̄n

]
= 0, (5)

where we define sn =
∑
` e`s`n and ε̄n =

∑
` e`s`nε`∑
` e`s`n

. Just as the left-hand side of this expression

captures the orthogonality of the instrument z` with the residual ε` when weighted by e`, the right-

hand side captures the orthogonality of shocks gn and ε̄n when weighted by sn. Since these two

expressions are equivalent, equation (5) shows that such shock orthogonality is necessary and sufficient

condition for the orthogonality of the shift-share instrument. As with e`, the shock-level weights are

also non-negative and sum to one, since
∑
n sn =

∑
` e` (

∑
n s`n) = 1. The shock-level unobservables

ε̄n represent exposure-weighted averages of the residuals ε`.

The labor supply example is useful for unpacking this first equivalence result. When s`n are

lagged employment shares and e` are similarly lagged regional employment weights, the sn weights

are proportional to the lagged industry employment.9 Moreover, with ε` capturing unmeasured supply

shocks, ε̄n is the average unobserved supply shock among regions ` that are the most specialized in

industry n, in terms of their lagged employment e`s`n. Equation (5) then shows that for the shift-

share instrument z` to identify the labor supply elasticity β, the industry demand shocks gn must be

orthogonal with these industry-level unobservables when weighted by industry size. For example, the

industries which see higher output subsidies should not face systematically different unobserved labor

supply conditions (e.g., migration patterns) in their primary markets.

Shock orthogonality is a necessary condition for SSIV identification and is satisfied when, as in

the preferred interpretation of Goldsmith-Pinkham et al. (2020), the exposure shares are exogenous,

the data are iid, and the shocks are considered non-random.10 In practice, however, this approach to

SSIV identification may be untenable in many settings. In our labor supply example, the Goldsmith-

Pinkham et al. (2020) approach to identification requires the (lagged) local employment share of each

industry to be a valid instrument in the labor supply equation, i.e. uncorrelated with all unobserved

labor supply shocks. This assumption is unlikely to hold: changes in foreign immigration, for example,

are a type of a local labor supply shock which is likely related to the local industry composition (e.g.,

new immigrants may prefer to settle in areas with larger clusters of specific industries, such as high-

tech, even conditionally on the prevailing wage). Formally, whenever the second-stage error term has

a component with the shift-share structure,
∑
n s`nνn for unobserved shocks νn, then the exposure

shares will be mechanically endogenous (see Appendix A.3 for a proof).11

9Without regression weights (i.e. e` = 1
L
), sn is instead the average employment share of industry n across locations.

10Formally, in this framework E [e`s`nε`] = 0 for each (`, n), so E
[∑

n sngnε̄n
]

=
∑

n gn
∑

` E [e`s`nε`] = 0.
11In the immigration example, νn is positive in high-tech industries and negative in industries that do not attract

immigrants. Note that the same argument applies to migration flows within the U.S., which can similarly make local
labor supply shocks related to local industry composition. Lagging local employment shares does not alleviate these
threats to identification in general.
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When shares are endogenous, equation (5) suggests that identification may instead follow from the

exogeneity of shocks. We formalize this approach in Section 3.1, by specifying a quasi-experimental

design in which the gn are as-good-as-randomly assigned with respect to the other terms in the

expression. We show how this simple exogeneity can be relaxed with controls in Section 3.2.

2.3 Estimator Equivalence

We next build intuition for our approach to SSIV consistency by showing that the estimate β̂ is

equivalently obtained as the coefficient from a non-standard shock-level IV procedure, in which gn

directly serves as the instrument. This equivalence result suggests that the large-sample properties of

β̂ can be derived from a law of large numbers for the equivalent shock-level regression. An attractive

feature of this approach is that it does not rely on an assumption of iid observations, which can be

untenable in the presence of observed and unobserved n-level shocks. We instead place assumptions

on the assignment of the equivalent IV regression’s instrument gn, similar to a more standard analysis

of a randomized treatment in an experimental settings (Abadie et al. 2019).

Formally, we have the following equivalence result:

Proposition 1 The SSIV estimator β̂ equals the second-stage coefficient from a sn-weighted shock-

level IV regression that uses the shocks gn as the instrument in estimating

ȳ⊥n = α+ βx̄⊥n + ε̄⊥n . (6)

Proof By definition of z`,

β̂ =

∑
` e` (

∑
n s`ngn) y⊥`∑

` e` (
∑
n s`ngn)x⊥`

=

∑
n gn

(∑
` e`s`ny

⊥
`

)∑
n gn

(∑
` e`s`nx

⊥
`

) =

∑
n sngnȳ

⊥
n∑

n sngnx̄
⊥
n

. (7)

Furthermore
∑
n snȳ

⊥
n =

∑
` e` (

∑
n s`n) y⊥` =

∑
` e`y

⊥
` = 0, since y⊥` is an e`-weighted regression

residual and
∑
n s`n = 1. This and an analogous equality for x̄⊥n imply that (7) is a ratio of sn-

weighted covariances, of ȳ⊥n and x̄⊥n with gn. Hence it is obtained from the specified IV regression.

As with equation (5), Proposition 1 exploits the structure of the instrument to exchange orders of

summation in the expression for the SSIV estimator (4). This exchange shows that SSIV estimates can

also be thought to arise from variation across shocks, rather than across observations. The equivalent

IV regression uses the shocks gn directly as the instrument and shock-level aggregates of the original

(residualized) outcome and treatment, ȳ⊥n and x̄⊥n . Specifically, ȳ⊥n reflects the average residualized

outcome of the observations most exposed to the nth shock, while x̄⊥n is the same weighted average of

residualized treatment. The regression is weighted by sn, representing each shock’s average exposure

across the observations.12

12In the special case of reduced-form shift-share regressions, Proposition 1 shows that the equivalent shock-level

8



The fact that shift-share estimates can be equivalently obtained by a shock-level IV procedure

suggests a new approach to establishing their consistency. Generally, IV regressions of the form of (7)

will be consistent when the instrument (here, gn) is as-good-as randomly assigned, there is a large the

number of observations (here, N), the importance weights are sufficiently dispersed (here, that the sn

are not too skewed), and there is an asymptotic first stage. Consistency is then guaranteed regardless

of the correlation structure of the residuals ε̄⊥n , and thus in the primitive residuals ε` and exposure

shares s`n. We formalize this approach below.

Before proceeding, it is worth emphasizing that Proposition 1 is a motivating algebraic result

and that the equivalent shock-level IV regression does not have independent economic content. Its

outcome and treatment are unconventional shock-level objects which can, for example, be computed

for outcomes and treatment that are not typically observed at the level of the shocks, such as when

n indexes industries and y` measures regional marriage rates (Autor et al. 2019). Furthermore, even

if the outcome and treatment have natural measures at the shock level, ȳn and x̄n will generally not

coincide with them. For example, in the labor supply setting ȳn is not industry n’s wage growth;

rather, it measures the average wage growth in regions where industry n employs the most workers.

Thus, while β̂ can be computed at the industry level it does not lose its interpretation as a regional

SSIV estimate. In the labor supply setting, the shift-share regression estimates the elasticity of

regional, rather than industry, labor supply.13

3 A Quasi-Experimental SSIV Framework

We now show how SSIV identification and consistency can be satisfied by a quasi-experiment in which

shocks are as-good-as-randomly assigned, mutually uncorrelated, large in number, and sufficiently

dispersed in terms of their average exposure. Instrument relevance generally holds in such settings

when the exposure of individual observations tends to be concentrated in a small number of shocks,

and when those shocks affect treatment. We then show how this framework is naturally generalized

to settings in which shocks are only conditionally quasi-randomly assigned or exhibit some forms of

mutual dependence, such as clustering.

3.1 Quasi-Randomly Assigned and Mutually Uncorrelated Shocks

Our approach to SSIV consistency is based on a thought experiment in which the shocks gn are as-

good-as-randomly assigned conditional on the shock-level unobservables ε̄n and exposure weights sn.

procedure is still an IV regression, of ȳ⊥n on the transformed shift-share instrument z̄⊥n , again instrumented by gn and
weighted by sn.

13In Appendix A.2 we develop a stylized model to illustrate how the SSIV coefficient can differ from a “native” shock-
level IV coefficient in the presence of local spillovers or treatment effect heterogeneity, though both parameters may
be of interest. Intuitively, in the labor supply case one may estimate a low regional elasticity but a high elasticity of
industry labor supply if, for example, migration is constrained but workers are mobile across industries within a region.
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As motivated above, placing assumptions on this assignment process (rather than on the sampling

properties of observations) has two key advantages. First, we do not rely on conventional assumptions

of independent or clustered data which are generally inconsistent with the shift-share data structure

when the shocks are considered random variables. Second, in conditioning on ε̄ = {ε̄n}n and s = {sn}n
we place no restrictions on the dependence between the s`n and ε`, allowing shock exposure to be

endogenous. We first show that such endogeneity need not pose problems for SSIV identification:

Proposition 2 The SSIV moment condition (3) is satisfied by the following condition:

Assumption 1 (Quasi-random shock assignment): E [gn | ε̄, s] = µ, for all n.

Proof By equation (5) and the law of iterated expectations, E [
∑
` e`z`ε`] = E [

∑
n sngnε̄n] = µ ·

E [
∑
n snε̄n] under Assumption 1. Furthermore, since

∑
` s`n = 1 and E [

∑
` e`ε`] = 0 by construction,

E [
∑
n snε̄n] = E [(

∑
n s`n) (

∑
` e`ε`)] = 0.

Proposition 2 shows that the shift-share instrument is valid, in that the IV moment condition (3)

holds, when the underlying shocks are as-good-as-randomly assigned: each gn has the same mean µ,

regardless of the realizations of the relevant unobservables ε̄ (and average exposures s). In the labor

supply example this assumption would mean that industry subsidies should not have been chosen

strategically, based on labor supply trends, or in a way that systematically favors certain industries

(e.g. only those in the manufacturing sector).14

It follows from Proposition 2 that β is identified by Assumption 1 provided the instrument is

relevant.15 In practice, the existence of a non-zero first stage can be inferred from the data; we discuss

appropriate inferential techniques in Section 5. To illustrate how such instrument relevance might hold

with quasi-experimental shocks, we consider a simple first-stage model. Consider a setting without

controls (w` = 1) and where treatment is a share-weighted average of shock-specific components:

x` =
∑
n s`nx`n, where x`n = π`ngn + η`n with π`n ≥ π̄ almost surely for some fixed π̄ > 0. In line

with Assumption 1, suppose that the shocks are independent mean-zero, given the full set of exposure

shares s`n and regression weights e` and the full set of π`n and η`n, with variances that are bounded

below by some fixed σ̄2
g > 0. Then the instrument first stage is positive:

E

[∑
`

e`z`x`

]
= E

[∑
`

e`

(∑
n

s`ngn

)(∑
n

s`n(π`ngn + η`n)

)]

≥ π̄σ̄2
gE

[∑
`

e`
∑
n

s2
`n

]
> 0. (8)

14While we use output subsidies as gn in our idealized example, other shocks to industry labor demand can be
similarly considered. Differences in import tariffs across industries, for example, have been used as identifying variation
both directly (e.g. Fajgelbaum et al. (2020)) and in shift-share settings (e.g. by Kovak (2013) who argues that tariff
changes are uncorrelated with counterfactual industry performance).

15Appendix A.1 shows how SSIV identifies a convex average of heterogeneous treatment effects (varying potentially
across both ` and n) under a stronger notion of as-good-as-random shock assignment and a first-stage monotonicity
condition. This can be seen as generalizing both the IV identification result of Angrist et al. (2000) to shift-share
instruments, as well as the reduced-form shift-share identification result in Adão et al. (2019).
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Given identification, SSIV consistency follows from an appropriate law of large numbers. Motivated

by the estimator equivalence in Section 2.3, we consider settings in which the effective sample size of

the shock-level IV regression (6) is large and the observations of the effective instrument (shocks) are

mutually uncorrelated:

Assumption 2 (Many uncorrelated shocks): E
[∑

n s
2
n

]
→ 0 and Cov [gn, gn′ | ε̄, s] = 0 for all (n, n′)

with n′ 6= n.

The first part of Assumption 2 states that the expected Herfindahl index of average shock exposure,

E
[∑

n s
2
n

]
, converges to zero as L → ∞. This condition implies that the number of observed shocks

grows with the sample (since
∑
n s

2
n ≥ 1/N), and can be interpreted as requiring a large effective sam-

ple for the equivalent shock-level IV regression. An equivalent condition is that the largest importance

weight in this regression, sn, becomes vanishingly small.16 The second part of Assumption 2 states

that the shocks are mutually uncorrelated given the unobservables and sn. Both of these conditions,

while novel for SSIV, would be standard assumptions to establish the consistency of a conventional

shock-level IV estimator with gn as the instrument and sn weights.

Assumptions 1 and 2 are the baseline assumptions of our quasi-experimental framework. Given

a standard relevance condition and additional regularity conditions listed in Appendix B.1, they are

sufficient to establish SSIV consistency:17

Proposition 3 Suppose Assumptions 1 and 2 hold,
∑
` e`z`x

⊥
`

p−→ π with π 6= 0, and Assumptions

B1-B2 hold. Then β̂ p−→ β.

Proof See Appendix B.1.

As before, the relevance condition merits further discussion. In our simple first-stage model,
∑
` e`z`x

⊥
`

converges to E [
∑
` e`z`x`] under appropriate regularity conditions, which is bounded above zero by a

term proportional to E
[∑

` e`
∑
n s

2
`n

]
. Thus, in this case, SSIV relevance holds when the e`-weighted

average of local exposure Herfindahl indices
∑
n s

2
`n across observations does not vanish in expectation.

In our running labor supply example, where x`n is industry-by-region employment growth, SSIV

relevance generally arises from individual regions ` tending to specialize in a small number of industries

n, provided subsidies have a non-vanishing effect on local industry employment.18 Compare this to
16Goldsmith-Pinkham et al. (2020) propose a different measure of the importance of a given n, termed “Rotemberg

weights.” In Appendix A.4 we show the formal connection between sn and these weights, and that the latter do not
carry the sensitivity-to-misspecification interpretation as they do in the exogenous shares view of Goldsmith-Pinkham
et al. (2020). Instead, the Rotemberg weight of shock n measures the leverage of n in the equivalent shock-level IV
regression from Proposition 1. Shocks may have large leverage either because of large sn, as would be captured by the
Herfindahl index, or because the shocks have a heavy-tailed distribution which is allowed by Assumption 2.

17One high-level condition used in Proposition 3 (Assumption B2) is that the control coefficient γ is consistently
estimated by its sample analog, γ̂ =

(∑
` e`w`w

′
`

)−1
∑

` e`w`ε` (see footnote 5). We discuss sufficient conditions for
this assumption in Appendix A.5.

18Note that this precludes consideration of an asymptotic sequence where L remains finite as N grows. With L
(and also e1, . . . , eL) fixed, Assumption 2 implies

∑
` e

2
`E
[∑

n s
2
`n

]
→ 0 and thus Var [z`] = Var

[∑
n s`ngn

]
→ 0 for

each ` if Var [gn] is bounded. If the instrument has asymptotically no variation it cannot have a first stage, unless
the π`n grow without bound. This result also highlights the role of picking the shares which reflect the impact of
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the Herfindahl condition in Assumption 2, which instead states that the average shares of industries

across locations become small. Both conditions may simultaneously hold when most regions specialize

in a small number of industries, differentially across a large number of industries.19

3.2 Conditional Shock Assignment and Weak Shock Dependence

Proposition 3 establishes SSIV consistency when shocks have the same expectation across n and are

mutually uncorrelated, but both requirements are straightforward to relax. We next provide extensions

that allow the shock expectation to depend on observables and for weak mutual dependence (such as

clustering or serial correlation) of the residual shock variation.

We first relax Assumptions 1 and 2 to only hold conditionally on a vector of shock-level observables

qn (that includes a constant). For example, it may be more plausible that shocks are as-good-as-

randomly assigned within a set of observed clusters c(n) ∈ {1, . . . , C} with non-random cluster-average

shocks, in which case qn collects C − 1 cluster dummies and a constant. In the labor supply example,

this may allow output subsidies to vary systematically across the agriculture, manufacturing, and

service sectors, but be as-good-as-random within each of those sectors. In general, with q = {qn}n,

we consider the following weakened version of Assumption 1:

Assumption 3 (Conditional quasi-random shock assignment): E [gn | ε̄, q, s] = q′nµ, for all n.

Similarly, we consider a weakened version of Assumption 2 which imposes mutual uncorrelatedness

on the residual g̃n = gn − q′nµ:

Assumption 4 (Many uncorrelated shock residuals): E
[∑

n s
2
n

]
→ 0 and Cov [g̃n, g̃n′ | ε̄, q, s] = 0

for all (n, n′) with n′ 6= n.

In the shock cluster example, Assumption 4 applies with a small number of clusters, each with its

own random effect, as in that case a law of large numbers may apply to the within-cluster residuals

g̃n but not the original shocks gn.

By a simple extension of the proof to Proposition 3, the SSIV estimator is consistent when these

conditions replace Assumptions 1 and 2 and the residual shift-share instrument z̃` =
∑
n s`ng̃n replaces

z`. While this instrument is infeasible, since µ is unknown, the following result shows that SSIV

regressions that control for the exposure-weighted vector of shock-level controls, w̃` =
∑
n s`nqn,

provide a feasible implementation:

gn on x`. Here when the shares are misspecified, i.e. when the treatment is constructed from different shares s̃`n as
x` =

∑
n s̃`nx`n, the first-stage is bounded by a term proportional to E

[∑
` e`

∑
n s`ns̃`n

]
, which can be arbitrarily

small even if E
[∑

` e`
∑

n s̃
2
`n

]
6→ 0.

19As an extreme example, suppose each region specializes on one industry only: s`n = 1 [n = n(`)] for some n(`).
Then the average local concentration index

∑
` e`

∑
n s

2
`n equals one, while Assumption 2 holds when national industry

composition is asymptotically dispersed: for example, when e` = 1/L and n(`) is drawn iid across regions and uniformly
over 1, . . . , N .
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Proposition 4 Suppose Assumptions 3 and 4 hold,
∑
` e`z`x

⊥
`

p−→ π with π 6= 0, and Assumptions

B1-B2 hold. Then β̂ p−→ β provided w̃` is included in w`.

Proof See Appendix B.1.

This result highlights a special role of controls with a shift-share structure (i.e.
∑
n s`nqn): besides

removing confounding variation from the residual (as any w` would do), they can also be viewed

as removing such variation directly from the shocks (i.e. implicitly using g̃n in place of gn). In

particular, Proposition 4 shows that controlling for each observation’s individual exposure to each

cluster
∑
n s`n1 [c (n) = c] isolates the within-cluster variation in shocks. This allows for a thought

experiment in which shocks are drawn quasi-randomly only within observed clusters, but not across

clusters with potentially different shock means. Note that Proposition 3 is obtained as a special case

of Proposition 4, which sets qn = 1.

Even conditional on observables, mutual shock uncorrelatedness may be undesirably strong. It is,

however, straightforward to further relax this assumption to allow for shock assignment processes with

weak mutual dependence, such as further clustering or autocorrelation. In Appendix B.1 we prove

extensions of Proposition 4 which replace Assumption 4 with one of the following alternatives:

Assumption 5 (Many uncorrelated shock clusters): There exists a partition of industries into clusters

c(n) such that E
[∑

c s
2
c

]
→ 0 for sc =

∑
n: c(n)=c sn and Cov [g̃n, g̃n′ | ε̄, q, s] = 0 for all

(n, n′) with c(n) 6= c(n′);

Assumption 6 (Many weakly correlated shocks): For some sequence of numbers BL ≥ 0 and a fixed

function f(·) satisfying
∑∞
r=1 f(r) < ∞, BLE

[∑
n s

2
n

]
→ 0 and |Cov [g̃n, g̃n′ | ε̄, q, s]| ≤

BL · f (|n′ − n|) for all (n, n′).

Assumption 5 relaxes Assumption 4 by allowing shock residuals to be grouped within mutually mean-

independent clusters c(n), while placing no restriction on their within-cluster correlation. At the same

time, the Herfindahl index assumption of Assumption 4 is strengthened to hold for industry clusters,

with sc denoting the average exposure of cluster c. Assumption 6 takes a different approach, allowing

all nearby shock residuals to be mutually correlated provided their covariance is bounded by a function

BL · f (|n′ − n|). This accommodates, for example, the case of first-order autoregressive time series

with the covariance bound declining at a geometric rate, i.e. f(r) = δr for δ ∈ [0, 1) and constant BL.

With BL growing, stronger dependence of nearby shocks is also allowed (see Appendix B.1).

4 Extensions

We now present several other extensions of our quasi-experimental framework. Section 4.1 considers

shift-share identification with panel data. Section 4.2 explains the need for additional controls when
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the sum of exposure shares vary across observations. Section 4.3 discusses how our framework applies

when the shocks are estimated within the sample, as in the canonical Bartik (1991) study. Finally,

Section 4.4 extends the framework to allow for multiple treatments and shift-share instruments.

4.1 Panel Data

In practice, SSIV regressions are often estimated with panel data, where the outcome y`t, treatment

x`t, controls w`t, importance weights e`t, exposure shares s`nt, and shocks gnt are additionally indexed

by time periods t = 1, . . . , T .20 In such settings a time-varying instrument

z`t =
∑
n

s`ntgnt (9)

is used, and the controls w`t may include unit- or period-specific fixed effects.

It is straightforward to map this panel case to the previous cross-sectional setting by a simple

relabeling. Let ˜̀ ∈ {(`, t) : ` = 1, . . . , L; t = 1, . . . , T} and ñ ∈ {(n, t) : n = 1, . . . , N ; t = 1, . . . , T},

with the time-varying outcomes now indexed as y˜̀ and similarly for x˜̀, w˜̀, e˜̀, and gñ. Further let

s̃ ˜̀̃n = s̃(`,t),(n,p) = s`nt1[t = p] denote the exposure of observation ` in period t to shock n in period

p, which is by definition zero for t 6= p. The time-varying instrument (9) can then be rewritten

z˜̀ =
∑
ñ s̃ ˜̀̃ngñ, as in the cross-sectional case. Generalizations of the preceding quasi-experimental

framework immediately follow.

Unpacking these results in the panel setting shows how standard intuitions for consistency in long

and short shock-level panels translate into shift-share designs. First, consistency of the panel SSIV

estimator in long panels (T → ∞) follows even with relatively few shocks N and cross-sectional

observations L, provided shocks are mutually uncorrelated across units and either uncorrelated or

weakly serially correlated over time (Assumptions 4 and 6, respectively). Observing many time periods

yields both a growing sample size, LT →∞, and a growing number of shocks, NT →∞, which allows

the Herfindahl condition of Proposition 4 (that E
[∑

ñ s
2
ñ

]
= E

[∑
n

∑
t s

2
nt

]
→ 0) to be satisfied. This

case accommodates, in particular, shift-share designs that leverage purely time-series shocks (N = 1,

T → ∞), as in Nunn and Qian (2014).21 Second, with many shocks observed in the cross-section

(N → ∞) and the corresponding per-period Herfindahl condition, consistency follows as LT → ∞

even with arbitrary serial correlation in the shocks (using Assumption 5, with cross-sectional units as

clusters).22 This case accommodates short panels and repeated cross-sections (T fixed, L,N →∞).
20Exposure shares are typically lagged and sometimes fixed in a pre-period. Our subscript t notation indicates that

these shares are used to construct the instrument for period t, not that they are measured in that period.
21Nunn and Qian (2014) estimate the impact of U.S. food aid on civil conflict, using variation in U.S. wheat production

(a single “shock” per period) over a long time horizon (T = 36 years), interacted with a country’s tendency to receive
US food aid (the “exposure shares” for L = 125 countries). This case may also well-approximate settings like those of
Berman et al. (2017) and Imbert et al. (2019) where NT is large despite moderate N and T . Berman et al. (2017), for
example, leverage price changes for N = 14 minerals over T = 14 years in a very large cross-section of spatial cells.

22Proposition 4 also suggests an alternative way to handle serial correlation when the time series properties of shocks
are known. For example given a first-order autoregressive process gnt = ρ0 + ρ1gn,t−1 + g̃nt, controlling for the
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The role of fixed effect (FE) controls in panel SSIV regressions is also worth discussing. In con-

ventional panels, with exogenous shocks varying at the same level as the observations, unit fixed

effects play a dual role: they purge time-invariant unobservables from the residual and isolate the

time-varying component of the shocks. The first role directly extends to the shift-share case: As-

sumption 1 would thus hold if shocks are as-good-as-randomly assigned with respect to aggregated

time-demeaned unobservables. However, the second role only extends when exposure shares are fixed

across periods, i.e. when s`nt ≡ s`n0.23 This follows from Proposition 4: the exposure-weighted aver-

ages of the shock FEs which isolate the time-varying component of shocks are only subsumed by the

unit FEs when the exposure shares are time-invariant. A simpler argument applies to period FEs,

which isolate within-period shock variation when the exposure shares add up to one. In that case one

can represent period FEs in the original data as exposure-weighted averages of shock-level period FEs

in the relabeled data, i.e. 1[t = t̄] =
∑

(n,p) s̃˜̀(n,p)1[p = t̄].24

To make these insights concrete, consider our labor supply example in a panel setting with subsidies

allocated to industries in each period. Imagine that certain industries get permanent subsidy shocks

that are not as-good-as-randomly assigned across industries. In that case, one may prefer to only use

the changes in industry subsidies over time as identifying variation. With fixed exposure shares, one

way to proceed is to include region FEs in the SSIV specification, which implicitly control for industry

FEs at the shock level while also removing any potential time-invariant regional characteristics that

could yield omitted variables bias. Including period FEs further removes any non-random variation

in the average level of subsidies in each period.

We lastly note that while fixing exposure shares in a pre-period is useful for isolating time-varying

shocks, lagging shares by many periods is likely to make the shift-share instrument less predictive of

treatment, thereby reducing the first stage in panel SSIVs. Appendix A.8 formalizes this intuition

with a panel extension to our simple first-stage model. In such cases it may be preferable to employ

other ways of isolating time-varying shocks, which allow for updated shares. In particular, one may

use the first-differenced specification

∆y`t = β∆x`t + γ′∆w`t + ∆ε`t, (10)

instrumenting ∆x`t with z`t,FD =
∑
n s`n,t−1∆gnt, where ∆ is the first-differencing operator for both

observations and shocks. This strategy has been employed, for example, by Autor et al. (2013) as we

exposure-weighted average of past shocks
∑

n s`ntgn,t−1 extracts the idiosyncratic shock component g̃nt.
23Shift-share IV settings with panel data and time-invariant shares include, for example, Berman et al. (2015), Berman

et al. (2017), Hummels et al. (2014), Imbert et al. (2019), and Nunn and Qian (2014).
24Proposition 4 only applies under Assumption B2, which requires the control coefficient vector γ to be consistently

estimated as LT →∞, even if w`t contains an increasing number of FEs (see Appendix B.1). In Appendix A.6 we show
how alternative notions of shock exogeneity, which are imposed on unit-demeaned unobservables, address this incidental
parameters problem. In Appendix A.7 we further discuss how these strict exogeneity assumptions can be relaxed in
long panels, allowing for sequential shock generating processes.
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discuss in Section 6.2.25

4.2 SSIVs with Incomplete Shares

While we have so far assumed the sum of exposure shares is constant, in practice this S` =
∑
n s`n

may vary across observations `. For example, in the labor supply setting, the quasi-experiment in

government output subsidies may only cover manufacturing industries, while the lagged manufacturing

employment shares of s`n may be measured relative to total employment in region `. In this case S`

equals the lagged total share of manufacturing employment in region `. The Autor et al. (2013) setting

is an example of this scenario, as we discuss below.26

Our framework highlights a potential problem with such “incomplete share” settings: even if As-

sumptions 1 and 2 hold, the SSIV estimator will generally leverage non-experimental variation in

S` in addition to quasi-experimental variation in shocks. To see this formally, note that one can

always rewrite the shift-share instrument with the “missing” (e.g., non-manufacturing) shock included

to return to the complete shares setting:

z` = s`0g0 +
∑
n>0

s`ngn, (11)

where g0 = 0 and s`0 = 1 − S`, such that
∑N
n=0 s`n = 1 for all `. The previous quasi-experimental

framework then applies to this expanded set of shocks g0, . . . , gN . Since g0 = 0, Proposition 3

requires in this case that E [gn | s, ε̄] = 0 for n > 0 as well; that is, that the expected shock to each

manufacturing industry is the same as the “missing” non-manufacturing shock of zero. Otherwise,

even if the manufacturing shocks are random, regions with higher manufacturing shares S` will tend

to have systematically different values of the instrument z`, leading to bias when these regions also

have different unobservables.27

Cast in this way, the incomplete shares issue has a natural solution via Assumption 3. Namely, one

can allow the missing and non-missing shocks to have different means by conditioning on the indicator

1[n > 0] in the qn vector. By Proposition 4, the SSIV estimator allows for such conditional quasi-
25There is another argument for fixing the shares in a pre-period that applies when the current shares are affected by

lagged shocks in a way that is correlated with unobservables ε`t. In the labor supply example suppose local labor markets
vary in flexibility, with stronger reallocation of employment to industries with bigger subsidies in flexible markets. If
subsides are random but persistent, more subsidized industries will be increasingly concentrated in regions with flexible
labor markets and Assumption 1 will be violated if such flexibility is correlated with ε`t. This concern is distinct from
that in Jaeger et al. (2018) who focus on the endogeneity of shares to the lagged residuals, rather than shocks, in a
setting closer to Goldsmith-Pinkham et al. (2020). Jaeger et al. also point out another issue relevant to panel SSIV,
that the outcome may respond to both current and lagged shocks; we return to this issue in Section 4.4.

26We note that this scenario applies to quasi-experiments in which shocks are impossible (ex ante) for some industries.
In contrast, if all industries were equally likely to receive subsidies but only some did ex post, the set of n should include
all industries, with S` = 1, and zero subsidies are captured by gn = 0 for some n. In such a case, however, it is highly
unlikely that all manufacturing industries receive the subsidies by chance when no non-manufacturing industries do.

27Formally, if Assumptions 1 and 2 hold for all n > 0 we have from the proof to Proposition 3 that
∑

` e`z`ε` =∑N
n=0 sngnε̄n = E

[∑N
n=0 sn(gn − µ)ε̄n

]
+ op(1) = −µE [s0ε̄0] + op(1). If µ 6= 0 and the missing industry share is large

(s0 6
p−→ 0) this can only converge to zero when E [s0ε̄0] = E

[∑
` e`s`0ε`

]
does, i.e. when S` is exogenous.
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random assignment when the control vector w` contains the exposure-weighted average of 1[n > 0],

which here is
∑N
n=0 s`n1 [n > 0] = S`. Thus, in the labor supply example, quasi-experimental variation

in manufacturing shocks is isolated in regressions with incomplete shares provided one controls for a

region’s lagged manufacturing share S`.

Two further points on incomplete shares are worth highlighting. First, allowing the observed shock

mean to depend on other observables will tend to involve controlling for share-weighted averages of

these controls interacted with the indicator 1[n > 0]. For example with period indicators in qnt, within-

period shock variation is isolated by controlling for sums of period-specific exposure S`t, interacted with

period indicators (i.e.
∑N
n=0 s`nt1[n > 0]1[t = t̄] = S`t1[t = t̄]). Second, by effectively “dummying

out” the missing industry, SSIV regressions that control for S` require a weaker Herfindahl condition:

E
[∑N

n=1 s
2
n

]
→ 0, allowing the non-manufacturing industry share s0 to stay large.

4.3 Shift-Share Designs with Estimated Shocks

In some shift-share designs, the shocks are equilibrium objects that can be difficult to view as being

quasi-randomly assigned. For example, in the canonical Bartik (1991) estimation of the regional

labor supply elasticity, the shocks are national industry employment growth rates. Such growth

reflects labor demand shifters, which one may be willing to assume are as-good-as-randomly assigned

across industries. However industry growth also aggregates regional labor supply shocks that directly

enter the residual ε`. Here we show how the quasi-experimental SSIV framework can still apply

in such cases, by viewing the gn as noisy estimates of some latent true shocks g∗n (labor demand

shifters, in the Bartik (1991) example) that satisfy Assumption 1. We establish the conditions on

estimation noise (aggregated labor supply shocks, in Bartik (1991)) such that a feasible shift-share

instrument estimator, perhaps involving a leave-one-out correction as in Autor and Duggan (2003), is

asymptotically valid.

We leave a more general treatment of this issue to Appendix A.9 and for concreteness focus on

the Bartik (1991) example. The industry growth rates gn can be written as weighted averages of the

growth of each industry in each region: gn =
∑
` ω`ng`n, where the weights ω`n are the lagged shares of

industry employment located in region `, with
∑
` ω`n = 1 for each n. In a standard model of regional

labor markets, g`n includes (to first-order approximation) an industry labor demand shock g∗n and a

term that is proportional to the regional supply shock ε`.28 We suppose that the demand shocks are

as-good-as-randomly assigned across industries, such that the infeasible SSIV estimator which uses

z∗` =
∑
n s`ng

∗
n as an instrument satisfies our quasi-experimental framework. The asymptotic bias of

the feasible SSIV estimator which uses z` =
∑
n s`ngn then depends on the large-sample covariance

28Appendix A.10 presents such a model, showing that g`n also depends on the regional average of g∗n (via local general
equilibrium effects) and on idiosyncratic region-specific demand shocks. Both of these are uncorrelated with the error
term in the model and thus do not lead to violations of Assumption 1; we abstract away from this detail here.
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between the labor supply shocks ε` and an aggregate of the supply shock “estimation error,”

ψ` = z` − z∗` ∝
∑
n

s`n
∑
`′

ω`′nε`′ . (12)

Two insights follow from considering the bias term
∑
` e`ψ`ε`. First, part of the covariance between

ψ` and ε` is mechanical, since ε` enters ψ`. In fact, if supply shocks are spatially uncorrelated this is

the only source of bias from using z` rather than z∗` as an instrument. This motivates the use of a

leave-one-out (LOO) shock estimator, gn,−` =
∑
`′ 6=` ω`′ng`′n/

∑
`′ 6=` ω`′n, and the feasible instrument

zLOO` =
∑
n s`ngn,−` to remove this mechanical covariance.29 Conversely, if the regional supply shocks

ε` are spatially correlated a LOO adjustment may not be sufficient to eliminate mechanical bias in the

feasible SSIV instrument, though more restrictive split-sample methods (e.g. those estimating shocks

from distant regions) may suffice.

Second, in settings where there are many regions contributing to each shock estimate even the

mechanical part of
∑
` e`ψ`ε` may be ignorable, such that the conventional non-LOO shift-share

instrument z` (which, unlike zLOO` , has a convenient shock-level representation per Proposition 1) is

asymptotically valid when zLOO` is.30 In Appendix A.9, we derive a heuristic for this case, under the

assumption of spatially-independent supply shocks. In a special case when each region is specialized

in a single industry and there are no importance weights, the key condition is L/N →∞, or that the

average number of regions specializing in the typical industry is large. With incomplete specialization

or weights, the corresponding condition requires the typical industry to be located in a much larger

number of regions than the number of industries that a typical region specializes in.

To illustrate the preceding points in the data, Appendix A.9 replicates the setting of Bartik (1991)

with and without a LOO estimator, using data from Goldsmith-Pinkham et al. (2020). We find that

in practice the LOO correction does not matter for the SSIV estimate, consistent with the findings

of Goldsmith-Pinkham et al. (2020) and Adão et al. (2019), and especially so when the regression is

estimated without regional employment weights. Our framework provides a explanation for this: the

heuristic statistic we derive is much larger without importance weights. These findings imply that

if, in the canonical Bartik (1991) setting, one is willing to assume quasi-random assignment of the

underlying industry demand shocks and that the regional supply shocks are spatially-uncorrelated,

one can interpret the uncorrected SSIV estimator as leveraging demand variation in large samples, as

some of the literature has done (e.g. Suárez Serrato and Zidar (2016)).
29This problem of mechanical bias is similar to that of two-stage least squares with many instruments (Bound et

al. 1995), and the solution is similar to the jackknife instrumental variable estimate approach of Angrist et al. (1999).
30Adão et al. (2019) derive the corrected standard errors for LOO SSIV and find that they are in practice very close

to the non-LOO ones, in which case the SSIV standard errors we derive in the next section are approximately valid
even when the LOO correction is used.
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4.4 Multiple Shocks and Treatments

In some shift-share designs one may have access to multiple sets of shocks satisfying Assumptions

3 and 4 or their extensions. For example while Autor et al. (2013) construct an instrument from

average Chinese import growth across eight non-U.S. countries, in principle the industry shocks from

each individual country may be each thought to be as-good-as-randomly assigned. In other settings

multiple endogenous variables may be required for the SSIV exclusion restriction to plausibly hold. For

example Jaeger et al. (2018) show that when local labor markets respond dynamically to immigrant

inflows, it may be necessary to instrument both the current and lagged immigrant growth rate with

current and lagged shift-share instruments. Another example is provided by Bombardini and Li

(2019), who estimate the reduced-form effects of two shocks: the regional growth of all exports and

the regional growth of exports in pollution-intensive sectors. Both are shift-share variables based on

the same regional employment shares across industries but different shocks: an overall industry export

shock and the overall shock interacted with industry pollution intensity.31

In Appendix A.11 we show how these settings fit into our quasi-experimental framework. The key

insight is that SSIV regressions with multiple instruments—with and without multiple endogenous

variables—again have an equivalent representation as particular shock-level IV estimators provided the

exposure shares used to construct the instruments are the same. This immediately implies extensions

of the foregoing results that establish consistency for just-identified SSIV regressions with multiple

instruments, such as the dynamic adjustment case of Jaeger et al. (2018). In overidentified settings,

the appendix derives new shock-level IV estimators that optimally combine the quasi-experimental

variation and permit omnibus tests of the identifying assumptions, via the generalized method of

moments theory of Hansen (1982) and inference results discussed in the next section. For example

when shocks are homoskedastic, a two-stage least squares regression of ȳ⊥n on x̄⊥n , weighted by sn and

instrumented by multiple shocks g1n, . . . , gJn yields an efficient overidentified estimate of β.

5 Shock-Level Inference and Testing

A shock-level view also brings new insights to SSIV inference and testing. In this section we first show

how a problem with conventional SSIV inference, first studied by Adão et al. (2019), has a convenient

solution based on our estimator equivalence result. In particular, we show that conventional standard

error calculations may be asymptotically valid when SSIV coefficients are estimated at the level of

identifying variation (shocks). We then discuss how other novel shock-level procedures can be used to

assess first-stage relevance and to implement valid falsification tests of shock exogeneity. Lastly, we
31The instruments here are

∑
n s`ngn and

∑
n s`ngnqn where qn denotes industry n’s pollution intensity. Our

framework applies in this case even if qn is not randomly assigned: as long as the export shock gn satisfies an appropriate
version of Assumption 1, E [gn | ε̄, q, s] = µ, the interacted shock satisfies E [gnqn | ε̄, q, s] = µqn, i.e. Assumption 3.
The natural extension of Proposition 4 to multiple instruments applies as long as

∑
n s`nqn, a measure of pollution

intensity of the region, is controlled for, as Bombardini and Li (2019) do in some specifications.
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summarize a variety of Monte-Carlo simulations illustrating the finite-sample properties of SSIV and

relating them to conventional shock-level analyses.

5.1 Exposure-Robust Standard Errors

As with consistency, SSIV inference is complicated by the fact that the observed shocks gn and any

unobserved shocks νn induce dependencies in the instrument z` and residual ε` across observations with

similar exposure shares. This problem can be understood as an extension of the standard clustering

concern (Moulton 1986), in which the instrument and residual are correlated across observations within

predetermined clusters, with the additional complication that in SSIV every pair of observations with

overlapping shares may have correlated (z`, ε`). Adão et al. (2019) show the magnitude of the problem:

in Monte-Carlo simulations, they find that tests based on conventional standard errors with nominal

5% significance can reject a true null in 55% of placebo shock realizations. They then develop a

novel approach to conducting valid inference in presence of exposure-based clustering, building on our

quasi-experimental framework for identification.

Our equivalence result in Section 2.3 motivates a convenient alternative to valid SSIV inference.

By estimating SSIV coefficients with an equivalent shock-level IV regression, one directly obtains valid

(“exposure-robust”) standard errors under the assumptions in Adão et al. (2019) and an additional

condition on the controls that we discuss below. This solution generalizes a well-known approach

to addressing conventional group clustering (Angrist and Pischke 2008, p. 313): by estimating a

regression at the level of as-good-as-random variation (here, shocks) one avoids inferential biases due

to clustering (here, by shock exposure).32 Like in Adão et al. (2019), the validity of this approach

derives from the properties of the shocks and does not restrict the correlation structure of ε`.

We first present our formal result and then discuss its advantages and limitations relative to the

original solution of Adão et al. (2019).

Proposition 5 Consider sn-weighted IV estimation of the second stage equation

ȳ⊥n = α+ βx̄⊥n + q′nτ + ε̄⊥n (13)

where w̃` =
∑
n s`nqn is included in the control vector w` used to compute ȳ⊥n and x̄⊥n ,

and x̄⊥n is instrumented by gn. The IV estimate of β is numerically equivalent to the

SSIV estimate β̂. Furthermore, when Assumptions B3–B6 in Appendix B.2 hold and∑
` e`x

⊥
` z`

p−→ π for π 6= 0, the conventional heteroskedasticity-robust standard error for β̂

yields asymptotically-valid confidence intervals for β.
32It is easy to verify that the regression from our Proposition 5 is indeed the group-level regression of Angrist and

Pischke (2008, p. 313) when the exposure shares are binary, i.e. for each `, s`n = 1 [n = n(`)] for some n(`) ∈ {1, . . . , N},
and there are no controls. In this case z` = gn(`), such that the shift-share instrument is constant among observations
belonging to the same group n(`).
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Proof See Appendix B.2.

Equation (13) extends the previous shock-level estimating equation (6) by including a vector of controls

qn which, as in Proposition 4, are included in the SSIV control vector w` as exposure-weighted averages.

The first result in Proposition 5 is that the addition of these controls does not alter the coefficient

equivalence established in Proposition 1. The second result states conditions, which strengthen those

of Proposition 4, under which conventional shock-level standard errors from estimation of (13) yield

valid asymptotic inference on β. Appendix B.2 further establishes two related results. First, absent any

controls, i.e. with w` = qn = 1, the shock-level robust standard error for β is numerically equivalent to

the standard error formula that Adão et al. (2019) propose. Second, an alternative inference procedure

that Adão et al. (2019) propose to improve finite-sample performance, by imposing the null hypothesis

β = β0 when estimating the residual ε`, is also readily obtained from the shock-level equation (13).

A limitation of Proposition 5, relative to the original result in Adão et al. (2019), concerns the

control vector w`. While our previous results do not restrict the structure of this vector, Assump-

tion B4 allows for only two types of controls: those with a shift-share structure (i.e.
∑
n s`nqn, as

in Proposition 4) that capture all sources of shock-level confounding, and other controls that are

not asymptotically correlated with the instrument but may increase the asymptotic efficiency of the

estimator. Adão et al. (2019) further allow controls that are necessary for identification and have

an “approximate” shift-share structure: i.e.
∑
n s`nq̃n + u`, where q̃n is unobserved but the average

variance of the noise u` is asymptotically small. Appendix B.2 shows that in the presence of such

approximate shift-share controls, the standard errors obtained from estimating equation (13) will tend

to be asymptotically conservative.33 Valid shift-share inference with general control vectors, of the

kind we allow in our discussion of SSIV identification, remains an open problem.

At the same time, our shock-level approach offers three practical features. First, it can be per-

formed with standard statistical software packages given an simple initial transformation of the data

(i.e. to obtain ȳ⊥n , x̄⊥n , and sn), for which we have released a Stata package ssaggregate (see footnote

3). Second, it is readily extended to settings where shocks are clustered (a case also considered by

Adão et al. (2019)) or autoregressive, as in Assumptions 5 and 6 respectively. Conventional cluster-

robust or heteroskedastic-and-autocorrelation-consistent (HAC) standard error calculations applied

to equation (13) are then valid. Third, the shock-level inference approach works in some cases where

the original standard error calculation procedure of Adão et al. (2019) fails. Their procedure involves

projecting z⊥` on the vector of shares in order to account for the shock-level confounders underlying

the approximate shift-share controls. When N > L, or when some exposure shares are collinear, such

projection is infeasible.34 Our alternative approach avoids this issue, in settings without approximate
33In contrast, Appendix B.2 also shows that when the two inference procedures are asymptotically equivalent, standard

errors from Proposition 5 are likely to be smaller than those of Adão et al. (2019) in finite samples. We find that case
to be relevant in the application in Section 6.2.4.

34This is an empirically relevant issue: for instance, employment shares of some industries are collinear in the Autor
et al. (2013) setting. To give one example, SIC code 2068 “Salted and roasted nuts and seeds” was part of code 2065
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shift-share controls.

5.2 Falsification and Relevance Tests

Our Proposition 5 also provides a practical way to perform valid regression-based tests of shock

orthogonality (i.e. falsification tests) and first-stage relevance. In the quasi-experimental SSIV frame-

work these tests also require computing exposure-robust standard errors, and shock-level inference

procedures allow for a convenient implementation via equivalent shock-level IV regressions.

As usual, the validity of z` cannot be tested directly. However, indirect falsification tests may be

conducted given an observed variable r` thought to proxy for the unobserved residual ε`. Namely

one may test whether r` is uncorrelated with the shift-share instrument z`, while controlling for w`.

Examples of such an r` may include a baseline characteristic realized prior to the shocks or a lagged

observation of the outcome y` (resulting in what is often called a “pre-trend” test). To interpret the

magnitude of the reduced form falsification regression coefficient, researchers may also scale it by the

first stage regression of x`, yielding a placebo SSIV coefficient.

The insights of Adão et al. (2019) and the previous section apply directly to such tests. For

exposure-robust inference on a placebo e`-weighted SSIV regression of r` on x`, instrumented by z`, one

may use the conventional standard errors from an sn-weighted regression of r̄⊥n on x̄⊥n , instrumenting

by gn and controlling for any shock-level covariates qn. Similarly, for valid inference from a reduced

form regression of r` on z`, one may use the conventional standard errors from an IV regression of r̄⊥n
on z̄⊥n , with the same instrument, weights, and controls (see footnote 12).35 If a researcher observes a

shock-level confounder rn, they can construct its observation-level average r` =
∑
n s`nrn and perform

a similar test. A simpler test regresses rn on gn directly (weighting by sn and controlling for qn).36

Unlike exclusion, the SSIV relevance condition can be evaluated directly, via OLS regressions of

x` on z` that control for w`. For exposure-robust inference on this OLS coefficient one may again

use an equivalent shock-level IV regression: of x̄⊥n on z̄⊥n , instrumenting by gn, weighting by sn, and

controlling for qn. The first stage F -statistic, which is a common heuristic for instrument relevance,

is then obtained as a squared t-statistic. We generalize this result to the case of multiple shift-share

instruments in Appendix A.11 by detailing the appropriate construction of the “effective” first-stage

“Candy and other confectionery products” until the 1987 revision of the classification; the rest of code 2065 we reassigned
to code 2064. Therefore, when using 1980 employment shares to construct the shift-share instrument for the 1990s,
Autor et al. (2013) allocate employment between 2064 and 2068 codes proportionately.

35One might also consider a simpler shock-level OLS regression of r̄⊥n on gn weighted by sn and controlling for qn (i.e.
the reduced form of the proposed IV regression). This produces a coefficient that typically cannot be generated from
the original observations of (r`, z`, w`). Moreover, the power of the shock-level OLS balance test is likely to be lower
than the proposed IV: the robust Wald statistic for both tests has the same form,

(∑
n snr̄

⊥
n ĝn

)2
/
∑

n s
2
nκ̂

2
nĝ

2
n, where

ĝn is the residual from an auxiliary sn-weighted projection of gn on qn and the only difference is in the r̄⊥n residuals,
κ̂n. Under the alternative model of r` = α0 + α1z` + κ`, with α1 6= 0, the variance of these κ̂n is likely to be smaller
in the correctly specified IV balance test than the OLS regression, leading to a likely higher value of the test statistic.

36While pre-trend and other `-level balance tests are also useful in the alternative Goldsmith-Pinkham et al. (2020)
framework (albeit with a different approach to inference), this shock-level test is specific to our approach to identification.
We emphasize, however, that all tests discussed here are meant to falsify the quasi-random shock assignment assumption,
made a priori, and not to test the two frameworks against each other.
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F -statistic of Montiel Olea and Pflueger (2013), again based on an equivalent shock-level IV regression.

5.3 Monte-Carlo Simulations

Though the exposure-robust standard errors obtained from estimating equation (13) are asymptoti-

cally valid, it is useful to verify that they offer appropriate coverage with a finite number of observations

and shocks. Of interest especially is whether the finite-sample performance of the equivalent regression

(13) is comparable to that of more conventional shock-level IV regressions, in which the outcome and

instrument are not aggregated from a common set of y` and x`.

In Appendix A.12 we provide Monte-Carlo evidence suggesting that the finite-sample properties of

SSIV and conventional shock-level IV regressions are similar, and that the variance of SSIV estimators

is well-approximated by our exposure-robust standard errors. Specifically, we compare the finite-

sample behavior of two estimators which both measure the effects of import competition with China on

U.S. employment and use the same industry variation to construct the instruments. The first estimator

is an SSIV and takes regional growth of manufacturing employment as the outcome (following Autor

et al. (2013)) while the second is a conventional IV where the outcome is industry employment growth

(similar to Acemoglu et al. (2016)). While finite sample properties of SSIV are not always perfect,

e.g. there is moderate overrejection with heavy-tailed shocks, traditional industry-level IV suffers

from the same problems. Our results further indicate that the conventional rule of thumb to detect

weak instruments—the Montiel Olea and Pflueger (2013) first-state F -statistic—applies equally well

to both the SSIV and the traditional IV estimators when computed for SSIV as described in Appendix

A.11. Finally, our results also show that with the Herfindahl concentration index
∑
n s

2
n as high as

1/20 (i.e. with an effective sample size of 20 in the equivalent shock-level regression) the asymptotic

approximation for the SSIV estimator is still reasonable, with rejection rates in the vicinity of 7% for

tests with a nominal size of 5% despite heavy tails of the shock distribution. Together, these results

indicate that a researcher who is comfortable with the finite-sample performance of a shock-level

analysis with some set of gn should also be comfortable using such shocks in SSIV, provided there is

sufficient variation in exposure shares to yield a strong SSIV first stage.37

6 Shift-Share IV in Practice

We now summarize and illustrate the practical implications of our econometric framework. We first

characterize the kinds of empirical settings to which the foregoing framework may be applied. We

then apply the framework to the influential setting of Autor et al. (2013).
37Naturally, these simulation results may be specific to the data-generating process we consider here, modeled after

the “China shock” setting of Autor et al. (2013). In practice, we recommend that researchers perform similar simulations
based on their data if they are concerned with the quality of asymptotic approximation—a suggestion that of course
applies to conventional shock-level IV analyses as well.
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6.1 A Taxonomy of SSIV Settings

Our framework can be applied to various empirical settings. To characterize these settings, we distin-

guish between three cases of SSIVs employed in the literature.

In the first case, the shift-share instrument is based on a set of shocks which can itself be thought

of as an instrument. For example, the gn which enter z` might correspond to a set of observed

growth rates that could be plausibly thought of as being randomly assigned to a large number of

industries. Our framework shows how the shift-share instrument maps these shocks to the level of

observed outcomes and treatments (e.g., geographic regions). A researcher who is comfortable with

the identification conditions and finite-sample performance of an industry-level analysis based on gn

should generally also be comfortable applying our framework, provided there is sufficient variation

in the exposure shares and treatment to yield a strong first stage. Autor et al. (2013) and the

corresponding industry-level analysis conducted by Acemoglu et al. (2016) give a prime example of

this case, as we show below.

Empirical settings covered by this first case belong to various fields in economics, with outcomes and

shocks defined at levels (` and n, respectively) different than regions and industries. In international

trade, Hummels et al. (2014) estimate the wage effects of offshoring across Danish importing firms

`. They leverage a shift-share instrument for offshoring based on shocks to export supply by type of

intermediate inputs and origin country; titanium hinges from Japan is an example of an n. While

they translate these shocks to the firm level by using the lagged composition of firm imports as the

shares, one could imagine an analysis of Danish imports at the input-by-country level directly that

would leverage the same supply shocks. In finance, Xu (2019) examines the long-term effects of

financial shocks on exports across countries `. Her shift-share instrument is based on a disruption

that affected some but not all London-based banks n in 1866, with country-specific exposure shares

measuring pre-1866 market shares of those banks in each country. In line with considering bank

shocks as-good-as-randomly assigned, she reports that affected and unaffected banks were balanced

on various observable characteristics. In the immigration literature, Peri et al. (2016) estimate the

effect of immigrant STEM workers on the labor market outcomes of natives across U.S. cities `. They

exploit variation in the supply of STEM workers across migration origin countries n and over time that

arises from plausibly exogenous shifts to national H1-B policy. Similarly, in a literature on innovation,

Stuen et al. (2012) leverage education policy shocks in foreign countries as a supply shock to U.S.

doctoral programs.

In the second case, a researcher does not directly observe a large set of quasi-experimental shocks,

but can still conceive of an underlying set of gn which if observed would be a useful instrument.

Constructing the instrument then requires an initial step where these shocks are estimated in-sample,

potentially introducing mechanical biases. In the canonical setting of Bartik (1991) and Blanchard

and Katz (1992), for example, a local labor demand instrument is sought, with the ideal gn measuring
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an aggregate change in industry labor demand that may be assumed orthogonal to local labor supply

shocks. Aggregate demand changes are however not directly observed and must be estimated from

national industry employment growth (often using leave-out corrections, as in Autor and Duggan

(2003) and Diamond (2016)). We have discussed how our framework generalizes to this more involved

setting in Section 4.3, showing the additional assumptions required for the estimation error to be

asymptotically ignorable. While this case differs from the first in terms of the instrument construction,

the underlying logic of our framework still applies. This case also covers instruments in the immigration

literature, as in Card (2001) and Card (2009), where latent shocks to out-migration from foreign

countries can be thought to be as-good-as-randomly assigned but are estimated from aggregate in-

migration flows in the U.S.

The third case is conceptually distinct, in that the gn underlying the (perhaps idealized) instrument

cannot be naturally viewed as an instrument itself. This could either be because it is not plausible

that these shocks are as-good-as-randomly assigned, even conditionally on shock-level observables, or

because there are too few shocks. Identification in this case may instead follow from exogeneity of the

exposure shares, as suggested by Goldsmith-Pinkham et al. (2020).

Share exogeneity may be a more plausible approach in the third case when the exposure shares

are “tailored” to the specific economic question, and to the particular endogenous variable included in

the model. In this case, the scenario considered in Section 2.2—that there are unobserved shocks νn

which enter ε` through the shares—may be less of a concern. Mohnen (2019), for example, uses the

age profile of older workers in local labor markets as the exposure shares of a shift-share instrument for

the change in the local elderly employment rate in the following decade. He argues, based on economic

intuition, that these tailored shares are uncorrelated with unobserved trends in youth employment

rates. This argument notably does not require one to specify the age-specific shocks gn, which only

affect power of the instrument (in fact, the shocks are dispensed with altogether in robustness checks

that directly instrument with the shares). Similarly, Algan et al. (2017) use the lagged share of the

construction sector in the regional economy as an instrument for unemployment growth during the

Great Recession, arguing that it does not predict changes in voting outcomes in other ways. With a

single industry the identification assumption reduces to that of conventional difference-in-differences

with continuous treatment intensity and our framework cannot be applied.

In contrast, our framework may be more appropriate in settings where shocks are tailored to a

specific question while the shares are “generic,” in that they could conceivably measure an observa-

tion’s exposure to multiple shocks (both observed and unobserved). Both Autor et al. (2013) and

Acemoglu and Restrepo (Forthcoming), for example, build shift-share instruments with similar lagged

employment shares but different shocks—rising trade with China and the adoption of industrial robots,

respectively. According to the Goldsmith-Pinkham et al. (2020) view, these papers use essentially the

same instruments (lagged employment shares) for different endogenous variables (growth of import
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competition and growth of robot adoption), and are therefore mutually inconsistent. Our framework

helps reconcile these identification strategies, provided the variation in each set of shocks can be de-

scribed as arising from a natural experiment. In principle, shares and shocks may simultaneously

provide valid identifying variation, but in practice it would seem unlikely for both sources of variation

to be a priori plausible in the same setting.

This discussion highlights that plausibility of our framework, as with the alternative framework

of Goldsmith-Pinkham et al. (2020), depends on the details of the SSIV application. We encourage

practitioners to use our framework only after establishing an a priori argument for the plausibility

of exogenous shocks. Various diagnostics on the extent of shock variation and falsification of this

assumption may then be conducted to assess ex post the plausibility of exogenous shocks. We next

illustrate this approach in the Autor et al. (2013) setting.

6.2 Application to Autor, Dorn, and Hanson (2013)

Our application to Autor et al. (2013, henceforth ADH) aims to illustrate our theoretical framework

only, and not to reassess their substantive findings. In line with this goal, we first describe how

the ADH instrument could be thought to leverage quasi-experimental shocks and discuss potential

threats to this identification strategy. We then illustrate the tools and lessons that follow from

our framework, demonstrating steps that researchers can emulate in their own SSIV applications.

Specifically, we analyze the distribution of shocks to assess the plausibility of Assumption 4 (many

conditionally uncorrelated shocks), use balance tests to corroborate the plausibility of Assumption

3 (conditional quasi-random shock assignment), use equivalent shock-level IV regressions to obtain

exposure-robust inference, and analyze the sensitivity of the results to the inclusion of different shock-

level controls. This analysis shows how our quasi-experimental framework can help understand the

identifying variation in the ADH SSIV design.

6.2.1 Setting and Intuition for Identification

ADH use a shift-share IV to estimate the causal effect of rising import penetration from China on

U.S. local labor markets. They do so with a repeated cross section of 722 commuting zones ` and

397 four-digit SIC manufacturing industries n over two periods t, 1990-2000 and 2000-2007. In these

years U.S. commuting zones were exposed to a dramatic rise in import penetration from China, a

historic change in trade patterns commonly referred to as the “China shock.” Variation in exposure to

this change across commuting zones results from the fact that different areas were initially specialized

in different industries which saw different changes in the aggregate U.S. growth of Chinese imports.

ADH combine import changes across industries in eight comparable developed economies (as shocks)

with lagged industry employment (as exposure shares) to construct their shift-share instrument.

To illustrate our framework in this setting we focus on ADH’s primary outcome of the change
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in total manufacturing employment as a percentage of working-age population during period t in

location `, which we write as y`t. The treatment variable x`t measures local exposure to the growth

of imports from China in $1,000 per worker. The vector of controls w`t, which comes from the

preferred specification of ADH (Column 6 of their Table 3), contains start-of-period measures of

labor force demographics, period fixed effects, Census region fixed effects, and the start-of-period

total manufacturing share to which we return below. The shift-share instrument is z`t =
∑
n s`ntgnt,

where s`nt is the share of manufacturing industry n in total employment in location ` (measured a

decade before each period t begins) and gnt is industry n’s growth of imports from China in the eight

comparable economies over period t (also expressed in $1,000 per U.S. worker).38 Importantly, the

sum of lagged manufacturing shares across industries (S`t =
∑
n s`nt) is not constant across locations

and periods, placing the ADH instrument in the “incomplete shares” class discussed in Section 4.2.

All regressions are weighted by e`t, which measures the start-of-period population of the commuting

zone, and all variables are measured in ten-year equivalents.

To see how the ADH instrument can be viewed as leveraging quasi-experimental shocks, it is useful

to imagine an idealized experiment generating random variation in the growth of imports from China

across industries. One could imagine, for example, random variation in industry-specific productivities

in China affecting import growth in both the U.S. and in comparable economies. This would yield a set

of observed productivity changes gnt which would plausibly satisfy our Assumption 1. Assumption

2 would further hold when the productivity shocks are idiosyncratic across many industries, with

small average exposure to each shock across commuting zones. Weaker versions of this experimental

ideal, in which productivity shocks can be partly predicted by industry observables and are only

weakly dependent across industries, are accommodated by the extensions in Section 3.2. For example,

in ADH’s repeated cross section one might invoke Assumption 3 in allowing the average shock to

vary across periods, in recognition that the 1990s and 2000s were very different trade environments,

with China joining the World Trade Organization in 2001. Here qnt would indicate periods. Other

extensions would allow the industry shocks to be serially correlated and clustered by larger groups.

ADH’s approach can be seen as approximating this idealized experiment by using observed changes

in trade patterns between China and a group of developed countries outside the United States. The

use of non-U.S. data can be seen as avoiding a potential concern of omitted variables bias: trade

between the U.S. and China depends on changes in U.S. supply and demand conditions, which may
38To be precise, local exposure to the growth of imports from China is constructed for period t as x`t =

∑
n s

current
`nt gUS

nt .

Here gUS
nt =

∆MUS
nt

Ecurrent
nt

is the growth of U.S. imports from China in thousands of dollars (∆MUS
nt ) divided by the industry

employment in the U.S. at the beginning of the current period (Ecurrent
nt ) and scurrent

`nt are local employment shares,
also measured at the beginning of the period. The instrument, in contrast, is constructed as z`t =

∑
n s`ntgnt with

gnt =
∆M8 countries

nt
Ent

, where ∆M8 countries
nt measures the growth of imports from China in eight comparable economies

(in thousands of U.S. dollars) and both local employment shares s`nt and U.S. employment Ent are lagged by 10 years.
The eight countries are Australia, Denmark, Finland, Germany, Japan, New Zealand, Spain, and Switzerland. Note
that Autor et al. (2013) express the same instrument differently, based on employment shares relative to the industry
total, rather than the regional total. Our way of writing z`t aims to clearly separate the exposure shares from the
industry shocks, highlighting the shift-share structure of the instrument.
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have direct effects on employment dynamics in U.S. regions. In contrast, variation in the ADH gnt

reflects only Chinese productivity shocks and the various supply and demand shocks in the non-U.S.

developed countries. In this way, the ADH strategy can be understood as eliminating bias from shocks

that are specific to the United States.

This discussion gives an a priori justification for thinking of the ADH instrument as leveraging

quasi-experimental shocks within the two periods. Nonetheless, since the ADH shocks are not truly

randomized, one may still worry that they are confounded by other unobserved characteristics. For

example, China’s factor endowment may imply that it specializes in low-skill industries, which could

have been on different employment trends in the U.S. even absent increased trade with China. Simi-

larly, one can imagine a common component of import growth in the U.S. and the group of comparable

developed economies due to correlated technological shocks in those countries, which may have a di-

rect effect on U.S. labor markets. Given these potential concerns, it will be important assess the

plausibility of Assumption 3 in this setting by conducting within-period falsification tests of the kind

we describe in Section 5.2. It will also be important to access whether there is sufficient variation in

the ADH shocks for Assumption 4 to hold, allowing for serial correlation and clustering.

Before applying these tests, it is worth highlighting that the assumption of exogenous exposure

shares, as discussed by Goldsmith-Pinkham et al. (2020), is likely to be a priori implausible in the

ADH setting. As indicated in Section 2.2, any unobserved shocks νn invalidate the share exogeneity

assumption if they enter the error ε` in a manner which is correlated with the shares. Because ADH

use generic manufacturing employment shares to instrument for a specific treatment variable, the

possibility of other industry shocks entering ε` looms large. These unobserved shocks could take

many forms, for example heterogeneous speeds of automation, secular changes in consumer demand,

or changes in factor prices which differentially affect industries based on their skill intensity.

With a plausible justification of our framework in hand, we next illustrate its application.

6.2.2 Properties of Industry Shocks and Exposure Shares

Our quasi-experimental view of the ADH research design places particular emphasis on the variation

in Chinese import growth rates gnt and their average exposure snt across industries and periods. With

few or insufficiently-variable shocks, or highly concentrated shocks exposure, the large-N asymptotic

approximation developed in Section 3.1 is unlikely to be a useful tool for characterizing the finite-

sample behavior of the SSIV estimator. We thus first summarize the distribution of gnt, as well as

the industry-level weights from our equivalence result, snt ∝
∑
` e`ts`nt (normalized to add up to one

in the entire sample).39

In summarizing the industry-level variation it is instructive to recall that the ADH instrument is

constructed with “incomplete” manufacturing shares. Per the discussion in Section 4.2, this means that
39Note that snt would be proportional to lagged industry employment if the ADH regression weights e`t were lagged

regional employment. ADH however use a slightly different e`t: the start-of-period commuting zone population.
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absent any regression controls the SSIV estimator uses variation not only in manufacturing industry

shocks but also implicitly the variation in the 10-year lagged total manufacturing share S`t across

commuting zones and periods. In practice, ADH control for the start-of-period manufacturing share,

which is highly—though not perfectly—correlated with S`t. We thus summarize the ADH shocks both

with and without the “missing” shock g0t = 0, which here represents the lack of a “China shock” in

service (i.e. non-manufacturing) industries. Moreover, in recognition of the fact that the Chinese trade

environment was very different in the 1990s and 2000s, so shock exogeneity may only plausibly hold

across industries, within periods, we focus on the within-period variation in manufacturing shocks.

Table 1 reports summary statistics for the ADH shocks gnt computed with importance weights

snt, and characterizes these weights. Column 1 includes the “missing” service industry shock of zero

in each period. It is evident that with this shock the distribution of gnt is unusual: for example,

its interquartile range is zero. This is because the service industry accounts for a large fraction of

total employment (s0t is 71.9% of the period total in the 1990s and 79.5% in the 2000s). As a result

we see a high concentration of industry exposure as measured by the inverse of its Herfindahl index

(HHI), 1/
∑
n,t s

2
nt, which corresponds to the effective sample size of our equivalent regression and

plays a key role in Assumption 2. With the “missing” shock included, the effective sample size is

only 3.5. For an HHI computed at the level of three-digit industry codes
∑
c s

2
c , where sc aggregates

exposure across the two periods and industries within the same 3-digit group c, it is even lower, at

1.7. This suggests even less industry-level variation is available when shocks are allowed to be serially

correlated or clustered by groups. Furthermore, the mean of manufacturing shocks is significantly

different from the zero shock of the missing service industry.40 Together, these analyses suggest that

the service industry should be excluded from the identifying variation, because it is likely to violate

both Assumption 1 (E [gnt | ε̄, s] 6= g0t = 0) and Assumption 2 (
∑
n,t s

2
nt is not close to zero).

Column 2 of Table 1 therefore summarizes the sample with the service industry excluded. The

distribution of shocks is now much more regular, with an average of 7.4, a standard deviation of 20.9

and an interquartile range of 6.6. The inverse HHI of the snt is also relatively high: 191.6 across

industry-by-period cells and 58.4 when exposure is aggregated by SIC3 group. The largest shock

weights in this column are only 3.4% across industry-by-periods and 6.5% across SIC3 groups. This

suggests a sizable degree of variation at the industry level, consistent with Assumption 2. In general, we

recommend that researchers report the inverse of the HHI of shock-level average exposure as a simple

way of describing their effective sample size. A first-stage F -statistic, which we discuss appropriate

computation of in Section 5.2, will provide a formal test of the power of the shock variation.

Finally, column 3 of Table 1 summarizes the distribution of within-period manufacturing shocks,

which would be leveraged by an assumption of conditional quasi-experimental assignment (Assumption

3). The column confirms that even conditional on period there is sizable residual shock variation.
40The weighted mean of manufacturing shocks is 7.4, with a standard error clustered at the 3-digit SIC level (as in

our analysis below) of 1.3.
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The standard deviation and interquartile range of shock residuals (obtained from regressing shocks

on period fixed effects with snt weights) are only mildly smaller than in Column 2, despite the higher

mean shock in the later period, at 12.6 versus 3.6.

Besides the condition on the effective sample size, Assumption 2 (and its clustered version in

Assumption 5) requires the shocks to be sufficiently mutually uncorrelated. To assess the plausibility

of this assumption and choose the appropriate level of clustering for exposure-robust standard errors,

we next analyze the correlation patterns of shocks across manufacturing industries using available

industry classifications and the time dimension of the pooled cross section. In particular, we compute

intra-class correlation coefficients (ICCs) of shocks within different industry groups, as one might do

to correct for conventional clustering parametrically (e.g. Angrist and Pischke (2008, p. 312)).41

These ICCs come from a random effects model, providing a hierarchical decomposition of residual

within-period shock variation:

gnt = µt + aten(n),t + bsic2(n),t + csic3(n),t + dn + ent, (14)

where µt are period fixed effects; aten(n),t, bsic2(n),t, and csic3(n),t denote time-varying (and possibly

auto-correlated) random effects generated by the ten industry groups in Acemoglu et al. (2016), 20

groups identified by SIC2 codes, and 136 groups corresponding to SIC3 codes, respectively; and dn is a

time-invariant industry random effect (across our 397 four-digit SIC industries). Following convention,

we estimate equation (14) as a hierarchical linear model by maximum likelihood, assuming Gaussian

residual components.42

Table 2 reports estimated ICCs from equation (14), summarizing the share of the overall shock

residual variance due to each random effect. These reveal moderate clustering of shock residuals at

the industry and SIC3 level (with ICCs of 0.169 and 0.073, respectively). At the same time, there

is less evidence for clustering of shocks at a higher SIC2 level and particularly by ten cluster groups

(ICCs of 0.047 and 0.016, respectively, with standard errors of comparable magnitude). This supports

the assumption that shocks are mean-independent across SIC3 clusters, so it will be sufficient to

cluster standard errors at the level of SIC3 groups, as Acemoglu et al. (2016) do in their conventional

industry-level IV regressions. The inverse HHI estimates in Table 1 indicate that at this level of shock

clustering there is still an adequate effective sample size.
41Note that similar ICC calculations could be implemented in a setting that directly regresses industry outcomes on

industry shocks, such as Acemoglu et al. (2016). Mutual correlation in the instrument is a generic concern that is not
specific to shift-share designs, although one that is rarely tested for. Getting the correlation structure in shocks right is
especially important for inference in our framework, since the outcome and treatment in the industry-level regression
(ȳ⊥nt and x̄⊥nt) are by construction correlated across industries.

42In particular we estimate an unweighted mixed-effects regression using Stata’s mixed command, imposing an ex-
changeable variance matrix for (aten(n),1, aten(n),2), (bsic2(n),1, bsic2(n),2), and (csic3(n),1, csic3(n),2).
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6.2.3 Falsification Tests

We next implement falsification tests of ADH shock orthogonality, which provide a way of assessing

the plausibility of Assumption 3. Following Section 5.2, we do this in two ways, both different from

conventional falsification tests sometimes run in SSIV settings. First, we regress potential proxies for

the unobserved residual (i.e., any unobserved industry labor demand or labor supply shock) on the

instrument z` but use exposure-robust inference that takes into account the inherent dependencies of

the data. Second, we regress potential industry-level confounders directly on the shocks (while again

clustering by SIC3). While this second type of falsification tests would be standard in industry-level

analyses, such as Acemoglu et al. (2016), it has rarely been used to assess the plausibility of SSIV

designs (with Xu (2019), mentioned above, being a rare exception).

Choosing the set of potential confounders for these exercises is a context-specific issue, which

should be justified separately in every application. To discipline our illustrative exercise, we use

the industry-level production controls in Acemoglu et al. (2016) and the regional controls in ADH.

Consistent with our a priori view of the quasi-experiment, we maintain only the period fixed effects as

controls when evaluating balance on these other observables. For the industry-level balance test this

amounts to regressing each potential confounder on the manufacturing shocks (normalized to have a

unit variance) and period fixed effects, weighting by average industry employment shares. Regional

balance coefficients are obtained by regressing each potential confounder on the shift-share instrument

(normalized to have a unit variance) and the share-weighted average of period effects (i.e., the period-

interacted sum-of-shares), since ADH is a setting with incomplete shares. To obtain exposure-robust

standard errors, we implement these regressions at the shock level, as discussed above.

Panel A of Table 3 reports the results of our industry-level balance tests. The five Acemoglu et

al. (2016) production controls are an industry’s share of production workers in employment in 1991,

the ratio of its capital to value-added in 1991, its log real wages in 1991, the share of its investment

devoted to computers in 1990, and the share of its high-tech equipment in total investment in 1990.43

Broadly, these variables reflect the structure of employment and technology across industries. If the

ADH shocks are as-good-as-randomly assigned to industries within periods, we expect them to not

predict these predetermined variables. Panel A shows that there is indeed no statistically significant

correlation within periods, consistent with Assumption 3.

Panel B of Table 3 reports the results of our regional balance tests. The five ADH controls are

the fraction of a commuting zone’s population who is college-educated, the fraction of its population

who is foreign-born, the fraction of its workers who are female, its fraction of employment in routine

occupations, and the average offshorability index of its occupations. Broadly, these variables reflect

the composition of a region’s workforce. We again find no statistically significant relationships between
43The last two controls are missing for five out of 397 industries. We impute the missing values by the medians in

the SIC3 industry group or, when not available, in the SIC2 group.
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these variables and the shift-share instrument within periods, except for the foreign-born population

fraction. Locations exposed to a large ADH trade shock tend to have a higher fraction of immigrants,

suggesting that they may be subject to different labor supply dynamics. We explore the importance

of this imbalance for the SSIV coefficient estimate in sensitivity tests below.

Finally, the last two rows of the same panel conduct a regional “pre-trends” analysis. We regress the

pre-trend variables from ADH—manufacturing employment growth in the 1970s and 1980s—on the

shift-share instrument, using the same specification as in the previous rows. We find no relationship

between the shift-share instrument and manufacturing employment growth in the 1980s, but there is

a positive statistically significant relationship with manufacturing employment growth in the 1970s.

Both findings are similar to those from ADH’s pre-trend analysis.

Overall, we fail to reject imbalance in ten out of the twelve potential confounders at conventional

levels of statistical significance. How to proceed when some balance tests fail is a general issue in

quasi-experimental analyses and has to be decided in the context of an application. One might

view the balance failures as sufficient evidence against Assumption 3 to seek alternative shocks or

more appropriate shock-level controls. Alternatively, one may argue that the observed imbalances

are unlikely to invalidate the research design. ADH, for example, note that the positive relationship

they find between the shift-share instrument and manufacturing employment in the 1970s occurs in

the distant past, while the insignificant relationship in the 1980s demonstrates that the relationship

between rising China trade exposure and declining manufacturing employment was absent in the

decade immediately prior to China’s rise. Similarly the imbalance of the foreign-born share that we

observe need not generate a bias in the estimate if it is not strongly correlated with the second-stage

residual. To gauge this potential for OVB one can include such variables as controls in the SSIV

specification and check sensitivity of the coefficient; we report results of this exercise next.

6.2.4 Main Estimates and Sensitivity Analyses

We next estimate the effects of import competition on local labor market outcomes, leveraging within-

period exogeneity of the industry shocks gnt. We then check sensitivity of results to inclusion of the

Autor et al. (2013) regional controls and Acemoglu et al. (2016) industry-level controls.

Table 4 reports SSIV coefficients from regressing regional manufacturing employment growth in

the U.S. on the growth of import competition from China, instrumented by predicted Chinese import

growth.44 Per the results in Section 5.1, we estimate these coefficients with equivalent industry-level

regressions in order to obtain valid exposure-robust standard errors. Consistent with the above analysis

of shock ICCs, we cluster standard errors at the SIC3 level. We also report first-stage F -statistics with

corresponding exposure-robust inference. As discussed in Section 5.2, these come from industry-level

IV regressions of the aggregated treatment and instrument (i.e. x̄⊥nt on z̄⊥nt), instrumented with shocks
44Appendix Table C1 reports estimates for other outcomes in ADH: growth rates of unemployment, labor force

non-participation, and average wages, corresponding to columns 3 and 4 of Table 5 and column 1 of Table 6 in ADH.

32



and weighting by snt. The F -statistics are well above the conventional threshold of ten in all columns

of the table.

Column 1 first replicates column 6 of Table 3 in Autor et al. (2013) by including in w`t period fixed

effects, Census division fixed effects, start-of-period conditions (% college educated, % foreign-born,

% employment among women, % employment in routine occupations, and the average offshorability

index), and the start-of-period manufacturing share. The point estimate is -0.596, with a corrected

standard error of 0.114.45

As noted, the ADH specification in column 1 does not include the lagged manufacturing share

control S`t, which is necessary to solve the incomplete shares issue in Section 4.2, though it does

include a highly correlated control (start-of-period manufacturing share). In column 2 of Table 4

we isolate within-manufacturing variation in shocks by replacing the latter sum-of-share control with

the former. The SSIV point estimate remains almost unchanged, at -0.489 (with a standard error

of 0.100). Here exposure-robust standard errors are obtained from an industry-level regression that

drops the implicit service sector shock of g0t = 0.

Isolating the within-period variation in manufacturing shocks requires further controls in the in-

complete shares case, as discussed in Section 4.2. Specifically, column 3 controls for lagged manufac-

turing shares interacted with period indicators, which are the share-weighted sums of period effects

in qnt. This is equivalent to the use of period fixed effects in the industry-level analysis of Acemoglu

et al. (2016). With these controls the SSIV point estimate is -0.267 with an exposure-robust standard

error of 0.099.46 While the coefficient remains statistically and economically significant, it is smaller

in magnitude than the estimates in columns 1 and 2. The difference stems from the fact that 2000–07

saw both a faster growth in imports from China (e.g., due to its entry to the WTO) and a faster

decline in U.S. manufacturing. The earlier columns attribute the faster manufacturing decline to

increased trade with China, while the specification in Column 3 controls for any unobserved shocks

specific to the manufacturing sector overall in the 2000s (e.g., any demand or supply shock affecting

the manufacturing sector, which could include automation, innovation, falling consumer demand due

to income effects, etc.). Conventional industry-level IV regressions control for such unobserved shocks
45Appendix Table C2 implements three alternative methods for conducting inference in Table 4, reporting conventional

state-clustered standard errors as in ADH (which are not exposure-robust), the Adão et al. (2019) standard errors (which
are asymptotically equivalent to ours but differ in finite samples), and null-imposed confidence intervals obtained from
shock-level Lagrange multiplier tests (which may have better finite-sample properties). Consistent with the theoretical
discussion in Appendix B.2, the conventional standard errors are generally too low, while the Adão et al. (2019) standard
errors are slightly larger than those from Table 4 in most columns. Imposing the null widens the confidence interval
more substantially, by 30–50%, although more so on the left end, suggesting that much larger effects are not rejected
by the data. This last finding is consistent with Adão et al. (2019), except that we use the equivalent industry-level
regression to compute the null-imposed confidence interval.

46Appendix Figure C1 reports binned scatter plots that illustrate the first-stage and reduced-form industry-level
relationships corresponding to the column 3 specification. This estimate can be interpreted as a weighted average of
two period-specific shift-share IV coefficients. Column 1 of Appendix Table C3 shows the underlying estimates, from
a just-identified IV regression where both treatment and the instrument are interacted with period indicators (as well
as the manufacturing share control, as in column 3), with exposure-robust standard errors obtained by the equivalent
industry-level regression discussed in Section 5. The estimated effect of increased Chinese import competition is negative
in both periods (–0.491 and –0.225). Other columns repeat the analysis for other outcomes.
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with period fixed effects, as in Table 3, column 1 of Acemoglu et al. (2016).47 The translation of their

industry specification into the regional setup of ADH requires interacting the lagged manufacturing

shares with period indicators, a simple but important insight of our framework.

Column 4 implements a simple sensitivity test to assess the stability of the results when the

controls from ADH are omitted. This test is motivated by the result of the balance test in panel B of

Table 3, which indicated that the shift-share instrument was correlated with the share of foreign born

population. It is therefore instructive to see whether the headline regression coefficient is sensitive to

the inclusion of this and other controls. In fact, we find that the results remain very similar without

controls, with a point estimate of -0.314 and an exposure-robust standard error of 0.134. We proceed

by keeping the ADH controls for the remainder of the analysis.

Further columns of Table 4 parallel the specifications of Acemoglu et al. (2016, Table 3) that

include further industry-level controls. This illustrates how our framework makes it straightforward

to introduce more detailed industry-level controls in SSIV, which are commonly used in industry-level

studies of the China shock. The validity of these estimates relies on weaker versions of conditional ran-

dom assignment (Assumption 3), and robustness of the coefficients is therefore reassuring. Specifically,

Acemoglu et al. (2016) control for fixed effects of ten broad industry groups (one-digit manufacturing

sectors) in column 2 of their Table 3. By Proposition 4, we can exploit shock variation within these

industry groups in the SSIV design by controlling for the lagged shares of exposure to these industry

groups (and including fixed effects of these groups in the equivalent industry regressions for correct

inference, per Section 5.1). The resulting point estimate in column 5 of Table 4 remains very similar

to that of column 3, at -0.310 with a standard error of 0.134.

Column 6 instead parallels the specification of Acemoglu et al. (2016) that includes production

controls, which we used for the balance tests in Panel A of Table 3. This is done by controlling for

the regional share-weighted sums of those controls. The results remain virtually unchanged, with a

regression coefficient of -0.293 and an exposure-robust standard error of 0.125.

Finally, column 7 instead introduces industry fixed effects, again following Acemoglu et al. (2016).

This specification is more ambitious because it isolates changes in trade with China within each four-

digit SIC industry, across the two periods. To translate the industry fixed effects to the location-level

setup, we control for the lagged location-specific share of exposure to each industry.48 The magnitude

of the regression coefficient increases, to -0.432, with an exposure-robust standard error of 0.205.
47In principle, China could have affected the path of the U.S. manufacturing sector as a whole, and thus the variation

in the average China shock across periods may be informative about the effects of interest. However, because of the
multiplicity of shocks that may affect the manufacturing sector as a whole in a given period, this variation cannot
be viewed as a quasi-experimental source of variation for the impact of trade with China on employment and other
outcomes. This is why industry-level studies of the China shock use period fixed effects, possibly reducing power but
substantially improving robustness of the estimates. In the ADH application the estimation power is not actually
reduced, as the Table 4 column 3 standard error is even slightly smaller than that in the previous columns.

48If the shares used to construct the instrument were time-invariant, a more conventional and intuitive way to exploit
over-time variation in the shocks would be by including the regional fixed effects in the regression, as Section 4.1
explained. In the ADH setting where the shares vary over time, they need to be controlled for directly.

34



Broadly, these results demonstrate the stability of the SSIV regression coefficient under alternative

sets of controls, corresponding to different assumptions of conditional quasi-random shock assignment.

The appendix reports estimates from additional specifications. Appendix Table C4 includes addi-

tional controls corresponding to other specifications of Acemoglu et al. (2016), Table 3: for example,

controlling for observed changes in employment in the pre-periods or combining multiple sets of con-

trols. The regression coefficients remain stable across all specifications. Appendix Table C5 instead

shows robustness of the coefficients to using overidentified SSIV procedures (leveraging variation in

eight country-specific Chinese import growth, instead of the ADH total), illustrating the theoretical

results of Section 4.4. The table also reports a p-value for the shock-level overidentification test of

0.142, providing further support to the identification assumptions.

6.2.5 Discussion

Taken together, the sensitivity, falsification, and overidentification exercises suggest that the ADH

approach can be reasonably viewed as leveraging exogenous shock variation via our framework. This

is notably in contrast to the analysis of Goldsmith-Pinkham et al. (2020), who find the ADH exposure

shares to be implausible instruments via different balance and overidentification tests. This contrast

should perhaps come as no surprise. As mentioned, the exogeneity of industry employment shares is

an ex ante implausible research design, because it is invalidated by any unobserved labor demand or

supply shocks across industries (which we view as an inherent feature of the economy).

In contrast, our approach relies on the exogeneity of the specific ADH trade shocks, allowing for

endogenous exposure shares. With this view, the potential confounders are a more specific set of

unobserved industry shocks (namely, unobserved shocks that would correlate with the ADH shocks),

rather than any unobserved shocks. In principle, the conditions for shock orthogonality could still fail

because of these specific unobserved shocks. In practice, our balance tests indicate that there is little

evidence to suggest that the ADH shocks are confounded.

Our ADH application therefore illustrates two points. First, the assumptions of our framework

are plausible, both ex ante and ex post, in an influential empirical setting, where an alternative SSIV

framework is inapplicable. Second, our framework helps researchers translate shock-level identify-

ing assumptions to appropriate SSIV regression controls, falsify those assumptions with appropriate

balance tests, and perform correct inference.

7 Conclusion

Shift-share instruments combine a common set of observed shocks with variation in shock exposure.

In this paper, we provide a quasi-experimental framework for the validity of such instruments based

on identifying variation in the shocks, allowing the exposure shares to be endogenous. Our framework
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revolves around novel equivalence results: the orthogonality between a shift-share instrument and an

unobserved residual can be represented as the orthogonality between the underlying shocks and a

shock-level unobservable, and SSIV regression coefficients can be obtained from a transformed shock-

level regression with shocks directly used as an instrument. Shift-share instruments are therefore valid

when shocks are idiosyncratic with respect to an exposure-weighted average of the unobserved factors

determining the outcome variable, and yield consistent IV estimates when the number of shocks is

large and they are sufficiently dispersed in terms of their average exposure.

Through various extensions and illustrations, we show how our quasi-experimental SSIV framework

can guide empirical work in practice. By controlling for exposure-weighted averages of shock-level

confounders, researchers can isolate more plausibly exogenous variation in shocks, such as over time

or within narrow industry groups. By estimating SSIV coefficients, placebo regressions, and first stage

F -statistics at the level of shocks, researchers can conveniently perform exposure-robust inference

that accounts for the inherent non-standard clustering of observations with common shock exposure.

Our shock-level analysis also raises new concerns: SSIV designs with few or insufficiently dispersed

shocks may have effectively small samples, despite there being many underlying observations, and

instruments constructed from exposure shares that do not add up to a constant require appropriate

controls in order to isolate quasi-random shock variation. We illustrate these practical implications

in an application to the influential study of Autor et al. (2013).

In sum, our analysis formalizes the claim that SSIV identification and consistency may arise from

the exogeneity of shocks, while providing new guidance for SSIV estimation and inference that may

be applied across a number of economic fields, including international trade, labor economics, urban

economics, macroeconomics, and public finance. Our shock-level assumptions connect SSIV in these

settings to conventional shock-level IV estimation, bringing shift-share instruments to more familiar

econometric territory and facilitating the assessment of SSIV credibility in practice.
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Figures and Tables

Table 1: Shock Summary Statistics in the Autor et al. (2013) Setting

(1) (2) (3)

Mean 1.79 7.37 0

Standard deviation 10.79 20.92 20.44

Interquartile range 0 6.61 6.11

Specification

Excluding service industries � �

Residualizing on period FE �

Effective sample size (1/HHI of snt weights)

Across industries and periods 3.5 191.6 191.6

Across SIC3 groups 1.7 58.4 58.4

Largest snt weight

Across industries and periods 0.398 0.035 0.035

Across SIC3 groups 0.757 0.066 0.066

Observation counts

# of industry-period shocks 796 794 794

# of industries 398 397 397

# of SIC3 groups 137 136 136

Notes: This table summarizes the distribution of China import shocks gnt across industries n and periods t in the
Autor et al. (2013) application. Shocks are measured as the total flow of imports from China in eight developed
economics outside of the United States. All statistics are weighted by the average industry exposure shares snt; shares
are measured from lagged manufacturing employment, as described in Section 6.2.1. Column 1 includes the non-
manufacturing industry aggregate in each period with a shock of 0, while columns 2 and 3 restrict the sample to
manufacturing industries. Column 3 residualizes manufacturing shocks on period indicators. We report the effective
sample size (the inverse renormalized Herfindahl index of the snt weights, as described in Section 6.2.2) with and
without the non-manufacturing industry, at the industry-by-period level and at the level of SIC3 groups (aggregated
across periods), along with the largest snt.
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Table 2: Shock Intra-Class Correlations in the Autor et al. (2013) Setting

Estimate SE

(1) (2)

Shock ICCs

10 sectors 0.016 (0.022)

SIC2 0.047 (0.052)

SIC3 0.073 (0.057)

Industry 0.169 (0.047)

Period means

1990s 4.65 (1.38)

2000s 16.87 (3.34)

# of industry-periods 794

Notes: This table reports intra-class correlation coefficients for the Autor et al. (2013) manufacturing shocks, estimated
from the hierarchical model described in Section 6.2.2. Estimates come from a maximum likelihood procedure with
an exchangeable covariance structure for each industry and sector random effect and with period fixed effects. Robust
standard errors are reported in parentheses.
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Table 3: Shock Balance Tests in the Autor et al. (2013) Setting

Panel A: Industry-Level Balance

Balance variable Coef. SE

Production workers’ share of employment, 1991 -0.011 (0.012)

Ratio of capital to value-added, 1991 -0.007 (0.019)

Log real wage (2007 USD), 1991 -0.005 (0.022)

Computer investment as share of total, 1990 0.750 (0.465)

High-tech equipment as share of total investment, 1990 0.532 (0.296)

# of industry-periods 794

Panel B: Regional Balance

Balance variable Coef. SE

Start-of-period % of college-educated population 0.915 (1.196)

Start-of-period % of foreign-born population 2.920 (0.952)

Start-of-period % of employment among women -0.159 (0.521)

Start-of-period % of employment in routine occupations -0.302 (0.272)

Start-of-period average offshorability index of occupations 0.087 (0.075)

Manufacturing employment growth, 1970s 0.543 (0.227)

Manufacturing employment growth, 1980s 0.055 (0.187)

# of region-periods 1,444

Notes: Panel A of this table reports coefficients from regressions of the industry-level covariates in Acemoglu et al. (2016)
on the Autor et al. (2013) shocks, controlling for period indicators and weighting by average industry exposure shares.
Standard errors are reported in parentheses and allow for clustering at the level of three-digit SIC codes. Panel B
reports coefficients from regressions of commuting zone-level covariates and pre-trends from Autor et al. (2013) on
the shift-share instrument, controlling for period indicators interacted with the lagged manufacturing share. Balance
variables (the first five rows of this panel) vary across the two periods, while pre-trends (the last two rows) do not.
SIC3-clustered exposure-robust standard errors are reported in parentheses and obtained from equivalent industry-level
IV regressions as described in Section 6.2.3. Independent variables in both panels are normalized to have a variance of
one in the sample.
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Table 4: Shift-Share IV Estimates of the Effect of Chinese Imports on Manufacturing Employment

(1) (2) (3) (4) (5) (6) (7)

Coefficient -0.596 -0.489 -0.267 -0.314 -0.310 -0.290 -0.432

(0.114) (0.100) (0.099) (0.107) (0.134) (0.129) (0.205)

Regional controls

Autor et al. (2013) controls � � � � � �

Start-of-period mfg. share �

Lagged mfg. share � � � � � �

Period-specific lagged mfg. share � � � � �

Lagged 10-sector shares � �

Local Acemoglu et al. (2016) controls �

Lagged industry shares �

SSIV first stage F -stat. 185.6 166.7 123.6 272.4 64.6 63.3 27.6

# of region-periods 1,444 1,444 1,444 1,444 1,444 1,444 1,444

# of industry-periods 796 794 794 794 794 794 794

Notes: This table reports shift-share IV coefficients from regressions of regional manufacturing employment growth
in the U.S. on the growth of import competition from China, instrumented with predicted China import growth as
described in Section 6.2.1. Column 1 replicates column 6 of Table 3 in Autor et al. (2013) by controlling for period fixed
effects, Census division fixed effects, start-of-period conditions (% college educated, % foreign-born, % employment
among women, % employment in routine occupations, and the average offshorability index), and the start-of-period
manufacturing share. Column 2 replaces the start-of-period manufacturing shares control with the lagged manufacturing
shares underlying the instrument, while column 3 interacts this control with period indicators. Column 4 removes the
Census division fixed effects and start-of-period covariates. Columns 5–7 instead add exposure-weighted sums of industry
controls from Acemoglu et al. (2016): indicators of 10 industry sectors (column 5), production controls (column 6), and
indicators of 397 industries (column 7). Production controls are: employment share of production workers, ratio of
capital to value-added, log real wage (all measured in 1991); and computer investment as share of total and high-
tech equipment as share of total employment (both measured in 1990). Exposure-robust standard errors (reported in
parentheses) and first-stage F -statistics are obtained from equivalent industry-level IV regressions, as described in the
text, allowing for clustering of shocks at the level of three-digit SIC codes. For commuting zone controls which have
a shift-share structure (all controls starting with the lagged manufacturing share), we include the corresponding qnt

controls in the industry-level IV regression. The sample in columns 2–7 includes 722 locations (commuting zones) and
397 industries, each observed in two periods; the estimate in column 1 implicitly includes an additional two observations
for the non-manufacturing industry with a shock of zero in each period.
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A Appendix Results

A.1 Heterogeneous Treatment Effects

In this appendix we consider what a linear SSIV identifies when the structural relationship between y`

and x` is nonlinear. We show that under a first-stage monotonicity condition the large-sample SSIV

coefficient estimates a convexly weighted average of heterogeneous treatment effects. This holds even

when the instrument has different effects on the outcome depending on the underlying realization

of shocks, for example when y` =
∑
n s`nβ̃`nx`n + ε` with β̃`n capturing the effects of (possibly

unobserved) observation- and shock-specific treatments x`n making up the observed x` =
∑
n s`nx`n.

Consider a general structural outcome model of

y` = y(x`1, . . . , x`R, ε`), (15)

where the R treatments are given by x`r = xr(g, η`r) with g collecting the vector of shocks gn and with

η` = (η`1, . . . , η`R) capturing first-stage heterogeneity. We consider an IV regression of y` on some

aggregated treatment x` =
∑
r α`rx`r with α`r ≥ 0. Note that this nests the case of a single aggregate

treatment (R = 1 and α`1 = 1) with arbitrary effect heterogeneity, as well as the special case above

(R = N and α`r = s`n). We abstract away from controls w` and assume each shock is as-good-as-

randomly assigned (mean-zero and mutually independent) conditional on the vector of second-stage

unobservables ε` and the matrices of first-stage unobservables η`r, exposure shares s`n, importance

weights e`, and aggregation weights α`r, collected in I = {ε`, e`, {η`r, α`r}r , {s`n}n}`. This assump-

tion is stronger than Assumption 3 but generally necessary in a non-linear setting while still allowing for

the endogeneity of exposure shares. For further notational simplicity we assume that y(·, ε`) and each

xr(·, η`r) are almost surely continuously differentiable, such that β`r(·) = ∂
∂xr

y(·, ε`) captures the ef-

fect, for observation `, of marginally increasing treatment r on the outcome and π`nr(·) = ∂
∂gn

xr(·, η`r)

captures the effect of marginally increasing the nth shock on the rth treatment at `.

Under an appropriate law of large numbers, the shift-share IV estimator approximates the IV

estimand:

β̂ =
E [
∑
` e`z`y`]

E [
∑
` e`z`x`]

+ op(1) =

∑
`

∑
n E [s`ne`gny`]∑

`

∑
n

∑
r E [s`ne`gnα`rx`r]

+ op(1). (16)

Given this, we have the following result:

Proposition A1 When π`nr([ğ; g−n]) ≥ 0 almost surely for all ğ ∈ R, equation (16) can be written

β̂ =

∑
`

∑
n

∑
r E
[∫∞
−∞ β̃`nr(ğ)ω`nr(ğ)

]
dγ∑

`

∑
n

∑
r E
[∫∞
−∞ω`nr(ğ)

]
dγ

+ op(1), (17)
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where ω`nr(ğ) ≥ 0 almost surely and

β̃`nr(ğ) =
β`r(x1([ğ; g−n], η`1), . . . xR([ğ; g−n], η`R))

α`r
(18)

is a rescaled treatment effect, evaluated at (x1([ğ; g−n], η`1), . . . xR([ğ; g−n], η`R) for [ğ; g−n] =

(g1, . . . , gn−1, ğ, gn+1, . . . gN )′.

Proof See Appendix B.3.

This shows that in large samples β̂ estimates a convex average of rescaled treatment effects, β̃`nr(ğ),

when the first stage is monotone in each shock. Appendix B.3 shows that the weights ω`nr(ğ) are pro-

portional to the first-stage effects π`nr([ğ; g−n]), exposure shares s`n, regression weights e`, treatment

aggregation weights α`r, and a function of the shock distribution. In the case without aggregation, i.e.

R = α`r = 1, there is no rescaling in the β̃`nr(ğ). Equation (17) then can be seen as generalizing the

result of Angrist et al. (2000), on the identification of heterogeneous effects of continuous treatments,

to the continuous shift-share instrument case. Intuition for the ω`nr(ğ) weights follows similarly from

this connection. With aggregation—that is, when the realization of shocks may have heterogeneous

effects on y` holding the aggregated x` fixed—equation (17) shows that SSIV captures a convex aver-

age of treatment effects per aggregated unit. Thus in the leading example of y` =
∑
n s`nβ̃`nx`n + ε`

and x` =
∑
n s`nx`n, this result establishes identification of a convex average of the β̃`n. In this way

the result generalizes Adão et al. (2019), who establish the identification of convex averages of rescaled

treatment effects in reduced form shift-share regressions.

A.2 Comparing SSIV and Native Shock-Level Regression Estimands

In this appendix we illustrate economic differences between the estimands of two regressions that

researchers may consider: SSIV using outcome and treatment observations y` and x` (which we show

in Proposition 1 are equivalent to certain shock-level IV regressions), and more conventional shock-level

IV regressions using “native” yn and xn. These outcomes and treatments capture the same economic

concepts as the original y` and x`, in contrast to the constructed ȳn and x̄n discussed in Section 2.3.

In line with the labor supply and other key SSIV examples, we will for concreteness refer to the ` and

n as indexing regions and industries, respectively. We consider the case where both the outcome and

treatment can be naturally defined at the level of region-by-industry cells (henceforth, cells)—y`n and

x`n, respectively—and thus suitable for aggregation across either dimension with some weights E`n

(e.g., cell employment growth rates aggregated with lagged cell employment weights): y` =
∑
n s`ny`n

for s`n = E`n∑
n′ E`n′

and yn =
∑
` ω`ny`n for ω`n = E`n∑

`′ E`′n
, with analogous expressions for x` and xn.

We further define E` =
∑
nE`n and En =

∑
`E`n.

49

49This formulation nests reduced-form shift-share regressions when x`n = gn for each `. The labor supply example
of Section 2.1 fits only partially in this formal setup because the industry or regional wage growth yn is not equal to a
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We consider the estimands of two regression specifications: β from the regional level model (2),

instrumented by z` and weighted by e` = E`/E for E =
∑
`E`, and βind from a simpler industry-level

IV regression of

yn = βindxn + εn, (19)

instrumented by the industry shock gn and weighted by sn = En/E. For simplicity we do not include

any controls in either specification and implicitly condition on {E`n}`,n (and some other variables as

described below), viewing them as non-stochastic.50

We show that β and βind generally differ when there are within-region spillover effects or when

treatment effects are heterogeneous. We study these cases in turn, maintaining several assumptions:

(i) a first stage relationship analogous to the one considered in Section 3.1:

x`n = π`ngn + η`n, (20)

for non-stochastic π`n ≥ π̄ > 0, (ii) a stronger version of our Assumption 1 that imposes E [gn] =

E [gnε`n′ ] = E [gnη`n′ ] = 0 for all `, n, and n′, with ε`n′ denoting the unobserved cell-level residual of

each model, (iii) the assumption that gn is uncorrelated with gn′ for all n and n′, and (iv) that all

appropriate laws of large numbers hold.

Within-Region Spillover Effects Suppose the structural model at the cell level is given by

y`n = β0x`n − β1

∑
n′

s`n′x`n′ + ε`n. (21)

Here β0 captures the direct effect of the shock on the cell outcome, and β1 captures a within-region

spillover effect. The local employment effects of industry demand shocks from the model in Appendix

A.10 fit in this framework, see equation (49).51 The following proposition shows that the SSIV

estimand β captures the effect of treatment net of spillovers (i.e. β0− β1), whereas βind subtracts the

spillover only partially; this is intuitive since the spillover effect is fully contained within regions but

not within industries.

Proposition A2 Suppose equation (21) holds and the average local concentration index HL =∑
`,n e`s

2
`n is bounded from below by a constant H̄L > 0. Further assume π`n = π̄

and Var [gn] = σ2
g for all ` and n. Then the SSIV estimator satisfies

β̂ = β0 − β1 + op(1) (22)

weighted average of wage growth across cells: reallocation of employment affects the average wage growth even in the
absence of wage changes in any given cell.

50Note that we thereby condition on the shares s`n and importance weights e`. Yet we still allow for share endogeneity
by not restricting E [ε`n] to be zero.

51In the labor supply example from the main text y`n is the cell wage, which is equalized within the region, and x`n
is cell employment. Equation (21) therefore holds for β0 = 0 and −β1 being the inverse labor supply elasticity.
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while the native industry-level IV estimator satisfies

β̂ind = β0 − β1HL + op(1), (23)

If β1 6= 0 (i.e. in presence of within-region spillovers), β̂ and β̂ind asymptotically coin-

cide if and only if HL
p→ 1, which corresponds to the case where the average region is

asymptotically concentrated in one industry.

Proof See Appendix B.4.

Treatment Effect Heterogeneity Now consider a different structural model which allows for

heterogeneity in treatment effects:

y`n = β`nx`n + ε`n. (24)

We also allow the first-stage coefficients π`n and shock variance σ2
n to vary. The following proposition

shows that β and βind differ in how they average effect β`n (here treated as non-stochastic) across

the (`, n) cells. The weights corresponding to the SSIV estimand β are relatively higher for cells that

represent a larger fraction of the regional economy. This follows because in the regional regression

s`n determines the cell’s weight in both the outcome and the shift-share instrument, while in the

industry regression only the former argument applies. Heterogeneity in the π`n and σ2
n, in contrast,

has equivalent effects on the weighting scheme of both estimands.

Proposition A3 In the casual model (24),

β̂ =

∑
`,nE`ns`nπ`nσ

2
n · β`n∑

`,nE`ns`nπ`nσ
2
n

+ op(1) (25)

and

β̂ind =

∑
`,nE`nπ`nσ

2
n · β`n∑

`,nE`nπ`nσ
2
n

+ op(1), (26)

Proof See Appendix B.5.

A.3 Unobserved n-level Shocks Violate Share Exogeneity

In this appendix, we show that the assumption of SSIV share exogeneity from Goldsmith-Pinkham

et al. (2020) is violated when there are unobserved shocks νn that affect outcomes via the exposure

shares s`n, i.e. when the residual has the structure

ε` =
∑
n

s`nνn + ε̌`. (27)
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We consider large-sample violations share exogeneity in terms of the asymptotic non-ignorability of the

ε̄n terms in the equivalent moment condition (5). It is intuitive that the cross-sectional dependence

between s`n and ε` will not asymptotically vanish when N is fixed (as in Goldsmith-Pinkham et

al. (2020)) and each νn shock contributes significantly to the residual, causing ε̄n 6
p−→ 0 for some or

all n. We next prove this result and show that it generalizes to the case of increasing N , where

the contribution of each νn to the variation in ε` becomes small. The intuition here is that the SSIV

relevance condition generally requires individual observations to be sufficiently concentrated in a small

number of shocks (see Section 3.1), and under this condition the share exogeneity violations remain

asymptotically non-ignorable even as N →∞.

We define share endogeneity as non-vanishing Var [ε̄n] at least for some n. This will tend to make

the SSIV estimator inconsistent, unless shocks are as-good-as-randomly assigned (Assumption 1), even

if the importance weights of individual shocks, sn, converge to zero (Assumption 2). Here we treat e`

and s`n as non-stochastic to show this result with simple notation.

Proposition A4 Suppose condition (27) holds with the νn mean-zero and uncorrelated with the

ε̌` and with each other, and with Var [νn] = σ2
n ≥ σ2

ν for a fixed σ2
ν > 0. Also assume

HL =
∑
` e`
∑
n s

2
`n → H̄ > 0 such that first-stage relevance can be satisfied. Then there

exists a constant δ > 0 such that maxn Var [ε̄n] > δ for sufficiently large L.

Proof See Appendix B.6.

A.4 Connection to Rotemberg Weights

In this appendix we rewrite the decomposition of the SSIV coefficient β̂ from Goldsmith-Pinkham

et al. (2020) that gives rise to their “Rotemberg weight” interpretation, and show that these weights

measure the leverage of shocks in our equivalent shock-level IV regression. We then show that, in

our framework, skewed Rotemberg weights do not measure sensitivity to misspecification (of share

exogeneity) and do not pose a problem for SSIV consistency. We finally discuss the implications of

high-leverage observations for SSIV inference.

Proposition 1 implies the following decomposition:

β̂ =

∑
n sngnȳ

⊥
n∑

n sngnx̄
⊥
n

=
∑
n

αnβ̂n, (28)

where

β̂n =
ȳ⊥n
x̄⊥n

=

∑
` e`s`ny

⊥
`∑

` e`s`nx
⊥
`

(29)

and

αn =
sngnx̄

⊥
n∑

n′ sn′gn′ x̄⊥n′
. (30)
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This is a shock-level version of the decomposition discussed in Goldsmith-Pinkham et al. (2020): β̂n is

the IV estimate of β that uses share s`n as the instrument, and αn is the so-called Rotemberg weight.

To see the connection with leverage (defined, typically in the context of OLS, as the derivative of

each observation’s fitted value with respect to its outcome) in our equivalent IV regression, note that

∂
(
x̄⊥n β̂

)
∂ȳ⊥n

= x̄⊥n
sngn∑

n′ sn′gn′ x̄⊥n′
= αn. (31)

In this way, αn measures the sensitivity of β̂ to β̂n.

In the preferred interpretation of Goldsmith-Pinkham et al. (2020), exposure to each shock is a

valid instrument such that β̂n
p→ β for each n. However, in our framework deviations of β̂n from

β reflect nonzero ε̄n in large samples, and such share endogeneity is not ruled out; thus αn does

not have the same sensitivity-to-misspecification interpretation. Moreover, a high leverage of certain

shocks (“skewed Rotemberg weights,” in the language of Goldsmith-Pinkham et al. (2020)) is not a

problem for consistency in our framework, provided it results from a heavy-tailed and high-variance

distribution of shocks (that still satisfies our regularity conditions, such as finite shock variance), and

each sn is small as required by Assumption 2.

Nevertheless, skewed αn may cause issues with SSIV inference, as would high leverage observations

in any regression. In general, the estimated residuals ˆ̄ε⊥n of high-leverage observations will tend to be

biased toward zero, which may lead to underestimation of the residual variance and too small standard

errors (e.g., Cameron and Miller 2015). This issue can be addressed, for instance, by computing

confidence intervals with the null imposed, as Adão et al. (2019) recommend and as we discuss in

Section 5.1. In practice our Monte-Carlo simulations in Appendix A.12 find that the coverage of

conventional exposure-robust confidence intervals to be satisfactory even with Rotemberg weights as

skewed as those reported in the applications of Goldsmith-Pinkham et al. (2020) analysis.

A.5 Consistency of Control Coefficients

This appendix shows how the control coefficient γ, defined in footnote 5, can be consistently estimated

as required in Proposition 3 (Assumption B2). We discuss conditions for
∑
` e`w`ε`

p−→ E [
∑
` e`w`ε`],

where by definition E [
∑
` e`w`ε`] = 0. Consistency of the estimator γ̂ = γ+(

∑
` e`w`w

′
`)
−1
∑
` e`w`ε`

follows, provided the elements of (
∑
` e`w`w

′
`)
−1 are stochastically bounded (i.e., Op(1)). For simplic-

ity we consider control vectors w` of fixed length.

The argument for convergence of
∑
` e`w`ε` depends on the source of randomness in w` and ε`.

We consider two characteristic cases. In the first case, (e`, w
′
`, ε`)

′ can be viewed as iid or clustered

in a conventional way. For example, w` and ε` may contain observed and unobserved local labor

supply shocks which are uncorrelated across markets, clusters of markets (e.g. states), or beyond a

given distance threshold. In this case conventional laws of large numbers can be used to establish

50



∑
` e`w`ε`

p−→ 0. For instance if (e`, w
′
`, ε`)

′ is iid then
∑
` e`w`ε` gives a vector of sample averages

of mutually uncorrelated mean-zero random variables, which weakly converge to zero when the e`

weights are asymptotically dispersed (E
[∑

` e
2
`

]
→ 0) and when E

[
w2
` ε

2
` | e

]
is uniformly bounded.

In the second case, either w` or ε` has a shift-share structure like z`: i.e. w` =
∑
n s`nqn for an

observed qn (in line with our Proposition 3) or ε` =
∑
n s`nνn for an unobserved νn (capturing, for

example, a set of unobserved industry-level factors averaged with the employment weights s`n). In

this case convergence of
∑
` e`w`ε` can be shown to follow similarly to the convergence of the sample

analog of the instrument moment condition (3). If, for instance, ε` =
∑
n s`nνn with E [νn | s, w] = 0

and Cov [νn, νm | s, w] = 0 for w = {wn}n, then for each control
∑
` e`w`mε` =

∑
n snνnw̄nm weakly

converges when the sn weights are dispersed (E
[∑

n s
2
n

]
→ 0) and both Var [νn | s, w] and E

[
w̄2
nm | s

]
are uniformly bounded. This argument can be extended to the case where either w` or ε` is formed from

different exposure shares s̃`k, perhaps defined over a different range of K observed qk or unobserved

νk, and when the qk or νk are clustered or otherwise weakly mutually correlated.

More generally, the two cases can be combined to settings where w` =
∑
k s̃`kqk + w̌` and ε` =∑

k′ s̃`k′νk′ + ε̌` where (e`, w̌
′
`, ε̌`)

′ is iid or conventionally clustered and where qk and νk′ are many

weakly correlated random shocks or, even more generally, allowing for multiple shift-share terms with

different exposure shares.

A.6 SSIV Consistency in Short Panels

This appendix shows how alternative shock exogeneity assumptions imply the consistency of panel

SSIV regressions with many fixed effect coefficients. We consider the incidental parameters problem

in “short” panels, with fixed T and L → ∞ and with unit fixed effects, in which case the control

coefficient γ cannot be consistently estimated with the fixed effects included in w`. We show how an

analog of Assumption 3 can be instead applied to a demeaned shock-level unobservable that partials

out the fixed effect nuisance coefficients. A similar argument applies to period fixed effects in the fixed

L and T →∞ asymptotic.

Suppose for the linear causal model y`t = βx`t + ε`t and control vector w`t (which includes unit

FEs), we define γ = E
[∑

` e`tw
∆
`tw

∆′
`t

]−1 E
[∑

` e`tw
∆
`tε

∆
`t

]
where v∆

`t is a subvector of the (weighted)

unit-demeaned observation of variable v`t, v`t −
∑

t′ e`t′v`t′∑
t′ e`t′

, that drops any elements that are iden-

tically zero (e.g. those corresponding to the unit FEs in w`t). Note we have assumed no perfect

multicollinearity in the remaining elements such that E
[∑

` e`tw
∆
`tw

∆′
`t

]
is invertible. We can then

write y∆
`t = βx∆

`t + w∆′
`t γ + ε∆

`t. Suppose also that
∑
` e`tz`tx

⊥
`t

p−→ π for some π 6= 0 and the analog

of Assumption B2 for unit-demeaned controls holds. Then, following the proof to Proposition 3, β̂ is
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consistent if and only if

∑
n,t

sntgntε̄
∆
nt

p−→ 0, (32)

where snt =
∑
` e`ts`nt and ε̄

∆
nt =

∑
` e`ts`ntε

∆
`t∑

` e`ts`nt
. This condition is satisfied when analogs of Assumptions

1,2, and B1 hold, or under the various extensions discussed in Section 3. In particular when w`t con-

tains t-specific FE the key assumption of quasi-experimental shock assignment is E
[
gnt | ε̄∆, s

]
= µt,

for all n and t, allowing endogenous period-specific shock means µt via Proposition 4. This assumption

avoids the incidental parameters problem by considering shocks as-good-as-randomly assigned given

the set of unobserved ε̄∆
nt, each of which is a function of the time-varying ε`p across all periods p.

An intuitive special case is when the exposure shares and importance weights are time-invariant:

s`nt = s`n0 and e`t = e`0. Then the weights in (32) are also time-invariant, snt = sn0, and

ε̄∆
nt =

∑
` e`0s`n0ε

∆
`t∑

` e`s`n0

=

∑
` e`0s`n0

(
ε`t − 1

T

∑
t′ ε`t′

)∑
` e`0s`n0

= ε̄nt −
1

T

∑
t′

ε̄nt′ , (33)

where ε̄nt =
∑

` e`0s`n0ε`t∑
` e`0s`n0

is an aggregate of period-specific unobservables ε`t. It is then straightfor-

ward to extend Propositions 3 and 4 under a shock-level assumption of strong exogeneity, i.e. that

E [gnt | ε̄, s] = µn + τt for all n and t. Here endogenous n-specific shock means are permitted by the

observation in Section 4.1, that share-weighted n-specific FEs at the shock level are subsumed by

`-specific FEs in the SSIV regression when shares and weights are time-invariant.

A.7 Sequential Exogeneity in Long Panels

This appendix shows how the strict exogeneity condition of Assumption 3 can be relaxed to a sequential

exogeneity assumption in long panels (with T → ∞ and L fixed). In contrast to Appendix A.6 we

assume the unit FEs can be consistently estimated and included in γ.52

To see this extension simply, we consider a scenario where qn = 1 (such that Assumption 3 coincides

with Assumption 1) and µ = 0. Rather than imposing E [gnt | ε̄, s] = 0, we make a weaker assumption

E [gnt | Int] = 0 for Int =
{
{ε̄nt′ , snt′}t′≥t , {ε̄n′t′ , sn′t′}n′ 6=t,t′

}
. This assumption captures the pos-

sibility of a sequential shock generating process in which draws of gnt do not on average depend on

present or future realizations of the unit’s unobservables, or the realizations of unobservables at other
52Arguments similar to those in Appendix A.5 imply consistency of the fixed effects. Some sequences with both L

and T growing can also be accommodated as long as the fixed effects are estimated sufficiently precisely, such that
Assumption B2 holds.
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units, but may depend on past realizations ε̄nt′ for t′ < t. Similarly, we suppose Cov [gnt, gnt′ | Int] = 0

for t′ ≥ t and Cov [gnt, gn′t′ | Int] = 0 for n′ 6= n and all t′. Following the proof to Proposition 3, we

continue to have E
[∑

n,t sntgntεnt

]
= 0. Furthermore,

Var

[∑
n,t

sntgntεnt

]
=E

(∑
n,t

sntgntεnt

)2


=
∑
n,t

∑
n′,t′

E [sntsn′t′gntgn′t′ ε̄ntε̄n′t′ ]

=
∑
n,t

E
[
s2
ntg

2
ntε̄

2
nt

]
+
∑
n,t

∑
t′<t

E [sntsnt′gntgnt′ ε̄ntε̄nt′ ]

+
∑
n,t

∑
t′≥t

E [sntsnt′E [gntgnt′ | Int] ε̄ntε̄nt′ ]

+
∑
n,t

∑
n′ 6=n,t′

E [sntsn′t′E [gntgn′t′ | Int] ε̄ntε̄n′t′ ]

=
∑
n,t

E
[
s2
ntg

2
ntε̄

2
nt

]
+
∑
n,t

∑
t′<t

E [sntsnt′gntgnt′ ε̄ntε̄nt′ ] . (34)

The first term of this expression is o(1) when E
[∑

n,t s
2
nt

]
→ 0, as in Assumption 2, and when

E
[
g2
nt | ε̄nt, snt

]
and E

[
ε̄2
nt | snt

]
are uniformly bounded. The weak convergence of

∑
n,t sntgntεnt

thus depends on whether the second term of equation (34) is also o(1). One way this convergence

would hold is when N is fixed (with T →∞) and |E [gntgnt′ | ε̄, s]| ≤ f (t− t′) for all n and t′ < t given

a fixed function f(·) satisfying
∑∞
r=1 f(r) < ∞. This approach can be seen to extend Assumption 6

to relax strict exogeneity in the sense of E [gnt | ε̄, s] 6= 0. Another way this convergence would hold is

whenN →∞, units are sufficiently dispersed (E
[∑

n (
∑
t snt)

2
]
→ 0) and E [gntgnt′ | ε̄, s] is uniformly

bounded. This approach can be seen to similarly relax Assumption 1 by imposing Assumption 5, with

clusters given by the units observed over time.

A.8 SSIV Relevance with Panel Data

This appendix shows that holding the exposure shares fixed in a pre-period is likely to weaken the

SSIV first-stage in panel regressions. Consider a panel extension of the first stage model used in

Section 3.1, where x`t =
∑
n s`ntx`nt with x`nt = π`ntgnt+η`nt, π`n ≥ π̄ for some fixed π̄ > 0, and the

gnt are mutually independent and mean-zero with variance σ2
nt ≥ σ̄2

g for fixed σ2
g > 0, independently

of {η`nt}`,n,t. As in other appendices, we here treat s`nt, e`t, and π`nt as non-stochastic. Then an

SSIV regression with z`t =
∑
n s
∗
`ntgnt as an instrument, where s∗`nt is either s`nt (updated shares) or

s`n0 (fixed shares), yields a first-stage of

E

[∑
`

∑
t

e`tz`tx`t

]
≥ σ̄2

g π̄
∑
`

∑
t

e`t
∑
n

s∗`nts`tn. (35)
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For panel SSIV relevance we require the e`t-weighted average of
∑
n s
∗
`nts`nt to not vanish asymptoti-

cally. With updated shares this is satisfied when the Herfindahl index of an average observation-period

(across shocks) is non-vanishing, while in the fixed shares case the overlap of shares in periods 0 and

t,
∑
n s`n0s`nt, may become weak or even vanish as T →∞, on average across observations.

A.9 Estimated Shocks

This appendix establishes the formal conditions for the SSIV estimator, with or without a leave-

one-out correction, to be consistent when shocks gn are noisy estimates of some latent g∗n satisfying

Assumptions 1 and 2. We also propose a heuristic measure that indicates whether the leave-one-out

correction is likely to be important and compute it for the Bartik (1991) setting. Straightforward

extensions to other split-sample estimators follow.

Suppose a researcher estimates shocks via a weighted average of variables g`n. That is, given

weights ω`n ≥ 0 such that
∑
` ω`n = 1 for all n, she computes

gn =
∑
`

ω`ng`n. (36)

A leave-one-out (LOO) version of the shock estimator is instead

gn,−` =

∑
`′ 6=` ω`′ng`′n∑
`′ 6=` ω`′n

. (37)

We assume that each g`n is a noisy version of the same latent shock g∗n:

g`n = g∗n + ψ`n, (38)

where g∗n satisfies Assumptions 1 and 2 and ψ`n is estimation error (in Section 4.3 we considered

the special case of ψ`n ∝ ε`). This implies a feasible shift-share instrument of z` = z∗` + ψ`

and its LOO version zLOO` = z∗` + ψLOO` , where z∗` =
∑
n s`ng

∗
n, ψ` =

∑
n s`n

∑
`′ ω`′nψ`′n, and

ψLOO` =
∑
n s`n

∑
`′ 6=` ω`′nψ`′n∑

`′ 6=` ω`′n
. Consistency with these instruments, given a first stage, requires that∑

` e`ε`ψ`
p→ 0 and

∑
` e`ε`ψ

LOO
`

p→ 0 respectively.

We now present three sets of results. First, we establish a simple sufficient condition under which

the LOO instrument satisfies
∑
` e`ε`ψ

LOO
`

p→ 0. We also propose stronger conditions that guarantee

consistency of LOO-SSIV. Second, we explore the conditions under which the covariance between ε`

and ψ`n is ignorable, i.e. asymptotically does not lead to a “mechanical” bias of the conventional

non-leave-one-out estimator. We propose a heuristic measure that is large when the bias is likely to

be small. Lastly, we apply these ideas to the setting of Bartik (1991) using the data from Goldsmith-

Pinkham et al. (2020). In line with previous appendices, we condition on s`n, ω`n, and e` and treat
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them as non-stochastic for notational convenience. We also assume the SSIV regressions are estimated

without controls w`.

LOO Identification and Consistency The following proposition establishes three results. The

first is the most important one, providing the condition for orthogonality to hold . The second

strengthens this condition so that the estimator converges, which naturally requires that most shocks

are estimated with sufficient amount of data. A tractable case of complete specialization is considered

in last part, where there should be many more observations than shocks.

Proposition A5

1. If E [ε`ψ`′n] = 0 for all ` 6= `′ and n, then E [
∑
` e`ε`ψ`,LOO] = 0.

2. If E
[
(ε`, ψ`n) | {(ε`′ , ψ`′n′)}`′ 6=`,n′

]
= 0 for all ` and n, then the LOO estimator is consistent,

provided it has a first stage and two regularity conditions hold: E
[∣∣ε`1ε`2ψ`′1n1

ψ`′2n2

∣∣] ≤ B for

a constant B and all (`1, `2, `
′
1, `
′
2, n1, n2) and

∑
(`1,`2,`′1,`

′
2)∈J ,

n1,n2

e`1e`2s`1n1
s`2n2

ω`′1n1∑
`6=`1 ω`n1

ω`′2n2∑
`6=`2 ω`n2

→ 0, (39)

with J denoting the set of tuples (`1, `2, `
′
1, `
′
2) for which one of the two conditions hold: (i)

`1 = `2 and `′1 = `′2 6= `1, (ii) `1 = `′2 and `2 = `′1 6= `1.

3. Condition (39) is satisfied if N
L → 0 in the special case where each region is specialized in

one industry, i.e. s`n = 1 [n = n(`)] for some n(·), there are no importance weights (e` = 1
L ),

and shocks estimated by simple LOO averaging among observations exposed to a given shock

(ω`n = 1
Ln

for Ln =
∑
` 1 [n(`) = n]), assuming further that Ln ≥ 2 for each n so that the LOO

estimator is well-defined.

Proof See Appendix B.7.

The condition in the first part of Proposition A5 would be quite innocuous in random samples of ` –

the environment in which leave-one-out adjustments are often considered (e.g. Angrist et al. (1999))

– but is strong without random sampling. It requires ε` and ψ`′n to be uncorrelated for `′ 6= `,

which may easily be violated when both ` and `′ are exposed to the same shocks—a situation in which

excluding own observation is not sufficient. Moreover, since we have conditioned on the exposure shares

throughout, E [ε`ψ`′n] = 0 generally requires either ε` or ψ`′n to have a zero conditional mean—the

share exogeneity assumption applied to either the residuals or the estimation error. At the same time,

this condition does not require E [ε`ψ`′n] = 0 for ` = `′, which reflects the benefit of LOO: eliminating

the mechanical bias from the residual directly entering shock estimates.
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Heuristic for Importance of LOO Correction We now return to the non-LOO SSIV estimator.

As in Proposition A5, we assume that E [ε`ψ`′n] = 0 for `′ 6= ` and all n, so the LOO estimator is

consistent under the additional regularity conditions. We also assume, without loss of generality, that

z` is mean-zero. Then the “mechanical bias” mentioned in Section 4.3 is the only potential problem:

under appropriate regularity conditions (similar to those in part 2 of Proposition A5),

β̂ − β =
E [
∑
` e`ε`ψ`]

E [
∑
` e`z`x`]

+ op(1)

=

∑
`,n e`s`nω`nE [ε`ψ`n]

E [
∑
` e`z`x`]

+ op(1). (40)

With |E [ε`ψ`n]| bounded by some B1 > 0 for all ` and n, the numerator of (40) is bounded by HNB1,

for an observable composite of the relevant shares HN =
∑
`,n e`s`nω`n. The structure of the shares

also influences the strength of the first stage in the denominator. Imposing our standard model of

the first stage from Section 3.1 (but specified based on the latent shock g∗n), i.e. x` =
∑
n s`nx`n for

x`n = π`ng
∗
n + η`n, η`n mean-zero and uncorrelated with g∗n′ for all `, n, n′, Var [g∗n] ≥ σ̄2

g > 0 and

π`n ≥ π̄ > 0, yields:

E

[∑
`

e`z`x`

]
=
∑
`

e`E

[(∑
n

s`n (g∗n + ψ`n)

)(∑
n′

s`n′ (π`ng
∗
n′ + η`n′)

)]

=
∑
`,n

e`s
2
`n · π`nVar [g∗n] +

∑
`

e`
∑
n,n′

s`ns`n′E [ψ`n (π`ng
∗
n′ + η`n′)] . (41)

Excepting knife-edge cases where the two terms in (41) cancel out, E
[∑

` e`z
⊥
` x`

]
6→ 0 provided

HL =
∑
`,n e`s

2
`n ≥ H̄ for some fixed H̄ > 0.

We thus define the following heuristic:

H =
HL

HN
=

∑
`,n e`s

2
`n∑

`,n e`s`nω`n
. (42)

When H is large, we expect the non-LOO SSIV estimator to be relatively insensitive to the mechanical

bias generated by the average covariance between ψ`n and ε`, and thus similar to the LOO estimator.

We note an important special case. Suppose all weights are derived from variable E`n (e.g. lagged

employment level in region ` and industry n) as s`n = E`n

E`
, ω`n = E`n

En
, and e` = E`

E , for E` =
∑
nE`n,

En =
∑
`E`n, and E =

∑
`E`. Then

HN =
∑
`,n

E`
E

E`n
E`

E`n
En

=
∑
`,n

En
E

(
E`n
En

)2

=
∑
n

sn
∑
`

ω2
`n, (43)

where sn = En

E is the weight in our equivalent shock-level regression. Therefore, HN is the weighted

average across n of n-specific Herfindahl concentration indices, while HL is the weighted average
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across ` of `-specific Herfindahl indices. With E`n denoting lagged employment, H is high (and thus

we expect the LOO correction to be unnecessary) when employment is much more concentrated across

industries in a typical region than it is concentrated across regions for a typical industry.

The formula simplifies further with E`n = 1 [n = n(`)] for all `, n, corresponding to the case of

complete specialization of observations in shocks with no regression or shock estimation weights, as

in part 3 of Proposition A5. In that case,

H =
1∑

`
1
L

1
Ln(`)

=
1

1
L

∑
n

∑
` : n(`)=n

1
Ln

=
L

N
. (44)

Our heuristic is therefore large when there are many observations per estimated shock.53

Application to Bartik (1991) We finally apply our insights to the Bartik (1991) setting, using the

Goldsmith-Pinkham et al. (2020) replication code and data. Table C6 reports the results. Column

1 shows the estimates of the inverse local labor supply elasticity using SSIV estimators with and

without the LOO correction and using population weights, replicating Table 3, column 2, of Goldsmith-

Pinkham et al. (2020) except with employment on the left-hand side and wages on the right-hand

side.54 Column 2 repeats the analysis without the population weights.55 We find all estimates to

range between 1.2 and 1.3, showing that in practice for Bartik (1991) the LOO correction does not

play a substantial role.

This is however especially true without weights, where the LOO and conventional SSIV estimators

are 1.30 and 1.29, respectively. Our heuristic provides an explanation: H is almost 8 times bigger

when computed without weights. The intuition is that large commuting zones, such as Los Angeles

and New York, may constitute a substantial fraction of employment in industries of their comparative

advantage. This generates a potential for the mechanical bias: labor supply shocks in those regions

affect shock estimates; this bias is avoided by LOO estimators. However, the role of the largest

commuting zones is only significant in weighted regressions (by employment or, as in Goldsmith-

Pinkham et al. (2020), population).

A.10 Equilibrium Industry Growth in a Model of Local Labor Markets

This appendix develops a simple model of regional labor supply and demand, similar to the model in

Adão et al. (2020). Our goal is to show how the national growth rate of industry employment can

be viewed as a noisy version of the national industry-specific labor demand shocks, and how regional

labor supply shocks (along with some other terms) generate the “estimation error.”
53Here 1/H = N/L is proportional to the “bias” of the non-LOO estimator, which is similar to how the finite-sample

bias of conventional 2SLS is proportional to the number of instruments over the sample size (Nagar 1959).
54Goldsmith-Pinkham et al. (2020) estimate the inverse labor supply elasticity. By properties of IV estimation, our

coefficient is the inverse of theirs.
55Industry growth shocks in this column are the same as in Column 1, again estimated with employment weights.
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Consider an economy that consists of a set of L regions. In each region ` there is a prevailing wage

W`, and labor supply has constant elasticity φ:

E` = M`W
φ
` , (45)

where E` is total regional employment and M` is the supply shifter that depends on the working-age

population, the outside option, and other factors. Labor demand in each industry n is given by a

constant-elasticity function

E`n = Anξ`nW
−σ
` , (46)

where E`n is employment, An is the national industry demand shifter, ξ`n is its idiosyncratic compo-

nent, and σ is the elasticity of labor demand. The equilibrium is given by

∑
n

E`n = E`. (47)

Now consider small changes in fundamentals An, ξ`n and M`. We use log-linearization around the

observed equilibrium and employ the Jones (1965) hat algebra notation, with v̂ denoting the relative

change in v between the equilibria. We then establish:

Proposition A6 After a set of small changes to fundamentals, the national industry employment

growth is characterized by

gn =
∑
`

ω`ng`n, (48)

for ω`n = E`n/
∑
`′ E`′n denoting the share of region ` in industry employment, and the

change in region-by-industry employment g`n is characterized by

g`n = g∗n +
σ

σ + φ
ε` + ξ̂`n −

σ

σ + φ

∑
n

s`n

(
g∗n + ξ̂`n

)
, (49)

where g∗n = Ân is the national industry labor demand shock, ε` = M̂` is the regional labor

supply shock, and s`n = E`n/
∑
n′ E`n′ .

Proof See Appendix B.8.

The first term in (49) justifies our interpretation of the observed industry employment growth as

a noisy estimate of the latent labor demand shock g∗n. The other terms constitute the “estimation

error.” The first of them is proportional to the residual of the labor supply equation, ε`; we have

previously established the conditions under which it may or may not confound SSIV estimation. The

other terms, that we abstracted away from in Section 4.3, include the idiosyncratic demand shock ξ̂`n
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and shift-share averages of both national and idiosyncratic demand shocks. If the model is correct,

all of these are uncorrelated with ε`, thus not affecting Assumption 1.

A.11 SSIV with Multiple Endogenous Variables or Instruments

This appendix first generalizes our equivalence result to SSIV regressions with multiple endogenous

variables and instruments, and discusses corresponding extensions of our quasi-experimental frame-

work via the setting of Jaeger et al. (2018). We also describe how to construct the effective first-stage

F -statistic of Montiel Olea and Pflueger (2013) for SSIV with one endogenous variable but multiple

instruments. We then consider new shock-level IV procedures in this framework, which can be used

for efficient estimation and specification testing. Finally, we illustrate these new procedures in the

Autor et al. (2013) setting.

Generalized Equivalence and SSIV Consistency We consider a class of SSIV estimators of an

outcome model with multiple treatment channels,

y` = β′x` + γ′w` + ε`, (50)

where x` = (x1`, . . . , xK`)
′ is instrumented by z` = (z1`, . . . , zJ`)

′, for zj` =
∑
n s`ngjn and J ≥ K, and

observations are weighted by e`. Members of this class are parameterized by a (possibly stochastic)

full-rank K×J matrix c, which is used to combine the instruments into a vector of length J , cz`. For

example the two-stage least squares (2SLS) estimator sets c = x⊥′ez(z⊥′ez⊥)−1, where z⊥ stacks

observations of the residualized z⊥′` . IV estimates using a given combination are written as

β̂ = (cz′ex⊥)−1cz′ey⊥, (51)

where y⊥ and x⊥ stack observations of the residualized y⊥` and x⊥′` , z stacks observations of z′`, and e

is an L×L diagonal matrix of e` weights. In just-identified IV models (i.e. J = K) the two c’s cancel

in this expression and all IV estimators are equivalent. Note that while the shocks gjn are different

across the multiple instruments, we assume here that the exposure shares s`n are all the same.

As in Proposition 1, β̂ can be equivalently obtained by a particular shock-level IV regression.

Intuitively, when the shares are the same, cz` also has a shift-share structure based on a linear

combination of shocks cgn, and thus Proposition 1 extends. Formally, write z = sg where s is an

L×N matrix of exposure shares and g stacks observations of the shock vector g′n; then,

β̂ = (cg′s′ex⊥)−1cg′s′ey⊥

= (cg′Sx̄⊥)−1(cg′Sȳ⊥), (52)
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where S is an N ×N diagonal matrix with elements sn, x̄⊥ is an N ×K matrix with elements x̄⊥kn,

and ȳ⊥ is an N × 1 vector of ȳ⊥n . This is the formula for an sn-weighted IV regression of ȳ⊥n on

x̄⊥1n, . . . , x̄
⊥
Kn with shocks as instruments, no constant, and the same c matrix. Furthermore, as in

Proposition 1,

ι′Sȳ⊥ =
∑
n

snȳ
⊥
n =

∑
`

e`

(∑
n

s`n

)
y⊥` =

∑
`

e`y
⊥
` = 0, (53)

and similarly for ι′Sx̄′, where ι is a N ×1 vector of ones. Therefore, the same estimate is obtained by

including a constant in this IV procedure (and the same result holds including a shock-level control

vector qn provided
∑
n s`n has been included in w`, as in Proposition 5). The c matrix is again

redundant in the just-identified case.

A natural generalization of the quasi-experimental framework of Section 3 follows. Rather than

rederiving all of these results, we discuss them intuitively in the setting of Jaeger et al. (2018). Here

y` denotes the growth rate of wages in region ` in a given period (residualized on Mincerian con-

trols), x1` is the immigrant inflow rate in that period, and x2` is the previous period’s immigration

rate. The residual ε` captures changes to local productivity and other regional unobservables. Jaeger

et al. (2018, Table 5) estimate this model with two “past settlement” instruments z1` =
∑
n s`ng1n

and z2` =
∑
n s`ng2n, where s`n is the share of immigrants from country of origin n in location `

at a previous reference date and gn = (g1n, g2n)′ gives the current and previous period’s national

immigration rate from n. When this path of immigration shocks is as-good-as-randomly assigned

with respect to the aggregated productivity shocks ε̄n (satisfying a generalized Assumption 1), the

gn are uncorrelated across countries and E
[∑

n s
2
n

]
→ 0 (satisfying a generalized Assumption 2), and

appropriately generalized regularity conditions hold, the multiple-treatment shock orthogonality con-

dition is satisfied:
∑
n sngknε̄n

p−→ 0 for each k. Then under the relevance condition from Proposition

2, again appropriately generalized, the SSIV estimates are consistent: β̂ p−→ β.

Effective First-Stage F -statistics With one endogenous variable and multiple instruments, the

Montiel Olea and Pflueger (2013) effective first-stage F -statistic provides a state-of-art heuristic for

detecting a weak first-stage. Here we describe a correction to it for SSIV that generalizes the F -

statistic in the single instrument case discussed in Section 5.2. The Stata command weakssivtest,

provided with our replication archive, implements this correction.56

Consider a structural first stage with multiple instruments and one endogenous variable:

x` = π′z` + ρw` + η`. (54)

Suppose each of the shocks satisfies Assumption 3, i.e. E [gjn | ε̄, q, s] = µ′jqn, where
∑
n s`nqn is

56Our package extends the weakivtest command developed by Pflueger and Wang (2015).
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included in w`, and the residual shocks g∗jn = gjn − µ′jqn are independent from {η`}`. The Montiel

Olea and Pflueger (2013) effective F -statistic for the 2SLS regression of y` on x`, instrumenting with

z1`, . . . , zJ`, controlling for w`, and weighting by e`, is given by

Feff =

(∑
` e`x

⊥
` z
⊥
`

)′ (∑
` e`x

⊥
` z
⊥
`

)
tr
(
V̂
) , (55)

where V̂ estimates V = Var
[∑

` e`z
⊥
` η`

]
. Note that, as before, the first-stage covariance of the original

SSIV regression equals that of the equivalent shock-level one from Proposition 5:

∑
`

e`x
⊥
` z
⊥
` =

∑
`

e`x
⊥
` z` =

∑
n

sngnx̄
⊥
n =

∑
n

sngn⊥x̄
⊥
n , (56)

where gn⊥ is the residuals from an sn-weighted projection of gn on qn, which consistently estimates

g∗n. A natural extension of Proposition 5 to many mutually-uncorrelated shocks further implies that

V is well-approximated by

V̂ =
∑
n

s2
ngn⊥g

′
n⊥

¯̂η2
n, (57)

where, per the discussion in Section 5.2, ¯̂ηn denotes the residuals from an IV regression of x̄⊥n on

z̄⊥1n, . . . , z̄
⊥
Jn, instrumented with g1n, . . . , gJn, weighted by sn and controlling for qn. Plugging this V̂

into (55) yields the corrected effective first-stage F -statistic.

Efficient Shift-Share GMM In overidentified settings (J > K), it is natural to consider which

estimators are most efficient; for quasi-experimental SSIV, this can be answered by combining the

asymptotic results of Adão et al. (2019) with the classic generalized methods of moments (GMM)

theory of Hansen (1982). Here we show how standard shock-level IV procedures (such as 2SLS) may

yield efficient coefficient estimates β̂∗, depending on the variance structure of multiple quasi-randomly

assigned shocks.

We first note that the equivalence result (52) applies to SSIV-GMM estimators as well:

β̂ = arg min
b

(
y⊥ − x⊥b

)′
ezWz′e

(
y⊥ − x⊥b

)
= arg min

b

(
ȳ⊥ − x̄⊥b

)′
SgWg′S

(
ȳ⊥ − x̄⊥b

)
, (58)

where W is an J × J moment-weighting matrix. This leads to an IV estimator with c = x̄⊥′SgW .

For 2SLS estimation, for example, W = (z⊥′ez⊥)−1. Under appropriate regularity conditions, the

efficient choice of W ∗ consistently estimates the inverse asymptotic variance of z′e
(
y⊥ − x⊥β

)
=

g′Sε̄ + op(1). Generalizations of results in Adão et al. (2019) can then be used to characterize this

W ∗ when shocks are as-good-as-randomly assigned with respect to ε̄. Given an estimate Ŵ ∗, an
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efficient coefficient estimate β̂∗ is given by shock-level IV regressions (52) that set c∗ = x̄⊥′SgŴ
∗
. A

χ2
J−K test statistic based on the minimized objective in (58) can be used for specification testing.

As an example, suppose shocks are conditionally homoskedastic with the same variance-covariance

matrix across n, Var [gn | ε̄, s] = G for a constant J × J matrix G. Then the optimal β̂∗ is obtained

by a shock-level 2SLS regression of ȳ⊥n on all x̄⊥kn (instrumented by gjn and weighted by sn). We show

this in the case of no controls (and mean-zero shocks) for notational simplicity. Then,

Var
[
g′S

(
ȳ⊥ − x̄⊥β

)]
= E [ε̄′Sgg′Sε̄]

= tr (E [ε̄′SGSε̄])

= kG (59)

for k = tr (E [Sε̄ε̄′S]). The optimal weighting matrix thus should consistently estimate G, which is

satisfied by Ĝ = g′Sg. Under appropriate regularity conditions, a feasible optimal GMM estimate is

thus given by

β̂∗ = (x̄⊥′SgĜ
−1

g′Sx̄⊥)−1(x̄⊥′SgĜ
−1

g′Sȳ⊥)

=
((
Pgx̄

⊥)′ Sx̄⊥)−1 (
Pgx̄

⊥)′ Sȳ⊥, (60)

where Pg = g(g′Sg)−1g′S is an sn-weighted shock projection matrix. This is the formula for an

sn-weighted IV regression of ȳ⊥n on the fitted values from projecting the x̄⊥kn on the shocks, cor-

responding to the 2SLS regression above. Straightforward extensions of this equivalence between

optimally-weighted estimates of β and shock-level overidentified IV procedures follow in the case of

heteroskedastic or clustered shocks, in which case the 2SLS estimator (60) is replaced by the estimator

of White (1982). We emphasize that these shock-level estimators are generally different than 2SLS

or White (1982) estimators at the level of original observations, which are optimal under conditional

homoskedasticity and independence assumptions placed on the residual ε` (assumptions which are

generally violated in our quasi-experimental framework).

Many Shocks in Autor et al. (2013) Appendix Table C5 illustrates different shock-level overiden-

tified IV estimators in the setting of Autor et al. (2013), introduced in Section 6.2.1. ADH construct

their shift-share instrument based on the growth of Chinese imports in eight economies comparable to

the U.S., together. We separate them to produce eight sets of industry shocks gjn, j = 1, . . . , 8, each

reflecting the growth of Chinese imports in one of those countries. As in Section 6.2, the outcome of

interest is a commuting zone’s growth in total manufacturing employment with the single treatment

variable measuring a commuting zone’s local exposure to the growth of imports from China (see foot-

note 38 for precise variable definitions). The vector of controls coincides with that of column 3 of
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Table 4, isolating within-period variation in manufacturing shocks. Per Section 5.1, exposure-robust

standard errors are obtained by controlling for period main effects in the shock-level IV procedures,

and we report corrected first stage F -statistics constructed as detailed above.

Column 1 reports estimates of the ADH coefficient β using the industry-level two-stage least

squares procedure (60). At -0.238, this estimate it is very similar to the just-identified estimate in

column 3 of Table 4. Column 2 shows that we also obtain a very similar coefficient of -0.247 with

an industry-level limited information maximum likelihood (LIML) estimator. Finally, in column 3

we report a two-step optimal IV estimate of β using an industry-level implementation of the White

(1982) estimator. Both the coefficient and standard error fall somewhat, with the latter consistent

with the theoretical improvement in efficiency relative to columns 1 and 2. From this efficient estimate

we obtain an omnibus overidentification test statistic of 10.92, distributed as chi-squared with seven

degrees of freedom under the null of correct specification. This yields a p-value for the test of joint

orthogonality of all eight ADH shocks of 0.142. Table C5 also reports the corrected effective first-

stage F -statistic which measures the strength of the relationship between the endogenous variable

and the eight shift-share instruments across regions. At 15.10 it is substantially lower than with one

instrument in column 3 of Table 4 but still above the conventional heuristic threshold of 10.

A.12 Finite-Sample Performance of SSIV: Monte-Carlo Evidence

In this appendix we study the finite-sample performance of the SSIV estimator via Monte-Carlo

simulation. We base this simulation on the data of Autor et al. (2013), as described in Section 6.2.

For comparison, we also simulate more conventional shock-level IV estimators, similar to those used

in Acemoglu et al. (2016), which also estimate the effects of import competition with China on U.S.

employment. We begin by describing the design of these simulations and the benchmark Monte-

Carlo results. We then explore how the simulation results change with various deviations from the

benchmark: with different levels of industry concentration, different numbers of industries and regions,

and with many shock instruments. Besides showing the general robustness of our framework, these

extensions allow us to see how informative some conventional rules of thumb are on the finite-sample

performance of shift-share estimators.

Simulation design We base our benchmark data-generating process for SSIV on the specification

in column 3 of Table 4. The outcome variable y`t corresponds to the change in manufacturing em-

ployment as a fraction of working-age population of region ` in period t, treatment x`t is a measure of

regional import competition with China, and the shift-share instrument is constructed by combining

the industry-level growth of China imports in eight developed economies, gnt, with lagged regional

employment weights of different industries s`nt. We also include pre-treatment controls w`t as in

column 3 of Table 4 and and estimate regressions with regional employment weights e`t; see Section
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6.2.1 for more detail on the Autor et al. (2013) setting.

In a first step we obtain an estimated SSIV second and first stage of

y`t = β̂x`t + γ̂′w`t + ε̂`t, (61)

x`t = π̂z`t + ρ̂′w`t + û`t. (62)

We then generate 10,000 simulated samples by drawing shocks g∗nt, as detailed below, and constructing

the simulated shift-share instrument z∗`t =
∑
n s`ntg

∗
nt and treatment x∗`t = π̂z∗`t + û`t. Imposing a

true causal effect of β∗ = 0, we use the same y∗`t ≡ ε̂`t as the outcome in each simulation (note that

it is immaterial whether we include π̂′w`t and ρ̂′w`t, since all our specifications control for w`t). By

keeping ε̂`t and û`t fixed, we study the finite sample properties of the estimator that arises from the

randomness of shocks, which is the basis of the inferential framework of Adão et al. (2019); we also

avoid having to take a stand on the joint data generating process of (ε`t, u`t), which this inference

framework does not restrict.

We estimate SSIV specifications that parallel (61)-(62) from the simulated data

y∗`t = β∗x∗`t + γ∗′w`t + ε∗`t, (63)

x∗`t = π∗z∗`t + ρ∗′w`t + u∗`t. (64)

using the original weights e`t and controls w`t. We then test the (true) hypothesis β∗ = 0 using either

the heteroskedasticity-robust standard errors from the equivalent industry-level regression or their

version with the null imposed, as in Section 5.1.57 As in column 3 of Table 4, we control for period

indicators as qnt in the industry-level regression.

Our comparison estimator is a conventional industry-level IV inspired by Acemoglu et al. (2016).

However, we try to keep the IV regression as similar to the SSIV as possible, thus diverging from

Acemoglu et al. (2016) in some details. Specifically, the outcome ynt is the industry employment

growth as measured by these authors. It is defined for 392 out of the 397 industries in Autor et

al. (2013), so we drop the remaining five industries in each period. The endogenous regressor xnt ≡ gUSnt
(growth of U.S. imports from China per worker) and the instrument gnt (growth of China imports

into eight developed economies) are those from which we built the shift-share endogenous regressor

and treatment, respectively (see footnote 38). Construction of those variables differ from Acemoglu

et al. (2016) who measure imports relative to domestic absorption rather than employment. We also

follow our SSIV analysis in using period indicators as the only industry-level control variables qnt and

taking identical regression importance weights snt.
57Note that there is no need for clustering since we generate the shocks independently across industries in all simu-

lations. We have verified, however, that allowing for correlation in shocks within industry groups and using clustered
standard errors yields similar results.
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The Monte-Carlo strategy for the conventional shock-level IV parallels the one for SSIV; we obtain

an estimated industry-level second and first stage of

ynt = β̂indxnt + γ̂′qnt + ε̂nt, (65)

xnt = π̂indgnt + ρ̂′qnt + ûnt. (66)

using the snt importance weights. We then perform 10,000 simulations where we regenerate shocks

g∗nt and regress y∗nt = ε̂nt (consistent with a true causal effect of βind = 0, given that we control for

qnt) on x∗nt = π̂indg
∗
nt + ûnt, instrumenting by g∗nt, controlling for qnt, and weighting by snt. We test

βind = 0 by using robust standard errors in this IV regression or the version with the null imposed,

which corresponds to a standard Lagrange Multiplier test for this true null hypothesis.

In both simulations we report the rejection rate of nominal 5% level tests for β = 0 and βind = 0

to gauge the quality of each asymptotic approximation. We do not report the bias of the estimators

because they are all approximately unbiased (more precisely, the simulated median bias is at most 1%

of the estimator’s standard deviation). However we return to the question of bias at the end of the

section, where we extend the analysis to having many instruments with a weak first stage.

Main results Table C7 reports the rejection rates for shift-share IV (columns 1 and 2) and conven-

tional industry-level IV (columns 3 and 4) in various simulations. Specifically, column 1 corresponds

to using exposure-robust standard errors from the equivalent industry-level IV, and column 2 imple-

ments the version with the null hypothesis imposed. Columns 3 and 4 parallel columns 1 and 2 when

applied to conventional IV: the former uses heteroskedasticity-robust standard errors and the latter

tests βind = 0 with the null imposed, which amounts to using the Lagrange multiplier test.

The simulations in Panel A vary the data-generating process of the shocks. Following Adão et

al. (2019) in row (a) we draw the shocks iid from a normal distribution with the variance matched

to the sample variance of the shocks in the data after de-meaning by year. The rejection rate is close

to the nominal rate of 5% for both SSIV and conventional IV (7.6% and 6.8%, respectively), and in

both cases it becomes even closer when the null is imposed (5.2% and 5.0%).

This simulation may not approximate the data-generating process well because of heteroskedastic-

ity: smaller industries have more volatile shocks.58 To match unrestricted heteroskedasticity, in row

(b) we use wild bootstrap, generating g∗nt = gntν
∗
nt by multiplying the year-demeaned observed shocks

gnt by ν∗nt
iid∼ N (0, 1) (Liu 1988). This approach also provides a better approximation for the marginal

distribution of shocks than the normality assumption. Here the relative performance of SSIV is even

better: the rejection rate is 8.0% vs. 14.2% for conventional IV.

We now depart from the row (b) simulation in several directions, as a case study for the sensitivity
58This is established by unreported regressions of |gnt| on snt, for year-demeaned gnt from ADH, with or without

weights. The negative relationship is significant at conventional levels.
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of the asymptotic approximation to different features of the SSIV setup. Specifically, we study the

role of the Herfindahl concentration index across industries, the number of regions and industries,

and the many weak instrument bias. We uniformly find that the performance of the SSIV estimator

is similar to that of industry-level IV. Our results also suggest that the Herfindahl index is a useful

statistic for measuring the effective number of industries in SSIV, and the first-stage F -statistic is

informative about the weak instrument bias, as usual.

The Role of Industry Concentration Since Assumption 2 requires small concentration of in-

dustry importance weights, measured using the Herfindahl index
∑
n,t s

2
nt/
(∑

n,t snt

)2

, Panel B of

Table C7 studies how increasing the skewness of snt towards the bigger industries affects coverage of

the tests.59 For conventional IV this simply amounts to reweighting the regression. Specifically, for a

parameter α > 1, we use weights

s̃nt = sαnt ·
∑
n′,t′ sn′t′∑
n′,t′ s

α
n′t′

.

We choose the unique α to match the target level of H̃HI by solving, numerically,

∑
n,t (s̃nt)

2(∑
n,t s̃nt

)2 = H̃HI. (67)

Matching the Herfindahl index in SSIV is more complicated since we need to choose how exactly

to amend shares s̃`nt and regional weights ẽ`t that would yield s̃nt from (67). We proceed as follows:

we consider the lagged level of manufacturing employment by industry E`nt = e`ts`nt and the total

regional non-manufacturing employment E`0t = e`t (1−
∑
n s`nt).

60 We then define Ẽ`nt = E`nt · s̃nt

snt

for manufacturing industries (and leave non-manufacturing employment unchanged, Ẽ`0t = E`0t).

This increases employment in large manufacturing industries proportionately in all regions, while

reducing it in smaller ones. We then recompute shares s̃`nt and weights ẽ`t accordingly:

ẽ`t =
N∑
n=0

∑
t

Ẽ`nt,

s̃`nt =
Ẽ`nt
ẽ`t

.

Rows (c)–(e) of Table C7 Panel B implement this procedure for target Herfindahl levels of 1/50,

1/20, and 1/10, respectively. For comparison, the Herfindahl in the actual ADH data is 1/191.6

(Table 1, column 2). The table finds that even with the Herfindahl index of 1/20 (corresponding to

the “effective” number of shocks of 20 in both periods total) the rejection rate is still around 7%, a level
59Note that in ADH

∑
n s`nt equals the lagged share of regional manufacturing employment, which is below one. We

thus renormalize the shares when computing the Herfindahl.
60The interpretation of E`nt as the lagged level is approximate since e`t is measured at the beginning of period in

ADH, while s`nt is lagged.
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that may be considered satisfactory. It also shows that the rejection rate grows when the Herfindahl is

even higher, at 1/10, suggesting that the Herfindahl can be used as an indicative rule of thumb. More

importantly, the rejection rates are similar for SSIV and conventional industry-level IV, as before.

Varying the Number of Industries and Regions The asymptotic sequence we consider in

Section 3.1 relies on both N and L growing. Here we study how the quality of the asymptotic

approximation depends on these parameters.

First, to consider the case of small N , we aggregate industries in a natural way: from 397 four-

digit manufacturing SIC industries into 136 three-digit ones and further into 20 two-digit ones and

reconstruct the endogenous right-hand side variable and the instrument using aggregated data.61 Rows

(f) and (g) of Table C7 Panel C report simulation results based on the aggregated data. They show that

rejection rates are similar to the case of detailed industries, and between SSIV and conventional IV.

This does not mean that disaggregated data are not useful: the dispersion of the simulated distribution

(not reported) increases with industry aggregation, reducing test power. However, standard errors

correctly reflect this variability, resulting in largely unchanged test coverage rates.

Second, to study the implications of having fewer regions L, we select a random subset of them

in each simulation. The results are presented in Rows (h) and (i) of Panel C for L = 100 and 25,

compared to the original L = 722, respectively.62 They show once again that rejection rates are not

significantly affected (even though unreported standard errors expectedly increase).

Many Weak Instruments In this final simulation we return to the question of SSIV bias. Since

our previous simulations confirm that just-identified SSIV is median-unbiased, we turn to the case of

multiple instruments. We show that the problem of many weak instruments is similar between SSIV

and conventional IV, and that first-stage F -statistics, when properly constructed, can serve as useful

heuristics.

For clarity, we begin by describing the procedure for the conventional shock-level IV that is a small

departure from Column 3 of Table C7. For a given number of instruments J ≥ 1, in each simulation

we generate g∗jnt, j = 1, . . . , J , independently across j using wild bootstrap (as in Table C7 Row

(b)).63 We make only the first instrument relevant by setting x∗nt = π̂indg
∗
1nt +

∑J
j=2 0 · g∗jnt + ûnt.

We then estimate the IV regression of y∗nt ≡ ε̂nt on x∗nt, instrumenting with g∗1nt, . . . , g∗Jnt, controlling

for qnt, and weighting by snt. We use robust standard errors and compute the effective first-stage
61Specifically, we aggregate imports from China to the U.S. and either developed economies as well as the number

of U.S. workers by manufacturing industry to construct the new gnt and gUS
nt . We then aggregate the shares s`nt and

scurrent
`nt to construct x`t and z`t (see footnote 38 for formulas). We do not change the regional outcome, controls, or
importance weights. For conventional IV, we additionally reconstruct the outcome (industry employment growth) by
aggregating employment levels by year in the Acemoglu et al. (2016) data and measuring growth according to their
formulas.

62When we select regions, we always keep observations from both periods for each selected region. We keep the
second- and first-stage coefficients from the full sample to focus on the noise that arises from shock randomness.

63For computational reasons we perform only 15, 000/J simulations when J > 1 (but 10,000 for J = 1 as before).
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F -statistic using the Montiel Olea and Pflueger (2013) method.

The procedure for SSIV is more complex but as usual parallels the one for the conventional shock-

level IV as much as possible. Given simulated shocks g∗jnt, we construct shift-share instruments

z∗j`t =
∑
` s`ntg

∗
jnt and make only the first of them relevant, x∗`t = π̂z∗1`t +

∑J
j=2 0 · z∗jnt + û`t. Since

the equivalence result from Section 2.3 need not hold for overidentified SSIV, we rely on the results

in Appendix A.11: we estimate β∗ from the industry-level regression of ȳ∗⊥nt (based on y∗`t = ε̂`t as

before) on x̄∗⊥nt by 2SLS, instrumenting by g∗1nt, . . . , g
∗
Jnt, controlling for qnt and weighting by snt.

We compute robust standard errors from this regression to test β∗ = 0. For effective first-stage F -

statistics, we follow the procedure described in Appendix A.11 and implemented via our weakssivtest

command in Stata.

Table C8 reports the result for J = 1, 5, 10, 25, and 50, presenting the rejection rate corresponding

to the 5% nominal, the median bias as a percentage of the simulated standard deviation, and the

median first-stage F -statistic. Panel A corresponds to SSIV and Panel B to the conventional shock-

level IV. For higher comparability, we adjust the first-stage coefficient π̂ind in the latter in order to

make the F -statistics approximately match between the two panels. We find that the median bias is

now non-trivial and grows with J , at the same time as the F -statistic declines. However, the level of

bias is similar for the two estimators. The rejection rates tend to be higher for conventional IV than

SSIV, although they converge as J grows.
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B Appendix Proofs

B.1 Proposition 4 and Extensions

This section proves Proposition 4 and extensions that allow for certain forms of mutual shock depen-

dence (Assumptions 5 and 6). Proposition 3 is obtained as a special case, where qn = 1. In addition

to Assumptions 3 and 4 and the relevance condition of
∑
` e`z`x

⊥
`

p−→ π with π 6= 0, the proof of

Proposition 4 uses two regularity conditions:

Assumption B1: E
[
g̃2
n | ε̄, q, s

]
and E

[
ε̄2
n | s

]
are uniformly bounded by some fixed Bg and Bε.

Assumption B2: ‖
∑
` e`w`ε`‖1 = op(1), max

∣∣(∑` e`w`w
′
`)
−1
∣∣ = Op(1), and max |

∑
` e`w`z`| =

Op(1).

The first of these is a weak condition on the second moments of shocks and shock-level unobserv-

ables which we show below permits a shock-level law of large numbers. The second condition en-

sures the consistency of the IV estimate of the control coefficient, γ̂ = (
∑
` e`w`w

′
`)
−1
∑
` e`w`ε` =

γ + (
∑
` e`w`w

′
`)
−1
∑
` e`w`ε` (see footnote 5), and stochastic boundedness of the weighted average∑

` e`w`mz`, while generally allowing the length of the control vector to increase with L. We discuss

low-level conditions for the consistency of γ̂ in Appendix A.5.

To prove Proposition 4, we first note that under Assumption B2,

∑
n

sngnε̄n −
∑
n

sngnε̄
⊥
n =

∑
`

e`z`
(
ε` − ε⊥`

)
=

(∑
`

e`z`w
′
`

)
(γ̂ − γ)

=

(∑
`

e`z`w
′
`

)(∑
`

e`w`w
′
`

)
−1
∑
`

e`w`ε`
p−→ 0, (68)

so that, when the relevance condition holds,

β̂ − β =

∑
n sngnε̄

⊥
n∑

n sngnx̄
⊥
n

= π−1
∑
n

sngnε̄n (1 + op(1)) . (69)

Furthermore, since
∑
n s`n = 1, we also have under Assumption B2 that

∑
n

snq
′
nµε̄n =

(∑
`

e`w̃`ε`

)′
µ

p−→ 0. (70)
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Thus

∑
n

sngnε̄n =
∑
n

sng̃nε̄n + op(1), (71)

with

E

[∑
n

sng̃nε̄n

]
= 0 (72)

under Assumption 3.

To prove consistency of β̂, it remains to show that Var [
∑
n sng̃nε̄n]→ 0 such that

∑
n sngnε̄n

p−→ 0.

Since

E [g̃ng̃n′ | ε̄, q, s] = Cov [g̃n, g̃n′ | ε̄, q, s] = 0 (73)

under Assumptions 3 and 4,

Var

[∑
n

sng̃nε̄n

]
= E

(∑
n

sng̃nε̄n

)2


=
∑
n

∑
n′

E [snsn′ g̃ng̃n′ ε̄nε̄n′ ]

=
∑
n

E
[
s2
nE
[
E
[
g̃2
n | ε̄, q, s

]
ε̄2
n | s

]]
. (74)

Then, by Assumption B1 and the Cauchy-Schwartz inequality:

Var

[∑
n

sng̃nε̄n

]
≤ BgBεE

[∑
n

s2
n

]
→ 0. (75)
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Extensions Similar steps establish equation (75) when Assumption 4 is replaced by either Assump-

tion 5 or 6. Under Assumption 5 we have, for N (c) = {n : c(n) = c},

Var

[∑
n

sng̃nε̄n

]
= E


∑

c

∑
n∈N(c)

sng̃nε̄n

2


= E

∑
c

s2
cE


 ∑
n∈N(c)

sn
sc
g̃nε̄n

2

| s




= E

∑
c

s2
c

∑
n,n′∈N(c)

sn
sc

sn′

sc
E [g̃ng̃n′ ε̄nε̄n′ | s]


≤ BgBεE

[∑
c

s2
c

]
→ 0. (76)

Here the last line used Assumption B1 and the Cauchy-Schwartz inequality twice: to establish, for

n, n′ ∈ N(c),

E [g̃ng̃n′ | ε̄, q, s] ≤
√
E [g̃n | ε̄, q, s]E [g̃n′ | ε̄, q, s]

≤ Bg (77)

and

E [|ε̄n| |ε̄n′ | | sc] ≤
√
E [ε̄2

n | s]E [ε̄2
n′ | s]

≤ Bε. (78)

If we instead replace Assumption 4 with Assumption 6, we have

Var

[∑
n

sng̃nε̄n

]
= E

(∑
n

sng̃nε̄n

)2


=
∑
n

∑
n′

E [snsn′E [g̃ng̃n′ | ε̄, q, s] ε̄nε̄n′ ]

≤ BL
∑
n

∑
n′

f (|n′ − n|)E [|snε̄nsn′ ε̄n′ |]

= BL

(∑
n

E
[
(snε̄n)2

]
f(0) + 2

N−1∑
r=1

N−r∑
n=1

E [|sn+r ε̄n+r| · |snε̄n|] f(r)

)

≤

(
BL
∑
n

E
[
s2
nE
[
ε̄2
n | s

]])(
f(0) + 2

N−1∑
r=1

f(r)

)

≤ Bε

(
f(0) + 2

N−1∑
r=1

f(r)

)(
BLE

[∑
n

s2
n

])
→ 0, (79)
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using E
[
ε̄2
n | sn

]
< Bε in the last line. Here the second-to-last line follows because for any sequence

of numbers a1, . . . , aN and any r > 0,

∑
n

a2
n ≥

1

2

(
N−r∑
n=1

a2
n +

N−r∑
n=1

a2
n+r

)

=
1

2

N−r∑
n=1

(an − an+r)
2

+
N−r∑
n=1

anan+r

≥
N−r∑
n=1

anan+r, (80)

and the same is true in expectation if an = |snε̄n| are random variables. We note that allowing BL

to grow in the asymptotic sequence imposes much weaker conditions on the correlation structure of

shocks. For example, with shock importance weights sn approximately equal, i.e.
∑
n s

2
n = Op (1/N),

it is enough to have |Cov [g̃n, g̃n′ | ε̄, q, s]| ≤ B1/N
α for any α > 0: in this case one can satisfy

Assumption 6 by setting BL = B1N
1−α/2 and f(r) = r−1−α/2.

B.2 Proposition 5 and Related Results

This section proves Proposition 5 and establishes several additional results mentioned in Section

5.1. First, we show the heteroskedasticity-robust standard error from estimating equation (13) is

numerically equivalent to the baseline IV standard error of Adão et al. (2019) when w` contains only

a constant. Second, we discuss the likely difference between our standard error estimates and those

of Adão et al. (2019), both without and with approximate shift-share controls. Finally, we show how

the alternative null-imposed inference procedure of Adão et al. (2019) is also conveniently obtained

from our equivalent shock-level regression.

We prove Proposition 5 in a restricted version of our baseline framework that largely follows Adão

et al. (2019), imposing the following assumptions:

Assumption B3: The first stage satisfies x` =
∑
n s`nπ`ngn + η`, for all `.

Assumption B4: The control vector can be partitioned as w` = [w̃′`, u
′
`]
′, for w̃` =

∑
n s`nqn.

The vector qn captures all sources of shock confounding: E [gn | IL] = q′nµ, for all n and

IL =
{
{qn}n , {u`, ε`, η`, {s`n, π`n}n , e`}`

}
.

Assumption B5: The gn are mutually independent given IL, maxn sn → 0, and maxn
s2n∑
n′ s2n′

→ 0.

Assumption B6: E
[
|gn|4+v | IL

]
is uniformly bounded for some v > 0 and

∑
` e`
∑
n s

2
`nVar [gn | IL]π`n 6=

0 almost surely. The support of π`n is bounded, the fourth moments of ε`, η`, ũ`, and q̃n exist and

are uniformly bounded, and
∑
` e`w`w

′
`

p−→ Ωww for positive definite Ωww. The control vector γ is

consistently estimated by γ̂ = (
∑
` e`w`w

′
`)
−1∑

` e`w`ε`.
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We note that Assumption B5 both strengthens our baseline Herfindahl index condition in As-

sumption 4 and implicitly treats the set of sn as non-stochastic, following Assumption 2 of Adão

et al. (2019). The regularity condition B6 includes the relevant conditions from Assumptions 4 and

A.3 of Adão et al. (2019). These assumptions strengthen those of Proposition 4: Assumptions B3–B6

imply our Assumptions 3, 4, B1, and B2. Relative to Adão et al. (2019), we do not impose that L > N

or that the shares are non-collinear.

To establish the equivalence of IV coefficients in Proposition 5, note that when
∑
n s`nqn is included

in w`

∑
n

snqnȳ
⊥
n =

∑
`

e`y
⊥
`

(∑
n

s`nqn

)
= 0 (81)

and similarly for
∑
n snqnx̄

⊥
n . The sn-weighted regression of ȳ⊥n and x̄⊥n on qn thus produces a

coefficient vector that is numerically zero, implying the sn-weighted and gn-instrumented regression

of ȳ⊥n on x̄⊥n is unchanged with the addition of qn controls. Proposition 1 shows that the IV coefficient

from this regression is equivalent to the SSIV estimate β̂.

To establish validity of the standard errors, note that the conventional heteroskedasticity-robust

standard error from for the sn-weighted shock-level IV regression of ȳ⊥n on x̄⊥n and qn, instrumented

by gn, is given by

ŝeequiv =

√∑
n s

2
nε̂

2
nĝ

2
n

|
∑
n snx̄

⊥
n gn|

, (82)

where ε̂n = ȳ⊥n − β̂x̄⊥n is the estimated shock-level regression residual (where we used the fact that

the estimated coefficients on qn in that regression are numerically zero) and ĝn = gn − µ̂qn, where

µ̂ = (
∑
n snqnq

′
n)
−1∑

n snqngn, is the residual from a projection of the instrument in equation (13)

on the control vector qn. By Proposition 1, ε̂n coincides with the share-weighted aggregate of the

SSIV estimated residuals ε̂` = y⊥` − β̂x⊥` :

ε̂n =

∑
` e`s`ny

⊥
`∑

` e`s`n
− β̂ ·

∑
` e`s`nx

⊥
`∑

` e`s`n
=

∑
` e`s`nε̂`∑
` e`s`n

. (83)

The squared numerator of (82) can thus be rewritten

∑
n

s2
nε̂

2
nĝ

2
n =

∑
n

(∑
`

e`s`nε̂`

)2

ĝ2
n. (84)

The expression in the denominator of (82) estimates the magnitude of the shock-level first-stage

covariance, which matches the e`-weighted sample covariance of x` and z`:

∑
n

snx̄
⊥
n gn =

∑
n

(∑
`

e`s`nx
⊥
`

)
gn =

∑
`

e`x
⊥
` z`. (85)
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Thus

ŝeequiv =

√∑
n (
∑
` e`s`nε̂`)

2
ĝ2
n∣∣∑

` e`x
⊥
` z`
∣∣ . (86)

We now compare this expression to the standard error formula from Adão et al. (2019), incorporating

the e` importance weights. Equation (39) in their paper yields

ŝeAKM =

√∑
n (
∑
` e`s`nε̂`)

2
g̈2
n∣∣∑

` e`x
⊥
` z`
∣∣ , (87)

where g̈n denotes the coefficients from regressing the residualized instrument z⊥` on all shares s`n,

without a constant; note that to compute this requires L > N and that the matrix of exposure shares

s`n is full rank. The formulas for ŝeequiv and ŝeAKM therefore differ only in the construction of shock

residuals, ĝn versus g̈n.

We establish the general asymptotic equivalence of ŝe2
equiv and ŝe2

AKM, and thus the asymptotic

validity of ŝeequiv, by showing that both capture the conditional asymptotic variance of β̂ given IL
under Assumptions B3-B6. Both of the resulting confidence intervals are then asymptotically valid

unconditionally, since if Pr(β ∈ ĈI | IL) = α then Pr(β ∈ ĈI) = E
[
E
[
1[β ∈ ĈI | IL

]]
= α by the

law of iterated expectations.Under Assumptions B3-B6, Proposition A.1 of Adão et al. (2019) applies

and shows that

√
rL(β̂ − β) = N

(
0, rL

VL
π2

)
+ op(1) (88)

where rL = 1/
(∑

n s
2
n

)
and VL =

∑
n (
∑
` e`s`nε`)

2
Var [gn | IL], provided rLVL converges to a non-

random limit. To establish the asymptotic validity of ŝeAKM, i.e. that rL
(∑

n (
∑
` e`s`nε̂`)

2
g̈2
n − VL

)
p−→

0, Adão et al. (2019) further assume that L ≥ N , the matrix of s`n is always full rank, and additional

regularity conditions (see their Proposition 5). We establish rL

(∑
n (
∑
` e`s`nε̂`)

2
ĝ2
n − VL

)
p−→ 0

without imposing those assumptions.

To start, we write g∗n = gn − q′nµ and decompose

rL

∑
n

(∑
`

e`s`nε̂`

)2

ĝ2
n − VL

 =rL

∑
n

(∑
`

e`s`nε`

)2

g̃2
n − VL


+ rL

∑
n

(∑
`

e`s`nε̂`

)2

−

(∑
`

e`s`nε`

)2
 g̃2

n

+ rL
∑
n

(∑
`

e`s`nε̂`

)2 (
ĝ2
n − g̃2

n

)
. (89)

Adão et al. (2019) show that the second term of this expression is op(1) under our assumptions, using

the fact (their Lemma A.3, again generalized to include importance weights) that for a triangular array
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{AL1, . . . , ALL, BL1, . . . , BLL, CL1, . . . , CLNL
}∞L=1 with E

[
A4
L` | {{s`′n}n, e`′}`′

]
, E
[
B4
L` | {{s`′n}n, e`′}`′

]
,

and E
[
C4
Ln | {{s`′n}n, e`′}`′

]
uniformly bounded,

rL
∑
`

∑
`′

∑
n

e`e`′s`ns`′nAL`BL`′CLn = Op(1). (90)

Here with D` = (z`, w
′
`)
′, θ = (β, γ′)′, and θ̂ = (β̂, γ̂′)′ we can write

(∑
`

e`s`nε̂`

)2

=

(∑
`

e`s`nε`

)2

+ 2
∑
`

∑
`′

e`e`′s`ns`′nD
′
`

(
θ − θ̂

)
ε`′

+
∑
`

∑
`′

e`e`′D
′
`(θ − θ̂)D′`′(θ − θ̂), (91)

and both D` and ε` have bounded fourth moments by the assumption of bounded fourth moments of

ε`, η`, u`, and pn in Assumption B6. Thus by the lemma

rL
∑
n

(∑
`

e`s`nε̂`

)2

−

(∑
`

e`s`nε`

)2
 g̃2

n =2
(
θ − θ̂

)
′

(
rL
∑
`

∑
`′

∑
n

e`e`′s`ns`′ng̃
2
nD`ε`′

)

+
(
θ − θ̂

)
′

(
rL
∑
`

∑
`′

∑
n

e`e`′s`ns`′ng̃
2
nD`D

′
`′

)(
θ − θ̂

)
=
(
θ − θ̂

)
′Op(1) +

(
θ − θ̂

)
′Op(1)

(
θ − θ̂

)
, (92)

which is op(1) by the consistency of θ̂ (implied by Assumptions B3-B6). Adão et al. (2019) further

show the first term of equation (89) is op(1), without using the additional regularity conditions of

their Proposition 5.

It thus remains for us to show the third term of (89) is also op(1). Note that

ĝ2
n = (gn − q′nµ̂)

2
= g̃2

n + (q′n (µ̂− µ))
2 − 2g̃nq

′
n (µ̂− µ) , (93)

so that

rL
∑
n

(∑
`

e`s`nε̂`

)2 (
ĝ2
n − g̃2

n

)
=rL

∑
n

(∑
`

e`s`nε̂`

)2

(q′n (µ̂− µ)− 2g̃n) q′n (µ̂− µ)

=rL
∑
n

(∑
`

e`s`nε`

)2

(q′n (µ̂− µ)− 2g̃n) q′n (µ̂− µ) (94)

+ rL
∑
n

(∑
`

e`s`nε̂`

)2

−

(∑
`

e`s`nε`

)2
 (q′n (µ̂− µ)− 2g̃n) q′n (µ̂− µ) .
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Using the previous lemma, the first term of this expression is Op(1)(µ̂− µ) since ε`, pn, and g̃n have

bounded fourth moments under Assumption B6. The second term is similarly Op(1)(µ̂ − µ) by the

lemma and the decomposition used in equation (92). Noting that µ̂−µ = (
∑
n snqnq

′
n)
−1∑

n snqng̃n
p−→

0 under the assumptions completes the proof.

The Case of No Controls We show that when there are no controls besides a constant, i.e.

w` = gn = 1, the standard errors are numerically the same. To prove this, it suffices to show that

ĝn = g̈n. Absent controls, ĝn = gn−
∑
n sngn is the sn-weighted demeaned shock. The g̈n are obtained

as the projection coefficient of z⊥` = z` −
∑
` e`z` on the N shares. Note that

∑
`

e`z` =
∑
`

e`
∑
n

s`ngn =
∑
n

sngn, (95)

so that, with
∑
n s`n = 1,

z` −
∑
`

e`z` =
∑
n

s`ngn −
∑
n

sngn =
∑
`

s`nĝn. (96)

This means that the projection in Adão et al. (2019) has exact fit and produces g̈n = ĝn.

Comparison of Standard Errors The characterization of the standard errors in equations (86)–(87)

offers insights into how these standard errors may differ in presence of controls. We argue that under

the conditions of Proposition 5, our standard errors are likely smaller in finite samples. However,

when Assumption B3 is violated because some controls have the approximate shift-share structure

allowed by Adão et al. (2019), our standard errors are likely asymptotically conservative.

To see this, consider versions of the two standard error formulas obtained under shock homoskedas-

ticity (i.e. Var [gn | IL] = σ2
g):

ŝehomo
equiv =

√
(
∑
n s

2
nε̂

2
n) (
∑
n snĝ

2
n)

|
∑
n snx̄

⊥
n gn|

(97)

ŝehomo
AKM =

√
(
∑
n s

2
nε̂

2
n) (
∑
n sng̈

2
n)∣∣∑

` e`x
⊥
` z`
∣∣ , (98)

which differ by a factor of
√∑

n snĝ
2
n/
∑
n sng̈

2
n.

When the SSIV controls have an exact shift-share structure, w` =
∑
n s`nqn, the share projection

producing g̈n has exact fit such that one can represent g̈n = gn − q′nµ̂AKM for some µ̂AKM . In

this case the sn-weighted sum of squares of shock residuals is lower in our equivalent regression by

construction of µ̂:
∑
n snĝ

2
n ≤

∑
n sng̈

2
n (with strict inequality when µ̂AKM 6= µ̂). Similarly, when

w` instead contains controls that are included for efficiency only and are independent of the shocks,

projection of z` on the shares produces a noisy estimate of gn −
∑
n sngn, which again has a higher
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weighted sum of squares.

In contrast, if some controls have an approximate shift-share structure, w` =
∑
n s`nq̃n + u`,

where q̃n is unobserved and correlated with gn and the variance of the noise u` converges to zero,

then g̈n asymptotically residualizes gn on q̃n while ĝn does not. Therefore, the sum of squares of g̈n is

asymptotically smaller than that of ĝn. Since the Adão et al. (2019) standard errors are asymptotically

correct, our formula is asymptotically conservative in this scenario.

Null-Imposed Inference Procedure Finally, our shock-level equivalence provides a convenient

implementation for the alternative inference procedure that may have superior finite-sample perfor-

mance. Adão et al. (2019) show how standard errors that impose a given null hypothesis β = β0 in

estimating the residual ε` can generate confidence intervals with better coverage in situations with

few shocks (and a similar argument can be made in the case of shocks with a heavy-tailed distribu-

tion).64 Building on Proposition 5, such confidence intervals can be constructed in the same way as

in any regular shock-level IV regression. To test β = β0, one regresses ȳ⊥n − β0x̄
⊥
n on the shocks gn

(weighting by sn and including any relevant shock-level controls qn) and uses a null-imposed residual

variance estimate. This procedure corresponds to the standard shock-level Lagrange multiplier test

for β = β0 that can be implemented by standard statistical software.65 The confidence interval for β

is constructed by collecting all candidate β0 that are not rejected.

B.3 Proposition A1

We consider each expectation in equation (16) in turn. For each n, write

κn(g−n, ε`, η`) = lim
gn→−∞

y(x1([gn; g−n], η`1), . . . , xR([gn; g−n], η`R), ε`) (99)

such that

s`ne`gny` =s`ne`gnκn(g−n, ε`, η`) (100)

+ s`ne`gn

∫ gn

−∞

∂

∂gn
y(x1([γ; g−n], η`1), . . . xR([γ; g−n], η`R), ε`)dγ.

By as-good-as-random shock assignment, the expectation of the first term is

E [s`ne`gnκn(g−n, ε`, η`)] = E [s`ne`E [gn | s, e, g−n, ε, η`]κn(g−n, ε`, η`)] = 0, (101)

64As explained by Adão et al. (2019), the problem that this “AKM0” confidence interval addresses generalizes the
standard finite-sample bias of cluster-robust standard errors with few clusters (Cameron and Miller 2015). With few or
heavy-tailed shocks, estimates of the residual variance will tend to be biased downwards, leading to undercoverage of
confidence intervals based on standard errors that do not impose the null.

65For example in Stata one can use the ivreg2 overidentification test statistic from regressing ȳ⊥n − β0x̄⊥n on qn with
no endogenous variables and with gn specified as the instrument (again with sn weights).
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while the expectation of the second is

E
[
s`ne`gn

∫ gn

−∞

∂

∂gn
y(x1([γ; g−n], η`1), . . . xR([γ; g−n], η`R), ε`)dγ

]
= E

[
s`ne`

∫ ∞
−∞

∫ gn

−∞
gn

∂

∂gn
y(x1([γ; g−n], η`1), . . . xR([γ; g−n], η`R), ε`)dγdFn(gn | I)

]
= E

[
s`ne`

∫ ∞
−∞

∂

∂gn
y(x1([γ; g−n], η`1), . . . xR([γ; g−n], η`R), ε`)

∫ ∞
γ

gndFn(gn | I)dγ

]
(102)

where Fn(· | I) denotes the conditional distribution of gn. Thus

E [s`ne`gny`] = E
[
s`ne`

∫ ∞
−∞

∂

∂gn
y(x1([γ; g−n], η`), . . . xR([γ; g−n], η`), ε`)µn(γ | I)dγ

]
=
∑
r

E
[∫ ∞
−∞

s`ne`α`rπ`rn([γ; g−n])µn(γ | I)β̃`rn(γ)dγ

]
(103)

where

µn(γ | I) ≡
∫ ∞
γ

gndFn(gn | I).

= (E [gn | gn ≥ γ, I]− E [gn | gn < γ, I])Pr (gn ≥ γ | I) (1− Pr (gn ≥ γ | I)) ≥ 0 a.s.

(104)

Similarly

E [s`ne`gnx`] =
∑
r

E
[∫ ∞
−∞

s`ne`α`rπ`rn([γ; g−n])µn(γ | I)dγ

]
. (105)

Combining equations (103) and (105) completes the proof, with

ω`rn(γ) = s`ne`α`rµn(γ | I)π`rn([γ; g−n]) ≥ 0 a.s. (106)

B.4 Proposition A2

To prove (22), we aggregate (21) across industries within a region using E`n weights:

y` = (β0 − β1)x` + ε`, (107)
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where ε` =
∑
n s`nε`n. The shift-share instrument z` is relevant because

E

[∑
`

e`x`z`

]
=
∑
`

e`E

[∑
n

s`n (π̄gn + η`n) ·
∑
n′

s`n′gn′

]

=
∑
`,n

e`s
2
`nπ̄σ

2
g

≥ H̄Lπ̄σ
2
g , (108)

while exclusion holds because

E

[∑
`

e`z`ε`

]
=
∑
`

e`E

[∑
n

s`nε`n ·
∑
n′

s`n′gn′

]

= 0. (109)

Thus by an appropriate law of large numbers, β̂ = β0 − β1 + op(1).

To study β̂ind, we aggregate (21) across regions (again with E`n weights):

yn = β0xn − β1

∑
`

ω`n
∑
n′

s`n′x`n′ + εn, (110)

for εn =
∑
` ω`nε`n. The resulting IV estimate yields

β̂ind − β0 =

∑
n snyngn∑
n snxngn

− β0

=

∑
n sn (−β1

∑
` ω`n

∑
n′ s`n′x`n′ + εn) gn∑

n snxngn
. (111)

The expected denominator of β̂ind is non-zero:

E

[∑
n

snxngn

]
=
∑
n

snE

[∑
`

ω`n (π̄gn + η`n) gn

]

=
∑
n

snω`nπ̄σ
2

=
∑
n

En
E
· E`n
E

π̄σ2

= π̄σ2, (112)

while the expected numerator is

E

[∑
n

sn

(
−β1

∑
`

ω`n
∑
n′

s`n′x`n′ + εn

)
gn

]
= −β1

∑
n,`

snω`ns`nπ̄σ
2

= −β1HLπ̄σ
2, (113)
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where the last equality follows because

∑
n,`

snω`ns`n =
∑
n,`

En
E

E`n
En

E`n
E`

=
∑
n,`

E`
E

(
E`n
E`

)2

=
∑
n,`

e`s
2
`n

= HL. (114)

Thus by an appropriate law of large numbers,

β̂ind = β0 − β1HL + op(1). (115)

B.5 Proposition A3

By appropriate laws of large numbers,

β̂ =
E [
∑
`E` (

∑
n s`ny`n) (

∑
n′ s`n′gn′)]

E [
∑
`E` (

∑
n s`nx`n) (

∑
n′ s`n′gn′)]

+ op(1)

=

∑
`,nE`s

2
`nπ`nσ

2
nβ`n∑

`,nE`s
2
`nπ`nσ

2
n

+ op(1)

=

∑
`,nE`ns`nπ`nσ

2
nβ`n∑

`,nE`ns`nπ`nσ
2
n

+ op(1) (116)

while

β̂ind =

∑
nEnyngn∑
nEnxngn

=
E [
∑
nEn (

∑
` ω`ny`n) gn]

E [
∑
nEn (

∑
` ω`nx`n) gn]

+ op(1)

=

∑
`,nEnω`nπ`nσ

2
nβ`n∑

`,nEnω`nπ`nσ
2
n

+ op(1)

=

∑
`,nE`nπ`nσ

2
nβ`n∑

`,nE`nπ`nσ
2
n

+ op(1). (117)
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B.6 Proposition A4

By definition of ε̄n,

ε̄n =

∑
` e`s`n (

∑
n′ s`n′νn′ + ε̌`)∑
` e`s`n

≡
∑
n′

αnn′νn′ + ¯̌εn, (118)

for αnn′ =
∑

` e`s`ns`n′∑
` e`s`n

and ¯̌εn =
∑

` e`s`nε̌`∑
` e`s`n

. Therefore,

Var [ε̄n] =
∑
n′

σ2
n′α2

nn′ + Var [¯̌εn]

≥ σ2
να

2
nn, (119)

and

max
n

Var [ε̄n] ≥ σ2
ν max

n
α2
nn. (120)

To establish a lower bound on this quantity, observe that the sn-weighted average of αnn satisfies:

∑
n

snαnn =
∑
n

sn

∑
` e`s

2
`n

sn

= HL. (121)

Since
∑
n sn = 1, it follows that maxn αnn ≥ HL and therefore maxn Var [ε̄n] ≥ σ2

νH
2
L. Since HL →

H̄ > 0, we conclude that, for sufficiently large L, maxn Var [ε̄n] is bounded from below by any positive

δ < σ2
νH̄

2.

B.7 Proposition A5

We prove each part of this proposition in turn.

1. Expanding the moment condition yields:

E

[∑
`

e`ε`ψ`,LOO

]
=
∑
`

E

[
e`ε`

∑
n

s`n

∑
`′ 6=` ω`′nψ`′n∑
`′ 6=` ω`′n

]

=
∑
`

e`
∑
n

s`n

∑
`′ 6=` ω`′nE [ε`ψ`′n]∑

`′ 6=` ω`′n

= 0. (122)

2. The assumption of part (1) is satisfied here, so E [
∑
` e`ε`ψ`,LOO] = 0. We now establish that

E
[
(
∑
` e`ε`ψ`,LOO)

2
]
→ 0, which implies

∑
` e`ε`ψ`,LOO

p→ 0 and thus consistency of the LOO
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SSIV estimator provided it has a first stage:

E

(∑
`

e`ε`ψ`,LOO

)2
 =

∑
`1,`2,n1,n2,
`′1 6=`1,`

′
2 6=`2

e`1e`2s`1n1
s`2n2

ω`′1n1∑
`6=`1 ω`n1

ω`′2n2∑
`6=`2 ω`n2

E
[
ε`1ε`2ψ`′1n1

ψ`′2n2

]

≤
∑

(`1,`2,`′1,`
′
2)∈J ,

n1,n2

e`1e`2s`1n1s`2n2

ω`′1n1∑
`6=`1 ω`n1

ω`′2n2∑
`6=`2 ω`n2

·B → 0.

(123)

Here the second line used the first regularity condition, which implies that E
[
ε`1ε`2ψ`′1n1

ψ`′2n2

]
=

0 whenever there is at least one index among {`1, `2, `′1, `′2} which is not equal to any of the others,

i.e. for all (`1, `2, `
′
1, `
′
2) 6∈ J .

3. We show that under the given assumptions on s`n, e`, and ω`n, the expression in (39) is bounded

by 4N/L:

∑
(`1,`2,`′1,`

′
2)∈J ,

n1,n2

e`1e`2s`1n1s`2n2

ω`′1n1∑
`6=`1 ω`n1

ω`′2n2∑
`6=`2 ω`n2

=
∑

(`1,`2,`′1,`′2)∈J

1

L2

ω`′1n(`1)∑
`6=`1 ω`n(`1)

ω`′2n(`2)∑
`6=`2 ω`n(`2)

=
1

L2

∑
(`1,`2,`′1,`

′
2)∈J

n(`′1)=n(`1),

n(`′2)=n(`2)

1

Ln(`1) − 1

1

Ln(`2) − 1

=
1

L2

∑
n

2Ln (Ln − 1)

(Ln − 1)
2 ≤ 4

N

L
. (124)

Here the second line plugs in the expressions for s`n and e`, and the third line plugs in ω`n. The

last line uses the fact that any tuple (`1, `2, `
′
1, `
′
2) ∈ J such that n(`′1) = n(`1) and n(`′2) = n(`2)

has all four elements exposed to the same shock n. Moreover, it is easily verified that all of these

tuples have a structure (`A, `B , `A, `B) or (`A, `B , `B , `A) for any `A 6= `B exposed to the same

shock. Therefore, there are 2Ln (Ln − 1) of them for each n. Finally, Ln

Ln−1 ≤ 2 as Ln ≥ 2.
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B.8 Proposition A6

National industry employment satisfies En =
∑
`E`n; log-linearizing this immediately implies (48).

To solve for g`n, log-linearize (45), (46), and (47):

Ê` = φŴ` + ε`, (125)

g`n = g∗n + ξ̂`n − σŴ`, (126)

Ê` =
∑
n

s`ng`n. (127)

Solving this system of equations yields

Ŵ` =
1

σ + φ

(∑
n

s`n

(
g∗n + ξ̂`n

)
− ε`

)
(128)

and expression (49).
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C Appendix Figures and Tables

Figure C1: Industry-Level Variation in the Autor et al. (2013) Setting
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Notes: This figure shows binned scatterplots of shock-level outcome and treatment residuals, ȳ⊥nt and x̄
⊥
nt, corresponding

to the SSIV specification in column 3 of Table 4. The manufacturing industry shocks, gnt, are residualized on period
indicators (with the full-sample mean added back) and grouped into fifty weighted bins, with each bin representing
around 2% of total share weight snt. Lines of best fit, indicated in red, are weighted by the same snt. The slope
coefficients equal 5.71 × 10−3 and −1.52 × 10−3, respectively, with the ratio (-0.267) equalling the SSIV coefficient in
column 3 of Table 4.
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Table C1: Shift-Share IV Estimates of the Effect of Chinese Imports on Other Outcomes

(1) (2) (3) (4) (5) (6) (7)

Unemployment growth 0.221 0.217 0.063 -0.014 0.104 0.107 0.235

(0.049) (0.046) (0.060) (0.079) (0.079) (0.083) (0.178)

NILF growth 0.553 0.534 0.098 0.149 0.142 0.117 0.187

(0.185) (0.183) (0.133) (0.083) (0.155) (0.161) (0.297)

Log weekly wage growth -0.759 -0.607 0.227 0.320 0.145 0.063 -0.211

(0.258) (0.226) (0.242) (0.209) (0.264) (0.260) (0.651)

# of industry-periods 796 794 794 794 794 794 794

# of region-periods 1,444 1,444 1,444 1,444 1,444 1,444 1,444

Notes: This table extends the analysis of Table 4 to different regional outcomes in Autor et al. (2013): unemployment
growth, labor force non-participation (NILF) growth, and log average weekly wage growth. The specifications are
otherwise the same as in the corresponding columns of Table 4. SIC3-clustered exposure-robust standard errors are
computed using equivalent industry-level IV regressions and reported in parentheses.
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Table C2: Alternative Standard Errors in the Autor et al. (2013) Setting

(1) (2) (3) (4) (5) (6) (7)

Coefficient -0.596 -0.489 -0.267 -0.314 -0.310 -0.290 -0.432

Table 4 SE (0.114) (0.100) (0.099) (0.107) (0.134) (0.129) (0.205)

State-clustered SE (0.099) (0.086) (0.086) (0.097) (0.104) (0.101) (0.193)

Adão et al. (2019) SE (0.126) (0.116) (0.113) (0.107) (0.143) (0.140) (0.192)

Confidence interval with [-1.059, [-0.832, [-0.568, [-0.637, [-0.705, [-0.699, [-1.207,

the null imposed -0.396] -0.309] -0.028] -0.018] -0.002] 0.002] 0.122]

Notes: This table extends the analysis of Table 4 by reporting conventional state-clustered standard errors, the Adão
et al. (2019) SIC3-clustered standard errors, and confidence intervals based on the equivalent industry-level IV regression
with the null imposed, as discussed in Section 5.1. The specifications are the same as those in the corresponding columns
of Table 4; for comparison we repeat the coefficient estimates and exposure-robust standard errors from that table.
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Table C3: Period-Specific Effects in the Autor et al. (2013) Setting

(1) (2) (3) (4)

Mfg. emp. Unemp. NILF Wages

Coefficient (1990s) -0.491 0.329 1.209 -0.649

(0.266) (0.155) (0.347) (0.571)

Coefficient (2000s) -0.225 0.014 -0.109 0.391

(0.103) (0.083) (0.123) (0.288)

Notes: This table reports coefficient estimates for versions of the shift-share IV specification in column 3 of Tables 4 and
C1, allowing the treatment coefficient to vary by period. This specification uses two endogenous treatment variables
(treatment interacted with period indicators) and two corresponding shift-share instruments. The controls are the same
as in column 3 of Table 4. SIC3-clustered exposure-robust standard errors are obtained by the equivalent shock-level
regressions and reported in parentheses.
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Table C4: Robustness to Acemoglu et al. (2016) Controls in the Autor et al. (2013) Setting

(1) (2) (3) (4)

Coefficient -0.200 -0.293 -0.241 -0.232

(0.093) (0.125) (0.115) (0.122)

Regional controls (w`t)

Autor et al. (2013) controls � � � �

Period-specific lagged mfg. share � � � �

Lagged 10-sector shares � � �

Local Acemoglu et al. (2016) controls � �

Local Acemoglu et al. (2016) pre-trends � � �

SSIV first stage F -stat. 118.9 53.3 65.9 56.6

# of region-periods 1,444

# of industry-periods 794

Notes: This table extends Table 4 by adding exposure-weighted sums of the other industry-level controls in Table 3 of
Acemoglu et al. (2016). Pre-trends controls refer to the changes in industry log average wages and in the industry share
of total U.S. employment over 1976–91; see the notes to Table 4 notes for details on the other controls and calculation
of the SIC3-clustered exposure-robust standard errors (in parentheses) and first-stage F-statistics.
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Table C5: Overidentified Shift-Share IV Estimates of the Effect
of Chinese Imports on Manufacturing Employment

(1) (2) (3)

Coefficient -0.238 -0.247 -0.158

(0.099) (0.105) (0.078)

Shock-level estimator 2SLS LIML GMM

Effective first stage F -statistic 15.10

χ2(7) overid. test stat. [p-value] 10.92 [0.142]

Notes: Column 1 of this table reports an overidentified estimate of the coefficient corresponding to column 3 of Table 4,
obtained from a two-stage least squares regression of shock-level average manufacturing employment growth residuals
ȳ⊥nt on shock-level average Chinese import competition growth residuals x̄⊥nt, instrumenting by the growth of imports
(per U.S. worker) in each of the eight non-U.S. countries from ADH, gnk for k = 1, . . . , 8, controlling for period fixed
effects qnt, and weighting by average industry exposure snt. Column 2 reports the corresponding limited information
maximum likelihood estimate, while column 3 reports a two-step optimal generalized method of moments estimate.
Standard errors, the optimal weight matrix, and the Hansen (1982) χ2 test of overidentifying restrictions all allow for
clustering of shocks at the SIC3 industry group level. The first-stage F -statistic is computed by a shift-share version of
the Montiel Olea and Pflueger (2013) method described in Appendix A.11.
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Table C6: Bartik (1991) Application

(1) (2)

Leave-one-out estimator 1.277 1.300

(0.150) (0.124)

Conventional estimator 1.215 1.286

(0.139) (0.121)

H heuristic 1.32 10.50

Population weights �

# of region-periods 2,166

Notes: Column 1 replicates column 2 of Table 3 from Goldsmith-Pinkham et al. (2020), reporting two SSIV estimators
of the inverse labor supply elasticity, with and without the leave-one-out adjustment. Regions are U.S. commuting
zones; periods are 1980s, 1990s, and 2000s; all specifications include controls for 1980 regional characteristics interacted
with period indicators (see Goldsmith-Pinkham et al. (2020) for more details). Standard errors allow for clustering by
commuting zones. Column 1 uses 1980 population weights, while column 2 repeats the same analysis without population
weights. The table also reports the H heuristic for the importance of the leave-one-out adjustment proposed in Appendix
A.9 (equation (42)).
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Table C7: Simulated 5% Rejection Rates for Shift-Share and Conventional Shock-Level IV

SSIV Shock-level IV

Exposure-Robust SE Robust SE

Null not Null Null not Null

Imposed Imposed Imposed Imposed

(1) (2) (3) (4)

Panel A: Benchmark Monte-Carlo Simulation

(a) Normal shocks 7.6% 5.2% 6.8% 5.0%

(b) Wild bootstrap (benchmark) 8.0% 4.9% 14.2% 4.0%

Panel B: Higher Industry Concentration

(c) 1/HHI = 50 5.6% 4.9% 8.4% 6.1%

(d) 1/HHI = 20 7.3% 5.5% 7.0% 10.7%

(e) 1/HHI = 10 9.0% 8.2% 14.8% 23.8%

Panel C: Smaller Numbers of Industries or Regions

(f) N = 136 (SIC3 industries) 5.4% 4.5% 7.7% 4.3%

(g) N = 20 (SIC2 industries) 7.7% 3.7% 7.9% 3.2%

(h) L = 100 (random regions) 9.7% 4.5% N/A

(i) L = 25 (random regions) 10.4% 4.3% N/A

Notes: This table summarizes the results of the Monte-Carlo analysis described in Appendix A.12, reporting the
rejection rates for a nominal 5% level test of the true null that β∗ = 0. In all panels, columns 1 and 2 are simulated
from the SSIV design based on Autor et al. (2013), as in column 3 of Table 4, while columns 3 and 4 are based on
the conventional industry-level IV in Acemoglu et al. (2016). Column 1 uses exposure-robust standard errors from the
equivalent industry-level IV and column 2 implements the version with the null hypothesis imposed. Columns 3 and 4
parallel columns 1 and 2 when applied to conventional IV. In Panel A, the simulations approximate the data-generating
process using a normal distribution in row (a), with the variance matched to the sample variance of the shocks in the
data after de-meaning by year, while wild bootstrap is used in row (b), following Liu (1988). Panel B documents the
role of the Herfindahl concentration index across industries, varying 1/HHI from 50 to 10 in rows (c) to (e), compared
with 191.6 for shift-share IV and 189.7 for conventional IV. Panel C documents the role of the number of regions and
industries. We aggregate industries from 397 four-digit manufacturing SIC industries into 136 three-digit industries in
row (f) and further into 20 two-digit industries in row (g). In rows (h) and (i), we select a random subset of region in
each simulation. See Appendix A.12 for a complete discussion.
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Table C8: First Stage F -statistics as a Rule of Thumb: Monte-Carlo Evidence

Number of Instruments

1 5 10 25 50

(1) (2) (3) (4) (5)

Panel A: SSIV

5% rejection rate 8.0% 8.9% 11.5% 15.0% 23.0%

Median bias, % of std. dev. 0.3% 14.6% 28.3% 43.2% 72.1%

Median first-stage F 54.3 14.8 9.1 6.4 7.7

Panel B: Conventional Shock-Level IV

5% rejection rate 13.6% 13.9% 14.9% 17.7% 22.0%

Median bias, % of std. dev. -0.3% 10.1% 27.1% 57.0% 80.2%

Median first-stage F 59.4 19.4 13.2 10.0 11.2

Number of simulations 10,000 3,000 1,500 500 300

Notes: This table reports the results of the Monte-Carlo analysis with many weak instruments, described in Appendix
A.12. Panel A is simulated from the SSIV design based on Autor et al. (2013), as in column 3 of Table 4, while Panel B
is based on the conventional industry-level IV in Acemoglu et al. (2016). The five columns increase the number of shocks
J = 1, 5, 10, 25, and 50, with only one shock relevant to treatment. The table reports the rejection rates corresponding
to a nominal 5% level test of the true null that β∗ = 0, the median bias of the estimator as a percentage of the simulated
standard deviation, and the median first-stage F -statistic obtained via the Montiel Olea and Pflueger (2013) method
(extended to shift-share IV in Panel A, following Appendix A.11). See Appendix A.12 for a complete discussion.
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