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ABSTRACT

Observed choices between risky lotteries are difficult to reconcile with expected utility 
maximization, both because subjects appear to be too risk averse with regard to small gambles for 
this to be explained by diminishing marginal utility of wealth, as stressed by Rabin (2000), and 
because subjects' responses involve a random element. We propose a unified explanation for both 
anomalies, similar to the explanation given for related phenomena in the case of perceptual 
judgments: they result from judgments based on imprecise (and noisy) mental representations of 
the decision situation. In this model, risk aversion results from a sort of perceptual bias — but one 
that represents an optimal decision rule, given the imprecision of the mental representation of the 
situation. We propose a quantitative model of the noisy mental representation of simple lotteries, 
based on other evidence regarding numerical cognition, and test its ability to explain the choice 
frequencies that we observe in a laboratory experiment. Our model is more consistent with the 
laboratory data than random versions of expected utility theory or prospect theory, using both in-
sample and out-of-sample tests of model fit.
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Risk-averse choices are conventionally explained as reflecting expected utility maximiza-
tion (EUM) on the part of decision makers for whom the marginal utility of additional wealth
decreases with increases in their wealth. However, the observation that people often decline
even very small bets that offer somewhat better than fair odds poses a problem for this
theory. In the case of any smooth utility-of-wealth function, choices ought to become nearly
risk-neutral in the case of small enough stakes (Arrow, 1971). And while it is always possi-
ble to explain rejection of any given bet by assuming sufficient rapidly diminishing marginal
utility of wealth, the degree of curvature of the utility function that is required will then
imply that the same person should reject even extremely favorable bets when potential losses
are moderately large (though in no way catastrophic), as explained by Rabin (2000); this
too seems plainly counter-factual.1

A well-known response to this difficulty (Rabin and Thaler, 2001) is to propose that
people maximize the expected value of a nonlinear utility function, but that this function is
reference-dependent: it is not a context-invariant function of wealth, but instead depends on
how the wealth that may be obtained in different possible states compares to some reference
level of wealth. This context-sensitive reference level might be identified with the decision
maker’s existing wealth at the time of the choice (as in Kahneman and Tversky, 1979), or with
a level of wealth that she has reason to expect to achieve (as in Koszëgi and Rabin, 2006,
2007). Under such a generalization of standard EUM, small-stakes risk aversion requires
only a sufficiently rapid decrease in marginal utility near the reference level of wealth;2 if
the marginal utility of wealth does not continue to decrease at a similar rate with additional
small increases in wealth above the reference level, such an assumption remains consistent
with acceptance of larger gambles with only moderately better-than-fair odds.

However, this solution to the puzzle raises the question why the human mind should
exhibit this reference-dependence, given that it leads to behavior that would seem not to
be in the decision maker’s interest.3 Simply stating that this appears to be what many
people prefer — as if they perfectly understand what they are getting from their choices
and nonetheless persistently choose that way — is not entirely convincing. We propose
instead an alternative interpretation, under which decision makers often fail to accurately
choose the option that would best serve their true objectives, because their decision is based
not on the exact characteristics of the available options, but rather on an imprecise mental
representation of them.

1Rabin’s argument appeals to introspection. But see Cox et al. (2013) for examples of experiments in
which subjects make choices with respect to both small and large bets that are inconsistent with EUM under
any possible concave utility function. A wider range of experimental anomalies that challenge EUM as a
complete theory of choices with regard to risk are reviewed in Pope et al. (2007) and Friedman et al. (2014).

2This might be an actual kink at the reference point, as implied by the hypothesis of loss aversion
introduced by Kahneman and Tversky. If the reference point is given by the decision maker’s expected
wealth level, then loss aversion implies that there exist better-than-fair odds at which a risky gamble will be
declined even in the case of arbitrarily small stakes, as discussed by Rabin and Thaler (2001). Risk aversion
with arbitrarily small stakes is also possible if the marginal utility of additional wealth becomes unboundedly
large at the reference point, as discussed further below.

3As Rabin and Thaler (2001) point out, “myopic loss-averters ... make decisions that mean that others can
take money from them with very high probability and very low risk.” They also note that such exploitation
seems all too commonplace. Our point is not to assert that the predictions of such a model must be wrong,
but rather to urge that persistent behavior of this kind calls for an explanation.
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AN EXPERIMENTAL MEASUREMENT OF UTILITY 

was determined (these are rounded val- 
ues). These, and the arbitrarily defined 
points [U(oo) = o utiles and U(-5S) = 
- i utiles] can be connected by straight- 
line segments to form the utility curve of 
a subject. In Figure 3, illustrations of the 
utility curves are given for a few sub- 
jects. For reasons of scale we have shown 
values for only a few different utile po- 
sitions. Logarithmic scales would be 
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FIG. 2.-In this graph the data of Table 8 for subject B-I, hand 5522i, are plotted to show how the in- 
difference point is actually obtained. 

somewhat misleading because some in- 
terest attaches to the curvature. 

It was not possible to secure utility 
curves as complete as those in Figure 3 
for all subjects. The behavior of one sub- 
ject in the pilot study was so erratic that 
no utility curve at all could be derived 
for him. For two student subjects in the 
experiment it was possible to derive only 
a short section of the curve. Their in- 
difference points for the high hands (i.e., 
those in which the probability of winning 
was small and which gave the values for 
IO, 20, and ioi utiles) were so high that 
the experimenters felt they could not af- 

ford to make the offers necessary to get 
the subjects to choose to play (if such 
offers existed). 

There was nothing in the experimental 
procedure which coerced any subject to 
play at any time. It was possible for a 
subject to take his dollar at the beginning 
of a session and not play, thus assuring 
himself of $i.oo. It is interesting that this 
never happened. 

One subject showed markedly super- 
stitious behavior toward one hand. He 
seldom played against it for any of the 
offers made, even though he would ac- 
cept the same, or even smaller, offers 
against a hand which was less likely to be 
beaten. When asked about this after the 
project was completed, the subject said 
that he had been aware of his behavior 
but that he simply felt that the particu- 
lar hand was unlucky for him and that he 
"just didn't like it." 

In Table 9 are the indifference offers 
corresponding to each utility. When 
these are graphed, a rough utility curve 
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Figure 1: Probability of acceptance of a simple gamble as a function of the amount x that
can be won (shown on horizontal axis); from Mosteller and Nogee (1951).

Our alternative explanation has the advantage that it can simultaneously explain an-
other anomalous feature of choice behavior in experimental settings. EUM implies that
choice should be a deterministic function of the monetary payoffs offered and their associ-
ated probabilities. But in the laboratory, instead, choices appear to be random, in the sense
that the same subject will not always make the same choice when offered the same set of
simple gambles on different occasions (Hey and Orme, 1994; Hey, 1995, 2001). This was
evident (though little remarked upon) already in Mosteller and Nogee (1951), one of the
earliest experimental studies of the empirical support for EUM. Figure 1 (reproduced from
their paper) plots the responses of one of their subjects to a series of questions of a particular
type. In each case, the subject was offered a choice of the form: are you willing to pay five
cents for a gamble that will pay an amount X with probability 1/2, and zero with probability
1/2? The figure shows the fraction of trials on which the subject accepted the gamble, in the
case of each of several different values of X. The authors used this curve to infer a value of
X for which the subjects would be indifferent between accepting and rejecting the gamble,
and then proposed to use this value of X to identify a point on the subject’s utility function.

The fact that the indifference point is at a value of X greater than 10 cents (the case
of a fair bet) is taken by the authors to indicate a concave utility function. But in fact, no
utility function is consistent with the data shown in the figure; for EUM implies that the
probability of acceptance should be zero for all values of X below the indifference point, and
one for all values above it. Instead one observes probabilistic choice for a range of values
of X, with the probability of acceptance increasing monotonically with X. This random-
ness is often de-emphasized in discussions of the experimental evidence for particular types
of preferences over risky gambles, by simply focusing on modal or median responses. For
example, Kahneman and Tversky (1979) assume (without much discussion) that prospect
theory — presented as a theory that makes deterministic predictions about the valuation of
risky prospects — should be understood, for purposes of empirical testing, as making predic-

2



tions about which of two prospects will be chosen more often in a binary choice experiment,
rather than predictions about which alternative will always be chosen.4

There exists a view of the nature of trial-to-trial random variation in responses under
which such an approach can be defended, as discussed by Becker et al. (1963). Suppose that
a deterministic theory assigns a scalar value v(χ) to any vector χ of lottery characteristics,
but that on any individual trial, the value assigned to a lottery with characteristics χ will
be given by v(χ) + ε, where ε is a draw from some atomless probability distribution F that
is independent of χ. In the case of a binary choice between two lotteries with characteristics
χ1 and χ2 respectively, the former option is chosen if and only if v(χ1) + ε1 > v(χ2) + ε2,
where ε1, ε2 are two independent draws from the distribution F , as in the additive random
utility model of discrete choice (McFadden, 1981). Then option 1 will be chosen more often
than option 2 if and only if v(χ1) > v(χ2).

However, once one admits that the choice process must involve a stochastic element,
there is no reason to suppose that randomness enters only in the way proposed in an additive
random utility model — that is, that the valuations v(χ) are computed with perfect precision,
with a random component added only after the relevant features of each available option
have been summarized by a single scalar index of value. Randomness of responses of the
kind illustrated in Figure 1 is commonplace in experimental studies of sensory perception,
where such a figure is known as a “psychometric function.”5

But in the psychophysics literature, it is commonly understood that an important part of
the randomness in perceptual judgments results from randomness at relatively early stages
of cognitive processing — randomness of the data produced by the sense organs, that must
then be interpreted by the observer’s nervous system. And while the earliest models in
psychophysics posited that perceptual judgments themselves were random draws from a
distribution of possible “percepts,” the more modern literature (e.g., Green and Swets, 1966)
separates the question of how subjects select a response on the basis of sensory data from
the noise in the sensory data themselves. From this point of view, perceptual judgments
represent a form of inference from noisy evidence. Indeed, an important branch of the
literature explores the hypothesis that perceptual judgments can be modeled as optimal
Bayesian inference, subject to the constraint that they must be based on noisy sensory data.

The hypothesis that perceptual judgments represent optimal Bayesian inference from an
imprecise internal representation of the situation does not rule out the possibility of system-
atic bias in perceptual judgments, as we illustrate in the next section.6 But it does imply that

4This is also the assumption that motivates the method used by Mosteller and Nogee (1951) to test the
consistency of their subjects’ behavior with EUM, illustrated in Figure 1; Becker et al. (1964) call this “the
Fechner postulate.” Other studies explicitly model the randomness in individual responses (e.g., Loomes
and Sugden, 1995; Ballinger and Wilcox, 1997; Holt and Laury, 2002; Loomes, 2005; Wilcox, 2008), but still
typically treat the randomness as something that can be specified independently of a “core” deterministic
model of preference over lotteries (such as EUM), which is supposed to explain subjects’ risk attitudes.

5See, for example, Gabbiani and Cox (2010), chap. 25; Gescheider (1997), chap. 3; or Glimcher (2011),
chap. 4. It was doubtless due to familiarity with such figures in the literature on sensory perception that
Mosteller and Nogee found it natural to plot their data in the way that they did. Note that the method
that they use to identify an indifference point for their subject corresponds to a standard way of defining a
“point of subjective equality” between two different types of sensory stimuli using a psychometric function
(see, e.g., Gescheider, 1997, p. 52).

6See also section 1 of Khaw et al. (2017) for a detailed discussion of another leading example, the Bayesian
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there should be a strong connection between the nature of the noise in perceptual judgments
and their average bias: if there were no random noise in the internal representations on which
the judgments are based, there should (if the subject forms optimal Bayesian judgments) be
no noise in perceptual judgments, and no bias either — thus the degree and nature of the
bias should be directly connected to the magnitude and nature of the noise.

We propose that small-stakes risk aversion can be explained in the same way as per-
ceptual biases that result from noise in internal representations.7 According to our theory,
intuitive estimates of the value of risky prospects (not ones resulting from explicit symbolic
calculations) are based on mental representations of the magnitudes of the available mone-
tary payoffs that are imprecise in roughly the same way that the representations of sensory
magnitudes are imprecise, and in particular are similarly random, conditioning on the true
payoffs. Intuitive valuations must be some function of these random mental representations.
We explore the hypothesis that they are produced by a decision rule that is optimal, in
the sense of maximizing the (objective) expected value of the decision maker’s expected
wealth, subject to the constraint that the decision must be based on the random mental
representation of the situation.

Under a particular model of the noisy coding of monetary payoffs, we show that this
hypothesis will imply apparently risk-averse choices: the expected net payoff of a bet will have
to be strictly positive for indifference, in the sense that the subject accepts the bet exactly as
often as she rejects it (as in Figure 1). Risk aversion of this sort is consistent with a decision
rule that is actually optimal from standpoint of an objective (expected wealth maximization)
that involves no “true risk aversion” at all; this bias is consistent with optimality in the same
way that perceptual biases (such as the oblique bias in the perception of orientation) can be
consistent with Bayesian inference from noisy sensory data. And not only can our theory
explain apparent risk aversion without any appeal to diminishing marginal utility, but it can
also explain why the “risk premium” required in order for a risky bet to be accepted over a
certain payoff does not shrink to zero (in percentage terms) as the size of the bet is made
small, contrary to the prediction of EUM.

Section 1 reviews evidence regarding the mental representation of numerical magnitudes
that motivates our model of noisy coding of monetary payoffs. Section 2 presents an explicit
model of choice between a simple risky gamble and a certain monetary payoff, of the kind
that occurs in the experiment of Mosteller and Nogee, and derives predictions for the both
the randomness of choice and the degree of apparent risk aversion implied by an optimal
decision rule. Section 3 describes a simple experiment in which we are able to test some of
the specific quantitative predictions of this model. Section 4 discusses further implications
of our theory of small-stakes risk attitudes, and concludes.

explanation for the well-documented “oblique bias” in perceptions of orientation.
7Our theory is thus similar to proposals in other contexts (such as Koszëgi and Rabin, 2008) to interpret

experimentally observed behavior in terms of mistakes on the part of decision makers — i.e., a failure to make
the choices that would maximize their true preferences — rather than a reflection of some more complex
type of preferences. More specifically, we follow Woodford (2012), Steiner and Stewart (2016), Gabaix and
Laibson (2017), and Natenzon (2017) in proposing that choice biases can reflect optimal Bayesian decision
making on the basis of a noisy representation of the decision problem.
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1 Imprecision in Numerical Cognition

An important recent literature on the neuroscience of perception argues that biases in per-
ceptual judgments can actually reflect optimal decisions — in the sense of minimizing average
error, according to some well-defined criterion, in a particular class of situations that are
possible ex ante — given the constraint that the brain can only produce judgments based on
the noisy information provided to it by sensory receptors and earlier stages of processing in
the nervous system, rather than on the basis of direct access to the true physical properties of
external stimuli (e.g., Stocker and Simoncelli, 2006; Wei and Stocker, 2015). The approach
has been used to explain systematic biases in perception in a variety of sensory domains
(Petzschner et al., 2015; Wei and Stocker, 2017).

The relevance of these observations about perceptual judgments for economic decision
might nonetheless be doubted. Some may suppose that the kind of imprecision in mental
coding just discussed matters for the way in which we perceive our environment through our
senses, but that an intellectual consideration of hypothetical choices is an entirely different
kind of thinking. Moreover, it might seem that typical decisions about whether to accept
gambles in a laboratory setting, such as the experiment of Mosteller and Nogee (1951), in-
volve only numerical information that is presented to the subjects in an exact (symbolic)
form, offering no obvious opportunity for imprecise perception. However, we have reason to
believe that reasoning about numerical information often involves imprecise mental repre-
sentations of a kind directly analogous to those involved in sensory perception.

1.1 Imprecise Perception of Numerosity

This is clearest (and has been studied most thoroughly) in the case of perceptions of the
number of items present in a visual display. For example, quick judgments can be made about
the number of dots present in a visual display of a random cloud of dots, without taking the
time to actually count them.8 As with perceptions of physical magnitudes such as length or
area, such judgments of numerosity are subject to random error. And just as in the case of
sensory magnitudes, the randomness in judgments can be attributed to randomness in the
neural coding of numerosity, resulting from the width of the “tuning curves” of neurons that
selectively respond to arrays with greater or smaller numbers of dots.9

We can learn about how the degree of randomness of the mental representation of a num-
ber varies with its size from the frequency distribution of errors in estimation of numerosity.
A well-established finding is that when subjects must estimate which of two numerosities
is greater, or whether two arrays contain the same number of dots, the accuracy of their
judgments is a function of the ratio of the two numbers (but independent of their absolute
magnitudes) — a “Weber’s Law” for the discrimination of numerosity analogous to the one
observed to hold in many sensory domains (Ross, 2003; Cantlon and Brannon, 2006; Nieder
and Merten, 2007; Nieder, 2013). Moreover, when subjects must report an estimate of the

8One of the earliest published experimental investigations was by Jevons (1871).
9The tuning curves of “number neurons” have been measured using single-cell recording techniques in the

brains of both cats and macaques (Thompson et al., 1970; Nieder and Merten, 2007; Nieder and Dehaene,
2009). While similar methods cannot be used with humans, more indirect evidence suggests the existence of
“number neurons” in the human brain as well (Piazza et al., 2004; Nieder, 2013).
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number of dots in a visual array,10 the standard deviation of the distribution of estimates
grows in proportion to the mean estimate, with both the mean and standard deviation be-
ing larger when the true number is larger (Izard and Dehaene, 2008; Kramer et al., 2011);
similarly, when subjects are required to produce a particular number of responses (without
counting them), the standard deviation of the number produced varies in proportion to the
target number (and to the mean number of responses produced) — the property of “scalar
variability” (Whalen et al., 1999; Cordes et al., 2001).

All of these observations are consistent with a theory according to which such judgments
of numerosity are based on an internal representation that can be represented mathematically
by a quantity that is proportional to the logarithm of the numerical value that is being
encoded, plus a random error the variance of which is independent of the numerical value
that is encoded (van Oeffelen and Vos, 1982; Izard and Dehaene, 2008).11 Let the number n
be represented by a real number r that is drawn from a distribution

r ∼ N(log n, ν2), (1.1)

where ν is a parameter independent of n. Suppose furthermore that if two stimuli of re-
spective numerosities n1 and n2 are presented, their corresponding internal representations
r1, r2 are independent draws from the corresponding distributions. Finally, suppose that a
subject judges the second array to be more numerous than the first if and only if the internal
representations satisfy r2 > r1.

12 Then a subject is predicted to respond that array 2 is more
numerous with probability

Prob[“2 is more”] = Φ

(
log(n2/n1)√

2ν

)
, (1.2)

where Φ(z) is the cumulative distribution function of a standard normal variate z.
Equation (1.2) predicts that “Weber’s Law” should be satisfied: the response probability

depends only on the ratio n2/n1, and not on the absolute numerosity of either array. More
specifically, it predicts that the z-transformed response probability (z(p) ≡ Φ−1(p)) should
be an increasing linear function of log n2, with a slope that is independent of the numerosity
n1 of the first array, and a value of zero when n2 = n1. This is exactly what the discrimination
data of Krueger (1984) show.13

10Here we refer to arrays containing more than five or so dots. As discussed by Jevons (1871) and many
subsequent authors, the numerosity of very small arrays can be immediately perceived (without counting)
with high accuracy and confidence; the cognitive process used in such cases, termed “subitizing” by Kaufman
et al. (1949), is quite distinct from the ability to estimate the approximate numerosity of larger arrays, to
which the statements in the text refer.

11Buckley and Gillman (1974) had earlier proposed a similar model to explain behavior in experiments in-
volving magnitude comparisons between numbers represented by Arabic numerals; these related experiments
are discussed below.

12This is an optimal decision rule, in the sense of maximizing the frequency of correct answers, in the case
of any prior distribution under which (n2, n1) has the same prior probability as (n1, n2) — that is, the choice
of which stimulus to present first is arbitrary.

13See Figure 5 of Krueger (1984), in which the three panels correspond to three successively larger values
of n1; each panel plots the z-transformed frequency of judgment that array 2 is more numerous (on the
vertical axis) as a function of log n2 − log n1 (measured in 4-percent “steps,” on the horizontal axis).
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The observed variability of estimates of numerosity is consistent with the same kind of
model of noisy coding. Suppose that the subject’s estimate n̂ of the numerosity of some
array must be produced on the basis of the noisy internal representation r hypothesized
above. If we approximate the prior distribution from which the true numerosity n is drawn
(in a given experimental context) by a log-normal distribution,14 log n ∼ N(µ, σ2), then the
posterior distribution for n, conditional on an internal representation r drawn from (1.1),
will also be log-normal: log n|r ∼ N(µpost(r), σ

2
post). Here µpost(r) is an affine function of r,

with a slope 0 < β < 1 given by

β ≡ σ2

σ2 + ν2
, (1.3)

while σ2
post > 0 is independent of r.15

If we hypothesize that the subject’s numerosity estimate is optimal, in the sense of
minimizing the mean squared estimation error when stimuli are drawn from the assumed
prior distribution,16 then we should expect the subject’s estimate to be given by the posterior
mean, n̂(r) = E[n|r]. In this case, log n̂(r) will be an affine function of r, with a slope of β.
The same will be true (though the affine function will have a slightly different intercept) if
we assume instead that the subject’s estimate is given by the posterior mode (a “maximum a
posteriori estimate,” as often assumed in Bayesian models of statistical inference), or that it
minimizes the mean squared percentage error.17 In any of these cases, the fact that log n̂(r)
is an affine function of r, together with (1.1), implies that conditional on the true numerosity
n, the estimate n̂ will be log-normally distributed: log n̂ ∼ N(µ̂(n), σ̂2), where µ̂(n) is an
affine function of log n with slope β, and σ̂2 is independent of n.

It then follows from the properties of log-normal distributions that

SD[n̂]

E[n̂]
=
√
eσ̂2 − 1 > 0,

regardless of the true numerosity n. Thus the property of scalar variability is predicted by
a model of optimal estimation.18

14We adopt this approximation in order to allow a simple analytical calculation of the Bayesian posterior
distribution, even though in the experiments referred to here, the value of n is actually always an integer.
For more exact models of numerosity estimation, also based on the hypothesis of log-normal coding, see
for example van Oeffelen and Vos (1982) or Izard and Dehaene (2008). The calculation presented here is
offered as an introduction to the model of noisy coding proposed in section 2, where monetary payments are
assumed to be positive real numbers rather than integers.

15See the online appendix for details of the calculation.
16Such a hypothesis does not imply that subjects in numerosity estimation experiments consciously calcu-

late anything using Bayes’ rule; only that, in some way or another, their intuitive judgments have come to be
calibrated so as to be optimal for a certain environment. We do not here discuss the question of how much
experience should be required in order for subjects’ estimates to become well-calibrated to a given context.

17Again, see the online appendix for details. Because numerosity estimation experiments are typically
not incentivized, it is unclear what objective subjects should be assumed to maximize under an optimizing
model of perceptual judgments. Instead, in the case of the choices between simple gambles modeled in the
next section, our theory is based on subjects’ well-defined financial incentives.

18Alternatively, the standard deviation of the distribution of log n̂ should be independent of n. This is
found to be roughly the case, when statistics of the distribution of log n̂ are plotted as functions of log n, as
in Kramer et al. (2011).
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A further implication of a Bayesian model of numerosity estimation is that the average
subjective estimate E[n̂|n] should in general differ from the true numerosity n: subjects’
estimates should be biased. Specifically, the model just proposed implies a power-law rela-
tionship,

E[n̂|n] = Anβ (1.4)

for some A > 0, where 0 < β < 1 is again defined by (1.3). This implies over-estimation
of small numerosities (greater than five), but under-estimation of larger numerosities, to
a progressively greater extent the larger the true numerosity n. The result illustrates our
earlier remark that random noise in internal representations results not only in arbitrary
randomness in judgments based on those representations, but in biased judgments as well,
even when the judgments are optimal (conditional on having to be based on the noisy internal
representation).

This kind of “regressive bias” in subjects’ estimates of numerosity is characteristic of all
experiments in this area, beginning with the classic study of Kaufman et al. (1949).19 In
fact, authors often report that average estimates can be fit reasonably well by a concave
power law (or log-log plot), of the kind indicated by (1.4).20 The cross-over point, however,
at which the bias switches from over-estimation to under-estimation varies across studies.
Over-estimation is found only in the case of numerosities of no more than 10, in the studies of
Kaufman et al. (1949) and Indow and Ida (1977); but for all numerosities less than 25, in the
studies reviewed by Krueger (1984); and for all arrays with less than 130 dots, in the study
of Hollingsworth et al. (1991). As noted by Izard and Dehaene (2008), the cross-over point
seems to depend on the range of numerosities used in the study in question; the validity of
this interpretation is indicated by the recent study of Anobile et al. (2012), who find different
concave mappings21 from n to E[n̂|n] in two experiments using similar methodologies, but
different ranges for the true numerosities used in the experiment (1 to 30 dots in one case,
1 to 100 dots in the other).

This is just what the Bayesian model proposed above would predict: if we vary µ across
experiments, holding the other parameters fixed, the cross-over point is predicted to vary in
proportion to the variation in the prior mean of n.22 The Bayesian model also predicts, for
a given prior, that increased imprecision in mental coding (a larger value of ν) should result
in a lower value of β, and hence a more concave relationship between the true and estimated
numerosities; and this is what Anobile et al. (2012) find when subjects’ cognitive load is
increased, by requiring them to perform another perceptual classification task in addition to
estimating the number of dots present. Thus many quantitative features of observed errors
in judgments of numerosity are consistent with a model of optimal judgment based on a
noisy internal representation of numerosity, and a specific (log-normal) model of the noisy
coding of numerical magnitudes in such cases.

19It can be seen in the data of Jevons (1871), though not remarked upon by him.
20See, e.g., Krueger, 1972, 1984; Indow and Ida, 1977; or Kramer et al., 2011.
21See panel B of their Figure 3.
22Again, see the online appendix for details. A similar regression bias, with the cross-over point similarly

varying with the range of stimulus magnitudes used in a given experiment, is observed in the case of estimates
of a variety of sensory magnitudes. See Petzschner et al. (2015) for a review, and discussion of how a Bayesian
model of perceptual judgments similar to the one proposed here can explain these and other patterns.
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1.2 Symbolically Presented Numerical Information

The well-documented imprecision in people’s perception of visually presented numerical in-
formation might seem, however, to be irrelevant to situations like the experiment of Mosteller
and Nogee, in which the relevant monetary amounts are described to the decision maker us-
ing number symbols. One might reasonably suppose that symbolically presented numbers
are generally understood precisely by the hearer; and to the extent that perceptual errors
do occur, they should not generally be expected to conform to Weber’s Law, as in the case
of sensory magnitudes.23

Nonetheless, there is a good deal of evidence suggesting that even when numerical quan-
tities are presented using symbols such as Arabic numerals, the semantic content of the
symbol is represented in the brain in a way that is similar to the way in which magnitudes
are represented — involving imprecision, just as with the representation of physical mag-
nitudes, and with similar quantities represented in similar ways, so that nearby numerical
magnitudes are more likely to be confused with one another (Dehaene, 2011). This is not
the only way in which numerical information is understood to be represented in the brain;
according to the well-known “triple-code model” of Dehaene (1992), numbers are represented
in three different ways (three “codes”), in circuits located in different regions of the brain,
each with a distinct function. An Arabic code, located in the left and right inferior ventral
occipital-temporal areas, is used for explicit multi-digit arithmetic calculations. Simple ver-
bal counting and retrieval of memorized facts of arithmetic are instead executed via a verbal
code, subserved by the left perisylvian area.

Yet a third code, the “analog magnitude code,” is drawn upon in tasks involving number
comparisons and approximation. This is thought to be a “semantic” representation of the
size of the quantity represented by a given number — “the abstract quantity meaning of
numbers rather than the numerical symbols themselves” (Dehaene et al., 2003, p. 492) —
and to be independent of the symbolic form in which the number is presented; neuro-imaging
studies suggest that this code is located in the intraparietal sulcus in humans (Piazza et al.,
2004). Scalp EEG recordings while subjects process information presented in the form of
Arabic numerals also indicate that the neural patterns evoked by particular numbers vary
continuously with numerical distance, so that (for example) the neural signals for “3” are
more similar to those for “4” than to those for “5” (Spitzer et al., 2017; Teichmann et al.,
2018; Luyckx et al., 2018).

The existence of an approximate semantic representation of numerical quantities, even
when numbers are presented symbolically, can also be inferred behaviorally from the ability
of patients with brain injuries that prevent them from performing even simple arithmetic
(using the exact facts of arithmetic learned in school) to nonetheless make fairly accurate
approximate judgments (Dehaene and Cohen, 1991). In normal adult humans, this approx-
imate “number sense” seems also to be drawn upon when number comparisons are made
very quickly, or when previously presented numerical information that has not been precisely
memorized must be recalled.

For example, Moyer and Landauer (1967) presented subjects with two numerals, and
required them to press one of two keys to indicate which numeral indicated the larger number.

23For example, if it were a simple matter of sometimes mis-hearing numbers stated by an experimenter,
one might expect that $34.13 could more easily be mistaken for $44.13 than for $34.89.
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They found that both the fraction of incorrect responses and the time required to decide
were decreasing functions of the numerical distance between the two numbers referred to by
the numerals; these findings are analogous to the way that both error rates and response
times vary with the magnitude difference between two sensory stimuli in experiments where
a subject must determine which of two stimuli is greater in magnitude (the louder sound,
the longer line, and so on). Moyer and Landauer conclude that “the displayed numerals are
converted [by the mind] to analogue magnitudes, and a comparison is then made between
those magnitudes in much the same way that comparisons are made between physical stimuli”
(p. 1520).

Moreover, there is evidence that the mental representation of numerical information
used for approximate calculations involves the same kind of logarithmic compression as in
the case of non-symbolic numerical information, even when the numerical magnitudes have
originally been presented symbolically. Moyer and Landauer (1967), Buckley and Gillman
(1974), and Banks et al. (1976) find that the reaction time required to judge which of two
numbers (presented as numerals) is larger varies with the distance between the numbers on
a compressed, nonlinear scale — a logarithmic scale, as assumed in the model of the coding
of numerosity sketched above, or something similar — rather than the linear (arithmetic)
distance between them.24

In an even more telling example for our purposes, Dehaene and Marques (2002) showed
that in a task where people had to estimate the prices of products, the estimates produced
exhibited the property of scalar variability, just as with estimates of the numerosity of a visual
display. This was found to be the case, even though both the original information people had
received about prices and the responses they produced involved symbolic representations of
numbers. Evidently, an approximate analog representation of the prices remained available
in memory, though the precise symbolic representation of the prices could no longer be
accessed.25

Not only is there evidence for the existence of an approximate semantic representation
of numerical information that is presented symbolically; it seems likely that this “analog
magnitude code” is the same representation of number that is used when numbers are pre-
sented non-symbolically. The region in the intraparietal sulcus that is thought to be the
locus of the analog magnitude code seems to be activated by the presentation of numerical
stimuli, regardless of the format in which the information is presented: written words or
Arabic numerals, visual or auditory presentations, symbolic or non-symbolic (Piazza et al.,
2004; Brannon, 2006). If this is true, it means that we should expect the quantitative model
of imprecise internal representations that explains the perception of numerosity, a context
in which the statistical structure of errors has been documented in more detail, to also ap-
ply to the imprecise internal representations that are drawn upon when fast, approximate

24Buckley and Gillman (1974) develop an extension of the model of noisy logarithmic coding of numerical
magnitudes sketched above that explicitly models the dynamic process of comparison between two magni-
tudes, and show that the model predicts not only that the frequency of correct ranking should depend on
the ratio of the two numbers (as discussed above) but that the mean time required to decide should depend
on this ratio as well, as they find in their experiment. (See also Dehaene, 2008, for a related model.) The
dynamic version of the model is not needed for our purposes here.

25This example is of particular relevance for our purposes, as it involves the mental representation of
monetary amounts.
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judgments are made about symbolically presented numerical information. We shall explore
the implications of this hypothesis for risky choice.

More specifically, our hypothesis is that when people must decide whether a risky prospect
(offering either of two possible monetary amounts as the outcome) is worth more or less
than another monetary amount that could be obtained with certainty, they can make a
quick, intuitive judgment about the relative value of the two options using the same mental
faculty as is involved in making a quick estimate (without explicit use of precise arithmetic
calculations) as to whether the sum of two numbers is greater or less than some other number.

If this is approached as an approximate judgment rather than an exact calculation (as
will often be the case, even with numerate subjects), such a judgment is made on the basis
of mental representations of the monetary amounts that are approximate and analog, rather
than exact and symbolic; and these representations involve a random location of the amount
on a logarithmically compressed “mental number line.” The randomness of the internal
representation of the numerical quantity (or perhaps, of its value to the decision maker)
then provides an explanation for the randomness in the data of Mosteller and Nogee (1951);
and as we show below, the logarithmic compression provides an explanation for subjects’
apparent risk aversion, even in the case of gambles for very small stakes.26

Note that we do not assume that all decisions involving money are made in this way.
If someone is asked to choose between $20 and $22, either of which can be obtained with
certainty, we do not expect that they will sometimes choose the $20, because of noise in their
subjective sense of the size of these two magnitudes. The question whether $20 is greater or
smaller than $22 can instead be answered reliably (by anyone who remembers how to count),
using the “verbal code” hypothesized by Dehaene (1992) to represent the numbers, rather
than the “analog magnitude code.”

Likewise, we do not deny that numerate adults, if they take sufficient care (and con-
sciously recognize the problem facing them as having the mathematical structure of a type
of arithmetic problem), are capable of exact calculations of averages or expected values that
would not introduce the kind of random error modeled in the next section. Nonetheless,
we hypothesize that questions about small gambles in laboratory settings (even when in-
centivized) are often answered on the basis of an intuitive judgment based on approximate
analog representations of the quantities involved. And though our results here cannot prove
this, we suspect that many economic decisions in everyday life are made in a similar way,
and hence may involve a similar error structure.

2 A Model of Noisy Coding and Risky Choice

We now consider the implications of a model of noisy internal representation of numerical
magnitudes for choices between simple lotteries, of the kind that subjects are presented with
in experiments like that of Mosteller and Nogee (1951). We assume a situation in which a
subject is presented with a choice between two options: receiving a monetary amount C > 0

26Schley and Peters (2014) also propose that a compressive nonlinear mapping of symbolically presented
numbers into mental magnitudes can give rise to additional risk aversion, alongside the risk aversion that
can be attributed to diminishing marginal utility; but as we discuss in section 4.2 below, their theory differs
in important respects from the one that we propose here.
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with certainty, or receiving the outcome of a lottery, in which she will have a probability
0 < p < 1 of receiving a monetary amount X > 0. We wish to consider how decisions
should be made if they must be based on imprecise internal representations of the monetary
amounts rather than their exact values.

We hypothesize that the subject’s decision rule27 is optimal, in the sense of maximizing
the expected value of U(W ), subject to the constraint that the decision must be based on
an imprecise representation r of the problem, rather than the true data. Here W is the
subject’s final wealth at the end of the experiment, and U(W ) is an indirect utility function,
indicating the (correctly assessed) expected value to the subject of a given wealth (given
the ways in which it can subsequently be spent). Note that our conceptual of the subject’s
objective (from the standpoint of which the decision rule can be said to be optimal) involves
no “narrow bracketing” of the gains from a particular decision: it is assumed that only final
wealth W matters, and not the sequence of gains and losses by which it is obtained. The
expected value is defined with respect to some prior probability distribution over possible
decision situations (here, possible values of X and C that might be offered).

Let W a be the random final wealth if option a is chosen. If we consider only gambles for
small amounts of money, we can use the Taylor approximation U(W a) ≈ U(W0) + U ′(W0) ·
∆W a, where W0 is the subject’s wealth28 independent of any gain from the experiment, ∆W a

is the random monetary amount gained in the experiment if option a is chosen, and U ′(W0) is
positive for all possible values of W0. If we assume furthermore that the subject’s information
about W0 is coded by some internal representation r0, with a distribution that is independent
of the details of the gains offered by the decision problem, while the quantities X and C
have internal representations rx and rc respectively, that are distributed independently of
W0, then

E[U(W a)|r] ≈ E[U(W0)|r0] + E[U ′(W0)|r0] · E[∆W a|rx, rc]

will be an increasing function of E[∆W a|rx, rc], regardless of the value of r0.
It follows that, as long as stakes are small enough, an optimal decision rule is one that

chooses the action a for which the value of E[∆W a|rx, rc] is larger; we therefore consider the
hypothesis that decisions are optimal in this sense. Note that our theory’s predictions are
thus consistent with “narrow bracketing”: the choice between two risky prospects is predicted
to depend only on the distributions of possible net gains associated with those prospects,
and not on the level of wealth W0 that the subject has from other sources. But for us this
is a conclusion (a property of optimal decision rules) rather than a separate assumption.
Note also that while we do not deny the reasonableness of assuming that the function U(W )
should involve diminishing marginal utility of wealth (in the case of sufficiently large changes
in wealth), the degree of curvature of the function U(W ) plays no role in our predictions.
Thus small-stakes risk aversion is not attributed to nonlinear utility of income or wealth in
our theory.

In line with the evidence discussed in the previous section regarding internal representa-
tions of numerical magnitudes, we assume more specifically that the representations rx and

27Here we mean a mathematical relationship that describes the systematic pattern in a subject’s decisions;
reference to a “rule” should not be taken to mean that the subject consciously seeks to conform to the formula.

28Technically, this should be an assessment of their anticipated lifetime prospects: a measure of their
intertemporal budget, counting all sources that are independent of the choice made in the experiment.
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rc are each a random draw from a probability distribution of possible representations, with
distributions

rx ∼ N(logX, ν2), rc ∼ N(logC, ν2). (2.1)

Here ν > 0 is a parameter that measures the degree of imprecision of the internal represen-
tation of such quantities (assumed to be the same regardless of the monetary amount that is
represented); we further assume that rx and rc are distributed independently of one another.
We treat the parameter p as known (it does not vary across trials in the experiment described
below), so that the decision rule can (and indeed should) depend on this parameter as well.29

As in the model of numerosity perception presented in section 1.2, these representations
do not themselves constitute perceived values of the monetary amounts; instead, the internal
representations must be “decoded” in order to provide a basis for decision, in the case of a
given decision problem. The optimal decision in the case of a pair of mental representations
r = (rx, rc) depends not only on the specification (2.1) of the noisy coding, conditional
on the true magnitudes, but also on the relative ex ante likelihood of different possible
decision situations, which we specify by a prior probability distribution over possible values
of (X,C). We can then consider the optimal decision rule from the standpoint of Bayesian
decision theory. It is easily seen that E[∆W a|rx, rc] is maximized by a rule under which the
risky lottery is chosen if and only if

p · E[X|rx] > E[C|rc], (2.2)

which is to say if and only if the expected payoff from the risky lottery exceeds the expected
value of the certain payoff.30

The implications of our logarithmic model of noisy coding are simplest to calculate if (as
in the model of numerosity estimation) we assume a log-normal prior distribution for possible
monetary quantities. To reduce the number of free parameters in our model, we assume that
under the prior X and C are assumed to be independently distributed, and furthermore that
the prior distributions for both X and C are the same (some ex ante distribution for possible
payments that one may be offered in a laboratory experiment). It is then necessary only to
specify the parameters of this common prior:

logX, logC ∼ N(µ, σ2). (2.3)

Under the assumption of a common prior for both quantities, the common prior mean µ does
not affect our quantitative predictions about choice behavior; instead, the value of σ does
matter, as this influences the ex ante likelihood of X being sufficiently large relative to C for
the gamble to be worth taking. The model thus has two free parameters, to be estimated
from subjects’ behavior: σ, indicating the degree of ex ante uncertainty about what the
payoffs might be, and ν, indicating the degree of imprecision in the coding of information
that is presented about those payoffs on a particular trial.

29See section 4.1 for discussion of an extension of the model in which p is also imprecisely represented.
30Note that while the payoff C is certain, rather than random, once one knows the decision situation

(which specifies the value of C), it is a random variable ex ante (assuming that many different possible
values of C might be offered), and continues to be random even conditioning on a subjective representation
of the current decision situation, assuming that mental representations are noisy as assumed here.
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2.1 Predicted Frequency of Acceptance of a Gamble

Under this assumption about the prior, the posterior distributions for both X and C are
log-normal, as in the model of numerosity estimation in the previous section. It follows that
the posterior means of these variables are given by31

E[X|r] = eα+βrx , E[C|r] = eα+βrc ,

with β is again defined by (1.3). Taking the logarithm of both sides of (2.2), we see that this
condition will be satisfied if and only if

log p + βrx > βrc,

which is to say, if and only if the internal representation satisfies

rx − rc > β−1 log p−1. (2.4)

Under our hypothesis about the mental coding, rx and rc are independently distributed
normal random variables (conditional on the true decision situation), so that

rx − rc ∼ N(logX/C, 2ν2).

It follows that the probability of (2.4) holding, and the risky gamble being chosen, is given
by

Prob[accept risky|X,C] = Φ

(
logX/C − β−1 log p−1

√
2ν

)
. (2.5)

Equation (2.5) is the behavioral prediction of our model. It implies that choice in a
problem of this kind should be stochastic, as observed by Mosteller and Nogee (1951). Fur-
thermore, it implies that across a set of gambles in which the values of p and C are the same
in each case, but the value of X varies, the probability of acceptance should be a continu-
ously increasing function of X, as shown in Figure 1. Figure 2 gives an example of what this
curve is predicted to be like, in the case that σ = 0.25 and ν = 0.08. Note that these values
allow a reasonably close fit to the choice frequencies plotted in the figure from Mosteller and
Nogee.

Moreover, the parameter values required to fit the data are fairly reasonable ones. The
value ν = 0.08 for the so-called “Weber fraction” is only half as large as the value of 0.17
in the logarithmic coding model that best fits human performance in comparisons of the
numerosity of different fields of dots (Dehaene, 2008, p. 540); on the other hand, Dehaene
(2008, p. 552) argues that one should expect the Weber fraction to be smaller in the case of
numerical information that is presented symbolically (as in the experiment of Mosteller and
Nogee) rather than non-symbolically (as in the numerosity comparison experiments). Hence
this value of ν is not an implausible degree of noise to assume in the mental representations
of numerical magnitudes used in approximate calculations.32

31See the online appendix for details of the calculation.
32In the experiment reported below, our subjects’ choices are best fit by values of ν larger than this — in

fact, more similar to the Weber fraction obtained in the study of numerosity comparisons.
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Figure 2: Theoretically predicted probability of acceptance of a simple gamble, as a function
of X/C. Circles show the data from Figure 1, in which C = 5 cents.

The value of σ for the degree of dispersion of the prior over possible monetary rewards
implies that if under the prior, the median value of X was expected to be 10 cents in the
experiment, then the subject should have expected X to fall within a range between 6 cents
and 16 cents 95 percent of the time — and this is more or less the range of values offered to
the subject, as shown in Figure 1. Hence a prior with this degree of uncertainty would be
fairly well calibrated to the subject’s actual situation.

2.2 Explaining the Rabin Paradox

Our model explains not only the randomness of the subject’s choices, but also her apparent
risk aversion, in the sense that the indifference point (a value of X around 10.7 cents in
Figure 1) corresponds to a gamble that is better than a fair bet. This is a general prediction
of the model, since the indifference point is predicted to be at X/C = (1/p)β

−1
> 1/p,

where the latter quantity would correspond to a fair bet. The model predicts risk neutrality
(indifference when X/C = 1/p) only in the case that β = 1, which according to (1.3) can
occur only in the limiting cases in which ν = 0 (perfect precision of the mental representation
of numerical magnitudes), or σ is unboundedly large (radical uncertainty about the value of
the payoff that may be offered, which is unlikely in most contexts).

The model furthermore explains the Rabin (2000) paradox: the fact that the compen-
sation required for risk does not become negligible in the case of small bets. According to
EUM, the value of X required for indifference in a decision problem of the kind considered
above should be implicitly defined by the equation

pU(W0 +X) + (1− p)U(W0) = U(W0 + C).

For any increasing, twice continuously differentiable utility function U(W ) with U ′′ < 0,
if 0 < p < 1, this condition implicitly defines a solution X(C; p) with the property that
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pX(C; p)/C > 1 for all C > 0, implying risk aversion. However, as C is made small,
pX(C; p)/C necessarily approaches 1. Hence the ratio pX/C required for indifference exceeds
1 (the case of a fair bet) only by an amount that becomes arbitrarily small in the case of a
small enough bet. It is not possible for the required size of pX to exceed the certain payoff
even by 7 percent (as in the case shown in Figure 1), in the case of a very small value certain
payoff, unless the coefficient of absolute risk aversion (−U ′′/U ′) is very large — which would
in turn imply an implausible degree of caution with regard to large bets.

In our model, instead, the ratio pX/C required for indifference should equal Λ ≡ p−(β−1−1),
which is greater than 1 (except in the limiting cases mentioned above) by the same amount,
regardless of the size of the gamble. As discussed above, the degree of imprecision in mental
representations required for Λ to be on the order of 1.07 is one that is quite consistent with
other evidence. Hence the degree of risk aversion indicated by the choices in Figure 1 is
wholly consistent with a model that would predict only a modest degree of risk aversion in
the case of gambles involving thousands of dollars.

It is also worth noting that our explanation for apparent risk aversion in decisions about
small gambles does not rely on loss aversion, like the explanation proposed by Rabin and
Thaler (2001). Our model of the mental representation of prospective gains assumes that
the coding and decoding of the risky payoff X are independent of the value of C, so that
small increases in X above C do not have a materially different effect than small decreases
of X below C.

Instead, in our theory the EUM result that the compensation for risk must become
negligible in the case of small enough gambles fails for a different reason. Condition (2.4)
implies that the risky gamble is chosen more often than not if and only if p ·m(X) > m(C),
where m(·) is a power-law function of a kind that also appears in (1.4). It is as if the
decision maker assigned a nonlinear utility m(∆W a) to the wealth increment ∆W a. Our
model of optimal decision on the basis of noisy internal representations explains why the
ratio m(X)/m(C) is in general not approximately equal to X/C even in the case that X
and C are both small.

3 An Experimental Test

A notable feature of the behavioral equation (2.5) is that it predicts that subjects’ choice
frequencies should be scale-invariant, at least in the case of all small enough gambles: mul-
tiplying both X and C by an arbitrary common factor should not change the probability
of the risky gamble being chosen. This feature of the model makes it easy to see that the
Rabin paradox is not problematic for our model. In order to test this predictions of our
model, we conducted an experiment of our own, in which we varied the magnitudes of both
X and C. We recruited 20 subjects from the student population at Columbia University,33

each of whom was presented with a sequence of several hundred trials. Each individual trial
presented the subject with a choice between a certain monetary amount C and a probability
p of receiving a monetary amount X.34

33Our procedures were approved by the Columbia University Institutional Review Board, under protocol
IRB-AAAQ2255.

34The experimental design is discussed further in the online appendix.
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The probability p of the non-zero outcome under the lottery was 0.58 on all of our trials,
as we were interested in exploring the effects of variations in the magnitudes of the monetary
payments, rather than variations in the probability of rewards, in order to test our model of
the mental coding of monetary amounts. Maintaining a fixed value of p on all trials, rather
than requiring the subject to pay attention to the new value of p associated with each trial,
also made it more plausible to assume (as in the model above) that the value of p should be
known precisely, rather than having to be inferred from an imprecisely coded observation on
each occasion.

We chose a probability of 0.58, rather than a round number (such as one-half, as in the
Mosteller and Nogee experiment discussed above), in order not to encourage our subjects to
approach the problem as an arithmetic problem that they should be able to solve exactly, on
the basis of representations of the monetary amounts using the “Arabic code” rather than
the “analog magnitude code,” in the terminology of Dehaene (1992).35 We expect Columbia
students to be able to solve simple arithmetic problems using methods of exact mental calcu-
lation that are unrelated to the kind of approximate judgments about numerical magnitudes
with which our theory is concerned, but did not want to test this in our experiment. We
chose dollar magnitudes for C and X on all trials that were not round numbers, either, for
the same reason.

The value of the certain payoff C varied across trials, taking on the values $5.55, $7.85,
$11.10, $15.70, $22.20, or $31.40. (Note that these values represent a geometric series, with
each successive amount

√
2 times as large as the previous one.) The non-zero payoff X

possible under the lottery option was equal to C multiplied by a factor 2m/4, where m took
an integer value between 0 and 8. There were thus only a finite number of decision situations
(defined by the values of C and X) that ever appeared, and each was presented to the subject
several times over the course of a session. This allowed us to check whether a subject gave
consistent answers when presented repeatedly with the same decision, and to compute the
probability of acceptance of the risky gamble in each case, as in the experiment of Mosteller
and Nogee. The order in which the various combinations of C and X were presented was
randomized, in order to encourage the subject to treat each decision as an independent
problem, with the values of both C and X needed to be coded and encoded afresh, and with
no expectations about these values other than a prior distribution that could be assumed to
be the same on each trial.

Our experimental procedure thus differed from ones often used in decision-theory exper-
iments, where care is taken to present a sequence of choices in a systematic order, so as to
encourage the subject to express a single consistent preference ordering. We were instead
interested in observing the randomization that, according to our theory, should occur across
a series of genuinely independent reconsiderations of a given decision problem; and we were
concerned to simplify the context for each decision by eliminating any obvious reason for the
data of one problem to be informative about the next.

We also chose a set of possible decision problems with the property that each value of
X could be matched with the same geometric series of values for C, and vice versa, so that
on each trial it was necessary to observe the values of both C and X in order to recognize
the problem, and neither value provided much information about the other (as assumed

35See discussion of these alternative systems for the representation of numbers in section 1.3 above.
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Figure 3: The probability of choosing the risky lottery, plotted as a function of the risky
payoff X (data pooled from all 20 subjects). (a) The probability plotted as a function of X,
for each of the different values of C (indicated by darkness of lines). (b) The same figure,
but plotted against logX for each value of C.

in our theoretical model). At the same time, we ensured that the ratio X/C, on which
the probability of choosing the lottery should depend according to our model, always took
on the same finite set of values for each value of C. This allowed us to test whether the
probability of choosing the lottery would be the same when the same value of X/C recurred
with different absolute magnitudes for X and C.

3.1 Testing Scale-Invariance

Figure 3 shows how the frequency with which our subjects chose the risky lottery varied with
the monetary amount X that was offered in the event that the gamble paid off, for each of
the five different values of C. (For this first analysis, we pool the data from all 20 subjects.)
Each data point in the figure (shown by a circle) corresponds to a particular combination
(C,X).

In the first panel, the horizontal axis indicates the value of X, while the vertical axis
indicates the frequency of choosing the risky lottery on trials of that kind [Prob(Risky)].
The different values of C are indicated by different colors of circles, with the darker circles
corresponding to the lower values of C, and the lighter circles the higher values. (The six
successively higher values of C are the ones listed above.) We also fit a sigmoid curve to the
points corresponding to each of the different values of C, where the color of the curve again
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choice curve estimated for each value of C, as in Figure 3. (b) A single choice curve, with
parameters estimated to maximize the likelihood of the pooled data.

identifies the value of C. Each curve has an equation of the form

Prob(Risky) = Φ(δC + γC logX), (3.1)

where Φ(z) is again the CDF of the standard normal distribution, and the coefficients (δC , γC)
are estimated separately for each value of C so as to maximize the likelihood of the data
corresponding to that value of C. Note that for each value of C, we obtain a sigmoid curve
similar to the one in Figure 2, though the fit is less perfect (at least partly because here,
unlike in Figure 2, we are pooling the data from 20 different subjects).

The similarity of the curves obtained for different values of C can be seen more clearly
if we plot them as a function of logX, rather than on a scale that is linear in X, as shown
in the second panel of Figure 3. (The color coding of the curves corresponding to different
values of C is again the same.) The individual curves now resemble horizontal shifts of one
another. The elasticity γC is similar for each of the values of C (with the exception of the
highest value, C = $31.40), and the value of logX required for indifference increases by a
similar amount each time C is multiplied by another factor of

√
2.

These observations are exactly what we should expect, according to our logarithmic
coding model. Condition (2.5) implies that a relationship of the form

Prob(Risky) = Φ(δ + γ log(X/C)) (3.2)

should hold for all values of C, meaning that in equation (3.1), γC should be the same for
each value of C, and that the value of logX required for indifference should equal a constant
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plus logC. We can see more clearly the extent to which these precise predictions hold by
plotting the curves in Figure 3(b) as functions of log(X/C), rather than as functions of logX;
this is done in the first panel of Figure 4. The six different curves come close to falling on
top of one another, as predicted by the model (although, again, the curve for C = $31.40
is somewhat out of line with the others). If we instead simply estimate parameters (δ, γ)
to maximize the likelihood of the pooled data under the model (3.2), we obtain the single
choice curve shown in the second panel of Figure 4.36 This fits the data for the different
values of X/C slightly worse than the individual choice curves shown in the previous panel,
but not by much.

We can consider quantitatively the extent to which our data are more consistent with the
more flexible model (3.1) than with the more restrictive predictions of (3.2), in two different
ways. First, we consider the in-sample fit of the two models by selecting a subset of our
observations (the “calibration dataset”), and find the parameter estimates for each model
that maximize the likelihood of this dataset. The column labeled LLcalibration in Table 1
reports the maximized value of the log-likelihood of the data in the calibration dataset. Of
course, this is higher for the more flexible model, since (3.2) is nested within this class of
models as a special case.

A more relevant comparison between the in-sample fits of the two models is given by
the Bayes information criterion (BIC) statistic, also reported in the table for each model,
which penalizes the use of additional free parameters. This is defined as37 BIC ≡ −2LL +
k logNobs, where k is the number of free parameters (adjusted to maximize the likelihood)
for a given model, and Nobs is the number of observations in the calibration dataset. The
data provide more evidence in favor of the model with the lower BIC statistic. In particular,
for any two models M1 and M2, the Bayes factor K defined by

logK1 =
1

2
[BIC(M2)−BIC(M1)]

is the multiplicative factor by which the relative posterior probability that M1 rather than
M2 is the correct model of the data is increased by the observations in the calibration
dataset.38

We can also compare the out-of-sample fit of the two models, by reserving some of our
observations (the “validation dataset”), and not using them to estimate the model parame-
ters. The column labeled LLvalidation in Table 1 then reports the log-likelihood of the data
in the validation dataset under each model, when the parameter values are used that were
estimated using the calibration dataset.39 If we update the posterior probabilities that the
two modelsM1 andM2 are correct after observing the validation dataset as well, we obtain
a composite Bayes factor K = K1 ·K2, where

logK2 = LLvalidation(M1) − LLvalidation(M2)

36The maximum-likelihood parameter estimates for the different choice curves, and the associated likeli-
hoods, are reported in the online appendix.

37Here, as elsewhere in the paper, “log” refers to the natural logarithm.
38See, for example, Burnham and Anderson (2002), p. 303.
39In Table 1, and in the similar out-of-sample prediction exercises reported below and in the online ap-

pendix, the first 3/4 of each subject’s trials are included in the calibration dataset, and the remaining 1/4
of the trials are used for the validation dataset.
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Model LLcalibration BIC LLvalidation log K
Pooled Data

Scale-invariant -2838.6 5694.6 -914.2 0.0
Unrestricted -2820.4 5723.4 -912.8 13.0

Heterogeneous Parameters
Scale-invariant -1860.2 3946.1 -663.9 0.0
Unrestricted -1594.9 4037.0 -755.6 137.1

Table 1: In-sample and out-of-sample measures of goodness of fit compared for the scale-
invariant model (our logarithmic coding model) and an unrestricted statistical model in
which a separate choice curve is estimated for each value of C. In the top panel, each model
is fit to the pooled data from all 20 subjects. In the bottom panel, separate model parameters
are fit to the data for each subject. (See text for further explanation.)

by Bayes’ Rule. The logarithm of the composite Bayes factor K is reported in the final
column of the table, as an overall summary of the degree to which the data provide support
for each model. (In each case, M1 is the scale-invariant model, while M2 is the alternative
model considered on that line of the table; thus values K > 1 indicate the degree to which
the data provide more support for the scale-invariant model than for the alternative.)

In Table 1, we compare two models: our scale-invariant model (3.2) and the unrestricted
alternative in which a separate probit model (3.1) is estimated for each of the six values of
C, as in Figure 3.40 In the case of the scale-invariant model, Nobs is the total number of
observations in the calibration dataset, pooling the data for all six values of C, and there
are k = 2 free parameters in the single model fit to all of these data. In the case of the
unrestricted model, a separate probit model (each with k = 2 free parameters) is estimated
for each value of C, and a BIC statistic is computed for that model (where Nobs is the
number of observations in the calibration dataset with that value of C); the BIC reported
in the “Unrestricted” row of the table is then the sum of the BIC statistics for these six
independent probit models (just as the LLcalibration is the sum of the log likelihoods for the
six models).41 In the top panel of the table, the two models are compared when a common
set of parameters is used to fit the pooled data from all 20 subjects, as in Figures 3 and 4.
In the lower panel, instead, individual model parameters are estimated for each subject, and
the statistics reported are sums over all subjects of the corresponding model fit statistics for
each subject.

Whether we assume a common set of parameters or subject-specific parameters, we see
that the BIC statistic is lower for the scale-invariant model. This means that while the
unrestricted model achieves a higher likelihood (necessarily), the data are not fit enough
better to justify the use of so many additional free parameters; thus based on the calibration
dataset alone, we would have a Bayes factor K > 1, meaning an increase in the relative

40Note that the scale-invariant model and unrestricted alternative referred to in Table 1 do not correspond
precisely to the predictions shown in Figures 3 and 4, since in Figures 3 and 4 the parameters of both models
are fit to our entire dataset, while in Table 1 the parameters are estimated using only the calibration dataset.
The corresponding statistics for the models plotted in Figures 3 and 4 are given in the online appendix.

41In the case of the pooled data, the individual probit models and their associated statistics are described
in the online appendix.
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Figure 5: In-sample and out-of-sample model comparison statistics, for each of the 20 indi-
vidual subjects, when separate parameters are estimated for each subject. (See explanation
in text.)

posterior probability of the scale-invariant model (compared to whatever relative probability
was assigned to that model in one’s prior). When we then consider out-of-sample fit of the
two models, if we assume a common set of parameters for all 20 subjects, the out-of-sample
fit is slightly better for the unrestricted model. However, the fit is only modestly better, and
when one takes into account both the in-sample and out-of-sample fit of the two models, we
obtain an overall Bayes factor K > 400, 000, greatly increasing the relatively probability of
the scale-invariant model.

Moreover, the slight inferiority of the scale-invariant model with regard to out-of-sample
fit is due primarily to the data for a single subject (subject 9), whose choice curves do
not satisfy scale-invariance. If we fit a single set of parameters to the pooled data for all
subjects except subject 9, the scale-invariant model fits better both in-sample and out-of-
sample, and the overall Bayes factor would be greater than 700,000,000. If we instead fit
separate parameters for each subject, then as shown in the bottom panel of Table 1, the
aggregate evidence provides more support for the scale-invariant model both in-sample and
out-of-sample, even when the data for subject 9 are included in the sample. In this case, the
overall Bayes factor is greater than 1059. Thus if we assume that either the scale-invariant
model or the more flexible alternative must be the correct model for all subjects (though
the parameters may differ across subjects), the evidence is overwhelming in favor of the
scale-invariance hypothesis.42

In fact, the scale-invariant model fits reasonably well for most of the subjects considered

42There is nonetheless even stronger evidence in favor of the more complex hypothesis that choice behavior
is scale-invariant for all subjects but subject 9. See the online appendix for details.
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individually. Figure 5 shows a scatter plot of the values of the BIC difference, and the overall
Bayes factor K, for each individual subject, when separate choice curves are estimated for
each subject.43 Each open dot corresponds to one subject. A location above the horizontal
axis indicates that the in-sample fit of the scale-invariant model is better (using the BIC
statistics as the basis of the model comparison); a location to the right of the dashed line
indicates that the out-of-sample fit of the scale-invariant model is better (higher LLvalidation

for that model); and a location to the right of the vertical axis indicates that the overall
Bayes factor favors the scale-invariant model (K > 1). While it is not true that K > 1
for each individual subject, there are only two subjects (subjects 9 and 14) for whom either
the in-sample or out-of-sample model comparisons are too unfavorable to the scale-invariant
model.44

Our data are nonetheless not perfectly scale-invariant, even when we consider only the
pooled data. We see in Figure 4 that the estimated choice curve in the case C = $31.40 is
not a perfect horizontal translation of the others, but instead is somewhat flatter.45 This
may indicate inaccuracy of the assumption of a log-normal prior (2.3), used in our theoretical
calculations above for convenience. Under the assumption of a log-normal prior, log E[X|rx]
is a linearly increasing function of rx, with constant slope β. But if people instead form
correct inferences based on a prior under which monetary payments greater than $50 are
less likely than a log-normal prior would allow (as was actually the case in our experiment,
since we never offered lotteries involving X/C > 4), then log E[X|rx] would increase less
rapidly with further increases in rx, for values of rx above log 50. (Under the prior, such
large values of rx would more likely result from mis-coding of a payment of less than $50
than from a large value of X that has been correctly coded.) This would result in a frequent
failure to recognize how attractive the risky lottery truly is when X exceeds $50, and hence
less frequent acceptance of the risky lottery in such cases than the scale-invariant model
would predict, as can be observed in Figure 3. (We leave for future work more detailed
consideration of the extent to which our data may be better explained by a more subtle
account of subjects’ prior beliefs.)

Holt and Laury (2002) also obtain nearly perfect scale-invariant choice curves (see their
Figure 1), when the amounts offered in hypothetical gambles are scaled up by a factor as
large as 90 times those used in their small-stakes gambles. They find, however, that their
subjects’ apparent degree of risk aversion increases when the scale of the gambles is increased,
in the case of gambles for real money (their Figure 2). It is unclear whether this difference
from our results (which also involve real money) reflects a difference in the kind of gambles

43The vertical axis plots the amount by which the BIC statistic for the unrestricted model is greater
than the one for the scale-invariant model (∆BIC), divided by N , the number of trials for that subject.
(Because N is not the same for all subjects, the values scaled by N are more comparable across subjects.)
The horizontal axis plots the value of logK, again divided by N . The dashed line identifies points at which
logK = (1/2)∆BIC, which is to say, points at which there is no difference in LLvaluation between the
two models. Points to the right of the dashed line are thus those for which LLvaluation is higher for the
scale-invariant model than for the unrestricted model.

44These are the two dots in Figure 5 that are both well below the horizontal axis and well above the
diagonal dashed line.

45Note however that this curve is also less well estimated than the others shown in Figure 3, as a number
of our subjects were not presented with trials including values of C this large, so that the Nobs for this case
is smaller, as indicated in Table 3 in the online appendix.
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Model LLcalibration BIC LLvalidation log K
Pooled Data

Log coding -2838.6 5694.6 -914.2 0.0
ARUM-Probit -3027.1 6071.7 -972.1 246.4
ARUM-Logit -3000.1 6017.7 -967.0 214.3

Heterogeneous Parameters
Log coding -1860.2 3946.1 -663.9 0.0
ARUM-Probit -1935.3 4096.4 -922.5 333.7
ARUM-Logit -1889.4 4004.5 -721.5 86.8

Table 2: In-sample and out-of-sample measures of goodness of fit for three models: our
logarithmic coding model and two additive random-utility models. The format is the same
as in Table 1. (See text for further explanation.)

presented to their subjects, or the fact that their large gambles involved greater amounts of
money than even our largest gambles (hundreds of dollars rather than mere tens of dollars).46

Further studies would be desirable to clarify this.

3.2 Comparison with Random Expected Utility Models

As noted in the introduction, both the random variation in subjects’ choices between simple
gambles and existence of small-stakes risk aversion are often explained, in the experimental
economics literature, by positing (i) “narrow bracketing” of the choice problem, so that the
small amounts that can be gained in the experiment are not integrated with the subject’s
overall wealth (or overall lifetime budget constraint), (ii) significant concavity of the utility
function that is used to value different possible monetary gains in the experiment, and
(iii) a random term in the utility function, so that the expected utility assigned to a given
probability distribution over possible gains is not always the same. We have offered an
alternative model of both the randomness and the degree of apparent risk aversion in the
choices of our subjects that we regard as more theoretically parsimonious, and in our view this
theoretical parsimony should be a reason to prefer our interpretation, even if the competing
views were equally consistent with the data from a single experiment such as this one.
Nonetheless, it is interesting to ask whether our data could not be equally well explained by
a more familiar model.

Table 2 compares the fit of our model with two variants of an additive random-utility
model. In the case of each of the ARUMs, the subject is assumed to choose the option for
which E[u(Y )] + ε is larger, where Y is the monetary amount gained from the experiment
(a random quantity, in the case of a risky prospect), u(Y ) is a nonlinear utility function
for such gains (valued separately from the subject’s other wealth), and ε is a random term
(drawn at the time of choice) that is independent of the characteristics of the option, and
also independent of the corresponding random term in the value assigned to the other option.
In the ARUMs considered in the table, u(Y ) is assumed to be of the CRRA form, u(Y ) =

46Note that it is perfectly consistent with our model to suppose that diminishing marginal utility of wealth
becomes an additional source of risk aversion in the case of large gambles.
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Y 1−γ/(1 − γ), for some γ ≥ 0.47 The random term ε is assumed either to be normally
distributed (the ARUM-Probit model), or to have an extreme-value distribution (the ARUM-
Logit model). Thus each of the ARUMs has two free parameters (the coefficient of relative
risk aversion γ and the standard deviation of ε), like the logarithmic coding model. The
ARUMs can also be considered random variants of prospect theory, in which u(Y ) is the
Kahneman-Tversky value function for gains,48 but we use the true probabilities of the two
outcomes as weights rather than distorted weights of the kind posited by Kahneman and
Tversky (1979).49

As in the case of Table 1, we consider both in-sample and out-of-sample measures of
model fit, where the calibration dataset and validation dataset are the same as in the earlier
table. In each case, we find that our model based on logarithmic coding provides a better fit
to the experimental data, both in-sample and out-of-sample. The alternative model which
comes closest to being a competitor is the ARUM-logit model, when separate parameters
are estimated for each subject. Yet even in this case, the implied Bayes factor K > 1037. If
one of the models considered must represent the correct statistical model of our data, then
the evidence overwhelmingly favors the model based on logarithmic coding.50

3.3 Heterogeneity in the Precision of Mental Coding

We have shown above (Tables 1 and 2) that our data are better fit by allowing the param-
eters of the scale-invariant psychometric function to vary across subjects. Here we provide
further information about the heterogeneity in the parameters that best fit the behavior of
each subject. We focus solely on the scale-invariant model, which as argued above is best
supported by our data, and estimate a scale-invariant choice curve for each of the 19 sub-
jects other than subject 9. We omit subject 9 from the discussion in this section, since as
shown in Figure 5, this subject’s data are not well-described by a scale-invariant model. Our
theoretical model implies not only that a scale-invariant curve (3.2) should describe each
subject’s data, but also that the coefficients for each subject should satisfy the inequalities

γ ≥ 0, − δ
γ
≥ log p−1, (3.3)

which are required in order for there to exist values of σ2 and ν2 consistent with those coef-
ficients. Hence in estimating the subject-specific models, we impose the further restriction
that the value of γ be non-negative.51

47In the online appendix, we present results for ARUMs in which u(Y ) is allowed to be of the more general
HARA form. Allowing for this generalization does not improve the fit of the ARUMs, once the penalty for
the additional free parameter is taken into account.

48Note that the isoelastic functional form used here for u(Y ) is also commonly used in quantitative imple-
mentations of prospect theory, following Tversky and Kahneman (1992).

49In the online appendix, we show that allowing for a probability weight different from the true probability
does not improve the fit of the random version of prospect theory, once the penalty for the additional free
parameter is taken into account.

50In the online appendix, we also compare the fit of random versions of the model proposed by Bordalo
et al. (2012), in which risk attitudes result from differences in the salience of alternative outcomes. These
models fit our data even less well than do the ARUMs, or random versions of prospect theory.

51For all but one subject, the estimated value of γ would be positive, even without imposing the restriction,
as is also true when we estimate a scale-invariant psychometric function using the pooled data. Even in the

25



Figure 6: Heterogeneity in subjects’ choice curves. Each shaded region indicates the credible
region for an individual subject’s parameters γ and π, with an open circle at that subject’s
maximum-likelihood values. The dashed line shows the theoretical relationship between γ
and π that should exist if all subjects share a common prior, under which σ = 0.35.

In comparing the choice curves of the different subjects, it is useful to parameterize them
not by γ and δ, but instead by the values of γ and

π ≡ eδ/γ.

In terms of this alternative parameterization, the theoretical constraints (3.3) can be written:

γ ≥ 0, π ≤ p. (3.4)

Note that when δ/γ ≤ 0 (as required by our theoretical model), 0 ≤ π ≤ 1, and π has the
interpretation of a “risk-neutral probability”: the subject’s indifference point is the same as
that of a risk-neutral, optimizing decision maker who believes that the probability of the
non-zero lottery payoff is π (rather than the true probability p). The prediction that π ≤ p
is another way of saying that our theoretical model predicts apparent risk aversion; and the
degree to which a subject’s estimated π is less than p provides a simple measure of the degree
of apparent risk aversion.

Figure 6 shows the estimated values of γ and π for each of the 19 subjects for whom
it is not grossly inaccurate to estimate a scale-invariant choice curve (now imposing the
theoretical constraint that γ ≥ 0). For each subject, an open circle indicates the parameter
values that maximize the likelihood of the data for that subject (the ML estimate), and the
surrounding shaded region indicates the set of parameter values for which the log likelihood

case of the subject for whom the best-fitting parameter values involve γ < 0, the value of γ is only slightly
negative; and since a likelihood of acceptance of the risky lottery that is genuinely decreasing in X would
be difficult to interpret, we presume that this represents sampling error, and treat this subject as having a
γ of zero.
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of the data is no more than 2 points lower than at the maximum. Thus the shaded region
indicates a Bayesian credible region for the parameter estimates, under the assumption of a
uniform prior for those parameters.52

The largest value of π that would be consistent with prediction (3.4) is indicated by the
horizontal dotted line in Figure 6; we see that for all but one of the 19 subjects, the credible
region includes points consistent with this prediction. Thus the individual choice curves of
18 out of our 20 subjects are reasonably consistent with both the model prediction of scale
invariance and with the coefficient constraints (3.4).

Accounting for the choice curves of all subjects in this way, however, requires us to
allow different subjects to have different priors (more specifically, different values for σ2). If
instead we assume a common log-normal prior (2.3) for all subjects, but allow the precision
of mental coding of monetary amounts (i.e., the parameter ν2) to vary across subjects, then
the values of γ and π estimated for each subject are predicted by the model to be linked by
a relationship of the form

π = p1+(2σ2γ2)−1

, (3.5)

where σ2 is a parameter common to all subjects.53 This is an upward-sloping relationship,
of the kind illustrated by the dashed curve in Figure 6, which graphs equation (3.5) in the
case that σ = 0.35. Here ν2 is decreasing (the precision of mental coding is increasing) as
one moves up and to the right along the dashed curve.

If we estimate a choice curve for each subject without imposing the restriction of a
common σ2, the estimated coefficients do not all line up perfectly on a curve consistent with
(3.5); nonetheless, there is a strong positive correlation between the ML estimates of γ and
π for the various subjects, as can be seen in Figure 6. That is, the degree of apparent risk
aversion (measured by the degree to which π is less than p) is generally greater for those
subjects whose choices are less sensitive to variation in X/C (measured by the size of γ).
The fact that these two features of behavior go hand in hand is consistent with our theory,
which attributes both to greater imprecision in the mental coding of monetary payoffs (a
larger value of ν2). Models such as EUM or prospect theory, extended to allow for stochastic
choice as in section 3.2, instead provide no reason to expect such a relationship, since in these
theories the degree of randomness of choice and the degree of risk aversion are determined
by independent parameters.

4 Discussion

We have shown that it is possible to give a single unified explanation for the observed ran-
domness in choices by subjects evaluating risky income prospects on the one hand, and the
apparent risk aversion that they display on average on the other, as natural consequences

52The boundary of each maximum-posterior density credible region is chosen according to a criterion
which, in the case of a Gaussian posterior for a single variable, would report the interval corresponding to
the mean estimate plus or minus two standard deviations.

53Equation (3.5) can be derived by using (1.3) and (2.5) to obtain an equation for γ as a function of σ2

and ν2; inverting this to obtain the value of ν2 implied by any subject’s value for γ; and then using this
result to eliminate ν2 from the model prediction for the value of π.
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of people’s intuitions about the value of gambles being based on imprecise internal repre-
sentations of the monetary amounts that are offered. Our theory explains the possibility of
small-stakes risk aversion without implying any extraordinary degree of aversion to larger
gambles in other contexts. Moreover, it can also explain the fact (demonstrated in our
experiment) that the degree of risk aversion, as measured by the percentage by which the
expected value of a random payoff must exceed the certain payoff in order for a subject to be
indifferent between them, is relatively independent of the size of the stakes (as long as these
remain small), contrary to what should be found if risk aversion were due to diminishing
marginal utility.

4.1 Further Implications of the Theory

The “reflection effect.” Our model of noisy mental coding of monetary amounts can also
account for further anomalous features of subjects’ choices with regard to small gambles
documented by Kahneman and Tversky (1979). For example, Kahneman and Tversky re-
port that if subjects must choose between a risky loss and a certain loss — with similar
probabilities and monetary quantities as in the kind of problem considered above, but with
the signs of the monetary payoffs reversed — risk seeking is observed more often than risk
aversion (something they call the “reflection effect”). The coexistence of both risk-averse
choices and risk-seeking choices by the same subject, depending on the nature of the small
gambles that are offered, is a particular puzzle for the EUM account of risk attitudes, since a
subject should be either risk averse or risk seeking (depending whether the subject’s utility
of wealth is concave or convex) regardless of the sign of the gambles offered.

The explanation of risk aversion for small gambles offered here instead naturally implies
that the sign of the bias (i.e., of the apparent risk attitude) should switch if the signs of
the monetary payoffs are switched. Consider instead the case of a choice between a risky
gamble that offers a probability p of losing an amount X (but losing nothing otherwise), and
the option of a certain loss of an amount C. If we assume that the quantities X and C are
mentally represented according to the same logarithmic coding model as above,54 regardless
of whether they represent gains or losses, then in the case of losses, the subject’s expected
wealth is maximized by a rule under which the risky lottery is chosen if and only if

p · E[X|rx] < E[C|rc], (4.1)

reversing the sign in (2.2).
The set of internal representations (rx, rc) for which this holds will be the complement of

the set discussed earlier, so that the model predicts

Prob[accept risky|X,C] = Φ

(
β−1 log p−1 − logX/C√

2ν

)
. (4.2)

54Note that we assume that the absolute value of each of the monetary payoffs is coded, rather than a
signed magnitude. This is in accordance with the model of approximate numerical cognition proposed by
authors such as Dehaene (2008), which assumes that all numerical quantities are coded as positive amounts,
making use of brain circuits originally developed to represent information about the numerosity of sets of
items in one’s environment. The information whether the quantity in question represents a monetary gain
or loss must also be represented, but is assumed to be coded separately, and without error.
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Indifference again will require pX > C, but this will now count as risk-seeking behavior;
when pX = C, the risky loss should be chosen more often than not.

A framing effect. Kahneman and Tversky (1979) further show that subjects’ preferences
between a risky and a safe outcome can be flipped, depending whether the options are
presented as involving gains or losses. In one of their problems, subjects are asked to imagine
being given a substantial monetary amount 2M ,55 and then being presented with a choice
between (a) winning an additional M with certainty, or (b) a gamble with a 50 percent
chance of winning another 2M and a 50 percent chance of winning nothing. In a second
problem, the initial amount was instead 4M , and the subsequent choice was between (a)
losing M with certainty, and (b) a gamble with a 50 percent chance of losing 2M and a 50
percent chance of losing nothing.

These two problems are equivalent, in the sense that in each case the subject chooses
between (a) ending up with 3M more than their initial wealth with certainty, or (b) a
gamble under which they have an equal chance of ending up with 2M or 4M more than
their initial wealth. Nonetheless, a substantial majority of their subjects chose (a) in the
first problem, while a substantial majority chose (b) in the second. This contradicts any
theory (not just EUM) under which people should have a consistent preference ranking of
probability distributions over final wealth levels.

Our theory easily explains this finding. If the initial gift is denoted G, and the monetary
amounts G,X, and C defining the decision problem must each be independently represented
in the fashion postulated above, then in the first problem, an expected wealth-maximizing
decision rule will choose (b) if and only if

E[G|rg] + p · E[X|rx] > E[G|rg] + E[C|rc],

which is equivalent to (2.2), while in the second problem it will choose (b) if and only if

E[G|rg] − p · E[X|rx] > E[G|rg] − E[C|rc],

which is equivalent to (4.1). We then get different probabilities of choosing (b) in the two
cases, given by equations (2.5) and (4.2) respectively.

Note that our theory assumes that the decision rule is in all cases the one that maximizes
expected final wealth, so that only the sum of the initial gift and the additional gain or loss
from the further option is assumed to matter to the decision maker; there is no intrinsic
interest assumed in gains or losses relative to what one had in the past or what one expected
to have. The relevance of the sequence of gains and losses by which one arrives at a given
final wealth comes not from the decision maker’s assumed objective, but from the need
to mentally represent the quantities used in the description of the options, in the form in
which they are presented, before integrating the separate pieces of information in further
calculations. If this representation were possible with infinite precision (and subsequent
operations could also be perfectly precise), then different ways of presenting information
that imply the same possible final wealth levels would indeed be equivalent, and lead to the
same choices. But when the precision with which each monetary amount can be represented

55In their experiment, conducted in the 1970s, 2M was equal to 1000 Israeli shekels, a substantial fraction
of a typical monthly income at the time.
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is limited, mathematically equivalent problems are not processed in identical ways, and the
resulting behavior can be different as a result, despite its optimality in each case (conditional
on the mental representation).

Imprecise representation of probabilities. Kahneman and Tversky (1992) document other
respects in which subjects make both risk-averse choices and risk-seeking choices with respect
to small gambles, depending of the nature of the problem. For example, their subjects are
more often risk-seeking when choosing between a small certain gain and a small probability
of a considerably larger gain; but they are more often risk-averse when choosing between a
modest certain loss and a small probability of a considerably larger loss. Prospect theory
explains such cases by postulating that in the case of a risky prospect, the values assigned
to the various possible gains or losses are weighted not in proportion to each outcome’s
probability of occurrence (as required by EUM), but rather using weights that represent a
nonlinear transformation of the true probabilities.

Choices of this kind are consistent with our model, if the model is generalized to assume
(in the case of simple gambles of the kind discussed above) that the probability p of the
non-zero outcome also has an internal representation rp that is probabilistic. In the analysis
above, we have assumed for simplicity that the exact value of p is available as an input to the
decision rule. This is not inconsistent with our general view of the internal representation
of numerical information; for in the situation considered in our theoretical model (and in
our experiment), there is a single value of p that is used in all trials (though X and C vary
from trial to trial). Thus if we assume that the prior for which the subject’s decision rule
has been optimized represents the distribution of possible decision situations in this specific
experiment, the prior (in this type of experiment) would allow for only a single value of
p — and the Bayesian posterior would similarly have this single value of p in its support,
regardless of the noisy representation rp.

Nonetheless, it is clearly of interest to consider the case in which the prior is non-
degenerate (either because p varies from trial to trial, or because the decision maker has
not had enough experience with a particular context for her decision rule to be adapted to
the precise statistics of that context). Let us again assume for simplicity that under the
prior, the quantities p,X and C are distributed independently of one another; that the dis-
tribution of the representation rp depends only on p (not on the values of X or C), and
that the conditional distribution of rp is independent of the realizations of rx or rc; and
similarly for the other components of the internal representation r. Then condition (2.2) for
an optimal decision rule takes the more general form

E[p|rp] · E[X|rx] > E[C|rc],

or alternatively (given the model proposed above for the noisy coding of monetary amounts),

rx − rc > β−1ρ, ρ ≡ − log E[p|rp], (4.3)

generalizing (2.4). Here ρ is a random variable (because it depends on the realization of rp),
conditional on the true probability p.

This generalization of the decision rule (2.2) results in an additional source of randomness
in choice (namely, random variation in ρ); but in general, it also results in an additional
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source of bias (because ρ also differs from log p on average). As a simple example, suppose
that the noise in the internal coding of X and C is negligible (ν is extremely small), but
that the internal representation rp is drawn from a distribution

rp ∼ N(z(p), ν2
p),

where z(p) ≡ log(p/1 − p) are the log odds of the two outcomes, and νp is non-negligible.
Suppose furthermore that the log odds are normally distributed under the prior,

z(p) ∼ N(µp, σ
2
p)

. Then the posterior log odds, conditional on the representation rp, are also normally dis-
tributed, with a mean m̄(rp) that is a weighted average of rp and the prior mean log odds,
and a variance σ̄2 that is independent of rp.

In this case, (4.3) requires that the value of log(X/C) required for indifference (acceptance
of the gamble exactly half the time) will be equal to the median value of ρ, which (given
that rp has a symmetric distribution) is the value of ρ when rp is equal to the true log odds.
Alternatively, the value of the ratio C/X required for indifference is given by a function
w(p), where

w(p) ≡ E[F (z(p), ε)], F (z, ε) ≡ exp[m̄(z) + ε]

1 + exp[m̄(z) + ε]
,

and ε is a random variable distributed N(0, σ̄2). This function plays a role similar to the
probability weighting function of Kahneman and Tversky (1979). And as long as the variance
σ̄2 is not too great, the model implies that w(p) will have the inverse-S shape assumed by
Kahneman and Tversky.

In particular, if we fix the ratio νp/σp but make both σp and νp small, then in the limit
as σp, νp → 0, we obtain an analytical solution of the form56

w(p) =
αpβ

(1− p)β + αpβ
, (4.4)

for certain coefficients α > 0, 0 < β < 1, which depend on the ratio νp/σp and the prior mean
log odds µp. This function has the inverse-S shape assumed by Kahneman and Tversky;
indeed, the two-parameter family of weighting functions (4.4) has often been assumed in
econometric implementations of prospect theory.57 In this case, the model predicts risk-
seeking in the case of gains for low values of p, but risk-aversion for larger values of p, and
risk-aversion in the case of losses for low values of p, but risk-seeking for larger values of p,
all as found by Kahneman and Tversky (1979). We leave further analysis of this extension
of our model for a future study.

Effects of varying cognitive load. Thus far, we have discussed implications of our model,
taking the precision of coding (parameterized by ν) to be fixed. But the model also makes
predictions about the effects of varying ν, which might be subject to predictable variation
for a variety of reasons. For example, one might well suppose that increased time pressure,

56See the online appendix for details of the calculation.
57See Stott (2006) for a review.
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distraction or cognitive load should reduce the cognitive resources used to represent the mon-
etary magnitudes that define a particular decision problem, and that this should correspond,
in our model, to an increase in ν. According to our model, this should result in both de-
creased sensitivity of a subject’s decisions to variations in the risky payoff X that is offered
(i.e., a lower value of γ) and increased apparent risk aversion (a value of π that is lower
relative to p).58 This is an example of a prediction of our theory that is not made by theories
like prospect theory, that attribute departures from the predictions of EUM to (presumably
stable) distortions in the way that subjects evaluate monetary gains or probabilities.

In fact, a number of authors have found that increasing cognitive load (for example, by
requiring subjects to concurrently maintain a list of random letters or numbers in memory)
causes subjects to make more risk-averse choices (Whitney et al., 2008; Benjamin et al.,
2013; Deck and Jahedi, 2015; Gerhardt et al., 2016).59 This is often interpreted as support
for a “dual systems” view of decision making, in which increased cognitive load makes it
harder for subjects to employ a deliberative system that would be called upon under other
circumstances, so that emotional reactions or simpler heuristics are relied upon instead. Our
theory provides an alternative interpretation, in which the same cognitive mechanism might
be employed in both cases, but it relies upon an imprecise analog representation with a
degree of precision that depends on the number of other claims on working memory. The
fact that our subjects display a range of degrees of apparent risk aversion, as well as a range
of degrees of randomness in their choices, as shown in Figure 6 — rather than simply two
clusters corresponding to the users of two very different mental systems — is more easily
explained under the theory that we propose.

4.2 Comparison with Related Theories

Schley and Peters (2014) offer an explanation for apparent risk aversion which is based on
the idea that the perception of the numerical magnitudes of prospective monetary payoffs is
biased, and more specifically that perceived magnitudes are an increasing, strictly concave
function of the magnitudes. Like us, they base their proposal on limitations on people’s
general ability to accurate represent numbers mentally, rather than on the true utility ob-
tained from having more money (as in the EUM explanation of risk aversion) or a theory of
distorted valuations that is specific to the domain of value-based decision making (as with
prospect theory). In support of this proposal, they show that subjects who less accurately
represent numbers for other purposes also exhibit greater apparent diminishing marginal
utility of income and greater apparent risk-aversion in choices between risky gambles.60

58Recall that the dashed curve in Figure 6 shows the effect on both γ and π of varying ν, while holding
fixed the prior distribution over possible values of X and C.

59Olschewski et al. (2018) instead find that increased cognitive load increases the randomness of choice,
but only increases risk aversion by a small (statistically insignificant) amount. Their analysis of the effect on
risk aversion, however, is based on the estimated coefficients of a structural model of the “ARUM-probit”
type discussed in section 3.2. As we note there, this specification is not consistent with the predictions of
our model, and fits our experimental data less well. It would be interesting to examine the question further
within a broader class of stochastic choice models.

60More precisely, they fit each of their subjects’ choices to a prospect-theoretic valuation formula, where
the value function for either gains or losses is assumed to be of the power-law form (1.4), and estimate a
value of the exponent β for each subject. They find that subjects who score higher on a test of ability to
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However, their discussion assumes that less capacity for symbolic number mapping results
in a deterministic distortion of perceived numerical magnitudes (a true quantity X is always
perceived as exactly X̂ = AXβ), rather than in a more random mental representation as in
our theory. This means that they do not explore the connection between the randomness
of subjects’ choices and apparent risk aversion, as we do here; and their theory provides
no explanation for why people should value lotteries according to the average value of the
perceived payoffs X̂i instead of, say, according to the average value of X̂

1/β
i — a criterion

that would reliably maximize expected wealth, taking into account the perceptual distortion.
A theory more similar to ours is the model of risk-sensitive foraging by animals (such as

starlings) proposed by Kacelnik and Abreu (1998). These authors are concerned with how
animals choose between options that they repeatedly face (alternative possible locations
for foraging), on the basis of past experience of the probability distribution of possible
outcomes associated with each, and their theory accordingly turns on the way that previously
experienced outcomes are represented in memory, and the way in which the distribution
represented in memory is drawn upon at the time of a new prospective choice; it is not
a theory of the representation of numerical descriptions of available options (which are not
available to foraging starlings). Moreover, the variability in the choices made across repeated
presentations of the same options is attributed to variation in the random samples drawn
on each occasion from a fixed mental representation of the distribution of possible outcomes
under each option (with the situation being recognized by the organism as a repetition of
the same situation as before), rather than randomness in new representations of the payoffs
that are assumed in our theory to be formed each time the decision problem is presented
again (and not recognized as having been previously encountered).

Nonetheless, the implications of their theory — which like ours is based on randomness
in the representation of rewards that conforms to “Weber’s Law,” and derives predictions for
both choice probabilities and apparent risk aversion — are similar to those of ours, while not
mathematically identical.61 The fact that a similar model can successfully explain animal
behavior of the kind that Kacelnik and Abreu review provides further reason, in our view,
to consider our proposed explanation for intuitive judgments by humans a plausible one.

Finally, the model of Woodford (2012) is similar to ours, in that it derives both risk
aversion with respect to gains and risk seeking with respect to losses from a model of noisy
coding of prospective net gains, with a decision rule that maximizes the subject’s expected
wealth. However, the model of noisy coding is different: net gain is coded as a single variable
(which may be of either sign), rather than gains and losses being coded separately, and the
assumed inhomogeneity in the precision of coding of net gains makes the mean Bayesian
estimate of net gain an S-shaped function of the true net gain, rather than there being
separate concave functions for the mean estimates of gains and losses as above.62 We feel

accurately locate symbolically presented numbers on a spatial number line have values of β closer to 1.
61A key mathematical difference is that Kacelnik and Abreu do not model random coding in conformity

with Weber’s Law in the same way that we do; they assume a truncated normal distribution for the mental
representations, with a standard deviation proportional to the mean, rather than a log-normal distribution.

62Other arguments for a subjective representation of net gain that is an S-shaped function of the actual
net gain, as an optimal form of mental coding under a constraint on the feasible overall precision of cognitive
representations, include those of Friedman (1989), Robson (2001), Rayo and Becker (2007), and Netzer
(2009).

33



that the model of mental coding proposed here is more realistic, because in the experiments
that we seek to explain, the prospective outcomes are described to subjects in terms of
positive quantities of money that can be gained or lost, rather than in terms of a signed
net gain. Whether the kind of inhomogeneity in the precision of coding relied upon here
can be justified as an efficient use of finite processing resources, as in the model proposed in
Woodford (2012), is an important topic for further investigation.
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ONLINE APPENDIX

Khaw, Li, and Woodford,
“Cognitive Imprecision and Small-Stakes Risk Aversion”

A A Bayesian Model of Numerosity Estimation

Suppose that a stimulus of numerosity n results in an internal representation r that is drawn
from a distribution

r ∼ N(log n, ν2),

where the noise parameter ν is independent of n. Then if the prior distribution from which
n is drawn is approximated by a log-normal distribution,

log n ∼ N(µ, σ2),

as proposed in the text (section 1.1), the pair of random variables (log n, r) have a joint
distribution of the bivariate Gaussian family. It follows from this that the distribution of
log n conditional on the value of r will be a Gaussian distribution,

log n|r ∼ N(µpost(r), σ
2
post), (A.1)

where the mean µpost(r) is an affine function of r, and the variance σ2
post is the same for all

r. This will give the posterior distribution for log n (and hence a posterior distribution for
n) that is implied by Bayes’ Rule, starting from the Gaussian prior for log n and updating
on the basis of the noisy evidence r. Since the posterior distribution for log n is normal, the
posterior distribution for n is log-normal, as stated in the text.

It further follows from the properties of a bivariate Gaussian distribution that the con-
ditional mean (mean of the posterior distribution) of log n is given by the linear projection

µpost(r) = E[log n|r] = µ + β · (r − µ), (A.2)

where µ is the unconditional mean of both log n and r, and the slope coefficient (linear
regression coefficient) is given by

β ≡ cov(log n, r)

var(r)
=

σ2

σ2 + ν2
, (A.3)

as stated in the text at (1.3). The conditional variance of log n is then given by

σ2
post = var(log n− µpost(r)) = var(log n− βr)

= var((1− β) log n) + var(βr|n) = (1− β)2σ2 + β2ν2

=
ν4σ2

(σ2 + ν2)2
+

σ4ν2

(σ2 + ν2)2
=

σ2ν2

σ2 + ν2
. (A.4)

The predicted distribution of numerosity estimates then depends on how we assume that
the subject’s estimate of the stimulus numerosity relates to the posterior distribution over
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possible numerosities implied by the internal representation r. Consider first the hypothesis
that the subject’s numerosity estimate n̂ is optimal, in the sense of minimizing the mean
squared estimation error, MSE ≡ E[(n − n̂)2], among all possible estimation rules under
which n̂ is some function of r. The rule that is optimal from the standpoint of this objective
would be the one under which n̂(r) = E[n|r] for all r.63

It follows from the properties of a log-normal distribution that if the posterior distribution
for n is given by (A.1), the posterior mean will be given by

E[n|r] = exp(µpost + (1/2)σ2
post).

Hence in this case, the Bayesian model predicts that

log n̂(r) = log E[n|r] = µpost(r) + (1/2)σ2
post

= µ + β · (r − µ) + (1/2)σ2
post.

Thus as stated in the text, log n̂(r) is predicted to be an affine function of r with slope β.
Since r is a random variable, conditional on the numerosity n of the stimulus, it follows

that n̂(r) is also a random variable conditional on n. More specifically, since r is normally
distributed, conditional on n, and log n̂(r) is an affine function of r, log n̂ will be normally
distributed conditional on n:

log n̂ ∼ N(µ̂(n), σ̂2), (A.5)

as stated in the text. The mean and variance of this conditional distribution are given by

µ̂(n) ≡ E[log n̂|n] = µ+ β · (E[r|n]− µ) + (1/2)σ2
post

= µ+ β · (log n− µ) + (1/2)σ2
post,

σ̂2 ≡ var(log n̂|n) = β2var(r|n)

= β2ν2 =
σ4ν2

(σ2 + ν2)2
.

Thus as stated in the text, µ̂(n) is an affine function of log n with slope β, and σ̂2 is inde-
pendent of n.

Conditional on n, n̂ is log-normally distributed with the parameters just stated. It then
follows from the properties of a log-normal distribution that

E[n̂|n] = exp(µ̂(n) + (1/2)σ̂2), (A.6)

var[n̂|n] = [exp(σ̂2)− 1] · exp(2µ̂(n) + σ̂2).

Hence
SD[n̂|n]

E[n̂|n]
=
√
eσ̂2 − 1 > 0 (A.7)

regardless of the value of n, as stated in the text. This delivers the property of scalar
variability discussed in the text.

63The calculations in this case coincide with the ones needed for the Bayesian model of optimal choice
between lotteries, presented in section 2, even though the reason why it is optimal to base the subject’s
decision on an estimate of this kind is different in that context.
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One also observes that (A.6) implies that

log E[n̂|n] = µ̂(n) + (1/2)σ̂2 = logA+ β log n,

where
A ≡ exp((1− β)µ+ (1/2)σ2

post + (1/2)σ̂2) > 0.

This yields the power-law relationship stated as (1.4) in the text for the mean estimated
numerosity as a function of the true numerosity.

As discussed in the text, this implies a “regressive bias.” Specifically, E[n̂|n] > n for all
n < n∗, while E[n̂|n] < n for all n > n∗, where the “cross-over point” n∗ is given by

log n∗ ≡ logA

1− β
= µ+ c, (A.8)

using the expression

c ≡ 1

2

σ2
post + σ̂2

1− β
> 0

for a quantity that depends on σ and ν, but is independent of the prior mean µ. Thus if in
different experiments, the degree of prior uncertainty about the stimulus numerosity is the
same in percentage terms (that is, the value of σ is the same), while the average numerosity
presented is different (implying a different value of µ), the model implies that the cross-over
point n∗ should vary in proportion to eµ. Alternatively, n∗ should vary in proportion to the
prior mean numerosity E[n] (which is equal to eµ times a constant that depends only on σ),
as stated in the text.

If instead we assume that the prior is fixed across experiments, but that ν is varied (for
example, by varying cognitive load, as in the experiments of Anobile et al., 2012), then
both of the coefficients A and β in relation (1.4) are predicted to change across experiments.
When ν is larger (internal representations are less precise), the model predicts that β will be
smaller (though still positive), so that E[n̂|n] will be a more concave function of n, as stated
in the text.

These qualitative conclusions about subjective estimates of numerosity do not depend
on assuming that the subject’s estimate must equal the posterior mean, conditional on
the internal representation r. If we assume instead that the subject’s estimate minimizes
the mean squared percentage error in the estimates, E[(log n̂ − log n)2], then the Bayesian
estimate n̂(r) should satisfy

log n̂(r) = E[log n| r] = µpost(r).

From the above characterization of the posterior distribution, we would again find that
log n̂(r) is predicted to be an affine function of r, with a slope of β; only the intercept of
the function is different in this case. The same argument as above then once again implies
(A.5), where µ̂(n) is again an affine function of log n with a slope of β, though with a different
intercept than the one derived above.

Alternatively, if we assume that the subject’s estimate is given by the posterior mode (or
“maximum a posteriori estimate”), then the properties of a log-normal distribution imply
that

log n̂(r) = log mode[n|r] = µpost(r)− σ2
post.
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Thus once again, log n̂(r) is predicted to be an affine function of r with slope β, though with
yet another value for the intercept term. This again allows us to derive (A.5), in which µ̂(n)
is again an affine function of log n with a slope of β.

In each of these cases, the same derivations as above allow us to obtain the predictions
(A.7) and the power law (1.4). Again the equation for the cross-over point is of the form
(A.8); only the expression for the constant c is different in each case. Thus in any of these
cases, we obtain the following common predictions: (i) log E[n̂|n] should be an affine function
of log n [a log-log plot should be affine] with a slope 0 < β < 1; only the intercept of the
log-log plot should be different in the three cases. (ii) Fixing σ and ν, but allowing µ to vary
across experiments, the cross-over point n∗ should be a constant multiple of the prior mean
E[n]; only the positive multiplicative factor is different in the three cases. (iii) In any given
experiment, the standard deviation of n̂ should grow in proportion to the mean estimate as
n is increased [the property of scalar variability]. As discussed in the text, there is support
for all of these predictions in experiments on estimation of numerosity (as well as a number
of other sensory contexts, as reviewed in Petzschner et al., 2015).

B A Bayesian Model of Lottery Choice

As explained in the text, we assume that the quantities X and C are respectively represented
by quantities rx and rc, independent random draws from the conditional distributions

rx ∼ N(logX, ν2), rc ∼ N(logC, ν2),

where the precision parameter ν > 0 is the same for both monetary amounts. We assume
that the subject’s decision rule is optimized (that is, that it maximizes the subject’s expected
financial gain from the decision) for an environment in which the true values (X,C) defining
a given decision problem are assumed to drawn from a prior distribution under which X
and C are distributed independently of each other, and each have a common (log-normal)
marginal distribution

logX, logC ∼ N(µ, σ2).

Under these assumptions, the posterior distribution for X conditional on the internal rep-
resentation r ≡ (rx, rc) depends only on rx, and the posterior distribution for C similarly
depends only on rc.

We wish to determine which of the two options available to the subject on the given
trial would maximize the expected financial gain E[∆W a|r], given that the decision must be
based on the imprecise internal representation r of the decision problem. In the case of the
risky option, the expected financial gain is64

E[∆W risky|r] = p · E[X|rx],
64Here we assume that the zero financial gain in the case of the zero outcome is internally represented

as precisely zero. This is consistent with our logarithmic coding model (which implies that extremely small
financial gains have virtually zero probability of being mistaken for a financial gain of one cent or more). As
discussed in the text, we also assume here that the probabilities of the different outcomes are represented
with perfect precision; this last assumption is relaxed in section E below.
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while in the case of the certain option, it is

E[∆W certain|r] = E[C|rc].

Hence the risky option is predicted to be chosen if and only if

p · E[X|rx] > E[C|rc], (B.1)

as stated in the text at (2.2).
Furthermore, for either of the monetary amounts considered individually (Y = X or C),

the model just proposed implies that the joint distribution of log Y and ry is a bivariate
Gaussian distribution, of the same form as the joint distribution of log n and r in the model
of numerosity estimation. Just as in the calculations in the previous section of this appendix,
the distribution of log Y conditional on the value of ry will be a Gaussian distribution,

log Y |ry ∼ N(µpost(ry), σ
2
post), (B.2)

where the mean µpost(ry) is an affine function of ry, defined by the same equation (A.2) as
above; and the variance σ2

post is the same for all ry, and again given by (A.4). Thus the
conditional distribution for Y will be log-normal.

It then follows (just as in the model of numerosity estimation) that the conditional
expectation of either monetary amount will be given by

E[Y |ry] = exp[µpost(ry) + (1/2)σ2
post]

= exp[µ + β · (ry − µ) + (1/2)σ2
post]

= exp[α + βry],

as stated in the text, where

α ≡ (1− β)µ + (1/2)σ2
post,

and β is again defined in (A.3). Substituting this expression for the conditional expectations
in (B.1), and taking the logarithm of both sides of the inequality, we find that the risky
option should be chosen if and only if the internal representations satisfy

log p + βrx > βrc,

as stated in the text.
This in turn implies that the risky option should be chosen if and only if rx − rc exceeds

the threshold stated in (2.4). The proposed model of noisy coding implies that, conditional
on the true data (X,C) defining the decision problem, rx − rc will be a Gaussian random
variable,

rx − rc ∼ N(logX − logC, 2ν2).

Hence the transformed variable

z ≡ (rx − rc) − log(X/C)√
2 · ν
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will have a distribution N(0, 1), and a cumulative distribution function Φ(z). In terms of this
transformed variable, the condition (2.4) for acceptance of the risky option can be expressed
as

z > zcrit ≡ β−1 log p−1 − log(X/C)√
2 · ν

.

The probability of this occurring is Φ(−zcrit), as stated by equation (2.4) in the text.

C Testing Scale-Invariance: Additional Statistics

We begin with a further discussion of the degree of scale-invariance of the choice curves (psy-
chometric functions) for the different values of C shown in Figures 3 and 4. The maximum-
likelihood parameter estimates for the different choice curves (estimates of (3.1) for each of
the individual values of C, and the estimate of (3.2) using the pooled data) are shown in
Table 3. For each estimated model, the table also indicates the number of observations Nobs

used to estimate the parameters, and the maximized value of the log-likelihood of the data,
LL. We can use this information to compute a Bayes information criterion (BIC) statistic
for each model, defined as65

BIC ≡ −2LL + 2 logNobs,

since each model has two free parameters.
We can consider quantitatively the extent to which our data are more consistent with

the more flexible model (3.1) than with the more restrictive predictions of our theory, using
the BIC to penalize the use of additional free parameters. If we consider as one possible
model of our complete data set a theory according to which there is a curve of the form (3.1)
for each value of C, with parameters that may differ (in an unrestricted way) for different
values of C, then the BIC associated with this theory (with 12 free parameters) is the sum
of the BIC statistics shown in the last column of Table 3 for the individual values of C,
equal to 7545.5.66 The BIC associated with our more restrictive theory (with only two free
parameters) is instead only 7521.0, as reported in the bottom row of the table.67

The more restrictive model is therefore preferred under the BIC: it leads to a lower value
of the BIC, since the increase in the log-likelihood of the data allowed by the additional free
parameters is not large enough to offset the penalty for additional free parameters. In fact,
the BIC for our more restrictive model is lower by 24.6 points, corresponding to a Bayes
factor of K = e12.3, as discussed in the text. Thus the data increase the relative posterior

65Here, as elsewhere in the paper, “log” refers to the natural logarithm.
66Here the BIC is equal to minus 2 times the log-likelihood of the complete data set under the optimized

parameters, plus a penalty of Nobs(θ) for each free parameter θ, where Nobs(θ) is the number of observations
that are fit using the parameter θ. In the present application, this is the sum of the BICs reported for the
models fit to the data for individual values of C.

67Our theory implies not only that choice probabilities should be given by a relationship of the form (3.2),
but also that the parameters must satisfy conditions (3.3) stated below. However, the unrestricted maximum
of the likelihood is attained by parameter values (shown in the bottom line of Table 3) that satisfy these
restrictions, so that the best-fitting parameter estimates consistent with our theory, and the associated BIC,
are the ones given in the table.
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C Nobs δ γ LL BIC
$5.50 1476 -6.16 2.52 -681.3 1377.1
$7.85 1476 -6.93 2.47 -685.8 1386.3

$11.10 1476 -8.15 2.54 -654.6 1323.8
$15.70 1476 -8.56 2.40 -674.6 1363.8
$22.20 1476 -9.52 2.42 -666.8 1348.2
$31.40 696 -7.87 1.84 -366.7 746.4

All 8076 -1.88 2.39 -3751.5 7521.0

Table 3: Maximum-likelihood estimates of choice curves for each of the values of C considered
separately, and when data from all values of C are pooled. (In each case, data from all 20
subjects are pooled.)

probability of the restrictive model being the correct one, over whatever prior probability
may have been assigned to this, by a factor of more than 200,000.

As indicated in the text, the individual choice curves of one subject, subject 9, are much
farther from exhibiting scale-invariance than those of the other subjects. If we instead pool
the data of all subjects except subject 9, the sum of the BIC statistics from the choice curves
for individual values of C would equal 7143.4, while the BIC statistic for the restricted (scale-
invariant) model equal only 7104.1.68 Thus in this case, the BIC for our more restrictive
model would be lower by 39.3 points, corresponding to a Bayes factor in favor of the scale-
invariant model that is greater than 300 million.

This is of course purely a test of in-sample fit of the scale-invariant model. In the text,
we instead emphasize tests in which the parameters of each model are estimated using only
the first 3/4 of each subject’s trials (the “calibration dataset”), and the remaining data (the
“validation dataset”) are used for an out-of-sample test of fit. In the first panel (“Pooled
Data”) of Table 1 in the text, the statistics reported in the first two columns correspond
to the statistics presented in Table 3, except that the statistics correspond to choice curves
estimated using only the “calibration dataset.” (The values given for both the log likelihood
and the BIC statistic are smaller in Table 1 because of the smaller sample.) In this case, the
overall Bayes factor in favor of the scale-invariant model is not as large (when the pooled
data are used), as shown in Table 1; but the scale-invariant model is still strongly favored.
When we instead estimate separate choice curves for each subject, and then pool the log
likelihoods and corresponding BIC statistics across subjects, the scale-invariant model is
much more strongly favored, as shown in the bottom panel of Table 1 in the text.

The first two panels of Table 4 repeat the analyses shown in the corresponding panels of
Table 1, but using only the data for the 19 subjects other than subject 9. The corresponding
statistics when only the data for subject 9 are used are shown in the bottom panel of the
table. (Note that if one sums each of the entries in the bottom two panels of Table 4, one
obtains the statistics given in the bottom panel of Table 1 in the text.)

If the data for subject 9 are excluded, then even when a common set of parameters is
estimated for all of the other 19 subjects, one finds that the scale-invariant model fits better,

68With the smaller number of subjects, the parameter estimates for the restricted model are δ = −1.95, γ =
2.47, rather than the values shown on the bottom line of Table 3.
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Model LLcalibration BIC LLvalidation log K
Pooled Data [all but Subject 9]

Scale-invariant -2678.8 5374.9 -865.3 0.0
Unrestricted -2665.9 5414.0 -866.2 20.4

Heterogeneous Parameters [all but Subject 9]
Scale-invariant -1723.2 3661.5 -621.5 0.0
Unrestricted -1564.4 3902.5 -741.7 240.7

Subject 9 Only
Scale-invariant -137.0 284.6 -42.4 0.0
Unrestricted -30.5 134.5 -13.9 -103.6

Table 4: In-sample and out-of-sample measures of goodness of fit compared for the scale-
invariant model (our logarithmic coding model) and an unrestricted statistical model, using
the same format as in Table 1 in the text. In the top panel, each model is fit to the
pooled data from all 19 subjects other than subject 9. In the middle panel, separate model
parameters are fit to the data each of the 19 subjects other than subject 9. In the bottom
panel, separate model parameters are fit to the data for subject 9.

both in-sample and out-of-sample. (In the first panel of Table 1, instead, LLvalidation is
higher for the unrestricted model, meaning that this model fits slightly better out-of-sample,
even though the in-sample fit is better for the scale-invariant model, once one penalizes the
additional free parameters of the unrestricted model, and the overall Bayes factor in support
of the scale-invariant model is relatively large.) The degree to which the overall Bayes factor
favors the scale-invariant model is also considerably larger when subject 9 is excluded: we
now find that log K = 20.4, meaning that K > 700 million, as stated in the text.

If instead we estimate separate choice curves for each subject, then as in Table 1, the
degree to which the model comparison favors the scale-invariant model is even greater; but
comparison of the middle panel of Table 4 with the bottom panel of Table 1 shows that
the conclusion is even more strongly supported if the data for subject 9 are excluded. In
this case, the BIC statistic is lower for the scale-invariant model by 241.0 points (implying a
Bayes factor K1 > 1052 in favor of the scale-invariant model, if we assume that one model or
the other must be correct for all 19 of the non-excluded subjects), while the log-likelihood of
the validation sample is also higher for the scale-invariant model by 120.2 points (implying
a Bayes factor K2 > 1052 as well). Combining the two sorts of evidence, we obtain a
Bayes factor K > 10104 in favor of the scale-invariant model as the correct model for these
19 subjects. Thus the hypothesis that the scale-invariant model is correct for all subjects
other than subject 9 (though the unrestricted model is correct for subject 9) is favored
overwhelmingly over the hypothesis that the unrestricted model is correct for all subjects:
by a Bayes factor K > 10104. (This is the “even stronger evidence” referred to in footnote
43.)

The bottom panel of Table 4 shows instead that the scale-invariant model fits very badly
for subject 9, both in-sample and out-of-sample. The strong evidence against scale-invariance
on both counts in the case of subject 9 can also be seen from the location of the dot for
subject 9 in Figure 5. We do not model the behavior observed in the case of subject 9.
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Figure 7: Choice curves for subject 9, for each of five different values of C, plotted as functions
of logX/C, as in the first panel of Figure 4. Note that this subject was not presented any
trials in which C = $31.40.

However, the direction of deviation from scale-invariance in the case of this subject is clear:
the apparent degree of risk-aversion of this subject increases notably as the size of the certain
payment C is increased, as shown in Figure 7.69

In the context of our Bayesian model, the sharp increase in risk aversion for larger values of
C could be interpreted as optimal behavior on the part of a subject with a prior regarding the
possible values of X that implies greater skepticism about the likelihood of larger payments
than the log-normal prior assumed in our model would imply (perhaps because of prior
experience with the amounts paid in campus decision-making experiments). Alternatively,
it might reflect a subject for whom the amounts potentially earned in the experiment were
of sufficient immediate usefulness for there to be a significant degree of diminishing marginal
utility.

69In fact, subject 9 is risk-seeking (in the sense that the risky option is accepted more than half the time
even for values of X/C < 1/p) when C equals $5.55 or $7.85, but risk-averse (in the sense that the risky
option is declined more than half the time even for values of X/C > 1/p) when C equals $11.10 or more.
When C equals $22.20, subject 9 never chose the risky option, for any of the values of X/C used in the
experiment.
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D Comparison with Alternative Models: Additional

Alternatives

D.1 More General Random Expected-Utility Models

In the text, we consider two kinds of additive random-utility models (ARUMs). In each
model, the subject is assumed to choose the option for which E[u(Y )] + ε is larger, where
Y is the monetary amount gained from the experiment and ε is a random term (drawn at
the time of choice) that is independent of the characteristics of the option. In the “ARUM-
Probit” model, the random term ε is assumed to be drawn from a normal distribution,
whereas in the “ARUM-Logit” model, ε is assumed to be drawn from an extreme-value
distribution. In each case, the nonlinear utility function u(Y ) is assumed to be of the CRRA
form, u(Y ) = Y 1−γ/(1− γ), for some γ ≥ 0.

Here we consider whether the fit of a nonlinear expected utility model might be improved
by allowing a more general form of utility function, specifically, a function in the HARA class.
This is the two-parameter family of utility functions u(Y ;α, β) for which the Arrow-Pratt
coefficient of absolute risk aversion ρ(Y ) ≡ −u′′(Y )/u′(Y ) is a hyperbolic function of Y :
ρ(Y ) = (α + βY )−1, for some constant coefficients α, β. We assume that these coefficients
are such that α + βY > 0 for all values of Y in the interval (0, Ȳ ), where Ȳ = $125.60 is
the largest monetary amount used in the experiment, so that u(Y ) is an increasing, concave
function over the range of values 0 < Y < Ȳ . (This assumption requires that α ≥ 0 and that
β not be too negative; it is satisfied if α, β ≥ 0 and at least one of them is positive.) This
family of functions nests the CRRA family (the case in which α = 0, β > 0), but also allows
other cases, including the familiar CARA family (the case in which α > 0, β = 0). Again we
can consider both Probit and Logit cases of the random-expected-utility model with HARA
utility. In each case, we have a three-parameter model, in which the free parameters are the
preference parameters α, β, and the standard deviation of ε.70

If we estimate a single utility function for all 20 subjects, as in the upper panel of Table 2
in the text, then the generalization to HARA utility makes no difference for our results, for
in fact the best-fitting member of the HARA family of utility functions is a member of the
CARA family. (That is, when we optimize the parameters α and β, the optimal parameter
values are on the boundary of the admissible region where α = 0. Because α is constrained,
there are also no more free parameters than in the CRRA case, and the BIC statistics also
remain those reported in Table 2.) This is true for both the Probit and Logit versions of
the ARUM; regardless of whether we estimate the common model parameters pooling the
data of all 20 subjects, or only using the data for the 19 subjects other than subject 9; and
regardless of whether the model parameters are estimated using the entire dataset, or only
the smaller “calibration dataset” used when we wish to test out-of-sample fit of the models.

If instead we estimate a separate utility function for each subject, as in the lower panel
of Table 2, then for some individual subjects the best-fitting HARA utility function involves

70The parameters α and β only identify the function u(Y ) up to an arbitrary affine transformation; the
exact function can be pinned down by further specifying two values such as u(Ȳ ) and u′(Ȳ ). These latter
parameters can be chosen arbitrarily. The value of u(Ȳ ) has no consequences for predicted choices (since it
does not affect the expected utility difference between any two lotteries); the value of u′(Ȳ ) amounts to a
choice of the units in which the standard deviation of ε is measured.
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Sum of BIC over Subjects
Model All Subjects All but S9

Log coding 5223.0 4854.1
Random Expected-Utility Models

CRRA - Probit 5526.0 5183.7
CRRA - Logit 5359.0 5015.6
HARA - Probit 5571.1 5229.5
HARA - Logit 5411.0 5067.6

Random Prospect-Theory Models
PT - Probit 5535.0 5218.9
PT - Logit 5377.0 5058.4

Random Salience-Theory Models
Salience - Probit 5822.3 5506.1
Salience - Logit 5616.0 5297.4

Table 5: Model comparison statistics for alternative models in which separate parameters
are estimated for each subject. (The alternative models are explained in the text.) In each
case, the statistic given is the sum of the BIC statistics for the models estimated for the
individual subjects.

α > 0, so that the generalization to HARA utility does allow a better in-sample fit (in the
sense of a higher value for the likelihood). However, if we use the BIC criterion to penalize
the additional free parameters in the case of the more flexible family of utility functions,
the restricted CRRA model still fits the data better, at least if we sum the BIC statistics
of the different subjects (so as to compare the two hypotheses under which either CRRA is
the right model for all subjects, or the HARA model is). The BIC statistics for these model
comparisons are shown in Table 5.

In each row of Table 5, the statistics given show the sum of the BIC statistics for the
models estimated for the individual subjects. (The first column shows the sum of these
statistics for all 20 subjects; the second column shows the sum for all subjects other than
subject 9.) A comparison of the BIC statistics between any two rows can then be used to
judge the relative fit of the two models in question; in particular, the difference in the BIC
statistics in any two rows (of the same column) can be used to compute a Bayes factor K
for comparison of the two hypotheses that one model or the other is the correct model for
all subjects (all of those considered in that column).

For reference, the first row of the table shows the BIC statistics for our logarithmic coding
model.71 The second and third rows show the corresponding statistics for the CRRA-Probit
and CRRA-Logit models, the models called “ARUM-Probit” and “ARUM-Logit” in the text.
The fourth and fifth rows then show these statistics for the cases in which the function u(Y )
is allowed to be any member of the HARA family. We see that regardless of the assumed
distribution for the noise term ε, and regardless of whether we use all 20 subjects or we

71The BIC statistics shown in the first column differ from those in the bottom of panel of Table 2 in the
text, because here we fit the models to the complete dataset, rather than only to the “calibration dataset”
as in Table 2.
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exclude subject 9, the conclusion is the same: allowing the more general form of utility
function raises the log likelihood (not shown in the table), but also results in a larger BIC
statistic.

In each case, we would therefore have a Bayes factor K much greater than 1 in favor of
the CRRA specification. (For example, in the case of the logit specification and using the
data of all 20 subjects, the BIC for the CRRA case is 5359.0, while for the HARA case it is
5411.1. The BIC statistic is larger by 52.1 points, so that logK = 26.0, implying a Bayes
factor greater than 200 billion.) Of course, as discussed in the text, the logarithmic coding
model fits better than either of the ARUMs based on CRRA utility; regardless of whether
we exclude subject 9, the BIC statistics in the first row are lower than those in any other
row.

D.2 Stochastic Versions of Prospect Theory

In order to test the ability of prospect theory to explain our data — at least in a way that
puts the theory on the same footing as the others considered here, and allows likelihood-
based model comparisons — it is necessary to extend the original theory of Kahneman and
Tversky (1979) to make it stochastic. A standard approach in econometric tests of prospect
theory (as reviewed in Stott, 2006) is to add a random term ε to the valuation of each risky
prospect that would be specified by Kahneman and Tversky. It is then assumed that the
option chosen on a given trial will be the one with the higher value of∑

i

w(pi)v(Yi) + ε,

where i indexes the possible outcomes under the risky prospect; pi is the objective probability
of outcome i and Yi the associated net monetary gain; w(p) is the Kahneman-Tversky
probability “weighting function” and v(Y ) their “value function”; and ε is a random term,
drawn independently for each prospect.72 Once again, we can consider both the case in
which ε is assumed to be drawn from a normal distribution and the case in which it has an
extreme-value distribution.

As noted in the text, the ARUMs based on a CRRA utility function (considered in
Table 2, and in Table 5 above) can also be considered to represent stochastic versions of
prospect theory, in which the weighting function is assumed to be linear (w(p) = p) and the
value function is of the CRRA form. This form of value function is in fact the one most
commonly used in empirical tests of prospect theory (following Tversky and Kahneman,
1992; again, see Stott, 2006, for a review of the literature). But the assumption that w(p) =
p is of course contrary to what Kahneman and Tversky propose; and one might wonder
whether a stochastic version of prospect theory that incorporates a nonlinear probability
weighting function would better explain our experimental data than the random expected-
utility models considered above.

72Except for the presence of the ε term, this is the model of the valuation of risky prospects proposed in
Kahneman and Tversky (1979). Because in this paper we consider only simple gambles in which there are at
most two possible outcomes i, the further refinement of cumulative prospect theory, introduced in Tversky
and Kahneman (1992), is not relevant here.
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Since in our experiment, the probability p of the non-zero outcome under the risky
alternative is always equal to 0.58, it only matters what numerical value we propose for the
probability weight p̃ ≡ w(0.58).73 Kahneman and Tversky assume an “inverse-S” shape for
w(p), implying that there exists an intermediate probability p̂ such that p < w(p) < 1 for
all 0 < p < p̂ but 0 < w(p) < p for all p̂ < p < 1. They further assume a “sub-additivity”
property for the weighting function, that requires that p̂ < 1/2 (so that in the case of two
equally likely outcomes, w(1/2) < 1/2). Since in our experiment, p = 0.58 > 1/2, the
assumptions of Kahneman and Tversky would imply that 0 < p̃ < 0.58.

Our “noisy prospect-theory models” therefore assume that

v(Y ) = Y 1−γ/(1− γ)

and w(0.58) = p̃, where the parameters γ and p̃ satisfy the theoretical restrictions γ ≥ 0
and 0 ≤ p̃ ≤ 0.58. There are two versions of the model, “PT-Probit” in which ε is drawn
from a normal distribution, and “PT-Logit” in which it is drawn from an extreme-value
distribution. In each case, the noisy prospect-theory model has three free parameters: the
values of γ, p̃, and the standard deviation of ε.

If we fit the noisy prospect-theory models to our data assuming common parameter
values for all subjects, then the results are the same as in the case of the CRRA random
expected-utility models discussed in the text. For we find that the best-fitting parameter
values involve p̃ = 0.58, so that the upper bound is a binding constraint. In this case, the
noisy prospect-theory model reduces to a model that is mathematically equivalent to the
CRRA random expected-utility model; there is also the same number of free parameters
(given that p̃ is constrained), and hence the same BIC statistic as for the CRRA-ARUM.

If instead we fit a separate noisy prospect-theory model to the data for each subject,
then we do find that the data can be better fit by a model with 0 < p̃ < 0.58 for some
subjects. However, as in the case of the more flexible class of utility functions considered
in the previous subsection, the degree to which the likelihood of the data is increased is not
great enough to justify the inclusion of the additional free parameters, if free parameters are
penalized according to the BIC criterion. The sixth and seventh rows of Table 5 show the
BIC statistics (again, summed over the subjects) for the “PT-Probit” and “PT-logit” models.
In each case, the BIC statistics are higher for the less restrictive model (in which p̃ is allowed
to be less than 0.58) than if the theoretical assumption that p̃ = 0.58 is imposed. Thus these
models do not fit better than the random expected-utility models already considered, and
a fortiori are not competitive with the logarithmic coding model as an explanation for our
experimental data.

D.3 Stochastic Versions of Salience Theory

Bordalo et al. (2012) propose an alternative theory of risk attitudes, according to which
deviations from risk-neutral choice result from differential weighting of the different possible
outcomes of a gamble according to their degree of “salience.” In the case of a simple com-
parison between a certain outcome and a risky option with two possible outcomes, of the

73Kahneman and Tversky assume that w(0) = 0 and w(1) = 1. The only other probability that occurs in
our examples is 0.42, the probability of the zero outcome under the risky alternative. However, Kahneman
and Tversky also assume that v(0) = 0, so that the value of w(pi) for this alternative does not matter.
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kind considered here, their theory is relatively simple. There are only two possible outcomes
to take into account, the good outcome for the risky option (the one in which X is received)
and the bad outcome (the one in which zero is received). It is assumed that the relative
weight placed on the good outcome as opposed to the bad outcome is greater than the rela-
tive probability of that state if and only if the outcome in which the risky option yields X
is the more salient of the two possible outcomes.

Algebraically, the theory predicts that the risky option should be chosen if and only if74∑
i

gipiYi > C,

where gi > 0 is the “salience weight” associated with outcome i (i = hi, lo). The salience
weights are normalized so that

∑
i gipi = 1 (which is why the salience weights do not appear

on the right-hand side of the above inequality). It is further assumed that gi = δgj if outcome
i is less salient than outcome j, where 0 < δ < 1 is a parameter that indicates the degree
to which choice is biased by salience. (The theory reduces to expected-value maximization
when δ = 1.)

It follows that

ghi =
1

p+ (1− p)δ
if hi is the more salient outcome,

ghi =
δ

pδ + (1− p)
if lo is the more salient outcome.

The deterministic theory proposed by Bordalo et al. implies that the risky option should be
chosen if and only if

ghi · pX > C,

where ghi is defined above. We can make the theory stochastic by proposing instead that
the risky option is chosen if and only if

ghi · pX + εx > C + εc,

where εx, εc are two independent draws of the random variable ε. As usual, we can assume
that ε is drawn either from a normal distribution or an extreme-value distribution, giving
rise to two alternative stochastic versions of the theory, that we call “Salience-Probit” and
“Salience-Logit.”

It remains to specify which of the two outcomes should be more salient in our experiment.
Bordalo et al. assume that the relative salience of the two outcomes depends on a comparison
of the payoff difference |X − C| in the hi outcome to the payoff difference |0 − C| in the
lo outcome, with an increase in the absolute payoff difference in either state making that
outcome more salient. We adopt a parsimonious specification of their model by assuming that

74The theory of Bordalo et al. (2012) also allows the utilities associated with different outcomes to be
different from the net financial gains in each case, as assumed here. However, none of the interpretations of
experimental findings with regard to risk attitudes in laboratory settings proposed in their paper depends
on assumption of nonlinear utility. So here we test a more parsimonious specification in which utility is
assumed to be linear, for small gambles of the kind presented in our experiment.
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the salience function is a homogeneous degree zero function of the two payoff differences,75

so that the relative salience of the two outcomes should depend only on the ratio X/C.
The theory of Bordalo et al. posits that the relative salience of the hi outcome should

be an increasing function of X/C for all X ≥ C (since a larger value of X/C corresponds to
a larger ratio of |X −C| to |0−C|). It is then only necessary to specify the critical fraction
π such that hi will be the more salient outcome if and only if X/C > 1/π. The theory of
Bordalo et al. further implies that the critical fraction must satisfy 0 < π < 1/2, so that the
lo outcome is more salient whenever |0− C| ≥ |X − C|.76 We treat this as a free parameter
that can be fit to our data. Each of our random salience-theory models then has three free
parameters: δ, π and the standard deviation of ε. We impose as theoretical restrictions that
0 < δ ≤ 1 and 0 < π < 1/2.

When we fit these random salience-theory models to the experimental data, assuming
a common set of parameters for all subjects, we find that the best-fitting parameter values
involve a value of δ between 0.52 and 0.56 (depending on the precise sample used) and a
value of π less than 0.25. That is, it does not improve the fit of the model to assume that
the relative salience of the two outcomes switches on trials when X/C is larger: instead, the
best-fitting model implies that the lo outcome is always more salient (resulting in consistently
risk-averse behavior, in the situations that occur in our experiment). The value of δ much
less than 1 implies a substantial degree of risk aversion: in the absence of the random terms,
the fitted model would imply choice of the risky option only when X/C is greater than 2.3,77

whereas a risk-neutral decision maker would only require X/C to be greater than 1.7.
However, models of this kind fit our data less well than do the random expected-utility

models discussed in the main text, let alone the logarithmic coding model. If we assume a
common set of parameters for all subjects, and fit to the entire dataset for all 20 subjects,
the BIC statistic for the Salience-Probit model is greater than that for the CRRA-Probit
model by 526.8 points, implying a Bayes factor in favor of the random expected-utility
model of K > 10114. The Salience-Logit model fits better, but still, the BIC statistic for
the Salience-Logit model is greater than that for the CRRA-Logit model by 462.7 points,
implying a Bayes factor in favor of the random expected-utility model of K > 10100. Even
the better-fitting of the random salience-theory models (Salience-Logit) has a BIC statistic
that is greater than that for the logarithmic coding model by 891.1 points, implying a Bayes
factor in favor of the logarithmic coding model of K > 10193.

Our conclusion is the same if we estimate separate model parameters for each subject.
The bottom two rows of Table 5 show the BIC statistics for the two random salience-theory
models in this case (both when the BIC statistics of all 20 subjects are summed, and when
we exclude subject 9). Again we find in each case that the random salience-theory models
fit less well than the CRRA-ARUM models, and less well a fortiori than the logarithmic
coding model. We also reach a similar conclusion when the model parameters are fit to

75Given the relatively scale-invariant behavior of most of our subjects, this simplification would not seem
to bias our test against the salience models.

76When X = 2C, so that |X − C| = |0 − C| exactly, Bordalo et al. assume that the lo outcome should
be more salient, because of their principle of “diminishing sensitivity” (increasing the quantities (0, C) to
(C, 2C) makes the difference between them seem smaller).

77Note that this model of risk-averse choice would be scale-invariant, thus providing a solution to the
Rabin paradox.
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the “calibration dataset” and we then test out-of-sample fit using the “validation dataset.”
The random salience-theory models fit worse than the CRRA-ARUM models, and worse a
fortiori than the logarithmic coding model both in-sample and out-of-sample.

E Imprecise Representation of Probability

The model of choice between lotteries presented in section B of this appendix can be gener-
alized to allow for noisy coding of the probability p as well. As explained in the text, if we
assume a noisy internal representation rp of the probability, the distribution of which depends
only on the true probability p described to the subject, then the threshold for acceptance of
the risky option becomes

rx − rc > β−1ρ, ρ ≡ − log E[p|rp], (E.1)

as stated in the text at (4.3).
Suppose that the internal representation rp is drawn from a distribution

rp ∼ N(log(p/1− p), ν2
p), (E.2)

where νp is non-negligible. Suppose furthermore that the log odds z ≡ log(p/1 − p) of the
two outcomes are normally distributed under the prior,

z ∼ N(µp, σ
2
p).

Then the joint distribution of z and rp will be a bivariate Gaussian distribution, and calcula-
tions similar to those referenced in section B of this appendix can again be used to compute
conditional distributions.

In particular, the posterior log odds, conditional on the representation rp, will also have
a Gaussian distribution,

z|rp ∼ N(m̄(rp), σ̄
2), (E.3)

where
m̄(rp) ≡ E[z|rp] = µp + βp · (rp − µp)

using the notation

βp ≡
cov(z, rp)

var(rp)
=

σ2
p

σ2
p + ν2

p

,

and

σ̄2 ≡
σ2
pν

2
p

σ2
p + ν2

p

.

Note that m̄(rp) is a weighted average of rp and µp, and σ̄2 is independent of rp, as stated
in the text.

Since the probability p of the non-zero payoff can be reconstructed from the log odds as
p = ez/(1 + ez), we obtain

ρ(rp) = − log E[p|rp] = − log E

[
ez

1 + ez
|rp
]
,
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where z is distributed in accordance with (E.3). Note that we can alternatively write this
function as

ρ(rp) = − log E[F (rp, ε)], (E.4)

where

F (rp, ε) ≡
exp[m̄(rp) + σ̄ε]

1 + exp[m̄(rp) + σ̄ε]
(E.5)

and the expectation is over realizations of the random variable ε, which has a standard
normal distribution (and is distributed independently of the value of rp).

Conditional on a given true value of p, the internal representation rp is a random variable
with distribution (E.2). The variable ρ is then a nonlinear transformation of rp defined by
(E.4), and so also a random variable with a distribution conditional on the true value of p.
The distribution of ρ is complicated to characterize, but it is easy to see that the introduction
of noise into the encoding of the log odds by rp results not only in random variation in the
value of ρ (which would instead be a constant, equal to − log p as assumed in equation (2.4),
if p were encoded with perfect precision), but also in a median value for ρ that is generally
different from the value it would have in the absence of coding noise. Because m̄(rp) is a
monotonically increasing function of rp, F (rp, ε) is an increasing function of rp for each value
of ε; it then follows from (E.4) that ρ(rp) must be a monotonically decreasing function of
rp. The median value of ρ is then the value of the function ρ(rp) when rp takes its median
value, so that

median[ρ|p] = ρ(z(p)).

Since e−ρ is a monotonically decreasing function of ρ, we similarly have

w(p) ≡ median[e−ρ|p] = e−ρ(z(p)).

Recalling the definition of ρ(rp), we can alternatively define this function as

w(p) = E[F (z(p), ε)]. (E.6)

Although for any p, w(p)→ p as the variance ν2
p of the coding noise is made arbitrarily

small, w(p) is generally not equal to p (so that correspondingly, the mean value of ρ is not
equal to − log p) when the variance of the coding noise is positive. In fact, we can show
that w(p) has many of the properties that Kahneman and Tversky (1979) assume for their
probability weighting function.

First, we observe that for any 0 < p < 1, we have 0 < F (z(p), ε) < 1 for all ε, so that
the expected value of F must lie between these extremes as well. Then (E.6) implies that
0 < w(p) < 1 for all 0 < p < 1. Next, we also observe that the derivative of the function is
given by

w′(p) = E

[
∂F (z(p), ε)

∂z

]
· dz
dp

= βp(e
z + 2 + e−z) E[(em̄(z)+ε + 2 + e−m̄(z)−ε)−1]. (E.7)

Because this is the expected value of a variable that is always positive, w′(p) > 0, and we
observe that w(p) must be a monotonically increasing function of p over its entire range.
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We further observe that for any ε, F (z(p), ε)→ 0 as p→ 0, and F (z(p), ε)→ 1 as p→ 1.
The convergence is also uniform enough in each case to allow one to show that (E.6) implies
that w(p) → 0 as p → 0, and w(p) → 1 as p → 1. Finally, (E.7) implies that for small p
(z << 0),

w′ ∼ βp e
(1−βp)(µp−z) E[eε],

while for large p (z >> 0),
w′ ∼ βp e

−(1−βp)(µp−z) E[e−ε].

From this we see that w′(p)→ +∞ as p→ 0, and similarly that w′(p)→ +∞ as p→ 1.
This implies that w(p) > p for all small enough p > 0, while w(p) < p for all large enough

p. Thus if we interpret w(p) as the “average perceived probability” when the true probability
is p, the model implies over-estimation of small positive probabilities, and under-estimation
of large probabilities less than 1, as with the probability weighting function of Kahneman
and Tversky (1979).

We can observe more about the global shape of the w(p) function if we consider the
limiting case in which σp and νp are both small, but we fix the ratio νp/σp at some finite
positive value γ as σp, νp → 0. In this limiting case, the value of βp remains fixed at the value
βp = 1/(1 + γ2) < 1, while the value of σ̄ approaches zero at the same rate as σp and νp. We
then observe from (E.5) that for each value of ε,

F (z, ε) → αpe
βpz

1 + αpeβpz
as σ̄ → 0,

where αp ≡ e(1−βp)µp > 0, and the convergence is sufficiently uniform in ε to ensure that

lim
σ̄→0

E[F (z, ε)] =
αpe

βpz

1 + αpeβpz

for all z. Thus in the limiting case we obtain

w(p) =
αpp

βp

(1− p)βp + αppβp
, (E.8)

where the parameters satisfy αp > 0, 0 < βp < 1.
As noted in the text, this function has the “inverse-S” shape assumed for the probabil-

ity weighting function in prospect theory; indeed, this two-parameter family of probability
weighting functions has sometimes been used in quantitative implementations of prospect
theory. The function defined in (E.8) has the property that w(p) > p for all 0 < p < p∗,
while w(p) < p for all p∗ < p < 1, where the critical probability p∗ is given by

p∗ ≡ eµp

1 + eµp
.

If µp < 0, implying that under the prior, p < 1/2 is more likely than p > 1/2, then αp < 1,
and as a consequence p∗ < 1/2, and the function w(p) has the property of “subadditivity”
assumed by Kahneman and Tversky (1979).

The nonlinearity of the function w(p) in the case of noisy coding of the probability biases
choice in our model in a similar way as the nonlinear probability weighting function in
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prospect theory. Consider, as an example, the case in which the noise in the internal coding
of X and C is negligible (ν is extremely small), while νp remains non-trivial (more precisely,
the ratio νp/σp is not too small). If the monetary amounts X and C are represented with
high precision, condition (E.1) for choice of the risky option reduces to

ρ < logX − logC.

Here the randomness in rx and rc have been suppressed as negligible, and β has been replaced
by its limiting value of 1; the probability of acceptance of the risky option is then just the
probability of a realization of ρ greater than log(X/C).

For any given value of p, this model predicts (like the model presented in section 2 of
this paper) that the probability of acceptance of the risky option should depend only on
the ratio X/C, and should be monotonically increasing in X/C; thus one should obtain a
smooth psychometric function of the kind shown in Figure 2 of the text. But unlike the
model in section 2, this model also predicts that the subject’s apparent risk attitude should
vary depending on the size of p.

If, as in the experiment discussed in Tversky and Kahneman (1992), we define the “cer-
tainty equivalent” C∗ for each risky prospect (p,X) as the value of C for which the subject
is indifferent between the risky prospect and obtaining C with certainty (i.e., the value of
C for which the probability of choosing the risky option is exactly 1/2), then our model of
random choice implies that C∗ should be implicitly defined by

median[ρ|p] = log(X/C∗),

so that
C∗ = X · e−ρ(z(p)) = X · w(p).

Thus a plot of C∗/X as a function of p should show an increasing function of p (relatively
independent of the size of X) with the “inverse-S” shape seen in the figures in Tversky and
Kahneman (1992). In particular, this simple example suffices to show that our theory is
capable of explaining the complete “four-fold pattern of risk attitudes” displayed in those
figures.

F Experimental Design: Further Details

F.1 Participants

Twenty adults (10 female, ages 18-28 years) participated in the experiment after giving
informed consent. Participants were recruited from the Columbia University community
via on-campus informational fliers. Participants completed the experimental procedure in
a private room on a single computer station. All procedures involving human subjects
were approved by the Institutional Review Board of Columbia University (protocol #IRB-
AAAQ2255).
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F.2 Experimental Task

Participants completed a task in which they were instructed to choose between a certain
monetary payment and a risky payment. Participants were presented with a series of options
on the screen and submitted their choices by pressing the left or right arrow keys on the
keyboard.

Figure 1 illustrates the screen observed by one of our subjects on a single trial. The two
sides of the screen indicate the two options available on that trial; the subject must indicate
whether she chooses the left or right option (by pressing the corresponding key). On the
left side of the screen, the dollar amount shown is the quantity C that can be obtained
with certainty if left is chosen. The right side of the screen shows the possible payoffs if
the subject chooses the risky lottery instead. The amounts at the top and bottom of the
right side indicate the two possible monetary prizes; the colored rectangular regions in the
center indicate the respective probabilities of these two outcomes, if the lottery is chosen.
The relative areas of the two rectangular regions provide a visual indication of the relative
probabilities of the two outcomes; in addition, the number printed in each region indicates
the probability (in percent) that that outcome will occur. (Thus on the trial shown, the
subject must choose between a certain payment of $5.55 and a lottery in which there would
be a 58 percent chance of receiving $15.70, but a 42 percent chance of receiving nothing.)

Figure 8: The computer screen during a single trial of our experiment. The two sides of the
screen show the two options available on this trial.

Participants completed sequences lasting between 280 and 648 choices. The average
completion time ranged between 14 minutes (280 choices) and 37 minutes (648 choices).
In addition, participants began with instructional and practice session that lasted about 10
minutes. Participants were prompted to take a break after every 100 choices, upon which they
could resume the experiment at the press of a button. The experiment interface was created
with in-house code designed to run on the Psychophysics Toolbox-3 stimuli presentation
package for MATLAB.
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F.3 Experimental Task Instruction Slides
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