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“On the one hand, taxation is an essential attribute of commercial society... on the other hand, it

is almost inevitably ... an injury to the productive process.”

Schumpeter, Capitalism, Socialism, and Democracy (1942), p. 198.

1 Introduction

Do taxes affect innovation? If innovation is the result of intentional effort and taxes reduce the

expected net return from it, the answer to this question should be yes. Yet, when we think

of path-breaking superstar inventors from history such as Wallace Carothers (DuPont), Edwin

Land (Polaroid), or William Shockley (Bell Labs and Shockley Semiconductor) we often imagine

hard-working and driven scientists, who ignore financial incentives and merely seek intellectual

achievement. More generally, if taxes affect the amount of innovation, do they also affect the

quality of the innovations produced, where inventors decide to locate and whether they work for

firms or remain self-employed? Do corporate or personal income taxes play a bigger role?

Answers to these questions, while crucial to a clearer understanding of the impacts of taxation,

have remained elusive due to a paucity of empirical evidence, especially over the long-run. Although

the United States experienced major changes in its tax code throughout the twentieth century, we

do not know how these changes influenced innovation at the individual, corporate or state levels.

In this paper, we bridge the data gap and provide new evidence on the impact of both personal

and corporate income taxation at the individual inventor level and the state-level over the twentieth

century. Our analysis leverages four historical datasets, two of which are newly constructed. First,

we assemble a panel dataset on inventors from digitized patent data since 1920, allowing us to track

inventors over time and observe their innovations, citations, place of residence, technological fields,

and the firm (if any) to which they assigned their patents. Second, we combine the new inventor-

level panel data with a new dataset on historical state-level corporate income taxes, compiled from a

range of handbooks and reference works. Third, we incorporate a database on personal income tax

rates from Bakija (2017). Finally, we use data on additional innovation-related outcomes, such as

patent values from Kogan et al. (2017), and state-level value added, manufacturing share, average

weekly earnings, establishment size, and total payroll from Allen (2004) and Haines (2010).

Our empirical analysis starts at the macro, state-level and then turns to the micro individual-

inventor level. We provide a framework to link the micro-level responses to taxes to macro level

aggregate elasticities. Individual inventors can respond to taxes by adjusting their time and resource

inputs for innovation, by switching between the corporate and non-corporate sector, and by moving

to another state. These responses can lead to changes in the quantity, quality, location, and sectoral

composition of innovation. The observed macro-level elasticities will be the combination of all these

micro-level responses.

For the interpretation of our results, note that inventors who work for companies (“corporate

inventors”) may react differently to taxes than individual “garage” inventors (“non-corporate”)
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operating outside the boundaries of firms, as they face divergent incentives and may have distinct

motivations. Also, the impact of corporate tax on individual inventors are the result of a complex

chain of effects, including how taxes affect corporate income and firms’ own tax responses, and how

the surplus is shared between firms and inventors. Due to this complexity and the intricacies of

the corporate tax code it is difficult to precisely capture the effective corporate tax burden that is

relevant for inventors. Although our new data collection of detailed rates and tax base variables

allows us to get much finer measures, our estimated corporate tax effects should be interpreted as

reduced-form effects.

We implement several distinct and complementary strategies to identify the impact of taxes on

innovation. First, we control for a detailed set of fixed effects, including state, year and, at the

individual-level, inventor fixed effects, plus individual or state-level time-varying controls. Wherever

possible, we exploit within-state-year tax differentials between individuals in different tax brackets

(e.g., the top tax bracket versus the median one) and thus also include state × year fixed effects.

These controls filter out other policy variations or the effect of contemporaneous economic circum-

stances in the state. Second, we use an instrumental variable approach which predicts the total

tax burden facing a firm or inventor – which is a composite of state and federal taxes – using only

changes in the federal tax rate, which are plausibly exogenous to any individual state’s economic

conditions. Finally, we use sharp tax changes in an event study design, and study the longer-run

dynamic effects using distributed lag models.

Our findings can be summarized as follows. At the macro state level, personal and corporate

income taxes have significant negative effects on the quantity of innovation, as captured by the

number of patents, and on the number of inventors residing in the state. The elasticities range from

0.8 to 1.8 for personal net-of-tax rates and 1.3 to 2.8 for corporate net-of-tax rates, depending on

how flexible time-varying state controls we allow for. The quality of innovation, as measured by the

citations of patents, moves in proportion to the quantity, so that average quality is not significantly

affected by taxation. The share of patents produced by firms as opposed to individuals is strongly

negatively related to the corporate tax rate, with an elasticity around 0.6. Applying our framework

to these estimates (in Section 5.6) confirms that these macro elasticities are consistent with the

aggregation of the elasticities estimated at the individual-level.

At the individual inventor level, personal income taxes have significant negative effects on

inventors’ likelihood of having any patent or the number of their patents. They also influence

inventors’ likelihood of producing a highly cited patent or one that generates substantial value for

the firm, but with small effects on the quality of the average patent. The elasticity of patents to the

personal income net-of-tax rate is around 0.8, and the elasticity of citations is around 1. Corporate

income taxes only shape the innovation output of corporate inventors rather than non-corporate

inventors. The elasticity of patents of corporate inventors with respect to the net-of-tax corporate

rate is 0.49 and that of their citations is 0.46.

We also find that inventors are significantly less likely to locate in states with higher taxes. The

elasticity to the net-of-tax personal rate of the number of inventors residing in a state is between
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0.10 and 0.15 for inventors from that state and 1.0 to 1.5 for out-of-state inventors, with an overall

average mobility elasticity of 0.34. The corresponding elasticities for the corporate tax rate are 0.4

and 2.9, with an average mobility elasticity of 1. Corporate inventors’ location choices are only

responsive to the corporate income tax, with an elasticity of 1.25, whereas non-corporate inventors

take into account both corporate and personal income taxes; their elasticity with respect to net-

of-tax personal rates is 0.72 or 0.6 with respect to the net-of-tax corporate rate. In a nutshell, the

state-level effects of the corporate response come predominantly from mobility responses, which

are more likely to be zero-sum at the state level; while the effects of the personal income tax come

from both mobility and innovation output responses.

Our paper contributes to several strands of the growing literature on the impact of taxes. With

respect to migration decisions, Kleven et al. (2014) find very high tax elasticities of 1.6 of the

number of high income foreigners in Denmark using a preferential tax scheme since 1992.1 Kleven,

Landais, and Saez (2013) find elasticities of 1 for foreign and 0.15 for domestic football players in

the EU. Akcigit, Baslandze, and Stantcheva (2016) show that the international mobility of star

inventors in response to top tax rates since the 1970s is significant, with an estimated elasticity of

the number of foreign inventors of 1 and domestic inventors of 0.03. Cross-country elasticities are

expected to be smaller than the cross-state ones estimated in this paper.2 Most closely related are

Moretti and Wilson (2014) and Moretti and Wilson (2017) which study the effects of state taxes on

the migration of star scientists across US states, finding a high elasticity of 1.8 to personal taxes of

the top 5% of inventors. We focus on a longer historical period, and on the less-studied corporate

tax as another potential driver of the location decisions of inventors.

Our work also adds to the literature on the effects of state-level taxes on employment and

business activity. On the personal tax side, Zidar (2018) studies how tax changes for different

income groups affect aggregate economic activity and finds large elasticities to tax cuts for lower-

income groups: a tax cut for the bottom 90% that amounts to 1% of state GDP results in around

3.4 percentage points of employment growth over a 2-year period, while the corresponding estimate

for the top 10% is insignificantly different from zero. Tax changes for the bottom 90% percent

have large impacts on both the extensive margin and intensive margin of labor supply, with a 1%

of state GDP tax increase reducing labor force participation rates by 3.5 percentage points and

hours by 2%. Keane and Rogerson (2015), reviewing the literature on micro and macro effects

conclude that credible estimates of the macro-level compensated (Hicksian) elasticities are in the

range of 0.5-1.0; in our case labor supply responses are only one of the several components driving

innovation responses. Also informative is a comparison to the overall taxable income elasticities

estimated in the literature for more recent decades (typically since the 1980s): 0.4 overall, and 0.57

for top earners in Gruber and Saez (2002); 0.30 in Giertz (2007); 0.35-0.97 in Moffitt and Wilhelm

1By contrast, Young and Varner (2011) study the effects of a change in the millionaire tax rate in New Jersey
on migration and find small elasticities. Young et al. (2016) consider the migration of millionaires in the US using
administrative data.

2Liebig, Puhani, and Sousa-Poza (2007) study mobility within Switzerland, across cantons and find small sensi-
tivities to tax rates.
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(2000); and 0.5-0.6 with appropriate controls in Saez et al. (2012). Patents and citations at the

individual level seem to have elasticities that are of comparable magnitudes to these elasticities of

taxable income overall.

Regarding state-level corporate taxes in the US, Suárez Serrato and Zidar (2016) quantify their

incidence using a spatial equilibrium model and find large elasticities, as do we. They show that

a 1% cut in business taxes causes a 3.35-4.07% increase in establishment growth over a ten-year

period; a 3.74-4.28 increase in population growth, and a 0.78-1.45 percent increase in wage growth.

Patel et al. (2017) find an elasticity of taxable corporate income of 0.9. Giroud and Rauh (2017)

use establishment-level data to estimate the effects of state taxes on business activity (employment

and the number of establishments) and find smaller effects. Our paper differs in the new data we

use, the range of outcomes considered (patents, individual level mobility, and additional economic

variables such as value added, employment, or income per capita), and the long time period.3

More closely related to innovation, Cullen and Gordon (2006, 2007) analyze the effects of per-

sonal income taxes’ levels and progressivity on startup activity and risk-taking by entrepreneurs.4

A related strand of this literature studies the effects of policies like R&D tax credits on innovation.

Bloom et al. (2002) and Bloom and Griffith (2001) find a positive impact of these incentives on

the level of R&D intensity over both short and longer time horizons. On the other hand, Goolsbee

(2003) and Goolsbee (1998) argue that R&D tax credits mostly push up workers’ wages. We always

control for state-level R&D tax credits in our regressions.5

The rest of the paper is organized as follows. Section 2 provides a conceptual framework for

linking micro individual-level and macro state-level elasticities. Section 3 describes the data and

some key summary statistics. Section 4 outlines the state-level analysis, results, and robustness

checks, while Section 5 focuses on the inventor-level analysis. Section 6 concludes.

2 Conceptual Framework: Micro and Macro Effects of Taxes on

Innovation

We start with a simple framework to think about aggregation from the micro-level inventor elastic-

ities to the state-level macro elasticities. Like other economic activities, innovation requires both

3In Section 4, we review further macro estimates based on federal-level variation, which tend to be large.
4Our work is more distantly related to numerous papers studying the origins of innovation at the micro-level.

Recent contributions include Jones (2010) and Jones and Weinberg (2011), which show the effect of inventor age,
Jones et al. (2008), which focuses on collaborations of inventors across universities, Wuchty, Jones, and Uzzi (2007),
which considers the role of team production, and Jones (2009) on the growing trend towards specialization. Aghion
et al. (2017) study the social origins and IQ of inventors in Finland. Bell et al. (2019) and Akcigit et al. (2017) study
the parental backgrounds of inventors in the US on, respectively, modern data and historical data. Our data allows us
to extend this literature by considering the impact of taxation over a long time period for a multitude of innovation
outcomes (quantity, quality, and location) that arise from both inventor-level and firm-level behavior. Jones (2018)
theoretically and quantitatively studies how to tax top incomes in a world of innovation and positive externalities
from ideas.

5Using a regression discontinuity design based around firm size cutoffs for R&D tax subsidies in the UK, Deche-
zleprêtre et al. (2016) find significant effects of subsidies on both R&D spending and patenting.
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time and material inputs to generate outputs, and personal and corporate income taxes can affect

the net returns to these investments. At the individual inventor level, the main choice margins are

i) the level of inputs (time and materials), ii) whether to operate in the corporate sector (by either

incorporating or working for a company) or in the non-corporate sector (by being self-employed),

iii) and which state to live in.6

The responses to taxes may differ for corporate and non-corporate inventors. First, firms supply

a share of the inputs, in accordance with their own tax incentives, and these firm inputs could be

complementary to inventors’ inputs. Thus, firms make part of the decisions in lieu of inventors and

are likely driven by net returns. The response to taxes for corporate inventors is capturing a mix

of their own and their firm’s responses. Second, how taxes filter through to the inventor’s payoff

depends on surplus sharing between firms and inventors and on the strength of performance-based

pay (see Van Reenen (1996), Card et al. (2014), Aghion et al. (2018), and Kline et al. (2019)).

Finally, corporate inventors can have different preferences and motivations than non-corporate

ones, e.g., be mainly driven by economic net returns rather than scientific motivation.

Conditional on being an inventor employed by a firm, corporate taxes should not affect input

decisions if innovation inputs, including effort, are all perfectly expensed. More generally, however,

one would expect corporate taxes to not be neutral if there are unobserved inputs (for tax purposes),

or if firms are credit-constrained and use their retained profits or earnings to finance subsequent

innovation, or hire inventors. In addition, even if corporate taxes did not distort innovation inputs

conditional on being employed by a firm and in a given state, they do affect the total net payoff

from being a corporate inventor in that state. Thus, they can influence the (extensive margin)

occupational, sectoral (corporate or non-corporate), and geographical location choices.

To capture these inventor-level responses to taxes, consider inventor i in state s and year t, who

produces a quantity yist and a quality qist of innovation. Inventors can be in the corporate sector

(c) or in the non-corporate (personal) sector (p); they can also be from state s (d for “domestic”)

or from another state (o for “out of state”). Let Id,ct be the set of corporate inventors from state s

who locate in the state at time t, Io,ct be the set of out of state corporate inventors locating in s at

time t, and Ict = Id,ct ∪ I
o,c
t the set of all corporate inventors in the state. Similarly, let the sets of

non-corporate inventors be Id,pt and Io,pt . Idt = Id,ct ∪ I
d,p
t is then the set of inventors from the state.

Innovation output depends on the total effective corporate and personal income net-of-tax rates

(that combine federal and state level taxes) of inventor i if they chose to locate in state s, which

we can write as:

yist = yi(1− τ cst, 1− τ
p
st)

Denote by εcY,p := d log(yist)
d log(1−τp) the innovation production elasticity of corporate inventors with respect

to the net-of-tax personal rate (1− τp) and their elasticity with respect to the corporate net-of-tax

rate by εcY,c := d log(yist)
d log(1−τc) . The corresponding elasticities for non-corporate inventors are εpY,p and

6One margin of response which we will abstract from is the choice of becoming an inventor in the first place. By
construction, the patent data only contains people who patent at least once.
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εpY,c. The production of the quality of innovation may also depend on net-of-tax returns, i.e.:

qist = qi(1− τ cst, 1− τ
p
st),

with elasticities εcQ,c, ε
c
Q,p, ε

p
Q,c, and εpQ,p.

We assume that the production of innovation elasticities can differ across corporate and non-

corporate inventors, but are homogeneous within these groups.7 These elasticities blend the possible

behavioral responses outlined above, but also technological parameters of the innovation production

function, such as how elastic innovation quantity and quality are to inputs. Imagine at one polar

extreme, that testing twice the number of chemical compounds would lead to at least twice as

many discoveries of new drugs; in this case, innovation quantity is very elastic to inputs. At the

other extreme, recall the (fictitious) parable of Newton sitting under a tree, the apple falling,

and innovation happening. This exemplifies a perfectly inelastic innovation production function.

Quality as well may be highly elastic or, on the contrary, out of the control of inventors.

Inventors also choose which state to work in. Denote by ηdp :=
d log(

∫
i∈Id di)

d log(1−τp) the elasticity with

respect to the personal net-of-tax rate of the number of inventors from the state who reside in the

state and symmetrically ηop the elasticity with respect to the personal net-of-tax rate of out-of-state

inventors (who can potentially move into the state). Denote the corresponding migration elasticities

with respect to the net-of-tax corporate rates by ηdc and ηoc .

At the state level, total innovation Y :=
∫
i∈Id∪Io yistdi has an elasticity with respect to the net-

of-tax rate 1 − τp that can be expressed as a function of the inventor-level innovation production

and migration elasticities:

εY,p :=
d log(Y )

d log(1− τp)
= γcY ε

c
Y,p + (1− γcY )εpY,p + γdY η

d
p + (1− γdY )ηop (1)

where γcY =
∫
i∈Ic yi
Y is the share of innovation produced by corporate inventors in the state; γdY =∫

i∈Id yi
Y is the share produced by inventors from the state. Similarly, the elasticity of innovation

quality, as measured by, e.g., total citations, is:

εQ,p :=
d log(Q)

d log(1− τp)
= γcQε

c
Q,p + (1− γcQ)εpQ,p + γdQη

d
p + (1− γdQ)ηop (2)

where γcQ =
∫
i∈Ic qi
Q with γcQ the share of citations accruing to corporate inventors and γdQ is the

share of citations accruing to inventors from the state.

The macro effects of taxes on total innovation quantity and quality are thus due to the individual-

level responses in innovation production and to the change in the number of innovators due to

migration. The latter can be viewed as a form of cross-state spillovers, which, in some cases are

7While we could in principle allow for further heterogeneity, this is the most relevant heterogeneity that we can
estimate in the data given our focus on corporate and personal tax rates.
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zero-sum from the point of view of the US as a whole.8 The higher the share of corporate patents

or citations, the closer the macro-level elasticities are to those of corporate inventors. The more

out-of-state inventors contribute to total patents or citations in a state, and the more the macro

elasticity is driven by the in-migration elasticity from other states, i.e., by cross-state spillovers.

The elasticities of the total number of inventors in state s to the personal and corporate net-

of-tax rate are simply:

εinventors,p = γdηdp + (1− γd)ηop εinventors,c = γdηdc + (1− γd)ηoc

where γd is the share of inventors living in the state who are from the state. The elasticity of the

share assigned is the elasticity of corporate patents minus the elasticity of all patents.

εshare assigned,p = εcorporate patents,p − εY,p

Thus, if corporate inventors are more elastic to taxes than non-corporate ones, e.g., if they are more

sensitive to net economic returns or more profit-driven, the share assigned would be increasing in

the net-of-tax rate.

We start by estimating the elasticities for different innovation outcomes at the macro level, e.g.,,

total patents, citations, total number of inventors, or the share of patents granted to companies.

We then estimate their components separately at the micro level by disentangling the production

elasticities and cross-state mobility elasticities. As we noted in the introduction and above, because

the effects of the corporate tax on individual inventors is the result of a series of impacts, depending

on how it affects corporate income and firms’ own tax responses, and how the surplus is shared

between firms and inventors, our estimated corporate tax effects should be interpreted as reduced-

form effects. In Section 5.6 we show that the aggregation from the micro to the macro level works

well quantitatively.

Dynamic Effects. The response to incentives for innovation can be dynamic. We will explicitly

consider this possibility using event studies (Section 4.3) and distributed lag models (Section 4.4).

The latter suggests that, as one may expect, there is a lag between changes in taxes and

changes in innovation outcomes because the process from the input stage to a finished innovation

takes time. Some new innovation may simply require scaling up already existing inputs, which can

happen very rapidly, e.g., providing existing highly-skilled R&D employees with more funding for

experimentation. Yet, developing other innovations may require a much lengthier process of trial

and error or adjusting scarce inputs sluggishly, e.g., having to find highly specialized researchers

to hire. In our benchmark analysis, we will thus use three-year lagged tax rates relative to the

application date of the patent. We also allow for a three-year window to measure individual-level

8There could be improvements in productivity from migration, if inventors move to more suitable places. In our
analysis, we will control for the “goodness-of-fit” of an inventor with a given state. Yet, migration that arises from
tax competition only is more likely to be zero-sum at the federal level.
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innovation outcomes.

Importantly, innovation can also be forward-looking because the initial investment may pay

off over a longer period. Forward-looking effects for tax responses will depend on the pattern of

payoffs from the innovation, on whether a given tax change is considered to be short-lived or more

persistent, and on how people form their future expectations about tax rates based on current

tax rates. These are common issues for empirical studies of taxation related to forward-looking

investments. We would expect lower elasticities to current or lagged tax rates – and, instead,

possibly significant elasticities to leading tax rates, i.e., “pre-trends” – if innovation payoffs are

more back-loaded, if agents are more forward-looking, and if future and current tax rates are less

correlated. If people were able to forecast future tax rates well, we could expect the leads of taxes

to matter significantly.

3 Data Construction and Descriptive Statistics

In this section, we describe the sources for, and the construction of, our new data. All the variables

are defined sequentially throughout the text and in more detail in Appendix A.1.

3.1 Historical Patent Data and Inventor Panel Data

The starting point of our inventor panel data are the digitized patent records detailed in Akcigit,

Grigsby, and Nicholas (2017) (hereafter, AGN). They contain information on almost every patent

granted by the United States Patent and Trademark Office (USPTO) since 1836, including the

home addresses of the first named inventor on each patent, the application year, and the patent’s

technology class. From 1920 onwards, the data also contain the name of every inventor listed on

the patent document, and the entity to which the patent was assigned, if applicable.9 Throughout

our analysis, we assign a patent to a given year based on its application year rather than its year

of eventual grant, as this is the date closest to the actual creation of the innovation.

The data contribution of the current paper relative to AGN is to transform these patent records

into a panel at the inventor level, by “disambiguating” them using a machine learning algorithm

that adapts and improves on the one in Lai et al. (2014). The full algorithm is described in Online

Appendix OA.1, where we also report results from checking its performance manually, by looking

for false positives and false negatives on a substantial subset of randomly selected records. Only

around 1.5% of records appear to be incorrectly grouped together into one “inventor;” a similar

share are incorrectly split when they appear to be the same inventor.10

9Using information on the inventors’ name and location, AGN match these patent records to decennial federal
censuses, which provide additional demographic information on inventors, and, crucially, their income levels in 1940.

10In addition, we have tested the sensitivity of our results to various alternative disambiguation routines, such
as ignoring middle name or assignee (for which information is more sparse in early periods), using automatically
generated training datasets or taking the Lai et al. (2014) disambiguation as a training dataset, shifting the threshold
for two records to be considered as belonging to the same inventor, and introducing additional blocking rounds into
the disambiguation. The core results of our paper are robust to these alternative disambiguation approaches. Our
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Table A1 summarizes the results of our disambiguation algorithm and compares them with

those of the benchmark for the modern period of Lai et al. (2014). Our disambiguation identifies

2.95 million US inventors who were jointly granted 5.3 million patents. There are 1.74 million US

based inventors with a total of 2.78 million patents for our benchmark sample period 1940 to 2000.

We also merge in all pairs of cited-citing patents since 1947 (the year in which comprehensive

citations of patents began), which we use to construct the total number of (forward) citations

received by a patent until 2010. Citations are an often-used marker of the quality of an innovation

(Hall et al., 2001; Trajtenberg, 1990). However, raw citation counts may be difficult to directly

interpret as patent quality, for a variety of reasons, such as trends or differences across technological

classes in the propensity to cite, and truncation of total citation counts for more recent years (i.e.,

more recent patents have had less time to accumulate citations). As a result, we adjust patents’

citation counts following the quasi-structural procedure laid out in Hall et al. (2001).11

Because we know patent assignment status, we can allocate inventors to corporate and non-

corporate categories following the assumption in Schmookler (1966) that non-assigned patents

provides “a first approximation” for identifying independent inventors who were active outside of

corporations.

We use patents as an outcome variable because they are a well-documented measure of inno-

vation, even though their use involves some limitations. Based on nineteenth century data Moser

(2005) found that the propensity to patent in the US could be low (at around 14% across industries)

but rose significantly in industries like chemicals by the early twentieth century due to the threat

of reverse-engineering (Moser, 2012, 2016). During the late twentieth century, Mansfield (1986)

found that the vast majority of patentable inventions were actually patented – 81% in chemicals,

for example, while recent data show extensive patenting in high-tech industries (Webb et al., 2018).

Our analysis investigates the responsiveness of raw patent counts to tax changes, but we also look

at quality-adjusted patents through their citations and market value. Hence, we are also able to

isolate the responsiveness of patents that had the highest economic impact. We also study inventors

(and their location), as well as a range of other economic outcomes described next.

Descriptive Statistics at the Inventor and State Level. Table 1 presents the core summary

statistics for our sample at the individual inventor and state levels. Additional summary statistics

on the control variables and additional outcomes used are in Table A2; more detailed moments of

the distributions of inventor career lengths, patents, citations, and mobility of inventors in Table

A3. Unless otherwise states, “citations” refer to our adjusted citation counts.

An inventor is considered “active” in any year between their first and last patent granted. 70%

of active inventors have a patent in any given three-year span and the average number of patents per

year is 0.68. 42% of inventors have at least 10 citations in any given three-year span. The average

time span for which an inventor appears in the patent data is 3.3 years, but the distribution of

baseline disambiguation is the one that best balanced the false positive and false negative rates according to our tests.
11For more details, see Appendix OA.4.
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career length is highly skewed, with a 95th percentile of 15 years and a 99th percentile of 33 years.

The number of patents per inventor is also highly skewed, ranging from 2.6 patents over the lifetime

for the average inventor to 25 patents for a top 1% inventor. Citations are even more concentrated:

The median inventor receives 12.7 citations for their patents, but a top 1% inventor receives 890

citations during their career. Inventors also frequently work in multiple fields: the average inventor

has patents in 1.6 USPTO technology classes and the most diversified top 1% of inventors have

patents in 10 classes.12 While most inventors remain in the same state for the duration of their

careers, the highly mobile ones reside in three different states during their professional lives.

We also provide facts on the evolution of innovation over the twentieth century. Figure A1

depicts patents per 10,000 residents at the state level for each decade; Figure A2 shows inventors

per 10,000 residents. The Northeast, the Rust Belt, and California appear as major innovation

hubs early on. Patents per capita do not increase monotonically through time, and the 1970s

recession can be observed here. In the 1990s and 2000s there is a large increase in patents per

capita everywhere and an expansion of innovation regions. Figure A3 shows the share of corporate

inventors and patents over time. Corporate patents are those patents assigned to corporations.

Inventors are said to be corporate inventors in a year if they have at least one successful corporate

patent application over the next three years. Despite fluctuations over time, the share of innovation

attributed to the corporate sector has increased significantly over time.

3.2 Historical Data on Patent Value and Other Economic Outcomes

Although we focus on core historic measures of innovation, we present additional analysis on al-

ternative outcome measures. First, we use the private patent value to a firm by Kogan et al.

(2017), computed based on jumps in stock market value of the patenting firm around the time a

patent is granted, which Kogan et al. find is strongly correlated with patent quality measured by

forward patent citations. These data are available from 1926-2010 (with updates to 2019), and can

be merged directly into our dataset of patents by their patent number identifier. By construction,

however, these data only capture the value of patents produced by publicly traded companies. Since

the share of patenting in corporations has changed drastically through time, as we just showed, we

use this as a supplementary measure of innovation in this paper.

We add to these measures of innovation other broader economic outcomes, namely state-level

data on manufacturing value added, total manufacturing payrolls, the share of workers in manu-

facturing, average weekly earnings and establishment size collected by Allen (2004).13 These data

are available annually from 1929 through 2013, and are mostly derived from Haines (2010), the

County and City Data Book Series and the Census Bureau. Data on manufacturing aggregates, for

12The United States Patent Classification (USPC) system is maintained primarily to facilitate the rapid retrieval
of every patent filed in the United States. The principal approach to classification employed today classifies patents
based on the art’s “proximate function.” Patent classes may be retroactively updated as new technologies arise. We
use the 2006 classification throughout this paper.

13We thank Price Fishback and Sam Allen for graciously sharing these data with us.
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example, comes from the the United States Census of Manufactures. We also obtained a state-level

personal income per capita series from the Bureau of Economic Analysis (BEA), which we use as

a control for economic activity throughout our analysis. This series has been constructed by the

BEA back to 1929 and captures the capacity of consumers to acquire goods and services.

3.3 Historical Personal Income Tax Data

We compute state-level personal income taxes from the detailed tax calculator provided by Bak-

ija (2017), which incorporates most tax-relevant considerations such as federal tax deductibility,

itemized deductions, and major tax credits.14

The evolution of personal income tax rates is described in Appendix A.2. First, Figure A4

reports the first year in which each state introduced a personal income tax, while Figure A5 shows

the distribution of state personal income taxes over time. Most states began taxing personal income

in the 1920s and 1930s. The number of states with a personal income tax increased sharply between

1920 and 1940, stagnated until the 1970s, when a number of additional states adopted this tax,

and then remained stable thereafter. In the first years of introduction, state taxes mostly applied

to very high earners, which is why we focus on the post 1940 period in our regression analysis.

Many states have progressive tax systems, although they are typically less progressive than the

Federal system. States with especially progressive taxes are California, New York, and New Jersey.

Five states – Connecticut, Indiana, Illinois, Michigan and Pennsylvania – instead have flat taxes.

Florida, New Hampshire, Nevada, Tennessee, Texas, Washington and Wyoming never had a state

personal income tax.

Construction of the Tax Measures. At the state level, there have not only been many personal

tax rate changes, but also many frequent tax bracket changes. Because of these frequent changes

in tax brackets, we compute total effective tax rates, combining state plus federal liabilities that

apply to a single person who is at i) the median income and ii) the 90th percentile income of

the national income distribution in any give year. Data on median income come from the Census

Bureaus Historical Income Tables. Data on the 90th percentile of incomes come from the World

Inequality Database (Piketty and Saez, 2003). From the Bakija (2017) tax calculator, we compute

the 90th percentile income MTR (denoted by MTR90); the 90th percentile income average tax rate

(ATR90); the median income MTR (MTR50); and the median income ATR (ATR50). We use

those measures in the state-level analysis in Section 4, and explain how we assign tax rates to each

individual inventor in Section 5.

Key Tax Variation. Our empirical analysis makes use of the multitude of personal and corpo-

rate income tax changes that have happened since 1940. Appendix Figures A6 and A7 show the

14The data for Louisiana are unreliable between the years 1975 and 1982. We therefore drop Louisiana from our
main analysis sample.
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evolution of the marginal tax rates at the median and the 90th percentile income levels decade-

by-decade.15 Tax rates have followed very different trajectories across states–and have often also

evolved differently from the federal tax rate.

Panel A of Figure A9 depicts the percent of states with a change in their statutory state-level

taxes for each year, as well the mean size of the change, and the magnitude of the top 10th largest

changes per year. The share of states changing their tax rate in any given year oscillates between

12-20% in the pre-1970s period and between 15 and 25%, or even up to 40% in the post 1970s

period. The average tax change size fluctuates around 3-4 percentage points, but there can be

many much larger changes of up to 17 percentage points.

Tax rates for a given percentile of the income distribution can change either because there is

a reform in the federal tax code, a reform in the state tax code, or because the income distri-

bution moves such that the percentile in question crosses the threshold into another tax bracket.

Appendix Table A4 decomposes tax changes into these sources. Column (1) shows that 76.3% of

tax rate changes for median earners and 78.3% of tax rate changes for 90th percentile earners are

accompanied by a change in federal tax liability, and, hence one-quarter of tax changes stem from

purely state-level changes. Between 4 and 8% percent of tax changes for these percentiles result

from changes in the income distribution in our sample.

3.4 Historical Corporate Income Tax Data

Federal and state corporate tax systems are complex and it would be very challenging to measure

the effective corporate tax rate for innovating firms precisely, given the information we have on the

firm side. Instead, we study the effects of corporate taxes on inventors and at the state level. Even

then, there remain non-trivial measurement issues to get at the effective corporate tax incentive

that are relevant for inventors. First, it is difficult to properly measure the tax incentives facing

each firm that employs inventors because of firm-specific tax base variations due to deductions

and tax credits, and the apportionment rules for multistate companies. Second, we would need

a better appraisal of the share of the corporate tax burden that is shifted onto inventors. Our

approach is as follows: To obtain the most precise measure of corporate tax burdens, we construct

a state-level historical corporate income tax database covering approximately the period 1900-2016.

It contains not only tax rates, but also a rich array of controls for historical state corporate tax

bases that have been changing over time. We will also consider heterogeneous effects on corporate

and non-corporate inventors, as they are likely to bear different loads from corporate taxes.

Corporate tax rate and base variables: We collect all corporate income tax rates and brackets,

net income franchise taxes when applicable (since they are very similar to corporate income taxes),

as well as any temporary surtaxes and surcharges levied on net income from a multitude of sources,

15Figure A8 illustrates the evolution of the top tax rate and the tax rate at the median income for a few highly
inventive states, namely, California, Illinois, New Jersey, New York and Pennsylvania.
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including detailed State Tax Handbooks and Legal Statutes.16 We also collect additional state-level

corporate tax rules from various State Tax Handbooks, state congresses, law reviews, and official

reports. A full list of the sources used and data series construction are in Online Appendix OA.5.

We first gather detailed apportionment rules for multi-state companies going back to 1910. A

company operating in multiple states must apportion its income across states to calculate its state

tax liabilities. This is typically done based on where the firm’s property, payroll, and sales are

located. Appendix Figure A14 shows the evolution of these apportionment rules over time. We

also assemble data on all other major state corporate tax base rules: the years a firm is allowed

to carry forward or back losses, whether the state allows federal bonus depreciation or federal

accelerated depreciation, or whether it allows an accelerated cost recovery system, whether the

state has apportionment throwback rules, allows combined reporting, has a franchise tax, whether

federal income taxes are deductible, whether the tax base is equal to the federal tax base, the

rate of the investment and of the R&D tax credit, and how the R&D tax credits are applied (i.e.,

whether they are applied to an incremental base that is a moving average of past expenditures or

whether they are applied on a base that is fixed on a level of past expenditures). We collect these

data (except the throwback rule and the combined reporting rule for which early data were not

available) for the period 1958-78, which we supplement with data from 1980 through 2010 from

Suárez Serrato and Zidar (2018).

Construction of the Tax Rate and Base Measures. Our benchmark measure of corporate

taxation will be the top corporate marginal tax rate, constructed using the top federal corporate tax

rate and state and federal tax deductibility rules. Unlike personal income tax schedules, the state-

levels corporate tax schedules most often simply have a (relatively low) threshold of exemption,

below which the tax rate is zero and above which the top corporate tax rate applies.

To summarize the myriad tax base rules into a low-dimensional measure, we follow Suárez Ser-

rato and Zidar (2018) in constructing an index of “corporate tax base breadth,” which is larger if

the tax base of a state in a given year is broader, as explained in detail in Appendix OA.2. State

corporate tax revenues as a share of GDP are regressed on all tax base and apportionment vari-

ables, as well as state and year fixed effects. The index is the predicted value from this regression,

excluding state and year fixed effects; it varies by state and year, and is standardized to have zero

mean and unit standard deviation over our full sample. It may thus be interpreted as the number

of standard deviations more revenue a state might expect to receive from a corporate tax increase

given its tax base rules relative to a state with average tax base breadth. Since it is only available

from 1958, we will control for it, but not in our benchmark regressions.

To address changes in the Federal corporate tax base, we use as a robustness check the series

of effective federal corporate tax rates constructed by Auerbach and Poterba (1987) and Auerbach

(2007) over the period 1959-2000 instead of the statutory federal tax rate.

16For example, we use HeinOnline Session Laws, HeinOnline State Statutes, ProQuest Congressional, Commerce
Clearing House (State Tax Handbooks, State Tax Review), State Tax reports, Willis Report, Council of State
Governments Book of States, and National Tax Association Proceedings.
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Apportionment rules and multi-state inventors. Apportionment rules may also affect the

interpretation of our estimated effects.17 For single-state firms and inventors that have a nexus

only in the state in which they reside, the corporate tax rate we use is precisely the relevant one.

However, if an inventor works for, owns, or plans to start a multi-state company, the effective tax

rate they face is correlated with, but not equal to, the in-state tax rate we control for. This will

likely attenuate the effects of the corporate tax that we estimate. Controlling for the apportionment

rules can alleviate part of this problem, as can our instrumental variable strategy below.

Other taxes. Our identification strategies should filter out alternative taxes that may otherwise

impact our estimates. Ordinary, non-long-term capital gains are taxed as ordinary income and so

are accounted for by our personal income tax measures. Long-term capital gains are taxed at a

reduced rate at the Federal level, which is captured by year fixed effects. In a few instances, states

have special treatments of long-term capital gains, which is captured by our state × year fixed

effects. Dividends are typically taxed as ordinary income at the Federal level and in most states

they are again captured by our personal income tax measures. States’ sales taxes are absorbed by

our state × year fixed effects. Finally, we always control for state-level R&D tax credits.

Overall, given the measurement issues, our estimates of the effects of corporate taxes at the

individual inventor and at the state level are to be interpreted as reduced-form effects that mix in

firms’ and inventors’ responses without being able to precisely estimate the effective tax incentive

and the tax burden sharing between firms and inventors.

Descriptive Statistics on Corporate Taxes. We provide some descriptive statistics about the

corporate tax system based on this new corporate tax database. Historically, many states had

indirect corporate taxes, such as franchise taxes, imposed on corporations for the privilege of doing

business in a state.18 Over time, the share of states with direct corporate income taxes rather than

indirect taxes has increased (see Figure A11).

Appendix Figure A12 shows the year in which corporate taxes were first introduced at the

state level. Early adopters were Hawaii (1902), Wisconsin (1913), West Virginia, Virginia, and

Connecticut (1915), as well as Montana and Missouri (1917). The latest adopters were Nevada and

Michigan (1968), Maine and Illinois (1969), New Hampshire (1970) and Ohio and Florida (1972).

17Before the Uniform Division of Income for Tax Purposes Act (UDITPA) in 1957, different states had different
ways of dealing with the taxation of multi-state companies. Although not all states adopted it, the UDITPA made
these apportionment and allocation rules of the business income of multi-state companies more uniform, with a three-
factor formula based on equal weights to the shares of a corporation’s payroll, property, and sales in the state. In the
past twenty years, the weight on sales has started to increase, which should arguably decrease the importance for a
company of corporate income tax in states in which it has property and employment (but a low share of its sales).

18In several states, statutes make direct taxes unconstitutional and franchise taxes get around this problem. Some
states have one or the other, sometimes both, but companies only pay one. Types of franchise taxes include taxes
on net income (which are extremely similar to corporate income taxes and which we consider as such), Business
enterprise tax (in New Hampshire), Gross receipts tax or commercial activity tax (which is the gross receipts tax in
Ohio), Business and occupation tax (West Virginia, Washington, or Ohio, sometimes different for different industries),
net worth/capital stock/asset value/shareholder equity combination taxes, or a value-added tax (Michigan’s single
business tax which is a franchise tax, not a sales tax).
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Figure A13 shows the evolution of the top corporate marginal tax rates in all states, decade by

decade. The number of states with a corporate tax increased sharply and then flattened completely

after 1972. The mean state tax (conditional on having a tax) increased from around 3.5% in 1920

to close to 8% in the 1990s, and has declined slightly to above 7% since then. The median state had

a non-zero corporate tax only since the late 1930s and it hovers around 6% today. States have had

very different historical patterns of their corporate taxes, which is an advantage for our analysis.19

The top 10% states ranked according to corporate tax levels each year saw their corporate tax rise

from 2% in 1920 to around 10% today. The lowest 25% states never had a tax rate above 4%.20

Finally, Figure A14 shows the time series of apportionment rules. Almost every state that has a

corporate tax rate places at least some of the apportionment weight on the share of the firm’s sales,

property and payroll located there. The weight on sales in particular has grown in importance over

time.

Key Corporate Tax Variation. Panel B of Figure A9 depicts the percent of states with a

change in their top corporate tax rate, the mean size of the change, and the magnitude of the 90th

percentile largest change for each year. On average, one out of every 6 or 7 states faces a change

in corporate tax in any given year; that share was much higher at one out of five in the 1970s and

80s. The mean tax change fluctuates around 1.5-2 percentage points, and the largest top 10% tax

changes reach up to 6 percentage points.

4 The Macro Effects of Taxation

We begin with the effects of personal and corporate taxes at the state level over the period 1940-

2000.

4.1 Benchmark Estimation

4.1.1 Macro-level innovation outcomes and specification

The main innovation outcomes at the state-year level are: (i) the quantity of innovation, as mea-

sured by the log number of patents produced during that year in the state; (ii) the quality of

innovation, as measured by the log number of total adjusted forward citations ever received by the

patents produced in the state that year; (iii) the log number of inventors residing in the state that

year; (iv) the share of innovation produced by companies, as captured by the share of patents as-

signed i.e., inventors transferring patents to their employer through assignment rights. We consider

19For instance, California and New York were one of the relatively early adopters of a corporate tax and have
followed similar patterns, with tax rates rising continuously before 1980, and experiencing stagnating levels thereafter.
New Jersey was one of the late adopters but quickly brought its tax rate up to the same level as California and New
York. Illinois also adopted a corporate tax quite late and kept it at a low and stable rate of close to 5% over time.

20The patterns summarized here, as well as the evolution of top corporate tax rates in a few select states, are also
presented in Appendix Figure A11.
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additional state-level outcomes in Section 4.1.3. Our baseline specification is:

Yst = α+ βp ln(1−MTR90st−3) + βc ln(1− Corp. MTRst−3) + γXst−1 + δt + δs + εst (3)

where Yst is one of the innovation outcomes in state s and year t. MTR90st−3 is the state’s 3-year

lagged personal income marginal tax rate at the 90th percentile of income and Corp. MTRst−3 is

the 3-year lagged top corporate tax rate. δt and δs are sets of year and state fixed effects. Xst
are time-varying state-level controls, namely, lagged population density, real personal income per

capita, and R&D tax credits (lagged by 3 years, as are the other tax rates), intended to capture the

effect of time-varying urbanization, economic activity, and R&D incentive programs. We use 3-year

lags because of the dynamics visible in the event studies below, but we test the sensitivity to these

specifications in Section 4.1.3. The benchmark regressions weight each state by its population in

1940, but we provide unweighted results as a robustness check as well.

The coefficients βp and βc are consistent estimates of the effects of personal and corporate taxes

on innovation outcomes at the state-year level if, conditional on the controls, changes in state-level

tax rates are not correlated with other policies or economic forces that affect innovation. Below,

we will relax this assumption using an instrumental variable strategy.21 Unless otherwise specified,

standard errors of all state-level regressions are two-way clustered at the year and state × five-year

bin levels. This accounts for arbitrary spatial correlation of errors within a year, as well as for serial

correlation within states. In addition, we provide results with Newey-West errors of lag 10 below.

We can also allow for a more flexible specification, with state fixed effects that can vary over

time. This helps absorb more of the other non-tax variation, such as contemporaneous economic

policies or phenomena, which may otherwise be loaded on the tax coefficients. For instance, action

to reduce taxes in a given state may go hand in hand with other business-friendly and innovation-

fostering reforms, which could bias the estimated tax coefficients upwards. To do so, we estimate

our core specification from (3) in long differences of 10, 15, or 20 years, i.e., for k ∈ {10, 15, 20}:22

Yst−Yst−k = βp[ln(1−MTR90st)− ln(1−MTR90st−k)] (4)

+ βc[ln(1− Corp. MTRst)− ln(1− Corp. MTRst−k)] + γ[Xst − Xst−k] + δ̃t + ε̃st

4.1.2 Results

Panel A of Table 2 shows the estimates from the state-level regressions in (3).23 Each column

represents one of the innovation outcomes Yst described above. A one percent decrease in MTR90

(equivalently, a one percent increase in the net-of-tax retention rate at the 90th percentile) is

associated with an approximately 1.8% increase in patents and inventors, and a similar 1.5% increase

21If the dependent variable Yst is in logs, βp and βc are the elasticity of Yst to changes in the net-of-tax personal
and corporate tax rates. If Yst is the share of patents assigned to a corporation, βp and βc are semi-elasticities.

22At the state level, state times year fixed effects would absorb all tax variation and cannot be included.
23Appendix Table A5 reports the coefficients on all control variables.
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in citations. The corporate tax is also significantly correlated with innovation outcomes. A one

percent lower top corporate tax rate is associated with 2.8% more patents, 2.4% more citations,

and 2.3% more inventors. Given the similar responses of citations and patents – i.e., patent quality

and quantity – to taxes, the average quality as measured by citations per patent exhibits a mildly

negative, but not systematically significant response to taxes.

The share of patents assigned to companies (column 4) appears to be particularly sensitive to

the corporate tax rate. A one percent increase in the top corporate tax rate is associated with

close to 0.6 percentage points fewer patents assigned to companies. Appendix Table A6 shows that

corporate patents are indeed more sensitive to the corporate tax than non-corporate patents, which

explains the response of the share assigned to corporate tax changes. Conditional on the corporate

tax, the share assigned is not significantly related to the personal income tax rate.

To take into account heterogeneous and time-varying corporate tax bases, Panel B of Table

2 controls for the corporate tax base index and its interaction with the top corporate tax rate.

The main relationship between top corporate tax rates and innovation is largely unaffected by the

inclusion of these controls, but states with broader corporate tax bases have larger elasticities of

innovation to the corporate tax rate. For example, while the average state in terms of tax base

breadth (index = 0) has an elasticity of patenting to corporate taxes of 2.4, a state with one

standard deviation larger tax base index has an elasticity of 2.6.

Table 3 reports estimates from the long-difference specification in (4). As foreshadowed above,

these estimates are smaller than the benchmark ones that have state and year fixed-effects only and

become progressively smaller (while remaining significant) as the difference is taken over shorter

time intervals. The elasticity of patents to the personal net-of-tax rate is 1.5 with the 20-year

difference, 1.1 with the 15-year one, and 0.8 with the 10-year one. For citations the elasticities

are 1.1, 0.7 and 0.6 and for inventors 1.5, 1.2 and 0.8 respectively. For the corporate tax, the

corresponding elasticities are 2.0, 1.9, and 1.8 with 20-year long differences; 1.5, 1.2, and 1.3 with

15-year ones and 1.3, 1.0, and 1.2 with 10-year ones. The share assigned has a semi-elasticity of

0.4, 0.3 or 0.16 in these three long-difference specifications.

To visualize these results, Figure 1 plots binned scatters of log patents and log inventors against

the log of personal and corporate net-of-tax rates. Both innovation and tax variables are residualized

against state and year fixed effects as well as lagged population density, personal income/capita

and R&D tax credits. Each dot corresponds to a percentile of the residualized tax rate distribution.

There is a consistent log-linear relationship between tax rates and state-level innovation.

In Section 5.6, we discuss how these large macro elasticities are consistent with the aggregation

of the micro-level elasticities estimated in Section 5. The magnitudes are also in line with the

typically large macro-level elasticities estimated for other variables such as GDP in the US, at the

federal level. Romer and Romer (2010) find that a 1% increase in the tax to GDP ratio at the

federal level leads to a decline in real GDP between 2.5-3%, using a narrative approach to isolate

exogenous federal-level tax changes (in Section 5.6 we discuss why federal-level elasticities could

reasonably be expected to be smaller than state-level ones). Mertens and Ravn (2013) find that
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a one percentage point cut in the average personal income tax rate increases real GDP per capita

by 1.4% on impact and by 1.8% after only 3 quarters. A one percentage point cut in the average

corporate income tax rate increases real GDP per capita by 0.4% and up to 0.6% after 4 quarters.

Mertens and Ravn (2014) find that a tax cut that lowers tax revenues by one percentage point of

GDP increases GDP by 0.48% on impact and by 1.35% after two years. Lee and Gordon (2005) find

an elasticity of GDP growth to corporate taxes of 0.18% in a panel of 70 countries over 1970-1997.

Note that these are effects on GDP which can be viewed as the final “output” as a function of

various inputs e.g., innovation inputs. Hence, it is expected that the effects of the factors that

eventually contribute to GDP must also be quite elastic for them to translate into a high elasticity

of GDP levels or growth.

4.1.3 Robustness checks and extensions

These results are robust to a variety of alternative specifications, controls, and sample restrictions,

provided in Appendix A.3 and summarized here.

First, Table A6 shows the results for additional innovation and economic outcomes. Column

(1) indicates that unadjusted citation counts respond similarly to taxes as do the adjusted citation

counts. Columns (2) and (3) show that corporate patents respond more to corporate taxes than do

non-corporate patents, but both respond similarly to personal taxes, which is consistent with the

conceptual discussion in Section 2. The average stock market value of patents granted is strongly

positively related to the top corporate net-of-tax rate with an elasticity of 1.8, but insignificantly

related to the personal income tax rate at the state level, which is to be expected given that this

measure only applies to publicly-traded companies. All other outcomes, i.e., average employment

of manufacturing establishments, manufacturing value added, total manufacturing payroll, average

weekly earnings, income per capita, and the share employed in manufacturing are all positively

and strongly related to the corporate net-of-tax rate. The personal net-of-tax rate is positively

associated with total manufacturing payroll, income per capita and the share employed in manu-

facturing, although the elasticities are consistently smaller than those with respect to the corporate

rate. Thus, personal and corporate taxes exhibit a consistent correlation with other economic

outcomes that can be expected to be related to innovation.

Table A7 shows significant, but less strong relationships between innovation and three other

personal income tax measures: the marginal and average tax rates at the median income level and

the average tax rate at the 90th percentile income level. Table A8 simultaneously includes the

personal income marginal tax rates for both the median and the 90th percentile income levels and

shows that the latter dominates. Overall, the association between innovation and our benchmark

marginal tax rate at the 90th percentile is the strongest.

The core results are also robust to various other calculations of the tax rates, such as using

the married tax rate (Table A9), itemizing deductions rather than taking the standard deduction

if it is optimal to do so (Table A10), using effective federal corporate tax rates from Auerbach and
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Poterba (1987) to compute our total corporate tax rate (Table A11), and changing the tax rate lag

to one or two years (Table A12). Regarding standard errors, the results remain highly significant

with Newey-West standard errors, allowing for serial correlation of the state-specific error terms

for 10 years (Table A13).

The relationship between taxes and innovation also does not meaningfully change across a

number of sample restrictions, e.g. dropping observations from the two largest and most innovation-

intensive states – California and New York – in Table A14 or from a period with unusually low

innovation – the 1970s – in Table A15.

The results are also robust to the inclusion or removal of additional control variables. Table A17

shows that controlling for state politics – specifically the share of a state’s upper and lower houses

that are Democrats and an indicator for having a Democratic governor – leaves the results largely

unchanged (though the standard errors on personal tax rates are larger). Table A18 removes

the controls for lagged population density and personal income per capita. Doing so leaves the

estimated elasticity with respect to personal taxes largely unchanged, but increases the elasticity

of patenting to corporate taxes. Finally, the results are not contingent on our choice to weight each

state by their 1940 population, as Table A19 shows.

4.2 Instrumental Variable Strategy using Federal Tax Changes

Our OLS estimates may be biased if states set their taxes in response to their economic conditions

or contemporaneously with other economic policies that affect innovation. To address this concern,

we use an instrumental variable strategy that exploits changes in total personal and corporate tax

burdens that are driven exclusively by changes in federal level taxes rather than state taxes and

that is similar in spirit to the predicted tax burden in Gruber and Saez (2002). Specifically, the

instrument used for the personal tax rate at a given income level in state s and year t is the tax

that would apply if the income distribution and state-level personal tax rate did not change since

a given year t − k (where k is allowed to vary for robustness), but federal taxes were changing as

they are in reality. Changes in the predicted tax are therefore driven purely by federal tax changes,

which are likely exogenous to any given state’s economic conditions and other state-level policies.

The impact of federal tax changes varies by state and by income group based on the level of its

state taxes (because of the state tax deductibility from federal taxable income) and on whether the

state allows for federal tax deductibility.

Formally, denote by τ̃ cst the corporate tax in state s year t and τ̃pjst the personal income tax at

income percentile j in state s in year t. Let the corresponding federal level tax rates be τ cft and

τpjft .
24 Heuristically, ignoring complications of the tax code, the total tax rate on individuals with

income at the jth percentile who live in state s at time t is denoted by τpjst and is equal to:

τpjst = τpjft (1− τ̃
pj
st ) + τ̃pjst (1−Dp

st · τ
pj
ft ) (5)

24Recall that we use tax rates at fixed income percentiles, rather than tax rates in fixed brackets, because tax
brackets at the state level have changed extensively over time.
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where Dp
st is an indicator variable equal to 1 if the personal income tax paid at the federal level

is deductible from the state tax base in state s in year t. In practice, several states allow for the

deductibility of federal taxes, and this has changed over time. Some key examples include California

and New York throughout the 1940-2000 period, and Pennsylvania since 1971.

The instrument for the personal income tax of income group j in state s and year t, denoted

by τ̂pjst , can be written (heuristically) as:

τ̂pjst = τpjft (1− τ̃
pj
st−k) + τ̃pjst−k(1−D

p
st−k · τ

pj
ft ) (6)

where the actual state tax in year t is replaced by its lag τ̃pjst−k at time t−k, holding fixed the distri-

bution of income as of t− k when calculating the income of group j. Our benchmark specification

sets k = 5, but the results are robust to alternative k. In practice, this instrument is calculated

from the tax simulator, taking into account many layers of complexity of the state and federal tax

code, as is done for the actual tax rate τpjst .25

Similarly, the total corporate tax rate in state s and year t is:

τ cst = τ cft(1− τ̃ cst) + τ̃ cst(1−Dc
st · τ cft) (7)

and we instrument it with the predicted tax burden holding state taxes fixed at their level in year

t− k,

τ̂ cst = τ cft(1− τ̃ cst−k) + τ̃ cst−k(1−Dc
st−k · τ cft) (8)

Figure 2 visualizes the source of variation in this instrument. The gray bars plot the change in

the federal tax rate for the 90th percentile (Panels A and B) and median (Panels C and D) earner in

a given year. This change in federal taxes generates a change in the expected total tax rate faced by

individuals in a state that varies based on pre-existing state tax laws. The blue dashed line in the

figure shows the 90th percentile of the change in state tax rates as a result of this federal tax law

change, while the black solid line plots the 10th percentile of this change. For nearly every federal

tax change, there is visible variation across states in their induced tax changes. This is because

states differ in their pre-existing tax rates τ̃pst−k, τ̃
c
st−k and deductibility rules Dp

st−k, D
c
st−k. For an

average federal tax change, the induced change in the personal income tax instrument has a cross-

state standard deviation of 0.51 percentage points, and the 90-10 gap is 0.71 percentage points. The

analogous numbers for the corporate tax instrument are 0.42 and 0.64 percentage points. Recall

from Table A4 that 78% and 77% of personal and corporate tax rate changes, respectively have

at least some federal component. As a result, it is unsurprising that the first stage is strong and

significant (Appendix Table A20).

The IV results are in Panel C of Table 2. They are highly significant and slightly larger than the

25Note that even if states anticipate federal-level changes to some extent and adjust their tax policy accordingly,
our instrument is computed using the state tax that applies at t − k and for k sufficiently large, it is unlikely that
states would have already adapted their state-level tax policy in anticipation of possible future federal tax changes.
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OLS ones. One potential explanation for this magnitude may be that states are adjusting their tax

rates in a counter-cyclical fashion, which would bias the OLS estimates downwards if innovation is

pro-cyclical.26

4.3 Event Studies Around Large Tax Reforms

To provide visual evidence of the dynamic effects of taxes, we implement an event study analysis of

large state tax changes, defined as those in the top 10% of state-level tax increases or the top 10%

of tax decreases over the period 1940-2000. These correspond to state-level tax increases of at least

1.6 percentage points for the personal income tax and 2.75 percentage points for the corporate tax

and to tax decreases of at least 0.9 percentage points for the personal income tax and 2 percentage

points for the corporate income tax. On average, a large personal tax reform shifts the tax rate by

2.25 percentage points, which, given the mean total personal tax rate of 34% in the sample (Table

1), represents a 6.6% change. Likewise, an average large corporate tax reform shifts the tax rate

by 4.1 percentage points, or 8.9% of the average total tax rate of 46%.

The estimation period covers the four years before and after each reform, for a total time span

of 9 years, a span length chosen to be as large as possible, while also avoiding too many overlapping

reforms.27 We drop from the sample tax reforms which are preceded or followed by another tax

reform within a four-year span. All tax changes are relabeled in the direction of tax increases.

For each reform, we construct a synthetic control state as the weighted average of other similar

states that do not have a large reform in the 4-years before or after the focal reform following

Abadie (2005). The weights are chosen to minimize the mean squared prediction error between

treatment and synthetic control states in the four pre-reform years for log real personal income per

capita, population density, and the dependent variable of interest (e.g., log patents). We then pool

the reforms into one dataset and estimate the following regression:

yrst = αr + θr × TREATs +
4∑

l=−4

[βl + γlTREATs] 1{t = l} (9)

where r indexes a reform, s is a state, t is the number of years since the reform, TREATs is an

indicator variable equal to 1 if state s is the treatment state and 0 if it is the synthetic control,

and 1{t = l} is an indicator for the observation corresponding to l years after the reform. αr and

θr × TREATs are reform and reform-by-treated state fixed effects.

Figure 3 plots the set of γl, which represent the level of innovation outcome yrst for the treatment

state relative to the synthetic control state in relative year l. Time l = 0 is the first year during

26The correlation between corporate and personal tax increases and personal income per capita increases with a
one year lag is indeed negative. Bloom et al. (2002) also find that innovation policies are countercyclical.

27Increasing the event window to be longer than four years necessitates dropping many large reforms due to the
increased presence of overlapping reforms. Appendix Figure A15 plots the distribution of time between large tax
changes at the state level. On average, states implement a large reform in the tax rate of personal and corporate
income every 9 and 8.8 years, respectively.
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which the new tax rate applies and the coefficients on the time indicators are plotted relative to the

year before the new tax applies, l = −1. The upper row shows the effects of personal income tax

changes; the bottom row the effects of corporate tax changes. The left column shows the effects on

patents, the right column on inventors.

There is already a small negative effect of the taxes in the first calendar year of the tax change

(l = 0). Consistent with the discussion of dynamic effects in Section 2 and with our use of 3-year

lagged tax rates in the benchmark regressions, we can see that there is a lag in the effect of taxes

on innovation. The strongest effects appear three to four years later, at which point states with a

large increase in either personal or corporate taxes have roughly 12 to 15 percent fewer patents and

inventors than similar states that did not experience a large tax reform. Given the average percent

change in tax rates described above, this corresponds to a personal tax elasticity around 1.8-2.3

and a corporate tax elasticity of 1.3-1.7, both of which are in the ranges spanned by our OLS and

long difference specifications.

Case Studies: We also investigate three special episodes of comprehensive tax reform in New

York, Delaware, and Michigan. We again employ synthetic control techniques to provide sharp

visual evidence of the effects of taxes on innovation. These results are in Appendix Section A.4

and Figures A16-A18. The progressively larger effects of taxes over time are clearly visible there

too, with the gap between the treated and control states growing for several years after the large

tax changes.28

4.4 Longer-Run Effects of Tax Changes

To study the longer-run dynamic effects of taxes, we use distributed lag models, which can disen-

tangle the effects of different lags and leads of taxes. Specifically, we estimate regressions of the

form

Yst − Yst−1 = δt +
20∑

l=−5

βl[ln(1− Tst−l)− ln(1− Tst−l−1)] + ∆X ′st−1ν + εst (10)

where T ∈ {MTR90, Corp. Tax} is either the top corporate tax rate or the marginal personal

income tax rate at the 90th percentile income, δt is a year fixed effect, and X is a set of controls

including personal income per capita, R&D tax credits, population density, and the non-focal tax

rate (e.g. if T studies corporate taxes, we will control for personal tax rates). In addition, when

studying corporate taxes, we include as controls a full distributed lag of the major tax base variables.

Over this longer horizon, one might be more concerned about serial correlation in the error terms

εst and we therefore cluster at the state level.

Figure 4 plots the cumulative effects Bl of a tax change in year t on innovation by year t + l,

28It is difficult to compute implied elasticities from these reforms as they changed both the corporate and personal
income tax rates.
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for l ∈ −5, 20, where Bl:

Bl =

[
l∑

τ=−5

βl

]
︸ ︷︷ ︸

Effect from t−5
through t+l

−

[ −1∑
τ=−5

βl

]
︸ ︷︷ ︸

Renormalizing to be
relative to year t−1

(11)

Consistent with our event studies, the figure shows that there are no significant, detectable pre-

trends in innovation around tax changes. Note, however, that some pre-trends would be consistent

with potential forward-looking effects of innovation, as discussed in Section 2.

Over the longer run, tax rate changes can have a sizable effect on innovation. The cumulative

effect of personal tax rates grows over time and is on average equal to the OLS effect (which is

estimated off a single 3-year lag of tax rates). After 20 years, a 1 percent increase in the net-of-

personal tax rate is associated with an approximate 2 percent increase in total patenting (Panel

A) or the number of inventors (Panel B). The average of the lag coefficients are 1.3 for patents and

1.1 for inventors. We find larger long-run effects for corporate taxes, at around 3-4%, but these are

noisier and smaller effects cannot be convincingly ruled out. Overall, as emphasized in Section 3.4,

measurement issues are much more constraining and make the estimated effects of corporate taxes

noisier and less stable than those of personal tax rates.

5 Micro Level Effects of Taxes

In this section, we investigate the effects of taxes at the micro-level of individual inventors, consid-

ering what micro-level responses shape the macro elasticities outlined in the previous section.

5.1 Measures of Inventor Productivity, Tax Rates and Innovation Outcomes at

the Individual Level

The general intuition behind our analysis at the individual inventor level is to use the variation in tax

rates across inventors in the same state and year so as to be able to include state × year fixed effects,

which account for other contemporaneous policy variations and economic circumstances affecting

all inventors. To implement this strategy requires assigning inventors to their tax brackets. We

do so based on their innovation productivity, which is strongly linked to inventor income. We also

include inventor fixed effects.

Constructing Measures of Inventor Productivity. Previous work has demonstrated that

inventor productivity, as measured by patents or citations, is strongly related to inventors’ incomes.

Using modern data, Akcigit, Baslandze, and Stantcheva (2016) show this link is strong for the eight

largest patenting countries, as well as for Sweden and Finland. Bell et al. (2019) match IRS tax data

to patent data for US inventors and also highlight the strong link between income and patenting.

Using historical data, Akcigit, Grigsby, and Nicholas (2017) establish a link between patents and

wages in their match between the 1940 Census and patent data. As our benchmark measure of
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inventor productivity in year t we use total patents produced until year t, but test sensitivity to

this choice in section 5.3.1 below.

Measuring an Inventor’s Tax Rate. Using this productivity measure, we can rank inventors

nation-wide in each year t. We then call “high-productivity” inventors at time t those inventors who

fall in the top 10% of the national productivity distribution in year t − 1, and “low-productivity”

inventors those who fall below that threshold. Since the distribution changes every year, this

represents a dynamic ranking measure. However, it is highly persistent. 99.1% of the the inventors

who are classified as being high-productivity ones in year t are still high-productivity in year t+ 1.

Similarly, 98.9% of inventors who are classified as being low-productivity in year t are still low-

productivity in year t+ 1.

We then assign effective personal income tax rates to each inventor depending on their rank.

For our benchmark analysis, the effective personal income tax rate of an inventor at time t − 1 is

the state’s tax rate for the 90th percentile individual at t − 1, if they are in the top 10% of the

productivity distribution in t− 1, and the median tax rate otherwise. For left-hand side outcomes

measured at time t, we use this lagged tax measured from time t− 1. The estimated coefficients on

this effective tax rate can be interpreted as intent-to-treat effects. The personal income tax rates

at the 90th or median income are effectively instruments for an inventor’s true tax rate and the

regressions shown are the reduced-form ones of the outcome directly on the instrument.

Using just two groups and focusing on the tax rate at the median is not as restrictive as it may

seem, because state schedules typically have few tax brackets. Nevertheless, we will show that our

results are robust to using finer tax measures, different cutoffs, and alternative specifications.

Innovation Outcomes at the Individual Level. At the individual level, we consider the

following outcomes to capture intensive and extensive margin responses on the quantity and quality

of innovation, all measured over a three year window between, and including, years t and t+2:29 (i)

whether the inventor has any patent; (ii) whether the inventor has a successful patent with at least

ten citations (which occurs for 41% of patents in our sample) (iii) how many patents the inventor

has, conditional on having any (log patents); (iv) how many citations the inventor has, conditional

on having any (log citations); (v) whether the inventor has a patent whose Kogan et al. (2017)

value is higher than the median value of patents of all inventors active in that year.

29Recall that the year t refers to the application date, which is the date closest to the discovery of the innovation
itself.
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5.2 Identification

Let i index inventors and s(i) be the state of inventor i. We first estimate the following fixed-effects

specification

yit = αi + βp · ln(1− Personal MTR)+

+ βc ln(1− Corp. Taxs(i)t−3) + γXit−1 + δs(i) + δt + εit. (12)

where Corp. Tax is the top corporate tax rate in the state and the term ln(1− Personal MTR) =[
χit−1 ln(1−MTR90s(i)t−3) + (1− χit−1) ln(1−MTR50s(i)t−3)

]
is the personal tax rate assigned

to the inventor, according to the algorithm described above, where MTR90 and MTR50 are the

personal income tax rates paid by the 90th percentile and median individual in a state, and χit is

an indicator variable equal to one if the inventor is high productivity. The controls in Xst−1 include

time-varying state-level covariates, namely, the state’s lagged real personal income per capita and

population density; as well as time-varying inventor-level controls, namely, the inventor’s experience

(years since the first patent) and its square, and an indicator for the inventor being high productivity

(as described above). We include an inventor fixed effect αi to filter out other individual-level

heterogeneity.

We also add a state-inventor specific time-varying control, which is a measure of the agglomer-

ation of innovation in the state, as captured by the number of patents applied for by other state

residents in the inventor’s modal technological class in the state in a year t − 1 (excluding the

inventor’s own patents), divided by 1,000. This agglomeration measure varies by state, inventor,

and year, and it captures the fact that a given state in a given year may have varying degrees of

attractiveness to inventors working in different fields. This could be, for instance, because the state

has some specific amenities and infrastructure particularly well suited for innovation in that tech-

nology class. Inventors may also value being around others from the same field per se, if there are

complementarities with other researchers, thanks to interactions or learning (Akcigit et al., 2018).

It could also capture the negative effects of possible congestion, ideas stealing and competition from

other inventors.

This first specification only has inventor, state, and year fixed effects, the advantage of which

is that we can estimate the effect of corporate tax variation as well (which would be absorbed by

the state × year fixed effects). Recall, however, from the conceptual discussion in Section 2 and

the measurement issues outlined in Section 3.4, that the micro-level effects of the corporate tax

rate are more indirect and reduced-form than those of the personal income tax rate. In addition,

this specification may potentially lead to inconsistent estimates of the effects of taxes if there are

other contemporaneous state-year level economic changes, or policies that covary with taxes and

that also affect innovation.

Our second specification in (13) includes state × year fixed effects δst that absorb other contem-

poraneous economic developments or policy changes in the state, as well as corporate tax variation
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and changes in tax revenue and spending that can lead to investments in infrastructure and ameni-

ties conducive to innovation.

yit = αi + βp · ln(1− Personal MTR)+

+ βc ln(1− Corp. Taxs(i)t−3) + γX̃it−1 + δs(i)t + εit. (13)

Here, Xit−1 is the same as above, except removes controls for personal income/capita, R&D tax

credits and population density, which do not vary within a state-year cell. Conditional on these

controls and the state × year fixed effects, our estimated tax effects are consistent as long as there

are no other simultaneous changes that differentially affect high productivity and low productivity

inventors and that are systematically correlated with the effective tax rates. To relax this re-

quirement, we also apply the same IV strategy as for the macro state-level regressions above and

instrument for the total tax of an inventor who is in income group j (where j is either the 90th

percentile or the median, according to our ranking of inventor’s into tax brackets based on produc-

tivity) in state s at time t using τ̂pjst from equation (6). With this strategy, we only require that

the differential tax rate changes experienced by high and low productivity inventors in a given year

and induced solely by federal-level tax changes, be uncorrelated with unobserved determinants of

individual innovation.30 Throughout the micro-level analysis, we use two-way clustered standard

errors at the state and year level to allow for both serial and spatial correlation.

5.3 Results

Table 4 shows the benchmark results. The upper panel reports the estimates from the specification

with state × year fixed effects in (13); the lower panel shows the specification with only state and

year fixed effects from (12). The outcome variables listed in columns 1 through 5 are as defined in

(i)-(v) above.31

The estimated effects of personal income taxes are very similar in the two panels, suggesting

that the state × year fixed effects are not critical to the estimation. Focusing on the upper panel,

a one percent higher tax rate at the individual level decreases the likelihood of having a patent in

the next 3 years by 0.48 percentage points, which, given the mean probability of patenting (71%),

translates into an elasticity of 0.68. On the intensive margin, conditional on having any patents or

citations, a one percent increase in the personal tax rate is associated with a 0.8 percent decline

in the number of patents (column 3) and a 1.1 percent decline in the number of citations (column

4). The elasticities are slightly smaller and equally significant conditional on state plus year fixed

effects, namely 0.8 for the patent elasticity and 1.0 for the citation elasticity. The fact that the

number of citations responds very similarly to the number of patents is consistent with the fact

30In specification (12) we can also instrument for the corporate tax using the predicted tax liability τ̂ cst from (8).
31For the indicator outcomes in columns 1, 2, 5, and 6, the coefficients can be interpreted as semi-elasticities to the

net-of-tax rates. For the remaining columns, the continuous variables are all expressed in logs and the coefficients
are elasticities to the net-of-tax rate.
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(not shown) that the average quality (citations per patent) is quite inelastic to taxes and with the

findings at the state level. Nevertheless, while on average patent quality is not strongly affected, the

likelihood of having a high-quality patent decreases by 0.42 percentage points (relative to a mean of

42%) for every percentage point increase in the personal tax rate, which translates to an elasticity

of 1 (0.9 with state plus year fixed effects). Similarly, a one percent increase in the net-of-tax rate

is associated with a 0.26 percentage point increase (elasticity of 0.5) in the probability of having a

high-value patent as measured by stock market value.

In the bottom panel, the effects of the corporate net-of-tax rate are consistently positive, but

insignificant. Below, we show that this overall null effect masks heterogeneous impacts on corporate

and non-corporate inventors as well as a sizable impact on inventors’ mobility across states.

Table A24 presents the IV results at the individual inventor level.32 They are very similar to

and slightly larger than the OLS estimates.

5.3.1 Robustness and extensions

We provide robustness checks for each component of our strategy: productivity measurement, the

ranking method, and on how we control for an inventor’s tax rate.

Regarding the assignment of tax rates to inventors, we first use alternative cutoffs, e.g., allowing

inventors in the top 5% or the top 25% be assigned the 90th percentile personal income tax rate

(see Appendix Tables A26 and A27). Second, we can create finer groups with two or more cutoffs

rather than just one. For instance, we assign the top 10% of the productivity distribution the

tax rate at the 90th percentile of income, the top 10-25% of the productivity distribution the tax

rate at the 75th percentile, and the median income tax rate to all inventors below the top 25%

(see Appendix Table A28). The results also look very similar if we define inventor productivity

according to their cumulative citation counts (Table A29).

Another way to perform this analysis would be to replace the effective tax rate measure in the

regressions with a full set of interactions of the top state effective tax rate with indicators for the

inventor’s productivity rank (say, top 10%, top 10-25%, top 25-50%, etc.) as in Akcigit et al. (2016).

The difference in the interaction terms of two groups (say the top 10% and the top 10-25%) gives

the estimated effect of the top tax rate where the top 10% is the treated group and the top 10-25%

is considered to be the control group. In reality, there are several possible control groups, ranging

from closest (say, top 10-25%), which yields a lower bound of the effect of the top tax, to farthest

(say, below top 50%), which yields an upper bound. The productivity of an inventor captures the

propensity to be treated by the top tax rate. The results of this approach are reported in Table

A30. The coefficients increase monotonically with the quality bin of the inventor, and give upper

bound elasticities that are slightly larger than those in our baseline specifications.

The micro-level regressions are also robust to excluding California and New York (Table A31)

or the 1970s (Table A32), to removing the controls for personal income per capita, agglomeration

32The associated first stage regressions are reported in Appendix Table A25.
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forces and population density (Table A36), and using the tax rate for married couples instead of

singles (Table A34). The results are also robust to excluding inventor fixed effects, but the results

are noisier (Table A35).

The IV estimates are also robust to alternative constructions of the instruments. To address

the concern that inventors endogenously change their location choice to respond to taxes, in Tables

A38 and Table A39 we compute the tax rates instrument but using the tax rate of the inventor’s

home state (i.e. the state in which they first appear in the data), rather than that of their current

state of residence. Thus, the instrument for an inventor of quality level j in year t who first appears

in state s0 is τ̂yjs0t = τyjft (1− τ̃
yj
s0t−5) + τ̃yjs0t−5(1−Dy

s0t−5 · τ
yj
ft ), for y ∈ {c, p} distinguishing between

corporate and personal taxes. In all cases, the estimated coefficients are little changed from either

the baseline OLS estimates or the core IV estimate.

Changing effects of taxes over time. The long time span of our data permit analysis of

the potentially changing repercussions of taxes over time. Estimating equation (12) allowing for

a differential impact of taxes for the periods before and after 1970 (Table A40) shows that the

effects of both personal and corporate taxes on individual innovation have declined over time. This

could be due to many forces, related to the innovation production function or to institutional

features. On the former, shifting innovation amenities and the entrenchment of innovation hubs,

may explain part of this evolution. Related to the latter, improved and enhanced individual or

corporate tax optimization (which makes statutory rates less relevant), the overall reduction in

federal personal income taxes, as well as the shifting of multi-state corporate taxation towards a

sales-based apportionment could also have contributed.

Agglomeration effects. As discussed above, innovation relies on amenities and infrastructure,

some of which are financed by tax revenue. We can use our measure of agglomeration that proxies

for time-varying field and state-specific amenities and infrastructures interacted with inventors’

personal tax rates in regression equation (12). We also control for total patent counts in the

state, and total patent counts interacted with the effective personal tax rate in order to control for

general (non-field specific) amenities at the state level. The results in Appendix Table A41 show

that, whenever an inventor lives in a state where there is more innovation in their own technological

field, their elasticities to taxes are smaller. Although our agglomeration measure is a coarse proxy

for amenities, infrastructure, and innovation clusters, these results highlight that the total effects

of taxes, including the value of amenities and spending that they fund are an important question to

be explored further. A similar dampening of responses to taxes due to agglomeration will appear

in the location choices of inventors in the next section.

5.4 Location Choice Model

To complete our analysis of the effect of taxation on innovation, we estimate a location choice

model at the individual inventor level. Denote by j[i] the tax bracket of inventor i, which we assign
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based on cumulative patent counts as in Section 5.1 (i.e., 90th income percentile bracket for high

productivity inventors or median income bracket for everyone else). Suppose that the value to

inventor i of living (and inventing) in state s in year t is:

Uist = α ln(1−ATRpj[i]st ) + βsXist + νist

where νist is an inventor-specific idiosyncratic value of being in state s at time t, Xist are a set of

detailed controls, and ATR
pj[i]
st is the personal income average tax rate that would apply to inventor

i in state s at time t were they to live there. If νist is i.i.d with Type 1 extreme value, then the

probability that an inventor locates in state s, denoted P ist, takes the multinomial form

P ist =
exp(α ln(1−ATRpj[i]st ) + βsXist)∑

s′
exp(α ln(1−ATRyj[i]s′t ) + βs′Xis′t)

(14)

which we can estimate using a multinomial logit regression.

For the sake of computational feasibility and for this estimation only, we restrict ourselves

to the eight states which are both the among the fifteen most inventive states, as measured by

total patents over the period 1940-2000, and have spells with a progressive state tax system (that

is, 90th percentile earners pay a higher marginal tax rate than do median earners). This sample

restriction yields possible choice states of California, Maryland, Massachusetts, Minnesota, New

Jersey, New York, Ohio, and Wisconsin. The regression contains the following controls: “Home

State Flag” is a dummy equal to 1 if the state under consideration is the home state of the inventor,

defined as the state in which they first patent; “Agglomeration Forces” is, as above, total patents

granted to inventors other than i in state s in year t in inventor’s i’s modal technology class;

interactions of the home state indicator and the agglomeration measure with the high productivity

indicator; a quadratic of the experience of the inventor, interacted with state fixed effects (to allow

experience to have different impacts in different states). “Assignee has Patent in Destination” is an

indicator equal to one if the employer of the inventor already has had one patent in the state under

consideration. In regressions which include only state plus year (rather than state × year) fixed

effects, we control for the corporate tax base index, personal income per capita, population density,

R&D tax credits, and the corporate tax rate, all lagged by one year. Since location choice decisions

plausibly respond more quickly to tax changes, we lag all independent variables by one year in this

exercise. In this inventor-level analysis, we are most concerned with cross-state location decisions

within a given year, and because the computations are very demanding, we prioritize arbitrary

spatial correlation in error terms by clustering at the year level.

Column 1 of Table 5 shows the specification with state plus year fixed effects; all other columns

include state × year fixed effects, making use of the same logic for identification as explained

above.33 The coefficients represent changes in the log-odds ratio of locating in state s associated

33In columns with state × year fixed effects, only state-years with progressive personal taxes are included, as the
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with a one unit increase in the independent variable; as these are difficult to interpret, the bottom

rows show the elasticities of the number of inventors residing in a state implied by these coeffi-

cients. They are calculated following the method in Kleven et al. (2013) and Akcigit et al. (2016),

summarized in Appendix A.2.

The personal net-of-average tax rate in a state is strongly negatively correlated with inventors

choosing to locate there. The effect of taxes in column 2 is even stronger after absorbing state-

by-year varying factors, suggesting that there are other attractive forces or policies in a state that

may be correlated with tax rates and that need to be filtered out. With state × year fixed effects,

the elasticity to the net-of-tax rate of the number of inventors residing in a state is 0.10 (standard

error 0.04) for inventors who are from that state and 1.05 (standard error 0.45) for inventors not

from that state, with an average elasticity of 0.32 (standard error 0.14). In the introduction, we

discussed that these estimates are close to existing ones in the literature for the modern period.

Corporate taxes also have an important impact on the location choices of inventors. Column 1

shows that the elasticity of location choices to the net-of-tax corporate tax rate is, on average, 1.02

(standard error 0.18).

As expected, there are two strong pull factors – other than taxes – which strongly influence

the location decisions of inventors. These are, first, the home state. Inventors are, like most other

people, much more likely to remain in their home state than to move. Second, agglomeration

forces are essential as well and increase the appeal of a potential destination state. Furthermore, as

was the case for the inventor-level innovation decisions above, agglomeration influences not only the

value an inventor derives from being in a state, but it also dampens the elasticity to taxes, as shown

by the interaction term in column 3. This means that a state with higher levels of agglomeration

in one’s technology field will be able to attract more inventors even at the same tax burden than

a state with lower levels of agglomeration.

Column 4 adds an interaction of the personal average tax rate with the indicator for whether

the assignee that the inventor works for already has a patent in that state. This also makes the

inventor less sensitive to taxes in that state, which could be either because of career concerns or

lower frictions of moving to a state where the employer already has a physical presence.

5.5 Corporate Inventors

Although Table 4 shows that, on average, inventors do not adjust their innovation in response to the

corporate tax rate, this may mask heterogeneity in the response to corporate taxation of corporate

and non-corporate inventors. We thus re-estimate equation (12) interacting corporate and personal

income tax rates with indicators for whether the inventor is a corporate or non-corporate inventor.

As above, an inventor is defined as a corporate inventor in year t if they have at least one patent

others’ taxes are absorbed in the state × year fixed effects.
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assigned to a company over the next three years. Specifically, we estimate

yit = αi + ln(1− Personal MTRs(i)t−3) · [εcy,pCit + εpy,p(1− Cit)]

+ ln(1− Corp. Taxs(i)t−3) · [εcy,cCit + +εpy,c(1− Cit)]

+ νXit−1 + δs(i) + θt + υit (15)

where Cit is an indicator equal to 1 if the inventor is a corporate inventor in year t, υst is an

error term, and every other variable is as described in equation (12). Included in the Xist−1 are

the earlier set of controls, as well as the corporate inventor indicator Cit, also interacted with the

corporate tax base index by bins and with the indicator of being high productivity. The coefficients

of interest are εcy,p, ε
p
y,p, εcy,c and εpy,c which report the separate response of an innovation outcome

to personal and corporate taxes, for corporate and non-corporate inventors.34

Table 6 reports the estimated elasticities for corporate and non-corporate inventors separately.

Patents produced by corporate inventors have a significant and large elasticity to the corporate

net-of-tax rate of 0.49. The null effect for the sample as a whole arises because, on the contrary,

the innovation output of non-corporate inventors shows no statistically significant response to the

corporate tax. The personal net-of-tax rate, however, strongly influences the patenting activity of

non-corporate inventors, and to a lesser degree that of corporate inventors.

The quality of innovation as well responds differently across the two groups of inventors. Cor-

porate inventors’ likelihood of having any citation is unaffected by the personal net-of-tax rate,

but significantly increased by the corporate net-of-tax rate. The opposite applies to non-corporate

inventors. Overall, the average quality of corporate inventors is again insensitive to taxes, while

that of non-corporate inventors is somewhat negatively affected by personal and corporate taxes,

i.e., citations respond less positively than patents for the personal net-of-tax rate, and even neg-

atively for the corporate net-of-tax rate. The latter point suggests that when corporate taxes are

lower and corporate patents are more highly cited, this may come at the expense of non-corporate

innovation being cited (a “crowding out” of citations), perhaps because corporate inventors tend

to cite other corporate inventors more.

Turning to mobility, corporate inventors do not significantly adjust their location choices in

response to personal taxes, but appear highly elastic to the corporate tax rate. The elasticity of

corporate inventors’ location choices to the corporate tax is 1.25. The location choices of non-

corporate inventors respond strongly to both corporate and personal tax rates, with an elasticity

of 0.72 to the personal tax and of 0.60 to the corporate tax.

On balance, the small and insignificant effect of corporate taxes on non-corporate inventors

and their strong significant effects on corporate inventors’ innovation contributes to the positive

34In order to estimate the differential effect of corporate taxes on innovation for corporate and non-corporate
inventors, we only report estimates from regressions including state plus year fixed effects here, but as is clear from
Table 4, the estimated personal tax elasticities do not change much between this specification and the one with state
× year fixed effects.
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insignificant effect for the full sample in Table 4. The fact that lower corporate taxes tend to

stimulate corporate innovation more than non-corporate innovation is consistent with the large

and significantly negative effect of corporate taxes on the share of patents assigned to corporations

at the state level (Table 2).

5.6 Aggregating Micro to Macro

We can now show that the estimated micro-level responses are consistent with the macro-level ones.

Before doing so, it is worth pointing out that, although the aggregation in Section 2 holds formally

rue, there can in practice be a gap between the estimated macro elasticities and the aggregated

micro ones because of the identification strategies, whereby the micro estimation controls for more

time-varying and fixed state and inventor-level characteristics. Taxes can have effects on the market

size and demand and, hence, general equilibrium effects on prices, wages, and interest rates, among

others, due to the inflow of resources or knowledge from other states, i.e., cross-state spillovers

other than through the inventor migration responses. In the macro estimations, state and year

fixed effects will not filter out these general equilibrium effects. The long-differences estimations in

Table 3, which allow for time-varying state fixed effects, are better at accounting for these effects

and indeed yield smaller elasticities. The micro-level estimations including state × year fixed effects,

or the agglomeration measure, control for such state-level time-varying price effects.35

Furthermore, at the macro level, the estimated effects of taxes are also determined by the

composition of the inventor pool, in terms of their productivity, the sectors they work in, or

whether they are corporate or non-corporate. In the micro regressions, these are filtered out to

a large extent by our array of individual-level controls, including the inventor fixed effects or the

indicator for being high productivity, as well as by the “agglomeration” measure which captures

how well the inventor’s field is doing in this location and proxies for general equilibrium effects at

the tech class-state-year level. In addition, we cannot estimate the individual-level tax elasticities

of becoming an inventor in the first place. That margin of adjustment, however, will contribute to

the macro-level estimates.

These gaps may be particularly important for the corporate tax, which also shapes firms’

behaviors and may not be well captured in the micro-level elasticities, but will appear in the

macro-level ones. As discussed in Section 3, the corporate tax also poses specific measurement

35To see this formally, consider that each inventor’s output is a function also of prices, wages, and other state-level
variables P, which are themselves functions of taxes, i.e., yict = yi(1− τp, 1− τ c,P(τp, τ c)). In this case, the macro-
level estimated responses are due to direct responses to taxes and indirect responses that occur through general
equilibrium effects:

εY,p = γc

∫
i∈Ic

(
dyi

d(1− τp)
+
dyi
dP

dP
d(1− τp)

)
+ (1− γc)

∫
i∈Ip

(
dyi

d(1− τp)
+
dyi
dP

dP
d(1− τp)

)
+ γdηdp + (1− γd)ηop

The micro-level estimates will only isolate the first term in the brackets as the state × year fixed effects and the
time-varying inventor-level controls will filter out many or most the general equilibrium effects going through P. Thus,
while the decomposition in Section 2 is accurate, the fact that identification does not come from the same variation
at the micro and macro levels introduces a wedge.

33



issues, including for multistate inventors and firms, and its effects will not be as precisely estimated

as those of the personal income tax. Finally, the identification at the micro inventor-level is less

sharp for the corporate tax, as we cannot rely on within state × year tax variation by income tax

brackets, as we do for the personal tax.

These considerations aside, we can use the formulas in Section 2 to aggregate the estimated

micro-level elasticities and check their plausibility. Taking the elasticity of patenting with respect

to personal tax rates for corporate (εcY,p) and non-corporate inventors (εpY,p) from Table 6, the

location choice elasticities ηdp and ηop from Table 5 for inventors from the state (home-state) and

those not from the state (non-home state), and the share of patents accounted for both by corporate

inventors and home-state inventors (γc and γd) from Table 1, the macro elasticity of patents implied

by equation (1) is 1.77. This is very similar to our benchmark macro elasticity of 1.80 using OLS in

Table 2, and slightly above the elasticities estimated using our long-differences specification, which

range from 0.78–1.45 (Table 3). Repeating the same exercise for corporate taxes gives an implied

macro elasticity of patents to corporate taxes of 1.08. This is smaller than the OLS estimate of

2.76, but is close to the range we estimate in our long-difference specifications (1.32–1.98).

Aggregating citation elasticities in this way also generates similar elasticities to the macro

regressions. The implied macro elasticities of citations to personal and corporate net-of-tax rates

are 1.28 and 1.15, respectively. These numbers are smaller than the baseline OLS estimates of

1.52 and 2.38, and around the range of our long-difference macro elasticities from Table 3, where

personal tax elasticities range from 0.56 to 1.1, and corporate tax elasticities span 0.97 to 1.88.

These results suggest that almost all of of the macro elasticity of innovation to corporate taxes

comes as a result of the changing location of innovation. This may be driven by firms’ choices,

rather than those of inventors. Individual innovation outputs do not appear to respond much to

corporate taxation, subject to the caveats in properly measuring corporate tax burdens explained

throughout. In contrast, the majority of the macro effect of personal taxation appears to result from

reduced innovation at the individual level, rather than through shifting the location of innovation

from one state to another.

We can extend this analysis at the federal level and compare the federal-level elasticities to the

micro-level and state-level ones. At the federal level, we should recover the micro-level effects of

taxes on patents and innovation quality. Cross-state spillovers, such as those due to the migration

of inventors from one state to another, should not be reflected in the federal-level elasticities as they

are, to a first-order, zero-sum across states. If these migration responses account for a large share

of the overall tax response, there could be a significant wedge between the federal and state-level

elasticities.

We estimate time-series regressions of aggregate US innovation on federal tax rates. We use

the Auerbach and Poterba (1987) effective corporate tax rates for this exercise in order to capture

federal-level corporate tax base changes. The results are reported in Table A23, which shows

that the federal-level elasticities of patents, citations, inventors, and the share assigned to the

personal net-of-tax rate are very close to the state-level macro elasticities, which makes sense as
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the migration responses are not the only driver of the responses to personal taxes. On the other

hand, the corporate tax elasticities are much smaller, and closer to the micro-level ones. This is

consistent with the fact that some of the major effects of corporate taxes are due to cross-state

spillovers in terms of migration which are close to zero-sum at the federal level.

6 Conclusion

In this paper, we study the effects of personal and corporate income taxes on innovation in the

United States during the twentieth century using a series of newly constructed datasets. At the

state level and at the individual inventor level, personal and corporate taxes shape the quantity

and the location of innovation. The micro-level elasticities aggregate up to yield relatively large

macro elasticities that are substantially affected by cross-state spillovers due to inventors moving.

Our empirical evidence provides a sense of how firms and inventors respond to the net return to

innovation, and not only to tax rates, which are merely a component of that economic calculation.

In future work, it would be fruitful to compare the US experience to other countries, historically

and contemporaneously. That would require a major data collection effort, as we have completed

for the US, but our analysis highlights the benefits of such investments. While we have undertaken a

systematic comparison of the state-level and federal-level effects, more needs to be done to estimate

the effects of taxes on innovation at the national level in the US, when taking into account the

international mobility of inventors, firms, and intellectual property. An answer to that question is

central to a fuller understanding of a tax regime’s real impact.
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Table 1: Summary Statistics

Mean S.D. 1940-59 1960-79 1980-99
(1) (2) (3) (4) (5)

Inventor-Level Data: Outcomes
# annual patents 0.684 1.103 0.633 0.650 0.727
Pr{Has patent in 3 years} 0.703 0.457 0.661 0.700 0.723
# annual citations 16.9 98.7 5.6 7.1 27.7
Pr{Has 10+ citations in 3 years} 0.418 0.493 0.298 0.342 0.516

Inventor-Level Data: Taxes
Personal marginal tax rate (MTR) 0.226 0.077 0.162 0.239 0.246
Corporate MTR 0.455 0.079 0.417 0.521 0.431
N (millions) 6.212 . 1.323 1.850 3.039

State-Level Data: Unlogged Core Outcomes
# Patents (000s) 1.02 1.62 0.75 0.97 1.35
# Inventors (000s) 1.07 1.79 0.65 0.98 1.59
# Citations (000s) 20.99 63.32 6.67 10.32 45.99
Share Patents Assigned to Corporations 0.66 0.18 0.53 0.71 0.74

State-Level Data: Taxes
90th Percentile Income MTR 0.34 0.10 0.23 0.38 0.40
90th Percentile Income State MTR 0.04 0.03 0.02 0.04 0.05
Median Income MTR 0.22 0.05 0.18 0.24 0.23
Median Income State MTR 0.03 0.03 0.01 0.03 0.05
Ratio of 90th to Median Income State MTR 1.58 0.34 1.32 1.60 1.80
Corporate MTR 0.46 0.07 0.45 0.51 0.42
State Corporate MTR 0.05 0.03 0.03 0.05 0.07
R&D Tax Credit (percentage points) 0.46 1.93 0.00 0.00 1.37
Observations 2880 . 960 960 960

Sample Composition
% Corporate Patent 0.861 . 0.751 0.860 0.902
% Home-State Patent 0.860 . 0.861 0.873 0.853
% Corporate Citations 0.913 . 0.728 0.853 0.938
% Home-State Citations 0.845 . 0.868 0.875 0.838
% Corporate Inventor 0.832 . 0.702 0.841 0.884
% Home-State Inventor 0.854 . 0.863 0.849 0.852

Notes: Table reports summary statistics for our estimation sample. This includes all mainland US states, excluding
Louisiana, from 1940-2000. Columns (1) and (2) report the mean and standard deviation, respectively, for the
full sample period, while columns (3)-(5) report the averages in each 20-year period from 1940 to 2000. “State
MTR” refers to the state’s marginal tax rate excluding federal taxes, while “MTR” refers to tax rates inclusive of
both federal and state tax liabilities. “Home-State Patents” are patents which are granted to inventors who live in
the state in which they first appear in the data. Additional summary statistics, including those regarding logged
outcome variables, corporate tax base rules, other outcome variables and control variables are included in Appendix
Table A2. Inventors are included between the years of their first successful patent application and their last successful
patent application. Inventor-level summary statistics are averaged over inventor-year observations to reflect summary
statistics of our estimation sample. More summary statistics are in Appendix A.3.
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Table 2: Macro Effects of Taxation

PANEL A: OLS

Log Log Log Share
Patents Citations Inventors Assigned

(1) (2) (3) (4)

ln(1−MTR90) 1.803∗∗∗ 1.516∗∗∗ 1.784∗∗∗ 0.056
(0.450) (0.507) (0.427) (0.071)

ln(1− Corp. MTR) 2.759∗∗∗ 2.382∗∗∗ 2.308∗∗∗ 0.573∗∗∗

(0.701) (0.770) (0.640) (0.141)

Observations 2867 2867 2867 2867
Mean of Dep. Var. 7.07 9.65 7.08 0.72
S.D. of Dep. Var. 1.33 1.56 1.34 0.14

PANEL B: OLS CONTROLLING FOR CORPORATE TAX BASE

ln(1−MTR90) 1.967∗∗∗ 1.628∗∗∗ 1.896∗∗∗ 0.195∗∗∗

(0.391) (0.466) (0.383) (0.058)
ln(1− Corp. MTR) 2.376∗∗∗ 2.307∗∗∗ 2.051∗∗∗ 0.341∗∗

(0.733) (0.830) (0.681) (0.128)
Tax Base Index 0.173∗∗ 0.196∗∗ 0.216∗∗∗ 0.023∗

(0.082) (0.094) (0.078) (0.012)
Base Index × ln(1− Corp MTR) 0.220∗ 0.198 0.279∗∗ 0.026

(0.124) (0.140) (0.119) (0.018)

Observations 2256 2256 2256 2256
Mean of Dep. Var. 7.17 9.86 7.24 0.76
S.D. of Dep. Var. 1.28 1.52 1.29 0.11

PANEL C: IV

ln(1−MTR90) 2.294∗∗ 1.976∗ 2.281∗∗ -0.173
(0.956) (1.083) (0.893) (0.150)

ln(1− Corp. MTR) 3.540∗∗∗ 2.793∗∗∗ 3.015∗∗∗ 0.665∗∗∗

(0.943) (1.047) (0.866) (0.208)

Observations 2867 2867 2867 2867
Mean of Dep. Var. 7.07 9.65 7.08 0.72
S.D. of Dep. Var. 1.33 1.56 1.34 0.14

Notes: Table reports estimates from a regression following equation (3). Robust standard errors two-way clustered
at state × five-year and year level in parentheses. All regressions control for lagged population density, real personal
income per capita, R&D tax credits, state and year fixed effects and are weighted by state population in 1940. Tax
rates are lagged by 3-years and measured as log net-of-tax rates. Panel A shows OLS estimates. Panel B shows IV
estimates, where personal tax rates and corporate tax rates are instrumented for by the predicted tax rates from
(6) and (8) respectively. Panel C reports OLS estimates which additionally control for a corporate tax base index,
constructed as in Suárez Serrato and Zidar (2018) by taking the predicted value from a regression of state-level
corporate tax revenues on a variety of corporate tax base and apportionment rules. Mainland states, excluding
Louisiana, included for the period 1940-2000. ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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Table 3: State-level Long-Difference specifications

PANEL A: 20-YEAR LONG DIFFERENCE

∆ Log ∆ Log ∆ Log ∆ Share
Patents Citations Inventors Assigned

(1) (2) (3) (4)

∆ ln(1−MTR90) 1.452∗∗∗ 1.099∗∗∗ 1.472∗∗∗ 0.096∗

(0.117) (0.165) (0.126) (0.050)
∆ ln(1− Corp. MTR) 1.980∗∗∗ 1.877∗∗∗ 1.752∗∗∗ 0.442∗∗∗

(0.243) (0.277) (0.230) (0.082)

Observations 1927 1927 1927 1927
Mean of Dep. Var. 0.29 0.81 0.44 0.09
S.D. of Dep. Var. 0.48 0.67 0.45 0.12

PANEL B: 15-YEAR LONG DIFFERENCE

∆ ln(1−MTR90) 1.090∗∗∗ 0.729∗∗∗ 1.168∗∗∗ 0.055
(0.080) (0.130) (0.083) (0.044)

∆ ln(1− Corp. MTR) 1.511∗∗∗ 1.216∗∗∗ 1.325∗∗∗ 0.313∗∗∗

(0.250) (0.298) (0.247) (0.062)

Observations 2162 2162 2162 2162
Mean of Dep. Var. 0.26 0.66 0.37 0.07
S.D. of Dep. Var. 0.46 0.64 0.44 0.10

PANEL C: 10-YEAR LONG DIFFERENCE

∆ ln(1−MTR90) 0.780∗∗∗ 0.563∗∗∗ 0.849∗∗∗ 0.068∗∗

(0.146) (0.152) (0.155) (0.028)
∆ ln(1− Corp. MTR) 1.317∗∗∗ 0.972∗∗ 1.242∗∗∗ 0.163∗

(0.306) (0.391) (0.325) (0.090)

Observations 2397 2397 2397 2397
Mean of Dep. Var. 0.20 0.46 0.27 0.05
S.D. of Dep. Var. 0.37 0.54 0.36 0.09

Notes: Table reports estimates from state-level long-difference specifications following equation (4). Panel A considers
20-year long differences, Panel B considers 15-year long differences, while Panel C considers 10-year long differences.
Standard errors two-way clustered at state × five-year and year level are reported in parentheses. All regressions
include controls for long-differences in personal income/capita, R&D tax credits, population density, and corporate
tax base index, as well as year fixed effects. Regressions are weighted by 1940 state population.
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Table 4: Effects of Taxes at the Individual Inventor Level

Dependent Variable:
Has Has 10+ Log Log Has High-

Patent Cites Patents Citations Value Pat.
(1) (2) (3) (4) (5)

ln(1− Personal MTR) 0.478∗∗∗ 0.423∗∗∗ 0.817∗∗∗ 1.149∗∗∗ 0.259∗∗∗

(0.067) (0.065) (0.164) (0.171) (0.093)

State × Year FE Y Y Y Y Y
Inventor FE Y Y Y Y Y

R2 0.421 0.518 0.580 0.717 0.809

ln(1− Personal MTR) 0.432∗∗∗ 0.380∗∗∗ 0.764∗∗∗ 1.026∗∗∗ 0.277∗∗∗

(0.056) (0.058) (0.145) (0.149) (0.084)
ln(1− Corp. MTR) 0.074 0.073 0.095 0.119 0.002

(0.063) (0.063) (0.113) (0.216) (0.109)

State FE Y Y Y Y Y
Year FE Y Y Y Y Y
Inventor FE Y Y Y Y Y

Observations 6460412 6460412 4566398 4415498 1485493
Mean of Dep. Var. 0.707 0.422 0.458 2.779 0.500
S.D. of Dep. Var. 0.455 0.494 0.664 1.454 0.500
R2 0.420 0.517 0.578 0.717 0.807

Notes: Table reports coefficients estimated from OLS regressions at the individual inventor level. Standard errors
two-way clustered at state and year level reported in parentheses. Inventors are included in the sample between the
years they first apply for a patent and the year of their final patent application. Mainland states, excluding Louisiana,
included for the period 1940-2000. Personal MTR is defined as the marginal tax rate faced by the 90th percentile
earner in state s in year t for high productivity inventors, and the marginal tax rate rate faced by the median earner
for low productivity inventors. High productivity inventors defined to be those who are in the top 10% of the national
distribution of cumulative patents among active inventors. See Section 5.1 for details. Tax rates are lagged by 3-
years and measured as log net-of-tax rates. Regressions with state and year fixed effects include controls for one-year
lagged real state personal income per capita and population density, and R&D tax credits lagged by three years. All
regressions include controls for inventor productivity, a quadratic in inventor tenure, and a local agglomeration force,
measured as the number of patents applied for in the inventor’s modal class in state s in year t− 1 by other residents
of the state. All dependent variables aggregate over three years: between period t and t+2. The dependent variables
are: (1) an indicator for whether the inventor has a patent, (2) an indicator for whether the inventor has at least 10
citations, (3) the natural log of patents, (4) the natural log of citations received, and (5) an indicator for whether an
individual has patents with above-median Kogan et al. (2017) patent value. ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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Table 5: Inventors’ Location Choices: Multinomial Logit Estimations

(1) (2) (3) (4)

ln(1−ATRpj[i]) 1.104∗ 1.366∗∗ 1.498∗∗ 2.306∗∗∗

(0.594) (0.590) (0.586) (0.735)
ln(1− Corp. MTR) 3.310∗∗∗

(0.557)
Agglomeration Forces 0.184∗∗∗ 0.255∗∗∗ 0.213∗∗∗ 0.206∗∗∗

(0.029) (0.045) (0.050) (0.040)
Home State Flag 3.815∗∗∗ 3.794∗∗∗ 3.793∗∗∗ 3.610∗∗∗

(0.017) (0.018) (0.018) (0.017)
Interaction coefficients:
Agglomeration -0.273∗∗

(0.115)
Assignee Has Patent -1.801∗∗∗

(0.356)

Fixed Effects
State State State State

+ Year × Year × Year × Year

Baseline Pers. Tax Elasticity 0.340 0.322 0.353 0.465
(0.183) (0.139) (0.138) (0.148)

Pers. Tax Elasticity: Home State 0.135 0.102 0.111 0.150
(0.073) (0.044) (0.044) (0.048)

Pers. Tax Elasticity: Non-Home State 0.979 1.050 1.151 1.502
(0.526) (0.454) (0.450) (0.479)

Corp. Tax Elasticity 1.019
(0.172)

Corp. Tax Elasticity: Home State 0.405
(0.068)

Corp. Tax Elasticity: Non-Home State 2.934
(0.494)

Observations 4197104 2002776 2002776 2002776

Notes: Table reports coefficients estimated from the multinomial logistic regression specified in Section 5.4. ATRpj[i]

represents the average personal tax rate faced by an individual i who is at the jth income percentile locating in
a given state and year. We assign tax rates to inventors following the procedure laid out in Section 5.4. White
heteroskedasticity robust standard errors clustered at year level reported in parentheses. All tax rates are lagged by
one year and included as log net-of-tax rates. All specifications include controls for a quadratic in inventor tenure
which is allowed to vary by destination state, as well as home state × high productivity fixed effects. The regression
with state + year fixed effects (column 1) additionally controls for one-year lags of state personal income per capita,
population density, R&D tax credits and our index of corporate tax base breadth. For the sake of computational
feasibility, we restrict attention to the eight states which are both among the fifteen most inventive states by total
patent counts and ever have a progressive tax spell (i.e. charge a different marginal tax rate to 90th percentile
and median earners). This sample restriction yields possible choice states of California, Maryland, Massachusetts,
Minnesota, New Jersey, New York, Ohio, and Wisconsin. Inventors are only included in the years in which they have
at least one patent. Local agglomeration forces are proxied by the number of patents applied for in the inventor’s
modal class in state s in year t by other residents in the state, divided by 1,000. The rows under “Interaction
coefficients:” report the coefficients on an interaction of ln(1 − ATRpj[i]) with the variable in question. “Baseline
Pers. tax Elasticity” reports the elasticity implied by the coefficient on the uninteracted ln(1−ATRpj[i]), calculated
following Kleven et al. (2013) and described in Appendix A.2. ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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Table 6: Corporate vs Non-Corporate Inventor Elasticities

Corporate Inventors Non-Corporate Inventors
Tax Type: Personal Corporate Personal Corporate

(1) (2) (3) (4)

# Patents 1.09∗∗∗ 0.49∗∗ 4.14∗∗∗ -0.76
(0.27) (0.21) (1.15) (0.89)

Has Citation 0.00 0.10∗∗∗ 0.45∗∗∗ -0.04
(0.03) (0.03) (0.10) (0.09)

# Citations, conditional > 0 0.94∗∗∗ 0.36∗ 1.42∗∗∗ -0.71∗∗∗

(0.14) (0.20) (0.24) (0.24)
Mobility 0.20 1.25∗∗∗ 0.72∗∗ 0.60∗∗∗

(0.20) (0.20) (0.30) (0.20)

Notes: This table the estimated elasticity of various outcomes to the net-of-personal-tax rate (columns 1 and 3) and
net-of-corporate-tax rate (columns 2 and 4). Columns 1 and 2 report the elasticities for corporate inventors, while
columns 3 and 4 report them for non-corporate inventors. Corporate inventors are defined to be those who have at
least one patent assigned to a corporation in the next three years. The first three rows report results from regression
equation (15), estimated with OLS. These regressions contain inventor, state and year fixed effects, controls for
whether the inventor is a corporate inventor, the tax base index split into bins of width 0.5, the tax base index bins
interacted with the corporate inventor flag, a high quality flag interacted with a corporate inventor flag, and all the
controls from Table 4. Inventors are included in these regressions for all years between their first and final successful
(i.e. eventually granted) patent application. Standard errors two-way clustered at the state and year level reported
in parentheses. The first two rows report elasticities defined as the estimated semi-elasticity from this regression
divided by the group-specific mean of the dependent variable. In the text, we report the elasticity of citations to
taxes, which we calculate by summing the elasticities for “Has Citation” and “# Citations, conditional > 0” (the
second and third rows). Mobility elasticities by estimating multinomial logistic regressions following equation (14)
and following the procedure of Kleven et al. (2013) and described in Appendix A.2. These multinomial regressions
are estimated analogously to column 1 of Table 5 and include state plus year fixed effects and all the same control
variables. ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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Figure 1: Binned Scatters

Panel A: 90th percentile personal Panel B: Top Corporate MTR
MTR on Log Patents MTR on Log Patents
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Panel C: 90th percentile personal Panel D: Top Corporate MTR
MTR on Log Inventors on Log Inventors
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Notes: Figure plots binned scatter plots of effect of taxes at state level. The top row shows the effect on log patents,
while the bottom row shows log inventors. The leftmost column shows the relationship between innovation and the
marginal tax rates (MTRs) for the 90th percentile earners, and the rightmost column show effect of top corporate
MTRs. All tax rates include both federal and state taxes. Both the horizontal and vertical axes are residualized
against state and year fixed effects, as well as lagged population density, personal income per capita, and R&D
tax credits. Panels A and C additionally residualize against the lagged corporate tax rate, while Panels B and D
residualize against 90th percentile personal income MTR. All mainland US states except Louisiana included over the
period 1940–2000.
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Figure 2: Visualizing IV Variation

Panel A: Personal Income Tax Rate for 90th percentile earner
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Panel B: Personal Income Tax Rate for median earner
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Notes: Figure plots the variation in our personal income tax instrument induced by federal tax changes. The gray
bars plot the time series of changes in the statutory federal personal tax rate for a particular point in the earnings
distribution: the 90th percentile in Panel A and the 50th percentile in Panel B. The dashed lines plot the distribution
of induced changes in combined state and federal tax liabilities assuming that the state tax law were fixed to be
the same as five years prior. The blue squares connected by dashed lines plot the 90th percentile of induced tax
changes, while the black circles connected by solid lines plot the 10th percentile of induced tax changes. The income
distribution is lagged by 5 years to produce this plot. That is, the blue and black lines plot the distribution of changes
in the instrument for state personal taxes. Personal tax rates are instrumented for by the predicted tax rates given
by equations (6).
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Figure 3: State-Level Event Studies around Large Tax Reforms

Panel A: 90th percentile personal Panel B: 90th percentile personal
MTR on Log Patents MTR on Log Inventors
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Panel C: Top Corporate MTR Panel D: Top Corporate MTR
on Log Patents on Log Inventors
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Notes: Figure reports estimates of γl from Equation (9), based on event study regressions around large tax reforms.
A large tax reform is defined as being in the top 10% of state tax changes in the period 1940-2000 that does not
have another large reform within 4 years before or after the focal reform. Panels A and B consider state tax reforms
affecting the personal tax rate for the 90th percentile earner, while Panels C and D consider large reforms to the top
statutory corporate tax rate. We generate a synthetic control state for each reform following Abadie et al. (2010) by
matching on pre-reform outcomes (patents or inventors), population density, and personal income/capita averaged
over the 4 years prior to the reform. Only states that do not themselves have a large reform in the event window are
eligible to be included in the synthetic control. See Section 4.3 for details. All regressions include reform × treatment
state fixed effects and relative year fixed effects and are unweighted. Bars represent 95% confidence intervals using
standard errors clustered at the reform level.

48



Figure 4: State-Level Distributed Lag Regressions

Panel A: 90th percentile personal Panel B: 90th percentile personal
MTR on Log Patents MTR on Log Inventors

F-test all lags are 0 has p-value = 0.007

F-test all leads are 0 has p-value = 0.147
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F-test all lags are 0 has p-value = 0.003

F-test all leads are 0 has p-value = 0.151
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Panel C: Top Corporate Panel D: Top Corporate MTR
on Log Patents on Log Inventors

F-test all lags are 0 has p-value = 0.000

F-test all leads are 0 has p-value = 0.199
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F-test all lags are 0 has p-value = 0.000

F-test all leads are 0 has p-value = 0.575
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Notes: Figure reports estimates from the distributed lag model described in equation (10). Specifically, we plot Bl,
which represents the cumulative effect of a one unit change in the log net-of-tax-rate in year t through year t + l,
normalizing the value of the zero-lag change to 0. Coefficients may thus be interpreted as cumulative elasticities.
See Section 4.4 for details. All regressions include 1-year lagged controls for personal income/capita, population
density and R&D tax credits, all included as one-year changes, as well as year fixed effects, and are weighted by
each state’s 1940 population count. Corporate tax regressions additional include controls for the distributed lag of
individual corporate tax base rules, namely whether the state has a sales apportionment weight, the sales and payroll
apportionment weights, and the number of years that losses are allowed to be carried forward or back. Regressions
focusing on personal income taxes additionally control for three-year lagged one-year changes in corporate income
taxes and vice versa. All taxes include both state and federal tax liabilities. Dashed lines indicate 90% confidence
intervals calculated using standard errors clustered at the state level.
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APPENDIX

A.1 Variable Definitions

In this section, we detail the construction of relevant variables for our analysis. Variables related

to corporate tax base rules are described in detail in Section OA.2.

• Top Corporate Marginal Tax Rate (Corp. MTR) - The additional tax burden accruing to

a firm in the top tax bracket in state s for an additional one dollar of revenue if all of its

operations were in s.

• 90th Percentile Income Marginal Tax Rate (MTR90) - The additional tax burden accruing to

an individual at the 90th percentile of the national income distribution for an additional one

dollar of earnings. Calculated using the tax calculator by Bakija (2017).

• 90th Percentile Income Average Tax Rate (ATR90) - The total tax burden for an individual

at the 90th percentile of the national income distribution divided by that individual’s total

income. Calculated using the tax calculator by Bakija (2017).

• Median Income Marginal Tax Rate (MTR50) - The additional tax burden accruing to an

individual at the 50th percentile of the national income distribution for an additional one

dollar of earnings. Calculated using the tax calculator by Bakija (2017). Data on median

incomes come from the Census. Table P-53 reports the median income for men back to 1947.

These data are available from https://www.census.gov/data/tables/time-series/demo/

income-poverty/historical-income-people.html. We also use income data from the 1940

decennial Census, and log-linearly interpolate median incomes from 1940 through 1947.

• Median Income Average Tax Rate (ATR50) - The total tax burden for an individual at the

50th percentile of the national income distribution divided by that individual’s total income.

Calculated using the tax calculator by Bakija (2017).

• Inventor productivity - An inventor’s productivity in year t is defined to be the number of

eventually-granted patents that the inventor has applied for as of year t − 1. In robustness

table A29, inventor i’s productivity in year t is defined to be the total number of citations

ever received by patents applied for by i through year t. An inventor is said to be “high

productivity” in year t if they are in the top 10% of the national inventor productivity distri-

bution in year t. In robustness table A26, an inventor is said to be high productivity if they

are in the top 5% of the national productivity distribution in year t. Finally, robustness table

A28 allows an inventor to be high productivity if they are in the top 10% of the productivity

distribution, of middle productivity if they are between the 75th and 90th percentile of the

productivity distribution, and low productivity otherwise.
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• Personal MTR - An inventor’s effective marginal (average) tax rate is defined to be the

marginal (average) tax rate faced by the 90th percentile earner in the national income dis-

tribution if the inventor is high productivity, and the marginal (average) tax rate faced by a

median earner if the inventor is low productivity. In appendix table A28, middle productivity

inventors have an effective tax rate equal to the tax rate faced by an individual earning at the

75th percentile of the national income distribution. In all regressions, we use lagged effective

tax rates as independent variables. Thus an inventor living in state s will face an effective tax

rate for innovation output in year t which is the effective tax rate the inventor would have

faced in year t− 1 given their t− 1 productivity level and the tax laws in place in year t− 1.

• Log Patents - The natural logarithm of the number of eventually-granted patents applied for

in state s in year t. In inventor-level regressions, this variable corresponds to the log of the

number of eventually-granted patents applied for by inventor i in years t through t+ 2.

• Log Citations - The natural logarithm of the number of citations ever received by eventually-

granted patents which were applied for in state s in year t. In inventor-level regressions, this

variable corresponds to the log of the number of citations ever received by eventually-granted

patents which were applied for by inventor i in years t through t+2. Citation counts adjusted

according to the algorithm of Hall et al. (2001), detailed for our data in Appendix OA.4.

• Log Inventors - The natural logarithm of number of inventors in state s in year t as implied by

the Lai et al. (2014) algorithm applied to our dataset. A detailed description of this algorithm

is provided in Appendix OA.1.

• Corporate Patent - A corporate patent is one which is assigned to a corporation after being

granted.

• Share Assigned - The share of patents in state s in year t which are assigned to a corporation.

• Has Patent - An indicator variable, equal to 1 if the inventor has at least one successful patent

application between years t and t + 2. Inventors are included in the regression sample for

the period between their first ever successful patent application, and their last ever successful

patent application.

• Has 10+ Cites - An indicator variable, equal to 1 if the inventor’s patents, applied for between

years t and t+2, ever receive at least 10 citations in total between them. Inventors are included

in the regression sample for the period between their first ever successful patent application,

and their last ever successful patent application. Patent citation counts adjusted according

to the algorithm of Hall et al. (2001), detailed for our data in Appendix OA.4.

• Corporate Inventor - An inventor is said to be a corporate inventor in year t if they are

granted at least one corporate patent in the next three years.
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• Agglomeration - The number of patents, in thousands, applied for by inventors j 6= i who

share inventor i’s modal patent class in year t in state s.

• Home State Flag - An indicator variable equal to one if the state is the first state in which

the inventor applies for a patent.

• Assignee Has Patent - An indicator variable equal to one if an inventor i’s firm has at least

one patent applied for in year t by an inventor j 6= i in destination state s.

• Inventor Tenure/Experience - an inventor’s tenure is the number of years that have passed

since the inventor’s first successful patent application.

• Personal Income per Capita - state level personal income per capita, included in regressions

in units of tens of thousands of 1982 dollars. Downloaded from https://www.bea.gov/data/

economic-accounts/regional, accessed on March 15, 2021.

• R&D Tax Credit: statutory credit rate adjusted for recapture and type of credit for a given

state-year;

• Population Density - thousands of people per square kilometer.

• Tax Base Index - corporate tax base index. Higher values generally correspond to broader

tax bases. Construction of the index is detailed in Appendix OA.2.

• State Governor: Democrat - an indicator variable equal to 1 if the state’s governor is a

Democrat.

• % State Upper House Democrat - the percent of a state’s Upper House of the legislative

branch who is a Democrat.

• % State Lower House Democrat - the percent of a state’s Lower House of the legislative branch

who is a Democrat.

• State Pat./State Patents - the natural log of the total number of patents applied for in the

inventor’s residence state.

• Kogan et al. (2017) patent value - Patent value constructed by Kogan et al. (2017) by con-

sidering jumps in the total stock market value of an assignee in a short window around the

successful patent grant, deflated to millions of 1982 dollars. This is only defined for patents

granted to publicly-traded corporations.

• Has High-Value Patent (Pat.) - An indicator variable equal to one if an inventor has, over the

subsequent three years, Kogan et al. (2017) stock market value of patents applied for among

all corporate inventors active in year t.
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A.2 Calculating Multinomial Logit Elasticities

The elasticity of an inventor i residing in state s to the personal tax rate may be expressed as36

ηist =
d lnP ist

d ln(1−ATRpj[i]st )
= α · (1− P ist)

We may then define the elasticity of location choices to tax rates by taking the weighted average

of these ηist. We may do this separately inventors’ home state and non-home states. Letting Ids and

Ios denote home and non-home inventors in state s, the elasticity of locating in state s to personal

taxes may be expressed as

ηs,dp ≡
d log

∑
i∈Ids P

i
st

d ln(1−ATRst)
=
α
∑

i∈Id P
i
st(1− P ist)∑

i∈Ids P
i
st

. (A1)

Likewise, for inventors in non-home states,

ηs,dp ≡
d log

∑
i∈Ios P

i
st

d ln(1−ATRst)
=
α
∑

i∈Io P
i
st(1− P ist)∑

i∈Ids =o P
i
st

. (A2)

Average home and non-home elasticities are then defined as the weighted average of these

elasticities across all countries:

ηdp ≡
∑
s

 ∑
i∈Idt

P ist∑
s

∑
i∈Idt

P ist

 ηs,dp , (A3)

and

ηop ≡
∑
s

 ∑
i∈Iot

P ist∑
s

∑
i∈Iot

P ist

 ηs,op , (A4)

where Idt and Iot represent the set of inventors locating in their home state or out-of-state, as in

Section 2. Finally, we may aggregate these elasticities to an overall mobility elasticity as

ηp ≡ γdηd + (1− γd)ηo. (A5)

36Elasticities to the corporate tax may be defined analogously.
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A.3 Additional Tables and Figures

A.1 Summary Statistics

Table A1: Disambiguation Output: Unique Inventor Counts

Sample # Inventors # Patents

1920-2004, US only 2,953,471 5,336,672
1940-2000, US only 1,744,224 2,775,100

Lai et al. Patents, our disambiguation 1,374,891 2,179,599
Lai et al. Disambig (US) 1,462,626 2,179,599

Notes: Table shows performance of the Lai et al. disambiguation algorithm as applied to our historical patent
data. Each row contains performance information for a different subsample. The category “Lai et al. Patents, our
disambiguation” reports the performance of our algorithm on the patent records included in the original Lai et al.
sample. Likewise, “Lai et al. Disambig (US)” reports the number of unique inventors that Lai et al. find when
applying their algorithm to U.S. patents. The first column shows the number of unique inventors found by the
disambiguation algorithm, while the second shows the unique number of patents in each subsample.
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Table A2: Additional Summary Statistics

Mean S.D. 1940-59 1960-79 1980-99
(1) (2) (3) (4) (5)

Inventor-Level Data: Controls/Other Outcomes
Pr{Has corporate patent in 3 years} 0.564 0.496 0.437 0.566 0.619
Pr{Has non-corporate patent in 3 years} 0.165 0.371 0.244 0.154 0.136
Agglomeration forces 0.068 0.215 0.017 0.029 0.114
Tenure 9.726 13.245 9.380 9.942 9.745
Pr{Assignee has patents in multiple states} 0.790 0.407 0.797 0.794 0.784

State-Level Data: Other Outcomes
Log Patents 5.96 1.51 5.54 5.98 6.35
Log Inventors 5.97 1.53 5.44 6.00 6.49
Log Citations 8.52 1.77 7.69 8.30 9.56
Mean Kogan et al. (2017) Patent Value 23.71 16.71 23.94 26.99 20.25
Real Manufacturing Value Added ($ billions) 5.08 6.40 2.67 5.56 7.02
Real Manufacturing Total Payrolls ($ billions) 2.30 2.93 1.43 2.73 2.74
Real Average Weekly Earnings 102.47 22.61 80.59 113.34 113.47
Employees per Establishment 51.10 20.21 50.21 53.97 49.13
Real Personal Income Per Capita ($ 0000s) 3.31 1.27 2.04 3.27 4.62
Share of Workforce in Manufacturing 0.22 0.12 0.29 0.23 0.15

State-Level Data: Corporate Tax Rules
Share with Sales Apportionment Weight 0.95 0.22 0.83 0.97 1.00
Sales Apportionment Weight 42.27 23.50 39.44 37.90 47.33
Property Apportionment Weight 30.13 15.54 35.14 31.34 26.32
Payroll Apportionment Weight 25.62 13.39 19.95 28.69 26.32
Years Losses Allowed to be Carried Back 1.19 1.45 0.10 1.16 1.29
Years Losses Allowed to be Carried Forward 6.69 5.87 1.41 3.19 9.76

Notes: Table reports additional summary statistics for our estimation sample. This includes all mainland US states,
excluding Louisiana, from 1940-2000. Columns (1) and (2) report the mean and standard deviation, respectively, for
the full sample period, while columns (3)-(5) report the averages in each 20-year period from 1940 to 2000. “Tenure”
corresponds to the number of years the inventor has been in the sample since her first patent. Inventors are included
between the years of their first successful patent application and their last successful patent application. Summary
statistics for all inventor controls are averaged over inventor-year observations to reflect summary statistics of our
estimation sample; thus inventors with long careers will appear more than once in the average. Kogan et al. (2017)
Patent Value is expressed in millions of 1982 dollars. Corporate tax base rules are defined in detail in Appendix
OA.5, and are defined conditional on having non-zero state corporate tax rates.
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Table A3: Summary Statistics on Inventor Careers

Mean Median SD 90th 95th 99th

Years Active 3.33 1.00 6.24 8.00 15.00 33.00
Number of States 1.07 1.00 0.38 1.00 2.00 3.00
Number of Patents 2.60 1.00 5.79 5.00 9.00 25.00
Patents Per Year 1.02 1.00 0.53 1.00 2.00 3.00
Total Citations Received 65.34 12.71 409.31 110.73 229.11 890.12
Citations Per Year 21.88 8.26 70.62 41.69 74.23 244.71
Number of Classes 1.62 1.00 1.75 3.00 4.00 9.00

Notes: Table reports summary statistics of our sample of disambiguated inventors. The categories “Number of
States,” “Number of Patents,” “Total Citations Received,” and “Number of Classes” refer to statistics over an
inventor’s entire career, while “Patents Per Year” and “Citations Per Year” refer to average numbers per year of
an inventor’s career. Each column reports a different moment of the distribution for the variable considered in the
row. For instance, the 90th percentile of the distribution of total career length (“Years Active”) is 11 years, the 95th

percentile of that distribution is 19 years and the mean is 4.14 years. Inventors are considered active between the
first year in which they have a successful patent application and the last year in which they have a successful patent
application. All statistics are inventor-weighted, in contrast to Tables 1 and A2 which present statistics averaged over
inventor × year observations. The table considers inventors active in our primary estimation sample: U.S. inventors
between 1940 and 2000. The table therefore represents 1,744,224 inventors.
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Figure A1: Patents per 10,000 State Residents Over Time

Panel A: 1940 Panel B: 1950

Panel C: 1960 Panel D: 1970

Panel E: 1980 Panel F: 1990

Panel G: 2000

Notes: Figure plots the number of patents per 10,000 state residences in each state every ten years from 1940 through
2000. Darker colors indicate more innovation.
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Figure A2: Inventors per 10,000 State Residents Over Time

Panel A: 1940 Panel B: 1950

Panel C: 1960 Panel D: 1970

Panel E: 1980 Panel F: 1990

Panel G: 2000

Notes: Figure plots the number of unique inventors per 10,000 state residences in each state every ten years from
1940 through 2000. Darker colors indicate more innovation.
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Figure A3: Share of Corporate Patents and Corporate Inventors
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Notes: The graph shows the share of patents assigned to corporations (dashed line) and the share of inventors who
patent for corporations (solid line).
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A.2 Summary of Tax Variation

Figure A4: Introduction Year of State Personal Income Taxes
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Notes: Figure plots the first year in which each state has a statutory personal income tax rate.

Figure A5: The Evolution of Personal Income Taxes
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Notes: Figure plots the share of states with a personal income tax, as well as the distribution of those taxes over
time.
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Figure A6: State Personal Marginal Tax Rates at the Median Income

Panel A: 1940 Panel B: 1950

Panel C: 1960 Panel D: 1970

Panel E: 1980 Panel F: 1990

Panel G: 2000

Notes: Figure plots the state statutory marginal personal income tax rates faced by individuals whose adjusted gross
income is equal to the median of the nation income distribution for men every ten years from 1940 through 2000.
Darker colors indicate higher tax rates. Tax rates measured in percentage points.
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Figure A7: State Personal Marginal Tax Rates at 90th Income Percentile

Panel A: 1940 Panel B: 1950

Panel C: 1960 Panel D: 1970

Panel E: 1980 Panel F: 1990

Panel G: 2000

Notes: Figure plots the state statutory marginal personal income tax rates faced by individuals whose adjusted gross
income is equal to the 90th percentile of the nation income distribution for men every ten years from 1940 through
2000. Darker colors indicate higher tax rates. Tax rates measured in percentage points.
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Figure A8: The Evolution of Personal Income Taxes in Select States
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Notes: Figure plots the time series of marginal personal income tax rates for the five most innovative states in our
sample. Tax rates are measured in percentage points. Panel A shows the top statutory personal income tax rate,
while Panel B plots it for the median earner.

Figure A9: Trends in State Statutory Tax Policy Changes
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Notes: Figure plots the time series of the share of states experiencing a statutory personal income (panel A) and
corporate income (panel B) tax rate change. The gray bars, plotted against the left axis, show the share of all states
that experience a statutory top tax rate change. The black solid line plots the mean size (positive or negative) of
non-zero tax changes, while the blue dashed line represents the size of a 90th percentile non-zero tax rate change in
that year. Tax rate changes are measured in percentage points. Black and blue lines are plotted against the right
axis.
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Figure A10: Size of marginal tax rate changes for median and 90th per-
centile workers
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Notes: Figure is a scatter plot showing the relative size of tax rate changes for median versus 90th percentile workers.
Each dot is a different state-year cell and the dashed line is a 45 degree line. Of the state-years that experience a
change in the tax rate for either the 90th percentile or median worker, 44% had a larger change for top earners while
56% had a larger change for median earner.
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Table A4: Share of Tax Changes Generated by Each Source

Federal State Income
tax rate tax rate distribution

(1) (2) (3)

Personal tax rate for median earner 0.763 0.237 0.040
Personal tax rate for 90th percentile 0.783 0.217 0.046
Corporate top tax rate 0.766 0.288 –

Notes: Table reports the share of state-level changes in combined (i.e. federal plus state) tax liabilities that are
caused by various forces. Column (1) reports the share of tax rate changes that are accompanied by a federal tax rate
change. These changes may also be accompanied by state tax changes; indeed, since federal taxes are deductible for
personal taxes in many states, nearly every change in federal tax change is associated with a change in personal state
rates. Column (2) reports the share of tax rate changes that arise from changes in the statutory state tax rate. Since
nearly all changes in personal federal tax rates are accompanied by state tax changes, column (2) only reports the
share of changes that have no federal component for the personal tax rates. Thus column (1) and (2) add up to 1 in
the first two rows. For corporate taxes, we report the share of changes that have a state-level component, regardless
of whether federal taxes change as well. Finally, column (3) shows the share of personal income tax changes for
percentile p that result from that percentile crossing across a tax bracket. We have no such tax bracket information
for corporate taxes, thus this column is blank on the bottom row.
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Figure A11: The Evolution of Corporate Taxes
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Notes: Figure plots the time series of the distribution and proliferation of state corporate tax rates. Panel A shows
the number of states with a corporate income tax and the mean non-zero tax rate. Panel B plots the distribution
of top state corporate tax rates over time. Panel C shows the evolution of top state corporate tax rates for the five
most innovative states in our sample. All tax rates are measured in percentage points.
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Figure A12: Introduction Year of State Corporate Taxes
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Notes: Figure plots the first year in which each state has a statutory corporate income tax rate.
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Figure A13: Top State Corporate Marginal Tax Rates over Time (Percent-
age Points)

Panel A: 1940 Panel B: 1950

Panel C: 1960 Panel D: 1970

Panel E: 1980 Panel F: 1990

Panel G: 2000

Notes: Figure plots the state top statutory marginal corporate income tax rates every ten years from 1940 through
2000. Darker colors indicate higher tax rates. Tax rates measured in percentage points.68



Figure A14: Evolution of State Corporate Income Apportionment Rules
Through Time
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Notes: Figure plots the evolution of state corporate income tax apportionment rules. The solid blue lines plot the
share of states that have at least some weight on a particular factor, conditional on having a corporate tax at all.
The light blue dashed lines plot the average weight placed on the factor across all states with a corporate tax, while
the red dashed lines plot the average weight placed on the factor by states which have at least some weight on
that apportionment factor. Each panel considers a different apportionment factor. Data collection and definitions
described in detail in Appendix OA.2.
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Figure A15: Distribution of Time Between Large Tax Changes

Panel A: Distribution of Time Panel B: Mean Time
Between Large Top Statutory Between Large Top Statutory
Personal Income Tax Changes Personal Income Tax Changes
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Panel C: Distribution of Time Panel D: Mean Time
Between Large Top Statutory Between Large Top Statutory
Corporate Income Tax Changes Corporate Income Tax Changes
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Notes: Figure summarized the number of years between large (i.e. top 10%) state tax reforms, the likes of which
are used to define our event studies. Panels A and B consider state reforms to the top statutory personal tax rate,
while Panels C and D consider state reforms to the top statutory corporate tax rate. Panels A and C show the
distribution of times between large reforms, while Panels B and D show the average time between large reforms by
decade. Decades are assigned to the second reform in a pair; for instance, if there is a reform in 1957 and 1962, a
time gap of 5 would be coded in 1962.
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A.3 Robustness and Extensions: State-Level Regressions

Table A5: State-level OLS regressions with all control coefficients re-
ported

Log Log Log Share
Patents Citations Inventors Assigned

(1) (2) (3) (4)

ln(1−MTR90) 1.803∗∗∗ 1.516∗∗∗ 1.784∗∗∗ 0.056
(0.450) (0.507) (0.427) (0.071)

ln(1− Corp. MTR) 2.759∗∗∗ 2.382∗∗∗ 2.308∗∗∗ 0.573∗∗∗

(0.701) (0.770) (0.640) (0.141)
Real Personal Income per Capita 0.069 0.308∗ 0.074 0.025

(0.131) (0.154) (0.125) (0.020)
Population Density -0.009 0.002 -0.005 -0.010∗∗∗

(0.011) (0.013) (0.010) (0.002)
R&D Tax Credit 0.001 0.010 0.002 0.002

(0.010) (0.013) (0.009) (0.002)

Observations 2867 2867 2867 2867
Mean of Dep. Var. 7.07 9.65 7.08 0.72
S.D. of Dep. Var. 1.33 1.56 1.34 0.14

Notes: See notes to Table 2. This table is identical to that table, but reports the coefficients additional control
variables as well.
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Table A6: State-level OLS regressions on additional outcomes

Log Unadj. Log Corp. Log Non-Corp. Log Mean Log Av.
Citations Patents Patents Pat. Value Estab. Emp.

(1) (2) (3) (4) (5)

ln(1−MTR90) 1.527∗∗∗ 1.810∗∗∗ 1.080∗∗ -0.859∗ -0.045
(0.512) (0.552) (0.419) (0.437) (0.236)

ln(1− Corp. MTR) 2.923∗∗∗ 4.000∗∗∗ 1.979∗∗∗ 1.791∗∗∗ 1.399∗∗∗

(0.832) (0.915) (0.547) (0.556) (0.367)

Observations 2867 2867 2867 2831 2867
R2 0.96 0.95 0.96 0.75 0.87
Mean of Dep. Var. 9.55 6.71 5.68 3.02 3.98
S.D. of Dep. Var. 1.57 1.49 1.13 0.58 0.32

Log Value Log Total Log Av. Log Income Share in
Added Payroll Weekly Earn. Per Capita Manufact.

(6) (7) (8) (9) (10)

ln(1−MTR90) 0.862 1.181∗∗ 0.129 0.296∗∗ 12.001∗∗∗

(0.556) (0.548) (0.118) (0.113) (4.473)
ln(1− Corp. MTR) 3.875∗∗∗ 3.438∗∗∗ 0.338∗∗∗ 0.747∗∗∗ 22.468∗∗∗

(0.681) (0.689) (0.125) (0.165) (7.621)

Observations 2867 2867 2867 2867 2844
R2 0.95 0.95 0.96 0.98 0.93
Mean of Dep. Var. 8.74 7.96 4.64 8.08 25.15
S.D. of Dep. Var. 1.19 1.21 0.24 0.42 10.94

Notes: Table reports estimates from a state-level regression following equation (3), using alternative outcome vari-
ables. The outcome variables are as follows. Column (1) log total unadjusted citation counts; (2) Log number of
patents assigned to corporations; (3) Log number of patents that are not assigned to corporations; (4) log average
Kogan et al. (2017) patent value among patents applied for in that state; (5) Log average establishment size; (6) Log
total state manufacturing value added; (7) Log total state manufacturing payrolls; (8) Log average weekly earnings of
manufacturing employees in the state; (9) Log real per capita income; (10) Percent of workers in the manufacturing
sector. Robust standard errors two-way clustered at state × five-year and year level in parentheses. All regressions
control for lagged population density, real personal income per capita (excluded in column 9), R&D tax credits, state
and year fixed effects and are weighted by state population in 1940. Tax rates are lagged by 3-years and measured
as log net-of-tax rates. “ATRs” correspond to average tax rates, while “MTRs” correspond to marginal tax rates.
Mainland states, excluding Louisiana, included for the period 1940-2000. ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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Table A7: State-level OLS regressions using alternative tax rates

Log Log Log Share
Patents Citations Inventors Assigned

ln(1−MTR50) 2.749∗∗ 2.738∗∗ 2.649∗∗ -0.053
(1.092) (1.201) (0.996) (0.169)

ln(1− Corp. MTR) 2.783∗∗∗ 2.323∗∗∗ 2.345∗∗∗ 0.600∗∗∗

(0.745) (0.813) (0.678) (0.146)

ln(1−ATR90) 3.396∗∗∗ 2.982∗∗ 3.323∗∗∗ -0.113
(1.084) (1.202) (1.001) (0.173)

ln(1− Corp. MTR) 2.614∗∗∗ 2.235∗∗∗ 2.173∗∗∗ 0.612∗∗∗

(0.744) (0.816) (0.678) (0.149)

ln(1−ATR50) 5.529∗∗∗ 5.457∗∗∗ 5.020∗∗∗ 0.139
(1.803) (2.015) (1.632) (0.288)

ln(1− Corp. MTR) 2.781∗∗∗ 2.326∗∗∗ 2.371∗∗∗ 0.577∗∗∗

(0.740) (0.799) (0.673) (0.142)

Observations 2867 2867 2867 2867
Mean of Dep. Var. 7.07 9.65 7.08 0.72
S.D. of Dep. Var. 1.33 1.56 1.34 0.14

Notes: See notes to Table 2. This table is identical except it includes the different personal income tax rates as
independent variables. Each panel, separated by a horizontal line, reports separate sets of regressions. faced by both
median (MTR50) and 90th percentile earners as independent variables. “ATRs” correspond to average tax rates,
while “MTRs” correspond to marginal tax rates.

Table A8: State-level OLS regressions including the personal marginal in-
come tax rate for both median and 90th percentile earners as independent
variables

Log Log Log Share
Patents Citations Inventors Assigned

(1) (2) (3) (4)

ln(1−MTR90) 1.384∗∗∗ 1.031∗ 1.391∗∗∗ 0.086
(0.447) (0.517) (0.438) (0.069)

ln(1−MTR50) 1.668 1.932 1.561 -0.120
(1.203) (1.344) (1.118) (0.178)

ln(1− Corp. MTR) 2.574∗∗∗ 2.168∗∗∗ 2.135∗∗∗ 0.587∗∗∗

(0.719) (0.798) (0.653) (0.147)

Observations 2867 2867 2867 2867
R2 - Overall 0.96 0.96 0.97 0.87

Notes: See notes to Table 2. This table is identical except it includes the marginal personal income tax rate faced
by both median (MTR50) and 90th percentile earners as independent variables.
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Table A9: State-level OLS regressions using tax rates for married individ-
uals with two dependents

Log Log Log Share
Patents Citations Inventors Assigned

(1) (2) (3) (4)

ln(1−MTR90) 1.680∗∗∗ 1.599∗∗∗ 1.667∗∗∗ 0.053
(0.493) (0.549) (0.476) (0.074)

ln(1− Corp. MTR) 2.768∗∗∗ 2.293∗∗∗ 2.351∗∗∗ 0.546∗∗∗

(0.692) (0.754) (0.637) (0.140)

Observations 2773 2773 2773 2773
Mean of Dep. Var. 7.08 9.67 7.10 0.72
S.D. of Dep. Var. 1.32 1.56 1.34 0.14

Notes: See notes to Table 2. This table is identical except it uses the personal income tax rate faced by a married
individual with two dependents, rather than a single individual with no dependents.

Table A10: State-level OLS regressions using tax rates which force itemized
deductions

Log Log Log Share
Patents Citations Inventors Assigned

(1) (2) (3) (4)

ln(1−MTR90) 2.061∗∗∗ 1.735∗∗ 2.091∗∗∗ -0.002
(0.578) (0.669) (0.558) (0.094)

ln(1− Corp. MTR) 2.784∗∗∗ 2.357∗∗∗ 2.358∗∗∗ 0.561∗∗∗

(0.712) (0.773) (0.652) (0.140)

Observations 2773 2773 2773 2773
Mean of Dep. Var. 7.08 9.67 7.10 0.72
S.D. of Dep. Var. 1.32 1.56 1.34 0.14

Notes: See notes to Table 2. This table is identical except it calculates the personal income tax rate assuming that
all individuals itemize their deductions rather than taking the standard deduction if it is optimal to do so.
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Table A11: State-level OLS regressions using Auerbach-Poterba Effective
Federal Corporate Tax

Log Log Log Share
Patents Citations Inventors Assigned

(1) (2) (3) (4)

ln(1−MTR90) 1.702∗∗∗ 1.474∗∗∗ 1.636∗∗∗ 0.079
(0.430) (0.498) (0.408) (0.076)

ln(1− Corp. MTR) 3.048∗∗∗ 2.588∗∗∗ 2.673∗∗∗ 0.540∗∗∗

(0.788) (0.851) (0.724) (0.159)

Observations 2867 2867 2867 2867
Mean of Dep. Var. 7.07 9.65 7.08 0.72
S.D. of Dep. Var. 1.33 1.56 1.34 0.14

Notes: See notes to Table 2. This table is identical except, where possible, federal corporate tax rates are calculated
using the effective Federal tax rate calculated by Auerbach and Poterba (1987) and updated by Auerbach (2007).

Table A12: State-level OLS regressions using alternative lags on tax rates

PANEL A: 1-YEAR LAGGED TAXES

Log Log Log Share
Patents Citations Inventors Assigned

(1) (2) (3) (4)

ln(1−MTR90) 1.911∗∗∗ 1.695∗∗∗ 1.887∗∗∗ 0.082
(0.499) (0.577) (0.475) (0.072)

ln(1− Corp. MTR) 2.958∗∗∗ 2.495∗∗∗ 2.476∗∗∗ 0.604∗∗∗

(0.673) (0.747) (0.615) (0.144)

PANEL B: 2-YEAR LAGGED TAXES

ln(1−MTR90) 1.845∗∗∗ 1.603∗∗∗ 1.819∗∗∗ 0.064
(0.465) (0.528) (0.441) (0.072)

ln(1− Corp. MTR) 2.847∗∗∗ 2.419∗∗∗ 2.380∗∗∗ 0.597∗∗∗

(0.688) (0.761) (0.627) (0.148)

Observations 2867 2867 2867 2867
Mean of Dep. Var. 7.07 9.65 7.08 0.72
S.D. of Dep. Var. 1.33 1.56 1.34 0.14

Notes: See notes to Table 2. This table is identical except it lags tax rates by different amounts. Tax rates are lagged
by 1 year in Panel A and by 2 years in Panel B, compared with 3 years in Table 2.
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Table A13: State-level OLS regressions with 10-year Newey-West standard
errors

Log Log Log Share
Patents Citations Inventors Assigned

(1) (2) (3) (4)

ln(1−MTR90) 1.803∗∗∗ 1.516∗∗ 1.784∗∗∗ 0.056
(0.642) (0.717) (0.613) (0.089)

ln(1− Corp. MTR) 2.759∗∗∗ 2.382∗∗ 2.308∗∗∗ 0.573∗∗∗

(0.831) (0.962) (0.759) (0.162)
R&D Tax Credit 0.076 0.994 0.219 0.168

(1.415) (1.821) (1.309) (0.214)

Observations 2867 2867 2867 2867
Mean of Dep. Var. 7.07 9.65 7.08 0.72
S.D. of Dep. Var. 1.33 1.56 1.34 0.14

Notes: See notes to Table 2. This table is identical except that Newey-West standard errors allowing for autocorre-
lation in errors for up to 10 years are reported in parentheses, rather than the baseline of standard errors two-way
clustered at the state × five-year and year levels.

Table A14: State-level OLS regressions excluding New York and California

Log Log Log Share
Patents Citations Inventors Assigned

(1) (2) (3) (4)

ln(1−MTR90) 2.866∗∗∗ 2.861∗∗∗ 2.842∗∗∗ 0.050
(0.546) (0.603) (0.493) (0.112)

ln(1− Corp. MTR) 2.453∗∗∗ 1.891∗∗ 1.998∗∗∗ 0.567∗∗∗

(0.665) (0.723) (0.600) (0.145)

Observations 2745 2745 2745 2745
Mean of Dep. Var. 6.79 9.35 6.81 0.72
S.D. of Dep. Var. 1.26 1.49 1.27 0.15

Notes: See notes to Table 2. This table is identical except that New York and California are dropped from the
estimation sample.
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Table A15: State-level OLS regressions excluding the 1970s

Log Log Log Share
Patents Citations Inventors Assigned

(1) (2) (3) (4)

ln(1−MTR90) 2.880∗∗∗ 3.151∗∗∗ 2.914∗∗∗ 0.020
(0.655) (0.739) (0.600) (0.139)

ln(1− Corp. MTR) 3.511∗∗∗ 2.732∗∗∗ 2.863∗∗∗ 0.791∗∗∗

(0.819) (0.923) (0.758) (0.180)

Observations 2250 2250 2250 2250
Mean of Dep. Var. 6.79 9.38 6.80 0.71
S.D. of Dep. Var. 1.27 1.54 1.29 0.16

Notes: See notes to Table 2. This table is identical except that the 1970s are dropped from the estimation sample.
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Table A16: State-level regressions including sample from 1940-2010

PANEL A: OLS with Fixed Effects

Log Log Log Share
Patents Citations Inventors Assigned

(1) (2) (3) (4)

ln(1−MTR90) 2.414∗∗∗ 2.019∗∗∗ 2.309∗∗∗ 0.127∗

(0.514) (0.579) (0.488) (0.075)
ln(1− Corp. MTR) 3.578∗∗∗ 2.909∗∗∗ 3.044∗∗∗ 0.681∗∗∗

(0.754) (0.799) (0.684) (0.148)

Observations 3337 3337 3337 3337
Mean of Dep. Var. 7.20 9.87 7.23 0.74
S.D. of Dep. Var. 1.35 1.65 1.37 0.15

PANEL B: 20-YEAR LONG DIFFERENCE

∆ MTR90 1.534∗∗∗ 1.153∗∗ 1.529∗∗∗ 0.121
(0.446) (0.531) (0.440) (0.072)

∆ Corp. MTR 1.894∗∗∗ 1.773∗∗∗ 1.606∗∗∗ 0.416∗∗∗

(0.521) (0.620) (0.488) (0.130)

Observations 2397 2397 2397 2397
Mean of Dep. Var. 0.42 0.90 0.53 0.10
S.D. of Dep. Var. 0.54 0.83 0.49 0.11

PANEL C: 15-YEAR LONG DIFFERENCE

∆ MTR90 1.162∗∗∗ 0.828∗∗ 1.239∗∗∗ 0.074
(0.362) (0.403) (0.350) (0.061)

∆ Corp. MTR 1.276∗∗∗ 0.872 1.053∗∗ 0.291∗∗∗

(0.460) (0.578) (0.444) (0.106)

Observations 2632 2632 2632 2632
Mean of Dep. Var. 0.33 0.64 0.41 0.08
S.D. of Dep. Var. 0.47 0.79 0.43 0.10

PANEL D: 10-YEAR LONG DIFFERENCE

∆ MTR90 0.819∗∗ 0.660 0.879∗∗ 0.079
(0.375) (0.414) (0.374) (0.050)

∆ Corp. MTR 0.969∗∗ 0.621 0.897∗∗ 0.132
(0.422) (0.536) (0.435) (0.111)

Observations 2867 2867 2867 2867
Mean of Dep. Var. 0.21 0.38 0.26 0.05
S.D. of Dep. Var. 0.36 0.65 0.34 0.08

Notes: Table reports estimates from state-level regressions over the sample 1940-2010. Panel A estimates the regres-
sion following equation (3), while Panels B-D estimate long-difference regressions following equation (4). See notes
to Tables 2 and 3 for more details.
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Table A17: State-level OLS including controls for state political leaning

Log Log Log Share
Patents Citations Inventors Assigned

(1) (2) (3) (4)

ln(1−MTR90) 1.087∗∗ 0.743 1.104∗∗∗ -0.026
(0.421) (0.449) (0.395) (0.079)

ln(1− Corp. MTR) 2.100∗∗∗ 2.185∗∗∗ 1.790∗∗∗ 0.589∗∗∗

(0.592) (0.651) (0.537) (0.148)
State Governor: Democrat 0.062∗∗∗ 0.061∗∗ 0.059∗∗∗ 0.004

(0.021) (0.024) (0.020) (0.004)
% State Upper House Democrat 0.001 0.001 0.001 0.000

(0.002) (0.002) (0.001) (0.000)
% State Lower House Democrat -1.217∗∗∗ -1.212∗∗∗ -1.110∗∗∗ -0.147∗∗∗

(0.179) (0.208) (0.165) (0.025)

Observations 2764 2764 2764 2764
Mean of Dep. Var. 7.10 9.69 7.12 0.72
S.D. of Dep. Var. 1.31 1.55 1.33 0.14

Notes: See notes to Table 2. This table is identical except that it includes additional political controls, specifically
the party of the state governor, and the percent of the state legislature which is Democrat.

Table A18: State-level OLS regressions including fixed effects but exclud-
ing all controls

Log Log Log Share
Patents Citations Inventors Assigned

(1) (2) (3) (4)

ln(1−MTR90) 1.770∗∗∗ 1.616∗∗∗ 1.771∗∗∗ 0.031
(0.441) (0.482) (0.417) (0.075)

ln(1− Corp. MTR) 2.910∗∗∗ 2.136∗∗∗ 2.359∗∗∗ 0.804∗∗∗

(0.649) (0.694) (0.582) (0.151)

Observations 2914 2914 2914 2914
Mean of Dep. Var. 7.06 9.64 7.08 0.72
S.D. of Dep. Var. 1.33 1.56 1.35 0.15

Notes: See notes to Table 2. This table is identical except that it drops all controls from the regression, but continues
to include state and year fixed effects.
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Table A19: Unweighted state-level OLS regressions

Log Log Log Share
Patents Citations Inventors Assigned

(1) (2) (3) (4)

ln(1−MTR90) 2.083∗∗∗ 1.850∗∗∗ 2.004∗∗∗ 0.025
(0.399) (0.470) (0.385) (0.081)

ln(1− Corp. MTR) 1.452∗∗ 1.683∗∗ 1.079∗ 0.519∗∗∗

(0.660) (0.749) (0.605) (0.148)

Observations 2867 2867 2867 2867
Mean of Dep. Var. 6.04 8.62 6.06 0.66
S.D. of Dep. Var. 1.44 1.70 1.46 0.18

Notes: See notes to Table 2. This table is identical except that it does not weight states by their 1940 population.

Table A20: First Stage of Core Macro Instrumental Variables regression:
5-year Lagged Income Distribution

Dep. Var.: MTR - 90th Top Corp. MTR MTR - 50th Top Corp. MTR
(1) (2) (3) (4)

90th Pctile Income MTR Instr 0.650∗∗∗ -0.014
(0.081) (0.025)

Median Income MTR Instr 0.779∗∗∗ -0.046
(0.043) (0.035)

Top Corporate MTR Instr 0.060 0.752∗∗∗ 0.063∗∗ 0.756∗∗∗

(0.055) (0.060) (0.025) (0.060)
(0.001) (0.000) (0.000) (0.000)

Observations 2867 2867 2867 2867
R2 0.366 0.605 0.592 0.606

Notes: Table reports the first stage regression of the state-level instrumental variables regression reported in Panel
C of Table 2. Personal tax rates and corporate tax rates are instrumented for by the predicted tax rates given by
equations (6) and (8) respectively. Standard errors two-way clustered at state × five-year and year level are reported
in parentheses below point estimate. IV convolves five-year lags of both the state tax law and income distribution with
current federal tax rates. All regressions include controls for lagged personal income per capita, population density,
and R&D Tax Credits, as well as state and year fixed effects. Each column corresponds to a different dependent
variable.
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Table A21: Alternative Macro Instrumental Variables regression using Un-
lagged Income Distribution

Log Log Log Share
Patents Citations Inventors Assigned

(1) (2) (3) (4)

ln(1−MTR90) 2.206∗∗∗ 1.813∗∗ 2.126∗∗∗ 0.054
(0.633) (0.718) (0.595) (0.091)

ln(1− Corp. MTR) 3.570∗∗∗ 2.849∗∗∗ 3.067∗∗∗ 0.588∗∗∗

(0.908) (1.009) (0.834) (0.200)

Observations 2867 2867 2867 2867
Mean of Dep. Var. 7.07 9.65 7.08 0.72
S.D. of Dep. Var. 1.33 1.56 1.34 0.14

Notes: Table reports estimates from an instrumental variables regression following equation (3). The specification
in this table is identical to that in Panel C of Table 2, except that it does not lag the income distribution when
constructing the instrument. That is, the instruments use current federal tax law and five-year lagged state tax laws,
using an unlagged income distribution.

Table A22: First Stage of Alternative Macro Instrumental Variables re-
gression using Unlagged Income Distribution

Dep. Var.: MTR - 90th Top Corp. MTR MTR - 50th Top Corp. MTR
(1) (2) (3) (4)

90th Pctile Income MTR Instr 0.847∗∗∗ -0.018
(0.038) (0.028)

Median Income MTR Instr 0.720∗∗∗ -0.039
(0.038) (0.030)

Top Corporate MTR Instr 0.017 0.753∗∗∗ 0.035∗ 0.757∗∗∗

(0.035) (0.060) (0.020) (0.060)
R&D Tax Credit -0.000 -0.000 0.000∗ -0.000

(0.000) (0.000) (0.000) (0.000)

Observations 2867 2867 2867 2867
R2 0.697 0.606 0.706 0.606

Notes: Table reports the first stage regression of the state-level instrumental variables using an unlagged income
distribution, as in Table A21 above.
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Table A23: Time Series Regressions on Federal Tax Rates

Log Log Log Share
Patents Citations Inventors Assigned

(1) (2) (3) (4)

ln(1−MTR90) 1.896∗∗∗ 2.494∗∗∗ 1.875∗∗∗ 0.071
(0.226) (0.228) (0.240) (0.045)

ln(1− Corp MTRAP ) 0.111 0.463∗∗ 0.512 0.073
(0.334) (0.190) (0.307) (0.093)

Trend 0.067∗∗∗ 0.163∗∗∗ 0.077∗∗∗ 0.003
(0.010) (0.016) (0.012) (0.004)

ln(Income/Cap) -2.108∗∗∗ -4.274∗∗∗ -2.342∗∗∗ -0.066
(0.402) (0.654) (0.515) (0.168)

Observations 39 39 39 39

Notes: Table reports estimates from time series regressions of aggregate innovation measures on federal tax rates.
“MTR90” corresponds to the federal tax rate that would apply to someone whose adjusted gross income is equal
to the 90th percentile of income in the US in that year, while “Corp. MTRAP ” represents to the effective federal
corporate tax rate as calculated by Auerbach and Poterba (1987). Tax rates are lagged by three years. “Trend” is a
linear trend, while Income/Cap is aggregate personal income per capita, lagged by one year. Newey-West standard
errors allowing for up to 10-years of serial correlation are reported in parentheses. Auerbach-Poterba corporate tax
rates are not available before 1959; therefore, the sample consists of all years from 1962-2000.
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A.4 Robustness and Extensions: Inventor-Level Regressions

Table A24: Effects of Taxes at the Individual Inventor Level (IV)

Dependent Variable:
Has Has 10+ Log Log Has High-

Patent Cites Patents Citations Value Pat.
(1) (2) (3) (4) (5)

ln(1− Personal MTR) 0.616∗∗∗ 0.490∗∗∗ 0.855∗∗∗ 1.340∗∗∗ 0.246∗∗

(0.063) (0.060) (0.140) (0.157) (0.092)

State × Year FE Y Y Y Y Y
Inventor FE Y Y Y Y Y

R2 0.353 0.404 0.504 0.622 0.737

ln(1− Personal MTR) 0.554∗∗∗ 0.427∗∗∗ 0.791∗∗∗ 1.075∗∗∗ 0.367∗∗∗

(0.051) (0.056) (0.134) (0.146) (0.069)
ln(1− Corp. MTR) -0.257 -0.227 -0.781∗ -1.161∗ -0.090

(0.163) (0.166) (0.406) (0.638) (0.191)

State FE Y Y Y Y Y
Year FE Y Y Y Y Y
Inventor FE Y Y Y Y Y

Observations 5634789 5634789 3576456 3459553 1150717
Mean of Dep. Var. 0.638 0.414 0.602 2.958 0.609
S.D. of Dep. Var. 0.481 0.492 0.709 1.470 0.488
R2 0.358 0.405 0.493 0.624 0.729

Notes: See the notes to Table 4. Personal tax rates and corporate tax rates are instrumented for by the predicted tax
rates given by equations (6) and (8) respectively. That is, the instruments use current federal tax law and five-year
lagged state tax laws, using a five-year lagged income distribution. ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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Table A25: First Stage of Core Inventor-level Instrumental Variables Re-
gression

LHS Tax:
Personal Personal Corporate

(1) (2) (3)

Personal MTR Instrument 0.918∗∗∗ 0.988∗∗∗ -0.017
(0.076) (0.086) (0.015)

Corporate MTR Instrument 0.029 0.396∗∗∗

(0.051) (0.097)

State × Year FE N Y N
Inventor FE Y Y Y

Observations 6899376 8305203 8287859
Mean of Dep. Var. -0.246 -0.245 -0.571
S.D. of Dep. Var. 0.115 0.109 0.157
R2 0.881 0.924 0.221

Notes: Table reports the first stage regression of the inventor-level instrumental variables. Personal tax rates and
corporate tax rates are instrumented for by the predicted tax rates given by equations (6) and (8) respectively. All
tax rates are input as log retention rates, so if the tax rate is τ , the dependent variable and instrument are included
in the regression as ln(1− τ). Standard errors two-way clustered at state and year level are reported in parentheses
below point estimate. IV convolves five-year lags of both the income distribution and the inventor’s residence state
tax law with current federal tax rates. See notes to Table 4 for list of control variables. Columns 1 and 2 have the
personal marginal tax rate as the dependent variable, while column 3 uses the top corporate marginal tax rate as a
dependent variable.
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Table A26: Inventor-level OLS regressions defining counting inventors as
being high quality if they are in the top 5% of patent counts

Dependent Variable:
Has Has 10+ Log Log Has High-

Patent Cites Patents Citations Value Pat.
(1) (2) (3) (4) (5)

ln(1− Personal MTR) 0.425∗∗∗ 0.367∗∗∗ 0.672∗∗∗ 0.728∗∗∗ 0.482∗∗∗

(0.058) (0.056) (0.176) (0.186) (0.114)

State × Year FE Y Y Y Y Y
Inventor FE Y Y Y Y Y

R2 0.420 0.516 0.578 0.715 0.806

ln(1− Personal MTR) 0.448∗∗∗ 0.417∗∗∗ 0.849∗∗∗ 1.109∗∗∗ 0.288∗∗∗

(0.051) (0.055) (0.162) (0.170) (0.068)
ln(1− Corp. MTR) 0.080 0.074 0.093 0.120 0.004

(0.065) (0.064) (0.118) (0.219) (0.109)

State FE Y Y Y Y Y
Year FE Y Y Y Y Y
Inventor FE Y Y Y Y Y

Observations 6460412 6460412 4566398 4415498 1485493
Mean of Dep. Var. 0.707 0.422 0.458 2.779 0.500
S.D. of Dep. Var. 0.455 0.494 0.664 1.454 0.500
R2 0.420 0.517 0.578 0.716 0.808

Notes: See notes to Table 4. This table is identical except it defines inventors to be high quality if they belong to
the top 5% of the distribution of cumulative patent counts, rather than the top 10%.

85



Table A27: Inventor-level OLS regressions defining counting inventors as
being high quality if they are in the top 25% of patent counts

Dependent Variable:
Has Has 10+ Log Log Has High-

Patent Cites Patents Citations Value Pat.
(1) (2) (3) (4) (5)

ln(1− Personal MTR) 0.391∗∗∗ 0.352∗∗∗ 0.687∗∗∗ 1.075∗∗∗ 0.186∗∗

(0.062) (0.055) (0.121) (0.136) (0.086)

State × Year FE Y Y Y Y Y
Inventor FE Y Y Y Y Y

R2 0.422 0.519 0.581 0.718 0.809

ln(1− Personal MTR) 0.369∗∗∗ 0.330∗∗∗ 0.661∗∗∗ 0.982∗∗∗ 0.198∗∗

(0.056) (0.051) (0.106) (0.125) (0.079)
ln(1− Corp. MTR) 0.077 0.075 0.103 0.109 0.010

(0.061) (0.059) (0.104) (0.205) (0.110)

State FE Y Y Y Y Y
Year FE Y Y Y Y Y
Inventor FE Y Y Y Y Y

Observations 6460412 6460412 4566398 4415498 1485493
Mean of Dep. Var. 0.707 0.422 0.458 2.779 0.500
S.D. of Dep. Var. 0.455 0.494 0.664 1.454 0.500
R2 0.421 0.518 0.579 0.717 0.807

Notes: See notes to Table 4. This table is identical except it defines inventors to be high quality if they belong to
the top 25% of the distribution of cumulative patent counts, rather than the top 10%.
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Table A28: Inventor-level OLS regressions using three inventor quality
levels

Dependent Variable:
Has Has 10+ Log Log Has High-

Patent Cites Patents Citations Value Pat.
(1) (2) (3) (4) (5)

ln(1− Personal MTR) 0.426∗∗∗ 0.348∗∗∗ 0.694∗∗∗ 1.066∗∗∗ 0.224∗∗∗

(0.067) (0.051) (0.095) (0.112) (0.048)

State × Year FE Y Y Y Y Y
Inventor FE Y Y Y Y Y

R2 0.382 0.427 0.538 0.659 0.771

ln(1− Personal MTR) 0.406∗∗∗ 0.330∗∗∗ 0.666∗∗∗ 0.970∗∗∗ 0.220∗∗∗

(0.061) (0.047) (0.082) (0.102) (0.045)
ln(1− Corp. MTR) 0.069 0.072 0.098 0.121 -0.043

(0.057) (0.052) (0.090) (0.186) (0.088)

State FE Y Y Y Y Y
Year FE Y Y Y Y Y
Inventor FE Y Y Y Y Y

Observations 4669149 4669149 2795112 2714189 908602
Mean of Dep. Var. 0.599 0.386 0.598 2.961 0.661
S.D. of Dep. Var. 0.490 0.487 0.726 1.494 0.473
R2 0.381 0.426 0.536 0.658 0.769

Notes: See notes to Table 4. This table is identical except it assigns inventors to three quality levels. Personal
MTR in this table is defined as the marginal tax rate faced by the 90th percentile earner in state s in year t for
high productivity inventors (top decile of lagged patent counts), by the 75th percentile earner for middle productivity
inventors (between the 75th and 90th percentiles of lagged patent counts) and the marginal tax rate rate faced by
the median earner for low productivity inventors.
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Table A29: Inventor-level OLS regressions ranking inventors according to
their cumulative citation counts

Dependent Variable:
Has Has 10+ Log Log Has High-

Patent Cites Patents Citations Value Pat.
(1) (2) (3) (4) (5)

ln(1− Personal MTR) 0.343∗∗∗ 0.322∗∗∗ 0.545∗∗∗ 0.866∗∗∗ 0.111
(0.067) (0.075) (0.159) (0.204) (0.077)

State × Year FE Y Y Y Y Y
Inventor FE Y Y Y Y Y

R2 0.420 0.517 0.577 0.718 0.808

ln(1− Personal MTR) 0.317∗∗∗ 0.294∗∗∗ 0.530∗∗∗ 0.783∗∗∗ 0.154∗∗

(0.057) (0.066) (0.142) (0.174) (0.070)
ln(1− Corp. MTR) 0.103 0.097 0.149 0.178 0.028

(0.068) (0.068) (0.122) (0.231) (0.112)

State FE Y Y Y Y Y
Year FE Y Y Y Y Y
Inventor FE Y Y Y Y Y

Observations 6460412 6460412 4566398 4415498 1485493
Mean of Dep. Var. 0.707 0.422 0.458 2.779 0.500
S.D. of Dep. Var. 0.455 0.494 0.664 1.454 0.500
R2 0.419 0.516 0.576 0.717 0.807

Notes: See notes to Table 4. This table is identical except it defines inventors to be high quality if they belong to
the top 10% of the distribution of cumulative citation counts, rather than the top 10% of cumulative patent counts.
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Table A30: Inventor-level OLS regressions interacting MTR90 with per-
centile bins of inventor quality

Dependent Variable:
Has Has 10+ Log Log Has High-

Patent Cites Patents Cites Value Pat.
(1) (2) (3) (4) (5)

ln(1− MTR90) × 50th-75th 0.149∗∗ 0.080∗∗ 0.097∗∗∗ 0.210∗∗∗ -0.055∗∗

(0.056) (0.035) (0.033) (0.043) (0.025)
ln(1− MTR90) × 75th-90th 0.300∗∗∗ 0.194∗∗∗ 0.313∗∗∗ 0.580∗∗∗ 0.005

(0.091) (0.062) (0.077) (0.103) (0.038)
ln(1− MTR90) × 90th-95th 0.420∗∗∗ 0.288∗∗∗ 0.527∗∗∗ 0.837∗∗∗ 0.099∗

(0.104) (0.072) (0.112) (0.139) (0.053)
ln(1− MTR90) × 95th-99th 0.565∗∗∗ 0.448∗∗∗ 0.890∗∗∗ 1.325∗∗∗ 0.181∗∗∗

(0.117) (0.083) (0.151) (0.176) (0.059)
ln(1− MTR90) × 99th+ 0.735∗∗∗ 0.679∗∗∗ 1.696∗∗∗ 2.270∗∗∗ 0.269∗∗∗

(0.133) (0.112) (0.246) (0.293) (0.070)

State × Year FE Y Y Y Y Y
Inventor FE Y Y Y Y Y

R2 0.393 0.439 0.549 0.667 0.782

ln(1− MTR90) × 50th-75th 0.142∗∗∗ 0.077∗∗ 0.091∗∗∗ 0.175∗∗∗ -0.050∗∗

(0.051) (0.031) (0.027) (0.043) (0.020)
ln(1− MTR90) × 75th-90th 0.291∗∗∗ 0.189∗∗∗ 0.296∗∗∗ 0.526∗∗∗ 0.013

(0.084) (0.057) (0.068) (0.095) (0.032)
ln(1− MTR90) × 90th-95th 0.410∗∗∗ 0.281∗∗∗ 0.500∗∗∗ 0.768∗∗∗ 0.107∗∗

(0.097) (0.067) (0.105) (0.129) (0.047)
ln(1− MTR90) × 95th-99th 0.553∗∗∗ 0.440∗∗∗ 0.858∗∗∗ 1.254∗∗∗ 0.191∗∗∗

(0.110) (0.079) (0.144) (0.167) (0.056)
ln(1− MTR90) × 99th+ 0.722∗∗∗ 0.671∗∗∗ 1.665∗∗∗ 2.204∗∗∗ 0.281∗∗∗

(0.128) (0.110) (0.239) (0.290) (0.065)
ln(1− Corp. MTR) 0.090 0.098∗ 0.168 0.227 -0.005

(0.060) (0.056) (0.107) (0.191) (0.088)

State FE Y Y Y Y Y
Year FE Y Y Y Y Y
Inventor FE Y Y Y Y Y

Observations 4777949 4777949 2883935 2798747 940657
Mean of Dep. Var. 0.604 0.387 0.588 2.943 0.652
S.D. of Dep. Var. 0.489 0.487 0.723 1.490 0.476
R2 0.392 0.438 0.546 0.666 0.780

Notes: Table reports estimated coefficients from regression which interacts the marginal tax rate faced by an individual
at the 90th percentile of the income distribution with percentile bins of the inventor cumulative patents distribution.
Regressions also include indicators for inventor quality bins, but are otherwise identical to that in Table 4. Estimated
coefficients represent (semi-)elasticities of innovation to the marginal tax rate faced by a 90th percentile earner in
the inventor’s residence state, relative inventors in the bottom 50% of the inventor quality distribution, who serve as
a control. The upper bound elasticity of innovation to taxes is the coefficient on ln(1 −MTR90)× 99th+. A lower
bound on the elasticity is this coefficient minus the coefficient on ln(1−MTR90)× 95th-99th.89



Table A31: Inventor-level OLS regressions excluding New York and Cali-
fornia

Dependent Variable:
Has Has 10+ Log Log Has High-

Patent Cites Patents Citations Value Pat.
(1) (2) (3) (4) (5)

ln(1− Personal MTR) 0.495∗∗∗ 0.447∗∗∗ 0.902∗∗∗ 1.233∗∗∗ 0.323∗∗∗

(0.070) (0.069) (0.171) (0.186) (0.086)

State × Year FE Y Y Y Y Y
Inventor FE Y Y Y Y Y

R2 0.428 0.523 0.581 0.717 0.813

ln(1− Personal MTR) 0.454∗∗∗ 0.410∗∗∗ 0.849∗∗∗ 1.133∗∗∗ 0.338∗∗∗

(0.060) (0.061) (0.153) (0.165) (0.078)
ln(1− Corp. MTR) 0.052 0.044 -0.022 0.021 0.006

(0.060) (0.059) (0.085) (0.212) (0.124)

State FE Y Y Y Y Y
Year FE Y Y Y Y Y
Inventor FE Y Y Y Y Y

Observations 4910129 4910129 3467757 3350408 1126399
Mean of Dep. Var. 0.706 0.416 0.448 2.735 0.497
S.D. of Dep. Var. 0.455 0.493 0.654 1.428 0.500
R2 0.426 0.522 0.580 0.716 0.811

Notes: See notes to Table 4. This table is identical except it drops inventors living in New York and California from
the estimation sample.
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Table A32: Inventor-level OLS regressions excluding the 1970s

Dependent Variable:
Has Has 10+ Log Log Has High-

Patent Cites Patents Citations Value Pat.
(1) (2) (3) (4) (5)

ln(1− Personal MTR) 0.395∗∗∗ 0.319∗∗∗ 0.543∗∗∗ 0.915∗∗∗ 0.124
(0.089) (0.085) (0.195) (0.222) (0.109)

State × Year FE Y Y Y Y Y
Inventor FE Y Y Y Y Y

R2 0.434 0.533 0.600 0.735 0.812

ln(1− Personal MTR) 0.359∗∗∗ 0.286∗∗∗ 0.523∗∗∗ 0.827∗ 0.157
(0.074) (0.075) (0.172) (0.460) (0.100)

ln(1− Corp. MTR) 0.159 0.196∗∗ 0.400∗∗ 0.413 0.147
(0.100) (0.097) (0.166) (1.269) (0.181)

State FE Y Y Y Y Y
Year FE Y Y Y Y Y
Inventor FE Y Y Y Y Y

Observations 5516741 5516741 3920471 3786699 1244162
Mean of Dep. Var. 0.711 0.431 0.472 2.833 0.500
S.D. of Dep. Var. 0.453 0.495 0.674 1.485 0.500
R2 0.433 0.533 0.599 0.735 0.811

Notes: See notes to Table 4. This table is identical except it drops the 1970s from the estimation sample.
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Table A33: Inventor-level OLS regressions including sample from 1940-2010

Dependent Variable:
Has Has 10+ Log Log Has High-

Patent Cites Patents Citations Value Pat.
(1) (2) (3) (4) (5)

ln(1− Personal MTR) 0.339∗∗∗ 0.340∗∗∗ 0.497∗∗ 0.963∗∗∗ 0.226∗∗

(0.082) (0.074) (0.205) (0.209) (0.089)

State × Year FE Y Y Y Y Y
Inventor FE Y Y Y Y Y

R2 0.386 0.501 0.576 0.684 0.800

ln(1− Personal MTR) 0.308∗∗∗ 0.300∗∗∗ 0.481∗∗ 0.826∗∗∗ 0.242∗∗∗

(0.070) (0.069) (0.185) (0.197) (0.083)
ln(1− Corp. MTR) 0.130∗ 0.127∗ 0.198 0.481 -0.025

(0.067) (0.074) (0.141) (0.314) (0.082)

State FE Y Y Y Y Y
Year FE Y Y Y Y Y
Inventor FE Y Y Y Y Y

Observations 9302817 9302817 6815887 6196303 2215801
Mean of Dep. Var. 0.733 0.410 0.518 2.832 0.500
S.D. of Dep. Var. 0.443 0.492 0.715 1.602 0.500
R2 0.385 0.500 0.574 0.682 0.799

Notes: Table reports estimates from inventor-level regressions over the sample 1940-2010. Regression is identical to
that in Table 4 except for the expanded sample. See notes to that table for more details.
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Table A34: Inventor-level OLS regressions using tax rates for a married
couple with two dependents

Dependent Variable:
Has Has 10+ Log Log Has High-

Patent Cites Patents Citations Value Pat.
(1) (2) (3) (4) (5)

ln(1− Personal MTR) 0.324∗∗∗ 0.310∗∗∗ 0.585∗∗∗ 0.888∗∗∗ 0.156
(0.067) (0.064) (0.158) (0.167) (0.101)

State × Year FE Y Y Y Y Y
Inventor FE Y Y Y Y Y

R2 0.421 0.518 0.580 0.719 0.809

ln(1− Personal MTR) 0.294∗∗∗ 0.273∗∗∗ 0.539∗∗∗ 0.759∗∗∗ 0.173∗

(0.053) (0.052) (0.138) (0.146) (0.095)
ln(1− Corp. MTR) 0.084 0.075 0.108 0.137 0.016

(0.063) (0.063) (0.118) (0.214) (0.116)

State FE Y Y Y Y Y
Year FE Y Y Y Y Y
Inventor FE Y Y Y Y Y

Observations 6344207 6344207 4491944 4345516 1472687
Mean of Dep. Var. 0.708 0.424 0.458 2.785 0.500
S.D. of Dep. Var. 0.455 0.494 0.664 1.457 0.500
R2 0.420 0.517 0.579 0.718 0.808

Notes: See notes to Table 4. This table is identical except it uses the tax rate faced by a married couple with two
dependents, rather than the tax rate faced by a single individual. To calculate the married tax rate, we assume that
an earner at the jth percentile has a spouse who earns 50% as much as the jth percentile.
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Table A35: Inventor-level OLS regressions excluding inventor fixed ef-
fects

Dependent Variable:
Has Has 10+ Log Log Has High-

Patent Cites Patents Citations Value Pat.
(1) (2) (3) (4) (5)

ln(1− Personal MTR) 0.135∗∗∗ 0.263∗∗∗ 0.093 0.112 -0.212∗∗∗

(0.029) (0.022) (0.105) (0.167) (0.070)

State × Year FE Y Y Y Y Y
Inventor FE N N N N N

R2 0.154 0.094 0.114 0.173 0.163

ln(1− Personal MTR) 0.141∗∗∗ 0.247∗∗∗ 0.116 0.137 -0.150∗∗

(0.026) (0.025) (0.096) (0.172) (0.059)
ln(1− Corp. MTR) 0.078 0.108 0.132 0.186 -0.099

(0.060) (0.115) (0.195) (0.614) (0.279)

State FE Y Y Y Y Y
Year FE Y Y Y Y Y
Inventor FE N N N N N

Observations 6460412 6460412 4566398 4415498 1485493
Mean of Dep. Var. 0.707 0.422 0.458 2.779 0.500
S.D. of Dep. Var. 0.455 0.494 0.664 1.454 0.500
R2 0.153 0.092 0.111 0.169 0.156

Notes: See notes to Table 4. This table is identical except it excludes inventor fixed effects.
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Table A36: Inventor-level OLS regressions excluding all control variables

Dependent Variable:
Has Has 10+ Log Log Has High-

Patent Cites Patents Citations Value Pat.
(1) (2) (3) (4) (5)

ln(1− Personal MTR) 0.397∗∗∗ 0.321∗∗∗ 0.611∗∗∗ 0.710∗∗∗ 0.445∗∗∗

(0.053) (0.051) (0.138) (0.133) (0.127)

State × Year FE Y Y Y Y Y
Inventor FE Y Y Y Y Y

R2 0.420 0.517 0.578 0.716 0.805

ln(1− Personal MTR) 0.353∗∗∗ 0.286∗∗∗ 0.574∗∗∗ 0.650∗∗∗ 0.444∗∗∗

(0.045) (0.045) (0.121) (0.113) (0.112)
ln(1− Corp. MTR) 0.179∗ 0.161∗ 0.297 0.225 -0.025

(0.101) (0.093) (0.218) (0.247) (0.109)

State FE Y Y Y Y Y
Year FE Y Y Y Y Y
Inventor FE Y Y Y Y Y

Observations 6465423 6465423 4569456 4418422 1485861
Mean of Dep. Var. 0.707 0.422 0.458 2.779 0.500
S.D. of Dep. Var. 0.455 0.494 0.664 1.454 0.500
R2 0.419 0.516 0.576 0.715 0.804

Notes: Table reports estimates from an inventor-level OLS regression, similar to Table 4 only excluding all control
variables. See notes to that table for details. Regressions only include controls for inventor quality and the listed
fixed effects.
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Table A37: Inventor-level OLS regressions, using state tax laws from the
inventor’s home state

Dependent Variable:
Has Has 10+ Log Log Has High-

Patent Cites Patents Citations Value Pat.
(1) (2) (3) (4) (5)

ln(1− Personal MTR) 0.440∗∗∗ 0.383∗∗∗ 0.745∗∗∗ 1.022∗∗∗ 0.251∗∗∗

(0.061) (0.058) (0.149) (0.154) (0.084)

State × Year FE Y Y Y Y Y
Inventor FE Y Y Y Y Y

R2 0.421 0.518 0.580 0.717 0.809

ln(1− Personal MTR) 0.421∗∗∗ 0.365∗∗∗ 0.727∗∗∗ 0.974∗∗∗ 0.268∗∗∗

(0.058) (0.056) (0.141) (0.145) (0.080)
ln(1− Corp. MTR) 0.106 0.102 0.162 0.208 0.029

(0.068) (0.066) (0.120) (0.227) (0.109)

State FE Y Y Y Y Y
Year FE Y Y Y Y Y
Inventor FE Y Y Y Y Y

Observations 6460334 6460334 4566357 4415457 1485479
Mean of Dep. Var. 0.707 0.422 0.458 2.779 0.500
S.D. of Dep. Var. 0.455 0.494 0.664 1.454 0.500
R2 0.420 0.517 0.578 0.717 0.807

Notes: Table reports estimates from an inventor-level OLS regression, similar to Table 4. See notes to that table for
details. The only difference to that table is that tax rates correspond to an inventor’s home state – the state in which
they first apply for a patent.
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Table A38: Alternative Inventor-level IV regressions, using state tax laws
from inventors’ home state

Dependent Variable:
Has Has 10+ Log Log Has High-

Patent Cites Patents Citations Value Pat.
(1) (2) (3) (4) (5)

ln(1− Personal MTR) 0.636∗∗∗ 0.505∗∗∗ 0.880∗∗∗ 1.406∗∗∗ 0.291∗∗∗

(0.075) (0.067) (0.152) (0.170) (0.087)

State × Year FE Y Y Y Y Y
Inventor FE Y Y Y Y Y

R2 0.353 0.404 0.504 0.622 0.737

ln(1− Personal MTR) 0.590∗∗∗ 0.456∗∗∗ 0.841∗∗∗ 1.191∗∗∗ 0.381∗∗∗

(0.066) (0.062) (0.149) (0.155) (0.072)
ln(1− Corp. MTR) -0.274 -0.241 -0.805∗ -1.218∗ -0.097

(0.165) (0.168) (0.413) (0.647) (0.192)

State FE Y Y Y Y Y
Year FE Y Y Y Y Y
Inventor FE Y Y Y Y Y

Observations 5634718 5634718 3576424 3459521 1150707
Mean of Dep. Var. 0.638 0.414 0.602 2.958 0.609
S.D. of Dep. Var. 0.481 0.492 0.709 1.470 0.488
R2 0.358 0.405 0.493 0.624 0.729

Notes: See notes to Table A24. This table is identical except that the instruments use current federal tax law and
five-year lagged home state tax laws, using a five-year lagged income distribution, rather than the inventor’s current
residence state.
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Table A39: First Stage of Alternative Inventor-level IV using state tax
laws from inventors’ home state

LHS Tax:
Personal Personal Corporate

(1) (2) (3)

Personal MTR Instrument 0.847∗∗∗ 0.843∗∗∗ -0.015
(0.068) (0.063) (0.011)

Corporate MTR Instrument 0.098 0.395∗∗∗

(0.065) (0.097)

State × Year FE N Y N
Inventor FE Y Y Y

Observations 6899298 8305081 8287738
Mean of Dep. Var. -0.246 -0.245 -0.571
S.D. of Dep. Var. 0.115 0.109 0.157
R-Squared 0.853 0.897 0.220

Notes: Table presents first stage estimates for the inventor-level instrumental variable using the state tax laws of the
inventor’s home state. See notes to Tables A25 and A38.
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Table A40: Inventor-level OLS Regressions Allowing Coefficients to Vary
pre versus post 1970

Dependent Variable:
Has Has 10+ Log Log Has High-

Patent Cites Patents Citations Value Pat.
(1) (2) (3) (4) (5)

ln(1−MTR90)× 1940-1969 0.629∗∗∗ 0.612∗∗∗ 1.023∗∗∗ 1.360∗∗∗ 0.059
(0.123) (0.135) (0.330) (0.375) (0.117)

ln(1−MTR90)× 1970-2000 0.122∗ 0.148∗∗ 0.349∗∗ 0.422∗∗ 0.052
(0.066) (0.056) (0.149) (0.182) (0.088)

ln(1−Corp. MTR) × 1940-1969 0.087 0.192∗∗ 0.299 0.774∗∗ -0.032
(0.071) (0.091) (0.180) (0.323) (0.211)

ln(1−Corp. MTR) × 1970-2000 0.122∗ 0.106∗ 0.168 0.211 0.027
(0.065) (0.056) (0.112) (0.149) (0.115)

State FE Y Y Y Y Y
Year FE Y Y Y Y Y
Inventor FE Y Y Y Y Y

R2 0.42 0.52 0.58 0.72 0.81

ln(1−MTR90)× 1940-1969 0.669∗∗∗ 0.569∗∗∗ 1.028∗∗∗ 1.063∗∗∗ 0.712∗∗∗

(0.144) (0.137) (0.345) (0.331) (0.184)
ln(1−MTR90)× 1970-2000 0.059 0.142∗∗ 0.318∗∗ 0.688∗∗∗ -0.226

(0.063) (0.059) (0.152) (0.200) (0.180)

State × Year FE Y Y Y Y Y
Inventor FE Y Y Y Y Y

Observations 6465345 6465345 4569398 4418390 1485854
Mean of Dep. Var. 0.71 0.42 0.46 2.78 0.50
S.D. of Dep. Var. 0.46 0.49 0.66 1.45 0.50
R2 0.42 0.52 0.58 0.72 0.81

Notes: Table reports inventor-level OLS regressions which allow the effect of taxes to be different before and after
1970. We augment regression (12) by interacting tax rates with indicators for whether the time period t is before
or after 1970. Otherwise, the specification is identical to that of Table 4. See footnotes to that table for more
information.
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Table A41: Inventor-level OLS regressions showing the effect of agglom-
eration on tax elasticities, controlling for state patenting in any class

Dependent Variable:
Has Has 10+ Log Log Has High-

Patent Cites Patents Citations Value Pat.
(1) (2) (3) (4) (5)

ln(1− Personal MTR) 0.247 0.375∗∗ 0.828∗∗ 1.297∗∗∗ -0.025
(0.210) (0.172) (0.375) (0.448) (0.213)

ln(1− Personal MTR) × Agglom. -0.247∗∗∗ -0.313∗∗∗ -0.420∗∗∗ -0.698∗∗∗ -0.034
(0.086) (0.078) (0.152) (0.199) (0.040)

State Patents × ln(1− Personal MTR) 0.030 0.008 0.002 -0.012 0.035∗

(0.022) (0.018) (0.039) (0.050) (0.021)

State × Year FE Y Y Y Y Y
Inventor FE Y Y Y Y Y

R2 0.421 0.518 0.580 0.717 0.809

ln(1− Personal MTR) 0.309∗∗∗ 0.328∗∗∗ 0.845∗∗∗ 1.200∗∗∗ 0.107
(0.097) (0.103) (0.249) (0.319) (0.194)

ln(1− Personal MTR) × Agglom. -0.194∗∗ -0.286∗∗∗ -0.423∗∗ -0.667∗∗∗ -0.030
(0.086) (0.086) (0.171) (0.238) (0.054)

State Patents × ln(1− Personal MTR) 0.016∗ 0.007 -0.011 -0.021 0.021
(0.009) (0.010) (0.022) (0.034) (0.019)

State Patents 0.031∗∗∗ 0.033∗∗∗ 0.090∗∗∗ 0.076∗∗ 0.027∗∗∗

(0.007) (0.008) (0.026) (0.031) (0.010)
ln(1− Corp. MTR) 0.043 0.040 -0.017 0.035 -0.037

(0.057) (0.053) (0.101) (0.193) (0.124)

State FE Y Y Y Y Y
Year FE Y Y Y Y Y
Inventor FE Y Y Y Y Y

Observations 6460412 6460412 4566398 4415498 1485493
Mean of Dep. Var. 0.707 0.422 0.458 2.779 0.500
S.D. of Dep. Var. 0.455 0.494 0.664 1.454 0.500
R2 0.420 0.517 0.579 0.717 0.807

Notes: Table plots estimates of the interaction of agglomeration forces with tax rates. Regression is identical to 4,
except that it includes a control for the total number of patents in the state, and interactions of the tax rate with
both our agglomeration measure and the total number of patents in the state.
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A.4 Case Studies

We present here three special episodes of tax reform in New York, Delaware, and Michigan to

provide some sharp visual evidence of the effects of taxes on innovation. Figures A16-A17 show the

results from each of these episodes. In each case, the black solid line represents the time series in

the state under consideration, while the dashed line represents a control state. The control state

is constructed according to the synthetic control method of Abadie et al. (2010). That is, it is a

weighted average of other states in the sample, where the weights are chosen to best match the

average innovation outcome of interest (patents, inventors, or citations), as well as real personal

income per capita and population density for the period before the tax change in the state of

interest.

For the case of New York, the control state turns out to be California. For Michigan and

Delaware, it is a combination of other states. For the post-tax change period, the synthetic state

represents a plausible counterfactual of what may have happened in the state of interest absent the

tax change. The first panel shows log patents, the second shows log inventors and the third shows

log citations. The dashed vertical lines (or, for Michigan the gray area) represents the timing of

the tax change.

New York 1968 vs. California

The first case study is shown in Figure A16 and concerns New York’s 1968 tax reform bill, in which

the top marginal personal income tax rate increased from 10% to 14% and its state top corporate

tax rate increased from 5.5% to 7%. The control state here is California, where the top tax rate

increased as well from 7% to 10%, but remained lower while the corporate tax rate remained the

same at 5.5%. All variables are normalized at their 1965 levels. Before the tax bill, New York and

California follow remarkably similar trends for all three innovation outcomes. However, after the

reform, they diverge and New York performs much worse in terms of innovation relative to the

synthetic control.

Michigan 1967-1968

Figure A17 shows the case study of Michigan. Michigan introduced its personal state tax rate in

1967 at 2.6%. One year later, in 1968, it introduced its corporate state tax at 5.6%. The synthetic

control for Michigan is composed of several variations on California, Ohio/Pennsylvania, and, for

some of the outcome variables, a bit of Texas. While the control state and Michigan evolve very

similarly before 1967, Michigan starts performing significantly worse for the innovation outcome

measures after the introduction of its tax regime.
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Delaware 1969-1970

The third case study concerns Delaware. In July 1969, the corporate tax rate increased from 5%

to 6%, and in August 1971 a temporary surcharge of 20% was added on top of the 6% corporate

tax rate. In 1970, the personal tax rate increased from 11% to 18%. In this case, the best-fitting

synthetic control is comprised of Nevada, California, and Connecticut. Figure A18 shows that the

effects on patents, citations, and inventors were noticeably large with the negative trend setting in

at the time of the tax reform.

These case studies provide particularly clear visual evidence of a strong negative relationship

between taxes and innovation. When combined with the macro state-level regressions, the instru-

mental variable approach and the border county analysis, the results overall bolster the conclusion

that taxes were significantly negatively related to innovation outcomes at the state level.
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Figure A16: Synthetic Control Analysis: New York 1968
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Notes: Figure plots synthetic control analyses for New York’s 1968 tax reform bill, in which the top marginal personal
income tax rate increased from 10% to 14%, and its state corporate tax rate increased from 5.5% to 7%. The first
row shows the patterns for log patents, the middle row for log inventors, and the bottom row for log citations. We
normalize the patent counts for synthetic and actual New York to be one in 1965.
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Figure A17: Synthetic Control Analysis: Michigan 1967-68
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Notes: Figure plots synthetic control analyses Michigan around its major reforms in 1967 and 1968. In 1967, Michigan
introduced its personal income tax, at a rate of 2.6%. In 1968, it then introduced its corporate income tax, at a rate
of 5.6%. The first row shows the patterns for log patents, the middle row for log inventors, and the bottom row for
log citations.
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Figure A18: Synthetic Control Analysis: Delaware 1969-71
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Notes: Figure plots synthetic control analyses around Delaware’s tax reforms. In July 1969, the corporate tax rate
increased from 5% to 6%, and in August 1971 a temporary surcharge of 20% was added on top of the 6% corporate
tax rate. In 1970, the personal tax rate increased from 11% to 18%. The first row shows the patterns for log patents,
the middle row for log inventors, and the bottom row for log citations.
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ONLINE APPENDIX – NOT FOR PUBLICATION

for “The Effects of Taxes on Innovation: Evidence from Historical

U.S. Patent Data”

by Ufuk Akcigit, John Grigsby, Tom Nicholas, and Stefanie Stantcheva

OA.1 Disambiguation Algorithm

We employ the algorithm of Lai et al. (2014) to disambiguate inventors in our historical patent

data.37 The goal of disambiguation is to determine if two patent-inventor level records were pro-

duced by the same inventor. A problem of this sort may be distilled into a clustering problem

well-suited to standard machine learning algorithms: given a training dataset and a set of features

– such as inventor name, location, technology class, assignee, and coauthor networks – we wish

to group records together into profiles which indicate that the two records were produced by the

same inventor. The goal is to assign probabilities of an inventor match based on the characteristics

of every pair of observations. The central idea is that two records coming from two very similar

names (not necessarily identical: “John A Smith” vs “John Adam Smith” for instance) working in

similar subject areas, working for the same company in roughly the same geographic location, are

likely to be the same person.

Such a machine learning approach has three central benefits relative to other more rudimen-

tary approaches, such as treating each individual name as a separate inventor, or hand-matching

innovators’ records to one another. First, the Lai et al. approach permits minor name typos or

data entry errors, without incorrectly decoupling these inventors. Second, it provides probabilistic

matches based on more information than name and location, which helps disambiguate between

common names – a John Smith working in software is likely different to a John Smith with patents

in bootmaking. Finally, the algorithm does not impose any functional forms on the relationship

between a pair’s set of attributes and the probability that those pairs belong to the same inventor.

Of course, this machine learning approach is imperfect and will struggle to correctly match

inventors who drastically change their names or have exceptional careers. For instance, if an

inventor named Jane Smith changes her name after marrying a man with surname Robertson, the

algorithm will struggle to adapt, as names are the most distinguishing piece of information amongst

records. Similarly, if a software engineer living in California and working for Apple decides to change

his career and move to Montana to open a new shoe factory, the algorithm is likely to suggest that

these are two separate inventors, rather than one inventor with such an uncommon career trajectory.

The clustering exercise is subject to two principal challenges. First, one must produce a suitable

37The code and associated files for the original disambiguation may be downloaded from https://github.com/

funginstitute/downloads; accessed October 13, 2016.
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training dataset from which to glean the probability that two patent records with a similarity profile

of x belong to the same inventor. Here, one may follow two approaches. One could submit a hand-

curated dataset of known matches to the disambiguation algorithm to determine the likelihood of

a match. However, the construction of these datasets are often subject to bias if, for example,

researchers are more likely to include better-known inventors. An alternative approach, and the

one followed by Lai et al., is to allow the algorithm to produce its own training dataset based on

features in the data. For example, a training dataset of known matches could be constructed by

examining individuals with matching rare names.

Our baseline approach lies somewhere in between these two strategies. We use the matches

of Lai et al. to form the basis of our training dataset. We draw twenty million pairs of records

belonging to different inventors according to Lai et al. to complete our training dataset. Using

this as a training dataset relies on two principal assumptions: first, we assume that the Lai et al.

disambiguation correctly identifies inventors, and second we assume that the sets of features that

were predictive of inventor clustering are stable over time, so that the same rules for determining

matches in the modern sample of Lai et al. will apply to our historical sample. We choose this

approach in order to best match the state-of-the-art disambiguation of inventors in the modern

data.38

The second major challenge to the disambiguation exercise is computational. Ideally, one would

compare every pair of records in our data, and build a similarity profile for each. However, with over

12 million unique patent-inventor records in our dataset, one would have to compare over 144 trillion

record pairs in order to compare each record to each other, which is computationally infeasible. To

circumvent this challenge, we follow Lai et al. in disambiguating successively larger blocks. We

first group records into blocks of possible matches, based on the first characters of an inventor’s

name. Then we compare all records within a block to one another, but never compare across

blocks. After disambiguating a set of narrow blocks, we expand the size of the block, for example

by considering all record pairs that match the first three letters of an inventor’s name, rather than

the first five letters. By iteratively allowing progressively larger blocks, and assuming clusters

within prior blocking rounds were successfully disambiguated, we greatly reduce the computational

burden of the disambiguation.

Our starting point is the historical inventor data digitized by Akcigit et al. (2017), combined

with the patent data of Lai et al. (2014) available on the Harvard Dataverse Network (HDN).39 We

first manually clean inventor names and location to correct for obvious typos. The most common

correction is to remove prefixes and suffixes, such as “DR,” “JR,” and “SR.” In addition, we

standardize names to be all capital letters, and consider a person’s first name to be the first word

of their name. Finally, we consider only the first patent class listed on a patent document to be

38In early versions of the paper, we experimented with allowing the algorithm to find its own training sets, and
found qualitatively similar headline results.

39Accessed from https://dataverse.harvard.edu/dataset.xhtml?persistentId=hdl:1902.1/15705 on Febru-
ary 13, 2017.
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that patent’s primary classification. If our OCR process generates missing information, such as a

missing name, class or location, we supplement the data with patent data from patentsview and the

NBER patent data to fill in information where possible. These auxiliary data sources only contain

patents granted since 1975, and so cannot improve the dataset’s early years. Dropping the 1970s

from our analysis does not meaningfully affect our results.

To compare records, we construct a similarity profile for every pair of records to be compared.

A similarity profile x is a vector of similarity scores for the active attributes in the disambiguation.

Specifically, a similarity profile is encoded as follows:

• First and Last names

1. If one of the two records is missing the name

2. If there is no clear misspelling or abbreviation employed, and the strings do not exactly

match

3. If there is a misspelling (defined as either missing 1 or 2 characters somewhere, or

switching the place of a few characters)

4. If exact match or, in the case of first names, if one string appears to be an abbreviation

of the other in that it has the first 3 characters the same (e.g. “ROB” and “ROBERT”)

• Middle Names

0. If have different middle names

1. If one of the two records have missing middle name

2. If both records have missing middle name

3. If one record has a full middle name (e.g. “WILLIAM”) and the other has just the

middle initial which matches the full middle name (e.g. “W”).

4. If exactly the same name

• Location

1. If over 50 miles apart

2. If under 50 miles apart

3. If under 25 miles apart

4. If under 10 miles apart

5. If under 1 mile apart

• Patent Classes

0. If different strings

1. If exactly the same string
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• Assignees

5. If the Jaro-Winkler string distance between assignee names is at least 0.9

4. If JW distance > 0.8

3. If JW distance > 0.7

2. If one of the two records has a missing assignee

1. Otherwise

• Coauthors

1. If coauthors exactly the same (coauthors entered as <First Initial> . <Last Name> and

separated by comma in the variable)

0. Otherwise

• Country

0. If different country

1. If the same non-US country

2. If the same US country

Next, one may construct, for every observed similarity profile, the probability that this profile

belongs to the same inventor or not, by comparing the frequency with which it occurs in the training

dataset. Specifically, defining M to be the set of matched inventor pairs in the training dataset,

and N to be the set of non-matched inventor pairs in the training dataset, one may use Bayes’ rule

to write the probability of a match as

P (M|x) =
P (x|M)P (M)

P (x|M)P (M) + P (x|N ) (1− P (M))

where P (M) is the prior probability of a match, which we follow Lai et al. in setting as proportional

to the ratio of the number of within-cluster pairs (i.e. disambiguated inventors from prior blocking

rounds) in a block to the total number of pairs in that block.40 For numerical reasons, it is more

convenient to work with the posterior odds of a match, defined as

P (M|x)

1− P (M|x)
=
P (x|M)

P (x|N )
·

P (M)

1− P (M)

In particular, we calculate the likelihood ratio, r(x), for every observed similarity profile x. This

likelihood ratio is defined as

r(x) =
P (x|M)

P (x|N )
(OA1)

40The discrete nature of the similarity profile space described above makes the computation of this match probability
much simpler.
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This can be determined directly from the training dataset by comparing the number of records

with similarity profile x that belong in the matched training dataset (i.e. come from the same

inventor), to the number of records with similarity profile x that belong in the unmatched training

dataset (i.e. come from different inventors).41 Once we have the likelihood ratios calculated, we

invert them to calculate the probability that two records originated from the same inventor:

P (M|x) =
1

1 + 1−P (M)
P (M)

1
r(x)

(OA2)

We say that two records originated from the same inventor if this posterior probability of a match

is at least 0.99.42

Our blocking routine proceeds as follows:43

Round 1. Block based on exact first and last name. Compare records based on middle name and patent

location.

Round 2. Block based on exact first and last name. Compare records based on middle name, coauthor

network, patent class, and assignee name.

Round 3. Block based on first five characters of first name, and exact last name. Compare records

based on middle name, coauthor network, patent class, and assignee name.

Round 4. Block based on first three characters of first name, and exact last name. Compare records

based on middle name, coauthor network, patent class, and assignee name.

Finally, we subset our data to only consider US inventors. As was indeed the case in our time

period, the most productive inventors are Kia Silverbrook, Shunpei Yamazaki, George Lyon, Donald

Weder, and Melvin De Groote. We refer the reader to Lai et al. (2014) for additional statistics on

the performance of the algorithm on modern data.

OA.1 Disambiguation: Performance

This disambiguation procedure is subject to two types of error. The first, which we dub a Type I

error, occurs when two records are linked together as if they were from the same inventor, but in

reality was created by two distinct individuals. Such errors are most likely to occur from the “com-

mon name” problem, where multiple distinct individuals have the same name. This is particularly

41To account for small sample bias in rare similarity profiles, we follow Lai et al. in applying a Laplace correction
to these likelihood ratio values.

42In the early stages of our analysis, we experimented with match thresholds of 0.98 and 0.95 to determine whether
records originated from the same inventor. After examining the data by hand, we determined that this was too low,
as common names such as Robert Smith were often spuriously considered the most prolific inventors in the data.
This problem largely vanished with the threshold of 0.99.

43We experimented with additional rounds of blocking, as well as with allowing for inexact surname matches in the
blocking routine. Manual checks of the data revealed that this routine minimized errors with common names, and
correctly matched the most productive inventors as listed by outside data sources.
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difficult if, for instance, parents gave eponymous names to their offspring. Another source of this

problem arises from an inability to distinguish whether two records with the same name appear in

multiple states in two subsequent years – it can be difficult to tell whether such records reflect one

inventor who moves or two distinct inventors.

The second, a Type II error, occurs when two records fail to be linked together into one inventor

ID despite being produced by the same inventor. These errors occur when the algorithm is too

strict in its criteria for matching workers together. Increasing the threshold of similarity at which

two records are considered the same inventor reduces the likelihood of Type I errors while increasing

the probability of Type II errors.

We check the performance of the algorithm along these two dimensions as follows. To check Type

I errors, we construct a dataset by considering records that share same first three letters of their last

name. We consider the 8 most common first three letters: “SCH,” “WIL,” “HAR,” “CHA,” “SMI,”

“STE,” “SIL,” “JOH,” “BRO.” We then manually checked this dataset to determine the Type I

error rate by comparing records’ similarity profiles, as well as their application years (to remove

the influence of eponymous parent-child pairs). The goal was to determine the share of patent ×
inventor records that were assigned the same inventor ID but appeared to belong to different people

by human judgment. This process revealed that just 1.5% of records were incorrectly grouped into

the same inventor ID, suggesting that the Type I error rate is low.

To check the prevalence of Type II errors, we consider the share of records with the same

set of progressively comprehensive characteristics that are matched to the same inventor. Table

OA1 reports these shares. Each row of the table reports the share of records with the same set

of observable characteristics that have multiple inventor IDs. For instance, the first row reports

the share of records which have the same name but multiple inventor IDs, while the second row

shows the share of records that have the same name and same state, but multiple inventor IDs. As

we progress down the table, the set of matching characteristics get more and more stringent - the

final row reports the share of records which have the same name, class, assignee, year and city, but

multiple record IDs. For the purposes of the discussion below, let us define two inventor IDs to be

“part of an incorrect split” for a given set of characteristics if they share those same characteristics,

but have different inventor IDs.

The four columns calculate this share in different ways. The first two columns consider inventor-

weighted shares: that is, what share of inventor IDs are part of an incorrect split? The second two

columns consider patent-weighted shares: what share of patents belong to inventor IDs that are

part of an incorrect split? Columns 1 and 3 count all inventor IDs that are part of an incorrect

split in the numerator of this share. That is, if there are three inventors IDs with the same set of

characteristics, all three will count as being part of an incorrect split. This calculation somewhat

overweights the set of incorrect splits. For instance, suppose that there are two inventors, labeled

A and B, that have the same name and location. Inventor A has 1,000 patents, while inventor B

only has one. One might reasonably claim that only inventor B’s one patent record was incorrectly

disambiguated. To account for this, columns 2 and 4 remove the inventor ID with the most patents
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Table OA1: Disambiguation Performance: Type II errors

Inventor-Weighted Patent-Weighted

With No With No
Duplicates Duplicates Duplicates Duplicates

Criteria Location Match (1) (2) (3) (4)

No Location 34.7 11.4 22.4 9.6
Name State 22.9 9.2 15.0 5.4
Only County 12.5 5.4 8.2 2.8

City 9.2 4.1 6.1 2.0

No Location 9.6 4.2 5.9 2.0
Name State 7.0 3.2 4.4 1.5

+ Class County 4.2 1.9 2.6 0.84
City 3.0 1.4 1.9 0.60

No Location 11.4 4.9 6.9 2.4
Name State 6.6 3.0 4.2 1.3

+ Assignee County 2.4 1.2 1.6 0.50
City 0.07 0.03 0.05 0.01

Name No Location 3.3 1.6 2.0 0.64
+ Class State 2.2 1.0 1.4 0.42

+ Assignee County 0.80 0.39 0.52 0.16
City 0.02 0.01 0.01 0.00

Name No Location 0.65 0.32 0.35 0.11
+ Class State 0.45 0.22 0.25 0.08

+ Assignee County 0.15 0.08 0.08 0.03
+ Year City 0.00 0.00 0.00 0.00

Notes: Table reports the share of potential type II errors by a variety of criteria. The table shows the share of
observations that have the same sets of a given set of criteria, but multiple different inventor IDs in our disambiguated
patent data. Each row corresponds to a different set of criteria; for instance, the top row considers the share of records
with the same name that have different inventor IDs. Each column represents a different method of counting identical
records. Columns (1) and (2) consider the share of inventor IDs which are part of a duplicate pair, while columns
(3) and (4) consider the share of patents that are part of a duplicate pair. Columns (2) and (4) only consider the
inventor ID with the fewest patents to be incorrectly matched, while columns (1) and (3) consider both inventor IDs
with the same values of the criteria to be matched.

within a set of criterion from the set of incorrectly split IDs.

The table shows that 34.7% of inventor IDs have another inventor ID with the same name.

These inventors account for 22.4% of patents. However, only 7% of inventors have the same name,

class and state as another inventor ID (accounting for 4.4% of patents). Removing the most prolific

inventor from the set of incorrectly split inventors reveals that only 3.2% of inventor IDs (accounting

for 1.5% of patents) were split from another inventor with the same state, name and patent class.

These numbers are small and are unlikely to meaningfully bias our core results. By way of

comparison, Figure OA1 compares the numbers of Table OA1 with analogous numbers calculated

using the Lai et al. (2014) dataset. The horizontal axis plots the rate of incorrect splitting in

our data, while the vertical axis plots it in the Lai et al. data. The dashed line is a 45-degree
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Figure OA1: Type II Error Comparison – Harvard Dataverse NetworkLai
et al. (2014) comparison with our disambiguation

0
5

10
15

20
25

30
35

40
Li

 e
t a

l. 
(2

01
4)

 D
is

am
bi

gu
at

io
n

0 5 10 15 20 25 30 35 40
Akcigit, Grigsby, Nicholas, Stantcheva Disambiguation

Notes: Figure plots the rate of Type II errors in our disambiguation and in the Lai et al. (2014) data. Each dot is a
cell from Table OA1; see notes from that Table for details.

line, while each dot is a different set of characteristics and method of calculating the share of split

inventors; that is, each dot represents a cell of Table OA1. The fact that every dot is above the

45-degree line indicates that our disambiguation has fewer Type II errors than the disambiguation

of Lai et al. (2014) by every method used to calculate it. We consider this to be evidence that our

disambiguation performs admirable, particularly coupled with the low Type I error rate of 1.5%.44

Comparison with External List of Prolific Inventors. In this section, we assess our

disambiguation algorithm’s performance on the most prolific US inventors. We compare the list of

prolific inventors available from Wikipedia45 to the number of patents of these inventors according

to our disambiguation algorithm.

The first step of this exercise is to identify the inventors from our disambiguated dataset that

correspond to the ones listed in Wikipedia. To do so, we match each of Wikipedia’s inventors to

a set of inventors in our dataset with the same first and last name. We then keep only inventors

from our dataset that have either a missing middle name or a middle name starting with the same

letter of the Wikipedia’s counterpart. Subsequently, we choose the unique inventor ID in each set

with total number of patents closest to Wikipedia’s. Results are robust to choosing simply the

most patented inventor per set. Then, we compute the percentage deviation of total patents of

44We also considered allowing inventors to have the same name if one inventor’s name was a common nickname of
another. A list of common English nicknames was obtained from https://www.familiesunearthed.com/nicknames.

htm. Accounting for nicknames in this way had minimal impact on these tests, increasing the error rate by no more
than 1% by any measure.

45Accessed from https://en.wikipedia.org/wiki/List_of_prolific_inventors on January 15, 2021. The
source of the data from the Wikipedia table is mainly http://patft.uspto.gov/netahtml/PTO/index.html, or
Google patents
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such inventors relative to Wikipedia’s and we classify the results in different intervals.

It is important to note that our dataset includes only patents that were granted between 1920

and 2010, whereas most Wikipedia’s inventors were still active in the decade 2010-2020. To account

for this, we first drop the few inventors who were active before 1920 for the bulk of their careers,

such as Thomas Edison (1847-1931). Then, we consider different baskets of inventors depending

on what percentage of their career is covered in the timeframe of our dataset (1920-2010). For

instance, if we enforce that we observe at least 50% of an inventor’s career, then we would include

an inventor whose period of activity was 2000-2020, but not if it was 2001-2020.

The results are presented in Table OA2. The total number of patents of the most prolific

inventors are generally underestimated in our dataset. However, this is mainly due to the mismatch

in the coverage period. When we condition on observing at least 70% of an inventor’s career

span, our deviation from Wikipedia’s patent counts is no larger than 5% for 55% of our inventors.

Enforcing that we observe the entirety of an inventor’s career increases this share to 75%.

Of course, there is no guarantee that the crowd-sourced Wikipedia list is perfectly accurate. It

may additionally include patents for inventors who live abroad, while our data only covers inventors

while they live in the US. Nevertheless, the fact that our disambiguated data produces patent counts

which are close to those in Wikipedia is heartening. This, coupled with the relatively low rates of

Type I and II errors uncovered above, gives us confidence that our disambiguated data are of a

high quality.

OA.2 Assigning Inventors to States

Our patent data provides information on the residence address of the patent’s inventors. However,

we do not observe the residence of all inventors on a patent in the historical period. Specifically, we

observe an inventor’s state if either 1) they are the first inventor on the patent, or 2) the patent is

contained in the Harvard Dataverse Network (HDN) data produced by Lai et al. (2014). In order

to run our inventor-level regressions, we must assign each inventor to a particular home state. In

this section, we detail our approach to doing so.

For all non-primary authors on historical patents, we impute a location using the following

algorithm:

1. We assign all HDN and first author inventors to the state listed in the data

2. If an inventor is an HDN or first author inventor on one patent in a given year, but not

on another patent, we assign that inventor to his first-author state. If he is first author in

multiple states in that year, we assign him to the state listed on the patent if that state

matches one of his first author states; otherwise we proceed to step 3 below (using alternative

years)

3. We replace the inventor’s state with the preceding year’s state if state information is still

missing.
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Table OA2: Comparison of Wikipedia Patent Counts and Disambiguated
Patent Counts for Prolific Inventors

Patent Count: Ratio of Threshold of Career Overlap
Our Disambiguation to Wikipedia 50% 60% 70% 80% 90% 100%

(1) (2) (3) (4) (5) (6)

1.05+ 11 11 8 6 5 2
(12%) (17%) (21%) (29%) (52%) (25%)

1.01 – 1.05 8 8 8 5 1 1
(9%) (13%) (21%) (24%) (8%) (13%)

0.99 – 1.01 15 11 7 5 3 3
(16%) (17%) (18%) (24%) (25%) (38%)

0.95 – 0.99 17 12 6 3 3 2
(19%) (19%) (16%) (14%) (25%) (25%)

0.90 – 0.95 14 4 1 0 0 0
(15%) (6%) (3%) (0%) (0%) (0%)

0.75 – 0.90 16 11 5 1 0 0
(18%) (17%) (13%) (5%) (0%) (0%)

0.5 – 0.75 6 5 1 1 0 0
(7%) (8%) (3%) (5%) (0%) (0%)

0 – 0.5 4 2 2 0 0 0
(4%) (3%) (5%) (0%) (0%) (0%)

Total 91 64 38 21 12 8
(100%) (100%) (100%) (100%) (100%) (100%)

Notes: Table compares the patent counts of inventors in our disambiguation with those taken from an external
Wikipedia data source. Each row reports the number of inventors with a particular number of patents in our
disambiguation relative to the Wikipedia data. For instance, the row 1.05+ reports the number of inventors who
have at least 5% more patents in our data than reported in the Wikipedia table. Each column segments the sample
to inventors for whom we observe at least X% of their career in our data, which spans 1920-2010. The counts of
inventors in each cell are reported in each row, with the percentage of inventors reported in parentheses beneath the
counts.

4. We replace the inventor’s state with the following year’s state if state information is still

missing.

5. If the inventor-patent record is still missing state information, but the inventor has multiple

first-author states listed in that year, then we pick a random first-author state for that

inventor-patent.

6. If all else fails, we assign the state of the first-author on the patent.

An additional challenge arises from the fact that a number of inventors have patents granted

in multiple states in the same year. There may be many causes for multiple unique states within

a given year for an inventor. The most common causes of these multi-state inventors are:

• An inventor may live in state A until midway through a particular year, and then move to

state B. They file a patent application both in state A before moving and in state B after
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moving. They never file a patent in state B before moving, and never file a patent in state A

after moving.

• Inventors may have multiple home addresses. As a result, they consistently file in both state A

and state B in multiple years. For example, inventors may spend half of the year in Chicago,

IL, and half of the year in Milwaukee, WI, and thus frequently have patents in both of these

states in a given year.

• Inventors have multiple coauthors, who live in different states and who alternate in terms of

who is the first listed author. For instance, Harvey Clayton Rentschler lives in Pittsburgh, PA,

but frequently coauthors with J. Marden, who lives in Orange, NJ. Every time they coauthor

a patent, the location is listed as Orange, NJ, but every time Harvey Rentschler sole authors

a patent, his location appears to be Pittsburgh. These situations are particularly common

among assigned patents, and seem to account for all individuals living in an exceptionally

high number of states. Indeed, everyone who shows up in 7 or more states has a coauthor

on their patents, while the share of those with a coauthor is 92.8% for those with multiple

states, compared with just 66.3% for those in one state46

• Possible disambiguation errors: two individuals may have very similar names, work in similar

classes, and live just across a state border from one another (so are close in latitude-longitude).

As a result these two separate inventors may be classified as the same person by the disam-

biguator. This would inflate the number of states an individual lives in.

To address this concern, we assign multi-state inventors a home state using the following algo-

rithm:

1. Each year, assign an inventor to the modal state in which we observe him/her operating as a

sole author.

2. If the inventor does not have any sole authorships in that particular year, check if they have

sole authorships in the preceding or subsequent year. If the preceding and subsequent year

both have sole authorships in the same modal location, then assign the inventor to that state.

This smoothes over off years for inventors and removes spurious migration.

3. If we still do not have a location for the inventor, then we assign them to the modal location

we observe them in in the given year, regardless of whether the patent was sole authored or

coauthored.

4. If the inventor has two modal states (e.g. has 2 patents in both Illinois and Wisconsin in the

given year), then choose a random choice of those states and assign the inventor to that state.

46This is partially mechanical as these inventors are also more productive so have more chances to appear in
multiple states.
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Figure OA2: The Relationship Between Inventor Quality and Tenure
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Notes: This figure plots the share of inventors who are counted as high quality in a particular year against their
tenure in the dataset. Inventors are defined as high quality if they are in the top 10% of career patent counts up
through the year in question. The size of each marker reflects the share of inventors in that tenure bin.

OA.3 Tenure versus quality

One might be concerned that our quality measures simply reflect career length. Those with longer

careers are likely to have accumulated more patents, regardless of their underlying productivity.

For our purposes, it suffices that those with more patents are more likely to be in the top ten

percent of the income distribution, so a correlation between career length and quality measures

would not invalidate our empirical approach. In addition, we control for a quadratic in inventor

tenure, as well as an indicator for being high quality, in our regressions. Nevertheless, it is useful

to explore the relationship between inventor quality and tenure in the dataset.

Figure OA2 plots the relationship between inventor quality and tenure. The horizontal axis

measures an inventor’s tenure in the dataset, defined as the number of years since the inventor first

applied for a patent. The vertical axis plots the share of inventors with that tenure level who are

counted as high type under our baseline measure of quality; that is, the share of inventors who are

in the top ten percent of the distribution of patents accumulated in ones career up through that

year. The size of the markers is proportional to the share of observations in the dataset who have

a given tenure level.

Unsurprisingly, the figure shows a strong positive correlation between quality and tenure. How-

ever, it is not the case that high quality inventors are only those with high tenure. Approximately

ten percent of inventors with 10 years of tenure are high quality. This number rises to 28% when

considering 20-year inventors. Even at very high tenure levels (of which there are very few), no
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more than 45% of inventors are counted as high quality. Thus the relationship between tenure and

quality, while significant, is far from one-for-one.

OA.4 Citation Adjustment

Our data includes the full network of citations from patents granted from September 1947, when the

USPTO began to note citation data in a systematic way, to 2015. Citations start in 1947 because

a USPTO Notice was issued on December 19th, 1946, instructing examiners to add citations in

the published format of the patent, a practice that was incorporated into the Manual of Patenting

Examining Procedure (paragraph 1302.12).

For patents granted before 1947, the noted citation count is left censored: a patent granted

in 1940 will only have citations from patents granted after 1947, but will not have citations from

patents between 1941 and 1946. This artificially deflates the number of citations received by patents

before 1947, confounding attempts to use citations as an objective measure of a patent’s quality.

Furthermore, aggregate citation trends may weaken the link between raw citation counts and patent

quality. For instance, if patents granted in 1960 cite an average of 5 prior patents, but those granted

in 1990 cite 20 patents, one might expect the average citation received from a 1960 patent to be

more indicative of a high quality innovation than a citation received in 1990. We therefore adjust

the number of citations received by each patent following the quasi-structural approach laid out in

Hall et al. (2001).

This approach relies on two critical assumptions. First, we assume that the citation process is

stationary. That is, we assume that the evolution of citation shares does not change over time: a

patent will on average receive a share πkτ of its citations τ years after it is granted, regardless of

the grant year. This allows us to project back our adjustment factors to patents filed before the

citation data began in 1947. Second, we assume proportionality. That is, we assume that the shape

of the citation evolution does not depend on the total number of citations received so that highly

cited patents are more highly cited at all lags. This allows the application of the same adjustment

factor to every patent in our data granted in a given period and belonging to a given patent class.

The adjustment proceeds as follows. We start with the full patent citation network data, keeping

only those patents granted in the United States. Let Ckst be the total number of citations to patents

in year s and technology category k coming from patents in year t.47 Further, define Pks to be the

total number of citations received by patents granted in year s in technological category k. One

can then define πkst = Ckst/Pks to be the average share of citations received by patents in class

k in year s from patents granted in year t We assume that πkst is some multiplicatively separable

function of grant year, patent category, and a citation lag. That is, we can write

log[πkst] = α0 + αs + αt + αk + fk(L) (OA3)

47For the purposes of the adjustment, we use technological categories as defined by the NBER patent data. For a
detailed description of these data, see Hall et al. (2001).
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for L = t− s the lag between cited and citing patent grant years, and fk(·) some category-specific

function of these lags. For our purposes, we define fk(L) = γ̃k,L. We may then estimate equation

OA3 using OLS to recover estimates of α0, αs, αt, αk, and γ̃k,L for each value of s, t, k and L in our

data.48 Taking exponentials of equation OA3 yields

Ckst/Pks = eα0eαseαteαkeγ̃k,(t−s) (OA4)

This formulation allows us to standardize citation counts over time and across categories. Specifi-

cally, in order to adjust for patent class, cited year, and citing year effects, we weight each citation

from a patent in year t to a patent in class k in year s by exp (−α̂k − α̂s − α̂t). Each patent’s

citation counts are therefore reflective of the patent’s quality relative to the average patent in some

base year and category.49

While this procedure accounts for aggregate differences across patent classes and grant years, it

does not yet correct for bias arising from the left truncation of citation records. To build intuition

for the truncation correction, consider an example in which each of the estimated α coefficients

were 0: the only bias in our citation data arises from the lag. In that case, the assumptions of

proportionality and stationarity suggest a natural adjustment factor for a patent granted L years

before the 1947 cutoff. Define Gk(L) to be the CDF of the lag distribution: the share of an average

patent’s citations received within the first L years after its grant. The adjustment factor is then

given by

σk,L =
1

1−Gk(L)

We would then predict that a patent in category k granted in year 1947−L and receiving c citations

from patents granted after 1947 would have received σk,Lc citations had the USPTO kept track of

citations before 1947.50

In order to incorporate the year and category fixed effects into this truncation adjustment

framework, one must establish a notion of the CDF of the lag distribution conditional on year and

category effects. To do so, we interpret the exp(γ̃k,L)’s as weights for each patent in the citation

data. For instance, if the estimated exp(γ̃k,L=2) is 2, then an average patent is twice as likely to

receive a citation after 1 year than in the year of patent grant, conditional on year and category

effects. To construct the CDF of citations by lag conditional on year and class effects, we can sum

our estimates of exp(γ̃k,L), normalizing the estimated coefficients so that they sum to 1. This gives

48It is rare for a patent to receive citations more than 30 years after its initial grant date, and thus we top-code
the citation lag L to have a maximum value of 30. That is, we define L = min{t− s, 30}.

49For our purposes, we choose each patent citation to be relative to a patent in the “Other” category granted in
1975, receiving citations from patents also granted in 1975. Mechanically, this corresponds to setting the omitted
categories in estimation of equation OA3 to be k = “Other”, s = t = 1975.

50Ignoring year and category effects and adjusting citations in this way does not significantly change the results
presented in the main body of the paper.
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us our estimate of Gk(L):

Ĝk(L) =

L∑
l=1

exp(γ̃k,l)

30∑
l=1

exp(γ̃k,l)

(OA5)

We can then calculate our truncation adjustment factor as before51

σ̂k,L =
1

1− Ĝk(L)
. (OA6)

To summarize, the citation adjustment proceeds in four steps:

1. Estimate equation (OA3) using OLS to recover α0, αk, αt, αs and γk,L.

2. For each citation made from a patent p′ granted in year t to a patent p in class k granted in

year s is weighted by

ωk,s,t = e−αk−αt−αs

Define, for each cited patent p, the year- and category-adjusted citation count c to be the

sum of the ωk,s,t it received.

3. Calculate Ĝk(L) according to equation (OA5)

4. Using Ĝk(L), calculate the truncation adjustment factor σ̂k,L according to (OA6). Finally,

define a patent p’s adjusted citation count to be c̃ = c · σk,L if p is in class k and was granted

L years before 1947.

OA.5 Historical Corporate Tax Data

We collected the corporate tax rates from a large variety of sources. We also collect surtaxes or

surcharges, as well as additional temporary taxes imposed on top of the main rates. They are

sometimes imposed as a percentage of regular tax liabilities and sometimes as a rate to add to the

main rate. We record them as rates to add to the main rate with applicable thresholds. We have

not collected minimum taxes (they are very low and probably not applicable to the companies in

our sample) and alternative minimum taxes.

OA.1 Tax Rates

Historical data on the state corporate tax rates were collected from a number of sources. In

particular, our tax rate data come from:

51Note that we only calculate the truncation adjustment up to L = 20, despite estimating γk,L for L as large as
30. This is to bound Ĝk(L) away from 1, so that we do not divide by 0 in the adjustment. For L larger than 20, we
apply the adjustment factor for L = 20.
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• HeinOnline Session Laws. This is an archive of state legislation enacted since U.S. territories

were established and provides great historical coverage.

• ProQuest Congressional. It supplements to HeinOnline’s database for the District of Columbia.

• HeinOnline State Statutes. This is an archive of historical state statutes. In the early 20th

century, state statutes were periodically recodified into clean statutes. Between these recodifi-

cations, publishers released annotations that recorded updates. HeinOnline contains statutes

and annotations, mostly prior to 1940.

• State Tax Review and State Tax Handbooks by the Commerce Clearinghouse (CCH). The

Commerce Clearing House is a company that publishes tax guides as a resource for businesses

and tax professionals. We located their products through University of Michigan and the

Library of Congress.

• Council of State Governments Book of States. These are a biannual publication aiming to

review state-level tax changes. The first usable volume was published in 1948. In particular,

the state finances chapter summarizes income tax developments and includes a chart for

corporate income tax rates.

• Tax Foundation Publications.

• Report of the Subcommittee on State Taxation of Interstate Commerce (1964), also referred

as “The Willis Commission Report ”.

• State Income Tax Administration by Penniman and Heller. It was published in 1959 and

provides a good overview of the development of corporate income taxes in US states.

• National Tax Association Proceedings.

• The Progress of State Income Taxation Since 1911, Lutz (1920).

OA.2 Tax Base Rules

Following Suárez Serrato and Zidar (2018), we use fifteen variables to control for changes in how

the state corporate tax base is computed. Specifically, the variables used are:

• Investment Tax Credit: investment tax credit rate for a given state-year;

• R&D Tax Credit: statutory credit rate adjusted for recapture and type of credit for a given

state-year;

• R&D Tax Credit Base - Incremental Moving Average: an indicator variable equal to one if the

R&D tax credit applies to an incremental base that is a moving average of past expenditures

in a given state-year;
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• R&D Tax Credit Base - Incremental Fixed Period indicator variable equal to one if the R&D

tax credit applies to an incremental base that is fixed on a level of past expenditures in a

given state-year;

• Loss carryback rules: the number of years a corporation may carry back any excess loss

following the loss year;

• Loss carryforward rules: the number of years a corporation may carry forward any excess

loss following the loss year;

• Franchise tax: indicator variable equal to one if a Franchise tax is levied on corporations in

a given state-year;

• Throwback rules: indicator variable equal to one if the state eliminates “nowhere income”

that would be untaxed by either the state with the corporation’s nexus or the state in which

the relevant sales were being made;

• Combined Reporting Rules: an indicator variable equal to one if a state requires a unitary

business to submit combined reporting;

• Federal Income Tax Deductible: indicator variable equal to one if the federal income tax is

deductible in a given state-year;

• Federal Income as State Tax Base: indicator variable equal to one if the federal income tax

base is used as the state tax base in a given state-year;

• Federal Accelerated Depreciation: variable equal to one if the federal accelerated depreciation

is allowed in a given state-year;

• Accelerated Cost Recovery System (ACRS) Depreciation: indicator variable equal to one if

the accelerated cost recovery system is allowed in a given state-year;

• Federal Bonus Depreciation: indicator variable equal to one if the federal bonus depreciation

is allowed in a given state-year;

• Sales Apportionment Weight: the share of national profits of multi-state firms that are allo-

cated to sales (for tax purposes) in a given state.

The loss carryback rule, the loss carry forward rule, the federal income tax deducibility, the

federal income as state tax base, the federal accelerated depreciation, the federal bonus deprecia-

tion from 1958 through 1980 are collected from the State Tax Handbooks published by the Com-

merce Clearing House (CCH). From 1980 through 2010, these same variables are supplemented by

Suárez Serrato and Zidar (2018). The investment tax credit data from 1964 onward are supple-

mented by Chirinko and Wilson (2008). The Federal R&D Tax Credit was introduced for the first

time in 1981; one year later, in 1982, Minnesota was the first state to follow suit and enact a state

R&D tax credit. Hence, data for state-level R&D Tax Credits (both the rate and whether the tax

credit base is incremental with a moving average or incremental with fixed base) from 1982 onward

come from Suárez Serrato and Zidar (2018).
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The apportionment weights are compiled from a variety of sources. These sources include:

• The Progress of State Income Taxation Since 1911, Lutz (1920).

• Report of the Subcommittee on State Taxation of Interstate Commerce (1964), also referred

as “The Willis Commission Report ”.

• Hearings Before the Committee on the Judiciary, United States Senate, Ninety-fifth Congress,

First and Second Sessions on Interstate Taxation (1977-1978).

• Report of the Committee of independent experts on company taxation, also referred as the

Ruding Report.

• “Supplement to the Appendix to the Journal of the Senate Legislature of the State of Cali-

fornia” (1951).

• CSG Book of the States.

• CCH State Tax Reviews and CCH State Tax Handbooks.

Again, data from 1980 onward are supplemented from Suárez Serrato and Zidar (2018). Since

we lack exact data for each state-year, especially for the earliest period, we have to interpolate

some years of the data. In particular, we assume that an apportionment rule is in place until we

have explicit confirmation that the rule has changed.

While most states apportion based solely on the location of payroll, property, or sales, some

states occasionally used concepts such as production costs. When states offer different apportion-

ment rules to manufacturing versus service sectors, we use the manufacturing rules since most

innovation occurred within the manufacturing sector in the latter half of the 20th century.

To construct our index “corporate tax base breadth,” we follow Suárez Serrato and Zidar

(2018) in constructing an index of the “corporate tax base breadth.” We regress state corporate

tax revenues as a share of GDP on all tax base and apportionment variables, as well as state and

year fixed effects. That is, we estimate regressions of the form(
Revenue

GDP

)
st

= αs + φt + γCorp. MTRst + X′stΨ
BASE
st + ust

where
(
Revenue
GDP

)
st

is the ratio of state corporate tax revenues to state GDP, αs and γt, Corp. MTRst

is the state’s top corporate tax rate, ust is an error term and Xst is a vector of corporate tax base

rules. Specifically, X contains R&D tax credits, the sales apportionment weight, years of allowable

loss carryback and carryforward, and indicators for whether R&D tax credits are applied on an

incremental base that is a moving average or fixed on a level of past expenditures, whether the

state tax is a franchise tax, whether federal income taxes are deductible from income, whether

the federal income tax base is used for state taxation, whether the state allows federal accelerated
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depreciation, whether the state has throwback rules, whether the state uses combined reporting

rules, and state investment tax credits. We have state revenue data from 1980-2010, and we weight

the regressions by each state’s average GDP over the sample.

The index is the predicted value from this regression (excluding state and year fixed effects),

standardized to have zero mean and unit standard deviation. Formally, we begin by defining a raw

base index given by

b̃st = γCorp. MTRst + X′stΨ
BASE
st

Then we standardize this raw index to have zero mean and unit standard deviation over the

full sample. Define σb̃ to be the standard deviation of b̃ over the period 1958-2000 when we observe

the state base rules. Letting S be the number of states in our sample, and T the number of years

between 1958 and 2000, our final base index is defined as

bst =

1
ST

∑
s,t
b̃st

σb̃

This index may be interpreted as the number of standard deviations higher revenue a state

might expect to receive from its tax base rules, relative to an average state-year. Since the state

documents containing tax base information are missing for 1979, we linearly interpolate our tax

base index over this year.
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